1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3
4 #include <crypto/aes.h>
5 #include <crypto/aead.h>
6 #include <crypto/algapi.h>
7 #include <crypto/authenc.h>
8 #include <crypto/des.h>
9 #include <crypto/hash.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <crypto/skcipher.h>
15 #include <crypto/xts.h>
16 #include <linux/crypto.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/idr.h>
19
20 #include "sec.h"
21 #include "sec_crypto.h"
22
23 #define SEC_PRIORITY 4001
24 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
25 #define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE)
26 #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
27 #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
28 #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
29
30 /* SEC sqe(bd) bit operational relative MACRO */
31 #define SEC_DE_OFFSET 1
32 #define SEC_CIPHER_OFFSET 4
33 #define SEC_SCENE_OFFSET 3
34 #define SEC_DST_SGL_OFFSET 2
35 #define SEC_SRC_SGL_OFFSET 7
36 #define SEC_CKEY_OFFSET 9
37 #define SEC_CMODE_OFFSET 12
38 #define SEC_AKEY_OFFSET 5
39 #define SEC_AEAD_ALG_OFFSET 11
40 #define SEC_AUTH_OFFSET 6
41
42 #define SEC_DE_OFFSET_V3 9
43 #define SEC_SCENE_OFFSET_V3 5
44 #define SEC_CKEY_OFFSET_V3 13
45 #define SEC_CTR_CNT_OFFSET 25
46 #define SEC_CTR_CNT_ROLLOVER 2
47 #define SEC_SRC_SGL_OFFSET_V3 11
48 #define SEC_DST_SGL_OFFSET_V3 14
49 #define SEC_CALG_OFFSET_V3 4
50 #define SEC_AKEY_OFFSET_V3 9
51 #define SEC_MAC_OFFSET_V3 4
52 #define SEC_AUTH_ALG_OFFSET_V3 15
53 #define SEC_CIPHER_AUTH_V3 0xbf
54 #define SEC_AUTH_CIPHER_V3 0x40
55 #define SEC_FLAG_OFFSET 7
56 #define SEC_FLAG_MASK 0x0780
57 #define SEC_TYPE_MASK 0x0F
58 #define SEC_DONE_MASK 0x0001
59 #define SEC_ICV_MASK 0x000E
60 #define SEC_SQE_LEN_RATE_MASK 0x3
61
62 #define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth))
63 #define SEC_SGL_SGE_NR 128
64 #define SEC_CIPHER_AUTH 0xfe
65 #define SEC_AUTH_CIPHER 0x1
66 #define SEC_MAX_MAC_LEN 64
67 #define SEC_MAX_AAD_LEN 65535
68 #define SEC_MAX_CCM_AAD_LEN 65279
69 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
70
71 #define SEC_PBUF_SZ 512
72 #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
73 #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
74 #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
75 SEC_MAX_MAC_LEN * 2)
76 #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
77 #define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM)
78 #define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \
79 SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
80 #define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \
81 SEC_PBUF_LEFT_SZ(depth))
82
83 #define SEC_SQE_LEN_RATE 4
84 #define SEC_SQE_CFLAG 2
85 #define SEC_SQE_AEAD_FLAG 3
86 #define SEC_SQE_DONE 0x1
87 #define SEC_ICV_ERR 0x2
88 #define MIN_MAC_LEN 4
89 #define MAC_LEN_MASK 0x1U
90 #define MAX_INPUT_DATA_LEN 0xFFFE00
91 #define BITS_MASK 0xFF
92 #define BYTE_BITS 0x8
93 #define SEC_XTS_NAME_SZ 0x3
94 #define IV_CM_CAL_NUM 2
95 #define IV_CL_MASK 0x7
96 #define IV_CL_MIN 2
97 #define IV_CL_MID 4
98 #define IV_CL_MAX 8
99 #define IV_FLAGS_OFFSET 0x6
100 #define IV_CM_OFFSET 0x3
101 #define IV_LAST_BYTE1 1
102 #define IV_LAST_BYTE2 2
103 #define IV_LAST_BYTE_MASK 0xFF
104 #define IV_CTR_INIT 0x1
105 #define IV_BYTE_OFFSET 0x8
106
107 static DEFINE_MUTEX(sec_algs_lock);
108 static unsigned int sec_available_devs;
109
110 struct sec_skcipher {
111 u64 alg_msk;
112 struct skcipher_alg alg;
113 };
114
115 struct sec_aead {
116 u64 alg_msk;
117 struct aead_alg alg;
118 };
119
120 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
sec_alloc_queue_id(struct sec_ctx * ctx,struct sec_req * req)121 static inline u32 sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
122 {
123 if (req->c_req.encrypt)
124 return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
125 ctx->hlf_q_num;
126
127 return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
128 ctx->hlf_q_num;
129 }
130
sec_free_queue_id(struct sec_ctx * ctx,struct sec_req * req)131 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
132 {
133 if (req->c_req.encrypt)
134 atomic_dec(&ctx->enc_qcyclic);
135 else
136 atomic_dec(&ctx->dec_qcyclic);
137 }
138
sec_alloc_req_id(struct sec_req * req,struct sec_qp_ctx * qp_ctx)139 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
140 {
141 int req_id;
142
143 spin_lock_bh(&qp_ctx->req_lock);
144 req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
145 spin_unlock_bh(&qp_ctx->req_lock);
146 if (unlikely(req_id < 0)) {
147 dev_err(req->ctx->dev, "alloc req id fail!\n");
148 return req_id;
149 }
150
151 req->qp_ctx = qp_ctx;
152 qp_ctx->req_list[req_id] = req;
153
154 return req_id;
155 }
156
sec_free_req_id(struct sec_req * req)157 static void sec_free_req_id(struct sec_req *req)
158 {
159 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
160 int req_id = req->req_id;
161
162 if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
163 dev_err(req->ctx->dev, "free request id invalid!\n");
164 return;
165 }
166
167 qp_ctx->req_list[req_id] = NULL;
168 req->qp_ctx = NULL;
169
170 spin_lock_bh(&qp_ctx->req_lock);
171 idr_remove(&qp_ctx->req_idr, req_id);
172 spin_unlock_bh(&qp_ctx->req_lock);
173 }
174
pre_parse_finished_bd(struct bd_status * status,void * resp)175 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
176 {
177 struct sec_sqe *bd = resp;
178
179 status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
180 status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
181 status->flag = (le16_to_cpu(bd->type2.done_flag) &
182 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
183 status->tag = le16_to_cpu(bd->type2.tag);
184 status->err_type = bd->type2.error_type;
185
186 return bd->type_cipher_auth & SEC_TYPE_MASK;
187 }
188
pre_parse_finished_bd3(struct bd_status * status,void * resp)189 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
190 {
191 struct sec_sqe3 *bd3 = resp;
192
193 status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
194 status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
195 status->flag = (le16_to_cpu(bd3->done_flag) &
196 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
197 status->tag = le64_to_cpu(bd3->tag);
198 status->err_type = bd3->error_type;
199
200 return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
201 }
202
sec_cb_status_check(struct sec_req * req,struct bd_status * status)203 static int sec_cb_status_check(struct sec_req *req,
204 struct bd_status *status)
205 {
206 struct sec_ctx *ctx = req->ctx;
207
208 if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
209 dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
210 req->err_type, status->done);
211 return -EIO;
212 }
213
214 if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
215 if (unlikely(status->flag != SEC_SQE_CFLAG)) {
216 dev_err_ratelimited(ctx->dev, "flag[%u]\n",
217 status->flag);
218 return -EIO;
219 }
220 } else if (unlikely(ctx->alg_type == SEC_AEAD)) {
221 if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
222 status->icv == SEC_ICV_ERR)) {
223 dev_err_ratelimited(ctx->dev,
224 "flag[%u], icv[%u]\n",
225 status->flag, status->icv);
226 return -EBADMSG;
227 }
228 }
229
230 return 0;
231 }
232
sec_req_cb(struct hisi_qp * qp,void * resp)233 static void sec_req_cb(struct hisi_qp *qp, void *resp)
234 {
235 struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
236 struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
237 u8 type_supported = qp_ctx->ctx->type_supported;
238 struct bd_status status;
239 struct sec_ctx *ctx;
240 struct sec_req *req;
241 int err;
242 u8 type;
243
244 if (type_supported == SEC_BD_TYPE2) {
245 type = pre_parse_finished_bd(&status, resp);
246 req = qp_ctx->req_list[status.tag];
247 } else {
248 type = pre_parse_finished_bd3(&status, resp);
249 req = (void *)(uintptr_t)status.tag;
250 }
251
252 if (unlikely(type != type_supported)) {
253 atomic64_inc(&dfx->err_bd_cnt);
254 pr_err("err bd type [%u]\n", type);
255 return;
256 }
257
258 if (unlikely(!req)) {
259 atomic64_inc(&dfx->invalid_req_cnt);
260 atomic_inc(&qp->qp_status.used);
261 return;
262 }
263
264 req->err_type = status.err_type;
265 ctx = req->ctx;
266 err = sec_cb_status_check(req, &status);
267 if (err)
268 atomic64_inc(&dfx->done_flag_cnt);
269
270 atomic64_inc(&dfx->recv_cnt);
271
272 ctx->req_op->buf_unmap(ctx, req);
273
274 ctx->req_op->callback(ctx, req, err);
275 }
276
sec_bd_send(struct sec_ctx * ctx,struct sec_req * req)277 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
278 {
279 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
280 int ret;
281
282 if (ctx->fake_req_limit <=
283 atomic_read(&qp_ctx->qp->qp_status.used) &&
284 !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
285 return -EBUSY;
286
287 spin_lock_bh(&qp_ctx->req_lock);
288 ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
289 if (ctx->fake_req_limit <=
290 atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
291 list_add_tail(&req->backlog_head, &qp_ctx->backlog);
292 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
293 atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
294 spin_unlock_bh(&qp_ctx->req_lock);
295 return -EBUSY;
296 }
297 spin_unlock_bh(&qp_ctx->req_lock);
298
299 if (unlikely(ret == -EBUSY))
300 return -ENOBUFS;
301
302 if (likely(!ret)) {
303 ret = -EINPROGRESS;
304 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
305 }
306
307 return ret;
308 }
309
310 /* Get DMA memory resources */
sec_alloc_civ_resource(struct device * dev,struct sec_alg_res * res)311 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
312 {
313 u16 q_depth = res->depth;
314 int i;
315
316 res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
317 &res->c_ivin_dma, GFP_KERNEL);
318 if (!res->c_ivin)
319 return -ENOMEM;
320
321 for (i = 1; i < q_depth; i++) {
322 res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
323 res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
324 }
325
326 return 0;
327 }
328
sec_free_civ_resource(struct device * dev,struct sec_alg_res * res)329 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
330 {
331 if (res->c_ivin)
332 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
333 res->c_ivin, res->c_ivin_dma);
334 }
335
sec_alloc_aiv_resource(struct device * dev,struct sec_alg_res * res)336 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
337 {
338 u16 q_depth = res->depth;
339 int i;
340
341 res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
342 &res->a_ivin_dma, GFP_KERNEL);
343 if (!res->a_ivin)
344 return -ENOMEM;
345
346 for (i = 1; i < q_depth; i++) {
347 res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
348 res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
349 }
350
351 return 0;
352 }
353
sec_free_aiv_resource(struct device * dev,struct sec_alg_res * res)354 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
355 {
356 if (res->a_ivin)
357 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
358 res->a_ivin, res->a_ivin_dma);
359 }
360
sec_alloc_mac_resource(struct device * dev,struct sec_alg_res * res)361 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
362 {
363 u16 q_depth = res->depth;
364 int i;
365
366 res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
367 &res->out_mac_dma, GFP_KERNEL);
368 if (!res->out_mac)
369 return -ENOMEM;
370
371 for (i = 1; i < q_depth; i++) {
372 res[i].out_mac_dma = res->out_mac_dma +
373 i * (SEC_MAX_MAC_LEN << 1);
374 res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
375 }
376
377 return 0;
378 }
379
sec_free_mac_resource(struct device * dev,struct sec_alg_res * res)380 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
381 {
382 if (res->out_mac)
383 dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
384 res->out_mac, res->out_mac_dma);
385 }
386
sec_free_pbuf_resource(struct device * dev,struct sec_alg_res * res)387 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
388 {
389 if (res->pbuf)
390 dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
391 res->pbuf, res->pbuf_dma);
392 }
393
394 /*
395 * To improve performance, pbuffer is used for
396 * small packets (< 512Bytes) as IOMMU translation using.
