1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988 AT&T
24 * All Rights Reserved
25 *
26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
27 */
28
29 /*
30 * Copyright (c) 2014 by Delphix. All rights reserved.
31 */
32
33 /*
34 * Utility routines for run-time linker. some are duplicated here from libc
35 * (with different names) to avoid name space collisions.
36 */
37 #include <sys/systeminfo.h>
38 #include <stdio.h>
39 #include <sys/time.h>
40 #include <sys/types.h>
41 #include <sys/mman.h>
42 #include <sys/lwp.h>
43 #include <sys/debug.h>
44 #include <stdarg.h>
45 #include <fcntl.h>
46 #include <string.h>
47 #include <dlfcn.h>
48 #include <unistd.h>
49 #include <stdlib.h>
50 #include <sys/auxv.h>
51 #include <limits.h>
52 #include <debug.h>
53 #include <conv.h>
54 #include "_rtld.h"
55 #include "_audit.h"
56 #include "_elf.h"
57 #include "msg.h"
58
59 /*
60 * Null function used as place where a debugger can set a breakpoint.
61 */
62 void
rtld_db_dlactivity(Lm_list * lml)63 rtld_db_dlactivity(Lm_list *lml)
64 {
65 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
66 r_debug.rtd_rdebug.r_state));
67 }
68
69 /*
70 * Null function used as place where debugger can set a pre .init
71 * processing breakpoint.
72 */
73 void
rtld_db_preinit(Lm_list * lml)74 rtld_db_preinit(Lm_list *lml)
75 {
76 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
77 r_debug.rtd_rdebug.r_state));
78 }
79
80 /*
81 * Null function used as place where debugger can set a post .init
82 * processing breakpoint.
83 */
84 void
rtld_db_postinit(Lm_list * lml)85 rtld_db_postinit(Lm_list *lml)
86 {
87 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
88 r_debug.rtd_rdebug.r_state));
89 }
90
91 /*
92 * Debugger Event Notification
93 *
94 * This function centralizes all debugger event notification (ala rtld_db).
95 *
96 * There's a simple intent, focused on insuring the primary link-map control
97 * list (or each link-map list) is consistent, and the indication that objects
98 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE
99 * event are posted for each of these, most debuggers don't care, as their
100 * view is that these events simply convey an "inconsistent" state.
101 *
102 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we
103 * enter ld.so.1.
104 *
105 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is
106 * required later (RT_FL_DBNOTIF):
107 *
108 * i. the first time we add or delete an object to the primary link-map
109 * control list.
110 * ii. the first time we move a secondary link-map control list to the primary
111 * link-map control list (effectively, this is like adding a group of
112 * objects to the primary link-map control list).
113 *
114 * Set an RD_CONSISTENT event when it is required (RT_FL_DBNOTIF is set):
115 *
116 * i. each time we leave the runtime linker.
117 */
118 void
rd_event(Lm_list * lml,rd_event_e event,r_state_e state)119 rd_event(Lm_list *lml, rd_event_e event, r_state_e state)
120 {
121 void (*fptr)(Lm_list *);
122
123 switch (event) {
124 case RD_PREINIT:
125 fptr = rtld_db_preinit;
126 break;
127 case RD_POSTINIT:
128 fptr = rtld_db_postinit;
129 break;
130 case RD_DLACTIVITY:
131 switch (state) {
132 case RT_CONSISTENT:
133 /*
134 * Do we need to send a notification?
135 */
136 if ((rtld_flags & RT_FL_DBNOTIF) == 0)
137 return;
138 rtld_flags &= ~RT_FL_DBNOTIF;
139 break;
140 case RT_ADD:
141 case RT_DELETE:
142 /*
143 * If we are already in an inconsistent state, no
144 * notification is required.
145 */
146 if (rtld_flags & RT_FL_DBNOTIF)
147 return;
148 rtld_flags |= RT_FL_DBNOTIF;
149 break;
150 };
151 fptr = rtld_db_dlactivity;
152 break;
153 default:
154 /*
155 * RD_NONE - do nothing
156 */
157 break;
158 };
159
160 /*
161 * Set event state and call 'notification' function.
162 *
163 * The debugging clients have previously been told about these
164 * notification functions and have set breakpoints on them if they
165 * are interested in the notification.
166 */
167 r_debug.rtd_rdebug.r_state = state;
168 r_debug.rtd_rdebug.r_rdevent = event;
169 fptr(lml);
170 r_debug.rtd_rdebug.r_rdevent = RD_NONE;
171 }
172
173 #if defined(__sparc) || defined(__x86)
174 /*
175 * Stack Cleanup.
176 *
177 * This function is invoked to 'remove' arguments that were passed in on the
178 * stack. This is most likely if ld.so.1 was invoked directly. In that case
179 * we want to remove ld.so.1 as well as it's arguments from the argv[] array.
180 * Which means we then need to slide everything above it on the stack down
181 * accordingly.
182 *
183 * While the stack layout is platform specific - it just so happens that __x86,
184 * and __sparc platforms share the following initial stack layout.
185 *
186 * !_______________________! high addresses
187 * ! !
188 * ! Information !
189 * ! Block !
190 * ! (size varies) !
191 * !_______________________!
192 * ! 0 word !
193 * !_______________________!
194 * ! Auxiliary !
195 * ! vector !
196 * ! 2 word entries !
197 * ! !
198 * !_______________________!
199 * ! 0 word !
200 * !_______________________!
201 * ! Environment !
202 * ! pointers !
203 * ! ... !
204 * ! (one word each) !
205 * !_______________________!
206 * ! 0 word !
207 * !_______________________!
208 * ! Argument ! low addresses
209 * ! pointers !
210 * ! Argc words !
211 * !_______________________!
212 * ! !
213 * ! Argc !
214 * !_______________________!
215 * ! ... !
216 *
217 */
218 static void
stack_cleanup(char ** argv,char *** envp,auxv_t ** auxv,int rmcnt)219 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt)
220 {
221 int ndx;
222 long *argc;
223 char **oargv, **nargv;
224 char **oenvp, **nenvp;
225 auxv_t *oauxv, *nauxv;
226
227 /*
228 * Slide ARGV[] and update argc. The argv pointer remains the same,
229 * however slide the applications arguments over the arguments to
230 * ld.so.1.
231 */
232 nargv = &argv[0];
233 oargv = &argv[rmcnt];
234
235 for (ndx = 0; oargv[ndx]; ndx++)
236 nargv[ndx] = oargv[ndx];
237 nargv[ndx] = oargv[ndx];
238
239 argc = (long *)((uintptr_t)argv - sizeof (long *));
240 *argc -= rmcnt;
241
242 /*
243 * Slide ENVP[], and update the environment array pointer.
244 */
245 ndx++;
246 nenvp = &nargv[ndx];
247 oenvp = &oargv[ndx];
248 *envp = nenvp;
249
250 for (ndx = 0; oenvp[ndx]; ndx++)
251 nenvp[ndx] = oenvp[ndx];
252 nenvp[ndx] = oenvp[ndx];
253
254 /*
255 * Slide AUXV[], and update the aux vector pointer.
256 */
257 ndx++;
258 nauxv = (auxv_t *)&nenvp[ndx];
259 oauxv = (auxv_t *)&oenvp[ndx];
260 *auxv = nauxv;
261
262 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++)
263 nauxv[ndx] = oauxv[ndx];
264 nauxv[ndx] = oauxv[ndx];
265 }
266 #else
267 /*
268 * Verify that the above routine is appropriate for any new platforms.
269 */
270 #error unsupported architecture!
271 #endif
272
273 /*
274 * Compare function for PathNode AVL tree.
275 */
276 static int
pnavl_compare(const void * n1,const void * n2)277 pnavl_compare(const void *n1, const void *n2)
278 {
279 uint_t hash1, hash2;
280 const char *st1, *st2;
281 int rc;
282
283 hash1 = ((PathNode *)n1)->pn_hash;
284 hash2 = ((PathNode *)n2)->pn_hash;
285
286 if (hash1 > hash2)
287 return (1);
288 if (hash1 < hash2)
289 return (-1);
290
291 st1 = ((PathNode *)n1)->pn_name;
292 st2 = ((PathNode *)n2)->pn_name;
293
294 rc = strcmp(st1, st2);
295 if (rc > 0)
296 return (1);
297 if (rc < 0)
298 return (-1);
299 return (0);
300 }
301
302 /*
303 * Create an AVL tree.
304 */
305 static avl_tree_t *
pnavl_create(size_t size)306 pnavl_create(size_t size)
307 {
308 avl_tree_t *avlt;
309
310 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL)
311 return (NULL);
312 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl));
313 return (avlt);
314 }
315
316 /*
317 * Determine whether a PathNode is recorded.
318 */
319 int
pnavl_recorded(avl_tree_t ** pnavl,const char * name,uint_t hash,avl_index_t * where)320 pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash,
321 avl_index_t *where)
322 {
323 PathNode pn;
324
325 /*
326 * Create the avl tree if required.
327 */
328 if ((*pnavl == NULL) &&
329 ((*pnavl = pnavl_create(sizeof (PathNode))) == NULL))
330 return (0);
331
332 pn.pn_name = name;
333 if ((pn.pn_hash = hash) == 0)
334 pn.pn_hash = sgs_str_hash(name);
335
336 if (avl_find(*pnavl, &pn, where) == NULL)
337 return (0);
338
339 return (1);
340 }
341
342 /*
343 * Determine if a pathname has already been recorded on the full path name
344 * AVL tree. This tree maintains a node for each path name that ld.so.1 has
345 * successfully loaded. If the path name does not exist in this AVL tree, then
346 * the next insertion point is deposited in "where". This value can be used by
347 * fpavl_insert() to expedite the insertion.
348 */
349 Rt_map *
fpavl_recorded(Lm_list * lml,const char * name,uint_t hash,avl_index_t * where)350 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where)
351 {
352 FullPathNode fpn, *fpnp;
353
354 /*
355 * Create the avl tree if required.
356 */
357 if ((lml->lm_fpavl == NULL) &&
358 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL))
359 return (NULL);
360
361 fpn.fpn_node.pn_name = name;
362 if ((fpn.fpn_node.pn_hash = hash) == 0)
363 fpn.fpn_node.pn_hash = sgs_str_hash(name);
364
365 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL)
366 return (NULL);
367
368 return (fpnp->fpn_lmp);
369 }
370
371 /*
372 * Insert a name into the FullPathNode AVL tree for the link-map list. The
373 * objects NAME() is the path that would have originally been searched for, and
374 * is therefore the name to associate with any "where" value. If the object has
375 * a different PATHNAME(), perhaps because it has resolved to a different file
376 * (see fullpath()), then this name will be recorded as a separate FullPathNode
377 * (see load_file()).
378 */
379 int
fpavl_insert(Lm_list * lml,Rt_map * lmp,const char * name,avl_index_t where)380 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where)
381 {
382 FullPathNode *fpnp;
383 uint_t hash = sgs_str_hash(name);
384
385 if (where == 0) {
386 /* LINTED */
387 Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where);
388
389 /*
390 * We better not get a hit now, we do not want duplicates in
391 * the tree.
392 */
393 ASSERT(_lmp == NULL);
394 }
395
396 /*
397 * Insert new node in tree.
398 */
399 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL)
400 return (0);
401
402 fpnp->fpn_node.pn_name = name;
403 fpnp->fpn_node.pn_hash = hash;
404 fpnp->fpn_lmp = lmp;
405
406 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) {
407 free(fpnp);
408 return (0);
409 }
410
411 ASSERT(lml->lm_fpavl != NULL);
412 avl_insert(lml->lm_fpavl, fpnp, where);
413 return (1);
414 }
415
416 /*
417 * Remove an object from the FullPathNode AVL tree.
418 */
419 void
fpavl_remove(Rt_map * lmp)420 fpavl_remove(Rt_map *lmp)
421 {
422 FullPathNode *fpnp;
423 Aliste idx;
424
425 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) {
426 avl_remove(LIST(lmp)->lm_fpavl, fpnp);
427 free(fpnp);
428 }
429 free(FPNODE(lmp));
430 FPNODE(lmp) = NULL;
431 }
432
433 /*
434 * Insert a path name into the not-found AVL tree.
435 *
436 * This tree maintains a node for each path name that ld.so.1 has explicitly
437 * inspected, but has failed to load during a single ld.so.1 operation. If the
438 * path name does not exist in this AVL tree, then the next insertion point is
439 * deposited in "where". This value can be used by nfavl_insert() to expedite
440 * the insertion.
441 */
442 void
nfavl_insert(const char * name,avl_index_t where)443 nfavl_insert(const char *name, avl_index_t where)
444 {
445 PathNode *pnp;
446 uint_t hash = sgs_str_hash(name);
447
448 if (where == 0) {
449 /* LINTED */
450 int in_nfavl = pnavl_recorded(&nfavl, name, hash, &where);
451
452 /*
453 * We better not get a hit now, we do not want duplicates in
454 * the tree.
455 */
456 ASSERT(in_nfavl == 0);
457 }
458
459 /*
460 * Insert new node in tree.
461 */
462 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) {
463 pnp->pn_name = name;
464 pnp->pn_hash = hash;
465 avl_insert(nfavl, pnp, where);
466 }
467 }
468
469 /*
470 * Insert the directory name, of a full path name, into the secure path AVL
471 * tree.
472 *
473 * This tree is used to maintain a list of directories in which the dependencies
474 * of a secure process have been found. This list provides a fall-back in the
475 * case that a $ORIGIN expansion is deemed insecure, when the expansion results
476 * in a path name that has already provided dependencies.
477 */
478 void
spavl_insert(const char * name)479 spavl_insert(const char *name)
480 {
481 char buffer[PATH_MAX], *str;
482 size_t size;
483 avl_index_t where;
484 PathNode *pnp;
485 uint_t hash;
486
487 /*
488 * Separate the directory name from the path name.
489 */
490 if ((str = strrchr(name, '/')) == name)
491 size = 1;
492 else
493 size = str - name;
494
495 (void) strncpy(buffer, name, size);
496 buffer[size] = '\0';
497 hash = sgs_str_hash(buffer);
498
499 /*
500 * Determine whether this directory name is already recorded, or if
501 * not, 'where" will provide the insertion point for the new string.
502 */
503 if (pnavl_recorded(&spavl, buffer, hash, &where))
504 return;
505
506 /*
507 * Insert new node in tree.
508 */
509 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) {
510 pnp->pn_name = strdup(buffer);
511 pnp->pn_hash = hash;
512 avl_insert(spavl, pnp, where);
513 }
514 }
515
516 /*
517 * Inspect the generic string AVL tree for the given string. If the string is
518 * not present, duplicate it, and insert the string in the AVL tree. Return the
519 * duplicated string to the caller.
520 *
521 * These strings are maintained for the life of ld.so.1 and represent path
522 * names, file names, and search paths. All other AVL trees that maintain
523 * FullPathNode and not-found path names use the same string pointer
524 * established for this string.
525 */
526 static avl_tree_t *stravl = NULL;
527 static char *strbuf = NULL;
528 static PathNode *pnbuf = NULL;
529 static size_t strsize = 0, pnsize = 0;
530
531 const char *
stravl_insert(const char * name,uint_t hash,size_t nsize,int substr)532 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr)
533 {
534 char str[PATH_MAX];
535 PathNode *pnp;
536 avl_index_t where;
537
538 /*
539 * Create the avl tree if required.
540 */
541 if ((stravl == NULL) &&
542 ((stravl = pnavl_create(sizeof (PathNode))) == NULL))
543 return (NULL);
544
545 /*
546 * Determine the string size if not provided by the caller.
