xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner.  This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/AttributeMask.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DebugInfo.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/ValueMapper.h"
37 #include <map>
38 #include <optional>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "clone-function"
42 
43 /// See comments in Cloning.h.
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo,DebugInfoFinder * DIFinder)44 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
45                                   const Twine &NameSuffix, Function *F,
46                                   ClonedCodeInfo *CodeInfo,
47                                   DebugInfoFinder *DIFinder) {
48   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
49   NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat;
50   if (BB->hasName())
51     NewBB->setName(BB->getName() + NameSuffix);
52 
53   bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false;
54   Module *TheModule = F ? F->getParent() : nullptr;
55 
56   // Loop over all instructions, and copy them over.
57   for (const Instruction &I : *BB) {
58     if (DIFinder && TheModule)
59       DIFinder->processInstruction(*TheModule, I);
60 
61     Instruction *NewInst = I.clone();
62     if (I.hasName())
63       NewInst->setName(I.getName() + NameSuffix);
64 
65     NewInst->insertBefore(*NewBB, NewBB->end());
66     NewInst->cloneDebugInfoFrom(&I);
67 
68     VMap[&I] = NewInst; // Add instruction map to value.
69 
70     if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) {
71       hasCalls = true;
72       hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof);
73     }
74     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
75       if (!AI->isStaticAlloca()) {
76         hasDynamicAllocas = true;
77       }
78     }
79   }
80 
81   if (CodeInfo) {
82     CodeInfo->ContainsCalls |= hasCalls;
83     CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
84     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
85   }
86   return NewBB;
87 }
88 
89 // Clone OldFunc into NewFunc, transforming the old arguments into references to
90 // VMap values.
91 //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,CloneFunctionChangeType Changes,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)92 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
93                              ValueToValueMapTy &VMap,
94                              CloneFunctionChangeType Changes,
95                              SmallVectorImpl<ReturnInst *> &Returns,
96                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
97                              ValueMapTypeRemapper *TypeMapper,
98                              ValueMaterializer *Materializer) {
99   NewFunc->setIsNewDbgInfoFormat(OldFunc->IsNewDbgInfoFormat);
100   assert(NameSuffix && "NameSuffix cannot be null!");
101 
102 #ifndef NDEBUG
103   for (const Argument &I : OldFunc->args())
104     assert(VMap.count(&I) && "No mapping from source argument specified!");
105 #endif
106 
107   bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
108 
109   // Copy all attributes other than those stored in the AttributeList.  We need
110   // to remap the parameter indices of the AttributeList.
111   AttributeList NewAttrs = NewFunc->getAttributes();
112   NewFunc->copyAttributesFrom(OldFunc);
113   NewFunc->setAttributes(NewAttrs);
114 
115   const RemapFlags FuncGlobalRefFlags =
116       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
117 
118   // Fix up the personality function that got copied over.
119   if (OldFunc->hasPersonalityFn())
120     NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap,
121                                        FuncGlobalRefFlags, TypeMapper,
122                                        Materializer));
123 
124   if (OldFunc->hasPrefixData()) {
125     NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap,
126                                     FuncGlobalRefFlags, TypeMapper,
127                                     Materializer));
128   }
129 
130   if (OldFunc->hasPrologueData()) {
131     NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap,
132                                       FuncGlobalRefFlags, TypeMapper,
133                                       Materializer));
134   }
135 
136   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
137   AttributeList OldAttrs = OldFunc->getAttributes();
138 
139   // Clone any argument attributes that are present in the VMap.
140   for (const Argument &OldArg : OldFunc->args()) {
141     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
142       NewArgAttrs[NewArg->getArgNo()] =
143           OldAttrs.getParamAttrs(OldArg.getArgNo());
144     }
145   }
146 
147   NewFunc->setAttributes(
148       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(),
149                          OldAttrs.getRetAttrs(), NewArgAttrs));
150 
151   // Everything else beyond this point deals with function instructions,
152   // so if we are dealing with a function declaration, we're done.
153   if (OldFunc->isDeclaration())
154     return;
155 
156   // When we remap instructions within the same module, we want to avoid
157   // duplicating inlined DISubprograms, so record all subprograms we find as we
158   // duplicate instructions and then freeze them in the MD map. We also record
159   // information about dbg.value and dbg.declare to avoid duplicating the
160   // types.
161   std::optional<DebugInfoFinder> DIFinder;
162 
163   // Track the subprogram attachment that needs to be cloned to fine-tune the
164   // mapping within the same module.
165   DISubprogram *SPClonedWithinModule = nullptr;
166   if (Changes < CloneFunctionChangeType::DifferentModule) {
167     assert((NewFunc->getParent() == nullptr ||
168             NewFunc->getParent() == OldFunc->getParent()) &&
169            "Expected NewFunc to have the same parent, or no parent");
170 
171     // Need to find subprograms, types, and compile units.
172     DIFinder.emplace();
173 
174     SPClonedWithinModule = OldFunc->getSubprogram();
175     if (SPClonedWithinModule)
176       DIFinder->processSubprogram(SPClonedWithinModule);
177   } else {
178     assert((NewFunc->getParent() == nullptr ||
179             NewFunc->getParent() != OldFunc->getParent()) &&
180            "Expected NewFunc to have different parents, or no parent");
181 
182     if (Changes == CloneFunctionChangeType::DifferentModule) {
183       assert(NewFunc->getParent() &&
184              "Need parent of new function to maintain debug info invariants");
185 
186       // Need to find all the compile units.
187       DIFinder.emplace();
188     }
189   }
190 
191   // Loop over all of the basic blocks in the function, cloning them as
192   // appropriate.  Note that we save BE this way in order to handle cloning of
193   // recursive functions into themselves.
