1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2009 Nathan Whitehorn 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 */ 29 30 #include <sys/param.h> 31 #include <sys/bus.h> 32 #include <sys/eventhandler.h> 33 #include <sys/systm.h> 34 #include <sys/module.h> 35 #include <sys/conf.h> 36 #include <sys/cpu.h> 37 #include <sys/clock.h> 38 #include <sys/ctype.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/reboot.h> 44 #include <sys/rman.h> 45 #include <sys/sysctl.h> 46 #include <sys/unistd.h> 47 48 #include <machine/bus.h> 49 #include <machine/intr_machdep.h> 50 #include <machine/md_var.h> 51 52 #include <dev/iicbus/iicbus.h> 53 #include <dev/iicbus/iiconf.h> 54 #include <dev/led/led.h> 55 #include <dev/ofw/openfirm.h> 56 #include <dev/ofw/ofw_bus.h> 57 #include <dev/ofw/ofw_bus_subr.h> 58 #include <powerpc/powermac/macgpiovar.h> 59 #include <powerpc/powermac/powermac_thermal.h> 60 61 #include "clock_if.h" 62 #include "iicbus_if.h" 63 64 struct smu_cmd { 65 volatile uint8_t cmd; 66 uint8_t len; 67 uint8_t data[254]; 68 69 STAILQ_ENTRY(smu_cmd) cmd_q; 70 }; 71 72 STAILQ_HEAD(smu_cmdq, smu_cmd); 73 74 struct smu_fan { 75 struct pmac_fan fan; 76 device_t dev; 77 cell_t reg; 78 79 enum { 80 SMU_FAN_RPM, 81 SMU_FAN_PWM 82 } type; 83 int setpoint; 84 int old_style; 85 int rpm; 86 }; 87 88 /* We can read the PWM and the RPM from a PWM controlled fan. 89 * Offer both values via sysctl. 90 */ 91 enum { 92 SMU_PWM_SYSCTL_PWM = 1 << 8, 93 SMU_PWM_SYSCTL_RPM = 2 << 8 94 }; 95 96 struct smu_sensor { 97 struct pmac_therm therm; 98 device_t dev; 99 100 cell_t reg; 101 enum { 102 SMU_CURRENT_SENSOR, 103 SMU_VOLTAGE_SENSOR, 104 SMU_POWER_SENSOR, 105 SMU_TEMP_SENSOR 106 } type; 107 }; 108 109 struct smu_softc { 110 device_t sc_dev; 111 struct mtx sc_mtx; 112 113 struct resource *sc_memr; 114 int sc_memrid; 115 int sc_u3; 116 117 bus_dma_tag_t sc_dmatag; 118 bus_space_tag_t sc_bt; 119 bus_space_handle_t sc_mailbox; 120 121 struct smu_cmd *sc_cmd, *sc_cur_cmd; 122 bus_addr_t sc_cmd_phys; 123 bus_dmamap_t sc_cmd_dmamap; 124 struct smu_cmdq sc_cmdq; 125 126 struct smu_fan *sc_fans; 127 int sc_nfans; 128 int old_style_fans; 129 struct smu_sensor *sc_sensors; 130 int sc_nsensors; 131 132 int sc_doorbellirqid; 133 struct resource *sc_doorbellirq; 134 void *sc_doorbellirqcookie; 135 136 struct proc *sc_fanmgt_proc; 137 time_t sc_lastuserchange; 138 139 /* Calibration data */ 140 uint16_t sc_cpu_diode_scale; 141 int16_t sc_cpu_diode_offset; 142 143 uint16_t sc_cpu_volt_scale; 144 int16_t sc_cpu_volt_offset; 145 uint16_t sc_cpu_curr_scale; 146 int16_t sc_cpu_curr_offset; 147 148 uint16_t sc_slots_pow_scale; 149 int16_t sc_slots_pow_offset; 150 151 struct cdev *sc_leddev; 152 }; 153 154 /* regular bus attachment functions */ 155 156 static int smu_probe(device_t); 157 static int smu_attach(device_t); 158 static const struct ofw_bus_devinfo * 159 smu_get_devinfo(device_t bus, device_t dev); 160 161 /* cpufreq notification hooks */ 162 163 static void smu_cpufreq_pre_change(device_t, const struct cf_level *level); 164 static void smu_cpufreq_post_change(device_t, const struct cf_level *level); 165 166 /* clock interface */ 167 static int smu_gettime(device_t dev, struct timespec *ts); 168 static int smu_settime(device_t dev, struct timespec *ts); 169 170 /* utility functions */ 171 static int smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait); 172 static int smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, 173 size_t len); 174 static void smu_attach_i2c(device_t dev, phandle_t i2croot); 175 static void smu_attach_fans(device_t dev, phandle_t fanroot); 176 static void smu_attach_sensors(device_t dev, phandle_t sensroot); 177 static void smu_set_sleepled(void *xdev, int onoff); 178 static int smu_server_mode(SYSCTL_HANDLER_ARGS); 179 static void smu_doorbell_intr(void *xdev); 180 static void smu_shutdown(void *xdev, int howto); 181 182 /* where to find the doorbell GPIO */ 183 184 static device_t smu_doorbell = NULL; 185 186 static device_method_t smu_methods[] = { 187 /* Device interface */ 188 DEVMETHOD(device_probe, smu_probe), 189 DEVMETHOD(device_attach, smu_attach), 190 191 /* Clock interface */ 192 DEVMETHOD(clock_gettime, smu_gettime), 193 DEVMETHOD(clock_settime, smu_settime), 194 195 /* ofw_bus interface */ 196 DEVMETHOD(bus_child_pnpinfo, ofw_bus_gen_child_pnpinfo), 197 DEVMETHOD(ofw_bus_get_devinfo, smu_get_devinfo), 198 DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat), 199 DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model), 200 DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name), 201 DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node), 202 DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type), 203 204 { 0, 0 }, 205 }; 206 207 static driver_t smu_driver = { 208 "smu", 209 smu_methods, 210 sizeof(struct smu_softc) 211 }; 212 213 DRIVER_MODULE(smu, ofwbus, smu_driver, 0, 0); 214 static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information"); 215 216 #define SMU_MAILBOX 0x8000860c 217 #define