1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 * Copyright 2019 Raptor Engineering, LLC
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26
27 #include "dm_services.h"
28 #include "dc.h"
29
30 #include "dcn20/dcn20_init.h"
31
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn20/dcn20_resource.h"
35
36 #include "dml/dcn20/dcn20_fpu.h"
37
38 #include "dcn10/dcn10_hubp.h"
39 #include "dcn10/dcn10_ipp.h"
40 #include "dcn20/dcn20_hubbub.h"
41 #include "dcn20/dcn20_mpc.h"
42 #include "dcn20/dcn20_hubp.h"
43 #include "irq/dcn20/irq_service_dcn20.h"
44 #include "dcn20/dcn20_dpp.h"
45 #include "dcn20/dcn20_optc.h"
46 #include "dcn20/dcn20_hwseq.h"
47 #include "dce110/dce110_hwseq.h"
48 #include "dcn10/dcn10_resource.h"
49 #include "dcn20/dcn20_opp.h"
50
51 #include "dcn20/dcn20_dsc.h"
52
53 #include "dcn20/dcn20_link_encoder.h"
54 #include "dcn20/dcn20_stream_encoder.h"
55 #include "dce/dce_clock_source.h"
56 #include "dce/dce_audio.h"
57 #include "dce/dce_hwseq.h"
58 #include "virtual/virtual_stream_encoder.h"
59 #include "dce110/dce110_resource.h"
60 #include "dml/display_mode_vba.h"
61 #include "dcn20/dcn20_dccg.h"
62 #include "dcn20/dcn20_vmid.h"
63 #include "dce/dce_panel_cntl.h"
64
65 #include "dcn20/dcn20_dwb.h"
66 #include "dcn20/dcn20_mmhubbub.h"
67
68 #include "navi10_ip_offset.h"
69
70 #include "dcn/dcn_2_0_0_offset.h"
71 #include "dcn/dcn_2_0_0_sh_mask.h"
72 #include "dpcs/dpcs_2_0_0_offset.h"
73 #include "dpcs/dpcs_2_0_0_sh_mask.h"
74
75 #include "nbio/nbio_2_3_offset.h"
76
77 #include "mmhub/mmhub_2_0_0_offset.h"
78 #include "mmhub/mmhub_2_0_0_sh_mask.h"
79
80 #include "reg_helper.h"
81 #include "dce/dce_abm.h"
82 #include "dce/dce_dmcu.h"
83 #include "dce/dce_aux.h"
84 #include "dce/dce_i2c.h"
85 #include "vm_helper.h"
86
87 #include "link_enc_cfg.h"
88 #include "link.h"
89
90 #define DC_LOGGER_INIT(logger)
91
92 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
93 #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f
94 #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
95 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f
96 #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
97 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f
98 #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
99 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f
100 #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
101 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f
102 #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
103 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f
104 #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
105 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f
106 #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
107 #endif
108
109
110 enum dcn20_clk_src_array_id {
111 DCN20_CLK_SRC_PLL0,
112 DCN20_CLK_SRC_PLL1,
113 DCN20_CLK_SRC_PLL2,
114 DCN20_CLK_SRC_PLL3,
115 DCN20_CLK_SRC_PLL4,
116 DCN20_CLK_SRC_PLL5,
117 DCN20_CLK_SRC_TOTAL
118 };
119
120 /* begin *********************
121 * macros to expend register list macro defined in HW object header file */
122
123 /* DCN */
124 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
125
126 #define BASE(seg) BASE_INNER(seg)
127
128 #define SR(reg_name)\
129 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
130 mm ## reg_name
131
132 #define SRI(reg_name, block, id)\
133 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
134 mm ## block ## id ## _ ## reg_name
135
136 #define SRI2_DWB(reg_name, block, id)\
137 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
138 mm ## reg_name
139 #define SF_DWB(reg_name, field_name, post_fix)\
140 .field_name = reg_name ## __ ## field_name ## post_fix
141
142 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \
143 .field_name = reg_name ## __ ## field_name ## post_fix
144
145 #define SRIR(var_name, reg_name, block, id)\
146 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
147 mm ## block ## id ## _ ## reg_name
148
149 #define SRII(reg_name, block, id)\
150 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
151 mm ## block ## id ## _ ## reg_name
152
153 #define DCCG_SRII(reg_name, block, id)\
154 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
155 mm ## block ## id ## _ ## reg_name
156
157 #define VUPDATE_SRII(reg_name, block, id)\
158 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
159 mm ## reg_name ## _ ## block ## id
160
161 /* NBIO */
162 #define NBIO_BASE_INNER(seg) \
163 NBIO_BASE__INST0_SEG ## seg
164
165 #define NBIO_BASE(seg) \
166 NBIO_BASE_INNER(seg)
167
168 #define NBIO_SR(reg_name)\
169 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
170 mm ## reg_name
171
172 /* MMHUB */
173 #define MMHUB_BASE_INNER(seg) \
174 MMHUB_BASE__INST0_SEG ## seg
175
176 #define MMHUB_BASE(seg) \
177 MMHUB_BASE_INNER(seg)
178
179 #define MMHUB_SR(reg_name)\
180 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
181 mmMM ## reg_name
182
183 static const struct bios_registers bios_regs = {
184 NBIO_SR(BIOS_SCRATCH_3),
185 NBIO_SR(BIOS_SCRATCH_6)
186 };
187
188 #define clk_src_regs(index, pllid)\
189 [index] = {\
190 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
191 }
192
193 static const struct dce110_clk_src_regs clk_src_regs[] = {
194 clk_src_regs(0, A),
195 clk_src_regs(1, B),
196 clk_src_regs(2, C),
197 clk_src_regs(3, D),
198 clk_src_regs(4, E),
199 clk_src_regs(5, F)
200 };
201
202 static const struct dce110_clk_src_shift cs_shift = {
203 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
204 };
205
206 static const struct dce110_clk_src_mask cs_mask = {
207 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
208 };
209
210 static const struct dce_dmcu_registers dmcu_regs = {
211 DMCU_DCN10_REG_LIST()
212 };
213
214 static const struct dce_dmcu_shift dmcu_shift = {
215 DMCU_MASK_SH_LIST_DCN10(__SHIFT)
216 };
217
218 static const struct dce_dmcu_mask dmcu_mask = {
219 DMCU_MASK_SH_LIST_DCN10(_MASK)
220 };
221
222 static const struct dce_abm_registers abm_regs = {
223 ABM_DCN20_REG_LIST()
224 };
225
226 static const struct dce_abm_shift abm_shift = {
227 ABM_MASK_SH_LIST_DCN20(__SHIFT)
228 };
229
230 static const struct dce_abm_mask abm_mask = {
231 ABM_MASK_SH_LIST_DCN20(_MASK)
232 };
233
234 #define audio_regs(id)\
235 [id] = {\
236 AUD_COMMON_REG_LIST(id)\
237 }
238
239 static const struct dce_audio_registers audio_regs[] = {
240 audio_regs(0),
241 audio_regs(1),
242 audio_regs(2),
243 audio_regs(3),
244 audio_regs(4),
245 audio_regs(5),
246 audio_regs(6),
247 };
248
249 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
250 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
251 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
252 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
253
254 static const struct dce_audio_shift audio_shift = {
255 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
256 };
257
258 static const struct dce_audio_mask audio_mask = {
259 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
260 };
261
262 #define stream_enc_regs(id)\
263 [id] = {\
264 SE_DCN2_REG_LIST(id)\
265 }
266
267 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
268 stream_enc_regs(0),
269 stream_enc_regs(1),
270 stream_enc_regs(2),
271 stream_enc_regs(3),
272 stream_enc_regs(4),
273 stream_enc_regs(5),
274 };
275
276 static const struct dcn10_stream_encoder_shift se_shift = {
277 SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT)
278 };
279
280 static const struct dcn10_stream_encoder_mask se_mask = {
281 SE_COMMON_MASK_SH_LIST_DCN20(_MASK)
282 };
283
284
285 #define aux_regs(id)\
286 [id] = {\
287 DCN2_AUX_REG_LIST(id)\
288 }
289
290 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
291 aux_regs(0),
292 aux_regs(1),
293 aux_regs(2),
294 aux_regs(3),
295 aux_regs(4),
296 aux_regs(5)
297 };
298
299 #define hpd_regs(id)\
300 [id] = {\
301 HPD_REG_LIST(id)\
302 }
303
304 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
305 hpd_regs(0),
306 hpd_regs(1),
307 hpd_regs(2),
308 hpd_regs(3),
309 hpd_regs(4),
310 hpd_regs(5)
311 };
312
313 #define link_regs(id, phyid)\
314 [id] = {\
315 LE_DCN10_REG_LIST(id), \
316 UNIPHY_DCN2_REG_LIST(phyid), \
317 DPCS_DCN2_REG_LIST(id), \
318 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
319 }
320
321 static const struct dcn10_link_enc_registers link_enc_regs[] = {
322 link_regs(0, A),
323 link_regs(1, B),
324 link_regs(2, C),
325 link_regs(3, D),
326 link_regs(4, E),
327 link_regs(5, F)
328 };
329
330 static const struct dcn10_link_enc_shift le_shift = {
331 LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\
332 DPCS_DCN2_MASK_SH_LIST(__SHIFT)
333 };
334
335 static const struct dcn10_link_enc_mask le_mask = {
336 LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\
337 DPCS_DCN2_MASK_SH_LIST(_MASK)
338 };
339
340 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
341 { DCN_PANEL_CNTL_REG_LIST() }
342 };
343
344 static const struct dce_panel_cntl_shift panel_cntl_shift = {
345 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
346 };
347
348 static const struct dce_panel_cntl_mask panel_cntl_mask = {
349 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
350 };
351
352 #define ipp_regs(id)\
353 [id] = {\
354 IPP_REG_LIST_DCN20(id),\
355 }
356
357 static const struct dcn10_ipp_registers ipp_regs[] = {
358 ipp_regs(0),
359 ipp_regs(1),
360 ipp_regs(2),
361 ipp_regs(3),
362 ipp_regs(4),
363 ipp_regs(5),
364 };
365
366 static const struct dcn10_ipp_shift ipp_shift = {
367 IPP_MASK_SH_LIST_DCN20(__SHIFT)
368 };
369
370 static const struct dcn10_ipp_mask ipp_mask = {
371 IPP_MASK_SH_LIST_DCN20(_MASK),
372 };
373
374 #define opp_regs(id)\
375 [id] = {\
376 OPP_REG_LIST_DCN20(id),\
377 }
378
379 static const struct dcn20_opp_registers opp_regs[] = {
380 opp_regs(0),
381 opp_regs(1),
382 opp_regs(2),
383 opp_regs(3),
384 opp_regs(4),
385 opp_regs(5),
386 };
387
388 static const struct dcn20_opp_shift opp_shift = {
389 OPP_MASK_SH_LIST_DCN20(__SHIFT)
390 };
391
392 static const struct dcn20_opp_mask opp_mask = {
393 OPP_MASK_SH_LIST_DCN20(_MASK)
394 };
395
396 #define aux_engine_regs(id)\
397 [id] = {\
398 AUX_COMMON_REG_LIST0(id), \
399 .AUXN_IMPCAL = 0, \
400 .AUXP_IMPCAL = 0, \