194   for (const BasicBlock &BB : *OldFunc) {
195 
196     // Create a new basic block and copy instructions into it!
197     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
198                                       DIFinder ? &*DIFinder : nullptr);
199 
200     // Add basic block mapping.
201     VMap[&BB] = CBB;
202 
203     // It is only legal to clone a function if a block address within that
204     // function is never referenced outside of the function.  Given that, we
205     // want to map block addresses from the old function to block addresses in
206     // the clone. (This is different from the generic ValueMapper
207     // implementation, which generates an invalid blockaddress when
208     // cloning a function.)
209     if (BB.hasAddressTaken()) {
210       Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
211                                               const_cast<BasicBlock *>(&BB));
212       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
213     }
214 
215     // Note return instructions for the caller.
216     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
217       Returns.push_back(RI);
218   }
219 
220   if (Changes < CloneFunctionChangeType::DifferentModule &&
221       DIFinder->subprogram_count() > 0) {
222     // Turn on module-level changes, since we need to clone (some of) the
223     // debug info metadata.
224     //
225     // FIXME: Metadata effectively owned by a function should be made
226     // local, and only that local metadata should be cloned.
227     ModuleLevelChanges = true;
228 
229     auto mapToSelfIfNew = [&VMap](MDNode *N) {
230       // Avoid clobbering an existing mapping.
231       (void)VMap.MD().try_emplace(N, N);
232     };
233 
234     // Avoid cloning types, compile units, and (other) subprograms.
235     SmallPtrSet<const DISubprogram *, 16> MappedToSelfSPs;
236     for (DISubprogram *ISP : DIFinder->subprograms()) {
237       if (ISP != SPClonedWithinModule) {
238         mapToSelfIfNew(ISP);
239         MappedToSelfSPs.insert(ISP);
240       }
241     }
242 
243     // If a subprogram isn't going to be cloned skip its lexical blocks as well.
244     for (DIScope *S : DIFinder->scopes()) {
245       auto *LScope = dyn_cast<DILocalScope>(S);
246       if (LScope && MappedToSelfSPs.count(LScope->getSubprogram()))
247         mapToSelfIfNew(S);
248     }
249 
250     for (DICompileUnit *CU : DIFinder->compile_units())
251       mapToSelfIfNew(CU);
252 
253     for (DIType *Type : DIFinder->types())
254       mapToSelfIfNew(Type);
255   } else {
256     assert(!SPClonedWithinModule &&
257            "Subprogram should be in DIFinder->subprogram_count()...");
258   }
259 
260   const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
261   // Duplicate the metadata that is attached to the cloned function.
262   // Subprograms/CUs/types that were already mapped to themselves won't be
263   // duplicated.
264   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
265   OldFunc->getAllMetadata(MDs);
266   for (auto MD : MDs) {
267     NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag,
268                                                 TypeMapper, Materializer));
269   }
270 
271   // Loop over all of the instructions in the new function, fixing up operand
272   // references as we go. This uses VMap to do all the hard work.
273   for (Function::iterator
274            BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
275            BE = NewFunc->end();
276        BB != BE; ++BB)
277     // Loop over all instructions, fixing each one as we find it, and any
278     // attached debug-info records.
279     for (Instruction &II : *BB) {
280       RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer);
281       RemapDbgRecordRange(II.getModule(), II.getDbgRecordRange(), VMap,
282                           RemapFlag, TypeMapper, Materializer);
283     }
284 
285   // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
286   // same module, the compile unit will already be listed (or not). When
287   // cloning a module, CloneModule() will handle creating the named metadata.
288   if (Changes != CloneFunctionChangeType::DifferentModule)
289     return;
290 
291   // Update !llvm.dbg.cu with compile units added to the new module if this
292   // function is being cloned in isolation.
293   //
294   // FIXME: This is making global / module-level changes, which doesn't seem
295   // like the right encapsulation  Consider dropping the requirement to update
296   // !llvm.dbg.cu (either obsoleting the node, or restricting it to
297   // non-discardable compile units) instead of discovering compile units by
298   // visiting the metadata attached to global values, which would allow this
299   // code to be deleted. Alternatively, perhaps give responsibility for this
300   // update to CloneFunctionInto's callers.
301   auto *NewModule = NewFunc->getParent();
302   auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
303   // Avoid multiple insertions of the same DICompileUnit to NMD.
304   SmallPtrSet<const void *, 8> Visited;
305   for (auto *Operand : NMD->operands())
306     Visited.insert(Operand);
307   for (auto *Unit : DIFinder->compile_units()) {
308     MDNode *MappedUnit =
309         MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
310     if (Visited.insert(MappedUnit).second)
311       NMD->addOperand(MappedUnit);
312   }
313 }
314 
315 /// Return a copy of the specified function and add it to that function's
316 /// module.  Also, any references specified in the VMap are changed to refer to
317 /// their mapped value instead of the original one.  If any of the arguments to
318 /// the function are in the VMap, the arguments are deleted from the resultant
319 /// function.  The VMap is updated to include mappings from all of the
320 /// instructions and basicblocks in the function from their old to new values.
321 ///
CloneFunction(Function * F,ValueToValueMapTy & VMap,ClonedCodeInfo * CodeInfo)322 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
323                               ClonedCodeInfo *CodeInfo) {
324   std::vector<Type *> ArgTypes;
325 
326   // The user might be deleting arguments to the function by specifying them in
327   // the VMap.  If so, we need to not add the arguments to the arg ty vector
328   //
329   for (const Argument &I : F->args())
330     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
331       ArgTypes.push_back(I.getType());
332 
333   // Create a new function type...
334   FunctionType *FTy =
335       FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
336                         F->getFunctionType()->isVarArg());
337 
338   // Create the new function...
