xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/TargetSchedule.h (revision 5f757f3ff9144b609b3c433dfd370cc6bdc191ad)
1 //===- llvm/CodeGen/TargetSchedule.h - Sched Machine Model ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a wrapper around MCSchedModel that allows the interface to
10 // benefit from information currently only available in TargetInstrInfo.
11 // Ideally, the scheduling interface would be fully defined in the MC layer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_TARGETSCHEDULE_H
16 #define LLVM_CODEGEN_TARGETSCHEDULE_H
17 
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/MC/MCInstrItineraries.h"
22 #include "llvm/MC/MCSchedule.h"
23 
24 namespace llvm {
25 
26 class MachineInstr;
27 class TargetInstrInfo;
28 
29 /// Provide an instruction scheduling machine model to CodeGen passes.
30 class TargetSchedModel {
31   // For efficiency, hold a copy of the statically defined MCSchedModel for this
32   // processor.
33   MCSchedModel SchedModel;
34   InstrItineraryData InstrItins;
35   const TargetSubtargetInfo *STI = nullptr;
36   const TargetInstrInfo *TII = nullptr;
37 
38   SmallVector<unsigned, 16> ResourceFactors;
39 
40   // Multiply to normalize microops to resource units.
41   unsigned MicroOpFactor = 0;
42 
43   // Resource units per cycle. Latency normalization factor.
44   unsigned ResourceLCM = 0;
45 
46   unsigned computeInstrLatency(const MCSchedClassDesc &SCDesc) const;
47 
48 public:
49   TargetSchedModel() : SchedModel(MCSchedModel::Default) {}
50 
51   /// Initialize the machine model for instruction scheduling.
52   ///
53   /// The machine model API keeps a copy of the top-level MCSchedModel table
54   /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve
55   /// dynamic properties.
56   void init(const TargetSubtargetInfo *TSInfo);
57 
58   /// Return the MCSchedClassDesc for this instruction.
59   const MCSchedClassDesc *resolveSchedClass(const MachineInstr *MI) const;
60 
61   /// TargetSubtargetInfo getter.
62   const TargetSubtargetInfo *getSubtargetInfo() const { return STI; }
63 
64   /// TargetInstrInfo getter.
65   const TargetInstrInfo *getInstrInfo() const { return TII; }
66 
67   /// Return true if this machine model includes an instruction-level
68   /// scheduling model.
69   ///
70   /// This is more detailed than the course grain IssueWidth and default
71   /// latency properties, but separate from the per-cycle itinerary data.
72   bool hasInstrSchedModel() const;
73 
74   const MCSchedModel *getMCSchedModel() const { return &SchedModel; }
75 
76   /// Return true if this machine model includes cycle-to-cycle itinerary
77   /// data.
78   ///
79   /// This models scheduling at each stage in the processor pipeline.
80   bool hasInstrItineraries() const;
81 
82   const InstrItineraryData *getInstrItineraries() const {
83     if (hasInstrItineraries())
84       return &InstrItins;
85     return nullptr;
86   }
87 
88   /// Return true if this machine model includes an instruction-level
89   /// scheduling model or cycle-to-cycle itinerary data.
90   bool hasInstrSchedModelOrItineraries() const {
91     return hasInstrSchedModel() || hasInstrItineraries();
92   }
93   bool enableIntervals() const;
94   /// Identify the processor corresponding to the current subtarget.
95   unsigned getProcessorID() const { return SchedModel.getProcessorID(); }
96 
97   /// Maximum number of micro-ops that may be scheduled per cycle.
98   unsigned getIssueWidth() const { return SchedModel.IssueWidth; }
99 
100   /// Return true if new group must begin.
101   bool mustBeginGroup(const MachineInstr *MI,
102                           const MCSchedClassDesc *SC = nullptr) const;
103   /// Return true if current group must end.
104   bool mustEndGroup(const MachineInstr *MI,
105                           const MCSchedClassDesc *SC = nullptr) const;
106 
107   /// Return the number of issue slots required for this MI.