401 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
402 }
403
404 static const struct dce110_aux_registers aux_engine_regs[] = {
405 aux_engine_regs(0),
406 aux_engine_regs(1),
407 aux_engine_regs(2),
408 aux_engine_regs(3),
409 aux_engine_regs(4),
410 aux_engine_regs(5)
411 };
412
413 #define tf_regs(id)\
414 [id] = {\
415 TF_REG_LIST_DCN20(id),\
416 TF_REG_LIST_DCN20_COMMON_APPEND(id),\
417 }
418
419 static const struct dcn2_dpp_registers tf_regs[] = {
420 tf_regs(0),
421 tf_regs(1),
422 tf_regs(2),
423 tf_regs(3),
424 tf_regs(4),
425 tf_regs(5),
426 };
427
428 static const struct dcn2_dpp_shift tf_shift = {
429 TF_REG_LIST_SH_MASK_DCN20(__SHIFT),
430 TF_DEBUG_REG_LIST_SH_DCN20
431 };
432
433 static const struct dcn2_dpp_mask tf_mask = {
434 TF_REG_LIST_SH_MASK_DCN20(_MASK),
435 TF_DEBUG_REG_LIST_MASK_DCN20
436 };
437
438 #define dwbc_regs_dcn2(id)\
439 [id] = {\
440 DWBC_COMMON_REG_LIST_DCN2_0(id),\
441 }
442
443 static const struct dcn20_dwbc_registers dwbc20_regs[] = {
444 dwbc_regs_dcn2(0),
445 };
446
447 static const struct dcn20_dwbc_shift dwbc20_shift = {
448 DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
449 };
450
451 static const struct dcn20_dwbc_mask dwbc20_mask = {
452 DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
453 };
454
455 #define mcif_wb_regs_dcn2(id)\
456 [id] = {\
457 MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\
458 }
459
460 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = {
461 mcif_wb_regs_dcn2(0),
462 };
463
464 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = {
465 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
466 };
467
468 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = {
469 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
470 };
471
472 static const struct dcn20_mpc_registers mpc_regs = {
473 MPC_REG_LIST_DCN2_0(0),
474 MPC_REG_LIST_DCN2_0(1),
475 MPC_REG_LIST_DCN2_0(2),
476 MPC_REG_LIST_DCN2_0(3),
477 MPC_REG_LIST_DCN2_0(4),
478 MPC_REG_LIST_DCN2_0(5),
479 MPC_OUT_MUX_REG_LIST_DCN2_0(0),
480 MPC_OUT_MUX_REG_LIST_DCN2_0(1),
481 MPC_OUT_MUX_REG_LIST_DCN2_0(2),
482 MPC_OUT_MUX_REG_LIST_DCN2_0(3),
483 MPC_OUT_MUX_REG_LIST_DCN2_0(4),
484 MPC_OUT_MUX_REG_LIST_DCN2_0(5),
485 MPC_DBG_REG_LIST_DCN2_0()
486 };
487
488 static const struct dcn20_mpc_shift mpc_shift = {
489 MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT),
490 MPC_DEBUG_REG_LIST_SH_DCN20
491 };
492
493 static const struct dcn20_mpc_mask mpc_mask = {
494 MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK),
495 MPC_DEBUG_REG_LIST_MASK_DCN20
496 };
497
498 #define tg_regs(id)\
499 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)}
500
501
502 static const struct dcn_optc_registers tg_regs[] = {
503 tg_regs(0),
504 tg_regs(1),
505 tg_regs(2),
506 tg_regs(3),
507 tg_regs(4),
508 tg_regs(5)
509 };
510
511 static const struct dcn_optc_shift tg_shift = {
512 TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
513 };
514
515 static const struct dcn_optc_mask tg_mask = {
516 TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
517 };
518
519 #define hubp_regs(id)\
520 [id] = {\
521 HUBP_REG_LIST_DCN20(id)\
522 }
523
524 static const struct dcn_hubp2_registers hubp_regs[] = {
525 hubp_regs(0),
526 hubp_regs(1),
527 hubp_regs(2),
528 hubp_regs(3),
529 hubp_regs(4),
530 hubp_regs(5)
531 };
532
533 static const struct dcn_hubp2_shift hubp_shift = {
534 HUBP_MASK_SH_LIST_DCN20(__SHIFT)
535 };
536
537 static const struct dcn_hubp2_mask hubp_mask = {
538 HUBP_MASK_SH_LIST_DCN20(_MASK)
539 };
540
541 static const struct dcn_hubbub_registers hubbub_reg = {
542 HUBBUB_REG_LIST_DCN20(0)
543 };
544
545 static const struct dcn_hubbub_shift hubbub_shift = {
546 HUBBUB_MASK_SH_LIST_DCN20(__SHIFT)
547 };
548
549 static const struct dcn_hubbub_mask hubbub_mask = {
550 HUBBUB_MASK_SH_LIST_DCN20(_MASK)
551 };
552
553 #define vmid_regs(id)\
554 [id] = {\
555 DCN20_VMID_REG_LIST(id)\
556 }
557
558 static const struct dcn_vmid_registers vmid_regs[] = {
559 vmid_regs(0),
560 vmid_regs(1),
561 vmid_regs(2),
562 vmid_regs(3),
563 vmid_regs(4),
564 vmid_regs(5),
565 vmid_regs(6),
566 vmid_regs(7),
567 vmid_regs(8),
568 vmid_regs(9),
569 vmid_regs(10),
570 vmid_regs(11),
571 vmid_regs(12),
572 vmid_regs(13),
573 vmid_regs(14),
574 vmid_regs(15)
575 };
576
577 static const struct dcn20_vmid_shift vmid_shifts = {
578 DCN20_VMID_MASK_SH_LIST(__SHIFT)
579 };
580
581 static const struct dcn20_vmid_mask vmid_masks = {
582 DCN20_VMID_MASK_SH_LIST(_MASK)
583 };
584
585 static const struct dce110_aux_registers_shift aux_shift = {
586 DCN_AUX_MASK_SH_LIST(__SHIFT)
587 };
588
589 static const struct dce110_aux_registers_mask aux_mask = {
590 DCN_AUX_MASK_SH_LIST(_MASK)
591 };
592
map_transmitter_id_to_phy_instance(enum transmitter transmitter)593 static int map_transmitter_id_to_phy_instance(
594 enum transmitter transmitter)
595 {
596 switch (transmitter) {
597 case TRANSMITTER_UNIPHY_A:
598 return 0;
599 break;
600 case TRANSMITTER_UNIPHY_B:
601 return 1;
602 break;
603 case TRANSMITTER_UNIPHY_C:
604 return 2;
605 break;
606 case TRANSMITTER_UNIPHY_D:
607 return 3;
608 break;
609 case TRANSMITTER_UNIPHY_E:
610 return 4;
611 break;
612 case TRANSMITTER_UNIPHY_F:
613 return 5;
614 break;
615 default:
616 ASSERT(0);
617 return 0;
618 }
619 }
620
621 #define dsc_regsDCN20(id)\
622 [id] = {\
623 DSC_REG_LIST_DCN20(id)\
624 }
625
626 static const struct dcn20_dsc_registers dsc_regs[] = {
627 dsc_regsDCN20(0),
628 dsc_regsDCN20(1),
629 dsc_regsDCN20(2),
630 dsc_regsDCN20(3),
631 dsc_regsDCN20(4),
632 dsc_regsDCN20(5)
633 };
634
635 static const struct dcn20_dsc_shift dsc_shift = {
636 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
637 };
638
639 static const struct dcn20_dsc_mask dsc_mask = {
640 DSC_REG_LIST_SH_MASK_DCN20(_MASK)
641 };
642
643 static const struct dccg_registers dccg_regs = {
644 DCCG_REG_LIST_DCN2()
645 };
646
647 static const struct dccg_shift dccg_shift = {
648 DCCG_MASK_SH_LIST_DCN2(__SHIFT)
649 };
650
651 static const struct dccg_mask dccg_mask = {
652 DCCG_MASK_SH_LIST_DCN2(_MASK)
653 };
654
655 static const struct resource_caps res_cap_nv10 = {
656 .num_timing_generator = 6,
657 .num_opp = 6,
658 .num_video_plane = 6,
659 .num_audio = 7,
660 .num_stream_encoder = 6,
661 .num_pll = 6,
662 .num_dwb = 1,
663 .num_ddc = 6,
664 .num_vmid = 16,
665 .num_dsc = 6,
666 };
667
668 static const struct dc_plane_cap plane_cap = {
669 .type = DC_PLANE_TYPE_DCN_UNIVERSAL,
670 .per_pixel_alpha = true,
671
672 .pixel_format_support = {
673 .argb8888 = true,
674 .nv12 = true,
675 .fp16 = true,
676 .p010 = true
677 },
678
679 .max_upscale_factor = {
680 .argb8888 = 16000,
681 .nv12 = 16000,
682 .fp16 = 1
683 },
684
685 .max_downscale_factor = {
686 .argb8888 = 250,
687 .nv12 = 250,
688 .fp16 = 1
689 },
690 16,
691 16
692 };
693 static const struct resource_caps res_cap_nv14 = {
694 .num_timing_generator = 5,
695 .num_opp = 5,
696 .num_video_plane = 5,
697 .num_audio = 6,
698 .num_stream_encoder = 5,
699 .num_pll = 5,
700 .num_dwb = 1,
701 .num_ddc = 5,
702 .num_vmid = 16,
703 .num_dsc = 5,
704 };
705
706 static const struct dc_debug_options debug_defaults_drv = {
707 .disable_dmcu = false,
708 .force_abm_enable = false,
709 .clock_trace = true,
710 .disable_pplib_clock_request = true,
711 .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP,
712 .force_single_disp_pipe_split = false,
713 .disable_dcc = DCC_ENABLE,
714 .vsr_support = true,
715 .performance_trace = false,
716 .max_downscale_src_width = 5120,/*upto 5K*/
717 .disable_pplib_wm_range = false,
718 .scl_reset_length10 = true,
719 .sanity_checks = false,
720 .underflow_assert_delay_us = 0xFFFFFFFF,
721 .enable_legacy_fast_update = true,
722 .using_dml2 = false,
723 };
724
dcn20_dpp_destroy(struct dpp ** dpp)725 void dcn20_dpp_destroy(struct dpp **dpp)
726 {
727 kfree(TO_DCN20_DPP(*dpp));
728 *dpp = NULL;
729 }
730
dcn20_dpp_create(struct dc_context * ctx,uint32_t inst)731 struct dpp *dcn20_dpp_create(
732 struct dc_context *ctx,
733 uint32_t inst)
734 {
735 struct dcn20_dpp *dpp =
736 kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC);
737
738 if (!dpp)
739 return NULL;
740
741 if (dpp2_construct(dpp, ctx, inst,
742 &tf_regs[inst], &tf_shift, &tf_mask))
743 return &dpp->base;
744
745 BREAK_TO_DEBUGGER();
746 kfree(dpp);
747 return NULL;
748 }
749
dcn20_ipp_create(struct dc_context * ctx,uint32_t inst)750 struct input_pixel_processor *dcn20_ipp_create(
751 struct dc_context *ctx, uint32_t inst)
752 {
753 struct dcn10_ipp *ipp =
754 kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC);
755
756 if (!ipp) {
757 BREAK_TO_DEBUGGER();
758 return NULL;
759 }
760
761 dcn20_ipp_construct(ipp, ctx, inst,
762 &ipp_regs[inst], &ipp_shift, &ipp_mask);
763 return &ipp->base;
764 }
765
766
dcn20_opp_create(struct dc_context * ctx,uint32_t inst)767 struct output_pixel_processor *dcn20_opp_create(
768 struct dc_context *ctx, uint32_t inst)
769 {
770 struct dcn20_opp *opp =
771 kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC);
772
773 if (!opp) {
774 BREAK_TO_DEBUGGER();
775 return NULL;
776 }
777
778 dcn20_opp_construct(opp, ctx, inst,
779 &opp_regs[inst], &opp_shift, &opp_mask);
780 return &opp->base;
781 }
782
dcn20_aux_engine_create(struct dc_context * ctx,uint32_t inst)783 struct dce_aux *dcn20_aux_engine_create(
784 struct dc_context *ctx,
785 uint32_t inst)
786 {
787 struct aux_engine_dce110 *aux_engine =
788 kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC);
789
790 if (!aux_engine)
791 return NULL;
792
793 dce110_aux_engine_construct(aux_engine, ctx, inst,
794 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
795 &aux_engine_regs[inst],
796 &aux_mask,
797 &aux_shift,
798 ctx->dc->caps.extended_aux_timeout_support);
799
800 return &aux_engine->base;
801 }
802 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
803
804 static const struct dce_i2c_registers i2c_hw_regs[] = {
805 i2c_inst_regs(1),
806 i2c_inst_regs(2),
807 i2c_inst_regs(3),
808 i2c_inst_regs(4),
809 i2c_inst_regs(5),
810 i2c_inst_regs(6),
811 };
812
813 static const struct dce_i2c_shift i2c_shifts = {
814 I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
815 };
816
817 static const struct dce_i2c_mask i2c_masks = {