397 */
sec_alloc_pbuf_resource(struct device * dev,struct sec_alg_res * res)398 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
399 {
400 u16 q_depth = res->depth;
401 int size = SEC_PBUF_PAGE_NUM(q_depth);
402 int pbuf_page_offset;
403 int i, j, k;
404
405 res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
406 &res->pbuf_dma, GFP_KERNEL);
407 if (!res->pbuf)
408 return -ENOMEM;
409
410 /*
411 * SEC_PBUF_PKG contains data pbuf, iv and
412 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
413 * Every PAGE contains six SEC_PBUF_PKG
414 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
415 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
416 * for the SEC_TOTAL_PBUF_SZ
417 */
418 for (i = 0; i <= size; i++) {
419 pbuf_page_offset = PAGE_SIZE * i;
420 for (j = 0; j < SEC_PBUF_NUM; j++) {
421 k = i * SEC_PBUF_NUM + j;
422 if (k == q_depth)
423 break;
424 res[k].pbuf = res->pbuf +
425 j * SEC_PBUF_PKG + pbuf_page_offset;
426 res[k].pbuf_dma = res->pbuf_dma +
427 j * SEC_PBUF_PKG + pbuf_page_offset;
428 }
429 }
430
431 return 0;
432 }
433
sec_alg_resource_alloc(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)434 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
435 struct sec_qp_ctx *qp_ctx)
436 {
437 struct sec_alg_res *res = qp_ctx->res;
438 struct device *dev = ctx->dev;
439 int ret;
440
441 ret = sec_alloc_civ_resource(dev, res);
442 if (ret)
443 return ret;
444
445 if (ctx->alg_type == SEC_AEAD) {
446 ret = sec_alloc_aiv_resource(dev, res);
447 if (ret)
448 goto alloc_aiv_fail;
449
450 ret = sec_alloc_mac_resource(dev, res);
451 if (ret)
452 goto alloc_mac_fail;
453 }
454 if (ctx->pbuf_supported) {
455 ret = sec_alloc_pbuf_resource(dev, res);
456 if (ret) {
457 dev_err(dev, "fail to alloc pbuf dma resource!\n");
458 goto alloc_pbuf_fail;
459 }
460 }
461
462 return 0;
463
464 alloc_pbuf_fail:
465 if (ctx->alg_type == SEC_AEAD)
466 sec_free_mac_resource(dev, qp_ctx->res);
467 alloc_mac_fail:
468 if (ctx->alg_type == SEC_AEAD)
469 sec_free_aiv_resource(dev, res);
470 alloc_aiv_fail:
471 sec_free_civ_resource(dev, res);
472 return ret;
473 }
474
sec_alg_resource_free(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)475 static void sec_alg_resource_free(struct sec_ctx *ctx,
476 struct sec_qp_ctx *qp_ctx)
477 {
478 struct device *dev = ctx->dev;
479
480 sec_free_civ_resource(dev, qp_ctx->res);
481
482 if (ctx->pbuf_supported)
483 sec_free_pbuf_resource(dev, qp_ctx->res);
484 if (ctx->alg_type == SEC_AEAD) {
485 sec_free_mac_resource(dev, qp_ctx->res);
486 sec_free_aiv_resource(dev, qp_ctx->res);
487 }
488 }
489
sec_alloc_qp_ctx_resource(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)490 static int sec_alloc_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
491 {
492 u16 q_depth = qp_ctx->qp->sq_depth;
493 struct device *dev = ctx->dev;
494 int ret = -ENOMEM;
495
496 qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
497 if (!qp_ctx->req_list)
498 return ret;
499
500 qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
501 if (!qp_ctx->res)
502 goto err_free_req_list;
503 qp_ctx->res->depth = q_depth;
504
505 qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
506 if (IS_ERR(qp_ctx->c_in_pool)) {
507 dev_err(dev, "fail to create sgl pool for input!\n");
508 goto err_free_res;
509 }
510
511 qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
512 if (IS_ERR(qp_ctx->c_out_pool)) {
513 dev_err(dev, "fail to create sgl pool for output!\n");
514 goto err_free_c_in_pool;
515 }
516
517 ret = sec_alg_resource_alloc(ctx, qp_ctx);
518 if (ret)
519 goto err_free_c_out_pool;
520
521 return 0;
522
523 err_free_c_out_pool:
524 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
525 err_free_c_in_pool:
526 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
527 err_free_res:
528 kfree(qp_ctx->res);
529 err_free_req_list:
530 kfree(qp_ctx->req_list);
531 return ret;
532 }
533
sec_free_qp_ctx_resource(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)534 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
535 {
536 struct device *dev = ctx->dev;
537
538 sec_alg_resource_free(ctx, qp_ctx);
539 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
540 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
541 kfree(qp_ctx->res);
542 kfree(qp_ctx->req_list);
543 }
544
sec_create_qp_ctx(struct sec_ctx * ctx,int qp_ctx_id)545 static int sec_create_qp_ctx(struct sec_ctx *ctx, int qp_ctx_id)
546 {
547 struct sec_qp_ctx *qp_ctx;
548 struct hisi_qp *qp;
549 int ret;
550
551 qp_ctx = &ctx->qp_ctx[qp_ctx_id];
552 qp = ctx->qps[qp_ctx_id];
553 qp->req_type = 0;
554 qp->qp_ctx = qp_ctx;
555 qp_ctx->qp = qp;
556 qp_ctx->ctx = ctx;
557
558 qp->req_cb = sec_req_cb;
559
560 spin_lock_init(&qp_ctx->req_lock);
561 idr_init(&qp_ctx->req_idr);
562 INIT_LIST_HEAD(&qp_ctx->backlog);
563
564 ret = sec_alloc_qp_ctx_resource(ctx, qp_ctx);
565 if (ret)
566 goto err_destroy_idr;
567
568 ret = hisi_qm_start_qp(qp, 0);
569 if (ret < 0)
570 goto err_resource_free;
571
572 return 0;
573
574 err_resource_free:
575 sec_free_qp_ctx_resource(ctx, qp_ctx);
576 err_destroy_idr:
577 idr_destroy(&qp_ctx->req_idr);
578 return ret;
579 }
580
sec_release_qp_ctx(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)581 static void sec_release_qp_ctx(struct sec_ctx *ctx,
582 struct sec_qp_ctx *qp_ctx)
583 {
584 hisi_qm_stop_qp(qp_ctx->qp);
585 sec_free_qp_ctx_resource(ctx, qp_ctx);
586 idr_destroy(&qp_ctx->req_idr);
587 }
588
sec_ctx_base_init(struct sec_ctx * ctx)589 static int sec_ctx_base_init(struct sec_ctx *ctx)
590 {
591 struct sec_dev *sec;
592 int i, ret;
593
594 ctx->qps = sec_create_qps();
595 if (!ctx->qps) {
596 pr_err("Can not create sec qps!\n");
597 return -ENODEV;
598 }
599
600 sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
601 ctx->sec = sec;
602 ctx->dev = &sec->qm.pdev->dev;
603 ctx->hlf_q_num = sec->ctx_q_num >> 1;
604
605 ctx->pbuf_supported = ctx->sec->iommu_used;
606
607 /* Half of queue depth is taken as fake requests limit in the queue. */
608 ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
609 ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
610 GFP_KERNEL);
611 if (!ctx->qp_ctx) {
612 ret = -ENOMEM;
613 goto err_destroy_qps;
614 }
615
616 for (i = 0; i < sec->ctx_q_num; i++) {
617 ret = sec_create_qp_ctx(ctx, i);
618 if (ret)
619 goto err_sec_release_qp_ctx;
620 }
621
622 return 0;
623
624 err_sec_release_qp_ctx:
625 for (i = i - 1; i >= 0; i--)
626 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
627 kfree(ctx->qp_ctx);
628 err_destroy_qps:
629 sec_destroy_qps(ctx->qps, sec->ctx_q_num);
630 return ret;
631 }
632
sec_ctx_base_uninit(struct sec_ctx * ctx)633 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
634 {
635 int i;
636
637 for (i = 0; i < ctx->sec->ctx_q_num; i++)
638 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
639
640 sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
641 kfree(ctx->qp_ctx);
642 }
643
sec_cipher_init(struct sec_ctx * ctx)644 static int sec_cipher_init(struct sec_ctx *ctx)
645 {
646 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
647
648 c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
649 &c_ctx->c_key_dma, GFP_KERNEL);
650 if (!c_ctx->c_key)
651 return -ENOMEM;
652
653 return 0;
654 }
655
sec_cipher_uninit(struct sec_ctx * ctx)656 static void sec_cipher_uninit(struct sec_ctx *ctx)
657 {
658 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
659
660 memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
661 dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
662 c_ctx->c_key, c_ctx->c_key_dma);
663 }
664
sec_auth_init(struct sec_ctx * ctx)665 static int sec_auth_init(struct sec_ctx *ctx)
666 {
667 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
668
669 a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
670 &a_ctx->a_key_dma, GFP_KERNEL);
671 if (!a_ctx->a_key)
672 return -ENOMEM;
673
674 return 0;
675 }
676
sec_auth_uninit(struct sec_ctx * ctx)677 static void sec_auth_uninit(struct sec_ctx *ctx)
678 {
679 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
680
681 memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
682 dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
683 a_ctx->a_key, a_ctx->a_key_dma);
684 }
685
sec_skcipher_fbtfm_init(struct crypto_skcipher * tfm)686 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
687 {
688 const char *alg = crypto_tfm_alg_name(&tfm->base);
689 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
690 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
691
692 c_ctx->fallback = false;
693
694 /* Currently, only XTS mode need fallback tfm when using 192bit key */
695 if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
696 return 0;
697
698 c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
699 CRYPTO_ALG_NEED_FALLBACK);
700 if (IS_ERR(c_ctx->fbtfm)) {
701 pr_err("failed to alloc xts mode fallback tfm!\n");
702 return PTR_ERR(c_ctx->fbtfm);
703 }
704
705 return 0;
706 }
707
sec_skcipher_init(struct crypto_skcipher * tfm)708 static int sec_skcipher_init(struct crypto_skcipher *tfm)
709 {
710 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
711 int ret;
712
713 ctx->alg_type = SEC_SKCIPHER;
714 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
715 ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
716 if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
717 pr_err("get error skcipher iv size!\n");
718 return -EINVAL;
719 }
720
721 ret = sec_ctx_base_init(ctx);
722 if (ret)
723 return ret;
724
725 ret = sec_cipher_init(ctx);
726 if (ret)
727 goto err_cipher_init;
728
729 ret = sec_skcipher_fbtfm_init(tfm);
730 if (ret)
731 goto err_fbtfm_init;
732
733 return 0;
734
735 err_fbtfm_init:
736 sec_cipher_uninit(ctx);
