1 /*
2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5
6 /*
7 * The basic framework for this code came from the reference
8 * implementation for MD5. That implementation is Copyright (C)
9 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
10 *
11 * License to copy and use this software is granted provided that it
12 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
13 * Algorithm" in all material mentioning or referencing this software
14 * or this function.
15 *
16 * License is also granted to make and use derivative works provided
17 * that such works are identified as "derived from the RSA Data
18 * Security, Inc. MD5 Message-Digest Algorithm" in all material
19 * mentioning or referencing the derived work.
20 *
21 * RSA Data Security, Inc. makes no representations concerning either
22 * the merchantability of this software or the suitability of this
23 * software for any particular purpose. It is provided "as is"
24 * without express or implied warranty of any kind.
25 *
26 * These notices must be retained in any copies of any part of this
27 * documentation and/or software.
28 *
29 * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2
30 * standard, available at
31 * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
32 * Not as fast as one would like -- further optimizations are encouraged
33 * and appreciated.
34 */
35
36 #ifndef _KERNEL
37 #include <stdint.h>
38 #include <strings.h>
39 #include <stdlib.h>
40 #include <errno.h>
41 #endif /* _KERNEL */
42
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysmacros.h>
47 #define _SHA2_IMPL
48 #include <sys/sha2.h>
49 #include <sys/sha2_consts.h>
50
51 #ifdef _KERNEL
52 #include <sys/cmn_err.h>
53
54 #else
55 #pragma weak SHA256Update = SHA2Update
56 #pragma weak SHA384Update = SHA2Update
57 #pragma weak SHA512Update = SHA2Update
58
59 #pragma weak SHA256Final = SHA2Final
60 #pragma weak SHA384Final = SHA2Final
61 #pragma weak SHA512Final = SHA2Final
62
63 #endif /* _KERNEL */
64
65 #ifdef _LITTLE_ENDIAN
66 #include <sys/byteorder.h>
67 #define HAVE_HTONL
68 #endif
69
70 static void Encode(uint8_t *, uint32_t *, size_t);
71 static void Encode64(uint8_t *, uint64_t *, size_t);
72
73 #if defined(__amd64)
74 #define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1)
75 #define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1)
76
77 void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
78 void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
79
80 #else
81 static void SHA256Transform(SHA2_CTX *, const uint8_t *);
82 static void SHA512Transform(SHA2_CTX *, const uint8_t *);
83 #endif /* __amd64 */
84
85 static uint8_t PADDING[128] = { 0x80, /* all zeros */ };
86
87 /* Ch and Maj are the basic SHA2 functions. */
88 #define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d)))
89 #define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d)))
90
91 /* Rotates x right n bits. */
92 #define ROTR(x, n) \
93 (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n))))
94
95 /* Shift x right n bits */
96 #define SHR(x, n) ((x) >> (n))
97
98 /* SHA256 Functions */
99 #define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22))
100 #define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25))
101 #define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3))
102 #define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10))
103
104 #define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \
105 T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \
106 d += T1; \
107 T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \
108 h = T1 + T2
109
110 /* SHA384/512 Functions */
111 #define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
112 #define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
113 #define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7))
114 #define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6))
115 #define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \
116 T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \
117 d += T1; \
118 T2 = BIGSIGMA0(a) + Maj(a, b, c); \
119 h = T1 + T2
120
121 /*
122 * sparc optimization:
123 *
124 * on the sparc, we can load big endian 32-bit data easily. note that
125 * special care must be taken to ensure the address is 32-bit aligned.
126 * in the interest of speed, we don't check to make sure, since
127 * careful programming can guarantee this for us.