818 I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
819 };
820
dcn20_i2c_hw_create(struct dc_context * ctx,uint32_t inst)821 struct dce_i2c_hw *dcn20_i2c_hw_create(
822 struct dc_context *ctx,
823 uint32_t inst)
824 {
825 struct dce_i2c_hw *dce_i2c_hw =
826 kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC);
827
828 if (!dce_i2c_hw)
829 return NULL;
830
831 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
832 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
833
834 return dce_i2c_hw;
835 }
dcn20_mpc_create(struct dc_context * ctx)836 struct mpc *dcn20_mpc_create(struct dc_context *ctx)
837 {
838 struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc),
839 GFP_ATOMIC);
840
841 if (!mpc20)
842 return NULL;
843
844 dcn20_mpc_construct(mpc20, ctx,
845 &mpc_regs,
846 &mpc_shift,
847 &mpc_mask,
848 6);
849
850 return &mpc20->base;
851 }
852
dcn20_hubbub_create(struct dc_context * ctx)853 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx)
854 {
855 int i;
856 struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub),
857 GFP_ATOMIC);
858
859 if (!hubbub)
860 return NULL;
861
862 hubbub2_construct(hubbub, ctx,
863 &hubbub_reg,
864 &hubbub_shift,
865 &hubbub_mask);
866
867 for (i = 0; i < res_cap_nv10.num_vmid; i++) {
868 struct dcn20_vmid *vmid = &hubbub->vmid[i];
869
870 vmid->ctx = ctx;
871
872 vmid->regs = &vmid_regs[i];
873 vmid->shifts = &vmid_shifts;
874 vmid->masks = &vmid_masks;
875 }
876
877 return &hubbub->base;
878 }
879
dcn20_timing_generator_create(struct dc_context * ctx,uint32_t instance)880 struct timing_generator *dcn20_timing_generator_create(
881 struct dc_context *ctx,
882 uint32_t instance)
883 {
884 struct optc *tgn10 =
885 kzalloc(sizeof(struct optc), GFP_ATOMIC);
886
887 if (!tgn10)
888 return NULL;
889
890 tgn10->base.inst = instance;
891 tgn10->base.ctx = ctx;
892
893 tgn10->tg_regs = &tg_regs[instance];
894 tgn10->tg_shift = &tg_shift;
895 tgn10->tg_mask = &tg_mask;
896
897 dcn20_timing_generator_init(tgn10);
898
899 return &tgn10->base;
900 }
901
902 static const struct encoder_feature_support link_enc_feature = {
903 .max_hdmi_deep_color = COLOR_DEPTH_121212,
904 .max_hdmi_pixel_clock = 600000,
905 .hdmi_ycbcr420_supported = true,
906 .dp_ycbcr420_supported = true,
907 .fec_supported = true,
908 .flags.bits.IS_HBR2_CAPABLE = true,
909 .flags.bits.IS_HBR3_CAPABLE = true,
910 .flags.bits.IS_TPS3_CAPABLE = true,
911 .flags.bits.IS_TPS4_CAPABLE = true
912 };
913
dcn20_link_encoder_create(struct dc_context * ctx,const struct encoder_init_data * enc_init_data)914 struct link_encoder *dcn20_link_encoder_create(
915 struct dc_context *ctx,
916 const struct encoder_init_data *enc_init_data)
917 {
918 struct dcn20_link_encoder *enc20 =
919 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
920 int link_regs_id;
921
922 if (!enc20 || enc_init_data->hpd_source >= ARRAY_SIZE(link_enc_hpd_regs))
923 return NULL;
924
925 link_regs_id =
926 map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
927
928 dcn20_link_encoder_construct(enc20,
929 enc_init_data,
930 &link_enc_feature,
931 &link_enc_regs[link_regs_id],
932 &link_enc_aux_regs[enc_init_data->channel - 1],
933 &link_enc_hpd_regs[enc_init_data->hpd_source],
934 &le_shift,
935 &le_mask);
936
937 return &enc20->enc10.base;
938 }
939
dcn20_panel_cntl_create(const struct panel_cntl_init_data * init_data)940 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data)
941 {
942 struct dce_panel_cntl *panel_cntl =
943 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
944
945 if (!panel_cntl)
946 return NULL;
947
948 dce_panel_cntl_construct(panel_cntl,
949 init_data,
950 &panel_cntl_regs[init_data->inst],
951 &panel_cntl_shift,
952 &panel_cntl_mask);
953
954 return &panel_cntl->base;
955 }
956
dcn20_clock_source_create(struct dc_context * ctx,struct dc_bios * bios,enum clock_source_id id,const struct dce110_clk_src_regs * regs,bool dp_clk_src)957 static struct clock_source *dcn20_clock_source_create(
958 struct dc_context *ctx,
959 struct dc_bios *bios,
960 enum clock_source_id id,
961 const struct dce110_clk_src_regs *regs,
962 bool dp_clk_src)
963 {
964 struct dce110_clk_src *clk_src =
965 kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC);
966
967 if (!clk_src)
968 return NULL;
969
970 if (dcn20_clk_src_construct(clk_src, ctx, bios, id,
971 regs, &cs_shift, &cs_mask)) {
972 clk_src->base.dp_clk_src = dp_clk_src;
973 return &clk_src->base;
974 }
975
976 kfree(clk_src);
977 BREAK_TO_DEBUGGER();
978 return NULL;
979 }
980
read_dce_straps(struct dc_context * ctx,struct resource_straps * straps)981 static void read_dce_straps(
982 struct dc_context *ctx,
983 struct resource_straps *straps)
984 {
985 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
986 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
987 }
988
dcn20_create_audio(struct dc_context * ctx,unsigned int inst)989 static struct audio *dcn20_create_audio(
990 struct dc_context *ctx, unsigned int inst)
991 {
992 return dce_audio_create(ctx, inst,
993 &audio_regs[inst], &audio_shift, &audio_mask);
994 }
995
dcn20_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)996 struct stream_encoder *dcn20_stream_encoder_create(
997 enum engine_id eng_id,
998 struct dc_context *ctx)
999 {
1000 struct dcn10_stream_encoder *enc1 =
1001 kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1002
1003 if (!enc1)
1004 return NULL;
1005
1006 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
1007 if (eng_id >= ENGINE_ID_DIGD)
1008 eng_id++;
1009 }
1010
1011 dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id,
1012 &stream_enc_regs[eng_id],
1013 &se_shift, &se_mask);
1014
1015 return &enc1->base;
1016 }
1017
1018 static const struct dce_hwseq_registers hwseq_reg = {
1019 HWSEQ_DCN2_REG_LIST()
1020 };
1021
1022 static const struct dce_hwseq_shift hwseq_shift = {
1023 HWSEQ_DCN2_MASK_SH_LIST(__SHIFT)
1024 };
1025
1026 static const struct dce_hwseq_mask hwseq_mask = {
1027 HWSEQ_DCN2_MASK_SH_LIST(_MASK)
1028 };
1029
dcn20_hwseq_create(struct dc_context * ctx)1030 struct dce_hwseq *dcn20_hwseq_create(
1031 struct dc_context *ctx)
1032 {
1033 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1034
1035 if (hws) {
1036 hws->ctx = ctx;
1037 hws->regs = &hwseq_reg;
1038 hws->shifts = &hwseq_shift;
1039 hws->masks = &hwseq_mask;
1040 }
1041 return hws;
1042 }
1043
1044 static const struct resource_create_funcs res_create_funcs = {
1045 .read_dce_straps = read_dce_straps,
1046 .create_audio = dcn20_create_audio,
1047 .create_stream_encoder = dcn20_stream_encoder_create,
1048 .create_hwseq = dcn20_hwseq_create,
1049 };
1050
1051 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu);
1052
dcn20_clock_source_destroy(struct clock_source ** clk_src)1053 void dcn20_clock_source_destroy(struct clock_source **clk_src)
1054 {
1055 kfree(TO_DCE110_CLK_SRC(*clk_src));
1056 *clk_src = NULL;
1057 }
1058
1059
dcn20_dsc_create(struct dc_context * ctx,uint32_t inst)1060 struct display_stream_compressor *dcn20_dsc_create(
1061 struct dc_context *ctx, uint32_t inst)
1062 {
1063 struct dcn20_dsc *dsc =
1064 kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC);
1065
1066 if (!dsc) {
1067 BREAK_TO_DEBUGGER();
1068 return NULL;
1069 }
1070
1071 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1072 return &dsc->base;
1073 }
1074
dcn20_dsc_destroy(struct display_stream_compressor ** dsc)1075 void dcn20_dsc_destroy(struct display_stream_compressor **dsc)
1076 {
1077 kfree(container_of(*dsc, struct dcn20_dsc, base));
1078 *dsc = NULL;
1079 }
1080
1081
dcn20_resource_destruct(struct dcn20_resource_pool * pool)1082 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool)
1083 {
1084 unsigned int i;
1085
1086 for (i = 0; i < pool->base.stream_enc_count; i++) {
1087 if (pool->base.stream_enc[i] != NULL) {
1088 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1089 pool->base.stream_enc[i] = NULL;
1090 }
1091 }
1092
1093 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1094 if (pool->base.dscs[i] != NULL)
1095 dcn20_dsc_destroy(&pool->base.dscs[i]);
1096 }
1097
1098 if (pool->base.mpc != NULL) {
1099 kfree(TO_DCN20_MPC(pool->base.mpc));
1100 pool->base.mpc = NULL;
1101 }
1102 if (pool->base.hubbub != NULL) {
1103 kfree(pool->base.hubbub);
1104 pool->base.hubbub = NULL;
1105 }
1106 for (i = 0; i < pool->base.pipe_count; i++) {
1107 if (pool->base.dpps[i] != NULL)
1108 dcn20_dpp_destroy(&pool->base.dpps[i]);
1109
1110 if (pool->base.ipps[i] != NULL)
1111 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1112
1113 if (pool->base.hubps[i] != NULL) {
1114 kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1115 pool->base.hubps[i] = NULL;
1116 }
1117
1118 if (pool->base.irqs != NULL) {
1119 dal_irq_service_destroy(&pool->base.irqs);
1120 }
1121 }
1122
1123 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1124 if (pool->base.engines[i] != NULL)
1125 dce110_engine_destroy(&pool->base.engines[i]);
1126 if (pool->base.hw_i2cs[i] != NULL) {
1127 kfree(pool->base.hw_i2cs[i]);
1128 pool->base.hw_i2cs[i] = NULL;
1129 }
1130 if (pool->base.sw_i2cs[i] != NULL) {
1131 kfree(pool->base.sw_i2cs[i]);
1132 pool->base.sw_i2cs[i] = NULL;
1133 }
1134 }
1135
1136 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1137 if (pool->base.opps[i] != NULL)
1138 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1139 }
1140
1141 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1142 if (pool->base.timing_generators[i] != NULL) {
1143 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1144 pool->base.timing_generators[i] = NULL;
1145 }
1146 }
1147
1148 for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1149 if (pool->base.dwbc[i] != NULL) {
1150 kfree(TO_DCN20_DWBC(pool->base.dwbc[i]));
1151 pool->base.dwbc[i] = NULL;
1152 }
1153 if (pool->base.mcif_wb[i] != NULL) {
1154 kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i]));
1155 pool->base.mcif_wb[i] = NULL;
1156 }
1157 }
1158
1159 for (i = 0; i < pool->base.audio_count; i++) {
1160 if (pool->base.audios[i])
1161 dce_aud_destroy(&pool->base.audios[i]);
1162 }
1163
1164 for (i = 0; i < pool->base.clk_src_count; i++) {
1165 if (pool->base.clock_sources[i] != NULL) {
1166 dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1167 pool->base.clock_sources[i] = NULL;
