xref: /freebsd/sys/dev/cxgbe/iw_cxgbe/t4.h (revision 19d9a9b15178ed7cfe3f463f43e28cce13fc4f94)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 #ifndef __T4_H__
34 #define __T4_H__
35 
36 #include "common/t4_regs_values.h"
37 #include "common/t4_regs.h"
38 /*
39  * Fixme: Adding missing defines
40  */
41 #define SGE_PF_KDOORBELL 0x0
42 #define  QID_MASK    0xffff8000U
43 #define  QID_SHIFT   15
44 #define  QID(x)      ((x) << QID_SHIFT)
45 #define  DBPRIO      0x00004000U
46 #define  PIDX_MASK   0x00003fffU
47 #define  PIDX_SHIFT  0
48 #define  PIDX(x)     ((x) << PIDX_SHIFT)
49 
50 #define SGE_PF_GTS 0x4
51 #define  INGRESSQID_MASK   0xffff0000U
52 #define  INGRESSQID_SHIFT  16
53 #define  INGRESSQID(x)     ((x) << INGRESSQID_SHIFT)
54 #define  TIMERREG_MASK     0x0000e000U
55 #define  TIMERREG_SHIFT    13
56 #define  TIMERREG(x)       ((x) << TIMERREG_SHIFT)
57 #define  SEINTARM_MASK     0x00001000U
58 #define  SEINTARM_SHIFT    12
59 #define  SEINTARM(x)       ((x) << SEINTARM_SHIFT)
60 #define  CIDXINC_MASK      0x00000fffU
61 #define  CIDXINC_SHIFT     0
62 #define  CIDXINC(x)        ((x) << CIDXINC_SHIFT)
63 
64 #define T4_MAX_NUM_PD 65536
65 #define T4_MAX_MR_SIZE (~0ULL)
66 #define T4_PAGESIZE_MASK 0xffffffff000 /* 4KB-8TB */
67 #define T4_FW_MAJ 0
68 #define A_PCIE_MA_SYNC 0x30b4
69 
70 struct t4_status_page {
71 	__be32 rsvd1;	/* flit 0 - hw owns */
72 	__be16 rsvd2;
73 	__be16 qid;
74 	__be16 cidx;
75 	__be16 pidx;
76 	u8 qp_err;	/* flit 1 - sw owns */
77 	u8 db_off;
78 	u8 pad;
79 	u16 host_wq_pidx;
80 	u16 host_cidx;
81 	u16 host_pidx;
82 };
83 
84 #define T4_EQ_ENTRY_SIZE 64
85 
86 #define T4_SQ_NUM_SLOTS 5
87 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
88 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
89 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
90 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
91 			sizeof(struct fw_ri_immd)))
92 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
93 			sizeof(struct fw_ri_rdma_write_wr) - \
94 			sizeof(struct fw_ri_immd)))
95 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
96 			sizeof(struct fw_ri_rdma_write_wr) - \
97 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
98 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
99 			sizeof(struct fw_ri_immd)) & ~31UL)
100 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
101 #define T4_MAX_FR_DSGL 1024
102 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
103 #define T4_MAX_FR_FW_DSGL 4096
104 #define T4_MAX_FR_FW_DSGL_DEPTH (T4_MAX_FR_FW_DSGL / sizeof(u64))
105 
106 #define T4_RQ_NUM_SLOTS 2
107 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
108 #define T4_MAX_RECV_SGE 4
109 
110 union t4_wr {
111 	struct fw_ri_res_wr res;
112 	struct fw_ri_wr ri;
113 	struct fw_ri_rdma_write_wr write;
114 	struct fw_ri_send_wr send;
115 	struct fw_ri_rdma_read_wr read;
116 	struct fw_ri_bind_mw_wr bind;
117 	struct fw_ri_fr_nsmr_wr fr;
118 	struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
119 	struct fw_ri_inv_lstag_wr inv;
120 	struct t4_status_page status;
121 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
122 };
123 
124 union t4_recv_wr {
125 	struct fw_ri_recv_wr recv;
126 	struct t4_status_page status;
127 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
128 };
129 
130 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
131 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
132 {
133 	wqe->send.opcode = (u8)opcode;
134 	wqe->send.flags = flags;
135 	wqe->send.wrid = wrid;
136 	wqe->send.r1[0] = 0;
137 	wqe->send.r1[1] = 0;
138 	wqe->send.r1[2] = 0;
139 	wqe->send.len16 = len16;
140 }
141 
142 /* CQE/AE status codes */
143 #define T4_ERR_SUCCESS                     0x0
144 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
145 						/* STAG is offlimt, being 0, */
146 						/* or STAG_key mismatch */
147 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
148 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
149 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
150 #define T4_ERR_WRAP                        0x5	/* Wrap error */
151 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
152 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
153 						/* shared memory region */
154 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
155 						/* shared memory region */
156 #define T4_ERR_ECC                         0x9	/* ECC error detected */
157 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
158 						/* reading PSTAG for a MW  */