128 */
129
130 #if defined(_BIG_ENDIAN)
131 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
132 #define LOAD_BIG_64(addr) (*(uint64_t *)(addr))
133
134 #elif defined(HAVE_HTONL)
135 #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
136 #define LOAD_BIG_64(addr) htonll(*((uint64_t *)(addr)))
137
138 #else
139 /* little endian -- will work on big endian, but slowly */
140 #define LOAD_BIG_32(addr) \
141 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
142 #define LOAD_BIG_64(addr) \
143 (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \
144 ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \
145 ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \
146 ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7])
147 #endif /* _BIG_ENDIAN */
148
149
150 #if !defined(__amd64)
151 /* SHA256 Transform */
152
153 static void
SHA256Transform(SHA2_CTX * ctx,const uint8_t * blk)154 SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk)
155 {
156 uint32_t a = ctx->state.s32[0];
157 uint32_t b = ctx->state.s32[1];
158 uint32_t c = ctx->state.s32[2];
159 uint32_t d = ctx->state.s32[3];
160 uint32_t e = ctx->state.s32[4];
161 uint32_t f = ctx->state.s32[5];
162 uint32_t g = ctx->state.s32[6];
163 uint32_t h = ctx->state.s32[7];
164
165 uint32_t w0, w1, w2, w3, w4, w5, w6, w7;
166 uint32_t w8, w9, w10, w11, w12, w13, w14, w15;
167 uint32_t T1, T2;
168
169 #if defined(__sparc)
170 static const uint32_t sha256_consts[] = {
171 SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2,
172 SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5,
173 SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8,
174 SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11,
175 SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14,
176 SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17,
177 SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20,
178 SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23,
179 SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26,
180 SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29,
181 SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32,
182 SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35,
183 SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38,
184 SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41,
185 SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44,
186 SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47,
187 SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50,
188 SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53,
189 SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56,
190 SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59,
191 SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62,
192 SHA256_CONST_63
193 };
194 #endif /* __sparc */
195
196 if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
197 bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
198 blk = (uint8_t *)ctx->buf_un.buf32;
199 }
200
201 /* LINTED E_BAD_PTR_CAST_ALIGN */
202 w0 = LOAD_BIG_32(blk + 4 * 0);
203 SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0);
204 /* LINTED E_BAD_PTR_CAST_ALIGN */
205 w1 = LOAD_BIG_32(blk + 4 * 1);
206 SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1);
207 /* LINTED E_BAD_PTR_CAST_ALIGN */
208 w2 = LOAD_BIG_32(blk + 4 * 2);
209 SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2);
210 /* LINTED E_BAD_PTR_CAST_ALIGN */
211 w3 = LOAD_BIG_32(blk + 4 * 3);
212 SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3);
213 /* LINTED E_BAD_PTR_CAST_ALIGN */
214 w4 = LOAD_BIG_32(blk + 4 * 4);
215 SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4);
216 /* LINTED E_BAD_PTR_CAST_ALIGN */
217 w5 = LOAD_BIG_32(blk + 4 * 5);
218 SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5);
219 /* LINTED E_BAD_PTR_CAST_ALIGN */
220 w6 = LOAD_BIG_32(blk + 4 * 6);
221 SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6);
222 /* LINTED E_BAD_PTR_CAST_ALIGN */
223 w7 = LOAD_BIG_32(blk + 4 * 7);
224 SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7);
225 /* LINTED E_BAD_PTR_CAST_ALIGN */
226 w8 = LOAD_BIG_32(blk + 4 * 8);
227 SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8);
228 /* LINTED E_BAD_PTR_CAST_ALIGN */
229 w9 = LOAD_BIG_32(blk + 4 * 9);
230 SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9);
231 /* LINTED E_BAD_PTR_CAST_ALIGN */
232 w10 = LOAD_BIG_32(blk + 4 * 10);
233 SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10);
234 /* LINTED E_BAD_PTR_CAST_ALIGN */
235 w11 = LOAD_BIG_32(blk + 4 * 11);
236 SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11);
237 /* LINTED E_BAD_PTR_CAST_ALIGN */
238 w12 = LOAD_BIG_32(blk + 4 * 12);
239 SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12);
240 /* LINTED E_BAD_PTR_CAST_ALIGN */
241 w13 = LOAD_BIG_32(blk + 4 * 13);
242 SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13);
243 /* LINTED E_BAD_PTR_CAST_ALIGN */
244 w14 = LOAD_BIG_32(blk + 4 * 14);
245 SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14);
246 /* LINTED E_BAD_PTR_CAST_ALIGN */
247 w15 = LOAD_BIG_32(blk + 4 * 15);
248 SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15);
249
250 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
251 SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0);
252 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
253 SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1);
254 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
255 SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2);
256 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
257 SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3);
258 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
259 SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4);
260 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
261 SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5);
262 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
263 SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6);
