1 /*
2 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5
6 #pragma ident "%Z%%M% %I% %E% SMI"
7
8 /*
9 ** 2001 September 15
10 **
11 ** The author disclaims copyright to this source code. In place of
12 ** a legal notice, here is a blessing:
13 **
14 ** May you do good and not evil.
15 ** May you find forgiveness for yourself and forgive others.
16 ** May you share freely, never taking more than you give.
17 **
18 *************************************************************************
19 ** The code in this file implements execution method of the
20 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
21 ** handles housekeeping details such as creating and deleting
22 ** VDBE instances. This file is solely interested in executing
23 ** the VDBE program.
24 **
25 ** In the external interface, an "sqlite_vm*" is an opaque pointer
26 ** to a VDBE.
27 **
28 ** The SQL parser generates a program which is then executed by
29 ** the VDBE to do the work of the SQL statement. VDBE programs are
30 ** similar in form to assembly language. The program consists of
31 ** a linear sequence of operations. Each operation has an opcode
32 ** and 3 operands. Operands P1 and P2 are integers. Operand P3
33 ** is a null-terminated string. The P2 operand must be non-negative.
34 ** Opcodes will typically ignore one or more operands. Many opcodes
35 ** ignore all three operands.
36 **
37 ** Computation results are stored on a stack. Each entry on the
38 ** stack is either an integer, a null-terminated string, a floating point
39 ** number, or the SQL "NULL" value. An inplicit conversion from one
40 ** type to the other occurs as necessary.
41 **
42 ** Most of the code in this file is taken up by the sqliteVdbeExec()
43 ** function which does the work of interpreting a VDBE program.
44 ** But other routines are also provided to help in building up
45 ** a program instruction by instruction.
46 **
47 ** Various scripts scan this source file in order to generate HTML
48 ** documentation, headers files, or other derived files. The formatting
49 ** of the code in this file is, therefore, important. See other comments
50 ** in this file for details. If in doubt, do not deviate from existing
51 ** commenting and indentation practices when changing or adding code.
52 **
53 ** $Id: vdbe.c,v 1.268.2.3 2004/07/19 19:30:50 drh Exp $
54 */
55 #include "sqliteInt.h"
56 #include "os.h"
57 #include <ctype.h>
58 #include "vdbeInt.h"
59
60 /*
61 ** The following global variable is incremented every time a cursor
62 ** moves, either by the OP_MoveTo or the OP_Next opcode. The test
63 ** procedures use this information to make sure that indices are
64 ** working correctly. This variable has no function other than to
65 ** help verify the correct operation of the library.
66 */
67 int sqlite_search_count = 0;
68
69 /*
70 ** When this global variable is positive, it gets decremented once before
71 ** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt
72 ** of the db.flags field is set in order to simulate an interrupt.
73 **
74 ** This facility is used for testing purposes only. It does not function
75 ** in an ordinary build.
76 */
77 int sqlite_interrupt_count = 0;
78
79 /*
80 ** Advance the virtual machine to the next output row.
81 **
82 ** The return vale will be either SQLITE_BUSY, SQLITE_DONE,
83 ** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
84 **
85 ** SQLITE_BUSY means that the virtual machine attempted to open
86 ** a locked database and there is no busy callback registered.
87 ** Call sqlite_step() again to retry the open. *pN is set to 0
88 ** and *pazColName and *pazValue are both set to NULL.
89 **
90 ** SQLITE_DONE means that the virtual machine has finished
91 ** executing. sqlite_step() should not be called again on this
92 ** virtual machine. *pN and *pazColName are set appropriately
93 ** but *pazValue is set to NULL.
94 **
95 ** SQLITE_ROW means that the virtual machine has generated another
96 ** row of the result set. *pN is set to the number of columns in
97 ** the row. *pazColName is set to the names of the columns followed
98 ** by the column datatypes. *pazValue is set to the values of each
99 ** column in the row. The value of the i-th column is (*pazValue)[i].
100 ** The name of the i-th column is (*pazColName)[i] and the datatype
101 ** of the i-th column is (*pazColName)[i+*pN].
102 **
103 ** SQLITE_ERROR means that a run-time error (such as a constraint
104 ** violation) has occurred. The details of the error will be returned
105 ** by the next call to sqlite_finalize(). sqlite_step() should not
106 ** be called again on the VM.
107 **
108 ** SQLITE_MISUSE means that the this routine was called inappropriately.
109 ** Perhaps it was called on a virtual machine that had already been
110 ** finalized or on one that had previously returned SQLITE_ERROR or
111 ** SQLITE_DONE. Or it could be the case the the same database connection
112 ** is being used simulataneously by two or more threads.
113 */
sqlite_step(sqlite_vm * pVm,int * pN,const char *** pazValue,const char *** pazColName)114 int sqlite_step(
115 sqlite_vm *pVm, /* The virtual machine to execute */
116 int *pN, /* OUT: Number of columns in result */
117 const char ***pazValue, /* OUT: Column data */
118 const char ***pazColName /* OUT: Column names and datatypes */
119 ){
120 Vdbe *p = (Vdbe*)pVm;
121 sqlite *db;
122 int rc;
123
124 if( p->magic!=VDBE_MAGIC_RUN ){
125 return SQLITE_MISUSE;
126 }
127 db = p->db;
128 if( sqliteSafetyOn(db) ){
129 p->rc = SQLITE_MISUSE;
130 return SQLITE_MISUSE;
131 }
132 if( p->explain ){
133 rc = sqliteVdbeList(p);
134 }else{
135 rc = sqliteVdbeExec(p);
136 }
137 if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
138 if( pazColName ) *pazColName = (const char**)p->azColName;
139 if( pN ) *pN = p->nResColumn;
140 }else{
141 if( pazColName) *pazColName = 0;
142 if( pN ) *pN = 0;
143 }
144 if( pazValue ){
145 if( rc==SQLITE_ROW ){
146 *pazValue = (const char**)p->azResColumn;
147 }else{
148 *pazValue = 0;
149 }
150 }
151 if( sqliteSafetyOff(db) ){
152 return SQLITE_MISUSE;
153 }
154 return rc;
155 }
156
157 /*
158 ** Insert a new aggregate element and make it the element that
159 ** has focus.
160 **
161 ** Return 0 on success and 1 if memory is exhausted.
162 */
AggInsert(Agg * p,char * zKey,int nKey)163 static int AggInsert(Agg *p, char *zKey, int nKey){
164 AggElem *pElem, *pOld;
165 int i;
166 Mem *pMem;
167 pElem = sqliteMalloc( sizeof(AggElem) + nKey +
168 (p->nMem-1)*sizeof(pElem->aMem[0]) );
169 if( pElem==0 ) return 1;
170 pElem->zKey = (char*)&pElem->aMem[p->nMem];
171 memcpy(pElem->zKey, zKey, nKey);
172 pElem->nKey = nKey;
173 pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
174 if( pOld!=0 ){
175 assert( pOld==pElem ); /* Malloc failed on insert */
176 sqliteFree(pOld);
177 return 0;
178 }
179 for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){
180 pMem->flags = MEM_Null;
181 }
182 p->pCurrent = pElem;
183 return 0;
184 }
185
186 /*
187 ** Get the AggElem currently in focus
188 */
189 #define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
_AggInFocus(Agg * p)190 static AggElem *_AggInFocus(Agg *p){
191 HashElem *pElem = sqliteHashFirst(&p->hash);
192 if( pElem==0 ){
193 AggInsert(p,"",1);
194 pElem = sqliteHashFirst(&p->hash);
195 }
196 return pElem ? sqliteHashData(pElem) : 0;
197 }
198
199 /*
200 ** Convert the given stack entity into a string if it isn't one
201 ** already.
202 */
203 #define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);}
hardStringify(Mem * pStack)204 static int hardStringify(Mem *pStack){
205 int fg = pStack->flags;
206 if( fg & MEM_Real ){
207 sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
208 }else if( fg & MEM_Int ){
209 sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i);
210 }else{
211 pStack->zShort[0] = 0;
212 }
213 pStack->z = pStack->zShort;
214 pStack->n = strlen(pStack->zShort)+1;
215 pStack->flags = MEM_Str | MEM_Short;
216 return 0;
217 }
218
219 /*
220 ** Convert the given stack entity into a string that has been obtained
221 ** from sqliteMalloc(). This is different from Stringify() above in that
222 ** Stringify() will use the NBFS bytes of static string space if the string
223 ** will fit but this routine always mallocs for space.
224 ** Return non-zero if we run out of memory.
225 */
226 #define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0)
hardDynamicify(Mem * pStack)227 static int hardDynamicify(Mem *pStack){
228 int fg = pStack->flags;
229 char *z;
230 if( (fg & MEM_Str)==0 ){
231 hardStringify(pStack);
232 }
233 assert( (fg & MEM_Dyn)==0 );
234 z = sqliteMallocRaw( pStack->n );
235 if( z==0 ) return 1;
236 memcpy(z, pStack->z, pStack->n);
237 pStack->z = z;
238 pStack->flags |= MEM_Dyn;
239 return 0;
240 }
241
242 /*
243 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
244 ** a pointer to a dynamically allocated string where some other entity
245 ** is responsible for deallocating that string. Because the stack entry
246 ** does not control the string, it might be deleted without the stack
247 ** entry knowing it.
248 **
249 ** This routine converts an ephemeral string into a dynamically allocated
250 ** string that the stack entry itself controls. In other words, it
251 ** converts an MEM_Ephem string into an MEM_Dyn string.