159 						/* Invalidate */
160 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
161 						/* software error */
162 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
163 #define T4_ERR_CRC                         0x10 /* CRC error */
164 #define T4_ERR_MARKER                      0x11 /* Marker error */
165 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
166 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
167 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
168 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
169 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
170 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
171 #define T4_ERR_MSN                         0x18 /* MSN error */
172 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
173 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
174 						/* or READ_REQ */
175 #define T4_ERR_MSN_GAP                     0x1B
176 #define T4_ERR_MSN_RANGE                   0x1C
177 #define T4_ERR_IRD_OVERFLOW                0x1D
178 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
179 						/* software error */
180 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
181 						/* mismatch) */
182 /*
183  * CQE defs
184  */
185 struct t4_cqe {
186 	__be32 header;
187 	__be32 len;
188 	union {
189 		struct {
190 			__be32 stag;
191 			__be32 msn;
192 		} rcqe;
193 		struct {
194 			u32 stag;
195 			u16 nada2;
196 			u16 cidx;
197 		} scqe;
198 		struct {
199 			__be32 wrid_hi;
200 			__be32 wrid_low;
201 		} gen;
202 		u64 drain_cookie;
203 	} u;
204 	__be64 reserved;
205 	__be64 bits_type_ts;
206 };
207 
208 /* macros for flit 0 of the cqe */
209 
210 #define S_CQE_QPID        12
211 #define M_CQE_QPID        0xFFFFF
212 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
213 #define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
214 
215 #define S_CQE_SWCQE       11
216 #define M_CQE_SWCQE       0x1
217 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
218 #define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
219 
220 #define S_CQE_STATUS      5
221 #define M_CQE_STATUS      0x1F
222 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
223 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
224 
225 #define S_CQE_TYPE        4
226 #define M_CQE_TYPE        0x1
227 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
228 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
229 
230 #define S_CQE_OPCODE      0
231 #define M_CQE_OPCODE      0xF
232 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
233 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
234 
235 #define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
236 #define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
237 #define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
238 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
239 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
240 #define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
241 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
242 
243 #define CQE_SEND_OPCODE(x)(\
244 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
245 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
246 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
247 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
248 
249 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
250 
251 /* used for RQ completion processing */
252 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
253 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
254 
255 /* used for SQ completion processing */
256 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
257 #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
258 
259 /* generic accessor macros */
260 #define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
261 #define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
262 #define CQE_DRAIN_COOKIE(x)	(x)->u.drain_cookie;
263 
264 /* macros for flit 3 of the cqe */
265 #define S_CQE_GENBIT	63
266 #define M_CQE_GENBIT	0x1
267 #define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
268 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
269 
270 #define S_CQE_OVFBIT	62
271 #define M_CQE_OVFBIT	0x1
272 #define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
273 
274 #define S_CQE_IQTYPE	60
275 #define M_CQE_IQTYPE	0x3
276 #define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
277 
278 #define M_CQE_TS	0x0fffffffffffffffULL
279 #define G_CQE_TS(x)	((x) & M_CQE_TS)