1168 }
1169 }
1170
1171 if (pool->base.dp_clock_source != NULL) {
1172 dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1173 pool->base.dp_clock_source = NULL;
1174 }
1175
1176
1177 if (pool->base.abm != NULL)
1178 dce_abm_destroy(&pool->base.abm);
1179
1180 if (pool->base.dmcu != NULL)
1181 dce_dmcu_destroy(&pool->base.dmcu);
1182
1183 if (pool->base.dccg != NULL)
1184 dcn_dccg_destroy(&pool->base.dccg);
1185
1186 if (pool->base.pp_smu != NULL)
1187 dcn20_pp_smu_destroy(&pool->base.pp_smu);
1188
1189 if (pool->base.oem_device != NULL) {
1190 struct dc *dc = pool->base.oem_device->ctx->dc;
1191
1192 dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1193 }
1194 }
1195
dcn20_hubp_create(struct dc_context * ctx,uint32_t inst)1196 struct hubp *dcn20_hubp_create(
1197 struct dc_context *ctx,
1198 uint32_t inst)
1199 {
1200 struct dcn20_hubp *hubp2 =
1201 kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC);
1202
1203 if (!hubp2)
1204 return NULL;
1205
1206 if (hubp2_construct(hubp2, ctx, inst,
1207 &hubp_regs[inst], &hubp_shift, &hubp_mask))
1208 return &hubp2->base;
1209
1210 BREAK_TO_DEBUGGER();
1211 kfree(hubp2);
1212 return NULL;
1213 }
1214
get_pixel_clock_parameters(struct pipe_ctx * pipe_ctx,struct pixel_clk_params * pixel_clk_params)1215 static void get_pixel_clock_parameters(
1216 struct pipe_ctx *pipe_ctx,
1217 struct pixel_clk_params *pixel_clk_params)
1218 {
1219 const struct dc_stream_state *stream = pipe_ctx->stream;
1220 struct pipe_ctx *odm_pipe;
1221 int opp_cnt = 1;
1222 struct dc_link *link = stream->link;
1223 struct link_encoder *link_enc = NULL;
1224 struct dc *dc = pipe_ctx->stream->ctx->dc;
1225 struct dce_hwseq *hws = dc->hwseq;
1226
1227 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1228 opp_cnt++;
1229
1230 pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
1231
1232 link_enc = link_enc_cfg_get_link_enc(link);
1233 if (link_enc)
1234 pixel_clk_params->encoder_object_id = link_enc->id;
1235
1236 pixel_clk_params->signal_type = pipe_ctx->stream->signal;
1237 pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
1238 /* TODO: un-hardcode*/
1239 /* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */
1240 pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
1241 LINK_RATE_REF_FREQ_IN_KHZ;
1242 pixel_clk_params->flags.ENABLE_SS = 0;
1243 pixel_clk_params->color_depth =
1244 stream->timing.display_color_depth;
1245 pixel_clk_params->flags.DISPLAY_BLANKED = 1;
1246 pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
1247
1248 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
1249 pixel_clk_params->color_depth = COLOR_DEPTH_888;
1250
1251 if (opp_cnt == 4)
1252 pixel_clk_params->requested_pix_clk_100hz /= 4;
1253 else if (pipe_ctx->stream_res.tg->funcs->is_two_pixels_per_container(&stream->timing) || opp_cnt == 2)
1254 pixel_clk_params->requested_pix_clk_100hz /= 2;
1255 else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) {
1256 if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1257 pixel_clk_params->requested_pix_clk_100hz /= 2;
1258 }
1259
1260 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1261 pixel_clk_params->requested_pix_clk_100hz *= 2;
1262
1263 if ((pipe_ctx->stream_res.tg->funcs->is_two_pixels_per_container &&
1264 pipe_ctx->stream_res.tg->funcs->is_two_pixels_per_container(&pipe_ctx->stream->timing)) ||
1265 (hws->funcs.is_dp_dig_pixel_rate_div_policy &&
1266 hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx)) ||
1267 opp_cnt > 1) {
1268 pixel_clk_params->dio_se_pix_per_cycle = 2;
1269 } else {
1270 pixel_clk_params->dio_se_pix_per_cycle = 1;
1271 }
1272 }
1273
build_clamping_params(struct dc_stream_state * stream)1274 static void build_clamping_params(struct dc_stream_state *stream)
1275 {
1276 stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
1277 stream->clamping.c_depth = stream->timing.display_color_depth;
1278 stream->clamping.pixel_encoding = stream->timing.pixel_encoding;
1279 }
1280
dcn20_build_pipe_pix_clk_params(struct pipe_ctx * pipe_ctx)1281 void dcn20_build_pipe_pix_clk_params(struct pipe_ctx *pipe_ctx)
1282 {
1283 get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
1284 pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
1285 pipe_ctx->clock_source,
1286 &pipe_ctx->stream_res.pix_clk_params,
1287 &pipe_ctx->pll_settings);
1288 }
1289
build_pipe_hw_param(struct pipe_ctx * pipe_ctx)1290 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
1291 {
1292 struct resource_pool *pool = pipe_ctx->stream->ctx->dc->res_pool;
1293
1294 if (pool->funcs->build_pipe_pix_clk_params) {
1295 pool->funcs->build_pipe_pix_clk_params(pipe_ctx);
1296 } else {
1297 dcn20_build_pipe_pix_clk_params(pipe_ctx);
1298 }
1299
1300 pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
1301
1302 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
1303 &pipe_ctx->stream->bit_depth_params);
1304 build_clamping_params(pipe_ctx->stream);
1305
1306 return DC_OK;
1307 }
1308
dcn20_build_mapped_resource(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)1309 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream)
1310 {
1311 enum dc_status status = DC_OK;
1312 struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
1313
1314 if (!pipe_ctx)
1315 return DC_ERROR_UNEXPECTED;
1316
1317
1318 status = build_pipe_hw_param(pipe_ctx);
1319
1320 return status;
1321 }
1322
1323
dcn20_acquire_dsc(const struct dc * dc,struct resource_context * res_ctx,struct display_stream_compressor ** dsc,int pipe_idx)1324 void dcn20_acquire_dsc(const struct dc *dc,
1325 struct resource_context *res_ctx,
1326 struct display_stream_compressor **dsc,
1327 int pipe_idx)
1328 {
1329 int i;
1330 const struct resource_pool *pool = dc->res_pool;
1331 struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc;
1332
1333 ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */
1334 *dsc = NULL;
1335
1336 /* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */
1337 if (pool->res_cap->num_dsc == pool->res_cap->num_opp) {
1338 *dsc = pool->dscs[pipe_idx];
1339 res_ctx->is_dsc_acquired[pipe_idx] = true;
1340 return;
1341 }
1342
1343 /* Return old DSC to avoid the need for re-programming */
1344 if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) {
1345 *dsc = dsc_old;
1346 res_ctx->is_dsc_acquired[dsc_old->inst] = true;
1347 return ;
1348 }
1349
1350 /* Find first free DSC */
1351 for (i = 0; i < pool->res_cap->num_dsc; i++)
1352 if (!res_ctx->is_dsc_acquired[i]) {
1353 *dsc = pool->dscs[i];
1354 res_ctx->is_dsc_acquired[i] = true;
1355 break;
1356 }
1357 }
1358
dcn20_release_dsc(struct resource_context * res_ctx,const struct resource_pool * pool,struct display_stream_compressor ** dsc)1359 void dcn20_release_dsc(struct resource_context *res_ctx,
1360 const struct resource_pool *pool,
1361 struct display_stream_compressor **dsc)
1362 {
1363 int i;
1364
1365 for (i = 0; i < pool->res_cap->num_dsc; i++)
1366 if (pool->dscs[i] == *dsc) {
1367 res_ctx->is_dsc_acquired[i] = false;
1368 *dsc = NULL;
1369 break;
1370 }
1371 }
1372
1373
1374
dcn20_add_dsc_to_stream_resource(struct dc * dc,struct dc_state * dc_ctx,struct dc_stream_state * dc_stream)1375 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc,
1376 struct dc_state *dc_ctx,
1377 struct dc_stream_state *dc_stream)
1378 {
1379 enum dc_status result = DC_OK;
1380 int i;
1381
1382 /* Get a DSC if required and available */
1383 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1384 struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i];
1385
1386 if (pipe_ctx->top_pipe)
1387 continue;
1388
1389 if (pipe_ctx->stream != dc_stream)
1390 continue;
1391
1392 if (pipe_ctx->stream_res.dsc)
1393 continue;
1394
1395 dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i);
1396
1397 /* The number of DSCs can be less than the number of pipes */
1398 if (!pipe_ctx->stream_res.dsc) {
1399 result = DC_NO_DSC_RESOURCE;
1400 }
1401
1402 break;
1403 }
1404
1405 return result;
1406 }
1407
1408
remove_dsc_from_stream_resource(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1409 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc,
1410 struct dc_state *new_ctx,
1411 struct dc_stream_state *dc_stream)
1412 {
1413 struct pipe_ctx *pipe_ctx = NULL;
1414 int i;
1415
1416 for (i = 0; i < MAX_PIPES; i++) {
1417 if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
1418 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1419
1420 if (pipe_ctx->stream_res.dsc)
1421 dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc);
1422 }
1423 }
1424
1425 if (!pipe_ctx)
1426 return DC_ERROR_UNEXPECTED;
1427 else
1428 return DC_OK;
1429 }
1430
1431
dcn20_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1432 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1433 {
1434 enum dc_status result = DC_ERROR_UNEXPECTED;
1435
1436 result = resource_map_pool_resources(dc, new_ctx, dc_stream);
1437
1438 if (result == DC_OK)
1439 result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
1440
1441 /* Get a DSC if required and available */
1442 if (result == DC_OK && dc_stream->timing.flags.DSC)
1443 result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream);
1444
1445 if (result == DC_OK)
1446 result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream);
1447
1448 return result;
1449 }
1450
1451
dcn20_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1452 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1453 {
1454 enum dc_status result = DC_OK;
1455
1456 result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream);
1457
1458 return result;
1459 }
1460
1461 /**
1462 * dcn20_split_stream_for_odm - Check if stream can be splited for ODM
1463 *
1464 * @dc: DC object with resource pool info required for pipe split
1465 * @res_ctx: Persistent state of resources
1466 * @prev_odm_pipe: Reference to the previous ODM pipe
1467 * @next_odm_pipe: Reference to the next ODM pipe
1468 *
1469 * This function takes a logically active pipe and a logically free pipe and
1470 * halves all the scaling parameters that need to be halved while populating
1471 * the free pipe with the required resources and configuring the next/previous
1472 * ODM pipe pointers.