737 err_cipher_init:
738 sec_ctx_base_uninit(ctx);
739 return ret;
740 }
741
sec_skcipher_uninit(struct crypto_skcipher * tfm)742 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
743 {
744 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
745
746 if (ctx->c_ctx.fbtfm)
747 crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
748
749 sec_cipher_uninit(ctx);
750 sec_ctx_base_uninit(ctx);
751 }
752
sec_skcipher_3des_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen)753 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key, const u32 keylen)
754 {
755 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
756 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
757 int ret;
758
759 ret = verify_skcipher_des3_key(tfm, key);
760 if (ret)
761 return ret;
762
763 switch (keylen) {
764 case SEC_DES3_2KEY_SIZE:
765 c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
766 break;
767 case SEC_DES3_3KEY_SIZE:
768 c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
769 break;
770 default:
771 return -EINVAL;
772 }
773
774 return 0;
775 }
776
sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx * c_ctx,const u32 keylen,const enum sec_cmode c_mode)777 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
778 const u32 keylen,
779 const enum sec_cmode c_mode)
780 {
781 if (c_mode == SEC_CMODE_XTS) {
782 switch (keylen) {
783 case SEC_XTS_MIN_KEY_SIZE:
784 c_ctx->c_key_len = SEC_CKEY_128BIT;
785 break;
786 case SEC_XTS_MID_KEY_SIZE:
787 c_ctx->fallback = true;
788 break;
789 case SEC_XTS_MAX_KEY_SIZE:
790 c_ctx->c_key_len = SEC_CKEY_256BIT;
791 break;
792 default:
793 pr_err("hisi_sec2: xts mode key error!\n");
794 return -EINVAL;
795 }
796 } else {
797 if (c_ctx->c_alg == SEC_CALG_SM4 &&
798 keylen != AES_KEYSIZE_128) {
799 pr_err("hisi_sec2: sm4 key error!\n");
800 return -EINVAL;
801 } else {
802 switch (keylen) {
803 case AES_KEYSIZE_128:
804 c_ctx->c_key_len = SEC_CKEY_128BIT;
805 break;
806 case AES_KEYSIZE_192:
807 c_ctx->c_key_len = SEC_CKEY_192BIT;
808 break;
809 case AES_KEYSIZE_256:
810 c_ctx->c_key_len = SEC_CKEY_256BIT;
811 break;
812 default:
813 pr_err("hisi_sec2: aes key error!\n");
814 return -EINVAL;
815 }
816 }
817 }
818
819 return 0;
820 }
821
sec_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_calg c_alg,const enum sec_cmode c_mode)822 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
823 const u32 keylen, const enum sec_calg c_alg,
824 const enum sec_cmode c_mode)
825 {
826 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
827 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
828 struct device *dev = ctx->dev;
829 int ret;
830
831 if (c_mode == SEC_CMODE_XTS) {
832 ret = xts_verify_key(tfm, key, keylen);
833 if (ret) {
834 dev_err(dev, "xts mode key err!\n");
835 return ret;
836 }
837 }
838
839 c_ctx->c_alg = c_alg;
840 c_ctx->c_mode = c_mode;
841
842 switch (c_alg) {
843 case SEC_CALG_3DES:
844 ret = sec_skcipher_3des_setkey(tfm, key, keylen);
845 break;
846 case SEC_CALG_AES:
847 case SEC_CALG_SM4:
848 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
849 break;
850 default:
851 dev_err(dev, "sec c_alg err!\n");
852 return -EINVAL;
853 }
854
855 if (ret) {
856 dev_err(dev, "set sec key err!\n");
857 return ret;
858 }
859
860 memcpy(c_ctx->c_key, key, keylen);
861 if (c_ctx->fallback && c_ctx->fbtfm) {
862 ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
863 if (ret) {
864 dev_err(dev, "failed to set fallback skcipher key!\n");
865 return ret;
866 }
867 }
868 return 0;
869 }
870
871 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
872 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
873 u32 keylen) \
874 { \
875 return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
876 }
877
GEN_SEC_SETKEY_FUNC(aes_ecb,SEC_CALG_AES,SEC_CMODE_ECB)878 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
879 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
880 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
881 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
882 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
883 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
884 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
885 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
886 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
887
888 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
889 struct scatterlist *src)
890 {
891 struct sec_aead_req *a_req = &req->aead_req;
892 struct aead_request *aead_req = a_req->aead_req;
893 struct sec_cipher_req *c_req = &req->c_req;
894 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
895 struct device *dev = ctx->dev;
896 int copy_size, pbuf_length;
897 int req_id = req->req_id;
898 struct crypto_aead *tfm;
899 size_t authsize;
900 u8 *mac_offset;
901
902 if (ctx->alg_type == SEC_AEAD)
903 copy_size = aead_req->cryptlen + aead_req->assoclen;
904 else
905 copy_size = c_req->c_len;
906
907 pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
908 qp_ctx->res[req_id].pbuf, copy_size);
909 if (unlikely(pbuf_length != copy_size)) {
910 dev_err(dev, "copy src data to pbuf error!\n");
911 return -EINVAL;
912 }
913 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
914 tfm = crypto_aead_reqtfm(aead_req);
915 authsize = crypto_aead_authsize(tfm);
916 mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
917 memcpy(a_req->out_mac, mac_offset, authsize);
918 }
919
920 req->in_dma = qp_ctx->res[req_id].pbuf_dma;
921 c_req->c_out_dma = req->in_dma;
922
923 return 0;
924 }
925
sec_cipher_pbuf_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * dst)926 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
927 struct scatterlist *dst)
928 {
929 struct aead_request *aead_req = req->aead_req.aead_req;
930 struct sec_cipher_req *c_req = &req->c_req;
931 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
932 int copy_size, pbuf_length;
933 int req_id = req->req_id;
934
935 if (ctx->alg_type == SEC_AEAD)
936 copy_size = c_req->c_len + aead_req->assoclen;
937 else
938 copy_size = c_req->c_len;
939
940 pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
941 qp_ctx->res[req_id].pbuf, copy_size);
942 if (unlikely(pbuf_length != copy_size))
943 dev_err(ctx->dev, "copy pbuf data to dst error!\n");
944 }
945
sec_aead_mac_init(struct sec_aead_req * req)946 static int sec_aead_mac_init(struct sec_aead_req *req)
947 {
948 struct aead_request *aead_req = req->aead_req;
949 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
950 size_t authsize = crypto_aead_authsize(tfm);
951 u8 *mac_out = req->out_mac;
952 struct scatterlist *sgl = aead_req->src;
953 size_t copy_size;
954 off_t skip_size;
955
956 /* Copy input mac */
957 skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
958 copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
959 authsize, skip_size);
960 if (unlikely(copy_size != authsize))
961 return -EINVAL;
962
963 return 0;
964 }
965
sec_cipher_map(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)966 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
967 struct scatterlist *src, struct scatterlist *dst)
968 {
969 struct sec_cipher_req *c_req = &req->c_req;
970 struct sec_aead_req *a_req = &req->aead_req;
971 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
972 struct sec_alg_res *res = &qp_ctx->res[req->req_id];
973 struct device *dev = ctx->dev;
974 int ret;
975
976 if (req->use_pbuf) {
977 c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
978 c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
979 if (ctx->alg_type == SEC_AEAD) {
980 a_req->a_ivin = res->a_ivin;
981 a_req->a_ivin_dma = res->a_ivin_dma;
982 a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
983 a_req->out_mac_dma = res->pbuf_dma +
984 SEC_PBUF_MAC_OFFSET;
985 }
986 ret = sec_cipher_pbuf_map(ctx, req, src);
987
988 return ret;
989 }
990 c_req->c_ivin = res->c_ivin;
991 c_req->c_ivin_dma = res->c_ivin_dma;
992 if (ctx->alg_type == SEC_AEAD) {
993 a_req->a_ivin = res->a_ivin;
994 a_req->a_ivin_dma = res->a_ivin_dma;
995 a_req->out_mac = res->out_mac;
996 a_req->out_mac_dma = res->out_mac_dma;
997 }
998
999 req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
1000 qp_ctx->c_in_pool,
1001 req->req_id,
1002 &req->in_dma);
1003 if (IS_ERR(req->in)) {
1004 dev_err(dev, "fail to dma map input sgl buffers!\n");
1005 return PTR_ERR(req->in);
1006 }
1007
1008 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
1009 ret = sec_aead_mac_init(a_req);
1010 if (unlikely(ret)) {
1011 dev_err(dev, "fail to init mac data for ICV!\n");
1012 hisi_acc_sg_buf_unmap(dev, src, req->in);
1013 return ret;
1014 }
1015 }
1016
1017 if (dst == src) {
1018 c_req->c_out = req->in;
1019 c_req->c_out_dma = req->in_dma;
1020 } else {
1021 c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
1022 qp_ctx->c_out_pool,
1023 req->req_id,
1024 &c_req->c_out_dma);
1025
1026 if (IS_ERR(c_req->c_out)) {
1027 dev_err(dev, "fail to dma map output sgl buffers!\n");
1028 hisi_acc_sg_buf_unmap(dev, src, req->in);
1029 return PTR_ERR(c_req->c_out);
1030 }
1031 }
1032
1033 return 0;
1034 }
1035
sec_cipher_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)1036 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
1037 struct scatterlist *src, struct scatterlist *dst)
1038 {
1039 struct sec_cipher_req *c_req = &req->c_req;
1040 struct device *dev = ctx->dev;
1041
1042 if (req->use_pbuf) {
1043 sec_cipher_pbuf_unmap(ctx, req, dst);
1044 } else {
1045 if (dst != src)
1046 hisi_acc_sg_buf_unmap(dev, src, req->in);
1047
1048 hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1049 }
1050 }
1051
sec_skcipher_sgl_map(struct sec_ctx * ctx,struct sec_req * req)1052 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1053 {