252 */
253 #define Deephemeralize(P) \
254 if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
hardDeephem(Mem * pStack)255 static int hardDeephem(Mem *pStack){
256 char *z;
257 assert( (pStack->flags & MEM_Ephem)!=0 );
258 z = sqliteMallocRaw( pStack->n );
259 if( z==0 ) return 1;
260 memcpy(z, pStack->z, pStack->n);
261 pStack->z = z;
262 pStack->flags &= ~MEM_Ephem;
263 pStack->flags |= MEM_Dyn;
264 return 0;
265 }
266
267 /*
268 ** Release the memory associated with the given stack level. This
269 ** leaves the Mem.flags field in an inconsistent state.
270 */
271 #define Release(P) \
272 if ((P)->flags & MEM_Dyn) { \
273 sqliteFree((P)->z); \
274 (P)->z = NULL; \
275 }
276
277 /*
278 ** Pop the stack N times.
279 */
popStack(Mem ** ppTos,int N)280 static void popStack(Mem **ppTos, int N){
281 Mem *pTos = *ppTos;
282 while( N>0 ){
283 N--;
284 Release(pTos);
285 pTos--;
286 }
287 *ppTos = pTos;
288 }
289
290 /*
291 ** Return TRUE if zNum is a 32-bit signed integer and write
292 ** the value of the integer into *pNum. If zNum is not an integer
293 ** or is an integer that is too large to be expressed with just 32
294 ** bits, then return false.
295 **
296 ** Under Linux (RedHat 7.2) this routine is much faster than atoi()
297 ** for converting strings into integers.
298 */
toInt(const char * zNum,int * pNum)299 static int toInt(const char *zNum, int *pNum){
300 int v = 0;
301 int neg;
302 int i, c;
303 if( *zNum=='-' ){
304 neg = 1;
305 zNum++;
306 }else if( *zNum=='+' ){
307 neg = 0;
308 zNum++;
309 }else{
310 neg = 0;
311 }
312 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
313 v = v*10 + c - '0';
314 }
315 *pNum = neg ? -v : v;
316 return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0));
317 }
318
319 /*
320 ** Convert the given stack entity into a integer if it isn't one
321 ** already.
322 **
323 ** Any prior string or real representation is invalidated.
324 ** NULLs are converted into 0.
325 */
326 #define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); }
hardIntegerify(Mem * pStack)327 static void hardIntegerify(Mem *pStack){
328 if( pStack->flags & MEM_Real ){
329 pStack->i = (int)pStack->r;
330 Release(pStack);
331 }else if( pStack->flags & MEM_Str ){
332 toInt(pStack->z, &pStack->i);
333 Release(pStack);
334 }else{
335 pStack->i = 0;
336 }
337 pStack->flags = MEM_Int;
338 }
339
340 /*
341 ** Get a valid Real representation for the given stack element.
342 **
343 ** Any prior string or integer representation is retained.
344 ** NULLs are converted into 0.0.
345 */
346 #define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); }
hardRealify(Mem * pStack)347 static void hardRealify(Mem *pStack){
348 if( pStack->flags & MEM_Str ){
349 pStack->r = sqliteAtoF(pStack->z, 0);
350 }else if( pStack->flags & MEM_Int ){
351 pStack->r = pStack->i;
352 }else{
353 pStack->r = 0.0;
354 }
355 pStack->flags |= MEM_Real;
356 }
357
358 /*
359 ** The parameters are pointers to the head of two sorted lists
360 ** of Sorter structures. Merge these two lists together and return
361 ** a single sorted list. This routine forms the core of the merge-sort
362 ** algorithm.
363 **
364 ** In the case of a tie, left sorts in front of right.
365 */
Merge(Sorter * pLeft,Sorter * pRight)366 static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
367 Sorter sHead;
368 Sorter *pTail;
369 pTail = &sHead;
370 pTail->pNext = 0;
371 while( pLeft && pRight ){
372 int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
373 if( c<=0 ){
374 pTail->pNext = pLeft;
375 pLeft = pLeft->pNext;
376 }else{
377 pTail->pNext = pRight;
378 pRight = pRight->pNext;
379 }
380 pTail = pTail->pNext;
381 }
382 if( pLeft ){
383 pTail->pNext = pLeft;
384 }else if( pRight ){
385 pTail->pNext = pRight;
386 }
387 return sHead.pNext;
388 }
389
390 /*
391 ** The following routine works like a replacement for the standard
392 ** library routine fgets(). The difference is in how end-of-line (EOL)
393 ** is handled. Standard fgets() uses LF for EOL under unix, CRLF
394 ** under windows, and CR under mac. This routine accepts any of these
395 ** character sequences as an EOL mark. The EOL mark is replaced by
396 ** a single LF character in zBuf.
397 */
vdbe_fgets(char * zBuf,int nBuf,FILE * in)398 static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
399 int i, c;
400 for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){
401 zBuf[i] = c;
402 if( c=='\r' || c=='\n' ){
403 if( c=='\r' ){
404 zBuf[i] = '\n';
405 c = getc(in);
406 if( c!=EOF && c!='\n' ) ungetc(c, in);
407 }
408 i++;
409 break;
410 }
411 }
412 zBuf[i] = 0;
413 return i>0 ? zBuf : 0;
414 }
415
416 /*
417 ** Make sure there is space in the Vdbe structure to hold at least
418 ** mxCursor cursors. If there is not currently enough space, then
419 ** allocate more.
420 **
421 ** If a memory allocation error occurs, return 1. Return 0 if
422 ** everything works.
423 */
expandCursorArraySize(Vdbe * p,int mxCursor)424 static int expandCursorArraySize(Vdbe *p, int mxCursor){
425 if( mxCursor>=p->nCursor ){
426 Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
427 if( aCsr==0 ) return 1;
428 p->aCsr = aCsr;
429 memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor));
430 p->nCursor = mxCursor+1;
431 }
432 return 0;
433 }
434
435 #ifdef VDBE_PROFILE
436 /*
437 ** The following routine only works on pentium-class processors.
438 ** It uses the RDTSC opcode to read cycle count value out of the
439 ** processor and returns that value. This can be used for high-res
440 ** profiling.
441 */
hwtime(void)442 __inline__ unsigned long long int hwtime(void){
443 unsigned long long int x;
444 __asm__("rdtsc\n\t"
445 "mov %%edx, %%ecx\n\t"
446 :"=A" (x));
447 return x;
448 }
449 #endif
450
451 /*
452 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
453 ** sqlite_interrupt() routine has been called. If it has been, then
454 ** processing of the VDBE program is interrupted.
455 **
456 ** This macro added to every instruction that does a jump in order to
457 ** implement a loop. This test used to be on every single instruction,
458 ** but that meant we more testing that we needed. By only testing the
459 ** flag on jump instructions, we get a (small) speed improvement.
460 */
461 #define CHECK_FOR_INTERRUPT \
462 if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
463
464
465 /*
466 ** Execute as much of a VDBE program as we can then return.
467 **
468 ** sqliteVdbeMakeReady() must be called before this routine in order to
469 ** close the program with a final OP_Halt and to set up the callbacks
470 ** and the error message pointer.
471 **
472 ** Whenever a row or result data is available, this routine will either
473 ** invoke the result callback (if there is one) or return with
474 ** SQLITE_ROW.
475 **
476 ** If an attempt is made to open a locked database, then this routine
477 ** will either invoke the busy callback (if there is one) or it will
478 ** return SQLITE_BUSY.
479 **
480 ** If an error occurs, an error message is written to memory obtained
481 ** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
482 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
483 **
484 ** If the callback ever returns non-zero, then the program exits
485 ** immediately. There will be no error message but the p->rc field is
486 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
487 **
488 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
489 ** routine to return SQLITE_ERROR.
490 **
491 ** Other fatal errors return SQLITE_ERROR.
492 **
493 ** After this routine has finished, sqliteVdbeFinalize() should be
494 ** used to clean up the mess that was left behind.
495 */
sqliteVdbeExec(Vdbe * p)496 int sqliteVdbeExec(
497 Vdbe *p /* The VDBE */
498 ){
499 int pc; /* The program counter */
500 Op *pOp; /* Current operation */
501 int rc = SQLITE_OK; /* Value to return */
502 sqlite *db = p->db; /* The database */
503 Mem *pTos; /* Top entry in the operand stack */
504 char zBuf[100]; /* Space to sprintf() an integer */
505 #ifdef VDBE_PROFILE
506 unsigned long long start; /* CPU clock count at start of opcode */
507 int origPc; /* Program counter at start of opcode */
508 #endif
509 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
510 int nProgressOps = 0; /* Opcodes executed since progress callback. */
511 #endif
512
513 if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
514 assert( db->magic==SQLITE_MAGIC_BUSY );
515 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
516 p->rc = SQLITE_OK;
517 assert( p->explain==0 );
518 if( sqlite_malloc_failed ) goto no_mem;
519 pTos = p->pTos;
520 if( p->popStack ){
521 popStack(&pTos, p->popStack);
522 p->popStack = 0;
523 }
524 CHECK_FOR_INTERRUPT;
525 for(pc=p->pc; rc==SQLITE_OK; pc++){
526 assert( pc>=0 && pc<p->nOp );
527 assert( pTos<=&p->aStack[pc] );
528 #ifdef VDBE_PROFILE
529 origPc = pc;
530 start = hwtime();
531 #endif
532 pOp = &p->aOp[pc];
533
534 /* Only allow tracing if NDEBUG is not defined.
535 */
536 #ifndef NDEBUG
537 if( p->trace ){
538 sqliteVdbePrintOp(p->trace, pc, pOp);
539 }
540 #endif
541
542 /* Check to see if we need to simulate an interrupt. This only happens
543 ** if we have a special test build.