1473 *
1474 * Return:
1475 * Return true if split stream for ODM is possible, otherwise, return false.
1476 */
dcn20_split_stream_for_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * prev_odm_pipe,struct pipe_ctx * next_odm_pipe)1477 bool dcn20_split_stream_for_odm(
1478 const struct dc *dc,
1479 struct resource_context *res_ctx,
1480 struct pipe_ctx *prev_odm_pipe,
1481 struct pipe_ctx *next_odm_pipe)
1482 {
1483 int pipe_idx = next_odm_pipe->pipe_idx;
1484 const struct resource_pool *pool = dc->res_pool;
1485
1486 *next_odm_pipe = *prev_odm_pipe;
1487
1488 next_odm_pipe->pipe_idx = pipe_idx;
1489 next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx];
1490 next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx];
1491 next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx];
1492 next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx];
1493 next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx];
1494 next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst;
1495 next_odm_pipe->stream_res.dsc = NULL;
1496 if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) {
1497 next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe;
1498 next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe;
1499 }
1500 if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) {
1501 prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe;
1502 next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe;
1503 }
1504 if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) {
1505 prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe;
1506 next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe;
1507 }
1508 prev_odm_pipe->next_odm_pipe = next_odm_pipe;
1509 next_odm_pipe->prev_odm_pipe = prev_odm_pipe;
1510
1511 if (prev_odm_pipe->plane_state) {
1512 if (!resource_build_scaling_params(prev_odm_pipe) ||
1513 !resource_build_scaling_params(next_odm_pipe)) {
1514 return false;
1515 }
1516 }
1517
1518 if (!next_odm_pipe->top_pipe)
1519 next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx];
1520 else
1521 next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp;
1522 if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) {
1523 dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx);
1524 ASSERT(next_odm_pipe->stream_res.dsc);
1525 if (next_odm_pipe->stream_res.dsc == NULL)
1526 return false;
1527 }
1528
1529 return true;
1530 }
1531
dcn20_split_stream_for_mpc(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * primary_pipe,struct pipe_ctx * secondary_pipe)1532 void dcn20_split_stream_for_mpc(
1533 struct resource_context *res_ctx,
1534 const struct resource_pool *pool,
1535 struct pipe_ctx *primary_pipe,
1536 struct pipe_ctx *secondary_pipe)
1537 {
1538 int pipe_idx = secondary_pipe->pipe_idx;
1539 struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe;
1540
1541 *secondary_pipe = *primary_pipe;
1542 secondary_pipe->bottom_pipe = sec_bot_pipe;
1543
1544 secondary_pipe->pipe_idx = pipe_idx;
1545 secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx];
1546 secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx];
1547 secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx];
1548 secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx];
1549 secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx];
1550 secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst;
1551 secondary_pipe->stream_res.dsc = NULL;
1552 if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) {
1553 ASSERT(!secondary_pipe->bottom_pipe);
1554 secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe;
1555 secondary_pipe->bottom_pipe->top_pipe = secondary_pipe;
1556 }
1557 primary_pipe->bottom_pipe = secondary_pipe;
1558 secondary_pipe->top_pipe = primary_pipe;
1559
1560 ASSERT(primary_pipe->plane_state);
1561 }
1562
dcn20_calc_max_scaled_time(unsigned int time_per_pixel,enum mmhubbub_wbif_mode mode,unsigned int urgent_watermark)1563 unsigned int dcn20_calc_max_scaled_time(
1564 unsigned int time_per_pixel,
1565 enum mmhubbub_wbif_mode mode,
1566 unsigned int urgent_watermark)
1567 {
1568 unsigned int time_per_byte = 0;
1569 unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */
1570 unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */
1571 unsigned int small_free_entry, max_free_entry;
1572 unsigned int buf_lh_capability;
1573 unsigned int max_scaled_time;
1574
1575 if (mode == PACKED_444) /* packed mode */
1576 time_per_byte = time_per_pixel/4;
1577 else if (mode == PLANAR_420_8BPC)
1578 time_per_byte = time_per_pixel;
1579 else if (mode == PLANAR_420_10BPC) /* p010 */
1580 time_per_byte = time_per_pixel * 819/1024;
1581
1582 if (time_per_byte == 0)
1583 time_per_byte = 1;
1584
1585 small_free_entry = total_c_free_entry;
1586 max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry;
1587 buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */
1588 max_scaled_time = buf_lh_capability - urgent_watermark;
1589 return max_scaled_time;
1590 }
1591
dcn20_set_mcif_arb_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)1592 void dcn20_set_mcif_arb_params(
1593 struct dc *dc,
1594 struct dc_state *context,
1595 display_e2e_pipe_params_st *pipes,
1596 int pipe_cnt)
1597 {
1598 enum mmhubbub_wbif_mode wbif_mode;
1599 struct mcif_arb_params *wb_arb_params;
1600 int i, j, dwb_pipe;
1601
1602 /* Writeback MCIF_WB arbitration parameters */
1603 dwb_pipe = 0;
1604 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1605
1606 if (!context->res_ctx.pipe_ctx[i].stream)
1607 continue;
1608
1609 for (j = 0; j < MAX_DWB_PIPES; j++) {
1610 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false)
1611 continue;
1612
1613 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1614 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1615
1616 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) {
1617 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC)
1618 wbif_mode = PLANAR_420_8BPC;
1619 else
1620 wbif_mode = PLANAR_420_10BPC;
1621 } else
1622 wbif_mode = PACKED_444;
1623
1624 DC_FP_START();
1625 dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i);
1626 DC_FP_END();
1627
1628 wb_arb_params->slice_lines = 32;
1629 wb_arb_params->arbitration_slice = 2;
1630 wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1631 wbif_mode,
1632 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1633
1634 dwb_pipe++;
1635
1636 if (dwb_pipe >= MAX_DWB_PIPES)
1637 return;
1638 }
1639 }
1640 }
1641
dcn20_validate_dsc(struct dc * dc,struct dc_state * new_ctx)1642 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx)
1643 {
1644 int i;
1645
1646 /* Validate DSC config, dsc count validation is already done */
1647 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1648 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1649 struct dc_stream_state *stream = pipe_ctx->stream;
1650 struct dsc_config dsc_cfg;
1651 struct pipe_ctx *odm_pipe;
1652 int opp_cnt = 1;
1653
1654 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1655 opp_cnt++;
1656
1657 /* Only need to validate top pipe */
1658 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC)
1659 continue;
1660
1661 dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left
1662 + stream->timing.h_border_right) / opp_cnt;
1663 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top
1664 + stream->timing.v_border_bottom;
1665 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
1666 dsc_cfg.color_depth = stream->timing.display_color_depth;
1667 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
1668 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
1669 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
1670
1671 if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg))
1672 return false;
1673 }
1674 return true;
1675 }
1676
dcn20_find_secondary_pipe(struct dc * dc,struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1677 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc,
1678 struct resource_context *res_ctx,
1679 const struct resource_pool *pool,
1680 const struct pipe_ctx *primary_pipe)
1681 {
1682 struct pipe_ctx *secondary_pipe = NULL;
1683
1684 if (dc && primary_pipe) {
1685 int j;
1686 int preferred_pipe_idx = 0;
1687
1688 /* first check the prev dc state:
1689 * if this primary pipe has a bottom pipe in prev. state
1690 * and if the bottom pipe is still available (which it should be),
1691 * pick that pipe as secondary
1692 * Same logic applies for ODM pipes
1693 */
1694 if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) {
1695 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx;
1696 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1697 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1698 secondary_pipe->pipe_idx = preferred_pipe_idx;
1699 }
1700 }
1701 if (secondary_pipe == NULL &&
1702 dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) {
1703 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx;
1704 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1705 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1706 secondary_pipe->pipe_idx = preferred_pipe_idx;
1707 }
1708 }
1709
1710 /*
1711 * if this primary pipe does not have a bottom pipe in prev. state
1712 * start backward and find a pipe that did not used to be a bottom pipe in
1713 * prev. dc state. This way we make sure we keep the same assignment as
1714 * last state and will not have to reprogram every pipe
1715 */
1716 if (secondary_pipe == NULL) {
1717 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1718 if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL
1719 && dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) {
1720 preferred_pipe_idx = j;
1721
1722 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1723 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1724 secondary_pipe->pipe_idx = preferred_pipe_idx;
1725 break;
1726 }
1727 }
1728 }
1729 }
1730 /*
1731 * We should never hit this assert unless assignments are shuffled around
1732 * if this happens we will prob. hit a vsync tdr
1733 */
1734 ASSERT(secondary_pipe);
1735 /*
1736 * search backwards for the second pipe to keep pipe
1737 * assignment more consistent
1738 */
1739 if (secondary_pipe == NULL) {
1740 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1741 preferred_pipe_idx = j;
1742
1743 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1744 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1745 secondary_pipe->pipe_idx = preferred_pipe_idx;
1746 break;
1747 }
1748 }
1749 }
1750 }
1751
1752 return secondary_pipe;
1753 }
1754
dcn20_merge_pipes_for_validate(struct dc * dc,struct dc_state * context)1755 void dcn20_merge_pipes_for_validate(
1756 struct dc *dc,
1757 struct dc_state *context)
1758 {
1759 int i;
1760
1761 /* merge previously split odm pipes since mode support needs to make the decision */
1762 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1763 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1764 struct pipe_ctx *odm_pipe = pipe->next_odm_pipe;
1765
1766 if (pipe->prev_odm_pipe)
1767 continue;
1768
1769 pipe->next_odm_pipe = NULL;
1770 while (odm_pipe) {
1771 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1772
1773 odm_pipe->plane_state = NULL;
1774 odm_pipe->stream = NULL;
1775 odm_pipe->top_pipe = NULL;
1776 odm_pipe->bottom_pipe = NULL;
1777 odm_pipe->prev_odm_pipe = NULL;
1778 odm_pipe->next_odm_pipe = NULL;
1779 if (odm_pipe->stream_res.dsc)
1780 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc);
1781 /* Clear plane_res and stream_res */
1782 memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res));
1783 memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res));
1784 odm_pipe = next_odm_pipe;
1785 }
1786 if (pipe->plane_state)
1787 resource_build_scaling_params(pipe);
1788 }
1789
1790 /* merge previously mpc split pipes since mode support needs to make the decision */
1791 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1792 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1793 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
1794
1795 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state)
1796 continue;
1797
1798 pipe->bottom_pipe = hsplit_pipe->bottom_pipe;
1799 if (hsplit_pipe->bottom_pipe)
1800 hsplit_pipe->bottom_pipe->top_pipe = pipe;
1801 hsplit_pipe->plane_state = NULL;
1802 hsplit_pipe->stream = NULL;
1803 hsplit_pipe->top_pipe = NULL;
1804 hsplit_pipe->bottom_pipe = NULL;
1805
1806 /* Clear plane_res and stream_res */
1807 memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res));
1808 memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res));
1809 if (pipe->plane_state)
1810 resource_build_scaling_params(pipe);
1811 }
1812 }
1813
dcn20_validate_apply_pipe_split_flags(struct dc * dc,struct dc_state * context,int vlevel,int * split,bool * merge)1814 int dcn20_validate_apply_pipe_split_flags(
1815 struct dc *dc,
1816 struct dc_state *context,
1817 int vlevel,
1818 int *split,
1819 bool *merge)
1820 {
1821 int i, pipe_idx, vlevel_split;
1822 int plane_count = 0;
1823 bool force_split = false;
1824 bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID;
1825 struct vba_vars_st *v = &context->bw_ctx.dml.vba;
1826 int max_mpc_comb = v->maxMpcComb;
1827
1828 if (context->stream_count > 1) {
1829 if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP)
1830 avoid_split = true;
1831 } else if (dc->debug.force_single_disp_pipe_split)
1832 force_split = true;
1833
1834 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1835 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1836
1837 /**
1838 * Workaround for avoiding pipe-split in cases where we'd split
1839 * planes that are too small, resulting in splits that aren't
1840 * valid for the scaler.