1054 struct skcipher_request *sq = req->c_req.sk_req;
1055
1056 return sec_cipher_map(ctx, req, sq->src, sq->dst);
1057 }
1058
sec_skcipher_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1059 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1060 {
1061 struct skcipher_request *sq = req->c_req.sk_req;
1062
1063 sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1064 }
1065
sec_aead_aes_set_key(struct sec_cipher_ctx * c_ctx,struct crypto_authenc_keys * keys)1066 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1067 struct crypto_authenc_keys *keys)
1068 {
1069 switch (keys->enckeylen) {
1070 case AES_KEYSIZE_128:
1071 c_ctx->c_key_len = SEC_CKEY_128BIT;
1072 break;
1073 case AES_KEYSIZE_192:
1074 c_ctx->c_key_len = SEC_CKEY_192BIT;
1075 break;
1076 case AES_KEYSIZE_256:
1077 c_ctx->c_key_len = SEC_CKEY_256BIT;
1078 break;
1079 default:
1080 pr_err("hisi_sec2: aead aes key error!\n");
1081 return -EINVAL;
1082 }
1083 memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1084
1085 return 0;
1086 }
1087
sec_aead_auth_set_key(struct sec_auth_ctx * ctx,struct crypto_authenc_keys * keys)1088 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1089 struct crypto_authenc_keys *keys)
1090 {
1091 struct crypto_shash *hash_tfm = ctx->hash_tfm;
1092 int blocksize, digestsize, ret;
1093
1094 if (!keys->authkeylen) {
1095 pr_err("hisi_sec2: aead auth key error!\n");
1096 return -EINVAL;
1097 }
1098
1099 blocksize = crypto_shash_blocksize(hash_tfm);
1100 digestsize = crypto_shash_digestsize(hash_tfm);
1101 if (keys->authkeylen > blocksize) {
1102 ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1103 keys->authkeylen, ctx->a_key);
1104 if (ret) {
1105 pr_err("hisi_sec2: aead auth digest error!\n");
1106 return -EINVAL;
1107 }
1108 ctx->a_key_len = digestsize;
1109 } else {
1110 memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1111 ctx->a_key_len = keys->authkeylen;
1112 }
1113
1114 return 0;
1115 }
1116
sec_aead_setauthsize(struct crypto_aead * aead,unsigned int authsize)1117 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1118 {
1119 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1120 struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1121 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1122
1123 if (unlikely(a_ctx->fallback_aead_tfm))
1124 return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1125
1126 return 0;
1127 }
1128
sec_aead_fallback_setkey(struct sec_auth_ctx * a_ctx,struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1129 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1130 struct crypto_aead *tfm, const u8 *key,
1131 unsigned int keylen)
1132 {
1133 crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1134 crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1135 crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1136 return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1137 }
1138
sec_aead_setkey(struct crypto_aead * tfm,const u8 * key,const u32 keylen,const enum sec_hash_alg a_alg,const enum sec_calg c_alg,const enum sec_mac_len mac_len,const enum sec_cmode c_mode)1139 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1140 const u32 keylen, const enum sec_hash_alg a_alg,
1141 const enum sec_calg c_alg,
1142 const enum sec_mac_len mac_len,
1143 const enum sec_cmode c_mode)
1144 {
1145 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1146 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1147 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1148 struct device *dev = ctx->dev;
1149 struct crypto_authenc_keys keys;
1150 int ret;
1151
1152 ctx->a_ctx.a_alg = a_alg;
1153 ctx->c_ctx.c_alg = c_alg;
1154 ctx->a_ctx.mac_len = mac_len;
1155 c_ctx->c_mode = c_mode;
1156
1157 if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1158 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1159 if (ret) {
1160 dev_err(dev, "set sec aes ccm cipher key err!\n");
1161 return ret;
1162 }
1163 memcpy(c_ctx->c_key, key, keylen);
1164
1165 if (unlikely(a_ctx->fallback_aead_tfm)) {
1166 ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1167 if (ret)
1168 return ret;
1169 }
1170
1171 return 0;
1172 }
1173
1174 ret = crypto_authenc_extractkeys(&keys, key, keylen);
1175 if (ret)
1176 goto bad_key;
1177
1178 ret = sec_aead_aes_set_key(c_ctx, &keys);
1179 if (ret) {
1180 dev_err(dev, "set sec cipher key err!\n");
1181 goto bad_key;
1182 }
1183
1184 ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1185 if (ret) {
1186 dev_err(dev, "set sec auth key err!\n");
1187 goto bad_key;
1188 }
1189
1190 if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) ||
1191 (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
1192 ret = -EINVAL;
1193 dev_err(dev, "MAC or AUTH key length error!\n");
1194 goto bad_key;
1195 }
1196
1197 return 0;
1198
1199 bad_key:
1200 memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1201 return ret;
1202 }
1203
1204
1205 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \
1206 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \
1207 u32 keylen) \
1208 { \
1209 return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
1210 }
1211
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1,SEC_A_HMAC_SHA1,SEC_CALG_AES,SEC_HMAC_SHA1_MAC,SEC_CMODE_CBC)1212 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
1213 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
1214 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
1215 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
1216 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
1217 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1218 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
1219 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1220 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
1221 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1222 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
1223 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1224 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
1225 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1226
1227 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1228 {
1229 struct aead_request *aq = req->aead_req.aead_req;
1230
1231 return sec_cipher_map(ctx, req, aq->src, aq->dst);
1232 }
1233
sec_aead_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1234 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1235 {
1236 struct aead_request *aq = req->aead_req.aead_req;
1237
1238 sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1239 }
1240
sec_request_transfer(struct sec_ctx * ctx,struct sec_req * req)1241 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1242 {
1243 int ret;
1244
1245 ret = ctx->req_op->buf_map(ctx, req);
1246 if (unlikely(ret))
1247 return ret;
1248
1249 ctx->req_op->do_transfer(ctx, req);
1250
1251 ret = ctx->req_op->bd_fill(ctx, req);
1252 if (unlikely(ret))
1253 goto unmap_req_buf;
1254
1255 return ret;
1256
1257 unmap_req_buf:
1258 ctx->req_op->buf_unmap(ctx, req);
1259 return ret;
1260 }
1261
sec_request_untransfer(struct sec_ctx * ctx,struct sec_req * req)1262 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1263 {
1264 ctx->req_op->buf_unmap(ctx, req);
1265 }
1266
sec_skcipher_copy_iv(struct sec_ctx * ctx,struct sec_req * req)1267 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1268 {
1269 struct skcipher_request *sk_req = req->c_req.sk_req;
1270 struct sec_cipher_req *c_req = &req->c_req;
1271
1272 memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1273 }
1274
sec_skcipher_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1275 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1276 {
1277 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1278 struct sec_cipher_req *c_req = &req->c_req;
1279 struct sec_sqe *sec_sqe = &req->sec_sqe;
1280 u8 scene, sa_type, da_type;
1281 u8 bd_type, cipher;
1282 u8 de = 0;
1283
1284 memset(sec_sqe, 0, sizeof(struct sec_sqe));
1285
1286 sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1287 sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1288 sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1289 sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1290
1291 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1292 SEC_CMODE_OFFSET);
1293 sec_sqe->type2.c_alg = c_ctx->c_alg;
1294 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1295 SEC_CKEY_OFFSET);
1296
1297 bd_type = SEC_BD_TYPE2;
1298 if (c_req->encrypt)
1299 cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1300 else
1301 cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1302 sec_sqe->type_cipher_auth = bd_type | cipher;
1303
1304 /* Set destination and source address type */
1305 if (req->use_pbuf) {
1306 sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1307 da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1308 } else {
1309 sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1310 da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1311 }
1312
1313 sec_sqe->sdm_addr_type |= da_type;
1314 scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1315 if (req->in_dma != c_req->c_out_dma)
1316 de = 0x1 << SEC_DE_OFFSET;
1317
1318 sec_sqe->sds_sa_type = (de | scene | sa_type);
1319
1320 sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1321 sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1322
1323 return 0;
1324 }
1325
sec_skcipher_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1326 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1327 {
1328 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1329 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1330 struct sec_cipher_req *c_req = &req->c_req;
1331 u32 bd_param = 0;
1332 u16 cipher;