544 */
545 #ifdef SQLITE_TEST
546 if( sqlite_interrupt_count>0 ){
547 sqlite_interrupt_count--;
548 if( sqlite_interrupt_count==0 ){
549 sqlite_interrupt(db);
550 }
551 }
552 #endif
553
554 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
555 /* Call the progress callback if it is configured and the required number
556 ** of VDBE ops have been executed (either since this invocation of
557 ** sqliteVdbeExec() or since last time the progress callback was called).
558 ** If the progress callback returns non-zero, exit the virtual machine with
559 ** a return code SQLITE_ABORT.
560 */
561 if( db->xProgress ){
562 if( db->nProgressOps==nProgressOps ){
563 if( db->xProgress(db->pProgressArg)!=0 ){
564 rc = SQLITE_ABORT;
565 continue; /* skip to the next iteration of the for loop */
566 }
567 nProgressOps = 0;
568 }
569 nProgressOps++;
570 }
571 #endif
572
573 switch( pOp->opcode ){
574
575 /*****************************************************************************
576 ** What follows is a massive switch statement where each case implements a
577 ** separate instruction in the virtual machine. If we follow the usual
578 ** indentation conventions, each case should be indented by 6 spaces. But
579 ** that is a lot of wasted space on the left margin. So the code within
580 ** the switch statement will break with convention and be flush-left. Another
581 ** big comment (similar to this one) will mark the point in the code where
582 ** we transition back to normal indentation.
583 **
584 ** The formatting of each case is important. The makefile for SQLite
585 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
586 ** file looking for lines that begin with "case OP_". The opcodes.h files
587 ** will be filled with #defines that give unique integer values to each
588 ** opcode and the opcodes.c file is filled with an array of strings where
589 ** each string is the symbolic name for the corresponding opcode.
590 **
591 ** Documentation about VDBE opcodes is generated by scanning this file
592 ** for lines of that contain "Opcode:". That line and all subsequent
593 ** comment lines are used in the generation of the opcode.html documentation
594 ** file.
595 **
596 ** SUMMARY:
597 **
598 ** Formatting is important to scripts that scan this file.
599 ** Do not deviate from the formatting style currently in use.
600 **
601 *****************************************************************************/
602
603 /* Opcode: Goto * P2 *
604 **
605 ** An unconditional jump to address P2.
606 ** The next instruction executed will be
607 ** the one at index P2 from the beginning of
608 ** the program.
609 */
610 case OP_Goto: {
611 CHECK_FOR_INTERRUPT;
612 pc = pOp->p2 - 1;
613 break;
614 }
615
616 /* Opcode: Gosub * P2 *
617 **
618 ** Push the current address plus 1 onto the return address stack
619 ** and then jump to address P2.
620 **
621 ** The return address stack is of limited depth. If too many
622 ** OP_Gosub operations occur without intervening OP_Returns, then
623 ** the return address stack will fill up and processing will abort
624 ** with a fatal error.
625 */
626 case OP_Gosub: {
627 if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){
628 sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0);
629 p->rc = SQLITE_INTERNAL;
630 return SQLITE_ERROR;
631 }
632 p->returnStack[p->returnDepth++] = pc+1;
633 pc = pOp->p2 - 1;
634 break;
635 }
636
637 /* Opcode: Return * * *
638 **
639 ** Jump immediately to the next instruction after the last unreturned
640 ** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
641 ** processing aborts with a fatal error.
642 */
643 case OP_Return: {
644 if( p->returnDepth<=0 ){
645 sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0);
646 p->rc = SQLITE_INTERNAL;
647 return SQLITE_ERROR;
648 }
649 p->returnDepth--;
650 pc = p->returnStack[p->returnDepth] - 1;
651 break;
652 }
653
654 /* Opcode: Halt P1 P2 *
655 **
656 ** Exit immediately. All open cursors, Lists, Sorts, etc are closed
657 ** automatically.
658 **
659 ** P1 is the result code returned by sqlite_exec(). For a normal
660 ** halt, this should be SQLITE_OK (0). For errors, it can be some
661 ** other value. If P1!=0 then P2 will determine whether or not to
662 ** rollback the current transaction. Do not rollback if P2==OE_Fail.
663 ** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back
664 ** out all changes that have occurred during this execution of the
665 ** VDBE, but do not rollback the transaction.
666 **
667 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
668 ** every program. So a jump past the last instruction of the program
669 ** is the same as executing Halt.
670 */
671 case OP_Halt: {
672 p->magic = VDBE_MAGIC_HALT;
673 p->pTos = pTos;
674 if( pOp->p1!=SQLITE_OK ){
675 p->rc = pOp->p1;
676 p->errorAction = pOp->p2;
677 if( pOp->p3 ){
678 sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
679 }
680 return SQLITE_ERROR;
681 }else{
682 p->rc = SQLITE_OK;
683 return SQLITE_DONE;
684 }
685 }
686
687 /* Opcode: Integer P1 * P3
688 **
689 ** The integer value P1 is pushed onto the stack. If P3 is not zero
690 ** then it is assumed to be a string representation of the same integer.
691 */
692 case OP_Integer: {
693 pTos++;
694 pTos->i = pOp->p1;
695 pTos->flags = MEM_Int;
696 if( pOp->p3 ){
697 pTos->z = pOp->p3;
698 pTos->flags |= MEM_Str | MEM_Static;
699 pTos->n = strlen(pOp->p3)+1;
700 }
701 break;
702 }
703
704 /* Opcode: String * * P3
705 **
706 ** The string value P3 is pushed onto the stack. If P3==0 then a
707 ** NULL is pushed onto the stack.
708 */
709 case OP_String: {
710 char *z = pOp->p3;
711 pTos++;
712 if( z==0 ){
713 pTos->flags = MEM_Null;
714 }else{
715 pTos->z = z;
716 pTos->n = strlen(z) + 1;
717 pTos->flags = MEM_Str | MEM_Static;
718 }
719 break;
720 }
721
722 /* Opcode: Variable P1 * *
723 **
724 ** Push the value of variable P1 onto the stack. A variable is
725 ** an unknown in the original SQL string as handed to sqlite_compile().
726 ** Any occurance of the '?' character in the original SQL is considered
727 ** a variable. Variables in the SQL string are number from left to
728 ** right beginning with 1. The values of variables are set using the
729 ** sqlite_bind() API.
730 */
731 case OP_Variable: {
732 int j = pOp->p1 - 1;
733 pTos++;
734 if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){
735 pTos->z = p->azVar[j];
736 pTos->n = p->anVar[j];
737 pTos->flags = MEM_Str | MEM_Static;
738 }else{
739 pTos->flags = MEM_Null;
740 }
741 break;
742 }
743
744 /* Opcode: Pop P1 * *
745 **
746 ** P1 elements are popped off of the top of stack and discarded.
747 */
748 case OP_Pop: {
749 assert( pOp->p1>=0 );
750 popStack(&pTos, pOp->p1);
751 assert( pTos>=&p->aStack[-1] );
752 break;
753 }
754
755 /* Opcode: Dup P1 P2 *
756 **
757 ** A copy of the P1-th element of the stack
758 ** is made and pushed onto the top of the stack.
759 ** The top of the stack is element 0. So the
760 ** instruction "Dup 0 0 0" will make a copy of the
761 ** top of the stack.
762 **
763 ** If the content of the P1-th element is a dynamically
764 ** allocated string, then a new copy of that string
765 ** is made if P2==0. If P2!=0, then just a pointer
766 ** to the string is copied.
767 **
768 ** Also see the Pull instruction.
769 */
770 case OP_Dup: {
771 Mem *pFrom = &pTos[-pOp->p1];
772 assert( pFrom<=pTos && pFrom>=p->aStack );
773 pTos++;
774 memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
775 if( pTos->flags & MEM_Str ){
776 if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
777 pTos->flags &= ~MEM_Dyn;
778 pTos->flags |= MEM_Ephem;
779 }else if( pTos->flags & MEM_Short ){
780 memcpy(pTos->zShort, pFrom->zShort, pTos->n);
781 pTos->z = pTos->zShort;
782 }else if( (pTos->flags & MEM_Static)==0 ){
783 pTos->z = sqliteMallocRaw(pFrom->n);
784 if( sqlite_malloc_failed ) goto no_mem;
785 memcpy(pTos->z, pFrom->z, pFrom->n);
786 pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
787 pTos->flags |= MEM_Dyn;
788 }
789 }
790 break;
791 }
792
793 /* Opcode: Pull P1 * *
794 **
795 ** The P1-th element is removed from its current location on
796 ** the stack and pushed back on top of the stack. The
797 ** top of the stack is element 0, so "Pull 0 0 0" is
798 ** a no-op. "Pull 1 0 0" swaps the top two elements of
799 ** the stack.
800 **
801 ** See also the Dup instruction.
802 */
803 case OP_Pull: {
804 Mem *pFrom = &pTos[-pOp->p1];
805 int i;
806 Mem ts;
807
808 ts = *pFrom;
809 Deephemeralize(pTos);
810 for(i=0; i<pOp->p1; i++, pFrom++){
811 Deephemeralize(&pFrom[1]);
812 *pFrom = pFrom[1];
813 assert( (pFrom->flags & MEM_Ephem)==0 );
814 if( pFrom->flags & MEM_Short ){
815 assert( pFrom->flags & MEM_Str );
816 assert( pFrom->z==pFrom[1].zShort );
817 pFrom->z = pFrom->zShort;
818 }
819 }
820 *pTos = ts;
821 if( pTos->flags & MEM_Short ){
822 assert( pTos->flags & MEM_Str );
823 assert( pTos->z==pTos[-pOp->p1].zShort );
824 pTos->z = pTos->zShort;
825 }
826 break;
827 }
828
829 /* Opcode: Push P1 * *
830 **
831 ** Overwrite the value of the P1-th element down on the
832 ** stack (P1==0 is the top of the stack) with the value
833 ** of the top of the stack. Then pop the top of the stack.