264 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
265 SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7);
266 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
267 SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8);
268 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
269 SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9);
270 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
271 SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10);
272 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
273 SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11);
274 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
275 SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12);
276 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
277 SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13);
278 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
279 SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14);
280 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
281 SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15);
282
283 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
284 SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0);
285 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
286 SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1);
287 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
288 SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2);
289 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
290 SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3);
291 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
292 SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4);
293 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
294 SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5);
295 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
296 SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6);
297 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
298 SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7);
299 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
300 SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8);
301 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
302 SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9);
303 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
304 SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10);
305 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
306 SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11);
307 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
308 SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12);
309 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
310 SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13);
311 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
312 SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14);
313 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
314 SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15);
315
316 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
317 SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0);
318 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
319 SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1);
320 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
321 SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2);
322 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
323 SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3);
324 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
325 SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4);
326 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
327 SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5);
328 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
329 SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6);
330 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
331 SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7);
332 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
333 SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8);
334 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
335 SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9);
336 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
337 SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10);
338 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
339 SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11);
340 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
341 SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12);
342 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
343 SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13);
344 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
345 SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14);
346 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
347 SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15);
348
349 ctx->state.s32[0] += a;
350 ctx->state.s32[1] += b;
351 ctx->state.s32[2] += c;
352 ctx->state.s32[3] += d;
353 ctx->state.s32[4] += e;
354 ctx->state.s32[5] += f;
355 ctx->state.s32[6] += g;
356 ctx->state.s32[7] += h;
357 }
358
359
360 /* SHA384 and SHA512 Transform */
361
362 static void
SHA512Transform(SHA2_CTX * ctx,const uint8_t * blk)363 SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk)
364 {
365
366 uint64_t a = ctx->state.s64[0];
367 uint64_t b = ctx->state.s64[1];
368 uint64_t c = ctx->state.s64[2];
369 uint64_t d = ctx->state.s64[3];
370 uint64_t e = ctx->state.s64[4];
371 uint64_t f = ctx->state.s64[5];
372 uint64_t g = ctx->state.s64[6];
373 uint64_t h = ctx->state.s64[7];
374
375 uint64_t w0, w1, w2, w3, w4, w5, w6, w7;
376 uint64_t w8, w9, w10, w11, w12, w13, w14, w15;
377 uint64_t T1, T2;
378
379 #if defined(__sparc)
380 static const uint64_t sha512_consts[] = {
381 SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2,
382 SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5,
383 SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8,