1333
1334 memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1335
1336 sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1337 sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1338 sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1339 sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1340
1341 sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1342 c_ctx->c_mode;
1343 sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1344 SEC_CKEY_OFFSET_V3);
1345
1346 if (c_req->encrypt)
1347 cipher = SEC_CIPHER_ENC;
1348 else
1349 cipher = SEC_CIPHER_DEC;
1350 sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1351
1352 /* Set the CTR counter mode is 128bit rollover */
1353 sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1354 SEC_CTR_CNT_OFFSET);
1355
1356 if (req->use_pbuf) {
1357 bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1358 bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1359 } else {
1360 bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1361 bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1362 }
1363
1364 bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1365 if (req->in_dma != c_req->c_out_dma)
1366 bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1367
1368 bd_param |= SEC_BD_TYPE3;
1369 sec_sqe3->bd_param = cpu_to_le32(bd_param);
1370
1371 sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1372 sec_sqe3->tag = cpu_to_le64((unsigned long)req);
1373
1374 return 0;
1375 }
1376
1377 /* increment counter (128-bit int) */
ctr_iv_inc(__u8 * counter,__u8 bits,__u32 nums)1378 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1379 {
1380 do {
1381 --bits;
1382 nums += counter[bits];
1383 counter[bits] = nums & BITS_MASK;
1384 nums >>= BYTE_BITS;
1385 } while (bits && nums);
1386 }
1387
sec_update_iv(struct sec_req * req,enum sec_alg_type alg_type)1388 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1389 {
1390 struct aead_request *aead_req = req->aead_req.aead_req;
1391 struct skcipher_request *sk_req = req->c_req.sk_req;
1392 u32 iv_size = req->ctx->c_ctx.ivsize;
1393 struct scatterlist *sgl;
1394 unsigned int cryptlen;
1395 size_t sz;
1396 u8 *iv;
1397
1398 if (req->c_req.encrypt)
1399 sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1400 else
1401 sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1402
1403 if (alg_type == SEC_SKCIPHER) {
1404 iv = sk_req->iv;
1405 cryptlen = sk_req->cryptlen;
1406 } else {
1407 iv = aead_req->iv;
1408 cryptlen = aead_req->cryptlen;
1409 }
1410
1411 if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1412 sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1413 cryptlen - iv_size);
1414 if (unlikely(sz != iv_size))
1415 dev_err(req->ctx->dev, "copy output iv error!\n");
1416 } else {
1417 sz = cryptlen / iv_size;
1418 if (cryptlen % iv_size)
1419 sz += 1;
1420 ctr_iv_inc(iv, iv_size, sz);
1421 }
1422 }
1423
sec_back_req_clear(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)1424 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1425 struct sec_qp_ctx *qp_ctx)
1426 {
1427 struct sec_req *backlog_req = NULL;
1428
1429 spin_lock_bh(&qp_ctx->req_lock);
1430 if (ctx->fake_req_limit >=
1431 atomic_read(&qp_ctx->qp->qp_status.used) &&
1432 !list_empty(&qp_ctx->backlog)) {
1433 backlog_req = list_first_entry(&qp_ctx->backlog,
1434 typeof(*backlog_req), backlog_head);
1435 list_del(&backlog_req->backlog_head);
1436 }
1437 spin_unlock_bh(&qp_ctx->req_lock);
1438
1439 return backlog_req;
1440 }
1441
sec_skcipher_callback(struct sec_ctx * ctx,struct sec_req * req,int err)1442 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1443 int err)
1444 {
1445 struct skcipher_request *sk_req = req->c_req.sk_req;
1446 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1447 struct skcipher_request *backlog_sk_req;
1448 struct sec_req *backlog_req;
1449
1450 sec_free_req_id(req);
1451
1452 /* IV output at encrypto of CBC/CTR mode */
1453 if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1454 ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1455 sec_update_iv(req, SEC_SKCIPHER);
1456
1457 while (1) {
1458 backlog_req = sec_back_req_clear(ctx, qp_ctx);
1459 if (!backlog_req)
1460 break;
1461
1462 backlog_sk_req = backlog_req->c_req.sk_req;
1463 skcipher_request_complete(backlog_sk_req, -EINPROGRESS);
1464 atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1465 }
1466
1467 skcipher_request_complete(sk_req, err);
1468 }
1469
set_aead_auth_iv(struct sec_ctx * ctx,struct sec_req * req)1470 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1471 {
1472 struct aead_request *aead_req = req->aead_req.aead_req;
1473 struct sec_cipher_req *c_req = &req->c_req;
1474 struct sec_aead_req *a_req = &req->aead_req;
1475 size_t authsize = ctx->a_ctx.mac_len;
1476 u32 data_size = aead_req->cryptlen;
1477 u8 flage = 0;
1478 u8 cm, cl;
1479
1480 /* the specification has been checked in aead_iv_demension_check() */
1481 cl = c_req->c_ivin[0] + 1;
1482 c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1483 memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1484 c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1485
1486 /* the last 3bit is L' */
1487 flage |= c_req->c_ivin[0] & IV_CL_MASK;
1488
1489 /* the M' is bit3~bit5, the Flags is bit6 */
1490 cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1491 flage |= cm << IV_CM_OFFSET;
1492 if (aead_req->assoclen)
1493 flage |= 0x01 << IV_FLAGS_OFFSET;
1494
1495 memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1496 a_req->a_ivin[0] = flage;
1497
1498 /*
1499 * the last 32bit is counter's initial number,
1500 * but the nonce uses the first 16bit
1501 * the tail 16bit fill with the cipher length
1502 */
1503 if (!c_req->encrypt)
1504 data_size = aead_req->cryptlen - authsize;
1505
1506 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1507 data_size & IV_LAST_BYTE_MASK;
1508 data_size >>= IV_BYTE_OFFSET;
1509 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1510 data_size & IV_LAST_BYTE_MASK;
1511 }
1512
sec_aead_set_iv(struct sec_ctx * ctx,struct sec_req * req)1513 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1514 {
1515 struct aead_request *aead_req = req->aead_req.aead_req;
1516 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1517 size_t authsize = crypto_aead_authsize(tfm);
1518 struct sec_cipher_req *c_req = &req->c_req;
1519 struct sec_aead_req *a_req = &req->aead_req;
1520
1521 memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1522
1523 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1524 /*
1525 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1526 * the counter must set to 0x01
1527 */
1528 ctx->a_ctx.mac_len = authsize;
1529 /* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
1530 set_aead_auth_iv(ctx, req);
1531 }
1532
1533 /* GCM 12Byte Cipher_IV == Auth_IV */
1534 if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1535 ctx->a_ctx.mac_len = authsize;
1536 memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1537 }
1538 }
1539
sec_auth_bd_fill_xcm(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1540 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1541 struct sec_req *req, struct sec_sqe *sec_sqe)
1542 {
1543 struct sec_aead_req *a_req = &req->aead_req;
1544 struct aead_request *aq = a_req->aead_req;
1545
1546 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1547 sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
1548
1549 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1550 sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1551 sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1552 sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1553
1554 if (dir)
1555 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1556 else
1557 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1558
1559 sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1560 sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1561 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1562
1563 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1564 }
1565
sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1566 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1567 struct sec_req *req, struct sec_sqe3 *sqe3)
1568 {
1569 struct sec_aead_req *a_req = &req->aead_req;
1570 struct aead_request *aq = a_req->aead_req;
1571
1572 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1573 sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
1574
1575 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1576 sqe3->a_key_addr = sqe3->c_key_addr;
1577 sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1578 sqe3->auth_mac_key |= SEC_NO_AUTH;
1579
1580 if (dir)
1581 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1582 else
1583 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1584
1585 sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1586 sqe3->auth_src_offset = cpu_to_le16(0x0);
1587 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1588 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1589 }
1590
sec_auth_bd_fill_ex(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1591 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1592 struct sec_req *req, struct sec_sqe *sec_sqe)
1593 {
1594 struct sec_aead_req *a_req = &req->aead_req;
1595 struct sec_cipher_req *c_req = &req->c_req;
1596 struct aead_request *aq = a_req->aead_req;
1597
1598 sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1599
1600 sec_sqe->type2.mac_key_alg =
1601 cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1602
1603 sec_sqe->type2.mac_key_alg |=
1604 cpu_to_le32((u32)((ctx->a_key_len) /
1605 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1606
1607 sec_sqe->type2.mac_key_alg |=