834 */
835 case OP_Push: {
836 Mem *pTo = &pTos[-pOp->p1];
837
838 assert( pTo>=p->aStack );
839 Deephemeralize(pTos);
840 Release(pTo);
841 *pTo = *pTos;
842 if( pTo->flags & MEM_Short ){
843 assert( pTo->z==pTos->zShort );
844 pTo->z = pTo->zShort;
845 }
846 pTos--;
847 break;
848 }
849
850
851 /* Opcode: ColumnName P1 P2 P3
852 **
853 ** P3 becomes the P1-th column name (first is 0). An array of pointers
854 ** to all column names is passed as the 4th parameter to the callback.
855 ** If P2==1 then this is the last column in the result set and thus the
856 ** number of columns in the result set will be P1. There must be at least
857 ** one OP_ColumnName with a P2==1 before invoking OP_Callback and the
858 ** number of columns specified in OP_Callback must one more than the P1
859 ** value of the OP_ColumnName that has P2==1.
860 */
861 case OP_ColumnName: {
862 assert( pOp->p1>=0 && pOp->p1<p->nOp );
863 p->azColName[pOp->p1] = pOp->p3;
864 p->nCallback = 0;
865 if( pOp->p2 ) p->nResColumn = pOp->p1+1;
866 break;
867 }
868
869 /* Opcode: Callback P1 * *
870 **
871 ** Pop P1 values off the stack and form them into an array. Then
872 ** invoke the callback function using the newly formed array as the
873 ** 3rd parameter.
874 */
875 case OP_Callback: {
876 int i;
877 char **azArgv = p->zArgv;
878 Mem *pCol;
879
880 pCol = &pTos[1-pOp->p1];
881 assert( pCol>=p->aStack );
882 for(i=0; i<pOp->p1; i++, pCol++){
883 if( pCol->flags & MEM_Null ){
884 azArgv[i] = 0;
885 }else{
886 Stringify(pCol);
887 azArgv[i] = pCol->z;
888 }
889 }
890 azArgv[i] = 0;
891 p->nCallback++;
892 p->azResColumn = azArgv;
893 assert( p->nResColumn==pOp->p1 );
894 p->popStack = pOp->p1;
895 p->pc = pc + 1;
896 p->pTos = pTos;
897 return SQLITE_ROW;
898 }
899
900 /* Opcode: Concat P1 P2 P3
901 **
902 ** Look at the first P1 elements of the stack. Append them all
903 ** together with the lowest element first. Use P3 as a separator.
904 ** Put the result on the top of the stack. The original P1 elements
905 ** are popped from the stack if P2==0 and retained if P2==1. If
906 ** any element of the stack is NULL, then the result is NULL.
907 **
908 ** If P3 is NULL, then use no separator. When P1==1, this routine
909 ** makes a copy of the top stack element into memory obtained
910 ** from sqliteMalloc().
911 */
912 case OP_Concat: {
913 char *zNew;
914 int nByte;
915 int nField;
916 int i, j;
917 char *zSep;
918 int nSep;
919 Mem *pTerm;
920
921 nField = pOp->p1;
922 zSep = pOp->p3;
923 if( zSep==0 ) zSep = "";
924 nSep = strlen(zSep);
925 assert( &pTos[1-nField] >= p->aStack );
926 nByte = 1 - nSep;
927 pTerm = &pTos[1-nField];
928 for(i=0; i<nField; i++, pTerm++){
929 if( pTerm->flags & MEM_Null ){
930 nByte = -1;
931 break;
932 }else{
933 Stringify(pTerm);
934 nByte += pTerm->n - 1 + nSep;
935 }
936 }
937 if( nByte<0 ){
938 if( pOp->p2==0 ){
939 popStack(&pTos, nField);
940 }
941 pTos++;
942 pTos->flags = MEM_Null;
943 break;
944 }
945 zNew = sqliteMallocRaw( nByte );
946 if( zNew==0 ) goto no_mem;
947 j = 0;
948 pTerm = &pTos[1-nField];
949 for(i=j=0; i<nField; i++, pTerm++){
950 assert( pTerm->flags & MEM_Str );
951 memcpy(&zNew[j], pTerm->z, pTerm->n-1);
952 j += pTerm->n-1;
953 if( nSep>0 && i<nField-1 ){
954 memcpy(&zNew[j], zSep, nSep);
955 j += nSep;
956 }
957 }
958 zNew[j] = 0;
959 if( pOp->p2==0 ){
960 popStack(&pTos, nField);
961 }
962 pTos++;
963 pTos->n = nByte;
964 pTos->flags = MEM_Str|MEM_Dyn;
965 pTos->z = zNew;
966 break;
967 }
968
969 /* Opcode: Add * * *
970 **
971 ** Pop the top two elements from the stack, add them together,
972 ** and push the result back onto the stack. If either element
973 ** is a string then it is converted to a double using the atof()
974 ** function before the addition.
975 ** If either operand is NULL, the result is NULL.
976 */
977 /* Opcode: Multiply * * *
978 **
979 ** Pop the top two elements from the stack, multiply them together,
980 ** and push the result back onto the stack. If either element
981 ** is a string then it is converted to a double using the atof()
982 ** function before the multiplication.
983 ** If either operand is NULL, the result is NULL.
984 */
985 /* Opcode: Subtract * * *
986 **
987 ** Pop the top two elements from the stack, subtract the
988 ** first (what was on top of the stack) from the second (the
989 ** next on stack)
990 ** and push the result back onto the stack. If either element
991 ** is a string then it is converted to a double using the atof()
992 ** function before the subtraction.
993 ** If either operand is NULL, the result is NULL.
994 */
995 /* Opcode: Divide * * *
996 **
997 ** Pop the top two elements from the stack, divide the
998 ** first (what was on top of the stack) from the second (the
999 ** next on stack)
1000 ** and push the result back onto the stack. If either element
1001 ** is a string then it is converted to a double using the atof()
1002 ** function before the division. Division by zero returns NULL.
1003 ** If either operand is NULL, the result is NULL.
1004 */
1005 /* Opcode: Remainder * * *
1006 **
1007 ** Pop the top two elements from the stack, divide the
1008 ** first (what was on top of the stack) from the second (the
1009 ** next on stack)
1010 ** and push the remainder after division onto the stack. If either element
1011 ** is a string then it is converted to a double using the atof()
1012 ** function before the division. Division by zero returns NULL.
1013 ** If either operand is NULL, the result is NULL.
1014 */
1015 case OP_Add:
1016 case OP_Subtract:
1017 case OP_Multiply:
1018 case OP_Divide:
1019 case OP_Remainder: {
1020 Mem *pNos = &pTos[-1];
1021 assert( pNos>=p->aStack );
1022 if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
1023 Release(pTos);
1024 pTos--;
1025 Release(pTos);
1026 pTos->flags = MEM_Null;
1027 }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
1028 int a, b;
1029 a = pTos->i;
1030 b = pNos->i;
1031 switch( pOp->opcode ){
1032 case OP_Add: b += a; break;
1033 case OP_Subtract: b -= a; break;
1034 case OP_Multiply: b *= a; break;
1035 case OP_Divide: {
1036 if( a==0 ) goto divide_by_zero;
1037 b /= a;
1038 break;
1039 }
1040 default: {
1041 if( a==0 ) goto divide_by_zero;
1042 b %= a;
1043 break;
1044 }
1045 }
1046 Release(pTos);
1047 pTos--;
1048 Release(pTos);
1049 pTos->i = b;
1050 pTos->flags = MEM_Int;
1051 }else{
1052 double a, b;
1053 Realify(pTos);
1054 Realify(pNos);
1055 a = pTos->r;
1056 b = pNos->r;
1057 switch( pOp->opcode ){
1058 case OP_Add: b += a; break;
1059 case OP_Subtract: b -= a; break;
1060 case OP_Multiply: b *= a; break;
1061 case OP_Divide: {
1062 if( a==0.0 ) goto divide_by_zero;
1063 b /= a;
1064 break;
1065 }
1066 default: {
1067 int ia = (int)a;
1068 int ib = (int)b;
1069 if( ia==0.0 ) goto divide_by_zero;
1070 b = ib % ia;
1071 break;
1072 }
1073 }
1074 Release(pTos);
1075 pTos--;
1076 Release(pTos);
1077 pTos->r = b;
1078 pTos->flags = MEM_Real;
1079 }
1080 break;
1081
1082 divide_by_zero:
1083 Release(pTos);
1084 pTos--;
1085 Release(pTos);
1086 pTos->flags = MEM_Null;
1087 break;
1088 }
1089
1090 /* Opcode: Function P1 * P3
1091 **
1092 ** Invoke a user function (P3 is a pointer to a Function structure that
1093 ** defines the function) with P1 string arguments taken from the stack.
1094 ** Pop all arguments from the stack and push back the result.