108   unsigned getNumMicroOps(const MachineInstr *MI,
109                           const MCSchedClassDesc *SC = nullptr) const;
110 
111   /// Get the number of kinds of resources for this target.
112   unsigned getNumProcResourceKinds() const {
113     return SchedModel.getNumProcResourceKinds();
114   }
115 
116   /// Get a processor resource by ID for convenience.
117   const MCProcResourceDesc *getProcResource(unsigned PIdx) const {
118     return SchedModel.getProcResource(PIdx);
119   }
120 
121 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
122   const char *getResourceName(unsigned PIdx) const {
123     if (!PIdx)
124       return "MOps";
125     return SchedModel.getProcResource(PIdx)->Name;
126   }
127 #endif
128 
129   using ProcResIter = const MCWriteProcResEntry *;
130 
131   // Get an iterator into the processor resources consumed by this
132   // scheduling class.
133   ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const {
134     // The subtarget holds a single resource table for all processors.
135     return STI->getWriteProcResBegin(SC);
136   }
137   ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const {
138     return STI->getWriteProcResEnd(SC);
139   }
140 
141   /// Multiply the number of units consumed for a resource by this factor
142   /// to normalize it relative to other resources.
143   unsigned getResourceFactor(unsigned ResIdx) const {
144     return ResourceFactors[ResIdx];
145   }
146 
147   /// Multiply number of micro-ops by this factor to normalize it
148   /// relative to other resources.
149   unsigned getMicroOpFactor() const {
150     return MicroOpFactor;
151   }
152 
153   /// Multiply cycle count by this factor to normalize it relative to
154   /// other resources. This is the number of resource units per cycle.
155   unsigned getLatencyFactor() const {
156     return ResourceLCM;
157   }
158 
159   /// Number of micro-ops that may be buffered for OOO execution.
160   unsigned getMicroOpBufferSize() const { return SchedModel.MicroOpBufferSize; }
161 
162   /// Number of resource units that may be buffered for OOO execution.
163   /// \return The buffer size in resource units or -1 for unlimited.
164   int getResourceBufferSize(unsigned PIdx) const {
165     return SchedModel.getProcResource(PIdx)->BufferSize;
166   }
167 
168   /// Compute operand latency based on the available machine model.
169   ///
170   /// Compute and return the latency of the given data dependent def and use
171   /// when the operand indices are already known. UseMI may be NULL for an
172   /// unknown user.
173   unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
174                                  const MachineInstr *UseMI, unsigned UseOperIdx)
175     const;
176 
177   /// Compute the instruction latency based on the available machine
178   /// model.
179   ///
180   /// Compute and return the expected latency of this instruction independent of
181   /// a particular use. computeOperandLatency is the preferred API, but this is
182   /// occasionally useful to help estimate instruction cost.
183   ///
184   /// If UseDefaultDefLatency is false and no new machine sched model is
185   /// present this method falls back to TII->getInstrLatency with an empty
186   /// instruction itinerary (this is so we preserve the previous behavior of the
187   /// if converter after moving it to TargetSchedModel).
188   unsigned computeInstrLatency(const MachineInstr *MI,
189                                bool UseDefaultDefLatency = true) const;
190   unsigned computeInstrLatency(const MCInst &Inst) const;
191   unsigned computeInstrLatency(unsigned Opcode) const;
192 
193 
194   /// Output dependency latency of a pair of defs of the same register.
195   ///
196   /// This is typically one cycle.
197   unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
198                                 const MachineInstr *DepMI) const;
199 
200   /// Compute the reciprocal throughput of the given instruction.
201   double computeReciprocalThroughput(const MachineInstr *MI) const;
202   double computeReciprocalThroughput(const MCInst &MI) const;
203   double computeReciprocalThroughput(unsigned Opcode) const;
204 };
205 
206 } // end namespace llvm
207 
208 #endif // LLVM_CODEGEN_TARGETSCHEDULE_H
209