SMU_FANMGT_INTERVAL 1000 /* ms */ 218 219 /* Command types */ 220 #define SMU_ADC 0xd8 221 #define SMU_FAN 0x4a 222 #define SMU_RPM_STATUS 0x01 223 #define SMU_RPM_SETPOINT 0x02 224 #define SMU_PWM_STATUS 0x11 225 #define SMU_PWM_SETPOINT 0x12 226 #define SMU_I2C 0x9a 227 #define SMU_I2C_SIMPLE 0x00 228 #define SMU_I2C_NORMAL 0x01 229 #define SMU_I2C_COMBINED 0x02 230 #define SMU_MISC 0xee 231 #define SMU_MISC_GET_DATA 0x02 232 #define SMU_MISC_LED_CTRL 0x04 233 #define SMU_POWER 0xaa 234 #define SMU_POWER_EVENTS 0x8f 235 #define SMU_PWR_GET_POWERUP 0x00 236 #define SMU_PWR_SET_POWERUP 0x01 237 #define SMU_PWR_CLR_POWERUP 0x02 238 #define SMU_RTC 0x8e 239 #define SMU_RTC_GET 0x81 240 #define SMU_RTC_SET 0x80 241 242 /* Power event types */ 243 #define SMU_WAKEUP_KEYPRESS 0x01 244 #define SMU_WAKEUP_AC_INSERT 0x02 245 #define SMU_WAKEUP_AC_CHANGE 0x04 246 #define SMU_WAKEUP_RING 0x10 247 248 /* Data blocks */ 249 #define SMU_CPUTEMP_CAL 0x18 250 #define SMU_CPUVOLT_CAL 0x21 251 #define SMU_SLOTPW_CAL 0x78 252 253 /* Partitions */ 254 #define SMU_PARTITION 0x3e 255 #define SMU_PARTITION_LATEST 0x01 256 #define SMU_PARTITION_BASE 0x02 257 #define SMU_PARTITION_UPDATE 0x03 258 259 static int 260 smu_probe(device_t dev) 261 { 262 const char *name = ofw_bus_get_name(dev); 263 264 if (strcmp(name, "smu") != 0) 265 return (ENXIO); 266 267 device_set_desc(dev, "Apple System Management Unit"); 268 return (0); 269 } 270 271 static void 272 smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 273 { 274 struct smu_softc *sc = xsc; 275 276 sc->sc_cmd_phys = segs[0].ds_addr; 277 } 278 279 static int 280 smu_attach(device_t dev) 281 { 282 struct smu_softc *sc; 283 phandle_t node, child; 284 uint8_t data[12]; 285 286 sc = device_get_softc(dev); 287 288 mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF); 289 sc->sc_cur_cmd = NULL; 290 sc->sc_doorbellirqid = -1; 291 292 sc->sc_u3 = 0; 293 if (OF_finddevice("/u3") != -1) 294 sc->sc_u3 = 1; 295 296 /* 297 * Map the mailbox area. This should be determined from firmware, 298 * but I have not found a simple way to do that. 299 */ 300 bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT, 301 BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL, 302 NULL, &(sc->sc_dmatag)); 303 sc->sc_bt = &bs_le_tag; 304 bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox); 305 306 /* 307 * Allocate the command buffer. This can be anywhere in the low 4 GB 308 * of memory. 309 */ 310 bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK | 311 BUS_DMA_ZERO, &sc->sc_cmd_dmamap); 312 bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap, 313 sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0); 314 STAILQ_INIT(&sc->sc_cmdq); 315 316 /* 317 * Set up handlers to change CPU voltage when CPU frequency is changed. 318 */ 319 EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev, 320 EVENTHANDLER_PRI_ANY); 321 EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev, 322 EVENTHANDLER_PRI_ANY); 323 324 node = ofw_bus_get_node(dev); 325 326 /* Some SMUs have RPM and PWM controlled fans which do not sit 327 * under the same node. So we have to attach them separately. 328 */ 329 smu_attach_fans(dev, node); 330 331 /* 332 * Now detect and attach the other child devices. 333 */ 334 for (child = OF_child(node); child != 0; child = OF_peer(child)) { 335 char name[32]; 336 memset(name, 0, sizeof(name)); 337 OF_getprop(child, "name", name, sizeof(name)); 338 339 if (strncmp(name, "sensors", 8) == 0) 340 smu_attach_sensors(dev, child); 341 342 if (strncmp(name, "smu-i2c-control", 15) == 0) 343 smu_attach_i2c(dev, child); 344 } 345 346 /* Some SMUs have the I2C children directly under the bus. */ 347 smu_attach_i2c(dev, node); 348 349 /* 350 * Collect calibration constants. 351 */ 352 smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data)); 353 sc->sc_cpu_diode_scale = (data[4] << 8) + data[5]; 354 sc->sc_cpu_diode_offset = (data[6] << 8) + data[7]; 355 356 smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data)); 357 sc->sc_cpu_volt_scale = (data[4] << 8) + data[5]; 358 sc->sc_cpu_volt_offset = (data[6] << 8) + data[7]; 359 sc->sc_cpu_curr_scale = (data[8] << 8) + data[9]; 360 sc->sc_cpu_curr_offset = (data[10] << 8) + data[11]; 361 362 smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data)); 363 sc->sc_slots_pow_scale = (data[4] << 8) + data[5]; 364 sc->sc_slots_pow_offset = (data[6] << 8) + data[7]; 365 366 /* 367 * Set up LED interface 368 */ 369 sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled"); 370 371 /* 372 * Reset on power loss behavior 373 */ 374 375 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 376 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 377 "server_mode", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, dev, 378 0, smu_server_mode, "I", "Enable reboot after power failure"); 379 380 /* 381 * Set up doorbell interrupt. 