1095 **
1096 ** See also: AggFunc
1097 */
1098 case OP_Function: {
1099 int n, i;
1100 Mem *pArg;
1101 char **azArgv;
1102 sqlite_func ctx;
1103
1104 n = pOp->p1;
1105 pArg = &pTos[1-n];
1106 azArgv = p->zArgv;
1107 for(i=0; i<n; i++, pArg++){
1108 if( pArg->flags & MEM_Null ){
1109 azArgv[i] = 0;
1110 }else{
1111 Stringify(pArg);
1112 azArgv[i] = pArg->z;
1113 }
1114 }
1115 ctx.pFunc = (FuncDef*)pOp->p3;
1116 ctx.s.flags = MEM_Null;
1117 ctx.s.z = 0;
1118 ctx.isError = 0;
1119 ctx.isStep = 0;
1120 if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
1121 (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv);
1122 if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
1123 popStack(&pTos, n);
1124 pTos++;
1125 *pTos = ctx.s;
1126 if( pTos->flags & MEM_Short ){
1127 pTos->z = pTos->zShort;
1128 }
1129 if( ctx.isError ){
1130 sqliteSetString(&p->zErrMsg,
1131 (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
1132 rc = SQLITE_ERROR;
1133 }
1134 break;
1135 }
1136
1137 /* Opcode: BitAnd * * *
1138 **
1139 ** Pop the top two elements from the stack. Convert both elements
1140 ** to integers. Push back onto the stack the bit-wise AND of the
1141 ** two elements.
1142 ** If either operand is NULL, the result is NULL.
1143 */
1144 /* Opcode: BitOr * * *
1145 **
1146 ** Pop the top two elements from the stack. Convert both elements
1147 ** to integers. Push back onto the stack the bit-wise OR of the
1148 ** two elements.
1149 ** If either operand is NULL, the result is NULL.
1150 */
1151 /* Opcode: ShiftLeft * * *
1152 **
1153 ** Pop the top two elements from the stack. Convert both elements
1154 ** to integers. Push back onto the stack the top element shifted
1155 ** left by N bits where N is the second element on the stack.
1156 ** If either operand is NULL, the result is NULL.
1157 */
1158 /* Opcode: ShiftRight * * *
1159 **
1160 ** Pop the top two elements from the stack. Convert both elements
1161 ** to integers. Push back onto the stack the top element shifted
1162 ** right by N bits where N is the second element on the stack.
1163 ** If either operand is NULL, the result is NULL.
1164 */
1165 case OP_BitAnd:
1166 case OP_BitOr:
1167 case OP_ShiftLeft:
1168 case OP_ShiftRight: {
1169 Mem *pNos = &pTos[-1];
1170 int a, b;
1171
1172 assert( pNos>=p->aStack );
1173 if( (pTos->flags | pNos->flags) & MEM_Null ){
1174 popStack(&pTos, 2);
1175 pTos++;
1176 pTos->flags = MEM_Null;
1177 break;
1178 }
1179 Integerify(pTos);
1180 Integerify(pNos);
1181 a = pTos->i;
1182 b = pNos->i;
1183 switch( pOp->opcode ){
1184 case OP_BitAnd: a &= b; break;
1185 case OP_BitOr: a |= b; break;
1186 case OP_ShiftLeft: a <<= b; break;
1187 case OP_ShiftRight: a >>= b; break;
1188 default: /* CANT HAPPEN */ break;
1189 }
1190 assert( (pTos->flags & MEM_Dyn)==0 );
1191 assert( (pNos->flags & MEM_Dyn)==0 );
1192 pTos--;
1193 Release(pTos);
1194 pTos->i = a;
1195 pTos->flags = MEM_Int;
1196 break;
1197 }
1198
1199 /* Opcode: AddImm P1 * *
1200 **
1201 ** Add the value P1 to whatever is on top of the stack. The result
1202 ** is always an integer.
1203 **
1204 ** To force the top of the stack to be an integer, just add 0.
1205 */
1206 case OP_AddImm: {
1207 assert( pTos>=p->aStack );
1208 Integerify(pTos);
1209 pTos->i += pOp->p1;
1210 break;
1211 }
1212
1213 /* Opcode: ForceInt P1 P2 *
1214 **
1215 ** Convert the top of the stack into an integer. If the current top of
1216 ** the stack is not numeric (meaning that is is a NULL or a string that
1217 ** does not look like an integer or floating point number) then pop the
1218 ** stack and jump to P2. If the top of the stack is numeric then
1219 ** convert it into the least integer that is greater than or equal to its
1220 ** current value if P1==0, or to the least integer that is strictly
1221 ** greater than its current value if P1==1.
1222 */
1223 case OP_ForceInt: {
1224 int v;
1225 assert( pTos>=p->aStack );
1226 if( (pTos->flags & (MEM_Int|MEM_Real))==0
1227 && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){
1228 Release(pTos);
1229 pTos--;
1230 pc = pOp->p2 - 1;
1231 break;
1232 }
1233 if( pTos->flags & MEM_Int ){
1234 v = pTos->i + (pOp->p1!=0);
1235 }else{
1236 Realify(pTos);
1237 v = (int)pTos->r;
1238 if( pTos->r>(double)v ) v++;
1239 if( pOp->p1 && pTos->r==(double)v ) v++;
1240 }
1241 Release(pTos);
1242 pTos->i = v;
1243 pTos->flags = MEM_Int;
1244 break;
1245 }
1246
1247 /* Opcode: MustBeInt P1 P2 *
1248 **
1249 ** Force the top of the stack to be an integer. If the top of the
1250 ** stack is not an integer and cannot be converted into an integer
1251 ** with out data loss, then jump immediately to P2, or if P2==0
1252 ** raise an SQLITE_MISMATCH exception.
1253 **
1254 ** If the top of the stack is not an integer and P2 is not zero and
1255 ** P1 is 1, then the stack is popped. In all other cases, the depth
1256 ** of the stack is unchanged.
1257 */
1258 case OP_MustBeInt: {
1259 assert( pTos>=p->aStack );
1260 if( pTos->flags & MEM_Int ){
1261 /* Do nothing */
1262 }else if( pTos->flags & MEM_Real ){
1263 int i = (int)pTos->r;
1264 double r = (double)i;
1265 if( r!=pTos->r ){
1266 goto mismatch;
1267 }
1268 pTos->i = i;
1269 }else if( pTos->flags & MEM_Str ){
1270 int v;
1271 if( !toInt(pTos->z, &v) ){
1272 double r;
1273 if( !sqliteIsNumber(pTos->z) ){
1274 goto mismatch;
1275 }
1276 Realify(pTos);
1277 v = (int)pTos->r;
1278 r = (double)v;
1279 if( r!=pTos->r ){
1280 goto mismatch;
1281 }
1282 }
1283 pTos->i = v;
1284 }else{
1285 goto mismatch;
1286 }
1287 Release(pTos);
1288 pTos->flags = MEM_Int;
1289 break;
1290
1291 mismatch:
1292 if( pOp->p2==0 ){
1293 rc = SQLITE_MISMATCH;
1294 goto abort_due_to_error;
1295 }else{
1296 if( pOp->p1 ) popStack(&pTos, 1);
1297 pc = pOp->p2 - 1;
1298 }
1299 break;
1300 }
1301
1302 /* Opcode: Eq P1 P2 *
1303 **
1304 ** Pop the top two elements from the stack. If they are equal, then
1305 ** jump to instruction P2. Otherwise, continue to the next instruction.
1306 **
1307 ** If either operand is NULL (and thus if the result is unknown) then
1308 ** take the jump if P1 is true.
1309 **
1310 ** If both values are numeric, they are converted to doubles using atof()
1311 ** and compared for equality that way. Otherwise the strcmp() library
1312 ** routine is used for the comparison. For a pure text comparison
1313 ** use OP_StrEq.
1314 **
1315 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
1316 ** stack if the jump would have been taken, or a 0 if not. Push a
1317 ** NULL if either operand was NULL.
1318 */
1319 /* Opcode: Ne P1 P2 *
1320 **
1321 ** Pop the top two elements from the stack. If they are not equal, then
1322 ** jump to instruction P2. Otherwise, continue to the next instruction.
1323 **
1324 ** If either operand is NULL (and thus if the result is unknown) then
1325 ** take the jump if P1 is true.
1326 **
1327 ** If both values are numeric, they are converted to doubles using atof()
1328 ** and compared in that format. Otherwise the strcmp() library
1329 ** routine is used for the comparison. For a pure text comparison
1330 ** use OP_StrNe.
1331 **
1332 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
1333 ** stack if the jump would have been taken, or a 0 if not. Push a
1334 ** NULL if either operand was NULL.
1335 */
1336 /* Opcode: Lt P1 P2 *
1337 **
1338 ** Pop the top two elements from the stack. If second element (the
1339 ** next on stack) is less than the first (the top of stack), then
1340 ** jump to instruction P2. Otherwise, continue to the next instruction.
1341 ** In other words, jump if NOS<TOS.
1342 **
1343 ** If either operand is NULL (and thus if the result is unknown) then
1344 ** take the jump if P1 is true.
1345 **
1346 ** If both values are numeric, they are converted to doubles using atof()
1347 ** and compared in that format. Numeric values are always less than
1348 ** non-numeric values. If both operands are non-numeric, the strcmp() library
1349 ** routine is used for the comparison. For a pure text comparison
1350 ** use OP_StrLt.
1351 **
1352 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
1353 ** stack if the jump would have been taken, or a 0 if not. Push a
1354 ** NULL if either operand was NULL.
1355 */
1356 /* Opcode: Le P1 P2 *
1357 **
1358 ** Pop the top two elements from the stack. If second element (the
1359 ** next on stack) is less than or equal to the first (the top of stack),
1360 ** then jump to instruction P2. In other words, jump if NOS<=TOS.
1361 **
1362 ** If either operand is NULL (and thus if the result is unknown) then
1363 ** take the jump if P1 is true.
1364 **
1365 ** If both values are numeric, they are converted to doubles using atof()
1366 ** and compared in that format. Numeric values are always less than
1367 ** non-numeric values. If both operands are non-numeric, the strcmp() library
1368 ** routine is used for the comparison. For a pure text comparison
1369 ** use OP_StrLe.