547 */
548 if (nsize == 0)
549 nsize = strlen(name) + 1;
550 else if (substr) {
551 /*
552 * The string passed to us may be a multiple path string for
553 * which we only need the first component. Using the provided
554 * size, strip out the required string.
555 */
556 (void) strncpy(str, name, nsize);
557 str[nsize - 1] = '\0';
558 name = str;
559 }
560
561 /*
562 * Allocate a PathNode buffer if one doesn't exist, or any existing
563 * buffer has been used up.
564 */
565 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) {
566 pnsize = syspagsz;
567 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE),
568 MAP_PRIVATE)) == MAP_FAILED)
569 return (NULL);
570 }
571 /*
572 * Determine whether this string already exists.
573 */
574 pnbuf->pn_name = name;
575 if ((pnbuf->pn_hash = hash) == 0)
576 pnbuf->pn_hash = sgs_str_hash(name);
577
578 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL)
579 return (pnp->pn_name);
580
581 /*
582 * Allocate a string buffer if one does not exist, or if there is
583 * insufficient space for the new string in any existing buffer.
584 */
585 if ((strbuf == NULL) || (nsize > strsize)) {
586 strsize = S_ROUND(nsize, syspagsz);
587
588 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE),
589 MAP_PRIVATE)) == MAP_FAILED)
590 return (NULL);
591 }
592
593 (void) memcpy(strbuf, name, nsize);
594 pnp = pnbuf;
595 pnp->pn_name = strbuf;
596 avl_insert(stravl, pnp, where);
597
598 strbuf += nsize;
599 strsize -= nsize;
600 pnbuf++;
601 pnsize -= sizeof (PathNode);
602 return (pnp->pn_name);
603 }
604
605 /*
606 * Prior to calling an object, either via a .plt or through dlsym(), make sure
607 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire
608 * init's in the correct order, however, this order is typically based on needed
609 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can
610 * still occur and result in bindings that were not captured during topological
611 * sorting. This routine compensates for this lack of binding information, and
612 * provides for dynamic .init firing.
613 */
614 void
is_dep_init(Rt_map * dlmp,Rt_map * clmp)615 is_dep_init(Rt_map *dlmp, Rt_map *clmp)
616 {
617 Rt_map **tobj;
618
619 /*
620 * If the caller is an auditor, and the destination isn't, then don't
621 * run any .inits (see comments in load_completion()).
622 */
623 if ((LIST(clmp)->lm_tflags & LML_TFLG_NOAUDIT) &&
624 ((LIST(dlmp)->lm_tflags & LML_TFLG_NOAUDIT) == 0))
625 return;
626
627 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST))
628 return;
629
630 (void) rt_mutex_lock(&dlmp->rt_lock);
631 while (dlmp->rt_init_thread != rt_thr_self() && (FLAGS(dlmp) &
632 (FLG_RT_RELOCED | FLG_RT_INITCALL | FLG_RT_INITDONE)) ==
633 (FLG_RT_RELOCED | FLG_RT_INITCALL)) {
634 leave(LIST(dlmp), 0);
635 (void) _lwp_cond_wait(&dlmp->rt_cv, (mutex_t *)&dlmp->rt_lock);
636 (void) rt_mutex_unlock(&dlmp->rt_lock);
637 (void) enter(0);
638 (void) rt_mutex_lock(&dlmp->rt_lock);
639 }
640 (void) rt_mutex_unlock(&dlmp->rt_lock);
641
642 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) ==
643 (FLG_RT_RELOCED | FLG_RT_INITDONE))
644 return;
645
646 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) {
647 tobj[0] = dlmp;
648 call_init(tobj, DBG_INIT_DYN);
649 }
650 }
651
652 /*
653 * Execute .{preinit|init|fini}array sections
654 */
655 void
call_array(Addr * array,uint_t arraysz,Rt_map * lmp,Word shtype)656 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype)
657 {
658 int start, stop, incr, ndx;
659 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr));
660
661 if (array == NULL)
662 return;
663
664 /*
665 * initarray & preinitarray are walked from beginning to end - while
666 * finiarray is walked from end to beginning.
667 */
668 if (shtype == SHT_FINI_ARRAY) {
669 start = arraycnt - 1;
670 stop = incr = -1;
671 } else {
672 start = 0;
673 stop = arraycnt;
674 incr = 1;
675 }
676
677 /*
678 * Call the .*array[] entries
679 */
680 for (ndx = start; ndx != stop; ndx += incr) {
681 uint_t rtldflags;
682 void (*fptr)(void) = (void(*)())array[ndx];
683
684 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype));
685
686 APPLICATION_ENTER(rtldflags);
687 leave(LIST(lmp), 0);
688 (*fptr)();
689 (void) enter(0);
690 APPLICATION_RETURN(rtldflags);
691 }
692 }
693
694 /*
695 * Execute any .init sections. These are passed to us in an lmp array which
696 * (by default) will have been sorted.
697 */
698 void
call_init(Rt_map ** tobj,int flag)699 call_init(Rt_map **tobj, int flag)
700 {
701 Rt_map **_tobj, **_nobj;
702 static APlist *pending = NULL;
703
704 /*
705 * If we're in the middle of an INITFIRST, this must complete before
706 * any new init's are fired. In this case add the object list to the
707 * pending queue and return. We'll pick up the queue after any
708 * INITFIRST objects have their init's fired.
709 */
710 if (rtld_flags & RT_FL_INITFIRST) {
711 (void) aplist_append(&pending, tobj, AL_CNT_PENDING);
712 return;
713 }
714
715 /*
716 * Traverse the tobj array firing each objects init.
717 */
718 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) {
719 Rt_map *lmp = *_tobj;
720 void (*iptr)() = INIT(lmp);
721
722 if (FLAGS(lmp) & FLG_RT_INITCALL)
723 continue;
724
725 FLAGS(lmp) |= FLG_RT_INITCALL;
726 lmp->rt_init_thread = rt_thr_self();
727
728 /*
729 * Establish an initfirst state if necessary - no other inits
730 * will be fired (because of additional relocation bindings)
731 * when in this state.
732 */
733 if (FLAGS(lmp) & FLG_RT_INITFRST)
734 rtld_flags |= RT_FL_INITFIRST;
735
736 if (INITARRAY(lmp) || iptr)
737 DBG_CALL(Dbg_util_call_init(lmp, flag));
738
739 if (iptr) {
740 uint_t rtldflags;
741
742 APPLICATION_ENTER(rtldflags);
743 leave(LIST(lmp), 0);
744 (*iptr)();
745 (void) enter(0);
746 APPLICATION_RETURN(rtldflags);
747 }
748
749 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp,
750 SHT_INIT_ARRAY);
751
752 if (INITARRAY(lmp) || iptr)
753 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE));
754
755 /*
756 * Set the initdone flag regardless of whether this object
757 * actually contains an .init section. This flag prevents us
758 * from processing this section again for an .init and also
759 * signifies that a .fini must be called should it exist.
760 * Clear the sort field for use in later .fini processing.
761 */
762 (void) rt_mutex_lock(&lmp->rt_lock);
763 FLAGS(lmp) |= FLG_RT_INITDONE;
764 lmp->rt_init_thread = (thread_t)0;
765 (void) _lwp_cond_broadcast(&lmp->rt_cv);
766 (void) rt_mutex_unlock(&lmp->rt_lock);
767 SORTVAL(lmp) = -1;
768
769 /*
770 * If we're firing an INITFIRST object, and other objects must
771 * be fired which are not INITFIRST, make sure we grab any
772 * pending objects that might have been delayed as this
773 * INITFIRST was processed.
774 */
775 if ((rtld_flags & RT_FL_INITFIRST) &&
776 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) {
777 Aliste idx;
778 Rt_map **pobj;
779
780 rtld_flags &= ~RT_FL_INITFIRST;
781
782 for (APLIST_TRAVERSE(pending, idx, pobj)) {
783 aplist_delete(pending, &idx);
784 call_init(pobj, DBG_INIT_PEND);
785 }
786 }
787 }
788 free(tobj);
789 }
790
791 /*
792 * Call .fini sections for the topologically sorted list of objects. This
793 * routine is called from remove_hdl() for any objects being torn down as part
794 * of a dlclose() operation, and from atexit() processing for all the remaining
795 * objects within the process.
796 */
797 void
call_fini(Lm_list * lml,Rt_map ** tobj,Rt_map * clmp)798 call_fini(Lm_list *lml, Rt_map **tobj, Rt_map *clmp)
799 {
800 Rt_map **_tobj;
801
802 for (_tobj = tobj; *_tobj != NULL; _tobj++) {
803 Rt_map *lmp = *_tobj;
804
805 /*
806 * Only fire a .fini if the objects corresponding .init has
807 * completed. We collect all .fini sections of objects that
808 * had their .init collected, but that doesn't mean that at
809 * the time of collection, that the .init had completed.
810 */
811 if (FLAGS(lmp) & FLG_RT_INITDONE) {
812 void (*fptr)(void) = FINI(lmp);
813
814 if (FINIARRAY(lmp) || fptr)
815 DBG_CALL(Dbg_util_call_fini(lmp));
816
817 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp,
818 SHT_FINI_ARRAY);
819
820 if (fptr) {
821 uint_t rtldflags;
822
823 APPLICATION_ENTER(rtldflags);
824 leave(lml, 0);
825 (*fptr)();
826 (void) enter(0);
827 APPLICATION_RETURN(rtldflags);
828 }
829 }
830
831 /*
832 * Skip main, this is explicitly called last in atexit_fini().
833 */
834 if (FLAGS(lmp) & FLG_RT_ISMAIN)
835 continue;
836
837 /*
838 * This object has exercised its last instructions (regardless
839 * of whether it will be unmapped or not). Audit this closure.
840 */
841 if ((lml->lm_tflags & LML_TFLG_NOAUDIT) == 0)
842 audit_objclose(lmp, clmp);
843 }
844
845 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d,
846 pltcntu32, pltcntu44, pltcntfull, pltcntfar));
847
848 free(tobj);
849 }
850
851 /*
852 * Function called by atexit(3C). Calls all .fini sections within the objects
853 * that make up the process. As .fini processing is the last opportunity for
854 * any new bindings to be established, this is also a convenient location to
855 * check for unused objects.
856 */
857 void
atexit_fini()858 atexit_fini()
859 {
860 Rt_map **tobj, *lmp;
861 Lm_list *lml;
862 Aliste idx;
863
864 (void) enter(0);
865
866 rtld_flags |= RT_FL_ATEXIT;
867
868 lml = &lml_main;
869 lml->lm_flags |= LML_FLG_ATEXIT;
870 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
871 lmp = (Rt_map *)lml->lm_head;
872
873 /*
874 * Reverse topologically sort the main link-map for .fini execution.
875 */
876 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
877 (tobj != (Rt_map **)S_ERROR))
878 call_fini(lml, tobj, NULL);
879
880 /*
881 * Now that all .fini code has been run, see what unreferenced objects
882 * remain.
883 */
884 unused(lml);
885
886 /*
887 * Traverse any alternative link-map lists, looking for non-auditors.
888 */
889 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
890 /*
891 * Ignore the base-link-map list, which has already been
892 * processed, the runtime linkers link-map list, which is
893 * processed last, and any auditors.
894 */
895 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) ||
896 (lml->lm_tflags & LML_TFLG_AUD_MASK) ||
897 ((lmp = (Rt_map *)lml->lm_head) == NULL))
898 continue;
899
900 lml->lm_flags |= LML_FLG_ATEXIT;
901 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
902
903 /*
904 * Reverse topologically sort the link-map for .fini execution.
905 */
906 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
907 (tobj != (Rt_map **)S_ERROR))
908 call_fini(lml, tobj, NULL);
909
910 unused(lml);
911 }
912
913 /*
914 * Add an explicit close to main and ld.so.1. Although main's .fini is
915 * collected in call_fini() to provide for FINITARRAY processing, its
916 * audit_objclose is explicitly skipped. This provides for it to be
917 * called last, here. This is the reverse of the explicit calls to
918 * audit_objopen() made in setup().
919 */
920 lml = &lml_main;
921 lmp = (Rt_map *)lml->lm_head;
922
923 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) {
924 audit_objclose((Rt_map *)lml_rtld.lm_head, lmp);
925 audit_objclose(lmp, lmp);
926 }
927
928 /*
929 * Traverse any alternative link-map lists, looking for non-auditors.
930 */
931 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
932 /*
933 * Ignore the base-link-map list, which has already been
934 * processed, the runtime linkers link-map list, which is
935 * processed last, and any non-auditors.
936 */
937 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) ||
938 ((lml->lm_tflags & LML_TFLG_AUD_MASK) == 0) ||
939 ((lmp = (Rt_map *)lml->lm_head) == NULL))
940 continue;
941
942 lml->lm_flags |= LML_FLG_ATEXIT;
943 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
944
945 /*
946 * Reverse topologically sort the link-map for .fini execution.
947 */
948 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
949 (tobj != (Rt_map **)S_ERROR))
950 call_fini(lml, tobj, NULL);
951
952 unused(lml);
953 }
954
955 /*
956 * Finally reverse topologically sort the runtime linkers link-map for
957 * .fini execution.
958 */
959 lml = &lml_rtld;
960 lml->lm_flags |= LML_FLG_ATEXIT;
961 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
962 lmp = (Rt_map *)lml->lm_head;
963
964 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
965 (tobj != (Rt_map **)S_ERROR))
966 call_fini(lml, tobj, NULL);
967
968 leave(&lml_main, 0);
969 }
970
971 /*
972 * This routine is called to complete any runtime linker activity which may have
973 * resulted in objects being loaded. This is called from all user entry points
974 * and from any internal dl*() requests.
975 */
976 void
load_completion(Rt_map * nlmp)977 load_completion(Rt_map *nlmp)
978 {
979 Rt_map **tobj = NULL;
980 Lm_list *nlml;
981
982 /*
983 * Establish any .init processing. Note, in a world of lazy loading,
984 * objects may have been loaded regardless of whether the users request
985 * was fulfilled (i.e., a dlsym() request may have failed to find a
986 * symbol but objects might have been loaded during its search). Thus,
987 * any tsorting starts from the nlmp (new link-maps) pointer and not
988 * necessarily from the link-map that may have satisfied the request.
989 *
990 * Note, the primary link-map has an initialization phase where dynamic
991 * .init firing is suppressed. This provides for a simple and clean
992 * handshake with the primary link-maps libc, which is important for
993 * establishing uberdata. In addition, auditors often obtain handles
994 * to primary link-map objects as the objects are loaded, so as to
995 * inspect the link-map for symbols. This inspection is allowed without
996 * running any code on the primary link-map, as running this code may
997 * reenter the auditor, who may not yet have finished its own
998 * initialization.
999 */
1000 if (nlmp)
1001 nlml = LIST(nlmp);
1002
1003 if (nlmp && nlml->lm_init && ((nlml != &lml_main) ||
1004 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) {
1005 if ((tobj = tsort(nlmp, nlml->lm_init,
1006 RT_SORT_REV)) == (Rt_map **)S_ERROR)
1007 tobj = NULL;
1008 }
1009
1010 /*
1011 * Make sure any alternative link-map retrieves any external interfaces
1012 * and initializes threads.
1013 */
1014 if (nlmp && (nlml != &lml_main)) {
1015 (void) rt_get_extern(nlml, nlmp);
1016 rt_thr_init(nlml);
1017 }
1018
1019 /*
1020 * Traverse the list of new link-maps and register any dynamic TLS.
1021 * This storage is established for any objects not on the primary
1022 * link-map, and for any objects added to the primary link-map after
1023 * static TLS has been registered.