1608 cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1609
1610 if (dir) {
1611 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1612 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1613 } else {
1614 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1615 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1616 }
1617 sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1618
1619 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1620
1621 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1622 }
1623
sec_aead_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1624 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1625 {
1626 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1627 struct sec_sqe *sec_sqe = &req->sec_sqe;
1628 int ret;
1629
1630 ret = sec_skcipher_bd_fill(ctx, req);
1631 if (unlikely(ret)) {
1632 dev_err(ctx->dev, "skcipher bd fill is error!\n");
1633 return ret;
1634 }
1635
1636 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1637 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1638 sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1639 else
1640 sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1641
1642 return 0;
1643 }
1644
sec_auth_bd_fill_ex_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1645 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1646 struct sec_req *req, struct sec_sqe3 *sqe3)
1647 {
1648 struct sec_aead_req *a_req = &req->aead_req;
1649 struct sec_cipher_req *c_req = &req->c_req;
1650 struct aead_request *aq = a_req->aead_req;
1651
1652 sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1653
1654 sqe3->auth_mac_key |=
1655 cpu_to_le32((u32)(ctx->mac_len /
1656 SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
1657
1658 sqe3->auth_mac_key |=
1659 cpu_to_le32((u32)(ctx->a_key_len /
1660 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
1661
1662 sqe3->auth_mac_key |=
1663 cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1664
1665 if (dir) {
1666 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1667 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1668 } else {
1669 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1670 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1671 }
1672 sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1673
1674 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1675
1676 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1677 }
1678
sec_aead_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1679 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1680 {
1681 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1682 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1683 int ret;
1684
1685 ret = sec_skcipher_bd_fill_v3(ctx, req);
1686 if (unlikely(ret)) {
1687 dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1688 return ret;
1689 }
1690
1691 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1692 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1693 sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1694 req, sec_sqe3);
1695 else
1696 sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1697 req, sec_sqe3);
1698
1699 return 0;
1700 }
1701
sec_aead_callback(struct sec_ctx * c,struct sec_req * req,int err)1702 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1703 {
1704 struct aead_request *a_req = req->aead_req.aead_req;
1705 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1706 struct sec_aead_req *aead_req = &req->aead_req;
1707 struct sec_cipher_req *c_req = &req->c_req;
1708 size_t authsize = crypto_aead_authsize(tfm);
1709 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1710 struct aead_request *backlog_aead_req;
1711 struct sec_req *backlog_req;
1712 size_t sz;
1713
1714 if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1715 sec_update_iv(req, SEC_AEAD);
1716
1717 /* Copy output mac */
1718 if (!err && c_req->encrypt) {
1719 struct scatterlist *sgl = a_req->dst;
1720
1721 sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1722 aead_req->out_mac,
1723 authsize, a_req->cryptlen +
1724 a_req->assoclen);
1725 if (unlikely(sz != authsize)) {
1726 dev_err(c->dev, "copy out mac err!\n");
1727 err = -EINVAL;
1728 }
1729 }
1730
1731 sec_free_req_id(req);
1732
1733 while (1) {
1734 backlog_req = sec_back_req_clear(c, qp_ctx);
1735 if (!backlog_req)
1736 break;
1737
1738 backlog_aead_req = backlog_req->aead_req.aead_req;
1739 aead_request_complete(backlog_aead_req, -EINPROGRESS);
1740 atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1741 }
1742
1743 aead_request_complete(a_req, err);
1744 }
1745
sec_request_uninit(struct sec_ctx * ctx,struct sec_req * req)1746 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1747 {
1748 sec_free_req_id(req);
1749 sec_free_queue_id(ctx, req);
1750 }
1751
sec_request_init(struct sec_ctx * ctx,struct sec_req * req)1752 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1753 {
1754 struct sec_qp_ctx *qp_ctx;
1755 int queue_id;
1756
1757 /* To load balance */
1758 queue_id = sec_alloc_queue_id(ctx, req);
1759 qp_ctx = &ctx->qp_ctx[queue_id];
1760
1761 req->req_id = sec_alloc_req_id(req, qp_ctx);
1762 if (unlikely(req->req_id < 0)) {
1763 sec_free_queue_id(ctx, req);
1764 return req->req_id;
1765 }
1766
1767 return 0;
1768 }
1769
sec_process(struct sec_ctx * ctx,struct sec_req * req)1770 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1771 {
1772 struct sec_cipher_req *c_req = &req->c_req;
1773 int ret;
1774
1775 ret = sec_request_init(ctx, req);
1776 if (unlikely(ret))
1777 return ret;
1778
1779 ret = sec_request_transfer(ctx, req);
1780 if (unlikely(ret))
1781 goto err_uninit_req;
1782
1783 /* Output IV as decrypto */
1784 if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1785 ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1786 sec_update_iv(req, ctx->alg_type);
1787
1788 ret = ctx->req_op->bd_send(ctx, req);
1789 if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1790 (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1791 dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1792 goto err_send_req;
1793 }
1794
1795 return ret;
1796
1797 err_send_req:
1798 /* As failing, restore the IV from user */
1799 if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1800 if (ctx->alg_type == SEC_SKCIPHER)
1801 memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1802 ctx->c_ctx.ivsize);
1803 else
1804 memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1805 ctx->c_ctx.ivsize);
1806 }
1807
1808 sec_request_untransfer(ctx, req);
1809 err_uninit_req:
1810 sec_request_uninit(ctx, req);
1811 return ret;
1812 }
1813
1814 static const struct sec_req_op sec_skcipher_req_ops = {
1815 .buf_map = sec_skcipher_sgl_map,
1816 .buf_unmap = sec_skcipher_sgl_unmap,
1817 .do_transfer = sec_skcipher_copy_iv,
1818 .bd_fill = sec_skcipher_bd_fill,
1819 .bd_send = sec_bd_send,
1820 .callback = sec_skcipher_callback,
1821 .process = sec_process,
1822 };
1823
1824 static const struct sec_req_op sec_aead_req_ops = {
1825 .buf_map = sec_aead_sgl_map,
1826 .buf_unmap = sec_aead_sgl_unmap,
1827 .do_transfer = sec_aead_set_iv,
1828 .bd_fill = sec_aead_bd_fill,
1829 .bd_send = sec_bd_send,
1830 .callback = sec_aead_callback,
1831 .process = sec_process,
1832 };
1833
1834 static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1835 .buf_map = sec_skcipher_sgl_map,
1836 .buf_unmap = sec_skcipher_sgl_unmap,
1837 .do_transfer = sec_skcipher_copy_iv,
1838 .bd_fill = sec_skcipher_bd_fill_v3,
1839 .bd_send = sec_bd_send,
1840 .callback = sec_skcipher_callback,
1841 .process = sec_process,
1842 };
1843
1844 static const struct sec_req_op sec_aead_req_ops_v3 = {
1845 .buf_map = sec_aead_sgl_map,
1846 .buf_unmap = sec_aead_sgl_unmap,
1847 .do_transfer = sec_aead_set_iv,
1848 .bd_fill = sec_aead_bd_fill_v3,
1849 .bd_send = sec_bd_send,
1850 .callback = sec_aead_callback,
1851 .process = sec_process,
1852 };
1853
sec_skcipher_ctx_init(struct crypto_skcipher * tfm)1854 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1855 {
1856 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1857 int ret;
1858
1859 ret = sec_skcipher_init(tfm);
1860 if (ret)
1861 return ret;
1862
1863 if (ctx->sec->qm.ver < QM_HW_V3) {
1864 ctx->type_supported = SEC_BD_TYPE2;
1865 ctx->req_op = &sec_skcipher_req_ops;
1866 } else {
1867 ctx->type_supported = SEC_BD_TYPE3;
1868 ctx->req_op = &sec_skcipher_req_ops_v3;
1869 }
1870
1871 return ret;
1872 }
1873
sec_skcipher_ctx_exit(struct crypto_skcipher * tfm)1874 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1875 {
1876 sec_skcipher_uninit(tfm);
1877 }
1878
sec_aead_init(struct crypto_aead * tfm)1879 static int sec_aead_init(struct crypto_aead *tfm)
1880 {
1881 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1882 int ret;
1883
1884 crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1885 ctx->alg_type = SEC_AEAD;
1886 ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1887 if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1888 ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1889 pr_err("get error aead iv size!\n");
1890 return -EINVAL;
1891 }
1892
1893 ret = sec_ctx_base_init(ctx);
1894 if (ret)
1895 return ret;
1896 if (ctx->sec->qm.ver < QM_HW_V3) {
1897 ctx->type_supported = SEC_BD_TYPE2;
1898 ctx->req_op = &sec_aead_req_ops;
1899 } else {
1900 ctx->type_supported = SEC_BD_TYPE3;
1901 ctx->req_op = &sec_aead_req_ops_v3;
1902 }
1903
1904 ret = sec_auth_init(ctx);
1905 if (ret)
1906 goto err_auth_init;
1907
1908 ret = sec_cipher_init(ctx);
1909 if (ret)
1910 goto err_cipher_init;
1911
1912 return ret;
1913
1914 err_cipher_init:
1915 sec_auth_uninit(ctx);
1916 err_auth_init:
1917 sec_ctx_base_uninit(ctx);
1918 return ret;
1919 }