1370 **
1371 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
1372 ** stack if the jump would have been taken, or a 0 if not. Push a
1373 ** NULL if either operand was NULL.
1374 */
1375 /* Opcode: Gt P1 P2 *
1376 **
1377 ** Pop the top two elements from the stack. If second element (the
1378 ** next on stack) is greater than the first (the top of stack),
1379 ** then jump to instruction P2. In other words, jump if NOS>TOS.
1380 **
1381 ** If either operand is NULL (and thus if the result is unknown) then
1382 ** take the jump if P1 is true.
1383 **
1384 ** If both values are numeric, they are converted to doubles using atof()
1385 ** and compared in that format. Numeric values are always less than
1386 ** non-numeric values. If both operands are non-numeric, the strcmp() library
1387 ** routine is used for the comparison. For a pure text comparison
1388 ** use OP_StrGt.
1389 **
1390 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
1391 ** stack if the jump would have been taken, or a 0 if not. Push a
1392 ** NULL if either operand was NULL.
1393 */
1394 /* Opcode: Ge P1 P2 *
1395 **
1396 ** Pop the top two elements from the stack. If second element (the next
1397 ** on stack) is greater than or equal to the first (the top of stack),
1398 ** then jump to instruction P2. In other words, jump if NOS>=TOS.
1399 **
1400 ** If either operand is NULL (and thus if the result is unknown) then
1401 ** take the jump if P1 is true.
1402 **
1403 ** If both values are numeric, they are converted to doubles using atof()
1404 ** and compared in that format. Numeric values are always less than
1405 ** non-numeric values. If both operands are non-numeric, the strcmp() library
1406 ** routine is used for the comparison. For a pure text comparison
1407 ** use OP_StrGe.
1408 **
1409 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
1410 ** stack if the jump would have been taken, or a 0 if not. Push a
1411 ** NULL if either operand was NULL.
1412 */
1413 case OP_Eq:
1414 case OP_Ne:
1415 case OP_Lt:
1416 case OP_Le:
1417 case OP_Gt:
1418 case OP_Ge: {
1419 Mem *pNos = &pTos[-1];
1420 int c, v;
1421 int ft, fn;
1422 assert( pNos>=p->aStack );
1423 ft = pTos->flags;
1424 fn = pNos->flags;
1425 if( (ft | fn) & MEM_Null ){
1426 popStack(&pTos, 2);
1427 if( pOp->p2 ){
1428 if( pOp->p1 ) pc = pOp->p2-1;
1429 }else{
1430 pTos++;
1431 pTos->flags = MEM_Null;
1432 }
1433 break;
1434 }else if( (ft & fn & MEM_Int)==MEM_Int ){
1435 c = pNos->i - pTos->i;
1436 }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){
1437 c = v - pTos->i;
1438 }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){
1439 c = pNos->i - v;
1440 }else{
1441 Stringify(pTos);
1442 Stringify(pNos);
1443 c = sqliteCompare(pNos->z, pTos->z);
1444 }
1445 switch( pOp->opcode ){
1446 case OP_Eq: c = c==0; break;
1447 case OP_Ne: c = c!=0; break;
1448 case OP_Lt: c = c<0; break;
1449 case OP_Le: c = c<=0; break;
1450 case OP_Gt: c = c>0; break;
1451 default: c = c>=0; break;
1452 }
1453 popStack(&pTos, 2);
1454 if( pOp->p2 ){
1455 if( c ) pc = pOp->p2-1;
1456 }else{
1457 pTos++;
1458 pTos->i = c;
1459 pTos->flags = MEM_Int;
1460 }
1461 break;
1462 }
1463 /* INSERT NO CODE HERE!
1464 **
1465 ** The opcode numbers are extracted from this source file by doing
1466 **
1467 ** grep '^case OP_' vdbe.c | ... >opcodes.h
1468 **
1469 ** The opcodes are numbered in the order that they appear in this file.
1470 ** But in order for the expression generating code to work right, the
1471 ** string comparison operators that follow must be numbered exactly 6
1472 ** greater than the numeric comparison opcodes above. So no other
1473 ** cases can appear between the two.
1474 */
1475 /* Opcode: StrEq P1 P2 *
1476 **
1477 ** Pop the top two elements from the stack. If they are equal, then
1478 ** jump to instruction P2. Otherwise, continue to the next instruction.
1479 **
1480 ** If either operand is NULL (and thus if the result is unknown) then
1481 ** take the jump if P1 is true.
1482 **
1483 ** The strcmp() library routine is used for the comparison. For a
1484 ** numeric comparison, use OP_Eq.
1485 **
1486 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
1487 ** stack if the jump would have been taken, or a 0 if not. Push a
1488 ** NULL if either operand was NULL.
1489 */
1490 /* Opcode: StrNe P1 P2 *
1491 **
1492 ** Pop the top two elements from the stack. If they are not equal, then
1493 ** jump to instruction P2. Otherwise, continue to the next instruction.
1494 **
1495 ** If either operand is NULL (and thus if the result is unknown) then
1496 ** take the jump if P1 is true.
1497 **
1498 ** The strcmp() library routine is used for the comparison. For a
1499 ** numeric comparison, use OP_Ne.
1500 **
1501 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
1502 ** stack if the jump would have been taken, or a 0 if not. Push a
1503 ** NULL if either operand was NULL.
1504 */
1505 /* Opcode: StrLt P1 P2 *
1506 **
1507 ** Pop the top two elements from the stack. If second element (the
1508 ** next on stack) is less than the first (the top of stack), then
1509 ** jump to instruction P2. Otherwise, continue to the next instruction.
1510 ** In other words, jump if NOS<TOS.
1511 **
1512 ** If either operand is NULL (and thus if the result is unknown) then
1513 ** take the jump if P1 is true.
1514 **
1515 ** The strcmp() library routine is used for the comparison. For a
1516 ** numeric comparison, use OP_Lt.
1517 **
1518 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
1519 ** stack if the jump would have been taken, or a 0 if not. Push a
1520 ** NULL if either operand was NULL.
1521 */
1522 /* Opcode: StrLe P1 P2 *
1523 **
1524 ** Pop the top two elements from the stack. If second element (the
1525 ** next on stack) is less than or equal to the first (the top of stack),
1526 ** then jump to instruction P2. In other words, jump if NOS<=TOS.
1527 **
1528 ** If either operand is NULL (and thus if the result is unknown) then
1529 ** take the jump if P1 is true.
1530 **
1531 ** The strcmp() library routine is used for the comparison. For a
1532 ** numeric comparison, use OP_Le.
1533 **
1534 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
1535 ** stack if the jump would have been taken, or a 0 if not. Push a
1536 ** NULL if either operand was NULL.
1537 */
1538 /* Opcode: StrGt P1 P2 *
1539 **
1540 ** Pop the top two elements from the stack. If second element (the
1541 ** next on stack) is greater than the first (the top of stack),
1542 ** then jump to instruction P2. In other words, jump if NOS>TOS.
1543 **
1544 ** If either operand is NULL (and thus if the result is unknown) then
1545 ** take the jump if P1 is true.
1546 **
1547 ** The strcmp() library routine is used for the comparison. For a
1548 ** numeric comparison, use OP_Gt.
1549 **
1550 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
1551 ** stack if the jump would have been taken, or a 0 if not. Push a
1552 ** NULL if either operand was NULL.
1553 */
1554 /* Opcode: StrGe P1 P2 *
1555 **
1556 ** Pop the top two elements from the stack. If second element (the next
1557 ** on stack) is greater than or equal to the first (the top of stack),
1558 ** then jump to instruction P2. In other words, jump if NOS>=TOS.
1559 **
1560 ** If either operand is NULL (and thus if the result is unknown) then
1561 ** take the jump if P1 is true.
1562 **
1563 ** The strcmp() library routine is used for the comparison. For a
1564 ** numeric comparison, use OP_Ge.
1565 **
1566 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
1567 ** stack if the jump would have been taken, or a 0 if not. Push a
1568 ** NULL if either operand was NULL.
1569 */
1570 case OP_StrEq:
1571 case OP_StrNe:
1572 case OP_StrLt:
1573 case OP_StrLe:
1574 case OP_StrGt:
1575 case OP_StrGe: {
1576 Mem *pNos = &pTos[-1];
1577 int c;
1578 assert( pNos>=p->aStack );
1579 if( (pNos->flags | pTos->flags) & MEM_Null ){
1580 popStack(&pTos, 2);
1581 if( pOp->p2 ){
1582 if( pOp->p1 ) pc = pOp->p2-1;
1583 }else{
1584 pTos++;
1585 pTos->flags = MEM_Null;
1586 }
1587 break;
1588 }else{
1589 Stringify(pTos);
1590 Stringify(pNos);
1591 c = strcmp(pNos->z, pTos->z);
1592 }
1593 /* The asserts on each case of the following switch are there to verify
1594 ** that string comparison opcodes are always exactly 6 greater than the
1595 ** corresponding numeric comparison opcodes. The code generator depends
1596 ** on this fact.
1597 */
1598 switch( pOp->opcode ){
1599 case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break;
1600 case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break;
1601 case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break;
1602 case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break;
1603 case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break;
1604 default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break;
1605 }
1606 popStack(&pTos, 2);
1607 if( pOp->p2 ){
1608 if( c ) pc = pOp->p2-1;
1609 }else{
1610 pTos++;
1611 pTos->flags = MEM_Int;
1612 pTos->i = c;
1613 }
1614 break;
1615 }
1616
1617 /* Opcode: And * * *
1618 **
1619 ** Pop two values off the stack. Take the logical AND of the
1620 ** two values and push the resulting boolean value back onto the
1621 ** stack.