1024 */
1025 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) ||
1026 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) {
1027 Rt_map *lmp;
1028
1029 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) {
1030 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz)
1031 tls_modaddrem(lmp, TM_FLG_MODADD);
1032 }
1033 nlml->lm_tls = 0;
1034 }
1035
1036 /*
1037 * Fire any .init's.
1038 */
1039 if (tobj)
1040 call_init(tobj, DBG_INIT_SORT);
1041 }
1042
1043 /*
1044 * Append an item to the specified link map control list.
1045 */
1046 void
lm_append(Lm_list * lml,Aliste lmco,Rt_map * lmp)1047 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp)
1048 {
1049 Lm_cntl *lmc;
1050 int add = 1;
1051
1052 /*
1053 * Indicate that this link-map list has a new object.
1054 */
1055 (lml->lm_obj)++;
1056
1057 /*
1058 * If we're about to add a new object to the main link-map control
1059 * list, alert the debuggers. Additions of individual objects to the
1060 * main link-map control list occur during initial setup as the
1061 * applications immediate dependencies are loaded. Additional objects
1062 * are loaded on the main link-map control list after they have been
1063 * fully initialized on an alternative link-map control list. See
1064 * lm_move().
1065 */
1066 if (lmco == ALIST_OFF_DATA)
1067 rd_event(lml, RD_DLACTIVITY, RT_ADD);
1068
1069 /* LINTED */
1070 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco);
1071
1072 /*
1073 * A link-map list header points to one of more link-map control lists
1074 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is
1075 * the list of relocated objects. Other lists maintain objects that
1076 * are still being analyzed or relocated. This list provides the core
1077 * link-map list information used by all ld.so.1 routines.
1078 */
1079 if (lmc->lc_head == NULL) {
1080 /*
1081 * If this is the first link-map for the given control list,
1082 * initialize the list.
1083 */
1084 lmc->lc_head = lmc->lc_tail = lmp;
1085 add = 0;
1086
1087 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) {
1088 Rt_map *tlmp;
1089
1090 /*
1091 * If this is an interposer then append the link-map following
1092 * any other interposers (these are objects that have been
1093 * previously preloaded, or were identified with -z interpose).
1094 * Interposers can only be inserted on the first link-map
1095 * control list, as once relocation has started, interposition
1096 * from new interposers can't be guaranteed.
1097 *
1098 * NOTE: We do not interpose on the head of a list. This model
1099 * evolved because dynamic executables have already been fully
1100 * relocated within themselves and thus can't be interposed on.
1101 * Nowadays it's possible to have shared objects at the head of
1102 * a list, which conceptually means they could be interposed on.
1103 * But, shared objects can be created via dldump() and may only
1104 * be partially relocated (just relatives), in which case they
1105 * are interposable, but are marked as fixed (ET_EXEC).
1106 *
1107 * Thus we really don't have a clear method of deciding when the
1108 * head of a link-map is interposable. So, to be consistent,
1109 * for now only add interposers after the link-map lists head
1110 * object.
1111 */
1112 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp;
1113 tlmp = NEXT_RT_MAP(tlmp)) {
1114
1115 if (FLAGS(tlmp) & FLG_RT_OBJINTPO)
1116 continue;
1117
1118 /*
1119 * Insert the new link-map before this non-interposer,
1120 * and indicate an interposer is found.
1121 */
1122 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp;
1123 PREV(lmp) = PREV(tlmp);
1124
1125 NEXT(lmp) = (Link_map *)tlmp;
1126 PREV(tlmp) = (Link_map *)lmp;
1127
1128 lmc->lc_flags |= LMC_FLG_REANALYZE;
1129 add = 0;
1130 break;
1131 }
1132 }
1133
1134 /*
1135 * Fall through to appending the new link map to the tail of the list.
1136 * If we're processing the initial objects of this link-map list, add
1137 * them to the backward compatibility list.
1138 */
1139 if (add) {
1140 NEXT(lmc->lc_tail) = (Link_map *)lmp;
1141 PREV(lmp) = (Link_map *)lmc->lc_tail;
1142 lmc->lc_tail = lmp;
1143 }
1144
1145 /*
1146 * Having added this link-map to a control list, indicate which control
1147 * list the link-map belongs to. Note, control list information is
1148 * always maintained as an offset, as the Alist can be reallocated.
1149 */
1150 CNTL(lmp) = lmco;
1151
1152 /*
1153 * Indicate if an interposer is found. Note that the first object on a
1154 * link-map can be explicitly defined as an interposer so that it can
1155 * provide interposition over direct binding requests.
1156 */
1157 if (FLAGS(lmp) & MSK_RT_INTPOSE)
1158 lml->lm_flags |= LML_FLG_INTRPOSE;
1159
1160 /*
1161 * For backward compatibility with debuggers, the link-map list contains
1162 * pointers to the main control list.
1163 */
1164 if (lmco == ALIST_OFF_DATA) {
1165 lml->lm_head = lmc->lc_head;
1166 lml->lm_tail = lmc->lc_tail;
1167 }
1168 }
1169
1170 /*
1171 * Delete an item from the specified link map control list.
1172 */
1173 void
lm_delete(Lm_list * lml,Rt_map * lmp,Rt_map * clmp)1174 lm_delete(Lm_list *lml, Rt_map *lmp, Rt_map *clmp)
1175 {
1176 Lm_cntl *lmc;
1177
1178 /*
1179 * If the control list pointer hasn't been initialized, this object
1180 * never got added to a link-map list.
1181 */
1182 if (CNTL(lmp) == 0)
1183 return;
1184
1185 /*
1186 * If we're about to delete an object from the main link-map control
1187 * list, alert the debuggers.
1188 */
1189 if (CNTL(lmp) == ALIST_OFF_DATA)
1190 rd_event(lml, RD_DLACTIVITY, RT_DELETE);
1191
1192 /*
1193 * If we're being audited tell the audit library that we're
1194 * about to go deleting dependencies.
1195 */
1196 if (clmp && (aud_activity ||
1197 ((LIST(clmp)->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_ACTIVITY)))
1198 audit_activity(clmp, LA_ACT_DELETE);
1199
1200 /* LINTED */
1201 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp));
1202
1203 if (lmc->lc_head == lmp)
1204 lmc->lc_head = NEXT_RT_MAP(lmp);
1205 else
1206 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp);
1207
1208 if (lmc->lc_tail == lmp)
1209 lmc->lc_tail = PREV_RT_MAP(lmp);
1210 else
1211 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp);
1212
1213 /*
1214 * For backward compatibility with debuggers, the link-map list contains
1215 * pointers to the main control list.
1216 */
1217 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) {
1218 lml->lm_head = lmc->lc_head;
1219 lml->lm_tail = lmc->lc_tail;
1220 }
1221
1222 /*
1223 * Indicate we have one less object on this control list.
1224 */
1225 (lml->lm_obj)--;
1226 }
1227
1228 /*
1229 * Move a link-map control list to another. Objects that are being relocated
1230 * are maintained on secondary control lists. Once their relocation is
1231 * complete, the entire list is appended to the previous control list, as this
1232 * list must have been the trigger for generating the new control list.
1233 */
1234 void
lm_move(Lm_list * lml,Aliste nlmco,Aliste plmco,Lm_cntl * nlmc,Lm_cntl * plmc)1235 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc)
1236 {
1237 Rt_map *lmp;
1238
1239 /*
1240 * If we're about to add a new family of objects to the main link-map
1241 * control list, alert the debuggers. Additions of object families to
1242 * the main link-map control list occur during lazy loading, filtering
1243 * and dlopen().
1244 */
1245 if (plmco == ALIST_OFF_DATA)
1246 rd_event(lml, RD_DLACTIVITY, RT_ADD);
1247
1248 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco));
1249
1250 /*
1251 * Indicate each new link-map has been moved to the previous link-map
1252 * control list.
1253 */
1254 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) {
1255 CNTL(lmp) = plmco;
1256
1257 /*
1258 * If these objects are being added to the main link-map
1259 * control list, indicate that there are init's available
1260 * for harvesting.
1261 */
1262 if (plmco == ALIST_OFF_DATA) {
1263 lml->lm_init++;
1264 lml->lm_flags |= LML_FLG_OBJADDED;
1265 }
1266 }
1267
1268 /*
1269 * Move the new link-map control list, to the callers link-map control
1270 * list.
1271 */
1272 if (plmc->lc_head == NULL) {
1273 plmc->lc_head = nlmc->lc_head;
1274 PREV(nlmc->lc_head) = NULL;
1275 } else {
1276 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head;
1277 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail;
1278 }
1279
1280 plmc->lc_tail = nlmc->lc_tail;
1281 nlmc->lc_head = nlmc->lc_tail = NULL;
1282
1283 /*
1284 * For backward compatibility with debuggers, the link-map list contains
1285 * pointers to the main control list.
1286 */
1287 if (plmco == ALIST_OFF_DATA) {
1288 lml->lm_head = plmc->lc_head;
1289 lml->lm_tail = plmc->lc_tail;
1290 }
1291 }
1292
1293 /*
1294 * Create, or assign a link-map control list. Each link-map list contains a
1295 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the
1296 * description in include/rtld.h). During the initial construction of a
1297 * process, objects are added to this main control list. This control list is
1298 * never deleted, unless an alternate link-map list has been requested (say for
1299 * auditors), and the associated objects could not be loaded or relocated.
1300 *
1301 * Once relocation has started, any lazy loadable objects, or filtees, are
1302 * processed on a new, temporary control list. Only when these objects have
1303 * been fully relocated, are they moved to the main link-map control list.
1304 * Once the objects are moved, this temporary control list is deleted (see
1305 * remove_cntl()).
1306 *
1307 * A dlopen() always requires a new temporary link-map control list.
1308 * Typically, a dlopen() occurs on a link-map list that had already started
1309 * relocation, however, auditors can dlopen() objects on the main link-map
1310 * list while under initial construction, before any relocation has begun.
1311 * Hence, dlopen() requests are explicitly flagged.
1312 */
1313 Aliste
create_cntl(Lm_list * lml,int dlopen)1314 create_cntl(Lm_list *lml, int dlopen)
1315 {
1316 /*
1317 * If the head link-map object has already been relocated, create a
1318 * new, temporary, control list.
1319 */
1320 if (dlopen || (lml->lm_head == NULL) ||
1321 (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) {
1322 Lm_cntl *lmc;
1323
1324 if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl),
1325 AL_CNT_LMLISTS)) == NULL)
1326 return (NULL);
1327
1328 return ((Aliste)((char *)lmc - (char *)lml->lm_lists));
1329 }
1330
1331 return (ALIST_OFF_DATA);
1332 }
1333
1334 /*
1335 * Environment variables can have a variety of defined permutations, and thus
1336 * the following infrastructure exists to allow this variety and to select the
1337 * required definition.
1338 *
1339 * Environment variables can be defined as 32- or 64-bit specific, and if so
1340 * they will take precedence over any instruction set neutral form. Typically
1341 * this is only useful when the environment value is an informational string.
1342 *
1343 * Environment variables may be obtained from the standard user environment or
1344 * from a configuration file. The latter provides a fallback if no user
1345 * environment setting is found, and can take two forms:
1346 *
1347 * - a replaceable definition - this will be used if no user environment
1348 * setting has been seen, or
1349 *
1350 * - an permanent definition - this will be used no matter what user
1351 * environment setting is seen. In the case of list variables it will be
1352 * appended to any process environment setting seen.
1353 *
1354 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to
1355 * override any replaceable environment variables from a configuration file.
1356 */
1357 static u_longlong_t rplgen = 0; /* replaceable generic */
1358 /* variables */
1359 static u_longlong_t rplisa = 0; /* replaceable ISA specific */
1360 /* variables */
1361 static u_longlong_t prmgen = 0; /* permanent generic */
1362 /* variables */
1363 static u_longlong_t prmisa = 0; /* permanent ISA specific */
1364 /* variables */
1365 static u_longlong_t cmdgen = 0; /* command line (-e) generic */
1366 /* variables */
1367 static u_longlong_t cmdisa = 0; /* command line (-e) ISA */
1368 /* specific variables */
1369
1370 /*
1371 * Classify an environment variables type.
1372 */
1373 #define ENV_TYP_IGNORE 0x01 /* ignore - variable is for */
1374 /* the wrong ISA */
1375 #define ENV_TYP_ISA 0x02 /* variable is ISA specific */
1376 #define ENV_TYP_CONFIG 0x04 /* variable obtained from a */
1377 /* config file */
1378 #define ENV_TYP_PERMANT 0x08 /* variable is permanent */
1379 #define ENV_TYP_CMDLINE 0x10 /* variable provide with -e */
1380 #define ENV_TYP_NULL 0x20 /* variable is null */
1381
1382 /*
1383 * Identify all environment variables.
1384 */
1385 #define ENV_FLG_AUDIT 0x0000000000001ULL
1386 #define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL
1387 #define ENV_FLG_BIND_NOW 0x0000000000004ULL
1388 #define ENV_FLG_BIND_NOT 0x0000000000008ULL
1389 #define ENV_FLG_BINDINGS 0x0000000000010ULL
1390 #define ENV_FLG_CONFGEN 0x0000000000020ULL
1391 #define ENV_FLG_CONFIG 0x0000000000040ULL
1392 #define ENV_FLG_DEBUG 0x0000000000080ULL
1393 #define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL
1394 #define ENV_FLG_DEMANGLE 0x0000000000200ULL
1395 #define ENV_FLG_FLAGS 0x0000000000400ULL
1396 #define ENV_FLG_INIT 0x0000000000800ULL
1397 #define ENV_FLG_LIBPATH 0x0000000001000ULL
1398 #define ENV_FLG_LOADAVAIL 0x0000000002000ULL
1399 #define ENV_FLG_LOADFLTR 0x0000000004000ULL
1400 #define ENV_FLG_NOAUDIT 0x0000000008000ULL
1401 #define ENV_FLG_NOAUXFLTR 0x0000000010000ULL
1402 #define ENV_FLG_NOBAPLT 0x0000000020000ULL
1403 #define ENV_FLG_NOCONFIG 0x0000000040000ULL
1404 #define ENV_FLG_NODIRCONFIG 0x0000000080000ULL
1405 #define ENV_FLG_NODIRECT 0x0000000100000ULL
1406 #define ENV_FLG_NOENVCONFIG 0x0000000200000ULL
1407 #define ENV_FLG_NOLAZY 0x0000000400000ULL
1408 #define ENV_FLG_NOOBJALTER 0x0000000800000ULL
1409 #define ENV_FLG_NOVERSION 0x0000001000000ULL
1410 #define ENV_FLG_PRELOAD 0x0000002000000ULL
1411 #define ENV_FLG_PROFILE 0x0000004000000ULL
1412 #define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL
1413 #define ENV_FLG_SIGNAL 0x0000010000000ULL
1414 #define ENV_FLG_TRACE_OBJS 0x0000020000000ULL
1415 #define ENV_FLG_TRACE_PTHS 0x0000040000000ULL
1416 #define ENV_FLG_UNREF 0x0000080000000ULL
1417 #define ENV_FLG_UNUSED 0x0000100000000ULL
1418 #define ENV_FLG_VERBOSE 0x0000200000000ULL
1419 #define ENV_FLG_WARN 0x0000400000000ULL
1420 #define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL
1421 #define ENV_FLG_BIND_LAZY 0x0001000000000ULL
1422 #define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL
1423 #define ENV_FLG_NOPAREXT 0x0004000000000ULL
1424 #define ENV_FLG_HWCAP 0x0008000000000ULL
1425 #define ENV_FLG_SFCAP 0x0010000000000ULL
1426 #define ENV_FLG_MACHCAP 0x0020000000000ULL
1427 #define ENV_FLG_PLATCAP 0x0040000000000ULL
1428 #define ENV_FLG_CAP_FILES 0x0080000000000ULL
1429 #define ENV_FLG_DEFERRED 0x0100000000000ULL
1430 #define ENV_FLG_NOENVIRON 0x0200000000000ULL
1431
1432 #define SEL_REPLACE 0x0001
1433 #define SEL_PERMANT 0x0002
1434 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */
1435 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */
1436 #define SEL_ACT_STR 0x0400 /* setting string value */
1437 #define SEL_ACT_LML 0x0800 /* setting lml_flags */
1438 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */
1439 #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */
1440 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */
1441
1442 /*
1443 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part
1444 * and len specifies its length (comparing a strings length before the string
1445 * itself speed things up). s2 points to the token itself which has already
1446 * had any leading white-space removed.