382 */ 383 sc->sc_doorbellirqid = 0; 384 sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ, 385 &sc->sc_doorbellirqid, RF_ACTIVE); 386 bus_setup_intr(smu_doorbell, sc->sc_doorbellirq, 387 INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev, 388 &sc->sc_doorbellirqcookie); 389 powerpc_config_intr(rman_get_start(sc->sc_doorbellirq), 390 INTR_TRIGGER_EDGE, INTR_POLARITY_LOW); 391 392 /* 393 * Connect RTC interface. 394 */ 395 clock_register(dev, 1000); 396 397 /* 398 * Learn about shutdown events 399 */ 400 EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev, 401 SHUTDOWN_PRI_LAST); 402 403 return (bus_generic_attach(dev)); 404 } 405 406 static const struct ofw_bus_devinfo * 407 smu_get_devinfo(device_t bus, device_t dev) 408 { 409 410 return (device_get_ivars(dev)); 411 } 412 413 static void 414 smu_send_cmd(device_t dev, struct smu_cmd *cmd) 415 { 416 struct smu_softc *sc; 417 418 sc = device_get_softc(dev); 419 420 mtx_assert(&sc->sc_mtx, MA_OWNED); 421 422 if (sc->sc_u3) 423 powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */ 424 425 sc->sc_cur_cmd = cmd; 426 427 /* Copy the command to the mailbox */ 428 sc->sc_cmd->cmd = cmd->cmd; 429 sc->sc_cmd->len = cmd->len; 430 memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data)); 431 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE); 432 bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys); 433 434 /* Flush the cacheline it is in -- SMU bypasses the cache */ 435 __asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory"); 436 437 /* Ring SMU doorbell */ 438 macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT); 439 } 440 441 static void 442 smu_doorbell_intr(void *xdev) 443 { 444 device_t smu; 445 struct smu_softc *sc; 446 int doorbell_ack; 447 448 smu = xdev; 449 doorbell_ack = macgpio_read(smu_doorbell); 450 sc = device_get_softc(smu); 451 452 if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA)) 453 return; 454 455 mtx_lock(&sc->sc_mtx); 456 457 if (sc->sc_cur_cmd == NULL) /* spurious */ 458 goto done; 459 460 /* Check result. First invalidate the cache again... */ 461 __asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory"); 462 463 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD); 464 465 sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd; 466 sc->sc_cur_cmd->len = sc->sc_cmd->len; 467 memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data, 468 sizeof(sc->sc_cmd->data)); 469 wakeup(sc->sc_cur_cmd); 470 sc->sc_cur_cmd = NULL; 471 if (sc->sc_u3) 472 powerpc_pow_enabled = 1; 473 474 done: 475 /* Queue next command if one is pending */ 476 if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) { 477 sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq); 478 STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q); 479 smu_send_cmd(smu, sc->sc_cur_cmd); 480 } 481 482 mtx_unlock(&sc->sc_mtx); 483 } 484 485 static int 486 smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait) 487 { 488 struct smu_softc *sc; 489 uint8_t cmd_code; 490 int error; 491 492 sc = device_get_softc(dev); 493 cmd_code = cmd->cmd; 494 495 mtx_lock(&sc->sc_mtx); 496 if (sc->sc_cur_cmd != NULL) { 497 STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q); 498 } else 499 smu_send_cmd(dev, cmd); 500 mtx_unlock(&sc->sc_mtx); 501 502 if (!wait) 503 return (0); 504 505 if (sc->sc_doorbellirqid < 0) { 506 /* Poll if the IRQ has not been set up yet */ 507 do { 508 DELAY(50); 509 smu_doorbell_intr(dev); 510 } while (sc->sc_cur_cmd != NULL); 511 } else { 512 /* smu_doorbell_intr will wake us when the command is ACK'ed */ 513 error = tsleep(cmd, 0, "smu", 800 * hz / 1000); 514 if (error != 0) 515 smu_doorbell_intr(dev); /* One last chance */ 516 517 if (error != 0) { 518 mtx_lock(&sc->sc_mtx); 519 if (cmd->cmd == cmd_code) { /* Never processed */ 520 /* Abort this command if we timed out */ 521 if (sc->sc_cur_cmd == cmd) 522 sc->sc_cur_cmd = NULL; 523 else 524 STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd, 525 cmd_q); 526 mtx_unlock(&sc->sc_mtx); 527 return (error); 528 } 529 error = 0; 530 mtx_unlock(&sc->sc_mtx); 531 } 532 } 533 534 /* SMU acks the command by inverting the command bits */ 535 if (cmd->cmd == ((~cmd_code) & 0xff)) 536 error = 0; 537 else 538 error = EIO; 539 540 return (error); 541 } 542 543 static int 544 smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len) 545 { 546 struct smu_cmd cmd; 547 uint8_t addr[4]; 548 549 cmd.cmd = SMU_PARTITION; 550 cmd.len = 2; 551 cmd.data[0] = SMU_PARTITION_LATEST; 552 cmd.data[1] = id; 553 554 smu_run_cmd(dev, &cmd, 1); 555 556 addr[0] = addr[1] = 0; 557 addr[2] = cmd.data[0]; 558 addr[3] = cmd.data[1]; 559 560 cmd.cmd = SMU_MISC; 561 cmd.len = 7; 562 cmd.data[0] = SMU_MISC_GET_DATA; 563 cmd.data[1] = sizeof(addr); 564 memcpy(&cmd.data[2], addr, sizeof(addr)); 565 cmd.data[6] = len; 566 567 smu_run_cmd(dev, &cmd, 1); 568 memcpy(buf, cmd.data, len); 569 return (0); 570 } 571 572 static void 573 smu_slew_cpu_voltage(device_t dev, int to) 574 { 575 struct smu_cmd cmd; 576 577 cmd.cmd = SMU_POWER; 578 cmd.len = 8; 579 cmd.data[0] = 'V'; 580 cmd.data[1] = 'S'; 581 cmd.data[2] = 'L'; 582 cmd.data[3] = 'E'; 583 cmd.data[4] = 'W'; 584 cmd.data[5] = 0xff; 585 cmd.data[6] = 1; 586 cmd.data[7] = to; 587 588 smu_run_cmd(dev, &cmd, 1); 589 } 590 591 static void 592 smu_cpufreq_pre_change(device_t dev, const struct cf_level *level) 593 { 594 /* 595 * Make sure the CPU voltage is raised before we raise 596 * the clock. 