1622 */
1623 /* Opcode: Or * * *
1624 **
1625 ** Pop two values off the stack. Take the logical OR of the
1626 ** two values and push the resulting boolean value back onto the
1627 ** stack.
1628 */
1629 case OP_And:
1630 case OP_Or: {
1631 Mem *pNos = &pTos[-1];
1632 int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
1633
1634 assert( pNos>=p->aStack );
1635 if( pTos->flags & MEM_Null ){
1636 v1 = 2;
1637 }else{
1638 Integerify(pTos);
1639 v1 = pTos->i==0;
1640 }
1641 if( pNos->flags & MEM_Null ){
1642 v2 = 2;
1643 }else{
1644 Integerify(pNos);
1645 v2 = pNos->i==0;
1646 }
1647 if( pOp->opcode==OP_And ){
1648 static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
1649 v1 = and_logic[v1*3+v2];
1650 }else{
1651 static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
1652 v1 = or_logic[v1*3+v2];
1653 }
1654 popStack(&pTos, 2);
1655 pTos++;
1656 if( v1==2 ){
1657 pTos->flags = MEM_Null;
1658 }else{
1659 pTos->i = v1==0;
1660 pTos->flags = MEM_Int;
1661 }
1662 break;
1663 }
1664
1665 /* Opcode: Negative * * *
1666 **
1667 ** Treat the top of the stack as a numeric quantity. Replace it
1668 ** with its additive inverse. If the top of the stack is NULL
1669 ** its value is unchanged.
1670 */
1671 /* Opcode: AbsValue * * *
1672 **
1673 ** Treat the top of the stack as a numeric quantity. Replace it
1674 ** with its absolute value. If the top of the stack is NULL
1675 ** its value is unchanged.
1676 */
1677 case OP_Negative:
1678 case OP_AbsValue: {
1679 assert( pTos>=p->aStack );
1680 if( pTos->flags & MEM_Real ){
1681 Release(pTos);
1682 if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
1683 pTos->r = -pTos->r;
1684 }
1685 pTos->flags = MEM_Real;
1686 }else if( pTos->flags & MEM_Int ){
1687 Release(pTos);
1688 if( pOp->opcode==OP_Negative || pTos->i<0 ){
1689 pTos->i = -pTos->i;
1690 }
1691 pTos->flags = MEM_Int;
1692 }else if( pTos->flags & MEM_Null ){
1693 /* Do nothing */
1694 }else{
1695 Realify(pTos);
1696 Release(pTos);
1697 if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
1698 pTos->r = -pTos->r;
1699 }
1700 pTos->flags = MEM_Real;
1701 }
1702 break;
1703 }
1704
1705 /* Opcode: Not * * *
1706 **
1707 ** Interpret the top of the stack as a boolean value. Replace it
1708 ** with its complement. If the top of the stack is NULL its value
1709 ** is unchanged.
1710 */
1711 case OP_Not: {
1712 assert( pTos>=p->aStack );
1713 if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
1714 Integerify(pTos);
1715 Release(pTos);
1716 pTos->i = !pTos->i;
1717 pTos->flags = MEM_Int;
1718 break;
1719 }
1720
1721 /* Opcode: BitNot * * *
1722 **
1723 ** Interpret the top of the stack as an value. Replace it
1724 ** with its ones-complement. If the top of the stack is NULL its
1725 ** value is unchanged.
1726 */
1727 case OP_BitNot: {
1728 assert( pTos>=p->aStack );
1729 if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
1730 Integerify(pTos);
1731 Release(pTos);
1732 pTos->i = ~pTos->i;
1733 pTos->flags = MEM_Int;
1734 break;
1735 }
1736
1737 /* Opcode: Noop * * *
1738 **
1739 ** Do nothing. This instruction is often useful as a jump
1740 ** destination.
1741 */
1742 case OP_Noop: {
1743 break;
1744 }
1745
1746 /* Opcode: If P1 P2 *
1747 **
1748 ** Pop a single boolean from the stack. If the boolean popped is
1749 ** true, then jump to p2. Otherwise continue to the next instruction.
1750 ** An integer is false if zero and true otherwise. A string is
1751 ** false if it has zero length and true otherwise.
1752 **
1753 ** If the value popped of the stack is NULL, then take the jump if P1
1754 ** is true and fall through if P1 is false.
1755 */
1756 /* Opcode: IfNot P1 P2 *
1757 **
1758 ** Pop a single boolean from the stack. If the boolean popped is
1759 ** false, then jump to p2. Otherwise continue to the next instruction.
1760 ** An integer is false if zero and true otherwise. A string is
1761 ** false if it has zero length and true otherwise.
1762 **
1763 ** If the value popped of the stack is NULL, then take the jump if P1
1764 ** is true and fall through if P1 is false.
1765 */
1766 case OP_If:
1767 case OP_IfNot: {
1768 int c;
1769 assert( pTos>=p->aStack );
1770 if( pTos->flags & MEM_Null ){
1771 c = pOp->p1;
1772 }else{
1773 Integerify(pTos);
1774 c = pTos->i;
1775 if( pOp->opcode==OP_IfNot ) c = !c;
1776 }
1777 assert( (pTos->flags & MEM_Dyn)==0 );
1778 pTos--;
1779 if( c ) pc = pOp->p2-1;
1780 break;
1781 }
1782
1783 /* Opcode: IsNull P1 P2 *
1784 **
1785 ** If any of the top abs(P1) values on the stack are NULL, then jump
1786 ** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack
1787 ** unchanged.
1788 */
1789 case OP_IsNull: {
1790 int i, cnt;
1791 Mem *pTerm;
1792 cnt = pOp->p1;
1793 if( cnt<0 ) cnt = -cnt;
1794 pTerm = &pTos[1-cnt];
1795 assert( pTerm>=p->aStack );
1796 for(i=0; i<cnt; i++, pTerm++){
1797 if( pTerm->flags & MEM_Null ){
1798 pc = pOp->p2-1;
1799 break;
1800 }
1801 }
1802 if( pOp->p1>0 ) popStack(&pTos, cnt);
1803 break;
1804 }
1805
1806 /* Opcode: NotNull P1 P2 *
1807 **
1808 ** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the
1809 ** stack if P1 times if P1 is greater than zero. If P1 is less than
1810 ** zero then leave the stack unchanged.
1811 */
1812 case OP_NotNull: {
1813 int i, cnt;
1814 cnt = pOp->p1;
1815 if( cnt<0 ) cnt = -cnt;
1816 assert( &pTos[1-cnt] >= p->aStack );
1817 for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
1818 if( i>=cnt ) pc = pOp->p2-1;
1819 if( pOp->p1>0 ) popStack(&pTos, cnt);
1820 break;
1821 }
1822
1823 /* Opcode: MakeRecord P1 P2 *
1824 **
1825 ** Convert the top P1 entries of the stack into a single entry
1826 ** suitable for use as a data record in a database table. The
1827 ** details of the format are irrelevant as long as the OP_Column
1828 ** opcode can decode the record later. Refer to source code
1829 ** comments for the details of the record format.
1830 **
1831 ** If P2 is true (non-zero) and one or more of the P1 entries
1832 ** that go into building the record is NULL, then add some extra
1833 ** bytes to the record to make it distinct for other entries created
1834 ** during the same run of the VDBE. The extra bytes added are a
1835 ** counter that is reset with each run of the VDBE, so records
1836 ** created this way will not necessarily be distinct across runs.
1837 ** But they should be distinct for transient tables (created using
1838 ** OP_OpenTemp) which is what they are intended for.
1839 **
1840 ** (Later:) The P2==1 option was intended to make NULLs distinct
1841 ** for the UNION operator. But I have since discovered that NULLs
1842 ** are indistinct for UNION. So this option is never used.
1843 */
1844 case OP_MakeRecord: {
1845 char *zNewRecord;
1846 int nByte;
1847 int nField;
1848 int i, j;
1849 int idxWidth;
1850 u32 addr;
1851 Mem *pRec;
1852 int addUnique = 0; /* True to cause bytes to be added to make the
1853 ** generated record distinct */
1854 char zTemp[NBFS]; /* Temp space for small records */
1855
1856 /* Assuming the record contains N fields, the record format looks
1857 ** like this:
1858 **
1859 ** -------------------------------------------------------------------
1860 ** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
1861 ** -------------------------------------------------------------------
1862 **
1863 ** All data fields are converted to strings before being stored and
1864 ** are stored with their null terminators. NULL entries omit the
1865 ** null terminator. Thus an empty string uses 1 byte and a NULL uses
1866 ** zero bytes. Data(0) is taken from the lowest element of the stack
1867 ** and data(N-1) is the top of the stack.
1868 **
1869 ** Each of the idx() entries is either 1, 2, or 3 bytes depending on
1870 ** how big the total record is. Idx(0) contains the offset to the start
1871 ** of data(0). Idx(k) contains the offset to the start of data(k).
1872 ** Idx(N) contains the total number of bytes in the record.