1447 */
1448 static void
ld_generic_env(const char * s1,size_t len,const char * s2,Word * lmflags,Word * lmtflags,uint_t env_flags,int aout)1449 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags,
1450 Word *lmtflags, uint_t env_flags, int aout)
1451 {
1452 u_longlong_t variable = 0;
1453 ushort_t select = 0;
1454 const char **str;
1455 Word val = 0;
1456
1457 /*
1458 * Determine whether we're dealing with a replaceable or permanent
1459 * string.
1460 */
1461 if (env_flags & ENV_TYP_PERMANT) {
1462 /*
1463 * If the string is from a configuration file and defined as
1464 * permanent, assign it as permanent.
1465 */
1466 select |= SEL_PERMANT;
1467 } else
1468 select |= SEL_REPLACE;
1469
1470 /*
1471 * Parse the variable given.
1472 *
1473 * The LD_AUDIT family.
1474 */
1475 if (*s1 == 'A') {
1476 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1,
1477 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) {
1478 /*
1479 * Replaceable and permanent audit objects can exist.
1480 */
1481 select |= SEL_ACT_STR;
1482 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit;
1483 variable = ENV_FLG_AUDIT;
1484 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) &&
1485 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS),
1486 MSG_LD_AUDIT_ARGS_SIZE) == 0)) {
1487 /*
1488 * A specialized variable for plt_exit() use, not
1489 * documented for general use.
1490 */
1491 select |= SEL_ACT_SPEC_2;
1492 variable = ENV_FLG_AUDIT_ARGS;
1493 }
1494 }
1495 /*
1496 * The LD_BIND family.
1497 */
1498 else if (*s1 == 'B') {
1499 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1,
1500 MSG_ORIG(MSG_LD_BIND_LAZY),
1501 MSG_LD_BIND_LAZY_SIZE) == 0)) {
1502 select |= SEL_ACT_RT2;
1503 val = RT_FL2_BINDLAZY;
1504 variable = ENV_FLG_BIND_LAZY;
1505 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1,
1506 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) {
1507 select |= SEL_ACT_RT2;
1508 val = RT_FL2_BINDNOW;
1509 variable = ENV_FLG_BIND_NOW;
1510 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1,
1511 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) {
1512 /*
1513 * Another trick, enabled to help debug AOUT
1514 * applications under BCP, but not documented for
1515 * general use.
1516 */
1517 select |= SEL_ACT_RT;
1518 val = RT_FL_NOBIND;
1519 variable = ENV_FLG_BIND_NOT;
1520 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1,
1521 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) {
1522 /*
1523 * This variable is simply for backward compatibility.
1524 * If this and LD_DEBUG are both specified, only one of
1525 * the strings is going to get processed.
1526 */
1527 select |= SEL_ACT_SPEC_2;
1528 variable = ENV_FLG_BINDINGS;
1529 }
1530 }
1531 /*
1532 * LD_CAP_FILES and LD_CONFIG family.
1533 */
1534 else if (*s1 == 'C') {
1535 if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1,
1536 MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) {
1537 select |= SEL_ACT_STR;
1538 str = (select & SEL_REPLACE) ?
1539 &rpl_cap_files : &prm_cap_files;
1540 variable = ENV_FLG_CAP_FILES;
1541 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1,
1542 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) {
1543 /*
1544 * This variable is not documented for general use.
1545 * Although originaly designed for internal use with
1546 * crle(1), this variable is in use by the Studio
1547 * auditing tools. Hence, it can't be removed.
1548 */
1549 select |= SEL_ACT_SPEC_2;
1550 variable = ENV_FLG_CONFGEN;
1551 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1,
1552 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) {
1553 /*
1554 * Secure applications must use a default configuration
1555 * file. A setting from a configuration file doesn't
1556 * make sense (given we must be reading a configuration
1557 * file to have gotten this).
1558 */
1559 if ((rtld_flags & RT_FL_SECURE) ||
1560 (env_flags & ENV_TYP_CONFIG))
1561 return;
1562 select |= SEL_ACT_STR;
1563 str = &config->c_name;
1564 variable = ENV_FLG_CONFIG;
1565 }
1566 }
1567 /*
1568 * The LD_DEBUG family, LD_DEFERRED (internal, used by ldd(1)), and
1569 * LD_DEMANGLE.
1570 */
1571 else if (*s1 == 'D') {
1572 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1,
1573 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) {
1574 select |= SEL_ACT_STR;
1575 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug;
1576 variable = ENV_FLG_DEBUG;
1577 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1,
1578 MSG_ORIG(MSG_LD_DEBUG_OUTPUT),
1579 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) {
1580 select |= SEL_ACT_STR;
1581 str = &dbg_file;
1582 variable = ENV_FLG_DEBUG_OUTPUT;
1583 } else if ((len == MSG_LD_DEFERRED_SIZE) && (strncmp(s1,
1584 MSG_ORIG(MSG_LD_DEFERRED), MSG_LD_DEFERRED_SIZE) == 0)) {
1585 select |= SEL_ACT_RT;
1586 val = RT_FL_DEFERRED;
1587 variable = ENV_FLG_DEFERRED;
1588 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1,
1589 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) {
1590 select |= SEL_ACT_RT;
1591 val = RT_FL_DEMANGLE;
1592 variable = ENV_FLG_DEMANGLE;
1593 }
1594 }
1595 /*
1596 * LD_FLAGS - collect the best variable definition. On completion of
1597 * environment variable processing pass the result to ld_flags_env()
1598 * where they'll be decomposed and passed back to this routine.
1599 */
1600 else if (*s1 == 'F') {
1601 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1,
1602 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) {
1603 select |= SEL_ACT_SPEC_1;
1604 str = (select & SEL_REPLACE) ? &rpl_ldflags :
1605 &prm_ldflags;
1606 variable = ENV_FLG_FLAGS;
1607 }
1608 }
1609 /*
1610 * LD_HWCAP.
1611 */
1612 else if (*s1 == 'H') {
1613 if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1,
1614 MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) {
1615 select |= SEL_ACT_STR;
1616 str = (select & SEL_REPLACE) ?
1617 &rpl_hwcap : &prm_hwcap;
1618 variable = ENV_FLG_HWCAP;
1619 }
1620 }
1621 /*
1622 * LD_INIT (internal, used by ldd(1)).
1623 */
1624 else if (*s1 == 'I') {
1625 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1,
1626 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) {
1627 select |= SEL_ACT_LML;
1628 val = LML_FLG_TRC_INIT;
1629 variable = ENV_FLG_INIT;
1630 }
1631 }
1632 /*
1633 * The LD_LIBRARY_PATH and LD_LOAD families.
1634 */
1635 else if (*s1 == 'L') {
1636 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1,
1637 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) {
1638 select |= SEL_ACT_SPEC_1;
1639 str = (select & SEL_REPLACE) ? &rpl_libpath :
1640 &prm_libpath;
1641 variable = ENV_FLG_LIBPATH;
1642 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1,
1643 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) {
1644 /*
1645 * This variable is not documented for general use.
1646 * Although originaly designed for internal use with
1647 * crle(1), this variable is in use by the Studio
1648 * auditing tools. Hence, it can't be removed.
1649 */
1650 select |= SEL_ACT_LML;
1651 val = LML_FLG_LOADAVAIL;
1652 variable = ENV_FLG_LOADAVAIL;
1653 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1,
1654 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) {
1655 select |= SEL_ACT_SPEC_2;
1656 variable = ENV_FLG_LOADFLTR;
1657 }
1658 }
1659 /*
1660 * LD_MACHCAP.
1661 */
1662 else if (*s1 == 'M') {
1663 if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1,
1664 MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) {
1665 select |= SEL_ACT_STR;
1666 str = (select & SEL_REPLACE) ?
1667 &rpl_machcap : &prm_machcap;
1668 variable = ENV_FLG_MACHCAP;
1669 }
1670 }
1671 /*
1672 * The LD_NO family.
1673 */
1674 else if (*s1 == 'N') {
1675 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1,
1676 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) {
1677 select |= SEL_ACT_RT;
1678 val = RT_FL_NOAUDIT;
1679 variable = ENV_FLG_NOAUDIT;
1680 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1,
1681 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) {
1682 select |= SEL_ACT_RT;
1683 val = RT_FL_NOAUXFLTR;
1684 variable = ENV_FLG_NOAUXFLTR;
1685 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1,
1686 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) {
1687 select |= SEL_ACT_RT;
1688 val = RT_FL_NOBAPLT;
1689 variable = ENV_FLG_NOBAPLT;
1690 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1,
1691 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) {
1692 select |= SEL_ACT_RT;
1693 val = RT_FL_NOCFG;
1694 variable = ENV_FLG_NOCONFIG;
1695 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1,
1696 MSG_ORIG(MSG_LD_NODIRCONFIG),
1697 MSG_LD_NODIRCONFIG_SIZE) == 0)) {
1698 select |= SEL_ACT_RT;
1699 val = RT_FL_NODIRCFG;
1700 variable = ENV_FLG_NODIRCONFIG;
1701 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1,
1702 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) {
1703 select |= SEL_ACT_LMLT;
1704 val = LML_TFLG_NODIRECT;
1705 variable = ENV_FLG_NODIRECT;
1706 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1,
1707 MSG_ORIG(MSG_LD_NOENVCONFIG),
1708 MSG_LD_NOENVCONFIG_SIZE) == 0)) {
1709 select |= SEL_ACT_RT;
1710 val = RT_FL_NOENVCFG;
1711 variable = ENV_FLG_NOENVCONFIG;
1712 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1,
1713 MSG_ORIG(MSG_LD_NOFLTCONFIG),
1714 MSG_LD_NOFLTCONFIG_SIZE) == 0)) {
1715 select |= SEL_ACT_RT2;
1716 val = RT_FL2_NOFLTCFG;
1717 variable = ENV_FLG_NOFLTCONFIG;
1718 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1,
1719 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) {
1720 select |= SEL_ACT_LMLT;
1721 val = LML_TFLG_NOLAZYLD;
1722 variable = ENV_FLG_NOLAZY;
1723 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1,
1724 MSG_ORIG(MSG_LD_NOOBJALTER),
1725 MSG_LD_NOOBJALTER_SIZE) == 0)) {
1726 select |= SEL_ACT_RT;
1727 val = RT_FL_NOOBJALT;
1728 variable = ENV_FLG_NOOBJALTER;
1729 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1,
1730 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) {
1731 select |= SEL_ACT_RT;
1732 val = RT_FL_NOVERSION;
1733 variable = ENV_FLG_NOVERSION;
1734 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1,
1735 MSG_ORIG(MSG_LD_NOUNRESWEAK),
1736 MSG_LD_NOUNRESWEAK_SIZE) == 0)) {
1737 /*
1738 * LD_NOUNRESWEAK (internal, used by ldd(1)).
1739 */
1740 select |= SEL_ACT_LML;
1741 val = LML_FLG_TRC_NOUNRESWEAK;
1742 variable = ENV_FLG_NOUNRESWEAK;
1743 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1,
1744 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) {
1745 select |= SEL_ACT_LML;
1746 val = LML_FLG_TRC_NOPAREXT;
1747 variable = ENV_FLG_NOPAREXT;
1748 } else if ((len == MSG_LD_NOENVIRON_SIZE) && (strncmp(s1,
1749 MSG_ORIG(MSG_LD_NOENVIRON), MSG_LD_NOENVIRON_SIZE) == 0)) {
1750 /*
1751 * LD_NOENVIRON can only be set with ld.so.1 -e.
1752 */
1753 select |= SEL_ACT_RT;
1754 val = RT_FL_NOENVIRON;
1755 variable = ENV_FLG_NOENVIRON;
1756 }
1757 }
1758 /*
1759 * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family.
1760 */
1761 else if (*s1 == 'P') {
1762 if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1,
1763 MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) {
1764 select |= SEL_ACT_STR;
1765 str = (select & SEL_REPLACE) ?
1766 &rpl_platcap : &prm_platcap;
1767 variable = ENV_FLG_PLATCAP;
1768 } else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1,
1769 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) {
1770 select |= SEL_ACT_STR;
1771 str = (select & SEL_REPLACE) ? &rpl_preload :
1772 &prm_preload;
1773 variable = ENV_FLG_PRELOAD;
1774 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1,
1775 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) {
1776 /*
1777 * Only one user library can be profiled at a time.
1778 */
1779 select |= SEL_ACT_SPEC_2;
1780 variable = ENV_FLG_PROFILE;
1781 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1,
1782 MSG_ORIG(MSG_LD_PROFILE_OUTPUT),
1783 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) {
1784 /*
1785 * Only one user library can be profiled at a time.
1786 */
1787 select |= SEL_ACT_STR;
1788 str = &profile_out;
1789 variable = ENV_FLG_PROFILE_OUTPUT;
1790 }
1791 }
1792 /*
1793 * LD_SFCAP and LD_SIGNAL.
1794 */
1795 else if (*s1 == 'S') {
1796 if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1,
1797 MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) {
1798 select |= SEL_ACT_STR;
1799 str = (select & SEL_REPLACE) ?
1800 &rpl_sfcap : &prm_sfcap;
1801 variable = ENV_FLG_SFCAP;
1802 } else if ((len == MSG_LD_SIGNAL_SIZE) &&
1803 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL),
1804 MSG_LD_SIGNAL_SIZE) == 0) &&
1805 ((rtld_flags & RT_FL_SECURE) == 0)) {
1806 select |= SEL_ACT_SPEC_2;
1807 variable = ENV_FLG_SIGNAL;
1808 }
1809 }
1810 /*
1811 * The LD_TRACE family (internal, used by ldd(1)). This definition is
1812 * the key to enabling all other ldd(1) specific environment variables.
1813 * In case an auditor is called, which in turn might exec(2) a
1814 * subprocess, this variable is disabled, so that any subprocess
1815 * escapes ldd(1) processing.
1816 */
1817 else if (*s1 == 'T') {
1818 if (((len == MSG_LD_TRACE_OBJS_SIZE) &&
1819 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS),
1820 MSG_LD_TRACE_OBJS_SIZE) == 0)) ||
1821 ((len == MSG_LD_TRACE_OBJS_E_SIZE) &&
1822 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E),
1823 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) ||
1824 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A),
1825 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) {
1826 char *s0 = (char *)s1;
1827
1828 select |= SEL_ACT_SPEC_2;
1829 variable = ENV_FLG_TRACE_OBJS;
1830
1831 #if defined(__sparc) || defined(__x86)
1832 /*
1833 * The simplest way to "disable" this variable is to
1834 * truncate this string to "LD_'\0'". This string is
1835 * ignored by any ld.so.1 environment processing.
1836 * Use of such interfaces as unsetenv(3c) are overkill,
1837 * and would drag too much libc implementation detail
1838 * into ld.so.1.
1839 */
1840 *s0 = '\0';
1841 #else
1842 /*
1843 * Verify that the above write is appropriate for any new platforms.