597 */ 598 599 if (level->rel_set[0].freq == 10000 /* max */) 600 smu_slew_cpu_voltage(dev, 0); 601 } 602 603 static void 604 smu_cpufreq_post_change(device_t dev, const struct cf_level *level) 605 { 606 /* We are safe to reduce CPU voltage after a downward transition */ 607 608 if (level->rel_set[0].freq < 10000 /* max */) 609 smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */ 610 } 611 612 /* Routines for probing the SMU doorbell GPIO */ 613 static int doorbell_probe(device_t dev); 614 static int doorbell_attach(device_t dev); 615 616 static device_method_t doorbell_methods[] = { 617 /* Device interface */ 618 DEVMETHOD(device_probe, doorbell_probe), 619 DEVMETHOD(device_attach, doorbell_attach), 620 { 0, 0 }, 621 }; 622 623 static driver_t doorbell_driver = { 624 "smudoorbell", 625 doorbell_methods, 626 0 627 }; 628 629 EARLY_DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, 0, 0, 630 BUS_PASS_SUPPORTDEV); 631 632 static int 633 doorbell_probe(device_t dev) 634 { 635 const char *name = ofw_bus_get_name(dev); 636 637 if (strcmp(name, "smu-doorbell") != 0) 638 return (ENXIO); 639 640 device_set_desc(dev, "SMU Doorbell GPIO"); 641 device_quiet(dev); 642 return (0); 643 } 644 645 static int 646 doorbell_attach(device_t dev) 647 { 648 smu_doorbell = dev; 649 return (0); 650 } 651 652 /* 653 * Sensor and fan management 654 */ 655 656 static int 657 smu_fan_check_old_style(struct smu_fan *fan) 658 { 659 device_t smu = fan->dev; 660 struct smu_softc *sc = device_get_softc(smu); 661 struct smu_cmd cmd; 662 int error; 663 664 if (sc->old_style_fans != -1) 665 return (sc->old_style_fans); 666 667 /* 668 * Apple has two fan control mechanisms. We can't distinguish 669 * them except by seeing if the new one fails. If the new one 670 * fails, use the old one. 671 */ 672 673 cmd.cmd = SMU_FAN; 674 cmd.len = 2; 675 cmd.data[0] = 0x31; 676 cmd.data[1] = fan->reg; 677 678 do { 679 error = smu_run_cmd(smu, &cmd, 1); 680 } while (error == EWOULDBLOCK); 681 682 sc->old_style_fans = (error != 0); 683 684 return (sc->old_style_fans); 685 } 686 687 static int 688 smu_fan_set_rpm(struct smu_fan *fan, int rpm) 689 { 690 device_t smu = fan->dev; 691 struct smu_cmd cmd; 692 int error; 693 694 cmd.cmd = SMU_FAN; 695 error = EIO; 696 697 /* Clamp to allowed range */ 698 rpm = max(fan->fan.min_rpm, rpm); 699 rpm = min(fan->fan.max_rpm, rpm); 700 701 smu_fan_check_old_style(fan); 702 703 if (!fan->old_style) { 704 cmd.len = 4; 705 cmd.data[0] = 0x30; 706 cmd.data[1] = fan->reg; 707 cmd.data[2] = (rpm >> 8) & 0xff; 708 cmd.data[3] = rpm & 0xff; 709 710 error = smu_run_cmd(smu, &cmd, 1); 711 if (error && error != EWOULDBLOCK) 712 fan->old_style = 1; 713 } else { 714 cmd.len = 14; 715 cmd.data[0] = 0x00; /* RPM fan. */ 716 cmd.data[1] = 1 << fan->reg; 717 cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff; 718 cmd.data[3 + 2*fan->reg] = rpm & 0xff; 719 error = smu_run_cmd(smu, &cmd, 1); 720 } 721 722 if (error == 0) 723 fan->setpoint = rpm; 724 725 return (error); 726 } 727 728 static int 729 smu_fan_read_rpm(struct smu_fan *fan) 730 { 731 device_t smu = fan->dev; 732 struct smu_cmd cmd; 733 int rpm, error; 734 735 smu_fan_check_old_style(fan); 736 737 if (!fan->old_style) { 738 cmd.cmd = SMU_FAN; 739 cmd.len = 2; 740 cmd.data[0] = 0x31; 741 cmd.data[1] = fan->reg; 742 743 error = smu_run_cmd(smu, &cmd, 1); 744 if (error && error != EWOULDBLOCK) 745 fan->old_style = 1; 746 747 rpm = (cmd.data[0] << 8) | cmd.data[1]; 748 } 749 750 if (fan->old_style) { 751 cmd.cmd = SMU_FAN; 752 cmd.len = 1; 753 cmd.data[0] = SMU_RPM_STATUS; 754 755 error = smu_run_cmd(smu, &cmd, 1); 756 if (error) 757 return (error); 758 759 rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2]; 760 } 761 762 return (rpm); 763 } 764 static int 765 smu_fan_set_pwm(struct smu_fan *fan, int pwm) 766 { 767 device_t smu = fan->dev; 768 struct smu_cmd cmd; 769 int error; 770 771 cmd.cmd = SMU_FAN; 772 error = EIO; 773 774 /* Clamp to allowed range */ 775 pwm = max(fan->fan.min_rpm, pwm); 776 pwm = min(fan->fan.max_rpm, pwm); 777 778 /* 779 * Apple has two fan control mechanisms. We can't distinguish 780 * them except by seeing if the new one fails. If the new one 781 * fails, use the old one. 782 */ 783 784 if (!fan->old_style) { 785 cmd.len = 4; 786 cmd.data[0] = 0x30; 787 cmd.data[1] = fan->reg; 788 cmd.data[2] = (pwm >> 8) & 0xff; 789 cmd.data[3] = pwm & 0xff; 790 791 error = smu_run_cmd(smu, &cmd, 1); 792 if (error && error != EWOULDBLOCK) 793 fan->old_style = 1; 794 } 795 796 if (fan->old_style) { 797 cmd.len = 14; 798 cmd.data[0] = 0x10; /* PWM fan. */ 799 cmd.data[1] = 1 << fan->reg; 800 cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff; 801 cmd.data[3 + 2*fan->reg] = pwm & 0xff; 802 error = smu_run_cmd(smu, &cmd, 1); 803 } 804 805 if (error == 0) 