339   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
340                                     F->getName(), F->getParent());
341   NewF->setIsNewDbgInfoFormat(F->IsNewDbgInfoFormat);
342 
343   // Loop over the arguments, copying the names of the mapped arguments over...
344   Function::arg_iterator DestI = NewF->arg_begin();
345   for (const Argument &I : F->args())
346     if (VMap.count(&I) == 0) {     // Is this argument preserved?
347       DestI->setName(I.getName()); // Copy the name over...
348       VMap[&I] = &*DestI++;        // Add mapping to VMap
349     }
350 
351   SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
352   CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
353                     Returns, "", CodeInfo);
354 
355   return NewF;
356 }
357 
358 namespace {
359 /// This is a private class used to implement CloneAndPruneFunctionInto.
360 struct PruningFunctionCloner {
361   Function *NewFunc;
362   const Function *OldFunc;
363   ValueToValueMapTy &VMap;
364   bool ModuleLevelChanges;
365   const char *NameSuffix;
366   ClonedCodeInfo *CodeInfo;
367   bool HostFuncIsStrictFP;
368 
369   Instruction *cloneInstruction(BasicBlock::const_iterator II);
370 
371 public:
PruningFunctionCloner__anon602ee1650211::PruningFunctionCloner372   PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
373                         ValueToValueMapTy &valueMap, bool moduleLevelChanges,
374                         const char *nameSuffix, ClonedCodeInfo *codeInfo)
375       : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
376         ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
377         CodeInfo(codeInfo) {
378     HostFuncIsStrictFP =
379         newFunc->getAttributes().hasFnAttr(Attribute::StrictFP);
380   }
381 
382   /// The specified block is found to be reachable, clone it and
383   /// anything that it can reach.
384   void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
385                   std::vector<const BasicBlock *> &ToClone);
386 };
387 } // namespace
388 
389 Instruction *
cloneInstruction(BasicBlock::const_iterator II)390 PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) {
391   const Instruction &OldInst = *II;
392   Instruction *NewInst = nullptr;
393   if (HostFuncIsStrictFP) {
394     Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst);
395     if (CIID != Intrinsic::not_intrinsic) {
396       // Instead of cloning the instruction, a call to constrained intrinsic
397       // should be created.
398       // Assume the first arguments of constrained intrinsics are the same as
399       // the operands of original instruction.
400 
401       // Determine overloaded types of the intrinsic.
402       SmallVector<Type *, 2> TParams;
403       SmallVector<Intrinsic::IITDescriptor, 8> Descriptor;
404       getIntrinsicInfoTableEntries(CIID, Descriptor);
405       for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) {
406         Intrinsic::IITDescriptor Operand = Descriptor[I];
407         switch (Operand.Kind) {
408         case Intrinsic::IITDescriptor::Argument:
409           if (Operand.getArgumentKind() !=
410               Intrinsic::IITDescriptor::AK_MatchType) {
411             if (I == 0)
412               TParams.push_back(OldInst.getType());
413             else
414               TParams.push_back(OldInst.getOperand(I - 1)->getType());
415           }
416           break;
417         case Intrinsic::IITDescriptor::SameVecWidthArgument:
418           ++I;
419           break;
420         default:
421           break;
422         }
423       }
424 
425       // Create intrinsic call.
426       LLVMContext &Ctx = NewFunc->getContext();
427       Function *IFn =
428           Intrinsic::getDeclaration(NewFunc->getParent(), CIID, TParams);
429       SmallVector<Value *, 4> Args;
430       unsigned NumOperands = OldInst.getNumOperands();
431       if (isa<CallInst>(OldInst))
432         --NumOperands;
433       for (unsigned I = 0; I < NumOperands; ++I) {
434         Value *Op = OldInst.getOperand(I);
435         Args.push_back(Op);
436       }
437       if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) {
438         FCmpInst::Predicate Pred = CmpI->getPredicate();
439         StringRef PredName = FCmpInst::getPredicateName(Pred);
440         Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName)));
441       }
442 
443       // The last arguments of a constrained intrinsic are metadata that
444       // represent rounding mode (absents in some intrinsics) and exception
445       // behavior. The inlined function uses default settings.
446       if (Intrinsic::hasConstrainedFPRoundingModeOperand(CIID))
447         Args.push_back(
448             MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest")));
449       Args.push_back(
450           MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore")));
451 
452       NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict");
453     }
454   }
455   if (!NewInst)
456     NewInst = II->clone();
457   return NewInst;
458 }
459 
460 /// The specified block is found to be reachable, clone it and
461 /// anything that it can reach.
CloneBlock(const BasicBlock * BB,BasicBlock::const_iterator StartingInst,std::vector<const BasicBlock * > & ToClone)462 void PruningFunctionCloner::CloneBlock(
463     const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
464     std::vector<const BasicBlock *> &ToClone) {
465   WeakTrackingVH &BBEntry = VMap[BB];
466 
467   // Have we already cloned this block?
468   if (BBEntry)
469     return;
470 
471   // Nope, clone it now.
472   BasicBlock *NewBB;
473   Twine NewName(BB->hasName() ? Twine(BB->getName()) + NameSuffix : "");
474   BBEntry = NewBB = BasicBlock::Create(BB->getContext(), NewName, NewFunc);
475   NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat;
476 
477   // It is only legal to clone a function if a block address within that
478   // function is never referenced outside of the function.  Given that, we
479   // want to map block addresses from the old function to block addresses in
480   // the clone. (This is different from the generic ValueMapper
481   // implementation, which generates an invalid blockaddress when
482   // cloning a function.)
483   //
484   // Note that we don't need to fix the mapping for unreachable blocks;
485   // the default mapping there is safe.