280 
281 #define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
282 #define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
283 #define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
284 
285 struct t4_swsqe {
286 	u64			wr_id;
287 	struct t4_cqe		cqe;
288 	int			read_len;
289 	int			opcode;
290 	int			complete;
291 	int			signaled;
292 	u16			idx;
293 	int                     flushed;
294 	struct timespec         host_ts;
295 	u64                     sge_ts;
296 };
297 
298 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
299 {
300 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
301 	return pgprot_writecombine(prot);
302 #else
303 	return pgprot_noncached(prot);
304 #endif
305 }
306 
307 enum {
308 	T4_SQ_ONCHIP = (1<<0),
309 };
310 
311 struct t4_sq {
312 	union t4_wr *queue;
313 	bus_addr_t dma_addr;
314 	DEFINE_DMA_UNMAP_ADDR(mapping);
315 	unsigned long phys_addr;
316 	struct t4_swsqe *sw_sq;
317 	struct t4_swsqe *oldest_read;
318 	void __iomem *bar2_va;
319 	u64 bar2_pa;
320 	size_t memsize;
321 	u32 bar2_qid;
322 	u32 qid;
323 	u16 in_use;
324 	u16 size;
325 	u16 cidx;
326 	u16 pidx;
327 	u16 wq_pidx;
328 	u16 wq_pidx_inc;
329 	u16 flags;
330 	short flush_cidx;
331 };
332 
333 struct t4_swrqe {
334 	u64 wr_id;
335 };
336 
337 struct t4_rq {
338 	union  t4_recv_wr *queue;
339 	bus_addr_t dma_addr;
340 	DEFINE_DMA_UNMAP_ADDR(mapping);
341 	unsigned long phys_addr;
342 	struct t4_swrqe *sw_rq;
343 	void __iomem *bar2_va;
344 	u64 bar2_pa;
345 	size_t memsize;
346 	u32 bar2_qid;
347 	u32 qid;
348 	u32 msn;
349 	u32 rqt_hwaddr;
350 	u16 rqt_size;
351 	u16 in_use;
352 	u16 size;
353 	u16 cidx;
354 	u16 pidx;
355 	u16 wq_pidx;
356 	u16 wq_pidx_inc;
357 };
358 
359 struct t4_wq {
360 	struct t4_sq sq;
361 	struct t4_rq rq;
362 	struct c4iw_rdev *rdev;
363 	int flushed;
364 };
365 
366 static inline int t4_rqes_posted(struct t4_wq *wq)
367 {
368 	return wq->rq.in_use;
369 }
370 
371 static inline int t4_rq_empty(struct t4_wq *wq)
372 {
373 	return wq->rq.in_use == 0;
374 }
375 
376 static inline int t4_rq_full(struct t4_wq *wq)
377 {
378 	return wq->rq.in_use == (wq->rq.size - 1);
379 }
380 
381 static inline u32 t4_rq_avail(struct t4_wq *wq)
382 {
383 	return wq->rq.size - 1 - wq->rq.in_use;
384 }
385 
386 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
387 {
388 	wq->rq.in_use++;
389 	if (++wq->rq.pidx == wq->rq.size)
390 		wq->rq.pidx = 0;
391 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
392 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
393 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
394 }
395 
396 static inline void t4_rq_consume(struct t4_wq *wq)
397 {
398 	wq->rq.in_use--;
399 	wq->rq.msn++;
400 	if (++wq->rq.cidx == wq->rq.size)
401 		wq->rq.cidx = 0;
402 }
403 
404 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
405 {
406 	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
407 }
408 
409 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
410 {
411 	return wq->rq.size * T4_RQ_NUM_SLOTS;
412 }
413 
414 static inline int t4_sq_onchip(struct t4_sq *sq)
415 {
416 	return sq->flags & T4_SQ_ONCHIP;
417 }
418 
419 static inline int t4_sq_empty(struct t4_wq *wq)
420 {
421 	return wq->sq.in_use == 0;
422 }
423 
424 static inline int t4_sq_full(struct t4_wq *wq)
425 {
426 	return wq->sq.in_use == (wq->sq.size - 1);
427 }
428 
429 static inline u32 t4_sq_avail(struct t4_wq *wq)
430 {
431 	return wq->sq.size - 1 - wq->sq.in_use;
432 }
433 
434 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
435 {
436 	wq->sq.in_use++;
437 	if (++wq->sq.pidx == wq->sq.size)
438 		wq->sq.pidx = 0;
439 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
440 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
441 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
442 }
443 
444 static inline void t4_sq_consume(struct t4_wq *wq)
445 {
446 	BUG_ON(wq->sq.in_use < 1);
447 	if (wq->sq.cidx == wq->sq.flush_cidx)
448 		wq->sq.flush_cidx = -1;
449 	wq->sq.in_use--;
450 	if (++wq->sq.cidx == wq->sq.size)
451 		wq->sq.cidx = 0;
452 }
453 
454 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
455 {
456 	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
457 }
458 
459 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
460 {
461 		return wq->sq.size * T4_SQ_NUM_SLOTS;
462 }
463 
464 /* This function copies 64 byte coalesced work request to memory
465  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
466  * from the FIFO instead of from Host.