1841 */
1842 if (pipe->plane_state &&
1843 (pipe->plane_state->dst_rect.width <= 16 ||
1844 pipe->plane_state->dst_rect.height <= 16 ||
1845 pipe->plane_state->src_rect.width <= 16 ||
1846 pipe->plane_state->src_rect.height <= 16))
1847 avoid_split = true;
1848
1849 /* TODO: fix dc bugs and remove this split threshold thing */
1850 if (pipe->stream && !pipe->prev_odm_pipe &&
1851 (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state))
1852 ++plane_count;
1853 }
1854 if (plane_count > dc->res_pool->pipe_count / 2)
1855 avoid_split = true;
1856
1857 /* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */
1858 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1859 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1860 struct dc_crtc_timing timing;
1861
1862 if (!pipe->stream)
1863 continue;
1864 else {
1865 timing = pipe->stream->timing;
1866 if (timing.h_border_left + timing.h_border_right
1867 + timing.v_border_top + timing.v_border_bottom > 0) {
1868 avoid_split = true;
1869 break;
1870 }
1871 }
1872 }
1873
1874 /* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */
1875 if (avoid_split) {
1876 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1877 if (!context->res_ctx.pipe_ctx[i].stream)
1878 continue;
1879
1880 for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++)
1881 if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 &&
1882 v->ModeSupport[vlevel][0])
1883 break;
1884 /* Impossible to not split this pipe */
1885 if (vlevel > context->bw_ctx.dml.soc.num_states)
1886 vlevel = vlevel_split;
1887 else
1888 max_mpc_comb = 0;
1889 pipe_idx++;
1890 }
1891 v->maxMpcComb = max_mpc_comb;
1892 }
1893
1894 /* Split loop sets which pipe should be split based on dml outputs and dc flags */
1895 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1896 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1897 int pipe_plane = v->pipe_plane[pipe_idx];
1898 bool split4mpc = context->stream_count == 1 && plane_count == 1
1899 && dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4;
1900
1901 if (!context->res_ctx.pipe_ctx[i].stream)
1902 continue;
1903
1904 if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4)
1905 split[i] = 4;
1906 else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2)
1907 split[i] = 2;
1908
1909 if ((pipe->stream->view_format ==
1910 VIEW_3D_FORMAT_SIDE_BY_SIDE ||
1911 pipe->stream->view_format ==
1912 VIEW_3D_FORMAT_TOP_AND_BOTTOM) &&
1913 (pipe->stream->timing.timing_3d_format ==
1914 TIMING_3D_FORMAT_TOP_AND_BOTTOM ||
1915 pipe->stream->timing.timing_3d_format ==
1916 TIMING_3D_FORMAT_SIDE_BY_SIDE))
1917 split[i] = 2;
1918 if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) {
1919 split[i] = 2;
1920 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1;
1921 }
1922 if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) {
1923 split[i] = 4;
1924 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1;
1925 }
1926 /*420 format workaround*/
1927 if (pipe->stream->timing.h_addressable > 7680 &&
1928 pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1929 split[i] = 4;
1930 }
1931 v->ODMCombineEnabled[pipe_plane] =
1932 v->ODMCombineEnablePerState[vlevel][pipe_plane];
1933
1934 if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) {
1935 if (resource_get_mpc_slice_count(pipe) == 2) {
1936 /*If need split for mpc but 2 way split already*/
1937 if (split[i] == 4)
1938 split[i] = 2; /* 2 -> 4 MPC */
1939 else if (split[i] == 2)
1940 split[i] = 0; /* 2 -> 2 MPC */
1941 else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state)
1942 merge[i] = true; /* 2 -> 1 MPC */
1943 } else if (resource_get_mpc_slice_count(pipe) == 4) {
1944 /*If need split for mpc but 4 way split already*/
1945 if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe)
1946 || !pipe->bottom_pipe)) {
1947 merge[i] = true; /* 4 -> 2 MPC */
1948 } else if (split[i] == 0 && pipe->top_pipe &&
1949 pipe->top_pipe->plane_state == pipe->plane_state)
1950 merge[i] = true; /* 4 -> 1 MPC */
1951 split[i] = 0;
1952 } else if (resource_get_odm_slice_count(pipe) > 1) {
1953 /* ODM -> MPC transition */
1954 if (pipe->prev_odm_pipe) {
1955 split[i] = 0;
1956 merge[i] = true;
1957 }
1958 }
1959 } else {
1960 if (resource_get_odm_slice_count(pipe) == 2) {
1961 /*If need split for odm but 2 way split already*/
1962 if (split[i] == 4)
1963 split[i] = 2; /* 2 -> 4 ODM */
1964 else if (split[i] == 2)
1965 split[i] = 0; /* 2 -> 2 ODM */
1966 else if (pipe->prev_odm_pipe) {
1967 ASSERT(0); /* NOT expected yet */
1968 merge[i] = true; /* exit ODM */
1969 }
1970 } else if (resource_get_odm_slice_count(pipe) == 4) {
1971 /*If need split for odm but 4 way split already*/
1972 if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe)
1973 || !pipe->next_odm_pipe)) {
1974 merge[i] = true; /* 4 -> 2 ODM */
1975 } else if (split[i] == 0 && pipe->prev_odm_pipe) {
1976 ASSERT(0); /* NOT expected yet */
1977 merge[i] = true; /* exit ODM */
1978 }
1979 split[i] = 0;
1980 } else if (resource_get_mpc_slice_count(pipe) > 1) {
1981 /* MPC -> ODM transition */
1982 ASSERT(0); /* NOT expected yet */
1983 if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1984 split[i] = 0;
1985 merge[i] = true;
1986 }
1987 }
1988 }
1989
1990 /* Adjust dppclk when split is forced, do not bother with dispclk */
1991 if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) {
1992 DC_FP_START();
1993 dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false);
1994 DC_FP_END();
1995 }
1996 pipe_idx++;
1997 }
1998
1999 return vlevel;
2000 }
2001
dcn20_fast_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * pipe_split_from,int * vlevel_out,bool fast_validate)2002 bool dcn20_fast_validate_bw(
2003 struct dc *dc,
2004 struct dc_state *context,
2005 display_e2e_pipe_params_st *pipes,
2006 int *pipe_cnt_out,
2007 int *pipe_split_from,
2008 int *vlevel_out,
2009 bool fast_validate)
2010 {
2011 bool out = false;
2012 int split[MAX_PIPES] = { 0 };
2013 bool merge[MAX_PIPES] = { false };
2014 int pipe_cnt, i, pipe_idx, vlevel;
2015
2016 ASSERT(pipes);
2017 if (!pipes)
2018 return false;
2019
2020 dcn20_merge_pipes_for_validate(dc, context);
2021
2022 DC_FP_START();
2023 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2024 DC_FP_END();
2025
2026 *pipe_cnt_out = pipe_cnt;
2027
2028 if (!pipe_cnt) {
2029 out = true;
2030 goto validate_out;
2031 }
2032
2033 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2034
2035 if (vlevel > context->bw_ctx.dml.soc.num_states)
2036 goto validate_fail;
2037
2038 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
2039
2040 /*initialize pipe_just_split_from to invalid idx*/
2041 for (i = 0; i < MAX_PIPES; i++)
2042 pipe_split_from[i] = -1;
2043
2044 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2045 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2046 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
2047
2048 if (!pipe->stream || pipe_split_from[i] >= 0)
2049 continue;
2050
2051 pipe_idx++;
2052
2053 if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2054 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2055 ASSERT(hsplit_pipe);
2056 if (!dcn20_split_stream_for_odm(
2057 dc, &context->res_ctx,
2058 pipe, hsplit_pipe))
2059 goto validate_fail;
2060 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2061 dcn20_build_mapped_resource(dc, context, pipe->stream);
2062 }
2063
2064 if (!pipe->plane_state)
2065 continue;
2066 /* Skip 2nd half of already split pipe */
2067 if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state)
2068 continue;
2069
2070 /* We do not support mpo + odm at the moment */
2071 if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state
2072 && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx])
2073 goto validate_fail;
2074
2075 if (split[i] == 2) {
2076 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) {
2077 /* pipe not split previously needs split */
2078 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2079 ASSERT(hsplit_pipe);
2080 if (!hsplit_pipe) {
2081 DC_FP_START();
2082 dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true);
2083 DC_FP_END();
2084 continue;
2085 }
2086 if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2087 if (!dcn20_split_stream_for_odm(
2088 dc, &context->res_ctx,
2089 pipe, hsplit_pipe))
2090 goto validate_fail;
2091 dcn20_build_mapped_resource(dc, context, pipe->stream);
2092 } else {
2093 dcn20_split_stream_for_mpc(
2094 &context->res_ctx, dc->res_pool,
2095 pipe, hsplit_pipe);
2096 resource_build_scaling_params(pipe);
2097 resource_build_scaling_params(hsplit_pipe);
2098 }
2099 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2100 }
2101 } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) {
2102 /* merge should already have been done */
2103 ASSERT(0);
2104 }
2105 }
2106
2107 /* Actual dsc count per stream dsc validation*/
2108 if (!dcn20_validate_dsc(dc, context)) {
2109 context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] =
2110 DML_FAIL_DSC_VALIDATION_FAILURE;
2111 goto validate_fail;
2112 }
2113
2114 *vlevel_out = vlevel;
2115
2116 out = true;
2117 goto validate_out;
2118
2119 validate_fail:
2120 out = false;
2121
2122 validate_out:
2123 return out;
2124 }
2125
dcn20_validate_bandwidth(struct dc * dc,struct dc_state * context,bool fast_validate)2126 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context,
2127 bool fast_validate)
2128 {
2129 bool voltage_supported;
2130 display_e2e_pipe_params_st *pipes;
2131
2132 pipes = kcalloc(dc->res_pool->pipe_count, sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2133 if (!pipes)
2134 return false;
2135
2136 DC_FP_START();
2137 voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate, pipes);
2138 DC_FP_END();
2139
2140 kfree(pipes);
2141 return voltage_supported;
2142 }
2143
dcn20_acquire_free_pipe_for_layer(const struct dc_state * cur_ctx,struct dc_state * new_ctx,const struct resource_pool * pool,const struct pipe_ctx * opp_head)2144 struct pipe_ctx *dcn20_acquire_free_pipe_for_layer(
2145 const struct dc_state *cur_ctx,
2146 struct dc_state *new_ctx,
2147 const struct resource_pool *pool,
2148 const struct pipe_ctx *opp_head)
2149 {
2150 struct resource_context *res_ctx = &new_ctx->res_ctx;
2151 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(res_ctx, opp_head->stream);
2152 struct pipe_ctx *sec_dpp_pipe = resource_find_free_secondary_pipe_legacy(res_ctx, pool, otg_master);
2153
2154 ASSERT(otg_master);
2155
2156 if (!sec_dpp_pipe)
2157 return NULL;
2158
2159 sec_dpp_pipe->stream = opp_head->stream;