384 SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11,
385 SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14,
386 SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17,
387 SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20,
388 SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23,
389 SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26,
390 SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29,
391 SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32,
392 SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35,
393 SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38,
394 SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41,
395 SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44,
396 SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47,
397 SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50,
398 SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53,
399 SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56,
400 SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59,
401 SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62,
402 SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65,
403 SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68,
404 SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71,
405 SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74,
406 SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77,
407 SHA512_CONST_78, SHA512_CONST_79
408 };
409 #endif /* __sparc */
410
411
412 if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */
413 bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64));
414 blk = (uint8_t *)ctx->buf_un.buf64;
415 }
416
417 /* LINTED E_BAD_PTR_CAST_ALIGN */
418 w0 = LOAD_BIG_64(blk + 8 * 0);
419 SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0);
420 /* LINTED E_BAD_PTR_CAST_ALIGN */
421 w1 = LOAD_BIG_64(blk + 8 * 1);
422 SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1);
423 /* LINTED E_BAD_PTR_CAST_ALIGN */
424 w2 = LOAD_BIG_64(blk + 8 * 2);
425 SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2);
426 /* LINTED E_BAD_PTR_CAST_ALIGN */
427 w3 = LOAD_BIG_64(blk + 8 * 3);
428 SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3);
429 /* LINTED E_BAD_PTR_CAST_ALIGN */
430 w4 = LOAD_BIG_64(blk + 8 * 4);
431 SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4);
432 /* LINTED E_BAD_PTR_CAST_ALIGN */
433 w5 = LOAD_BIG_64(blk + 8 * 5);
434 SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5);
435 /* LINTED E_BAD_PTR_CAST_ALIGN */
436 w6 = LOAD_BIG_64(blk + 8 * 6);
437 SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6);
438 /* LINTED E_BAD_PTR_CAST_ALIGN */
439 w7 = LOAD_BIG_64(blk + 8 * 7);
440 SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7);
441 /* LINTED E_BAD_PTR_CAST_ALIGN */
442 w8 = LOAD_BIG_64(blk + 8 * 8);
443 SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8);
444 /* LINTED E_BAD_PTR_CAST_ALIGN */
445 w9 = LOAD_BIG_64(blk + 8 * 9);
446 SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9);
447 /* LINTED E_BAD_PTR_CAST_ALIGN */
448 w10 = LOAD_BIG_64(blk + 8 * 10);
449 SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10);
450 /* LINTED E_BAD_PTR_CAST_ALIGN */
451 w11 = LOAD_BIG_64(blk + 8 * 11);
452 SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11);
453 /* LINTED E_BAD_PTR_CAST_ALIGN */
454 w12 = LOAD_BIG_64(blk + 8 * 12);
455 SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12);
456 /* LINTED E_BAD_PTR_CAST_ALIGN */
457 w13 = LOAD_BIG_64(blk + 8 * 13);
458 SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13);
459 /* LINTED E_BAD_PTR_CAST_ALIGN */
460 w14 = LOAD_BIG_64(blk + 8 * 14);
461 SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14);
462 /* LINTED E_BAD_PTR_CAST_ALIGN */
463 w15 = LOAD_BIG_64(blk + 8 * 15);
464 SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15);
465
466 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
467 SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0);
468 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
469 SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1);
470 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
471 SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2);
472 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
473 SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3);
474 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
475 SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4);
476 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
477 SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5);
478 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
479 SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6);
480 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
481 SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7);
482 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
483 SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8);
484 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
485 SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9);
486 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
487 SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10);
488 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
489 SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11);
490 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
491 SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12);
492 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
493 SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13);
494 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
495 SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14);
496 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
497 SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15);
498
499 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
500 SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0);
501 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