1844 */
1845 #error unsupported architecture!
1846 #endif
1847 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1,
1848 MSG_ORIG(MSG_LD_TRACE_PTHS),
1849 MSG_LD_TRACE_PTHS_SIZE) == 0)) {
1850 select |= SEL_ACT_LML;
1851 val = LML_FLG_TRC_SEARCH;
1852 variable = ENV_FLG_TRACE_PTHS;
1853 }
1854 }
1855 /*
1856 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)).
1857 */
1858 else if (*s1 == 'U') {
1859 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1,
1860 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) {
1861 select |= SEL_ACT_LML;
1862 val = LML_FLG_TRC_UNREF;
1863 variable = ENV_FLG_UNREF;
1864 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1,
1865 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) {
1866 select |= SEL_ACT_LML;
1867 val = LML_FLG_TRC_UNUSED;
1868 variable = ENV_FLG_UNUSED;
1869 }
1870 }
1871 /*
1872 * LD_VERBOSE (internal, used by ldd(1)).
1873 */
1874 else if (*s1 == 'V') {
1875 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1,
1876 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) {
1877 select |= SEL_ACT_LML;
1878 val = LML_FLG_TRC_VERBOSE;
1879 variable = ENV_FLG_VERBOSE;
1880 }
1881 }
1882 /*
1883 * LD_WARN (internal, used by ldd(1)).
1884 */
1885 else if (*s1 == 'W') {
1886 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1,
1887 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) {
1888 select |= SEL_ACT_LML;
1889 val = LML_FLG_TRC_WARN;
1890 variable = ENV_FLG_WARN;
1891 }
1892 }
1893
1894 if (variable == 0)
1895 return;
1896
1897 /*
1898 * If the variable is already processed with and ISA specific variable,
1899 * no further processing is needed.
1900 */
1901 if (((select & SEL_REPLACE) && (rplisa & variable)) ||
1902 ((select & SEL_PERMANT) && (prmisa & variable)))
1903 return;
1904
1905 /*
1906 * If this variable has already been set via the command line, then
1907 * ignore this variable. The command line, -e, takes precedence.
1908 */
1909 if (env_flags & ENV_TYP_ISA) {
1910 if (cmdisa & variable)
1911 return;
1912 if (env_flags & ENV_TYP_CMDLINE)
1913 cmdisa |= variable;
1914 } else {
1915 if (cmdgen & variable)
1916 return;
1917 if (env_flags & ENV_TYP_CMDLINE)
1918 cmdgen |= variable;
1919 }
1920
1921 /*
1922 * Mark the appropriate variables.
1923 */
1924 if (env_flags & ENV_TYP_ISA) {
1925 /*
1926 * This is an ISA setting.
1927 */
1928 if (select & SEL_REPLACE) {
1929 if (rplisa & variable)
1930 return;
1931 rplisa |= variable;
1932 } else {
1933 prmisa |= variable;
1934 }
1935 } else {
1936 /*
1937 * This is a non-ISA setting.
1938 */
1939 if (select & SEL_REPLACE) {
1940 if (rplgen & variable)
1941 return;
1942 rplgen |= variable;
1943 } else
1944 prmgen |= variable;
1945 }
1946
1947 /*
1948 * Now perform the setting.
1949 */
1950 if (select & SEL_ACT_RT) {
1951 if (s2)
1952 rtld_flags |= val;
1953 else
1954 rtld_flags &= ~val;
1955 } else if (select & SEL_ACT_RT2) {
1956 if (s2)
1957 rtld_flags2 |= val;
1958 else
1959 rtld_flags2 &= ~val;
1960 } else if (select & SEL_ACT_STR) {
1961 if (env_flags & ENV_TYP_NULL)
1962 *str = NULL;
1963 else
1964 *str = s2;
1965 } else if (select & SEL_ACT_LML) {
1966 if (s2)
1967 *lmflags |= val;
1968 else
1969 *lmflags &= ~val;
1970 } else if (select & SEL_ACT_LMLT) {
1971 if (s2)
1972 *lmtflags |= val;
1973 else
1974 *lmtflags &= ~val;
1975 } else if (select & SEL_ACT_SPEC_1) {
1976 /*
1977 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH
1978 */
1979 if (env_flags & ENV_TYP_NULL)
1980 *str = NULL;
1981 else
1982 *str = s2;
1983 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) {
1984 if (s2) {
1985 if (variable == ENV_FLG_FLAGS)
1986 env_info |= ENV_INF_FLAGCFG;
1987 else
1988 env_info |= ENV_INF_PATHCFG;
1989 } else {
1990 if (variable == ENV_FLG_FLAGS)
1991 env_info &= ~ENV_INF_FLAGCFG;
1992 else
1993 env_info &= ~ENV_INF_PATHCFG;
1994 }
1995 }
1996 } else if (select & SEL_ACT_SPEC_2) {
1997 /*
1998 * variables can be: ENV_FLG_
1999 * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE,
2000 * SIGNAL, TRACE_OBJS
2001 */
2002 switch (variable) {
2003 case ENV_FLG_AUDIT_ARGS:
2004 if (s2) {
2005 audit_argcnt = atoi(s2);
2006 audit_argcnt += audit_argcnt % 2;
2007 } else
2008 audit_argcnt = 0;
2009 break;
2010 case ENV_FLG_BINDINGS:
2011 if (s2)
2012 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS);
2013 else
2014 rpl_debug = NULL;
2015 break;
2016 case ENV_FLG_CONFGEN:
2017 if (s2) {
2018 rtld_flags |= RT_FL_CONFGEN;
2019 *lmflags |= LML_FLG_IGNRELERR;
2020 } else {
2021 rtld_flags &= ~RT_FL_CONFGEN;
2022 *lmflags &= ~LML_FLG_IGNRELERR;
2023 }
2024 break;
2025 case ENV_FLG_LOADFLTR:
2026 if (s2) {
2027 *lmtflags |= LML_TFLG_LOADFLTR;
2028 if (*s2 == '2')
2029 rtld_flags |= RT_FL_WARNFLTR;
2030 } else {
2031 *lmtflags &= ~LML_TFLG_LOADFLTR;
2032 rtld_flags &= ~RT_FL_WARNFLTR;
2033 }
2034 break;
2035 case ENV_FLG_PROFILE:
2036 profile_name = s2;
2037 if (s2) {
2038 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) {
2039 return;
2040 }
2041 /* BEGIN CSTYLED */
2042 if (rtld_flags & RT_FL_SECURE) {
2043 profile_lib =
2044 #if defined(_ELF64)
2045 MSG_ORIG(MSG_PTH_LDPROFSE_64);
2046 #else
2047 MSG_ORIG(MSG_PTH_LDPROFSE);
2048 #endif
2049 } else {
2050 profile_lib =
2051 #if defined(_ELF64)
2052 MSG_ORIG(MSG_PTH_LDPROF_64);
2053 #else
2054 MSG_ORIG(MSG_PTH_LDPROF);
2055 #endif
2056 }
2057 /* END CSTYLED */
2058 } else
2059 profile_lib = NULL;
2060 break;
2061 case ENV_FLG_SIGNAL:
2062 killsig = s2 ? atoi(s2) : SIGKILL;
2063 break;
2064 case ENV_FLG_TRACE_OBJS:
2065 if (s2) {
2066 *lmflags |= LML_FLG_TRC_ENABLE;
2067 if (*s2 == '2')
2068 *lmflags |= LML_FLG_TRC_LDDSTUB;
2069 } else
2070 *lmflags &=
2071 ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB);
2072 break;
2073 }
2074 }
2075 }
2076
2077 /*
2078 * Determine whether we have an architecture specific environment variable.
2079 * If we do, and we're the wrong architecture, it'll just get ignored.
2080 * Otherwise the variable is processed in it's architecture neutral form.
2081 */
2082 static int
ld_arch_env(const char * s1,size_t * len)2083 ld_arch_env(const char *s1, size_t *len)
2084 {
2085 size_t _len = *len - 3;
2086
2087 if (s1[_len++] == '_') {
2088 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) {
2089 #if defined(_ELF64)
2090 return (ENV_TYP_IGNORE);
2091 #else
2092 *len = *len - 3;
2093 return (ENV_TYP_ISA);
2094 #endif
2095 }
2096 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) {
2097 #if defined(_ELF64)
2098 *len = *len - 3;
2099 return (ENV_TYP_ISA);
2100 #else
2101 return (ENV_TYP_IGNORE);
2102 #endif
2103 }
2104 }
2105 return (0);
2106 }
2107
2108 /*
2109 * Process an LD_FLAGS environment variable. The value can be a comma
2110 * separated set of tokens, which are sent (in upper case) into the generic
2111 * LD_XXXX environment variable engine. For example:
2112 *
2113 * LD_FLAGS=bind_now= -> LD_BIND_NOW=
2114 * LD_FLAGS=bind_now -> LD_BIND_NOW=1
2115 * LD_FLAGS=library_path= -> LD_LIBRARY_PATH=
2116 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:.
2117 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail
2118 * or
2119 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail
2120 */
2121 static int
ld_flags_env(const char * str,Word * lmflags,Word * lmtflags,uint_t env_flags,int aout)2122 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags,
2123 uint_t env_flags, int aout)
2124 {
2125 char *nstr, *sstr, *estr = NULL;
2126 size_t nlen, len;
2127
2128 if (str == NULL)
2129 return (0);
2130
2131 /*
2132 * Create a new string as we're going to transform the token(s) into
2133 * uppercase and separate tokens with nulls.
2134 */
2135 len = strlen(str);
2136 if ((nstr = malloc(len + 1)) == NULL)
2137 return (1);
2138 (void) strcpy(nstr, str);
2139
2140 for (sstr = nstr; sstr; sstr++, len--) {
2141 int flags = 0;
2142
2143 if ((*sstr != '\0') && (*sstr != ',')) {
2144 if (estr == NULL) {
2145 if (*sstr == '=')
2146 estr = sstr;
2147 else {
2148 /*
2149 * Translate token to uppercase. Don't
2150 * use toupper(3C) as including this
2151 * code doubles the size of ld.so.1.
2152 */
2153 if ((*sstr >= 'a') && (*sstr <= 'z'))
2154 *sstr = *sstr - ('a' - 'A');
2155 }
2156 }
2157 continue;
2158 }
2159
2160 *sstr = '\0';
2161
2162 /*
2163 * Have we discovered an "=" string.
2164 */
2165 if (estr) {
2166 nlen = estr - nstr;
2167
2168 /*
2169 * If this is an unqualified "=", then this variable
2170 * is intended to ensure a feature is disabled.
2171 */
2172 if ((*++estr == '\0') || (*estr == ','))
2173 estr = NULL;
2174 } else {
2175 nlen = sstr - nstr;
2176
2177 /*
2178 * If there is no "=" found, fabricate a boolean
2179 * definition for any unqualified variable. Thus,
2180 * LD_FLAGS=bind_now is represented as BIND_NOW=1.
2181 * The value "1" is sufficient to assert any boolean
2182 * variables. Setting of ENV_TYP_NULL ensures any
2183 * string usage is reset to a NULL string, thus
2184 * LD_FLAGS=library_path is equivalent to
2185 * LIBRARY_PATH='\0'.
2186 */
2187 flags |= ENV_TYP_NULL;
2188 estr = (char *)MSG_ORIG(MSG_STR_ONE);
2189 }
2190
2191 /*
2192 * Determine whether the environment variable is 32- or 64-bit
2193 * specific. The length, len, will reflect the architecture
2194 * neutral portion of the string.
2195 */
2196 if ((flags |= ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) {
2197 ld_generic_env(nstr, nlen, estr, lmflags,
2198 lmtflags, (env_flags | flags), aout);
2199 }
2200 if (len == 0)
2201 break;
2202
2203 nstr = sstr + 1;
2204 estr = NULL;
2205 }
2206
2207 return (0);
2208 }
2209
2210 /*
2211 * Variant of getopt(), intended for use when ld.so.1 is invoked directly
2212 * from the command line. The only command line option allowed is -e followed
2213 * by a runtime linker environment variable.
2214 */
2215 int
rtld_getopt(char ** argv,char *** envp,auxv_t ** auxv,Word * lmflags,Word * lmtflags,int aout)2216 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags,
2217 Word *lmtflags, int aout)
2218 {
2219 int ndx;
2220
2221 for (ndx = 1; argv[ndx]; ndx++) {
2222 char *str;
2223
2224 if (argv[ndx][0] != '-')
2225 break;
2226
2227 if (argv[ndx][1] == '\0') {
2228 ndx++;
2229 break;
2230 }
2231
2232 if (argv[ndx][1] != 'e')
2233 return (1);
2234
2235 if (argv[ndx][2] == '\0') {
2236 ndx++;
2237 if (argv[ndx] == NULL)
2238 return (1);
2239 str = argv[ndx];
2240 } else
2241 str = &argv[ndx][2];
2242
2243 /*
2244 * If the environment variable starts with LD_, strip the LD_.
2245 * Otherwise, take things as is. Indicate that this variable
2246 * originates from the command line, as these variables take
2247 * precedence over any environment variables, or configuration
2248 * file variables.
2249 */
2250 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') &&
2251 (str[3] != '\0'))
2252 str += 3;
2253 if (ld_flags_env(str, lmflags, lmtflags,
2254 ENV_TYP_CMDLINE, aout) == 1)
2255 return (1);
2256 }
2257
2258 /*
2259 * Make sure an object file has been specified.
2260 */
2261 if (argv[ndx] == NULL)
2262 return (1);
2263
2264 /*
2265 * Having gotten the arguments, clean ourselves off of the stack.
2266 * This results in a process that looks as if it was executed directly
2267 * from the application.
2268 */
2269 stack_cleanup(argv, envp, auxv, ndx);
2270 return (0);
2271 }
2272
2273 /*
2274 * Process a single LD_XXXX string.
2275 */
2276 static void
ld_str_env(const char * s1,Word * lmflags,Word * lmtflags,uint_t env_flags,int aout)2277 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags,
2278 int aout)
2279 {
2280 const char *s2;
2281 size_t len;
2282 int flags;
2283
2284 /*
2285 * In a branded process we must ignore all LD_XXXX variables because
2286 * they are intended for the brand's linker. To affect the native
2287 * linker, use LD_BRAND_XXXX instead.
2288 */
2289 if (rtld_flags2 & RT_FL2_BRANDED) {
2290 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX),
2291 MSG_LD_BRAND_PREFIX_SIZE) != 0)
2292 return;
2293 s1 += MSG_LD_BRAND_PREFIX_SIZE;
2294 }
2295
2296 /*
2297 * Variables with no value (ie. LD_XXXX=) turn a capability off.
2298 */
2299 if ((s2 = strchr(s1, '=')) == NULL) {
2300 len = strlen(s1);
2301 s2 = NULL;
2302 } else if (*++s2 == '\0') {
2303 len = strlen(s1) - 1;
2304 s2 = NULL;
2305 } else {
2306 len = s2 - s1 - 1;
2307 while (conv_strproc_isspace(*s2))
2308 s2++;
2309 }
2310
2311 /*
2312 * Determine whether the environment variable is 32-bit or 64-bit
2313 * specific. The length, len, will reflect the architecture neutral
2314 * portion of the string.
2315 */
2316 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE)
2317 return;
2318 env_flags |= flags;
2319
2320 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout);
2321 }
2322
2323 /*
2324 * Internal getenv routine. Called immediately after ld.so.1 initializes
2325 * itself to process any locale specific environment variables, and collect
2326 * any LD_XXXX variables for later processing.