2160 sec_dpp_pipe->stream_res.tg = opp_head->stream_res.tg;
2161 sec_dpp_pipe->stream_res.opp = opp_head->stream_res.opp;
2162
2163 sec_dpp_pipe->plane_res.hubp = pool->hubps[sec_dpp_pipe->pipe_idx];
2164 sec_dpp_pipe->plane_res.ipp = pool->ipps[sec_dpp_pipe->pipe_idx];
2165 sec_dpp_pipe->plane_res.dpp = pool->dpps[sec_dpp_pipe->pipe_idx];
2166 sec_dpp_pipe->plane_res.mpcc_inst = pool->dpps[sec_dpp_pipe->pipe_idx]->inst;
2167
2168 return sec_dpp_pipe;
2169 }
2170
dcn20_get_dcc_compression_cap(const struct dc * dc,const struct dc_dcc_surface_param * input,struct dc_surface_dcc_cap * output)2171 bool dcn20_get_dcc_compression_cap(const struct dc *dc,
2172 const struct dc_dcc_surface_param *input,
2173 struct dc_surface_dcc_cap *output)
2174 {
2175 if (dc->res_pool->hubbub->funcs->get_dcc_compression_cap)
2176 return dc->res_pool->hubbub->funcs->get_dcc_compression_cap(
2177 dc->res_pool->hubbub, input, output);
2178
2179 return false;
2180 }
2181
dcn20_destroy_resource_pool(struct resource_pool ** pool)2182 static void dcn20_destroy_resource_pool(struct resource_pool **pool)
2183 {
2184 struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool);
2185
2186 dcn20_resource_destruct(dcn20_pool);
2187 kfree(dcn20_pool);
2188 *pool = NULL;
2189 }
2190
2191
2192 static struct dc_cap_funcs cap_funcs = {
2193 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2194 };
2195
2196
dcn20_patch_unknown_plane_state(struct dc_plane_state * plane_state)2197 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state)
2198 {
2199 enum surface_pixel_format surf_pix_format = plane_state->format;
2200 unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format);
2201
2202 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_S;
2203 if (bpp == 64)
2204 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_D;
2205
2206 return DC_OK;
2207 }
2208
dcn20_release_pipe(struct dc_state * context,struct pipe_ctx * pipe,const struct resource_pool * pool)2209 void dcn20_release_pipe(struct dc_state *context,
2210 struct pipe_ctx *pipe,
2211 const struct resource_pool *pool)
2212 {
2213 if (resource_is_pipe_type(pipe, OPP_HEAD) && pipe->stream_res.dsc)
2214 dcn20_release_dsc(&context->res_ctx, pool, &pipe->stream_res.dsc);
2215 memset(pipe, 0, sizeof(*pipe));
2216 }
2217
2218 static const struct resource_funcs dcn20_res_pool_funcs = {
2219 .destroy = dcn20_destroy_resource_pool,
2220 .link_enc_create = dcn20_link_encoder_create,
2221 .panel_cntl_create = dcn20_panel_cntl_create,
2222 .validate_bandwidth = dcn20_validate_bandwidth,
2223 .acquire_free_pipe_as_secondary_dpp_pipe = dcn20_acquire_free_pipe_for_layer,
2224 .release_pipe = dcn20_release_pipe,
2225 .add_stream_to_ctx = dcn20_add_stream_to_ctx,
2226 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2227 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2228 .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context,
2229 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2230 .set_mcif_arb_params = dcn20_set_mcif_arb_params,
2231 .populate_dml_pipes = dcn20_populate_dml_pipes_from_context,
2232 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2233 .get_vstartup_for_pipe = dcn10_get_vstartup_for_pipe
2234 };
2235
dcn20_dwbc_create(struct dc_context * ctx,struct resource_pool * pool)2236 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
2237 {
2238 int i;
2239 uint32_t pipe_count = pool->res_cap->num_dwb;
2240
2241 for (i = 0; i < pipe_count; i++) {
2242 struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc),
2243 GFP_KERNEL);
2244
2245 if (!dwbc20) {
2246 dm_error("DC: failed to create dwbc20!\n");
2247 return false;
2248 }
2249 dcn20_dwbc_construct(dwbc20, ctx,
2250 &dwbc20_regs[i],
2251 &dwbc20_shift,
2252 &dwbc20_mask,
2253 i);
2254 pool->dwbc[i] = &dwbc20->base;
2255 }
2256 return true;
2257 }
2258
dcn20_mmhubbub_create(struct dc_context * ctx,struct resource_pool * pool)2259 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
2260 {
2261 int i;
2262 uint32_t pipe_count = pool->res_cap->num_dwb;
2263
2264 ASSERT(pipe_count > 0);
2265
2266 for (i = 0; i < pipe_count; i++) {
2267 struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub),
2268 GFP_KERNEL);
2269
2270 if (!mcif_wb20) {
2271 dm_error("DC: failed to create mcif_wb20!\n");
2272 return false;
2273 }
2274
2275 dcn20_mmhubbub_construct(mcif_wb20, ctx,
2276 &mcif_wb20_regs[i],
2277 &mcif_wb20_shift,
2278 &mcif_wb20_mask,
2279 i);
2280
2281 pool->mcif_wb[i] = &mcif_wb20->base;
2282 }
2283 return true;
2284 }
2285
dcn20_pp_smu_create(struct dc_context * ctx)2286 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx)
2287 {
2288 struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC);
2289
2290 if (!pp_smu)
2291 return pp_smu;
2292
2293 dm_pp_get_funcs(ctx, pp_smu);
2294
2295 if (pp_smu->ctx.ver != PP_SMU_VER_NV)
2296 pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs));
2297
2298 return pp_smu;
2299 }
2300
dcn20_pp_smu_destroy(struct pp_smu_funcs ** pp_smu)2301 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu)
2302 {
2303 if (pp_smu && *pp_smu) {
2304 kfree(*pp_smu);
2305 *pp_smu = NULL;
2306 }
2307 }
2308
get_asic_rev_soc_bb(uint32_t hw_internal_rev)2309 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb(
2310 uint32_t hw_internal_rev)
2311 {
2312 if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2313 return &dcn2_0_nv14_soc;
2314
2315 if (ASICREV_IS_NAVI12_P(hw_internal_rev))
2316 return &dcn2_0_nv12_soc;
2317
2318 return &dcn2_0_soc;
2319 }
2320
get_asic_rev_ip_params(uint32_t hw_internal_rev)2321 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params(
2322 uint32_t hw_internal_rev)
2323 {
2324 if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2325 return &dcn2_0_nv14_ip;
2326
2327 /* NV12 and NV10 */
2328 return &dcn2_0_ip;
2329 }
2330
get_dml_project_version(uint32_t hw_internal_rev)2331 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev)
2332 {
2333 return DML_PROJECT_NAVI10v2;
2334 }
2335
init_soc_bounding_box(struct dc * dc,struct dcn20_resource_pool * pool)2336 static bool init_soc_bounding_box(struct dc *dc,
2337 struct dcn20_resource_pool *pool)
2338 {
2339 struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2340 get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev);
2341 struct _vcs_dpi_ip_params_st *loaded_ip =
2342 get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev);
2343
2344 DC_LOGGER_INIT(dc->ctx->logger);
2345
2346 if (pool->base.pp_smu) {
2347 struct pp_smu_nv_clock_table max_clocks = {0};
2348 unsigned int uclk_states[8] = {0};
2349 unsigned int num_states = 0;
2350 enum pp_smu_status status;
2351 bool clock_limits_available = false;
2352 bool uclk_states_available = false;
2353
2354 if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) {
2355 status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states)
2356 (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states);
2357
2358 uclk_states_available = (status == PP_SMU_RESULT_OK);
2359 }
2360
2361 if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) {
2362 status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks)
2363 (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks);
2364 /* SMU cannot set DCF clock to anything equal to or higher than SOC clock
2365 */
2366 if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz)
2367 max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000;
2368 clock_limits_available = (status == PP_SMU_RESULT_OK);
2369 }
2370
2371 if (clock_limits_available && uclk_states_available && num_states) {
2372 DC_FP_START();
2373 dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states);
2374 DC_FP_END();
2375 } else if (clock_limits_available) {
2376 DC_FP_START();
2377 dcn20_cap_soc_clocks(loaded_bb, max_clocks);
2378 DC_FP_END();
2379 }
2380 }
2381
2382 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
2383 loaded_ip->max_num_dpp = pool->base.pipe_count;
2384 DC_FP_START();
2385 dcn20_patch_bounding_box(dc, loaded_bb);
2386 DC_FP_END();
2387 return true;
2388 }
2389
dcn20_resource_construct(uint8_t num_virtual_links,struct dc * dc,struct dcn20_resource_pool * pool)2390 static bool dcn20_resource_construct(
2391 uint8_t num_virtual_links,
2392 struct dc *dc,
2393 struct dcn20_resource_pool *pool)
2394 {
2395 int i;
2396 struct dc_context *ctx = dc->ctx;
2397 struct irq_service_init_data init_data;
2398 struct ddc_service_init_data ddc_init_data = {0};
2399 struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2400 get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev);
2401 struct _vcs_dpi_ip_params_st *loaded_ip =
2402 get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev);
2403 enum dml_project dml_project_version =
2404 get_dml_project_version(ctx->asic_id.hw_internal_rev);
2405
2406 ctx->dc_bios->regs = &bios_regs;
2407 pool->base.funcs = &dcn20_res_pool_funcs;
2408
2409 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
2410 pool->base.res_cap = &res_cap_nv14;
2411 pool->base.pipe_count = 5;
2412 pool->base.mpcc_count = 5;
2413 } else {
2414 pool->base.res_cap = &res_cap_nv10;
2415 pool->base.pipe_count = 6;
2416 pool->base.mpcc_count = 6;
2417 }
2418 /*************************************************
2419 * Resource + asic cap harcoding *
2420 *************************************************/
2421 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2422
2423 dc->caps.max_downscale_ratio = 200;
2424 dc->caps.i2c_speed_in_khz = 100;
2425 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2426 dc->caps.max_cursor_size = 256;
2427 dc->caps.min_horizontal_blanking_period = 80;
2428 dc->caps.dmdata_alloc_size = 2048;
2429
2430 dc->caps.max_slave_planes = 1;
2431 dc->caps.max_slave_yuv_planes = 1;
2432 dc->caps.max_slave_rgb_planes = 1;
2433 dc->caps.post_blend_color_processing = true;
2434 dc->caps.force_dp_tps4_for_cp2520 = true;
2435 dc->caps.extended_aux_timeout_support = true;
2436 dc->caps.dmcub_support = true;
2437
2438 /* Color pipeline capabilities */
2439 dc->caps.color.dpp.dcn_arch = 1;
2440 dc->caps.color.dpp.input_lut_shared = 0;
2441 dc->caps.color.dpp.icsc = 1;
2442 dc->caps.color.dpp.dgam_ram = 1;
2443 dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2444 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2445 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0;
2446 dc->caps.color.dpp.dgam_rom_caps.pq = 0;
2447 dc->caps.color.dpp.dgam_rom_caps.hlg = 0;
2448 dc->caps.color.dpp.post_csc = 0;
2449 dc->caps.color.dpp.gamma_corr = 0;
2450 dc->caps.color.dpp.dgam_rom_for_yuv = 1;
2451