502 SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1);
503 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
504 SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2);
505 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
506 SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3);
507 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
508 SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4);
509 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
510 SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5);
511 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
512 SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6);
513 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
514 SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7);
515 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
516 SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8);
517 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
518 SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9);
519 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
520 SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10);
521 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
522 SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11);
523 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
524 SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12);
525 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
526 SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13);
527 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
528 SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14);
529 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
530 SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15);
531
532 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
533 SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0);
534 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
535 SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1);
536 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
537 SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2);
538 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
539 SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3);
540 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
541 SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4);
542 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
543 SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5);
544 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
545 SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6);
546 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
547 SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7);
548 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
549 SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8);
550 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
551 SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9);
552 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
553 SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10);
554 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
555 SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11);
556 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
557 SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12);
558 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
559 SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13);
560 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
561 SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14);
562 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
563 SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15);
564
565 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
566 SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0);
567 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
568 SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1);
569 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
570 SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2);
571 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
572 SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3);
573 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
574 SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4);
575 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
576 SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5);
577 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
578 SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6);
579 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
580 SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7);
581 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
582 SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8);
583 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
584 SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9);
585 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
586 SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10);
587 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
588 SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11);
589 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
590 SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12);
591 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
592 SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13);
593 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
594 SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14);
595 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
596 SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15);
597
598 ctx->state.s64[0] += a;
599 ctx->state.s64[1] += b;
600 ctx->state.s64[2] += c;
601 ctx->state.s64[3] += d;
602 ctx->state.s64[4] += e;
603 ctx->state.s64[5] += f;
604 ctx->state.s64[6] += g;
605 ctx->state.s64[7] += h;
606
607 }
608 #endif /* !__amd64 */
609
610
611 /*
612 * Encode()
613 *
614 * purpose: to convert a list of numbers from little endian to big endian
615 * input: uint8_t * : place to store the converted big endian numbers