1920
sec_aead_exit(struct crypto_aead * tfm)1921 static void sec_aead_exit(struct crypto_aead *tfm)
1922 {
1923 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1924
1925 sec_cipher_uninit(ctx);
1926 sec_auth_uninit(ctx);
1927 sec_ctx_base_uninit(ctx);
1928 }
1929
sec_aead_ctx_init(struct crypto_aead * tfm,const char * hash_name)1930 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1931 {
1932 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1933 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1934 int ret;
1935
1936 ret = sec_aead_init(tfm);
1937 if (ret) {
1938 pr_err("hisi_sec2: aead init error!\n");
1939 return ret;
1940 }
1941
1942 auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1943 if (IS_ERR(auth_ctx->hash_tfm)) {
1944 dev_err(ctx->dev, "aead alloc shash error!\n");
1945 sec_aead_exit(tfm);
1946 return PTR_ERR(auth_ctx->hash_tfm);
1947 }
1948
1949 return 0;
1950 }
1951
sec_aead_ctx_exit(struct crypto_aead * tfm)1952 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1953 {
1954 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1955
1956 crypto_free_shash(ctx->a_ctx.hash_tfm);
1957 sec_aead_exit(tfm);
1958 }
1959
sec_aead_xcm_ctx_init(struct crypto_aead * tfm)1960 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1961 {
1962 struct aead_alg *alg = crypto_aead_alg(tfm);
1963 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1964 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1965 const char *aead_name = alg->base.cra_name;
1966 int ret;
1967
1968 ret = sec_aead_init(tfm);
1969 if (ret) {
1970 dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1971 return ret;
1972 }
1973
1974 a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1975 CRYPTO_ALG_NEED_FALLBACK |
1976 CRYPTO_ALG_ASYNC);
1977 if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1978 dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1979 sec_aead_exit(tfm);
1980 return PTR_ERR(a_ctx->fallback_aead_tfm);
1981 }
1982 a_ctx->fallback = false;
1983
1984 return 0;
1985 }
1986
sec_aead_xcm_ctx_exit(struct crypto_aead * tfm)1987 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1988 {
1989 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1990
1991 crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1992 sec_aead_exit(tfm);
1993 }
1994
sec_aead_sha1_ctx_init(struct crypto_aead * tfm)1995 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1996 {
1997 return sec_aead_ctx_init(tfm, "sha1");
1998 }
1999
sec_aead_sha256_ctx_init(struct crypto_aead * tfm)2000 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
2001 {
2002 return sec_aead_ctx_init(tfm, "sha256");
2003 }
2004
sec_aead_sha512_ctx_init(struct crypto_aead * tfm)2005 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
2006 {
2007 return sec_aead_ctx_init(tfm, "sha512");
2008 }
2009
sec_skcipher_cryptlen_check(struct sec_ctx * ctx,struct sec_req * sreq)2010 static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx,
2011 struct sec_req *sreq)
2012 {
2013 u32 cryptlen = sreq->c_req.sk_req->cryptlen;
2014 struct device *dev = ctx->dev;
2015 u8 c_mode = ctx->c_ctx.c_mode;
2016 int ret = 0;
2017
2018 switch (c_mode) {
2019 case SEC_CMODE_XTS:
2020 if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
2021 dev_err(dev, "skcipher XTS mode input length error!\n");
2022 ret = -EINVAL;
2023 }
2024 break;
2025 case SEC_CMODE_ECB:
2026 case SEC_CMODE_CBC:
2027 if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
2028 dev_err(dev, "skcipher AES input length error!\n");
2029 ret = -EINVAL;
2030 }
2031 break;
2032 case SEC_CMODE_CTR:
2033 if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
2034 dev_err(dev, "skcipher HW version error!\n");
2035 ret = -EINVAL;
2036 }
2037 break;
2038 default:
2039 ret = -EINVAL;
2040 }
2041
2042 return ret;
2043 }
2044
sec_skcipher_param_check(struct sec_ctx * ctx,struct sec_req * sreq)2045 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2046 {
2047 struct skcipher_request *sk_req = sreq->c_req.sk_req;
2048 struct device *dev = ctx->dev;
2049 u8 c_alg = ctx->c_ctx.c_alg;
2050
2051 if (unlikely(!sk_req->src || !sk_req->dst ||
2052 sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2053 dev_err(dev, "skcipher input param error!\n");
2054 return -EINVAL;
2055 }
2056 sreq->c_req.c_len = sk_req->cryptlen;
2057
2058 if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2059 sreq->use_pbuf = true;
2060 else
2061 sreq->use_pbuf = false;
2062
2063 if (c_alg == SEC_CALG_3DES) {
2064 if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2065 dev_err(dev, "skcipher 3des input length error!\n");
2066 return -EINVAL;
2067 }
2068 return 0;
2069 } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2070 return sec_skcipher_cryptlen_check(ctx, sreq);
2071 }
2072
2073 dev_err(dev, "skcipher algorithm error!\n");
2074
2075 return -EINVAL;
2076 }
2077
sec_skcipher_soft_crypto(struct sec_ctx * ctx,struct skcipher_request * sreq,bool encrypt)2078 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2079 struct skcipher_request *sreq, bool encrypt)
2080 {
2081 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2082 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2083 struct device *dev = ctx->dev;
2084 int ret;
2085
2086 if (!c_ctx->fbtfm) {
2087 dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2088 return -EINVAL;
2089 }
2090
2091 skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2092
2093 /* software need sync mode to do crypto */
2094 skcipher_request_set_callback(subreq, sreq->base.flags,
2095 NULL, NULL);
2096 skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2097 sreq->cryptlen, sreq->iv);
2098 if (encrypt)
2099 ret = crypto_skcipher_encrypt(subreq);
2100 else
2101 ret = crypto_skcipher_decrypt(subreq);
2102
2103 skcipher_request_zero(subreq);
2104
2105 return ret;
2106 }
2107
sec_skcipher_crypto(struct skcipher_request * sk_req,bool encrypt)2108 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2109 {
2110 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2111 struct sec_req *req = skcipher_request_ctx(sk_req);
2112 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2113 int ret;
2114
2115 if (!sk_req->cryptlen) {
2116 if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2117 return -EINVAL;
2118 return 0;
2119 }
2120
2121 req->flag = sk_req->base.flags;
2122 req->c_req.sk_req = sk_req;
2123 req->c_req.encrypt = encrypt;
2124 req->ctx = ctx;
2125
2126 ret = sec_skcipher_param_check(ctx, req);
2127 if (unlikely(ret))
2128 return -EINVAL;
2129
2130 if (unlikely(ctx->c_ctx.fallback))
2131 return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2132
2133 return ctx->req_op->process(ctx, req);
2134 }
2135
sec_skcipher_encrypt(struct skcipher_request * sk_req)2136 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2137 {
2138 return sec_skcipher_crypto(sk_req, true);
2139 }
2140
sec_skcipher_decrypt(struct skcipher_request * sk_req)2141 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2142 {
2143 return sec_skcipher_crypto(sk_req, false);
2144 }
2145
2146 #define SEC_SKCIPHER_ALG(sec_cra_name, sec_set_key, \
2147 sec_min_key_size, sec_max_key_size, blk_size, iv_size)\
2148 {\
2149 .base = {\
2150 .cra_name = sec_cra_name,\
2151 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2152 .cra_priority = SEC_PRIORITY,\
2153 .cra_flags = CRYPTO_ALG_ASYNC |\
2154 CRYPTO_ALG_NEED_FALLBACK,\
2155 .cra_blocksize = blk_size,\
2156 .cra_ctxsize = sizeof(struct sec_ctx),\
2157 .cra_module = THIS_MODULE,\
2158 },\
2159 .init = sec_skcipher_ctx_init,\
2160 .exit = sec_skcipher_ctx_exit,\
2161 .setkey = sec_set_key,\
2162 .decrypt = sec_skcipher_decrypt,\
2163 .encrypt = sec_skcipher_encrypt,\
2164 .min_keysize = sec_min_key_size,\
2165 .max_keysize = sec_max_key_size,\
2166 .ivsize = iv_size,\
2167 }
2168
2169 static struct sec_skcipher sec_skciphers[] = {
2170 {
2171 .alg_msk = BIT(0),
2172 .alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
2173 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
2174 },
2175 {
2176 .alg_msk = BIT(1),
2177 .alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
2178 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2179 },
2180 {
2181 .alg_msk = BIT(2),
2182 .alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE,
2183 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2184 },
2185 {
2186 .alg_msk = BIT(3),
2187 .alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE,
2188 SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2189 },
2190 {
2191 .alg_msk = BIT(12),
2192 .alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE,
2193 AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2194 },
2195 {
2196 .alg_msk = BIT(13),
2197 .alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
2198 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2199 },
2200 {
2201 .alg_msk = BIT(14),
2202 .alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE,
2203 SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2204 },
2205 {
2206 .alg_msk = BIT(23),
2207 .alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
2208 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
2209 },
2210 {
2211 .alg_msk = BIT(24),
2212 .alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
2213 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
2214 DES3_EDE_BLOCK_SIZE),
2215 },
2216 };
2217
aead_iv_demension_check(struct aead_request * aead_req)2218 static int aead_iv_demension_check(struct aead_request *aead_req)
2219 {
2220 u8 cl;
2221
2222 cl = aead_req->iv[0] + 1;
2223 if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2224 return -EINVAL;
2225
2226 if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2227 return -EOVERFLOW;
2228
2229 return 0;