806 fan->setpoint = pwm; 807 808 return (error); 809 } 810 811 static int 812 smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm) 813 { 814 device_t smu = fan->dev; 815 struct smu_cmd cmd; 816 int error; 817 818 if (!fan->old_style) { 819 cmd.cmd = SMU_FAN; 820 cmd.len = 2; 821 cmd.data[0] = 0x31; 822 cmd.data[1] = fan->reg; 823 824 error = smu_run_cmd(smu, &cmd, 1); 825 if (error && error != EWOULDBLOCK) 826 fan->old_style = 1; 827 828 *rpm = (cmd.data[0] << 8) | cmd.data[1]; 829 } 830 831 if (fan->old_style) { 832 cmd.cmd = SMU_FAN; 833 cmd.len = 1; 834 cmd.data[0] = SMU_PWM_STATUS; 835 836 error = smu_run_cmd(smu, &cmd, 1); 837 if (error) 838 return (error); 839 840 *rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2]; 841 } 842 if (fan->old_style) { 843 cmd.cmd = SMU_FAN; 844 cmd.len = 14; 845 cmd.data[0] = SMU_PWM_SETPOINT; 846 cmd.data[1] = 1 << fan->reg; 847 848 error = smu_run_cmd(smu, &cmd, 1); 849 if (error) 850 return (error); 851 852 *pwm = cmd.data[fan->reg*2+2]; 853 } 854 return (0); 855 } 856 857 static int 858 smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS) 859 { 860 device_t smu; 861 struct smu_softc *sc; 862 struct smu_fan *fan; 863 int pwm = 0, rpm, error = 0; 864 865 smu = arg1; 866 sc = device_get_softc(smu); 867 fan = &sc->sc_fans[arg2 & 0xff]; 868 869 if (fan->type == SMU_FAN_RPM) { 870 rpm = smu_fan_read_rpm(fan); 871 if (rpm < 0) 872 return (rpm); 873 874 error = sysctl_handle_int(oidp, &rpm, 0, req); 875 } else { 876 error = smu_fan_read_pwm(fan, &pwm, &rpm); 877 if (error < 0) 878 return (EIO); 879 880 switch (arg2 & 0xff00) { 881 case SMU_PWM_SYSCTL_PWM: 882 error = sysctl_handle_int(oidp, &pwm, 0, req); 883 break; 884 case SMU_PWM_SYSCTL_RPM: 885 error = sysctl_handle_int(oidp, &rpm, 0, req); 886 break; 887 default: 888 /* This should never happen */ 889 return (EINVAL); 890 } 891 } 892 /* We can only read the RPM from a PWM controlled fan, so return. */ 893 if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM) 894 return (0); 895 896 if (error || !req->newptr) 897 return (error); 898 899 sc->sc_lastuserchange = time_uptime; 900 901 if (fan->type == SMU_FAN_RPM) 902 return (smu_fan_set_rpm(fan, rpm)); 903 else 904 return (smu_fan_set_pwm(fan, pwm)); 905 } 906 907 static void 908 smu_fill_fan_prop(device_t dev, phandle_t child, int id) 909 { 910 struct smu_fan *fan; 911 struct smu_softc *sc; 912 char type[32]; 913 914 sc = device_get_softc(dev); 915 fan = &sc->sc_fans[id]; 916 917 OF_getprop(child, "device_type", type, sizeof(type)); 918 /* We have either RPM or PWM controlled fans. */ 919 if (strcmp(type, "fan-rpm-control") == 0) 920 fan->type = SMU_FAN_RPM; 921 else 922 fan->type = SMU_FAN_PWM; 923 924 fan->dev = dev; 925 fan->old_style = 0; 926 OF_getprop(child, "reg", &fan->reg, 927 sizeof(cell_t)); 928 OF_getprop(child, "min-value", &fan->fan.min_rpm, 929 sizeof(int)); 930 OF_getprop(child, "max-value", &fan->fan.max_rpm, 931 sizeof(int)); 932 OF_getprop(child, "zone", &fan->fan.zone, 933 sizeof(int)); 934 935 if (OF_getprop(child, "unmanaged-value", 936 &fan->fan.default_rpm, 937 sizeof(int)) != sizeof(int)) 938 fan->fan.default_rpm = fan->fan.max_rpm; 939 940 OF_getprop(child, "location", fan->fan.name, 941 sizeof(fan->fan.name)); 942 943 if (fan->type == SMU_FAN_RPM) 944 fan->setpoint = smu_fan_read_rpm(fan); 945 else 946 smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm); 947 } 948 949 /* On the first call count the number of fans. In the second call, 950 * after allocating the fan struct, fill the properties of the fans. 951 */ 952 static int 953 smu_count_fans(device_t dev) 954 { 955 struct smu_softc *sc; 956 phandle_t child, node, root; 957 int nfans = 0; 958 959 node = ofw_bus_get_node(dev); 960 sc = device_get_softc(dev); 961 962 /* First find the fanroots and count the number of fans. */ 963 for (root = OF_child(node); root != 0; root = OF_peer(root)) { 964 char name[32]; 965 memset(name, 0, sizeof(name)); 966 OF_getprop(root, "name", name, sizeof(name)); 967 if (strncmp(name, "rpm-fans", 9) == 0 || 968 strncmp(name, "pwm-fans", 9) == 0 || 969 strncmp(name, "fans", 5) == 0) 970 for (child = OF_child(root); child != 0; 971 child = OF_peer(child)) { 972 nfans++; 973 /* When allocated, fill the fan properties. */ 974 if (sc->sc_fans != NULL) { 975 smu_fill_fan_prop(dev, child, 976 nfans - 1); 977 } 978 } 979 } 980 if (nfans == 0) { 981 device_printf(dev, "WARNING: No fans detected!