486   if (BB->hasAddressTaken()) {
487     Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
488                                             const_cast<BasicBlock *>(BB));
489     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
490   }
491 
492   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
493   bool hasMemProfMetadata = false;
494 
495   // Keep a cursor pointing at the last place we cloned debug-info records from.
496   BasicBlock::const_iterator DbgCursor = StartingInst;
497   auto CloneDbgRecordsToHere =
498       [NewBB, &DbgCursor](Instruction *NewInst, BasicBlock::const_iterator II) {
499         if (!NewBB->IsNewDbgInfoFormat)
500           return;
501 
502         // Clone debug-info records onto this instruction. Iterate through any
503         // source-instructions we've cloned and then subsequently optimised
504         // away, so that their debug-info doesn't go missing.
505         for (; DbgCursor != II; ++DbgCursor)
506           NewInst->cloneDebugInfoFrom(&*DbgCursor, std::nullopt, false);
507         NewInst->cloneDebugInfoFrom(&*II);
508         DbgCursor = std::next(II);
509       };
510 
511   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
512   // loop doesn't include the terminator.
513   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
514        ++II) {
515 
516     Instruction *NewInst = cloneInstruction(II);
517     NewInst->insertInto(NewBB, NewBB->end());
518 
519     if (HostFuncIsStrictFP) {
520       // All function calls in the inlined function must get 'strictfp'
521       // attribute to prevent undesirable optimizations.
522       if (auto *Call = dyn_cast<CallInst>(NewInst))
523         Call->addFnAttr(Attribute::StrictFP);
524     }
525 
526     // Eagerly remap operands to the newly cloned instruction, except for PHI
527     // nodes for which we defer processing until we update the CFG. Also defer
528     // debug intrinsic processing because they may contain use-before-defs.
529     if (!isa<PHINode>(NewInst) && !isa<DbgVariableIntrinsic>(NewInst)) {
530       RemapInstruction(NewInst, VMap,
531                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
532 
533       // Eagerly constant fold the newly cloned instruction. If successful, add
534       // a mapping to the new value. Non-constant operands may be incomplete at
535       // this stage, thus instruction simplification is performed after
536       // processing phi-nodes.
537       if (Value *V = ConstantFoldInstruction(
538               NewInst, BB->getDataLayout())) {
539         if (isInstructionTriviallyDead(NewInst)) {
540           VMap[&*II] = V;
541           NewInst->eraseFromParent();
542           continue;
543         }
544       }
545     }
546 
547     if (II->hasName())
548       NewInst->setName(II->getName() + NameSuffix);
549     VMap[&*II] = NewInst; // Add instruction map to value.
550     if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) {
551       hasCalls = true;
552       hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof);
553     }
554 
555     CloneDbgRecordsToHere(NewInst, II);
556 
557     if (CodeInfo) {
558       CodeInfo->OrigVMap[&*II] = NewInst;
559       if (auto *CB = dyn_cast<CallBase>(&*II))
560         if (CB->hasOperandBundles())
561           CodeInfo->OperandBundleCallSites.push_back(NewInst);
562     }
563 
564     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
565       if (isa<ConstantInt>(AI->getArraySize()))
566         hasStaticAllocas = true;
567       else
568         hasDynamicAllocas = true;
569     }
570   }
571 
572   // Finally, clone over the terminator.
573   const Instruction *OldTI = BB->getTerminator();
574   bool TerminatorDone = false;
575   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
576     if (BI->isConditional()) {
577       // If the condition was a known constant in the callee...
578       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
579       // Or is a known constant in the caller...
580       if (!Cond) {
581         Value *V = VMap.lookup(BI->getCondition());
582         Cond = dyn_cast_or_null<ConstantInt>(V);
583       }
584 
585       // Constant fold to uncond branch!
586       if (Cond) {
587         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
588         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
589         ToClone.push_back(Dest);
590         TerminatorDone = true;
591       }
592     }
593   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
594     // If switching on a value known constant in the caller.
595     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
596     if (!Cond) { // Or known constant after constant prop in the callee...
597       Value *V = VMap.lookup(SI->getCondition());
598       Cond = dyn_cast_or_null<ConstantInt>(V);
599     }
600     if (Cond) { // Constant fold to uncond branch!
601       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
602       BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
603       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
604       ToClone.push_back(Dest);
605       TerminatorDone = true;
606     }
607   }
608 
609   if (!TerminatorDone) {
610     Instruction *NewInst = OldTI->clone();
611     if (OldTI->hasName())
612       NewInst->setName(OldTI->getName() + NameSuffix);
613     NewInst->insertInto(NewBB, NewBB->end());
614 
615     CloneDbgRecordsToHere(NewInst, OldTI->getIterator());
616 
617     VMap[OldTI] = NewInst; // Add instruction map to value.
618 
619     if (CodeInfo) {
620       CodeInfo->OrigVMap[OldTI] = NewInst;
621       if (auto *CB = dyn_cast<CallBase>(OldTI))
622         if (CB->hasOperandBundles())
623           CodeInfo->OperandBundleCallSites.push_back(NewInst);
624     }
625 
626     // Recursively clone any reachable successor blocks.
627     append_range(ToClone, successors(BB->getTerminator()));
628   } else {
629     // If we didn't create a new terminator, clone DbgVariableRecords from the
630     // old terminator onto the new terminator.
631     Instruction *NewInst = NewBB->getTerminator();
632     assert(NewInst);
633 
634     CloneDbgRecordsToHere(NewInst, OldTI->getIterator());
635   }
636 
637   if (CodeInfo) {
638     CodeInfo->ContainsCalls |= hasCalls;
639     CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
640     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
641     CodeInfo->ContainsDynamicAllocas |=
642         hasStaticAllocas && BB != &BB->getParent()->front();
643   }
644 }
645 
646 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
647 /// entire function. Instead it starts at an instruction provided by the caller
648 /// and copies (and prunes) only the code reachable from that instruction.