616 * uint32_t * : place to get numbers to convert from
617 * size_t : the length of the input in bytes
618 * output: void
619 */
620
621 static void
Encode(uint8_t * _RESTRICT_KYWD output,uint32_t * _RESTRICT_KYWD input,size_t len)622 Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input,
623 size_t len)
624 {
625 size_t i, j;
626
627 #if defined(__sparc)
628 if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
629 for (i = 0, j = 0; j < len; i++, j += 4) {
630 /* LINTED E_BAD_PTR_CAST_ALIGN */
631 *((uint32_t *)(output + j)) = input[i];
632 }
633 } else {
634 #endif /* little endian -- will work on big endian, but slowly */
635 for (i = 0, j = 0; j < len; i++, j += 4) {
636 output[j] = (input[i] >> 24) & 0xff;
637 output[j + 1] = (input[i] >> 16) & 0xff;
638 output[j + 2] = (input[i] >> 8) & 0xff;
639 output[j + 3] = input[i] & 0xff;
640 }
641 #if defined(__sparc)
642 }
643 #endif
644 }
645
646 static void
Encode64(uint8_t * _RESTRICT_KYWD output,uint64_t * _RESTRICT_KYWD input,size_t len)647 Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input,
648 size_t len)
649 {
650 size_t i, j;
651
652 #if defined(__sparc)
653 if (IS_P2ALIGNED(output, sizeof (uint64_t))) {
654 for (i = 0, j = 0; j < len; i++, j += 8) {
655 /* LINTED E_BAD_PTR_CAST_ALIGN */
656 *((uint64_t *)(output + j)) = input[i];
657 }
658 } else {
659 #endif /* little endian -- will work on big endian, but slowly */
660 for (i = 0, j = 0; j < len; i++, j += 8) {
661
662 output[j] = (input[i] >> 56) & 0xff;
663 output[j + 1] = (input[i] >> 48) & 0xff;
664 output[j + 2] = (input[i] >> 40) & 0xff;
665 output[j + 3] = (input[i] >> 32) & 0xff;
666 output[j + 4] = (input[i] >> 24) & 0xff;
667 output[j + 5] = (input[i] >> 16) & 0xff;
668 output[j + 6] = (input[i] >> 8) & 0xff;
669 output[j + 7] = input[i] & 0xff;
670 }
671 #if defined(__sparc)
672 }
673 #endif
674 }
675
676
677 void
SHA2Init(uint64_t mech,SHA2_CTX * ctx)678 SHA2Init(uint64_t mech, SHA2_CTX *ctx)
679 {
680
681 switch (mech) {
682 case SHA256_MECH_INFO_TYPE:
683 case SHA256_HMAC_MECH_INFO_TYPE:
684 case SHA256_HMAC_GEN_MECH_INFO_TYPE:
685 ctx->state.s32[0] = 0x6a09e667U;
686 ctx->state.s32[1] = 0xbb67ae85U;
687 ctx->state.s32[2] = 0x3c6ef372U;
688 ctx->state.s32[3] = 0xa54ff53aU;
689 ctx->state.s32[4] = 0x510e527fU;
690 ctx->state.s32[5] = 0x9b05688cU;
691 ctx->state.s32[6] = 0x1f83d9abU;
692 ctx->state.s32[7] = 0x5be0cd19U;
693 break;
694 case SHA384_MECH_INFO_TYPE:
695 case SHA384_HMAC_MECH_INFO_TYPE:
696 case SHA384_HMAC_GEN_MECH_INFO_TYPE:
697 ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL;
698 ctx->state.s64[1] = 0x629a292a367cd507ULL;
699 ctx->state.s64[2] = 0x9159015a3070dd17ULL;
700 ctx->state.s64[3] = 0x152fecd8f70e5939ULL;
701 ctx->state.s64[4] = 0x67332667ffc00b31ULL;
702 ctx->state.s64[5] = 0x8eb44a8768581511ULL;
703 ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL;
704 ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL;
705 break;
706 case SHA512_MECH_INFO_TYPE:
707 case SHA512_HMAC_MECH_INFO_TYPE:
708 case SHA512_HMAC_GEN_MECH_INFO_TYPE:
709 ctx->state.s64[0] = 0x6a09e667f3bcc908ULL;
710 ctx->state.s64[1] = 0xbb67ae8584caa73bULL;
711 ctx->state.s64[2] = 0x3c6ef372fe94f82bULL;
712 ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL;
713 ctx->state.s64[4] = 0x510e527fade682d1ULL;
714 ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL;
715 ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL;
716 ctx->state.s64[7] = 0x5be0cd19137e2179ULL;
717 break;
718 #ifdef _KERNEL
719 default:
720 cmn_err(CE_PANIC,
721 "sha2_init: failed to find a supported algorithm: 0x%x",
722 (uint32_t)mech);
723
724 #endif /* _KERNEL */
725 }
726
727 ctx->algotype = (uint32_t)mech;
728 ctx->count.c64[0] = ctx->count.c64[1] = 0;
729 }
730
731 #ifndef _KERNEL
732
733 #pragma inline(SHA256Init, SHA384Init, SHA512Init)
734 void
SHA256Init(SHA256_CTX * ctx)735 SHA256Init(SHA256_CTX *ctx)
736 {
737 SHA2Init(SHA256, ctx);
738 }
739
740 void
SHA384Init(SHA384_CTX * ctx)741 SHA384Init(SHA384_CTX *ctx)
742 {
743 SHA2Init(SHA384, ctx);
744 }
745
746 void
SHA512Init(SHA512_CTX * ctx)747 SHA512Init(SHA512_CTX *ctx)
748 {
749 SHA2Init(SHA512, ctx);
750 }
751
752 #endif /* _KERNEL */
753
754 /*
755 * SHA2Update()
756 *
757 * purpose: continues an sha2 digest operation, using the message block
758 * to update the context.
759 * input: SHA2_CTX * : the context to update
760 * void * : the message block
761 * size_t : the length of the message block, in bytes
762 * output: void
763 */
764
765 void
SHA2Update(SHA2_CTX * ctx,const void * inptr,size_t input_len)766 SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len)
767 {
768 uint32_t i, buf_index, buf_len, buf_limit;
769 const uint8_t *input = inptr;
770 uint32_t algotype = ctx->algotype;
771 #if defined(__amd64)
772 uint32_t block_count;
773 #endif /* !__amd64 */
774
775
776 /* check for noop */
777 if (input_len == 0)
778 return;
779
780 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
781 buf_limit = 64;
782
783 /* compute number of bytes mod 64 */
784 buf_index = (ctx->count.c32[1] >> 3) & 0x3F;
785
786 /* update number of bits */
787 if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3))
788 ctx->count.c32[0]++;
789
790 ctx->count.c32[0] += (input_len >> 29);
791
792 } else {
793 buf_limit = 128;
794
795 /* compute number of bytes mod 128 */
796 buf_index = (ctx->count.c64[1] >> 3) & 0x7F;
797
798 /* update number of bits */
799 if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3))
800 ctx->count.c64[0]++;
801
802 ctx->count.c64[0] += (input_len >> 29);
803 }
804
805 buf_len = buf_limit - buf_index;
806
807 /* transform as many times as possible */
808 i = 0;
809 if (input_len >= buf_len) {
810
811 /*
812 * general optimization:
813 *
814 * only do initial bcopy() and SHA2Transform() if
815 * buf_index != 0. if buf_index == 0, we're just
816 * wasting our time doing the bcopy() since there
817 * wasn't any data left over from a previous call to
818 * SHA2Update().