467  */
468 static inline void pio_copy(u64 __iomem *dst, u64 *src)
469 {
470 	int count = 8;
471 
472 	while (count) {
473 		writeq(*src, dst);
474 		src++;
475 		dst++;
476 		count--;
477 	}
478 }
479 
480 static inline void
481 t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe, u8 wc)
482 {
483 
484 	/* Flush host queue memory writes. */
485 	wmb();
486 	if (wc && inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
487 		CTR2(KTR_IW_CXGBE, "%s: WC wq->sq.pidx = %d",
488 				__func__, wq->sq.pidx);
489 		pio_copy((u64 __iomem *)
490 				((u64)wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
491 				(u64 *)wqe);
492 	} else {
493 		CTR2(KTR_IW_CXGBE, "%s: DB wq->sq.pidx = %d",
494 				__func__, wq->sq.pidx);
495 		writel(V_PIDX_T5(inc) | V_QID(wq->sq.bar2_qid),
496 				(void __iomem *)((u64)wq->sq.bar2_va +
497 					SGE_UDB_KDOORBELL));
498 	}
499 
500 	/* Flush user doorbell area writes. */
501 	wmb();
502 	return;
503 }
504 
505 static inline void
506 t4_ring_rq_db(struct t4_wq *wq, u16 inc, union t4_recv_wr *wqe, u8 wc)
507 {
508 
509 	/* Flush host queue memory writes. */
510 	wmb();
511 	if (wc && inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
512 		CTR2(KTR_IW_CXGBE, "%s: WC wq->rq.pidx = %d",
513 				__func__, wq->rq.pidx);
514 		pio_copy((u64 __iomem *)((u64)wq->rq.bar2_va +
515 					SGE_UDB_WCDOORBELL), (u64 *)wqe);
516 	} else {
517 		CTR2(KTR_IW_CXGBE, "%s: DB wq->rq.pidx = %d",
518 				__func__, wq->rq.pidx);
519 		writel(V_PIDX_T5(inc) | V_QID(wq->rq.bar2_qid),
520 				(void __iomem *)((u64)wq->rq.bar2_va +
521 					SGE_UDB_KDOORBELL));
522 	}
523 
524 	/* Flush user doorbell area writes. */
525 	wmb();
526 	return;
527 }
528 
529 static inline int t4_wq_in_error(struct t4_wq *wq)
530 {
531 	return wq->rq.queue[wq->rq.size].status.qp_err;
532 }
533 
534 static inline void t4_set_wq_in_error(struct t4_wq *wq)
535 {
536 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
537 }
538 
539 enum t4_cq_flags {
540 	CQ_ARMED	= 1,
541 };
542 
543 struct t4_cq {
544 	struct t4_cqe *queue;
545 	bus_addr_t dma_addr;
546 	DEFINE_DMA_UNMAP_ADDR(mapping);
547 	struct t4_cqe *sw_queue;
548 	void __iomem *bar2_va;
549 	u64 bar2_pa;
550 	u32 bar2_qid;
551 	struct c4iw_rdev *rdev;
552 	size_t memsize;
553 	__be64 bits_type_ts;
554 	u32 cqid;
555 	u32 qid_mask;
556 	int vector;
557 	u16 size; /* including status page */
558 	u16 cidx;
559 	u16 sw_pidx;
560 	u16 sw_cidx;
561 	u16 sw_in_use;
562 	u16 cidx_inc;
563 	u8 gen;
564 	u8 error;
565 	unsigned long flags;
566 };
567 
568 static inline void write_gts(struct t4_cq *cq, u32 val)
569 {
570 	writel(val | V_INGRESSQID(cq->bar2_qid),
571 		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
572 }
573 
574 static inline int t4_clear_cq_armed(struct t4_cq *cq)
575 {
576 	return test_and_clear_bit(CQ_ARMED, &cq->flags);
577 }
578 
579 static inline int t4_arm_cq(struct t4_cq *cq, int se)
580 {
581 	u32 val;
582 
583 	set_bit(CQ_ARMED, &cq->flags);
584 	while (cq->cidx_inc > CIDXINC_MASK) {
585 		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7);
586 		writel(val | V_INGRESSQID(cq->bar2_qid),
587 		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