CloneAndPruneIntoFromInst(Function * NewFunc,const Function * OldFunc,const Instruction * StartingInst,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo)649 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
650                                      const Instruction *StartingInst,
651                                      ValueToValueMapTy &VMap,
652                                      bool ModuleLevelChanges,
653                                      SmallVectorImpl<ReturnInst *> &Returns,
654                                      const char *NameSuffix,
655                                      ClonedCodeInfo *CodeInfo) {
656   assert(NameSuffix && "NameSuffix cannot be null!");
657 
658   ValueMapTypeRemapper *TypeMapper = nullptr;
659   ValueMaterializer *Materializer = nullptr;
660 
661 #ifndef NDEBUG
662   // If the cloning starts at the beginning of the function, verify that
663   // the function arguments are mapped.
664   if (!StartingInst)
665     for (const Argument &II : OldFunc->args())
666       assert(VMap.count(&II) && "No mapping from source argument specified!");
667 #endif
668 
669   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
670                             NameSuffix, CodeInfo);
671   const BasicBlock *StartingBB;
672   if (StartingInst)
673     StartingBB = StartingInst->getParent();
674   else {
675     StartingBB = &OldFunc->getEntryBlock();
676     StartingInst = &StartingBB->front();
677   }
678 
679   // Collect debug intrinsics for remapping later.
680   SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics;
681   for (const auto &BB : *OldFunc) {
682     for (const auto &I : BB) {
683       if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I))
684         DbgIntrinsics.push_back(DVI);
685     }
686   }
687 
688   // Clone the entry block, and anything recursively reachable from it.
689   std::vector<const BasicBlock *> CloneWorklist;
690   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
691   while (!CloneWorklist.empty()) {
692     const BasicBlock *BB = CloneWorklist.back();
693     CloneWorklist.pop_back();
694     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
695   }
696 
697   // Loop over all of the basic blocks in the old function.  If the block was
698   // reachable, we have cloned it and the old block is now in the value map:
699   // insert it into the new function in the right order.  If not, ignore it.
700   //
701   // Defer PHI resolution until rest of function is resolved.
702   SmallVector<const PHINode *, 16> PHIToResolve;
703   for (const BasicBlock &BI : *OldFunc) {
704     Value *V = VMap.lookup(&BI);
705     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
706     if (!NewBB)
707       continue; // Dead block.
708 
709     // Move the new block to preserve the order in the original function.
710     NewBB->moveBefore(NewFunc->end());
711 
712     // Handle PHI nodes specially, as we have to remove references to dead
713     // blocks.
714     for (const PHINode &PN : BI.phis()) {
715       // PHI nodes may have been remapped to non-PHI nodes by the caller or
716       // during the cloning process.
717       if (isa<PHINode>(VMap[&PN]))
718         PHIToResolve.push_back(&PN);
719       else
720         break;
721     }
722 
723     // Finally, remap the terminator instructions, as those can't be remapped
724     // until all BBs are mapped.
725     RemapInstruction(NewBB->getTerminator(), VMap,
726                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
727                      TypeMapper, Materializer);
728   }
729 
730   // Defer PHI resolution until rest of function is resolved, PHI resolution
731   // requires the CFG to be up-to-date.
732   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
733     const PHINode *OPN = PHIToResolve[phino];
734     unsigned NumPreds = OPN->getNumIncomingValues();
735     const BasicBlock *OldBB = OPN->getParent();
736     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
737 
738     // Map operands for blocks that are live and remove operands for blocks
739     // that are dead.
740     for (; phino != PHIToResolve.size() &&
741            PHIToResolve[phino]->getParent() == OldBB;
742          ++phino) {
743       OPN = PHIToResolve[phino];
744       PHINode *PN = cast<PHINode>(VMap[OPN]);
745       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
746         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
747         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
748           Value *InVal =
749               MapValue(PN->getIncomingValue(pred), VMap,
750                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
751           assert(InVal && "Unknown input value?");
752           PN->setIncomingValue(pred, InVal);
753           PN->setIncomingBlock(pred, MappedBlock);
754         } else {
755           PN->removeIncomingValue(pred, false);
756           --pred; // Revisit the next entry.
757           --e;
758         }
759       }
760     }
761 
762     // The loop above has removed PHI entries for those blocks that are dead
763     // and has updated others.  However, if a block is live (i.e. copied over)
764     // but its terminator has been changed to not go to this block, then our
765     // phi nodes will have invalid entries.  Update the PHI nodes in this
766     // case.
767     PHINode *PN = cast<PHINode>(NewBB->begin());
768     NumPreds = pred_size(NewBB);
769     if (NumPreds != PN->getNumIncomingValues()) {
770       assert(NumPreds < PN->getNumIncomingValues());
771       // Count how many times each predecessor comes to this block.
772       std::map<BasicBlock *, unsigned> PredCount;
773       for (BasicBlock *Pred : predecessors(NewBB))
774         --PredCount[Pred];
775 
776       // Figure out how many entries to remove from each PHI.
777       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
778         ++PredCount[PN->getIncomingBlock(i)];
779 
780       // At this point, the excess predecessor entries are positive in the
781       // map.  Loop over all of the PHIs and remove excess predecessor
782       // entries.
783       BasicBlock::iterator I = NewBB->begin();
784       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
785         for (const auto &PCI : PredCount) {
786           BasicBlock *Pred = PCI.first;
787           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
788             PN->removeIncomingValue(Pred, false);
789         }
790       }
791     }
792 
793     // If the loops above have made these phi nodes have 0 or 1 operand,
794     // replace them with poison or the input value.  We must do this for
795     // correctness, because 0-operand phis are not valid.