\n"); 982 return (0); 983 } 984 return (nfans); 985 } 986 987 static void 988 smu_attach_fans(device_t dev, phandle_t fanroot) 989 { 990 struct smu_fan *fan; 991 struct smu_softc *sc; 992 struct sysctl_oid *oid, *fanroot_oid; 993 struct sysctl_ctx_list *ctx; 994 char sysctl_name[32]; 995 int i, j; 996 997 sc = device_get_softc(dev); 998 999 /* Get the number of fans. */ 1000 sc->sc_nfans = smu_count_fans(dev); 1001 if (sc->sc_nfans == 0) 1002 return; 1003 1004 /* Now we're able to allocate memory for the fans struct. */ 1005 sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU, 1006 M_WAITOK | M_ZERO); 1007 1008 /* Now fill in the properties. */ 1009 smu_count_fans(dev); 1010 1011 /* Register fans with pmac_thermal */ 1012 for (i = 0; i < sc->sc_nfans; i++) 1013 pmac_thermal_fan_register(&sc->sc_fans[i].fan); 1014 1015 ctx = device_get_sysctl_ctx(dev); 1016 fanroot_oid = SYSCTL_ADD_NODE(ctx, 1017 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans", 1018 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Fan Information"); 1019 1020 /* Add sysctls */ 1021 for (i = 0; i < sc->sc_nfans; i++) { 1022 fan = &sc->sc_fans[i]; 1023 for (j = 0; j < strlen(fan->fan.name); j++) { 1024 sysctl_name[j] = tolower(fan->fan.name[j]); 1025 if (isspace(sysctl_name[j])) 1026 sysctl_name[j] = '_'; 1027 } 1028 sysctl_name[j] = 0; 1029 if (fan->type == SMU_FAN_RPM) { 1030 oid = SYSCTL_ADD_NODE(ctx, 1031 SYSCTL_CHILDREN(fanroot_oid), OID_AUTO, 1032 sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 1033 "Fan Information"); 1034 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1035 "minrpm", CTLFLAG_RD, 1036 &fan->fan.min_rpm, 0, 1037 "Minimum allowed RPM"); 1038 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1039 "maxrpm", CTLFLAG_RD, 1040 &fan->fan.max_rpm, 0, 1041 "Maximum allowed RPM"); 1042 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1043 "rpm",CTLTYPE_INT | CTLFLAG_RW | 1044 CTLFLAG_MPSAFE, dev, i, 1045 smu_fanrpm_sysctl, "I", "Fan RPM"); 1046 1047 fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm; 1048 fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm; 1049 1050 } else { 1051 oid = SYSCTL_ADD_NODE(ctx, 1052 SYSCTL_CHILDREN(fanroot_oid), OID_AUTO, 1053 sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 1054 "Fan Information"); 1055 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1056 "minpwm", CTLFLAG_RD, 1057 &fan->fan.min_rpm, 0, 1058 "Minimum allowed PWM in %"); 1059 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1060 "maxpwm", CTLFLAG_RD, 1061 &fan->fan.max_rpm, 0, 1062 "Maximum allowed PWM in %"); 1063 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1064 "pwm",CTLTYPE_INT | CTLFLAG_RW | 1065 CTLFLAG_MPSAFE, dev, 1066 SMU_PWM_SYSCTL_PWM | i, 1067 smu_fanrpm_sysctl, "I", "Fan PWM in %"); 1068 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1069 "rpm",CTLTYPE_INT | CTLFLAG_RD | 1070 CTLFLAG_MPSAFE, dev, 1071 SMU_PWM_SYSCTL_RPM | i, 1072 smu_fanrpm_sysctl, "I", "Fan RPM"); 1073 fan->fan.read = NULL; 1074 fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm; 1075 } 1076 if (bootverbose) 1077 device_printf(dev, "Fan: %s type: %d\n", 1078 fan->fan.name, fan->type); 1079 } 1080 } 1081 1082 static int 1083 smu_sensor_read(struct smu_sensor *sens) 1084 { 1085 device_t smu = sens->dev; 1086 struct smu_cmd cmd; 1087 struct smu_softc *sc; 1088 int64_t value; 1089 int error; 1090 1091 cmd.cmd = SMU_ADC; 1092 cmd.len = 1; 1093 cmd.data[0] = sens->reg; 1094 error = 0; 1095 1096 error = smu_run_cmd(smu, &cmd, 1); 1097 if (error != 0) 1098 return (-1); 1099 1100 sc = device_get_softc(smu); 1101 value = (cmd.data[0] << 8) | cmd.data[1]; 1102 1103 switch (sens->type) { 1104 case SMU_TEMP_SENSOR: 1105 value *= sc->sc_cpu_diode_scale; 1106 value >>= 3; 1107 value += ((int64_t)sc->sc_cpu_diode_offset) << 9; 1108 value <<= 1; 1109 1110 /* Convert from 16.16 fixed point degC into integer 0.1 K. */ 1111 value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2731; 1112 break; 1113 case SMU_VOLTAGE_SENSOR: 1114 value *= sc->sc_cpu_volt_scale; 1115 value += sc->sc_cpu_volt_offset; 1116 value <<= 4; 1117 1118 /* Convert from 16.16 fixed point V into mV. */ 1119 value *= 15625; 1120 value /= 1024; 1121 value /= 1000; 1122 break; 1123 case SMU_CURRENT_SENSOR: 1124 value *= sc->sc_cpu_curr_scale; 1125 value += sc->sc_cpu_curr_offset; 1126 value <<= 4; 1127 1128 /* Convert from 16.16 fixed point A into mA. */ 1129 value *= 15625; 1130 value /= 1024; 1131 value /= 1000; 1132 break; 1133 case SMU_POWER_SENSOR: 1134 value *= sc->sc_slots_pow_scale; 1135 value += sc->sc_slots_pow_offset; 1136 value <<= 4; 1137 1138 /* Convert from 16.16 fixed point W into mW. */ 1139 value *= 15625; 1140 value /= 1024; 1141 value /= 1000; 1142 break; 1143 } 1144 1145 return (value); 1146 } 1147 1148 static int 1149 smu_sensor_sysctl(SYSCTL_HANDLER_ARGS) 1150 { 1151 device_t smu; 1152 struct smu_softc *sc; 1153 struct smu_sensor *sens; 1154 int value, error; 1155 1156 smu = arg1; 1157 sc = device_get_softc(smu); 1158 sens = &sc->sc_sensors[arg2]; 1159 1160 value = smu_sensor_read(sens); 1161 if (value < 0) 1162 return (EBUSY); 1163 1164 error = sysctl_handle_int(oidp, &value, 0, req); 1165 1166 return (error); 1167 } 1168 1169 static void 1170 smu_attach_sensors(device_t dev, phandle_t sensroot) 1171 { 1172 struct smu_sensor *sens; 1173 struct smu_softc *sc; 1174 struct sysctl_oid *sensroot_oid; 1175 struct sysctl_ctx_list *ctx; 1176 phandle_t child; 1177 char type[32]; 1178 int i; 1179 1180 sc = device_get_softc(dev); 1181 sc->sc_nsensors = 0; 1182 1183 for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) 1184 sc->sc_nsensors++; 1185 1186 if (sc->sc_nsensors == 0) { 1187 device_printf(dev, "WARNING: No sensors detected!