2327 */
2328 #define LOC_LANG 1
2329 #define LOC_MESG 2
2330 #define LOC_ALL 3
2331
2332 int
readenv_user(const char ** envp,APlist ** ealpp)2333 readenv_user(const char **envp, APlist **ealpp)
2334 {
2335 char *locale;
2336 const char *s1;
2337 int loc = 0;
2338
2339 for (s1 = *envp; s1; envp++, s1 = *envp) {
2340 const char *s2;
2341
2342 if (*s1++ != 'L')
2343 continue;
2344
2345 /*
2346 * See if we have any locale environment settings. These
2347 * environment variables have a precedence, LC_ALL is higher
2348 * than LC_MESSAGES which is higher than LANG.
2349 */
2350 s2 = s1;
2351 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) {
2352 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL),
2353 MSG_LC_ALL_SIZE) == 0) {
2354 s2 += MSG_LC_ALL_SIZE;
2355 if ((*s2 != '\0') && (loc < LOC_ALL)) {
2356 glcs[CI_LCMESSAGES].lc_un.lc_ptr =
2357 (char *)s2;
2358 loc = LOC_ALL;
2359 }
2360 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES),
2361 MSG_LC_MESSAGES_SIZE) == 0) {
2362 s2 += MSG_LC_MESSAGES_SIZE;
2363 if ((*s2 != '\0') && (loc < LOC_MESG)) {
2364 glcs[CI_LCMESSAGES].lc_un.lc_ptr =
2365 (char *)s2;
2366 loc = LOC_MESG;
2367 }
2368 }
2369 continue;
2370 }
2371
2372 s2 = s1;
2373 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') &&
2374 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) {
2375 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2376 loc = LOC_LANG;
2377 continue;
2378 }
2379
2380 /*
2381 * Pick off any LD_XXXX environment variables.
2382 */
2383 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) {
2384 if (aplist_append(ealpp, s1, AL_CNT_ENVIRON) == NULL)
2385 return (1);
2386 }
2387 }
2388
2389 /*
2390 * If we have a locale setting make sure it's worth processing further.
2391 * C and POSIX locales don't need any processing. In addition, to
2392 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow
2393 * the locale to contain a segment that leads upward in the file system
2394 * hierarchy (i.e. no '..' segments). Given that we'll be confined to
2395 * the /usr/lib/locale hierarchy, there is no need to extensively
2396 * validate the mode or ownership of any message file (as libc's
2397 * generic handling of message files does), or be concerned with
2398 * symbolic links that might otherwise send us elsewhere. Duplicate
2399 * the string so that new locale setting can generically cleanup any
2400 * previous locales.
2401 */
2402 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) {
2403 if (((*locale == 'C') && (*(locale + 1) == '\0')) ||
2404 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) ||
2405 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL))
2406 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL;
2407 else
2408 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale);
2409 }
2410 return (0);
2411 }
2412
2413 /*
2414 * Process any LD_XXXX environment variables collected by readenv_user().
2415 */
2416 int
procenv_user(APlist * ealp,Word * lmflags,Word * lmtflags,int aout)2417 procenv_user(APlist *ealp, Word *lmflags, Word *lmtflags, int aout)
2418 {
2419 Aliste idx;
2420 const char *s1;
2421
2422 for (APLIST_TRAVERSE(ealp, idx, s1))
2423 ld_str_env(s1, lmflags, lmtflags, 0, aout);
2424
2425 /*
2426 * Having collected the best representation of any LD_FLAGS, process
2427 * these strings.
2428 */
2429 if (rpl_ldflags) {
2430 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
2431 return (1);
2432 rpl_ldflags = NULL;
2433 }
2434
2435 /*
2436 * Don't allow environment controlled auditing when tracing or if
2437 * explicitly disabled. Trigger all tracing modes from
2438 * LML_FLG_TRC_ENABLE.
2439 */
2440 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2441 rpl_audit = profile_lib = profile_name = NULL;
2442 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2443 *lmflags &= ~LML_MSK_TRC;
2444
2445 /*
2446 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins.
2447 */
2448 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) ==
2449 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY))
2450 rtld_flags2 &= ~RT_FL2_BINDLAZY;
2451
2452 /*
2453 * When using ldd(1) -r or -d against an executable, assert -p.
2454 */
2455 if ((*lmflags &
2456 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN)
2457 *lmflags |= LML_FLG_TRC_NOPAREXT;
2458
2459 return (0);
2460 }
2461
2462 /*
2463 * Configuration environment processing. Called after the a.out has been
2464 * processed (as the a.out can specify its own configuration file).
2465 */
2466 int
readenv_config(Rtc_env * envtbl,Addr addr,int aout)2467 readenv_config(Rtc_env * envtbl, Addr addr, int aout)
2468 {
2469 Word *lmflags = &(lml_main.lm_flags);
2470 Word *lmtflags = &(lml_main.lm_tflags);
2471
2472 if (envtbl == NULL)
2473 return (0);
2474
2475 while (envtbl->env_str) {
2476 uint_t env_flags = ENV_TYP_CONFIG;
2477 const char *s1 = (const char *)(envtbl->env_str + addr);
2478
2479 if (envtbl->env_flags & RTC_ENV_PERMANT)
2480 env_flags |= ENV_TYP_PERMANT;
2481
2482 if ((*s1++ == 'L') && (*s1++ == 'D') &&
2483 (*s1++ == '_') && (*s1 != '\0'))
2484 ld_str_env(s1, lmflags, lmtflags, env_flags, 0);
2485
2486 envtbl++;
2487 }
2488
2489 /*
2490 * Having collected the best representation of any LD_FLAGS, process
2491 * these strings.
2492 */
2493 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
2494 return (1);
2495 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG,
2496 aout) == 1)
2497 return (1);
2498
2499 /*
2500 * Don't allow environment controlled auditing when tracing or if
2501 * explicitly disabled. Trigger all tracing modes from
2502 * LML_FLG_TRC_ENABLE.
2503 */
2504 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2505 prm_audit = profile_lib = profile_name = NULL;
2506 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2507 *lmflags &= ~LML_MSK_TRC;
2508
2509 return (0);
2510 }
2511
2512 int
dowrite(Prfbuf * prf)2513 dowrite(Prfbuf * prf)
2514 {
2515 /*
2516 * We do not have a valid file descriptor, so we are unable
2517 * to flush the buffer.
2518 */
2519 if (prf->pr_fd == -1)
2520 return (0);
2521 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf);
2522 prf->pr_cur = prf->pr_buf;
2523 return (1);
2524 }
2525
2526 /*
2527 * Simplified printing. The following conversion specifications are supported:
2528 *
2529 * % [#] [-] [min field width] [. precision] s|d|x|c
2530 *
2531 *
2532 * dorprf takes the output buffer in the form of Prfbuf which permits
2533 * the verification of the output buffer size and the concatenation
2534 * of data to an already existing output buffer. The Prfbuf
2535 * structure contains the following:
2536 *
2537 * pr_buf pointer to the beginning of the output buffer.
2538 * pr_cur pointer to the next available byte in the output buffer. By
2539 * setting pr_cur ahead of pr_buf you can append to an already
2540 * existing buffer.
2541 * pr_len the size of the output buffer. By setting pr_len to '0' you
2542 * disable protection from overflows in the output buffer.
2543 * pr_fd a pointer to the file-descriptor the buffer will eventually be
2544 * output to. If pr_fd is set to '-1' then it's assumed there is
2545 * no output buffer, and doprf() will return with an error to
2546 * indicate an output buffer overflow. If pr_fd is > -1 then when
2547 * the output buffer is filled it will be flushed to pr_fd and will
2548 * then be available for additional data.
2549 */
2550 #define FLG_UT_MINUS 0x0001 /* - */
2551 #define FLG_UT_SHARP 0x0002 /* # */
2552 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */
2553
2554 /*
2555 * This macro is for use from within doprf only. It is to be used for checking
2556 * the output buffer size and placing characters into the buffer.
2557 */
2558 #define PUTC(c) \
2559 { \
2560 char tmpc; \
2561 \
2562 tmpc = (c); \
2563 if (bufsiz && (bp >= bufend)) { \
2564 prf->pr_cur = bp; \
2565 if (dowrite(prf) == 0) \
2566 return (0); \
2567 bp = prf->pr_cur; \
2568 } \
2569 *bp++ = tmpc; \
2570 }
2571
2572 /*
2573 * Define a local buffer size for building a numeric value - large enough to
2574 * hold a 64-bit value.
2575 */
2576 #define NUM_SIZE 22
2577
2578 size_t
doprf(const char * format,va_list args,Prfbuf * prf)2579 doprf(const char *format, va_list args, Prfbuf *prf)
2580 {
2581 char c;
2582 char *bp = prf->pr_cur;
2583 char *bufend = prf->pr_buf + prf->pr_len;
2584 size_t bufsiz = prf->pr_len;
2585
2586 while ((c = *format++) != '\0') {
2587 if (c != '%') {
2588 PUTC(c);
2589 } else {
2590 int base = 0, flag = 0, width = 0, prec = 0;
2591 size_t _i;
2592 int _c, _n;
2593 char *_s;
2594 int ls = 0;
2595 again:
2596 c = *format++;
2597 switch (c) {
2598 case '-':
2599 flag |= FLG_UT_MINUS;
2600 goto again;
2601 case '#':
2602 flag |= FLG_UT_SHARP;
2603 goto again;
2604 case '.':
2605 flag |= FLG_UT_DOTSEEN;
2606 goto again;
2607 case '0':
2608 case '1':
2609 case '2':
2610 case '3':
2611 case '4':
2612 case '5':
2613 case '6':
2614 case '7':
2615 case '8':
2616 case '9':
2617 if (flag & FLG_UT_DOTSEEN)
2618 prec = (prec * 10) + c - '0';
2619 else
2620 width = (width * 10) + c - '0';
2621 goto again;
2622 case 'x':
2623 case 'X':
2624 base = 16;
2625 break;
2626 case 'd':
2627 case 'D':
2628 case 'u':
2629 base = 10;
2630 flag &= ~FLG_UT_SHARP;
2631 break;
2632 case 'l':
2633 base = 10;
2634 ls++; /* number of l's (long or long long) */
2635 if ((*format == 'l') ||
2636 (*format == 'd') || (*format == 'D') ||
2637 (*format == 'x') || (*format == 'X') ||
2638 (*format == 'o') || (*format == 'O') ||
2639 (*format == 'u') || (*format == 'U'))
2640 goto again;
2641 break;
2642 case 'o':
2643 case 'O':
2644 base = 8;
2645 break;
2646 case 'c':
2647 _c = va_arg(args, int);
2648
2649 for (_i = 24; _i > 0; _i -= 8) {
2650 if ((c = ((_c >> _i) & 0x7f)) != 0) {
2651 PUTC(c);
2652 }
2653 }
2654 if ((c = ((_c >> _i) & 0x7f)) != 0) {
2655 PUTC(c);
2656 }
2657 break;
2658 case 's':
2659 _s = va_arg(args, char *);
2660 _i = strlen(_s);
2661 /* LINTED */
2662 _n = (int)(width - _i);
2663 if (!prec)
2664 /* LINTED */
2665 prec = (int)_i;
2666
2667 if (width && !(flag & FLG_UT_MINUS)) {
2668 while (_n-- > 0)
2669 PUTC(' ');
2670 }
2671 while (((c = *_s++) != 0) && prec--) {
2672 PUTC(c);
2673 }
2674 if (width && (flag & FLG_UT_MINUS)) {
2675 while (_n-- > 0)
2676 PUTC(' ');
2677 }
2678 break;
2679 case '%':
2680 PUTC('%');
2681 break;
2682 default:
2683 break;
2684 }
2685
2686 /*
2687 * Numeric processing
2688 */
2689 if (base) {
2690 char local[NUM_SIZE];
2691 size_t ssize = 0, psize = 0;
2692 const char *string =
2693 MSG_ORIG(MSG_STR_HEXNUM);
2694 const char *prefix =
2695 MSG_ORIG(MSG_STR_EMPTY);
2696 u_longlong_t num;
2697
2698 switch (ls) {
2699 case 0: /* int */
2700 num = (u_longlong_t)
2701 va_arg(args, uint_t);
2702 break;
2703 case 1: /* long */
2704 num = (u_longlong_t)
2705 va_arg(args, ulong_t);
2706 break;
2707 case 2: /* long long */
2708 num = va_arg(args, u_longlong_t);
2709 break;
2710 }
2711
2712 if (flag & FLG_UT_SHARP) {
2713 if (base == 16) {
2714 prefix = MSG_ORIG(MSG_STR_HEX);
2715 psize = 2;
2716 } else {
2717 prefix = MSG_ORIG(MSG_STR_ZERO);
2718 psize = 1;
2719 }
2720 }
2721 if ((base == 10) && (long)num < 0) {
2722 prefix = MSG_ORIG(MSG_STR_NEGATE);
2723 psize = MSG_STR_NEGATE_SIZE;
2724 num = (u_longlong_t)(-(longlong_t)num);
2725 }
2726
2727 /*
2728 * Convert the numeric value into a local
2729 * string (stored in reverse order).
2730 */
2731 _s = local;
2732 do {
2733 *_s++ = string[num % base];
2734 num /= base;
2735 ssize++;
2736 } while (num);
2737
2738 ASSERT(ssize < sizeof (local));
2739
2740 /*
2741 * Provide any precision or width padding.
2742 */
2743 if (prec) {
2744 /* LINTED */
2745 _n = (int)(prec - ssize);
2746 while ((_n-- > 0) &&
2747 (ssize < sizeof (local))) {
2748 *_s++ = '0';
2749 ssize++;
2750 }
2751 }
2752 if (width && !(flag & FLG_UT_MINUS)) {
2753 /* LINTED */
2754 _n = (int)(width - ssize - psize);
2755 while (_n-- > 0) {
2756 PUTC(' ');
2757 }
2758 }
2759
2760 /*
2761 * Print any prefix and the numeric string
2762 */
2763 while (*prefix)
2764 PUTC(*prefix++);
2765 do {
2766 PUTC(*--_s);
2767 } while (_s > local);
2768
2769 /*
2770 * Provide any width padding.
2771 */
2772 if (width && (flag & FLG_UT_MINUS)) {
2773 /* LINTED */
2774 _n = (int)(width - ssize - psize);
2775 while (_n-- > 0)
2776 PUTC(' ');
2777 }
2778 }
2779 }
2780 }
2781
2782 PUTC('\0');
2783 prf->pr_cur = bp;
2784 return (1);
2785 }
2786
2787 static int
doprintf(const char * format,va_list args,Prfbuf * prf)2788 doprintf(const char *format, va_list args, Prfbuf *prf)
2789 {
2790 char *ocur = prf->pr_cur;
2791
2792 if (doprf(format, args, prf) == 0)
2793 return (0);
2794 /* LINTED */
2795 return ((int)(prf->pr_cur - ocur));
2796 }
2797
2798 /* VARARGS2 */
2799 int
sprintf(char * buf,const char * format,...)2800 sprintf(char *buf, const char *format, ...)
2801 {
2802 va_list args;
2803 int len;
2804 Prfbuf prf;
2805
2806 va_start(args, format);
2807 prf.pr_buf = prf.pr_cur = buf;
2808 prf.pr_len = 0;
2809 prf.pr_fd = -1;
2810 len = doprintf(format, args, &prf);
2811 va_end(args);
2812
2813 /*
2814 * sprintf() return value excludes the terminating null byte.
2815 */
2816 return (len - 1);
2817 }
2818
2819 /* VARARGS3 */
2820 int
snprintf(char * buf,size_t n,const char * format,...)2821 snprintf(char *buf, size_t n, const char *format, ...)