796     PN = cast<PHINode>(NewBB->begin());
797     if (PN->getNumIncomingValues() == 0) {
798       BasicBlock::iterator I = NewBB->begin();
799       BasicBlock::const_iterator OldI = OldBB->begin();
800       while ((PN = dyn_cast<PHINode>(I++))) {
801         Value *NV = PoisonValue::get(PN->getType());
802         PN->replaceAllUsesWith(NV);
803         assert(VMap[&*OldI] == PN && "VMap mismatch");
804         VMap[&*OldI] = NV;
805         PN->eraseFromParent();
806         ++OldI;
807       }
808     }
809   }
810 
811   // Drop all incompatible return attributes that cannot be applied to NewFunc
812   // during cloning, so as to allow instruction simplification to reason on the
813   // old state of the function. The original attributes are restored later.
814   AttributeMask IncompatibleAttrs =
815       AttributeFuncs::typeIncompatible(OldFunc->getReturnType());
816   AttributeList Attrs = NewFunc->getAttributes();
817   NewFunc->removeRetAttrs(IncompatibleAttrs);
818 
819   // As phi-nodes have been now remapped, allow incremental simplification of
820   // newly-cloned instructions.
821   const DataLayout &DL = NewFunc->getDataLayout();
822   for (const auto &BB : *OldFunc) {
823     for (const auto &I : BB) {
824       auto *NewI = dyn_cast_or_null<Instruction>(VMap.lookup(&I));
825       if (!NewI)
826         continue;
827 
828       if (Value *V = simplifyInstruction(NewI, DL)) {
829         NewI->replaceAllUsesWith(V);
830 
831         if (isInstructionTriviallyDead(NewI)) {
832           NewI->eraseFromParent();
833         } else {
834           // Did not erase it? Restore the new instruction into VMap previously
835           // dropped by `ValueIsRAUWd`.
836           VMap[&I] = NewI;
837         }
838       }
839     }
840   }
841 
842   // Restore attributes.
843   NewFunc->setAttributes(Attrs);
844 
845   // Remap debug intrinsic operands now that all values have been mapped.
846   // Doing this now (late) preserves use-before-defs in debug intrinsics. If
847   // we didn't do this, ValueAsMetadata(use-before-def) operands would be
848   // replaced by empty metadata. This would signal later cleanup passes to
849   // remove the debug intrinsics, potentially causing incorrect locations.
850   for (const auto *DVI : DbgIntrinsics) {
851     if (DbgVariableIntrinsic *NewDVI =
852             cast_or_null<DbgVariableIntrinsic>(VMap.lookup(DVI)))
853       RemapInstruction(NewDVI, VMap,
854                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
855                        TypeMapper, Materializer);
856   }
857 
858   // Do the same for DbgVariableRecords, touching all the instructions in the
859   // cloned range of blocks.
860   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
861   for (BasicBlock &BB : make_range(Begin, NewFunc->end())) {
862     for (Instruction &I : BB) {
863       RemapDbgRecordRange(I.getModule(), I.getDbgRecordRange(), VMap,
864                           ModuleLevelChanges ? RF_None
865                                              : RF_NoModuleLevelChanges,
866                           TypeMapper, Materializer);
867     }
868   }
869 
870   // Simplify conditional branches and switches with a constant operand. We try
871   // to prune these out when cloning, but if the simplification required
872   // looking through PHI nodes, those are only available after forming the full
873   // basic block. That may leave some here, and we still want to prune the dead
874   // code as early as possible.
875   for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
876     ConstantFoldTerminator(&BB);
877 
878   // Some blocks may have become unreachable as a result. Find and delete them.
879   {
880     SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
881     SmallVector<BasicBlock *, 16> Worklist;
882     Worklist.push_back(&*Begin);
883     while (!Worklist.empty()) {
884       BasicBlock *BB = Worklist.pop_back_val();
885       if (ReachableBlocks.insert(BB).second)
886         append_range(Worklist, successors(BB));
887     }
888 
889     SmallVector<BasicBlock *, 16> UnreachableBlocks;
890     for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
891       if (!ReachableBlocks.contains(&BB))
892         UnreachableBlocks.push_back(&BB);
893     DeleteDeadBlocks(UnreachableBlocks);
894   }
895 
896   // Now that the inlined function body has been fully constructed, go through
897   // and zap unconditional fall-through branches. This happens all the time when
898   // specializing code: code specialization turns conditional branches into
899   // uncond branches, and this code folds them.
900   Function::iterator I = Begin;
901   while (I != NewFunc->end()) {
902     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
903     if (!BI || BI->isConditional()) {
904       ++I;
905       continue;
906     }
907 
908     BasicBlock *Dest = BI->getSuccessor(0);
909     if (!Dest->getSinglePredecessor()) {
910       ++I;
911       continue;
912     }
913 
914     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
915     // above should have zapped all of them..
916     assert(!isa<PHINode>(Dest->begin()));
917 
918     // We know all single-entry PHI nodes in the inlined function have been
919     // removed, so we just need to splice the blocks.
920     BI->eraseFromParent();
921 
922     // Make all PHI nodes that referred to Dest now refer to I as their source.
923     Dest->replaceAllUsesWith(&*I);
924 
925     // Move all the instructions in the succ to the pred.
926     I->splice(I->end(), Dest);
927 
928     // Remove the dest block.
929     Dest->eraseFromParent();
930 
931     // Do not increment I, iteratively merge all things this block branches to.
932   }
933 
934   // Make a final pass over the basic blocks from the old function to gather
935   // any return instructions which survived folding. We have to do this here
936   // because we can iteratively remove and merge returns above.