588 		cq->cidx_inc -= CIDXINC_MASK;
589 	}
590 	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6);
591 	writel(val | V_INGRESSQID(cq->bar2_qid),
592 		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
593 	cq->cidx_inc = 0;
594 	return 0;
595 }
596 
597 static inline void t4_swcq_produce(struct t4_cq *cq)
598 {
599 	cq->sw_in_use++;
600 	if (cq->sw_in_use == cq->size) {
601 		CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u",
602 			 __func__, cq->cqid);
603 		cq->error = 1;
604 		BUG_ON(1);
605 	}
606 	if (++cq->sw_pidx == cq->size)
607 		cq->sw_pidx = 0;
608 }
609 
610 static inline void t4_swcq_consume(struct t4_cq *cq)
611 {
612 	BUG_ON(cq->sw_in_use < 1);
613 	cq->sw_in_use--;
614 	if (++cq->sw_cidx == cq->size)
615 		cq->sw_cidx = 0;
616 }
617 
618 static inline void t4_hwcq_consume(struct t4_cq *cq)
619 {
620 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
621 	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == M_CIDXINC) {
622 		u32 val;
623 
624 		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7);
625 		write_gts(cq, val);
626 		cq->cidx_inc = 0;
627 	}
628 	if (++cq->cidx == cq->size) {
629 		cq->cidx = 0;
630 		cq->gen ^= 1;
631 	}
632 }
633 
634 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
635 {
636 	return (CQE_GENBIT(cqe) == cq->gen);
637 }
638 
639 static inline int t4_cq_notempty(struct t4_cq *cq)
640 {
641 	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
642 }
643 
644 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
645 {
646 	int ret;
647 	u16 prev_cidx;
648 
649 	if (cq->cidx == 0)
650 		prev_cidx = cq->size - 1;
651 	else
652 		prev_cidx = cq->cidx - 1;
653 
654 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
655 		ret = -EOVERFLOW;
656 		cq->error = 1;
657 		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
658 		BUG_ON(1);
659 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
660 
661 		/* Ensure CQE is flushed to memory */
662 		rmb();
663 		*cqe = &cq->queue[cq->cidx];
664 		ret = 0;
665 	} else
666 		ret = -ENODATA;
667 	return ret;
668 }
669 
670 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
671 {
672 	if (cq->sw_in_use == cq->size) {
673 		CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u",
674 			 __func__, cq->cqid);
675 		cq->error = 1;
676 		BUG_ON(1);
677 		return NULL;
678 	}
679 	if (cq->sw_in_use)
680 		return &cq->sw_queue[cq->sw_cidx];
681 	return NULL;
682 }
683 
684 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
685 {
686 	int ret = 0;
687 
688 	if (cq->error)
689 		ret = -ENODATA;
690 	else if (cq->sw_in_use)
691 		*cqe = &cq->sw_queue[cq->sw_cidx];
692 	else
693 		ret = t4_next_hw_cqe(cq, cqe);
694 	return ret;
695 }
696 
697 static inline int t4_cq_in_error(struct t4_cq *cq)
698 {
699 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
700 }
701 
702 static inline void t4_set_cq_in_error(struct t4_cq *cq)
703 {
704 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
705 }
706 struct t4_dev_status_page {
707 	u8 db_off;
708 	u8 wc_supported;
709 	u16 pad2;
710 	u32 pad3;
711 	u64 qp_start;
712 	u64 qp_size;
713 	u64 cq_start;
714 	u64 cq_size;
715 };
716 #endif
717