2822 {
2823 va_list args;
2824 int len;
2825 Prfbuf prf;
2826
2827 va_start(args, format);
2828 prf.pr_buf = prf.pr_cur = buf;
2829 prf.pr_len = n;
2830 prf.pr_fd = -1;
2831 len = doprintf(format, args, &prf);
2832 va_end(args);
2833
2834 return (len);
2835 }
2836
2837 /* VARARGS2 */
2838 int
bufprint(Prfbuf * prf,const char * format,...)2839 bufprint(Prfbuf *prf, const char *format, ...)
2840 {
2841 va_list args;
2842 int len;
2843
2844 va_start(args, format);
2845 len = doprintf(format, args, prf);
2846 va_end(args);
2847
2848 return (len);
2849 }
2850
2851 /*PRINTFLIKE1*/
2852 int
printf(const char * format,...)2853 printf(const char *format, ...)
2854 {
2855 va_list args;
2856 char buffer[ERRSIZE];
2857 Prfbuf prf;
2858
2859 va_start(args, format);
2860 prf.pr_buf = prf.pr_cur = buffer;
2861 prf.pr_len = ERRSIZE;
2862 prf.pr_fd = 1;
2863 (void) doprf(format, args, &prf);
2864 va_end(args);
2865 /*
2866 * Trim trailing '\0' form buffer
2867 */
2868 prf.pr_cur--;
2869 return (dowrite(&prf));
2870 }
2871
2872 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL;
2873
2874 /*
2875 * All error messages go through eprintf(). During process initialization,
2876 * these messages are directed to the standard error, however once control has
2877 * been passed to the applications code these messages are stored in an internal
2878 * buffer for use with dlerror(). Note, fatal error conditions that may occur
2879 * while running the application will still cause a standard error message, see
2880 * rtldexit() in this file for details.
2881 * The RT_FL_APPLIC flag serves to indicate the transition between process
2882 * initialization and when the applications code is running.
2883 */
2884 void
veprintf(Lm_list * lml,Error error,const char * format,va_list args)2885 veprintf(Lm_list *lml, Error error, const char *format, va_list args)
2886 {
2887 int overflow = 0;
2888 static int lock = 0;
2889 Prfbuf prf;
2890
2891 if (lock || (nextptr == (errbuf + ERRSIZE)))
2892 return;
2893
2894 /*
2895 * Note: this lock is here to prevent the same thread from recursively
2896 * entering itself during a eprintf. ie: during eprintf malloc() fails
2897 * and we try and call eprintf ... and then malloc() fails ....
2898 */
2899 lock = 1;
2900
2901 /*
2902 * If we have completed startup initialization, all error messages
2903 * must be saved. These are reported through dlerror(). If we're
2904 * still in the initialization stage, output the error directly and
2905 * add a newline.
2906 */
2907 prf.pr_buf = prf.pr_cur = nextptr;
2908 prf.pr_len = ERRSIZE - (nextptr - errbuf);
2909
2910 if ((rtld_flags & RT_FL_APPLIC) == 0)
2911 prf.pr_fd = 2;
2912 else
2913 prf.pr_fd = -1;
2914
2915 if (error > ERR_NONE) {
2916 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN))
2917 error = ERR_WARNING;
2918 switch (error) {
2919 case ERR_WARNING_NF:
2920 if (err_strs[ERR_WARNING_NF] == NULL)
2921 err_strs[ERR_WARNING_NF] =
2922 MSG_INTL(MSG_ERR_WARNING);
2923 break;
2924 case ERR_WARNING:
2925 if (err_strs[ERR_WARNING] == NULL)
2926 err_strs[ERR_WARNING] =
2927 MSG_INTL(MSG_ERR_WARNING);
2928 break;
2929 case ERR_GUIDANCE:
2930 if (err_strs[ERR_GUIDANCE] == NULL)
2931 err_strs[ERR_GUIDANCE] =
2932 MSG_INTL(MSG_ERR_GUIDANCE);
2933 break;
2934 case ERR_FATAL:
2935 if (err_strs[ERR_FATAL] == NULL)
2936 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL);
2937 break;
2938 case ERR_ELF:
2939 if (err_strs[ERR_ELF] == NULL)
2940 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF);
2941 break;
2942 }
2943 if (procname) {
2944 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1),
2945 rtldname, procname, err_strs[error]) == 0)
2946 overflow = 1;
2947 } else {
2948 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2949 rtldname, err_strs[error]) == 0)
2950 overflow = 1;
2951 }
2952 if (overflow == 0) {
2953 /*
2954 * Remove the terminating '\0'.
2955 */
2956 prf.pr_cur--;
2957 }
2958 }
2959
2960 if ((overflow == 0) && doprf(format, args, &prf) == 0)
2961 overflow = 1;
2962
2963 /*
2964 * If this is an ELF error, it will have been generated by a support
2965 * object that has a dependency on libelf. ld.so.1 doesn't generate any
2966 * ELF error messages as it doesn't interact with libelf. Determine the
2967 * ELF error string.
2968 */
2969 if ((overflow == 0) && (error == ERR_ELF)) {
2970 static int (*elfeno)() = 0;
2971 static const char *(*elfemg)();
2972 const char *emsg;
2973 Rt_map *dlmp, *lmp = lml_rtld.lm_head;
2974
2975 if (NEXT(lmp) && (elfeno == 0)) {
2976 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT,
2977 MSG_ORIG(MSG_SYM_ELFERRMSG),
2978 lmp, &dlmp)) == NULL) ||
2979 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT,
2980 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL))
2981 elfeno = 0;
2982 }
2983
2984 /*
2985 * Lookup the message; equivalent to elf_errmsg(elf_errno()).
2986 */
2987 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) {
2988 prf.pr_cur--;
2989 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2990 emsg) == 0)
2991 overflow = 1;
2992 }
2993 }
2994
2995 /*
2996 * Push out any message that's been built. Note, in the case of an
2997 * overflow condition, this message may be incomplete, in which case
2998 * make sure any partial string is null terminated.
2999 */
3000 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) {
3001 *(prf.pr_cur - 1) = '\n';
3002 (void) dowrite(&prf);
3003 }
3004 if (overflow)
3005 *(prf.pr_cur - 1) = '\0';
3006
3007 DBG_CALL(Dbg_util_str(lml, nextptr));
3008
3009 /*
3010 * Determine if there was insufficient space left in the buffer to
3011 * complete the message. If so, we'll have printed out as much as had
3012 * been processed if we're not yet executing the application.
3013 * Otherwise, there will be some debugging diagnostic indicating
3014 * as much of the error message as possible. Write out a final buffer
3015 * overflow diagnostic - unlocalized, so we don't chance more errors.
3016 */
3017 if (overflow) {
3018 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW);
3019
3020 if ((rtld_flags & RT_FL_SILENCERR) == 0) {
3021 lasterr = str;
3022
3023 if ((rtld_flags & RT_FL_APPLIC) == 0) {
3024 (void) write(2, str, strlen(str));
3025 (void) write(2, MSG_ORIG(MSG_STR_NL),
3026 MSG_STR_NL_SIZE);
3027 }
3028 }
3029 DBG_CALL(Dbg_util_str(lml, str));
3030
3031 lock = 0;
3032 nextptr = errbuf + ERRSIZE;
3033 return;
3034 }
3035
3036 /*
3037 * If the application has started, then error messages are being saved
3038 * for retrieval by dlerror(), or possible flushing from rtldexit() in
3039 * the case of a fatal error. In this case, establish the next error
3040 * pointer. If we haven't started the application, the whole message
3041 * buffer can be reused.
3042 */
3043 if ((rtld_flags & RT_FL_SILENCERR) == 0) {
3044 lasterr = nextptr;
3045
3046 /*
3047 * Note, should we encounter an error such as ENOMEM, there may
3048 * be a number of the same error messages (ie. an operation
3049 * fails with ENOMEM, and then the attempts to construct the
3050 * error message itself, which incurs additional ENOMEM errors).
3051 * Compare any previous error message with the one we've just
3052 * created to prevent any duplication clutter.
3053 */
3054 if ((rtld_flags & RT_FL_APPLIC) &&
3055 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) {
3056 prevptr = nextptr;
3057 nextptr = prf.pr_cur;
3058 *nextptr = '\0';
3059 }
3060 }
3061 lock = 0;
3062 }
3063
3064 /*PRINTFLIKE3*/
3065 void
eprintf(Lm_list * lml,Error error,const char * format,...)3066 eprintf(Lm_list *lml, Error error, const char *format, ...)
3067 {
3068 va_list args;
3069
3070 va_start(args, format);
3071 veprintf(lml, error, format, args);
3072 va_end(args);
3073 }
3074
3075 #if DEBUG
3076 /*
3077 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further
3078 * details.
3079 */
3080 int
assfail(const char * a,const char * f,int l)3081 assfail(const char *a, const char *f, int l)
3082 {
3083 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l);
3084 (void) _lwp_kill(_lwp_self(), SIGABRT);
3085 return (0);
3086 }
3087
3088 void
assfail3(const char * msg,uintmax_t a,const char * op,uintmax_t b,const char * f,int l)3089 assfail3(const char *msg, uintmax_t a, const char *op, uintmax_t b,
3090 const char *f, int l)
3091 {
3092 (void) printf("assertion failed: %s (%llu %s %llu), "
3093 "file: %s, line: %d\n", msg, a, op, b, f, l);
3094 (void) _lwp_kill(_lwp_self(), SIGABRT);
3095 }
3096 #endif
3097
3098 /*
3099 * Exit. If we arrive here with a non zero status it's because of a fatal
3100 * error condition (most commonly a relocation error). If the application has
3101 * already had control, then the actual fatal error message will have been
3102 * recorded in the dlerror() message buffer. Print the message before really
3103 * exiting.
3104 */
3105 void
rtldexit(Lm_list * lml,int status)3106 rtldexit(Lm_list * lml, int status)
3107 {
3108 if (status) {
3109 if (rtld_flags & RT_FL_APPLIC) {
3110 /*
3111 * If the error buffer has been used, write out all
3112 * pending messages - lasterr is simply a pointer to
3113 * the last message in this buffer. However, if the
3114 * buffer couldn't be created at all, lasterr points
3115 * to a constant error message string.
3116 */
3117 if (*errbuf) {
3118 char *errptr = errbuf;
3119 char *errend = errbuf + ERRSIZE;
3120
3121 while ((errptr < errend) && *errptr) {
3122 size_t size = strlen(errptr);
3123 (void) write(2, errptr, size);
3124 (void) write(2, MSG_ORIG(MSG_STR_NL),
3125 MSG_STR_NL_SIZE);
3126 errptr += (size + 1);
3127 }
3128 }
3129 if (lasterr && ((lasterr < errbuf) ||
3130 (lasterr > (errbuf + ERRSIZE)))) {
3131 (void) write(2, lasterr, strlen(lasterr));
3132 (void) write(2, MSG_ORIG(MSG_STR_NL),
3133 MSG_STR_NL_SIZE);
3134 }
3135 }
3136 leave(lml, 0);
3137 (void) _lwp_kill(_lwp_self(), killsig);
3138 }
3139 _exit(status);
3140 }
3141
3142 /*
3143 * Map anonymous memory via MAP_ANON (added in Solaris 8).
3144 */
3145 void *
dz_map(Lm_list * lml,caddr_t addr,size_t len,int prot,int flags)3146 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3147 {
3148 caddr_t va;
3149
3150 if ((va = (caddr_t)mmap(addr, len, prot,
3151 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) {
3152 int err = errno;
3153 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON),
3154 strerror(err));
3155 return (MAP_FAILED);
3156 }
3157 return (va);
3158 }
3159
3160 static int nu_fd = FD_UNAVAIL;
3161
3162 void *
nu_map(Lm_list * lml,caddr_t addr,size_t len,int prot,int flags)3163 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3164 {
3165 caddr_t va;
3166 int err;
3167
3168 if (nu_fd == FD_UNAVAIL) {
3169 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL),
3170 O_RDONLY)) == FD_UNAVAIL) {
3171 err = errno;
3172 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
3173 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3174 return (MAP_FAILED);
3175 }
3176 }
3177
3178 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) ==
3179 MAP_FAILED) {
3180 err = errno;
3181 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
3182 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3183 }
3184 return (va);
3185 }
3186
3187 /*
3188 * Generic entry point from user code - simply grabs a lock, and bumps the
3189 * entrance count.
3190 */
3191 int
enter(int flags)3192 enter(int flags)
3193 {
3194 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) {
3195 if (!thr_flg_nolock)
3196 (void) rt_mutex_lock(&rtldlock);
3197 if (rtld_flags & RT_FL_OPERATION) {
3198 ld_entry_cnt++;
3199
3200 /*
3201 * Reset the diagnostic time information for each new
3202 * "operation". Thus timing diagnostics are relative
3203 * to entering ld.so.1.
3204 */
3205 if (DBG_ISTIME() &&
3206 (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) {
3207 DBG_DELTATIME = DBG_TOTALTIME;
3208 DBG_ONRESET();
3209 }
3210 }
3211 return (1);
3212 }
3213 return (0);
3214 }
3215
3216 /*
3217 * Determine whether a search path has been used.
3218 */
3219 static void
is_path_used(Lm_list * lml,Word unref,int * nl,Alist * alp,const char * obj)3220 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj)
3221 {
3222 Pdesc *pdp;
3223 Aliste idx;
3224
3225 for (ALIST_TRAVERSE(alp, idx, pdp)) {
3226 const char *fmt, *name;
3227
3228 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED))
3229 continue;
3230
3231 /*
3232 * If this pathname originated from an expanded token, use the
3233 * original for any diagnostic output.
3234 */
3235 if ((name = pdp->pd_oname) == NULL)
3236 name = pdp->pd_pname;
3237
3238 if (unref == 0) {
3239 if ((*nl)++ == 0)
3240 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3241 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags,
3242 (pdp->pd_flags & PD_FLG_DUPLICAT), obj));
3243 continue;
3244 }
3245
3246 if (pdp->pd_flags & LA_SER_LIBPATH) {
3247 if (pdp->pd_flags & LA_SER_CONFIG) {
3248 if (pdp->pd_flags & PD_FLG_DUPLICAT)
3249 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC);
3250 else
3251 fmt = MSG_INTL(MSG_USD_LDLIBPATHC);
3252 } else {
3253 if (pdp->pd_flags & PD_FLG_DUPLICAT)
3254 fmt = MSG_INTL(MSG_DUP_LDLIBPATH);
3255 else
3256 fmt = MSG_INTL(MSG_USD_LDLIBPATH);
3257 }
3258 } else if (pdp->pd_flags & LA_SER_RUNPATH) {
3259 fmt = MSG_INTL(MSG_USD_RUNPATH);
3260 } else
3261 continue;
3262
3263 if ((*nl)++ == 0)
3264 (void) printf(MSG_ORIG(MSG_STR_NL));
3265 (void) printf(fmt, name, obj);
3266 }
3267 }
3268
3269 /*
3270 * Generate diagnostics as to whether an object has been used. A symbolic
3271 * reference that gets bound to an object marks it as used. Dependencies that
3272 * are unused when RTLD_NOW is in effect should be removed from future builds
3273 * of an object. Dependencies that are unused without RTLD_NOW in effect are
3274 * candidates for lazy-loading.
3275 *
3276 * Unreferenced objects identify objects that are defined as dependencies but
3277 * are unreferenced by the caller. These unreferenced objects may however be
3278 * referenced by other objects within the process, and therefore don't qualify
3279 * as completely unused. They are still an unnecessary overhead.
3280 *
3281 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail"
3282 * debugging.