937   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
938                           E = NewFunc->end();
939        I != E; ++I)
940     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
941       Returns.push_back(RI);
942 }
943 
944 /// This works exactly like CloneFunctionInto,
945 /// except that it does some simple constant prop and DCE on the fly.  The
946 /// effect of this is to copy significantly less code in cases where (for
947 /// example) a function call with constant arguments is inlined, and those
948 /// constant arguments cause a significant amount of code in the callee to be
949 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
950 /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo)951 void llvm::CloneAndPruneFunctionInto(
952     Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
953     bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
954     const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
955   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
956                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
957 }
958 
959 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
remapInstructionsInBlocks(ArrayRef<BasicBlock * > Blocks,ValueToValueMapTy & VMap)960 void llvm::remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks,
961                                      ValueToValueMapTy &VMap) {
962   // Rewrite the code to refer to itself.
963   for (auto *BB : Blocks) {
964     for (auto &Inst : *BB) {
965       RemapDbgRecordRange(Inst.getModule(), Inst.getDbgRecordRange(), VMap,
966                           RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
967       RemapInstruction(&Inst, VMap,
968                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
969     }
970   }
971 }
972 
973 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
974 /// Blocks.
975 ///
976 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
977 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
cloneLoopWithPreheader(BasicBlock * Before,BasicBlock * LoopDomBB,Loop * OrigLoop,ValueToValueMapTy & VMap,const Twine & NameSuffix,LoopInfo * LI,DominatorTree * DT,SmallVectorImpl<BasicBlock * > & Blocks)978 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
979                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
980                                    const Twine &NameSuffix, LoopInfo *LI,
981                                    DominatorTree *DT,
982                                    SmallVectorImpl<BasicBlock *> &Blocks) {
983   Function *F = OrigLoop->getHeader()->getParent();
984   Loop *ParentLoop = OrigLoop->getParentLoop();
985   DenseMap<Loop *, Loop *> LMap;
986 
987   Loop *NewLoop = LI->AllocateLoop();
988   LMap[OrigLoop] = NewLoop;
989   if (ParentLoop)
990     ParentLoop->addChildLoop(NewLoop);
991   else
992     LI->addTopLevelLoop(NewLoop);
993 
994   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
995   assert(OrigPH && "No preheader");
996   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
997   // To rename the loop PHIs.
998   VMap[OrigPH] = NewPH;
999   Blocks.push_back(NewPH);
1000 
1001   // Update LoopInfo.
1002   if (ParentLoop)
1003     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
1004 
1005   // Update DominatorTree.
1006   DT->addNewBlock(NewPH, LoopDomBB);
1007 
1008   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
1009     Loop *&NewLoop = LMap[CurLoop];
1010     if (!NewLoop) {
1011       NewLoop = LI->AllocateLoop();
1012 
1013       // Establish the parent/child relationship.
1014       Loop *OrigParent = CurLoop->getParentLoop();
1015       assert(OrigParent && "Could not find the original parent loop");
1016       Loop *NewParentLoop = LMap[OrigParent];
1017       assert(NewParentLoop && "Could not find the new parent loop");
1018 
1019       NewParentLoop->addChildLoop(NewLoop);
1020     }
1021   }
1022 
1023   for (BasicBlock *BB : OrigLoop->getBlocks()) {
1024     Loop *CurLoop = LI->getLoopFor(BB);
1025     Loop *&NewLoop = LMap[CurLoop];
1026     assert(NewLoop && "Expecting new loop to be allocated");
1027 
1028     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
1029     VMap[BB] = NewBB;
1030 
1031     // Update LoopInfo.
1032     NewLoop->addBasicBlockToLoop(NewBB, *LI);
1033 
1034     // Add DominatorTree node. After seeing all blocks, update to correct
1035     // IDom.
1036     DT->addNewBlock(NewBB, NewPH);
1037 
1038     Blocks.push_back(NewBB);
1039   }
1040 
1041   for (BasicBlock *BB : OrigLoop->getBlocks()) {
1042     // Update loop headers.
1043     Loop *CurLoop = LI->getLoopFor(BB);
1044     if (BB == CurLoop->getHeader())
1045       LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
1046 
1047     // Update DominatorTree.
1048     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
1049     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
1050                                  cast<BasicBlock>(VMap[IDomBB]));
1051   }
1052 
1053   // Move them physically from the end of the block list.
1054   F->splice(Before->getIterator(), F, NewPH->getIterator());
1055   F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(),
1056             F->end());
1057 
1058   return NewLoop;
1059 }
1060 
1061 /// Duplicate non-Phi instructions from the beginning of block up to
1062 /// StopAt instruction into a split block between BB and its predecessor.
DuplicateInstructionsInSplitBetween(BasicBlock * BB,BasicBlock * PredBB,Instruction * StopAt,ValueToValueMapTy & ValueMapping,DomTreeUpdater & DTU)1063 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
1064     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
1065     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
1066 
1067   assert(count(successors(PredBB), BB) == 1 &&
1068          "There must be a single edge between PredBB and BB!");
1069   // We are going to have to map operands from the original BB block to the new
1070   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1071   // account for entry from PredBB.
1072   BasicBlock::iterator BI = BB->begin();
1073   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1074     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1075 
1076   BasicBlock *NewBB = SplitEdge(PredBB, BB);
1077   NewBB->setName(PredBB->getName() + ".split");
1078   Instruction *NewTerm = NewBB->getTerminator();
1079 
1080   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
1081   //        in the update set here.
1082   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
1083                     {DominatorTree::Insert, PredBB, NewBB},
1084                     {DominatorTree::Insert, NewBB, BB}});
1085 
1086   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1087   // mapping and using it to remap operands in the cloned instructions.
1088   // Stop once we see the terminator too. This covers the case where BB's
1089   // terminator gets replaced and StopAt == BB's terminator.