\n"); 1188 return; 1189 } 1190 1191 sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor), 1192 M_SMU, M_WAITOK | M_ZERO); 1193 1194 sens = sc->sc_sensors; 1195 sc->sc_nsensors = 0; 1196 1197 ctx = device_get_sysctl_ctx(dev); 1198 sensroot_oid = SYSCTL_ADD_NODE(ctx, 1199 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors", 1200 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Sensor Information"); 1201 1202 for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) { 1203 char sysctl_name[40], sysctl_desc[40]; 1204 const char *units; 1205 1206 sens->dev = dev; 1207 OF_getprop(child, "device_type", type, sizeof(type)); 1208 1209 if (strcmp(type, "current-sensor") == 0) { 1210 sens->type = SMU_CURRENT_SENSOR; 1211 units = "mA"; 1212 } else if (strcmp(type, "temp-sensor") == 0) { 1213 sens->type = SMU_TEMP_SENSOR; 1214 units = "C"; 1215 } else if (strcmp(type, "voltage-sensor") == 0) { 1216 sens->type = SMU_VOLTAGE_SENSOR; 1217 units = "mV"; 1218 } else if (strcmp(type, "power-sensor") == 0) { 1219 sens->type = SMU_POWER_SENSOR; 1220 units = "mW"; 1221 } else { 1222 continue; 1223 } 1224 1225 OF_getprop(child, "reg", &sens->reg, sizeof(cell_t)); 1226 OF_getprop(child, "zone", &sens->therm.zone, sizeof(int)); 1227 OF_getprop(child, "location", sens->therm.name, 1228 sizeof(sens->therm.name)); 1229 1230 for (i = 0; i < strlen(sens->therm.name); i++) { 1231 sysctl_name[i] = tolower(sens->therm.name[i]); 1232 if (isspace(sysctl_name[i])) 1233 sysctl_name[i] = '_'; 1234 } 1235 sysctl_name[i] = 0; 1236 1237 sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units); 1238 1239 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO, 1240 sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 1241 dev, sc->sc_nsensors, smu_sensor_sysctl, 1242 (sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc); 1243 1244 if (sens->type == SMU_TEMP_SENSOR) { 1245 /* Make up some numbers */ 1246 sens->therm.target_temp = 500 + 2731; /* 50 C */ 1247 sens->therm.max_temp = 900 + 2731; /* 90 C */ 1248 1249 sens->therm.read = 1250 (int (*)(struct pmac_therm *))smu_sensor_read; 1251 pmac_thermal_sensor_register(&sens->therm); 1252 } 1253 1254 sens++; 1255 sc->sc_nsensors++; 1256 } 1257 } 1258 1259 static void 1260 smu_set_sleepled(void *xdev, int onoff) 1261 { 1262 static struct smu_cmd cmd; 1263 device_t smu = xdev; 1264 1265 cmd.cmd = SMU_MISC; 1266 cmd.len = 3; 1267 cmd.data[0] = SMU_MISC_LED_CTRL; 1268 cmd.data[1] = 0; 1269 cmd.data[2] = onoff; 1270 1271 smu_run_cmd(smu, &cmd, 0); 1272 } 1273 1274 static int 1275 smu_server_mode(SYSCTL_HANDLER_ARGS) 1276 { 1277 struct smu_cmd cmd; 1278 u_int server_mode; 1279 device_t smu = arg1; 1280 int error; 1281 1282 cmd.cmd = SMU_POWER_EVENTS; 1283 cmd.len = 1; 1284 cmd.data[0] = SMU_PWR_GET_POWERUP; 1285 1286 error = smu_run_cmd(smu, &cmd, 1); 1287 1288 if (error) 1289 return (error); 1290 1291 server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0; 1292 1293 error = sysctl_handle_int(oidp, &server_mode, 0, req); 1294 1295 if (error || !req->newptr) 1296 return (error); 1297 1298 if (server_mode == 1) 1299 cmd.data[0] = SMU_PWR_SET_POWERUP; 1300 else if (server_mode == 0) 1301 cmd.data[0] = SMU_PWR_CLR_POWERUP; 1302 else 1303 return (EINVAL); 1304 1305 cmd.len = 3; 1306 cmd.data[1] = 0; 1307 cmd.data[2] = SMU_WAKEUP_AC_INSERT; 1308 1309 return (smu_run_cmd(smu, &cmd, 1)); 1310 } 1311 1312 static void 1313 smu_shutdown(void *xdev, int howto) 1314 { 1315 device_t smu = xdev; 1316 struct smu_cmd cmd; 1317 1318 cmd.cmd = SMU_POWER; 1319 if ((howto & RB_POWEROFF) != 0) 1320 strcpy(cmd.data, "SHUTDOWN"); 1321 else if ((howto & RB_HALT) == 0) 1322 strcpy(cmd.data, "RESTART"); 1323 else 1324 return; 1325 1326 cmd.len = strlen(cmd.data); 1327 1328 smu_run_cmd(smu, &cmd, 1); 1329 1330 for (;;); 1331 } 1332 1333 static int 1334 smu_gettime(device_t dev, struct timespec *ts) 1335 { 1336 struct smu_cmd cmd; 1337 struct clocktime ct; 1338 1339 cmd.cmd = SMU_RTC; 1340 cmd.len = 1; 1341 cmd.data[0] = SMU_RTC_GET; 1342 1343 if (smu_run_cmd(dev, &cmd, 1) != 0) 1344 return (ENXIO); 1345 1346 ct.nsec = 0; 1347 ct.sec = bcd2bin(cmd.data[0]); 1348 ct.min = bcd2bin(cmd.data[1]); 1349 ct.hour = bcd2bin(cmd.data[2]); 1350 ct.dow = bcd2bin(cmd.data[3]); 1351 ct.day = bcd2bin(cmd.data[4]); 1352 ct.mon = bcd2bin(cmd.data[5]); 1353 ct.year = bcd2bin(cmd.data[6]) + 2000; 1354 1355 return (clock_ct_to_ts(&ct, ts)); 1356 } 1357 1358 static int 1359 smu_settime(device_t dev, struct timespec *ts) 1360 { 1361 static struct smu_cmd cmd; 1362 struct clocktime ct; 1363 1364 cmd.cmd = SMU_RTC; 1365 cmd.len = 8; 1366 cmd.data[0] = SMU_RTC_SET; 1367 1368 clock_ts_to_ct(ts, &ct); 1369 1370 cmd.data[1] = bin2bcd(ct.sec); 1371 cmd.data[2] = bin2bcd(ct.min); 1372 cmd.data[3] = bin2bcd(ct.hour); 1373 cmd.data[4] = bin2bcd(ct.dow); 1374 cmd.data[5] = bin2bcd(ct.day); 1375 cmd.data[6] = bin2bcd(ct.mon); 1376 cmd.data[7] = bin2bcd(ct.year - 2000); 1377 1378 return (smu_run_cmd(dev, &cmd, 0)); 1379 } 1380 