2230 }
2231
sec_aead_spec_check(struct sec_ctx * ctx,struct sec_req * sreq)2232 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2233 {
2234 struct aead_request *req = sreq->aead_req.aead_req;
2235 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2236 size_t authsize = crypto_aead_authsize(tfm);
2237 u8 c_mode = ctx->c_ctx.c_mode;
2238 struct device *dev = ctx->dev;
2239 int ret;
2240
2241 if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2242 req->assoclen > SEC_MAX_AAD_LEN)) {
2243 dev_err(dev, "aead input spec error!\n");
2244 return -EINVAL;
2245 }
2246
2247 if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
2248 (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
2249 authsize & MAC_LEN_MASK)))) {
2250 dev_err(dev, "aead input mac length error!\n");
2251 return -EINVAL;
2252 }
2253
2254 if (c_mode == SEC_CMODE_CCM) {
2255 if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
2256 dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
2257 return -EINVAL;
2258 }
2259 ret = aead_iv_demension_check(req);
2260 if (ret) {
2261 dev_err(dev, "aead input iv param error!\n");
2262 return ret;
2263 }
2264 }
2265
2266 if (sreq->c_req.encrypt)
2267 sreq->c_req.c_len = req->cryptlen;
2268 else
2269 sreq->c_req.c_len = req->cryptlen - authsize;
2270 if (c_mode == SEC_CMODE_CBC) {
2271 if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2272 dev_err(dev, "aead crypto length error!\n");
2273 return -EINVAL;
2274 }
2275 }
2276
2277 return 0;
2278 }
2279
sec_aead_param_check(struct sec_ctx * ctx,struct sec_req * sreq)2280 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2281 {
2282 struct aead_request *req = sreq->aead_req.aead_req;
2283 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2284 size_t authsize = crypto_aead_authsize(tfm);
2285 struct device *dev = ctx->dev;
2286 u8 c_alg = ctx->c_ctx.c_alg;
2287
2288 if (unlikely(!req->src || !req->dst)) {
2289 dev_err(dev, "aead input param error!\n");
2290 return -EINVAL;
2291 }
2292
2293 if (ctx->sec->qm.ver == QM_HW_V2) {
2294 if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
2295 req->cryptlen <= authsize))) {
2296 ctx->a_ctx.fallback = true;
2297 return -EINVAL;
2298 }
2299 }
2300
2301 /* Support AES or SM4 */
2302 if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2303 dev_err(dev, "aead crypto alg error!\n");
2304 return -EINVAL;
2305 }
2306
2307 if (unlikely(sec_aead_spec_check(ctx, sreq)))
2308 return -EINVAL;
2309
2310 if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2311 SEC_PBUF_SZ)
2312 sreq->use_pbuf = true;
2313 else
2314 sreq->use_pbuf = false;
2315
2316 return 0;
2317 }
2318
sec_aead_soft_crypto(struct sec_ctx * ctx,struct aead_request * aead_req,bool encrypt)2319 static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2320 struct aead_request *aead_req,
2321 bool encrypt)
2322 {
2323 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2324 struct device *dev = ctx->dev;
2325 struct aead_request *subreq;
2326 int ret;
2327
2328 /* Kunpeng920 aead mode not support input 0 size */
2329 if (!a_ctx->fallback_aead_tfm) {
2330 dev_err(dev, "aead fallback tfm is NULL!\n");
2331 return -EINVAL;
2332 }
2333
2334 subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2335 if (!subreq)
2336 return -ENOMEM;
2337
2338 aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2339 aead_request_set_callback(subreq, aead_req->base.flags,
2340 aead_req->base.complete, aead_req->base.data);
2341 aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2342 aead_req->cryptlen, aead_req->iv);
2343 aead_request_set_ad(subreq, aead_req->assoclen);
2344
2345 if (encrypt)
2346 ret = crypto_aead_encrypt(subreq);
2347 else
2348 ret = crypto_aead_decrypt(subreq);
2349 aead_request_free(subreq);
2350
2351 return ret;
2352 }
2353
sec_aead_crypto(struct aead_request * a_req,bool encrypt)2354 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2355 {
2356 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2357 struct sec_req *req = aead_request_ctx(a_req);
2358 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2359 int ret;
2360
2361 req->flag = a_req->base.flags;
2362 req->aead_req.aead_req = a_req;
2363 req->c_req.encrypt = encrypt;
2364 req->ctx = ctx;
2365
2366 ret = sec_aead_param_check(ctx, req);
2367 if (unlikely(ret)) {
2368 if (ctx->a_ctx.fallback)
2369 return sec_aead_soft_crypto(ctx, a_req, encrypt);
2370 return -EINVAL;
2371 }
2372
2373 return ctx->req_op->process(ctx, req);
2374 }
2375
sec_aead_encrypt(struct aead_request * a_req)2376 static int sec_aead_encrypt(struct aead_request *a_req)
2377 {
2378 return sec_aead_crypto(a_req, true);
2379 }
2380
sec_aead_decrypt(struct aead_request * a_req)2381 static int sec_aead_decrypt(struct aead_request *a_req)
2382 {
2383 return sec_aead_crypto(a_req, false);
2384 }
2385
2386 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2387 ctx_exit, blk_size, iv_size, max_authsize)\
2388 {\
2389 .base = {\
2390 .cra_name = sec_cra_name,\
2391 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2392 .cra_priority = SEC_PRIORITY,\
2393 .cra_flags = CRYPTO_ALG_ASYNC |\
2394 CRYPTO_ALG_NEED_FALLBACK,\
2395 .cra_blocksize = blk_size,\
2396 .cra_ctxsize = sizeof(struct sec_ctx),\
2397 .cra_module = THIS_MODULE,\
2398 },\
2399 .init = ctx_init,\
2400 .exit = ctx_exit,\
2401 .setkey = sec_set_key,\
2402 .setauthsize = sec_aead_setauthsize,\
2403 .decrypt = sec_aead_decrypt,\
2404 .encrypt = sec_aead_encrypt,\
2405 .ivsize = iv_size,\
2406 .maxauthsize = max_authsize,\
2407 }
2408
2409 static struct sec_aead sec_aeads[] = {
2410 {
2411 .alg_msk = BIT(6),
2412 .alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2413 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2414 AES_BLOCK_SIZE),
2415 },
2416 {
2417 .alg_msk = BIT(7),
2418 .alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2419 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2420 AES_BLOCK_SIZE),
2421 },
2422 {
2423 .alg_msk = BIT(17),
2424 .alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2425 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2426 AES_BLOCK_SIZE),
2427 },
2428 {
2429 .alg_msk = BIT(18),
2430 .alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2431 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2432 AES_BLOCK_SIZE),
2433 },
2434 {
2435 .alg_msk = BIT(43),
2436 .alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
2437 sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2438 AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2439 },
2440 {
2441 .alg_msk = BIT(44),
2442 .alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
2443 sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2444 AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2445 },
2446 {
2447 .alg_msk = BIT(45),
2448 .alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
2449 sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2450 AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2451 },
2452 };
2453
sec_unregister_skcipher(u64 alg_mask,int end)2454 static void sec_unregister_skcipher(u64 alg_mask, int end)
2455 {
2456 int i;
2457
2458 for (i = 0; i < end; i++)
2459 if (sec_skciphers[i].alg_msk & alg_mask)
2460 crypto_unregister_skcipher(&sec_skciphers[i].alg);
2461 }
2462
sec_register_skcipher(u64 alg_mask)2463 static int sec_register_skcipher(u64 alg_mask)
2464 {
2465 int i, ret, count;
2466
2467 count = ARRAY_SIZE(sec_skciphers);
2468
2469 for (i = 0; i < count; i++) {
2470 if (!(sec_skciphers[i].alg_msk & alg_mask))
2471 continue;
2472
2473 ret = crypto_register_skcipher(&sec_skciphers[i].alg);
2474 if (ret)
2475 goto err;
2476 }
2477
2478 return 0;
2479
2480 err:
2481 sec_unregister_skcipher(alg_mask, i);
2482
2483 return ret;
2484 }
2485
sec_unregister_aead(u64 alg_mask,int end)2486 static void sec_unregister_aead(u64 alg_mask, int end)
2487 {
2488 int i;
2489
2490 for (i = 0; i < end; i++)
2491 if (sec_aeads[i].alg_msk & alg_mask)
2492 crypto_unregister_aead(&sec_aeads[i].alg);
2493 }
2494
sec_register_aead(u64 alg_mask)2495 static int sec_register_aead(u64 alg_mask)
2496 {
2497 int i, ret, count;
2498
2499 count = ARRAY_SIZE(sec_aeads);
2500
2501 for (i = 0; i < count; i++) {
2502 if (!(sec_aeads[i].alg_msk & alg_mask))
2503 continue;
2504
2505 ret = crypto_register_aead(&sec_aeads[i].alg);
2506 if (ret)
2507 goto err;
2508 }
2509
2510 return 0;
2511
2512 err:
2513 sec_unregister_aead(alg_mask, i);
2514
2515 return ret;
2516 }
2517
sec_register_to_crypto(struct hisi_qm * qm)2518 int sec_register_to_crypto(struct hisi_qm *qm)
2519 {
2520 u64 alg_mask;
2521 int ret = 0;
2522
2523 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2524 SEC_DRV_ALG_BITMAP_LOW_IDX);
2525
2526 mutex_lock(&sec_algs_lock);
2527 if (sec_available_devs) {
2528 sec_available_devs++;
2529 goto unlock;
2530 }
2531
2532 ret = sec_register_skcipher(alg_mask);
2533 if (ret)
2534 goto unlock;
2535
2536 ret = sec_register_aead(alg_mask);
2537 if (ret)
2538 goto unreg_skcipher;
2539
2540 sec_available_devs++;
2541 mutex_unlock(&sec_algs_lock);
2542
2543 return 0;
2544
2545 unreg_skcipher:
2546 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2547 unlock:
2548 mutex_unlock(&sec_algs_lock);
2549 return ret;
2550 }
2551
sec_unregister_from_crypto(struct hisi_qm * qm)2552 void sec_unregister_from_crypto(struct hisi_qm *qm)
2553 {
2554 u64 alg_mask;
2555
2556 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2557 SEC_DRV_ALG_BITMAP_LOW_IDX);
2558
2559 mutex_lock(&sec_algs_lock);
2560 if (--sec_available_devs)
2561 goto unlock;
2562
2563 sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
2564 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2565
2566 unlock:
2567 mutex_unlock(&sec_algs_lock);
2568 }
2569