3283 */
3284 void
unused(Lm_list * lml)3285 unused(Lm_list *lml)
3286 {
3287 Rt_map *lmp;
3288 int nl = 0;
3289 Word unref, unuse;
3290
3291 /*
3292 * If we're not tracing unused references or dependencies, or debugging
3293 * there's nothing to do.
3294 */
3295 unref = lml->lm_flags & LML_FLG_TRC_UNREF;
3296 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED;
3297
3298 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0))
3299 return;
3300
3301 /*
3302 * Detect unused global search paths.
3303 */
3304 if (rpl_libdirs)
3305 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name);
3306 if (prm_libdirs)
3307 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name);
3308
3309 nl = 0;
3310 lmp = lml->lm_head;
3311 if (RLIST(lmp))
3312 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp));
3313
3314 /*
3315 * Traverse the link-maps looking for unreferenced or unused
3316 * dependencies. Ignore the first object on a link-map list, as this
3317 * is always used.
3318 */
3319 nl = 0;
3320 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) {
3321 /*
3322 * Determine if this object contains any runpaths that have
3323 * not been used.
3324 */
3325 if (RLIST(lmp))
3326 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp));
3327
3328 /*
3329 * If tracing unreferenced objects, or under debugging,
3330 * determine whether any of this objects callers haven't
3331 * referenced it.
3332 */
3333 if (unref || DBG_ENABLED) {
3334 Bnd_desc *bdp;
3335 Aliste idx;
3336
3337 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) {
3338 Rt_map *clmp;
3339
3340 if (bdp->b_flags & BND_REFER)
3341 continue;
3342
3343 clmp = bdp->b_caller;
3344 if (FLAGS1(clmp) & FL1_RT_LDDSTUB)
3345 continue;
3346
3347 /* BEGIN CSTYLED */
3348 if (nl++ == 0) {
3349 if (unref)
3350 (void) printf(MSG_ORIG(MSG_STR_NL));
3351 else
3352 DBG_CALL(Dbg_util_nl(lml,
3353 DBG_NL_STD));
3354 }
3355
3356 if (unref)
3357 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT),
3358 NAME(lmp), NAME(clmp));
3359 else
3360 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp)));
3361 /* END CSTYLED */
3362 }
3363 }
3364
3365 /*
3366 * If tracing unused objects simply display those objects that
3367 * haven't been referenced by anyone.
3368 */
3369 if (FLAGS1(lmp) & FL1_RT_USED)
3370 continue;
3371
3372 if (nl++ == 0) {
3373 if (unref || unuse)
3374 (void) printf(MSG_ORIG(MSG_STR_NL));
3375 else
3376 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3377 }
3378 if (CYCGROUP(lmp)) {
3379 if (unref || unuse)
3380 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT),
3381 NAME(lmp), CYCGROUP(lmp));
3382 else
3383 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0,
3384 CYCGROUP(lmp)));
3385 } else {
3386 if (unref || unuse)
3387 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT),
3388 NAME(lmp));
3389 else
3390 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0));
3391 }
3392 }
3393
3394 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3395 }
3396
3397 /*
3398 * Generic cleanup routine called prior to returning control to the user.
3399 * Ensures that any ld.so.1 specific file descriptors or temporary mapping are
3400 * released, and any locks dropped.
3401 */
3402 void
leave(Lm_list * lml,int flags)3403 leave(Lm_list *lml, int flags)
3404 {
3405 /*
3406 * Alert the debuggers that the link-maps are consistent.
3407 */
3408 rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT);
3409
3410 /*
3411 * Alert any auditors that the link-maps are consistent.
3412 */
3413 if (lml->lm_flags & LML_FLG_ACTAUDIT) {
3414 audit_activity(lml->lm_head, LA_ACT_CONSISTENT);
3415 lml->lm_flags &= ~LML_FLG_ACTAUDIT;
3416 }
3417
3418 if (nu_fd != FD_UNAVAIL) {
3419 (void) close(nu_fd);
3420 nu_fd = FD_UNAVAIL;
3421 }
3422
3423 /*
3424 * Reinitialize error message pointer, and any overflow indication.
3425 */
3426 nextptr = errbuf;
3427 prevptr = NULL;
3428
3429 /*
3430 * Defragment any freed memory.
3431 */
3432 if (aplist_nitems(free_alp))
3433 defrag();
3434
3435 /*
3436 * Don't drop our lock if we are running on our link-map list as
3437 * there's little point in doing so since we are single-threaded.
3438 *
3439 * LML_FLG_HOLDLOCK is set for:
3440 * - The ld.so.1's link-map list.
3441 * - The auditor's link-map if the environment is pre-UPM.
3442 */
3443 if (lml->lm_flags & LML_FLG_HOLDLOCK)
3444 return;
3445
3446 if (rt_bind_clear(0) & THR_FLG_RTLD) {
3447 if (!thr_flg_nolock)
3448 (void) rt_mutex_unlock(&rtldlock);
3449 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags);
3450 }
3451 }
3452
3453 int
callable(Rt_map * clmp,Rt_map * dlmp,Grp_hdl * ghp,uint_t slflags)3454 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags)
3455 {
3456 APlist *calp, *dalp;
3457 Aliste idx1, idx2;
3458 Grp_hdl *ghp1, *ghp2;
3459
3460 /*
3461 * An object can always find symbols within itself.
3462 */
3463 if (clmp == dlmp)
3464 return (1);
3465
3466 /*
3467 * The search for a singleton must look in every loaded object.
3468 */
3469 if (slflags & LKUP_SINGLETON)
3470 return (1);
3471
3472 /*
3473 * Don't allow an object to bind to an object that is being deleted
3474 * unless the binder is also being deleted.
3475 */
3476 if ((FLAGS(dlmp) & FLG_RT_DELETE) &&
3477 ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
3478 return (0);
3479
3480 /*
3481 * An object with world access can always bind to an object with global
3482 * visibility.
3483 */
3484 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) &&
3485 (MODE(dlmp) & RTLD_GLOBAL))
3486 return (1);
3487
3488 /*
3489 * An object with local access can only bind to an object that is a
3490 * member of the same group.
3491 */
3492 if (((MODE(clmp) & RTLD_GROUP) == 0) ||
3493 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL))
3494 return (0);
3495
3496 /*
3497 * Traverse the list of groups the caller is a part of.
3498 */
3499 for (APLIST_TRAVERSE(calp, idx1, ghp1)) {
3500 /*
3501 * If we're testing for the ability of two objects to bind to
3502 * each other regardless of a specific group, ignore that group.
3503 */
3504 if (ghp && (ghp1 == ghp))
3505 continue;
3506
3507 /*
3508 * Traverse the list of groups the destination is a part of.
3509 */
3510 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) {
3511 Grp_desc *gdp;
3512 Aliste idx3;
3513
3514 if (ghp1 != ghp2)
3515 continue;
3516
3517 /*
3518 * Make sure the relationship between the destination
3519 * and the caller provide symbols for relocation.
3520 * Parents are maintained as callers, but unless the
3521 * destination object was opened with RTLD_PARENT, the
3522 * parent doesn't provide symbols for the destination
3523 * to relocate against.
3524 */
3525 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) {
3526 if (dlmp != gdp->gd_depend)
3527 continue;
3528
3529 if (gdp->gd_flags & GPD_RELOC)
3530 return (1);
3531 }
3532 }
3533 }
3534 return (0);
3535 }
3536
3537 /*
3538 * Initialize the environ symbol. Traditionally this is carried out by the crt
3539 * code prior to jumping to main. However, init sections get fired before this
3540 * variable is initialized, so ld.so.1 sets this directly from the AUX vector
3541 * information. In addition, a process may have multiple link-maps (ld.so.1's
3542 * debugging and preloading objects), and link auditing, and each may need an
3543 * environ variable set.
3544 *
3545 * This routine is called after a relocation() pass, and thus provides for:
3546 *
3547 * - setting environ on the main link-map after the initial application and
3548 * its dependencies have been established. Typically environ lives in the
3549 * application (provided by its crt), but in older applications it might
3550 * be in libc. Who knows what's expected of applications not built on
3551 * Solaris.
3552 *
3553 * - after loading a new shared object. We can add shared objects to various
3554 * link-maps, and any link-map dependencies requiring getopt() require
3555 * their own environ. In addition, lazy loading might bring in the
3556 * supplier of environ (libc used to be a lazy loading candidate) after
3557 * the link-map has been established and other objects are present.
3558 *
3559 * This routine handles all these scenarios, without adding unnecessary overhead
3560 * to ld.so.1.
3561 */
3562 void
set_environ(Lm_list * lml)3563 set_environ(Lm_list *lml)
3564 {
3565 Slookup sl;
3566 Sresult sr;
3567 uint_t binfo;
3568
3569 /*
3570 * Initialize the symbol lookup, and symbol result, data structures.
3571 */
3572 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head,
3573 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK);
3574 SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON));
3575
3576 if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) {
3577 Rt_map *dlmp = sr.sr_dmap;
3578
3579 lml->lm_environ = (char ***)sr.sr_sym->st_value;
3580
3581 if (!(FLAGS(dlmp) & FLG_RT_FIXED))
3582 lml->lm_environ =
3583 (char ***)((uintptr_t)lml->lm_environ +
3584 (uintptr_t)ADDR(dlmp));
3585 *(lml->lm_environ) = (char **)environ;
3586 lml->lm_flags |= LML_FLG_ENVIRON;
3587 }
3588 }
3589
3590 /*
3591 * Determine whether we have a secure executable. Uid and gid information
3592 * can be passed to us via the aux vector, however if these values are -1
3593 * then use the appropriate system call to obtain them.
3594 *
3595 * - If the user is the root they can do anything
3596 *
3597 * - If the real and effective uid's don't match, or the real and
3598 * effective gid's don't match then this is determined to be a `secure'
3599 * application.
3600 *
3601 * This function is called prior to any dependency processing (see _setup.c).
3602 * Any secure setting will remain in effect for the life of the process.
3603 */
3604 void
security(uid_t uid,uid_t euid,gid_t gid,gid_t egid,int auxflags)3605 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags)
3606 {
3607 if (auxflags != -1) {
3608 if ((auxflags & AF_SUN_SETUGID) != 0)
3609 rtld_flags |= RT_FL_SECURE;
3610 return;
3611 }
3612
3613 if (uid == (uid_t)-1)
3614 uid = getuid();
3615 if (uid) {
3616 if (euid == (uid_t)-1)
3617 euid = geteuid();
3618 if (uid != euid)
3619 rtld_flags |= RT_FL_SECURE;
3620 else {
3621 if (gid == (gid_t)-1)
3622 gid = getgid();
3623 if (egid == (gid_t)-1)
3624 egid = getegid();
3625 if (gid != egid)
3626 rtld_flags |= RT_FL_SECURE;
3627 }
3628 }
3629 }
3630
3631 /*
3632 * Determine whether ld.so.1 itself is owned by root and has its mode setuid.
3633 */
3634 int
is_rtld_setuid()3635 is_rtld_setuid()
3636 {
3637 rtld_stat_t status;
3638 const char *name;
3639
3640 if (rtld_flags2 & RT_FL2_SETUID)
3641 return (1);
3642
3643 if (interp && interp->i_name)
3644 name = interp->i_name;
3645 else
3646 name = NAME(lml_rtld.lm_head);
3647
3648 if (((rtld_stat(name, &status) == 0) &&
3649 (status.st_uid == 0) && (status.st_mode & S_ISUID))) {
3650 rtld_flags2 |= RT_FL2_SETUID;
3651 return (1);
3652 }
3653 return (0);
3654 }
3655
3656 /*
3657 * Determine that systems platform name. Normally, this name is provided from
3658 * the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a
3659 * fall back.
3660 */
3661 void
platform_name(Syscapset * scapset)3662 platform_name(Syscapset *scapset)
3663 {
3664 char info[SYS_NMLN];
3665 size_t size;
3666
3667 if ((scapset->sc_platsz = size =
3668 sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1)
3669 return;
3670
3671 if ((scapset->sc_plat = malloc(size)) == NULL) {
3672 scapset->sc_platsz = (size_t)-1;
3673 return;
3674 }
3675 (void) strcpy(scapset->sc_plat, info);
3676 }
3677
3678 /*
3679 * Determine that systems machine name. Normally, this name is provided from
3680 * the AT_SUN_MACHINE aux vector from the kernel. This routine provides a
3681 * fall back.
3682 */
3683 void
machine_name(Syscapset * scapset)3684 machine_name(Syscapset *scapset)
3685 {
3686 char info[SYS_NMLN];
3687 size_t size;
3688
3689 if ((scapset->sc_machsz = size =
3690 sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1)
3691 return;
3692
3693 if ((scapset->sc_mach = malloc(size)) == NULL) {
3694 scapset->sc_machsz = (size_t)-1;
3695 return;
3696 }
3697 (void) strcpy(scapset->sc_mach, info);
3698 }
3699
3700 /*
3701 * _REENTRANT code gets errno redefined to a function so provide for return
3702 * of the thread errno if applicable. This has no meaning in ld.so.1 which
3703 * is basically singled threaded. Provide the interface for our dependencies.
3704 */
3705 #undef errno
3706 int *
___errno()3707 ___errno()
3708 {
3709 extern int errno;
3710
3711 return (&errno);
3712 }
3713
3714 /*
3715 * Determine whether a symbol name should be demangled.
3716 */
3717 const char *
demangle(const char * name)3718 demangle(const char *name)
3719 {
3720 if (rtld_flags & RT_FL_DEMANGLE)
3721 return (conv_demangle_name(name));
3722 else
3723 return (name);
3724 }
3725
3726 #ifndef _LP64
3727 /*
3728 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64()
3729 * underneath while preserving the object size limits of a non-largefile
3730 * enabled 32-bit process. The purpose of this is to prevent large inode
3731 * values from causing stat() to fail.
3732 */
3733 inline static int
rtld_stat_process(int r,struct stat64 * lbuf,rtld_stat_t * restrict buf)3734 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf)
3735 {
3736 extern int errno;
3737
3738 /*
3739 * Although we used a 64-bit capable stat(), the 32-bit rtld
3740 * can only handle objects < 2GB in size. If this object is
3741 * too big, turn the success into an overflow error.
3742 */
3743 if ((lbuf->st_size & 0xffffffff80000000) != 0) {
3744 errno = EOVERFLOW;
3745 return (-1);
3746 }
3747
3748 /*
3749 * Transfer the information needed by rtld into a rtld_stat_t
3750 * structure that preserves the non-largile types for everything
3751 * except inode.
3752 */
3753 buf->st_dev = lbuf->st_dev;
3754 buf->st_ino = lbuf->st_ino;
3755 buf->st_mode = lbuf->st_mode;
3756 buf->st_uid = lbuf->st_uid;
3757 buf->st_size = (off_t)lbuf->st_size;
3758 buf->st_mtim = lbuf->st_mtim;
3759 #ifdef sparc
3760 buf->st_blksize = lbuf->st_blksize;
3761 #endif
3762
3763 return (r);
3764 }
3765
3766 int
rtld_stat(const char * restrict path,rtld_stat_t * restrict buf)3767 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf)
3768 {
3769 struct stat64 lbuf;
3770 int r;
3771
3772 r = stat64(path, &lbuf);
3773 if (r != -1)
3774 r = rtld_stat_process(r, &lbuf, buf);
3775 return (r);
3776 }
3777
3778 int
rtld_fstat(int fildes,rtld_stat_t * restrict buf)3779 rtld_fstat(int fildes, rtld_stat_t *restrict buf)
3780 {
3781 struct stat64 lbuf;
3782 int r;
3783
3784 r = fstat64(fildes, &lbuf);
3785 if (r != -1)
3786 r = rtld_stat_process(r, &lbuf, buf);
3787 return (r);
3788 }
3789 #endif
3790