1090   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
1091     Instruction *New = BI->clone();
1092     New->setName(BI->getName());
1093     New->insertBefore(NewTerm);
1094     New->cloneDebugInfoFrom(&*BI);
1095     ValueMapping[&*BI] = New;
1096 
1097     // Remap operands to patch up intra-block references.
1098     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1099       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1100         auto I = ValueMapping.find(Inst);
1101         if (I != ValueMapping.end())
1102           New->setOperand(i, I->second);
1103       }
1104 
1105     // Remap debug variable operands.
1106     remapDebugVariable(ValueMapping, New);
1107   }
1108 
1109   return NewBB;
1110 }
1111 
cloneNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,DenseMap<MDNode *,MDNode * > & ClonedScopes,StringRef Ext,LLVMContext & Context)1112 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1113                               DenseMap<MDNode *, MDNode *> &ClonedScopes,
1114                               StringRef Ext, LLVMContext &Context) {
1115   MDBuilder MDB(Context);
1116 
1117   for (auto *ScopeList : NoAliasDeclScopes) {
1118     for (const auto &MDOperand : ScopeList->operands()) {
1119       if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
1120         AliasScopeNode SNANode(MD);
1121 
1122         std::string Name;
1123         auto ScopeName = SNANode.getName();
1124         if (!ScopeName.empty())
1125           Name = (Twine(ScopeName) + ":" + Ext).str();
1126         else
1127           Name = std::string(Ext);
1128 
1129         MDNode *NewScope = MDB.createAnonymousAliasScope(
1130             const_cast<MDNode *>(SNANode.getDomain()), Name);
1131         ClonedScopes.insert(std::make_pair(MD, NewScope));
1132       }
1133     }
1134   }
1135 }
1136 
adaptNoAliasScopes(Instruction * I,const DenseMap<MDNode *,MDNode * > & ClonedScopes,LLVMContext & Context)1137 void llvm::adaptNoAliasScopes(Instruction *I,
1138                               const DenseMap<MDNode *, MDNode *> &ClonedScopes,
1139                               LLVMContext &Context) {
1140   auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
1141     bool NeedsReplacement = false;
1142     SmallVector<Metadata *, 8> NewScopeList;
1143     for (const auto &MDOp : ScopeList->operands()) {
1144       if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
1145         if (auto *NewMD = ClonedScopes.lookup(MD)) {
1146           NewScopeList.push_back(NewMD);
1147           NeedsReplacement = true;
1148           continue;
1149         }
1150         NewScopeList.push_back(MD);
1151       }
1152     }
1153     if (NeedsReplacement)
1154       return MDNode::get(Context, NewScopeList);
1155     return nullptr;
1156   };
1157 
1158   if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
1159     if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
1160       Decl->setScopeList(NewScopeList);
1161 
1162   auto replaceWhenNeeded = [&](unsigned MD_ID) {
1163     if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
1164       if (auto *NewScopeList = CloneScopeList(CSNoAlias))
1165         I->setMetadata(MD_ID, NewScopeList);
1166   };
1167   replaceWhenNeeded(LLVMContext::MD_noalias);
1168   replaceWhenNeeded(LLVMContext::MD_alias_scope);
1169 }
1170 
cloneAndAdaptNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,ArrayRef<BasicBlock * > NewBlocks,LLVMContext & Context,StringRef Ext)1171 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1172                                       ArrayRef<BasicBlock *> NewBlocks,
1173                                       LLVMContext &Context, StringRef Ext) {
1174   if (NoAliasDeclScopes.empty())
1175     return;
1176 
1177   DenseMap<MDNode *, MDNode *> ClonedScopes;
1178   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1179                     << NoAliasDeclScopes.size() << " node(s)\n");
1180 
1181   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1182   // Identify instructions using metadata that needs adaptation
1183   for (BasicBlock *NewBlock : NewBlocks)
1184     for (Instruction &I : *NewBlock)
1185       adaptNoAliasScopes(&I, ClonedScopes, Context);
1186 }
1187 
cloneAndAdaptNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,Instruction * IStart,Instruction * IEnd,LLVMContext & Context,StringRef Ext)1188 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1189                                       Instruction *IStart, Instruction *IEnd,
1190                                       LLVMContext &Context, StringRef Ext) {
1191   if (NoAliasDeclScopes.empty())
1192     return;
1193 
1194   DenseMap<MDNode *, MDNode *> ClonedScopes;
1195   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1196                     << NoAliasDeclScopes.size() << " node(s)\n");
1197 
1198   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1199   // Identify instructions using metadata that needs adaptation
1200   assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
1201   auto ItStart = IStart->getIterator();
1202   auto ItEnd = IEnd->getIterator();
1203   ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
1204   for (auto &I : llvm::make_range(ItStart, ItEnd))
1205     adaptNoAliasScopes(&I, ClonedScopes, Context);
1206 }
1207 
identifyNoAliasScopesToClone(ArrayRef<BasicBlock * > BBs,SmallVectorImpl<MDNode * > & NoAliasDeclScopes)1208 void llvm::identifyNoAliasScopesToClone(
1209     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1210   for (BasicBlock *BB : BBs)
1211     for (Instruction &I : *BB)
1212       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1213         NoAliasDeclScopes.push_back(Decl->getScopeList());
1214 }
1215 
identifyNoAliasScopesToClone(BasicBlock::iterator Start,BasicBlock::iterator End,SmallVectorImpl<MDNode * > & NoAliasDeclScopes)1216 void llvm::identifyNoAliasScopesToClone(
1217     BasicBlock::iterator Start, BasicBlock::iterator End,
1218     SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1219   for (Instruction &I : make_range(Start, End))
1220     if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1221       NoAliasDeclScopes.push_back(Decl->getScopeList());
1222 }
1223