819 */
820 if (buf_index) {
821 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
822 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
823 SHA256Transform(ctx, ctx->buf_un.buf8);
824 else
825 SHA512Transform(ctx, ctx->buf_un.buf8);
826
827 i = buf_len;
828 }
829
830 #if !defined(__amd64)
831 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
832 for (; i + buf_limit - 1 < input_len; i += buf_limit) {
833 SHA256Transform(ctx, &input[i]);
834 }
835 } else {
836 for (; i + buf_limit - 1 < input_len; i += buf_limit) {
837 SHA512Transform(ctx, &input[i]);
838 }
839 }
840
841 #else
842 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
843 block_count = (input_len - i) >> 6;
844 if (block_count > 0) {
845 SHA256TransformBlocks(ctx, &input[i],
846 block_count);
847 i += block_count << 6;
848 }
849 } else {
850 block_count = (input_len - i) >> 7;
851 if (block_count > 0) {
852 SHA512TransformBlocks(ctx, &input[i],
853 block_count);
854 i += block_count << 7;
855 }
856 }
857 #endif /* !__amd64 */
858
859 /*
860 * general optimization:
861 *
862 * if i and input_len are the same, return now instead
863 * of calling bcopy(), since the bcopy() in this case
864 * will be an expensive noop.
865 */
866
867 if (input_len == i)
868 return;
869
870 buf_index = 0;
871 }
872
873 /* buffer remaining input */
874 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
875 }
876
877
878 /*
879 * SHA2Final()
880 *
881 * purpose: ends an sha2 digest operation, finalizing the message digest and
882 * zeroing the context.
883 * input: uchar_t * : a buffer to store the digest
884 * : The function actually uses void* because many
885 * : callers pass things other than uchar_t here.
886 * SHA2_CTX * : the context to finalize, save, and zero
887 * output: void
888 */
889
890 void
SHA2Final(void * digest,SHA2_CTX * ctx)891 SHA2Final(void *digest, SHA2_CTX *ctx)
892 {
893 uint8_t bitcount_be[sizeof (ctx->count.c32)];
894 uint8_t bitcount_be64[sizeof (ctx->count.c64)];
895 uint32_t index;
896 uint32_t algotype = ctx->algotype;
897
898 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
899 index = (ctx->count.c32[1] >> 3) & 0x3f;
900 Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be));
901 SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
902 SHA2Update(ctx, bitcount_be, sizeof (bitcount_be));
903 Encode(digest, ctx->state.s32, sizeof (ctx->state.s32));
904
905 } else {
906 index = (ctx->count.c64[1] >> 3) & 0x7f;
907 Encode64(bitcount_be64, ctx->count.c64,
908 sizeof (bitcount_be64));
909 SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index);
910 SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64));
911 if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) {
912 ctx->state.s64[6] = ctx->state.s64[7] = 0;
913 Encode64(digest, ctx->state.s64,
914 sizeof (uint64_t) * 6);
915 } else
916 Encode64(digest, ctx->state.s64,
917 sizeof (ctx->state.s64));
918 }
919
920 /* zeroize sensitive information */
921 bzero(ctx, sizeof (*ctx));
922 }
923