2452 dc->caps.color.dpp.hw_3d_lut = 1;
2453 dc->caps.color.dpp.ogam_ram = 1;
2454 // no OGAM ROM on DCN2, only MPC ROM
2455 dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2456 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2457 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2458 dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2459 dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2460 dc->caps.color.dpp.ocsc = 0;
2461
2462 dc->caps.color.mpc.gamut_remap = 0;
2463 dc->caps.color.mpc.num_3dluts = 0;
2464 dc->caps.color.mpc.shared_3d_lut = 0;
2465 dc->caps.color.mpc.ogam_ram = 1;
2466 dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2467 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2468 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2469 dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2470 dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2471 dc->caps.color.mpc.ocsc = 1;
2472
2473 dc->caps.dp_hdmi21_pcon_support = true;
2474
2475 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2476 dc->debug = debug_defaults_drv;
2477
2478 //dcn2.0x
2479 dc->work_arounds.dedcn20_305_wa = true;
2480
2481 // Init the vm_helper
2482 if (dc->vm_helper)
2483 vm_helper_init(dc->vm_helper, 16);
2484
2485 /*************************************************
2486 * Create resources *
2487 *************************************************/
2488
2489 pool->base.clock_sources[DCN20_CLK_SRC_PLL0] =
2490 dcn20_clock_source_create(ctx, ctx->dc_bios,
2491 CLOCK_SOURCE_COMBO_PHY_PLL0,
2492 &clk_src_regs[0], false);
2493 pool->base.clock_sources[DCN20_CLK_SRC_PLL1] =
2494 dcn20_clock_source_create(ctx, ctx->dc_bios,
2495 CLOCK_SOURCE_COMBO_PHY_PLL1,
2496 &clk_src_regs[1], false);
2497 pool->base.clock_sources[DCN20_CLK_SRC_PLL2] =
2498 dcn20_clock_source_create(ctx, ctx->dc_bios,
2499 CLOCK_SOURCE_COMBO_PHY_PLL2,
2500 &clk_src_regs[2], false);
2501 pool->base.clock_sources[DCN20_CLK_SRC_PLL3] =
2502 dcn20_clock_source_create(ctx, ctx->dc_bios,
2503 CLOCK_SOURCE_COMBO_PHY_PLL3,
2504 &clk_src_regs[3], false);
2505 pool->base.clock_sources[DCN20_CLK_SRC_PLL4] =
2506 dcn20_clock_source_create(ctx, ctx->dc_bios,
2507 CLOCK_SOURCE_COMBO_PHY_PLL4,
2508 &clk_src_regs[4], false);
2509 pool->base.clock_sources[DCN20_CLK_SRC_PLL5] =
2510 dcn20_clock_source_create(ctx, ctx->dc_bios,
2511 CLOCK_SOURCE_COMBO_PHY_PLL5,
2512 &clk_src_regs[5], false);
2513 pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL;
2514 /* todo: not reuse phy_pll registers */
2515 pool->base.dp_clock_source =
2516 dcn20_clock_source_create(ctx, ctx->dc_bios,
2517 CLOCK_SOURCE_ID_DP_DTO,
2518 &clk_src_regs[0], true);
2519
2520 for (i = 0; i < pool->base.clk_src_count; i++) {
2521 if (pool->base.clock_sources[i] == NULL) {
2522 dm_error("DC: failed to create clock sources!\n");
2523 BREAK_TO_DEBUGGER();
2524 goto create_fail;
2525 }
2526 }
2527
2528 pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2529 if (pool->base.dccg == NULL) {
2530 dm_error("DC: failed to create dccg!\n");
2531 BREAK_TO_DEBUGGER();
2532 goto create_fail;
2533 }
2534
2535 pool->base.dmcu = dcn20_dmcu_create(ctx,
2536 &dmcu_regs,
2537 &dmcu_shift,
2538 &dmcu_mask);
2539 if (pool->base.dmcu == NULL) {
2540 dm_error("DC: failed to create dmcu!\n");
2541 BREAK_TO_DEBUGGER();
2542 goto create_fail;
2543 }
2544
2545 pool->base.abm = dce_abm_create(ctx,
2546 &abm_regs,
2547 &abm_shift,
2548 &abm_mask);
2549 if (pool->base.abm == NULL) {
2550 dm_error("DC: failed to create abm!\n");
2551 BREAK_TO_DEBUGGER();
2552 goto create_fail;
2553 }
2554
2555 pool->base.pp_smu = dcn20_pp_smu_create(ctx);
2556
2557
2558 if (!init_soc_bounding_box(dc, pool)) {
2559 dm_error("DC: failed to initialize soc bounding box!\n");
2560 BREAK_TO_DEBUGGER();
2561 goto create_fail;
2562 }
2563
2564 dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version);
2565
2566 if (!dc->debug.disable_pplib_wm_range) {
2567 struct pp_smu_wm_range_sets ranges = {0};
2568 int i = 0;
2569
2570 ranges.num_reader_wm_sets = 0;
2571
2572 if (loaded_bb->num_states == 1) {
2573 ranges.reader_wm_sets[0].wm_inst = i;
2574 ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2575 ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2576 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2577 ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2578
2579 ranges.num_reader_wm_sets = 1;
2580 } else if (loaded_bb->num_states > 1) {
2581 for (i = 0; i < 4 && i < loaded_bb->num_states; i++) {
2582 ranges.reader_wm_sets[i].wm_inst = i;
2583 ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2584 ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2585 DC_FP_START();
2586 dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb);
2587 DC_FP_END();
2588
2589 ranges.num_reader_wm_sets = i + 1;
2590 }
2591
2592 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2593 ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2594 }
2595
2596 ranges.num_writer_wm_sets = 1;
2597
2598 ranges.writer_wm_sets[0].wm_inst = 0;
2599 ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2600 ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2601 ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2602 ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2603
2604 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
2605 if (pool->base.pp_smu && pool->base.pp_smu->nv_funcs.set_wm_ranges)
2606 pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges);
2607 }
2608
2609 init_data.ctx = dc->ctx;
2610 pool->base.irqs = dal_irq_service_dcn20_create(&init_data);
2611 if (!pool->base.irqs)
2612 goto create_fail;
2613
2614 /* mem input -> ipp -> dpp -> opp -> TG */
2615 for (i = 0; i < pool->base.pipe_count; i++) {
2616 pool->base.hubps[i] = dcn20_hubp_create(ctx, i);
2617 if (pool->base.hubps[i] == NULL) {
2618 BREAK_TO_DEBUGGER();
2619 dm_error(
2620 "DC: failed to create memory input!\n");
2621 goto create_fail;
2622 }
2623
2624 pool->base.ipps[i] = dcn20_ipp_create(ctx, i);
2625 if (pool->base.ipps[i] == NULL) {
2626 BREAK_TO_DEBUGGER();
2627 dm_error(
2628 "DC: failed to create input pixel processor!\n");
2629 goto create_fail;
2630 }
2631
2632 pool->base.dpps[i] = dcn20_dpp_create(ctx, i);
2633 if (pool->base.dpps[i] == NULL) {
2634 BREAK_TO_DEBUGGER();
2635 dm_error(
2636 "DC: failed to create dpps!\n");
2637 goto create_fail;
2638 }
2639 }
2640 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2641 pool->base.engines[i] = dcn20_aux_engine_create(ctx, i);
2642 if (pool->base.engines[i] == NULL) {
2643 BREAK_TO_DEBUGGER();
2644 dm_error(
2645 "DC:failed to create aux engine!!\n");
2646 goto create_fail;
2647 }
2648 pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i);
2649 if (pool->base.hw_i2cs[i] == NULL) {
2650 BREAK_TO_DEBUGGER();
2651 dm_error(
2652 "DC:failed to create hw i2c!!\n");
2653 goto create_fail;
2654 }
2655 pool->base.sw_i2cs[i] = NULL;
2656 }
2657
2658 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2659 pool->base.opps[i] = dcn20_opp_create(ctx, i);
2660 if (pool->base.opps[i] == NULL) {
2661 BREAK_TO_DEBUGGER();
2662 dm_error(
2663 "DC: failed to create output pixel processor!\n");
2664 goto create_fail;
2665 }
2666 }
2667
2668 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2669 pool->base.timing_generators[i] = dcn20_timing_generator_create(
2670 ctx, i);
2671 if (pool->base.timing_generators[i] == NULL) {
2672 BREAK_TO_DEBUGGER();
2673 dm_error("DC: failed to create tg!\n");
2674 goto create_fail;
2675 }
2676 }
2677
2678 pool->base.timing_generator_count = i;
2679
2680 pool->base.mpc = dcn20_mpc_create(ctx);
2681 if (pool->base.mpc == NULL) {
2682 BREAK_TO_DEBUGGER();
2683 dm_error("DC: failed to create mpc!\n");
2684 goto create_fail;
2685 }
2686
2687 pool->base.hubbub = dcn20_hubbub_create(ctx);
2688 if (pool->base.hubbub == NULL) {
2689 BREAK_TO_DEBUGGER();
2690 dm_error("DC: failed to create hubbub!\n");
2691 goto create_fail;
2692 }
2693
2694 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2695 pool->base.dscs[i] = dcn20_dsc_create(ctx, i);
2696 if (pool->base.dscs[i] == NULL) {
2697 BREAK_TO_DEBUGGER();
2698 dm_error("DC: failed to create display stream compressor %d!\n", i);
2699 goto create_fail;
2700 }
2701 }
2702
2703 if (!dcn20_dwbc_create(ctx, &pool->base)) {
2704 BREAK_TO_DEBUGGER();
2705 dm_error("DC: failed to create dwbc!\n");
2706 goto create_fail;
2707 }
2708 if (!dcn20_mmhubbub_create(ctx, &pool->base)) {
2709 BREAK_TO_DEBUGGER();
2710 dm_error("DC: failed to create mcif_wb!\n");
2711 goto create_fail;
2712 }
2713
2714 if (!resource_construct(num_virtual_links, dc, &pool->base,
2715 &res_create_funcs))
2716 goto create_fail;
2717
2718 dcn20_hw_sequencer_construct(dc);
2719
2720 // IF NV12, set PG function pointer to NULL. It's not that
2721 // PG isn't supported for NV12, it's that we don't want to
2722 // program the registers because that will cause more power
2723 // to be consumed. We could have created dcn20_init_hw to get
2724 // the same effect by checking ASIC rev, but there was a
2725 // request at some point to not check ASIC rev on hw sequencer.
2726 if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) {
2727 dc->hwseq->funcs.enable_power_gating_plane = NULL;
2728 dc->debug.disable_dpp_power_gate = true;
2729 dc->debug.disable_hubp_power_gate = true;
2730 }
2731
2732
2733 dc->caps.max_planes = pool->base.pipe_count;
2734
2735 for (i = 0; i < dc->caps.max_planes; ++i)
2736 dc->caps.planes[i] = plane_cap;
2737
2738 dc->cap_funcs = cap_funcs;
2739
2740 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2741 ddc_init_data.ctx = dc->ctx;
2742 ddc_init_data.link = NULL;
2743 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2744 ddc_init_data.id.enum_id = 0;
2745 ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2746 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2747 } else {
2748 pool->base.oem_device = NULL;
2749 }
2750
2751 return true;
2752
2753 create_fail:
2754
2755 dcn20_resource_destruct(pool);
2756
2757 return false;
2758 }
2759
dcn20_create_resource_pool(const struct dc_init_data * init_data,struct dc * dc)2760 struct resource_pool *dcn20_create_resource_pool(
2761 const struct dc_init_data *init_data,
2762 struct dc *dc)
2763 {
2764 struct dcn20_resource_pool *pool =
2765 kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC);
2766
2767 if (!pool)
2768 return NULL;
2769
2770 if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool))
2771 return &pool->base;
2772
2773 BREAK_TO_DEBUGGER();
2774 kfree(pool);
2775 return NULL;
2776 }
2777