1381 /* SMU I2C Interface */ 1382 1383 static int smuiic_probe(device_t dev); 1384 static int smuiic_attach(device_t dev); 1385 static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs); 1386 static phandle_t smuiic_get_node(device_t bus, device_t dev); 1387 1388 static device_method_t smuiic_methods[] = { 1389 /* device interface */ 1390 DEVMETHOD(device_probe, smuiic_probe), 1391 DEVMETHOD(device_attach, smuiic_attach), 1392 1393 /* iicbus interface */ 1394 DEVMETHOD(iicbus_callback, iicbus_null_callback), 1395 DEVMETHOD(iicbus_transfer, smuiic_transfer), 1396 1397 /* ofw_bus interface */ 1398 DEVMETHOD(ofw_bus_get_node, smuiic_get_node), 1399 { 0, 0 } 1400 }; 1401 1402 struct smuiic_softc { 1403 struct mtx sc_mtx; 1404 volatile int sc_iic_inuse; 1405 int sc_busno; 1406 }; 1407 1408 static driver_t smuiic_driver = { 1409 "iichb", 1410 smuiic_methods, 1411 sizeof(struct smuiic_softc) 1412 }; 1413 1414 DRIVER_MODULE(smuiic, smu, smuiic_driver, 0, 0); 1415 1416 static void 1417 smu_attach_i2c(device_t smu, phandle_t i2croot) 1418 { 1419 phandle_t child; 1420 device_t cdev; 1421 struct ofw_bus_devinfo *dinfo; 1422 char name[32]; 1423 1424 for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) { 1425 if (OF_getprop(child, "name", name, sizeof(name)) <= 0) 1426 continue; 1427 1428 if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0) 1429 continue; 1430 1431 dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU, 1432 M_WAITOK | M_ZERO); 1433 if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) { 1434 free(dinfo, M_SMU); 1435 continue; 1436 } 1437 1438 cdev = device_add_child(smu, NULL, DEVICE_UNIT_ANY); 1439 if (cdev == NULL) { 1440 device_printf(smu, "<%s>: device_add_child failed\n", 1441 dinfo->obd_name); 1442 ofw_bus_gen_destroy_devinfo(dinfo); 1443 free(dinfo, M_SMU); 1444 continue; 1445 } 1446 device_set_ivars(cdev, dinfo); 1447 } 1448 } 1449 1450 static int 1451 smuiic_probe(device_t dev) 1452 { 1453 const char *name; 1454 1455 name = ofw_bus_get_name(dev); 1456 if (name == NULL) 1457 return (ENXIO); 1458 1459 if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) { 1460 device_set_desc(dev, "SMU I2C controller"); 1461 return (0); 1462 } 1463 1464 return (ENXIO); 1465 } 1466 1467 static int 1468 smuiic_attach(device_t dev) 1469 { 1470 struct smuiic_softc *sc = device_get_softc(dev); 1471 mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF); 1472 sc->sc_iic_inuse = 0; 1473 1474 /* Get our bus number */ 1475 OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno, 1476 sizeof(sc->sc_busno)); 1477 1478 /* Add the IIC bus layer */ 1479 device_add_child(dev, "iicbus", DEVICE_UNIT_ANY); 1480 1481 return (bus_generic_attach(dev)); 1482 } 1483 1484 static int 1485 smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs) 1486 { 1487 struct smuiic_softc *sc = device_get_softc(dev); 1488 struct smu_cmd cmd; 1489 int i, j, error; 1490 1491 mtx_lock(&sc->sc_mtx); 1492 while (sc->sc_iic_inuse) 1493 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100); 1494 1495 sc->sc_iic_inuse = 1; 1496 error = 0; 1497 1498 for (i = 0; i < nmsgs; i++) { 1499 cmd.cmd = SMU_I2C; 1500 cmd.data[0] = sc->sc_busno; 1501 if (msgs[i].flags & IIC_M_NOSTOP) 1502 cmd.data[1] = SMU_I2C_COMBINED; 1503 else 1504 cmd.data[1] = SMU_I2C_SIMPLE; 1505 1506 cmd.data[2] = msgs[i].slave; 1507 if (msgs[i].flags & IIC_M_RD) 1508 cmd.data[2] |= 1; 1509 1510 if (msgs[i].flags & IIC_M_NOSTOP) { 1511 KASSERT(msgs[i].len < 4, 1512 ("oversize I2C combined message")); 1513 1514 cmd.data[3] = min(msgs[i].len, 3); 1515 memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3)); 1516 i++; /* Advance to next part of message */ 1517 } else { 1518 cmd.data[3] = 0; 1519 memset(&cmd.data[4], 0, 3); 1520 } 1521 1522 cmd.data[7] = msgs[i].slave; 1523 if (msgs[i].flags & IIC_M_RD) 1524 cmd.data[7] |= 1; 1525 1526 cmd.data[8] = msgs[i].len; 1527 if (msgs[i].flags & IIC_M_RD) { 1528 memset(&cmd.data[9], 0xff, msgs[i].len); 1529 cmd.len = 9; 1530 } else { 1531 memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len); 1532 cmd.len = 9 + msgs[i].len; 1533 } 1534 1535 mtx_unlock(&sc->sc_mtx); 1536 smu_run_cmd(device_get_parent(dev), &cmd, 1); 1537 mtx_lock(&sc->sc_mtx); 1538 1539 for (j = 0; j < 10; j++) { 1540 cmd.cmd = SMU_I2C; 1541 cmd.len = 1; 1542 cmd.data[0] = 0; 1543 memset(&cmd.data[1], 0xff, msgs[i].len); 1544 1545 mtx_unlock(&sc->sc_mtx); 1546 smu_run_cmd(device_get_parent(dev), &cmd, 1); 1547 mtx_lock(&sc->sc_mtx); 1548 1549 if (!(cmd.data[0] & 0x80)) 1550 break; 1551 1552 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10); 1553 } 1554 1555 if (cmd.data[0] & 0x80) { 1556 error = EIO; 1557 msgs[i].len = 0; 1558 goto exit; 1559 } 1560 memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len); 1561 msgs[i].len = cmd.len - 1; 1562 } 1563 1564 exit: 1565 sc->sc_iic_inuse = 0; 1566 mtx_unlock(&sc->sc_mtx); 1567 wakeup(sc); 1568 return (error); 1569 } 1570 1571 static phandle_t 1572 smuiic_get_node(device_t bus, device_t dev) 1573 { 1574 1575 return (ofw_bus_get_node(bus)); 1576 } 1577