1873 */
1874 nField = pOp->p1;
1875 pRec = &pTos[1-nField];
1876 assert( pRec>=p->aStack );
1877 nByte = 0;
1878 for(i=0; i<nField; i++, pRec++){
1879 if( pRec->flags & MEM_Null ){
1880 addUnique = pOp->p2;
1881 }else{
1882 Stringify(pRec);
1883 nByte += pRec->n;
1884 }
1885 }
1886 if( addUnique ) nByte += sizeof(p->uniqueCnt);
1887 if( nByte + nField + 1 < 256 ){
1888 idxWidth = 1;
1889 }else if( nByte + 2*nField + 2 < 65536 ){
1890 idxWidth = 2;
1891 }else{
1892 idxWidth = 3;
1893 }
1894 nByte += idxWidth*(nField + 1);
1895 if( nByte>MAX_BYTES_PER_ROW ){
1896 rc = SQLITE_TOOBIG;
1897 goto abort_due_to_error;
1898 }
1899 if( nByte<=NBFS ){
1900 zNewRecord = zTemp;
1901 }else{
1902 zNewRecord = sqliteMallocRaw( nByte );
1903 if( zNewRecord==0 ) goto no_mem;
1904 }
1905 j = 0;
1906 addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
1907 for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
1908 zNewRecord[j++] = addr & 0xff;
1909 if( idxWidth>1 ){
1910 zNewRecord[j++] = (addr>>8)&0xff;
1911 if( idxWidth>2 ){
1912 zNewRecord[j++] = (addr>>16)&0xff;
1913 }
1914 }
1915 if( (pRec->flags & MEM_Null)==0 ){
1916 addr += pRec->n;
1917 }
1918 }
1919 zNewRecord[j++] = addr & 0xff;
1920 if( idxWidth>1 ){
1921 zNewRecord[j++] = (addr>>8)&0xff;
1922 if( idxWidth>2 ){
1923 zNewRecord[j++] = (addr>>16)&0xff;
1924 }
1925 }
1926 if( addUnique ){
1927 memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
1928 p->uniqueCnt++;
1929 j += sizeof(p->uniqueCnt);
1930 }
1931 for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
1932 if( (pRec->flags & MEM_Null)==0 ){
1933 memcpy(&zNewRecord[j], pRec->z, pRec->n);
1934 j += pRec->n;
1935 }
1936 }
1937 popStack(&pTos, nField);
1938 pTos++;
1939 pTos->n = nByte;
1940 if( nByte<=NBFS ){
1941 assert( zNewRecord==zTemp );
1942 memcpy(pTos->zShort, zTemp, nByte);
1943 pTos->z = pTos->zShort;
1944 pTos->flags = MEM_Str | MEM_Short;
1945 }else{
1946 assert( zNewRecord!=zTemp );
1947 pTos->z = zNewRecord;
1948 pTos->flags = MEM_Str | MEM_Dyn;
1949 }
1950 break;
1951 }
1952
1953 /* Opcode: MakeKey P1 P2 P3
1954 **
1955 ** Convert the top P1 entries of the stack into a single entry suitable
1956 ** for use as the key in an index. The top P1 records are
1957 ** converted to strings and merged. The null-terminators
1958 ** are retained and used as separators.
1959 ** The lowest entry in the stack is the first field and the top of the
1960 ** stack becomes the last.
1961 **
1962 ** If P2 is not zero, then the original entries remain on the stack
1963 ** and the new key is pushed on top. If P2 is zero, the original
1964 ** data is popped off the stack first then the new key is pushed
1965 ** back in its place.
1966 **
1967 ** P3 is a string that is P1 characters long. Each character is either
1968 ** an 'n' or a 't' to indicates if the argument should be intepreted as
1969 ** numeric or text type. The first character of P3 corresponds to the
1970 ** lowest element on the stack. If P3 is NULL then all arguments are
1971 ** assumed to be of the numeric type.
1972 **
1973 ** The type makes a difference in that text-type fields may not be
1974 ** introduced by 'b' (as described in the next paragraph). The
1975 ** first character of a text-type field must be either 'a' (if it is NULL)
1976 ** or 'c'. Numeric fields will be introduced by 'b' if their content
1977 ** looks like a well-formed number. Otherwise the 'a' or 'c' will be
1978 ** used.
1979 **
1980 ** The key is a concatenation of fields. Each field is terminated by
1981 ** a single 0x00 character. A NULL field is introduced by an 'a' and
1982 ** is followed immediately by its 0x00 terminator. A numeric field is
1983 ** introduced by a single character 'b' and is followed by a sequence
1984 ** of characters that represent the number such that a comparison of
1985 ** the character string using memcpy() sorts the numbers in numerical
1986 ** order. The character strings for numbers are generated using the
1987 ** sqliteRealToSortable() function. A text field is introduced by a
1988 ** 'c' character and is followed by the exact text of the field. The
1989 ** use of an 'a', 'b', or 'c' character at the beginning of each field
1990 ** guarantees that NULLs sort before numbers and that numbers sort
1991 ** before text. 0x00 characters do not occur except as separators
1992 ** between fields.
1993 **
1994 ** See also: MakeIdxKey, SortMakeKey
1995 */
1996 /* Opcode: MakeIdxKey P1 P2 P3
1997 **
1998 ** Convert the top P1 entries of the stack into a single entry suitable
1999 ** for use as the key in an index. In addition, take one additional integer
2000 ** off of the stack, treat that integer as a four-byte record number, and
2001 ** append the four bytes to the key. Thus a total of P1+1 entries are
2002 ** popped from the stack for this instruction and a single entry is pushed
2003 ** back. The first P1 entries that are popped are strings and the last
2004 ** entry (the lowest on the stack) is an integer record number.
2005 **
2006 ** The converstion of the first P1 string entries occurs just like in
2007 ** MakeKey. Each entry is separated from the others by a null.
2008 ** The entire concatenation is null-terminated. The lowest entry
2009 ** in the stack is the first field and the top of the stack becomes the
2010 ** last.
2011 **
2012 ** If P2 is not zero and one or more of the P1 entries that go into the
2013 ** generated key is NULL, then jump to P2 after the new key has been
2014 ** pushed on the stack. In other words, jump to P2 if the key is
2015 ** guaranteed to be unique. This jump can be used to skip a subsequent
2016 ** uniqueness test.
2017 **
2018 ** P3 is a string that is P1 characters long. Each character is either
2019 ** an 'n' or a 't' to indicates if the argument should be numeric or
2020 ** text. The first character corresponds to the lowest element on the
2021 ** stack. If P3 is null then all arguments are assumed to be numeric.
2022 **
2023 ** See also: MakeKey, SortMakeKey
2024 */
2025 case OP_MakeIdxKey:
2026 case OP_MakeKey: {
2027 char *zNewKey;
2028 int nByte;
2029 int nField;
2030 int addRowid;
2031 int i, j;
2032 int containsNull = 0;
2033 Mem *pRec;
2034 char zTemp[NBFS];
2035
2036 addRowid = pOp->opcode==OP_MakeIdxKey;
2037 nField = pOp->p1;
2038 pRec = &pTos[1-nField];
2039 assert( pRec>=p->aStack );
2040 nByte = 0;
2041 for(j=0, i=0; i<nField; i++, j++, pRec++){
2042 int flags = pRec->flags;
2043 int len;
2044 char *z;
2045 if( flags & MEM_Null ){
2046 nByte += 2;
2047 containsNull = 1;
2048 }else if( pOp->p3 && pOp->p3[j]=='t' ){
2049 Stringify(pRec);
2050 pRec->flags &= ~(MEM_Int|MEM_Real);
2051 nByte += pRec->n+1;
2052 }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){
2053 if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){
2054 pRec->r = pRec->i;
2055 }else if( (flags & (MEM_Real|MEM_Int))==0 ){
2056 pRec->r = sqliteAtoF(pRec->z, 0);
2057 }
2058 Release(pRec);
2059 z = pRec->zShort;
2060 sqliteRealToSortable(pRec->r, z);
2061 len = strlen(z);
2062 pRec->z = 0;
2063 pRec->flags = MEM_Real;
2064 pRec->n = len+1;
2065 nByte += pRec->n+1;
2066 }else{
2067 nByte += pRec->n+1;
2068 }
2069 }
2070 if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
2071 rc = SQLITE_TOOBIG;
2072 goto abort_due_to_error;
2073 }
2074 if( addRowid ) nByte += sizeof(u32);
2075 if( nByte<=NBFS ){
2076 zNewKey = zTemp;
2077 }else{
2078 zNewKey = sqliteMallocRaw( nByte );
2079 if( zNewKey==0 ) goto no_mem;
2080 }
2081 j = 0;
2082 pRec = &pTos[1-nField];
2083 for(i=0; i<nField; i++, pRec++){
2084 if( pRec->flags & MEM_Null ){
2085 zNewKey[j++] = 'a';
2086 zNewKey[j++] = 0;
2087 }else if( pRec->flags==MEM_Real ){
2088 zNewKey[j++] = 'b';
2089 memcpy(&zNewKey[j], pRec->zShort, pRec->n);
2090 j += pRec->n;
2091 }else{
2092 assert( pRec->flags & MEM_Str );
2093 zNewKey[j++] = 'c';
2094 memcpy(&zNewKey[j], pRec->z, pRec->n);
2095 j += pRec->n;
2096 }
2097 }
2098 if( addRowid ){
2099 u32 iKey;
2100 pRec = &pTos[-nField];
2101 assert( pRec>=p->aStack );
2102 Integerify(pRec);
2103 iKey = intToKey(pRec->i);
2104 memcpy(&zNewKey[j], &iKey, sizeof(u32));
2105 popStack(&pTos, nField+1);
2106 if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
2107 }else{
2108 if( pOp->p2==0 ) popStack(&pTos, nField);
2109 }
2110 pTos++;
2111 pTos->n = nByte;
2112 if( nByte<=NBFS ){
2113 assert( zNewKey==zTemp );
2114 pTos->z = pTos->zShort;
2115 memcpy(pTos->zShort, zTemp, nByte);
2116 pTos->flags = MEM_Str | MEM_Short;
2117 }else{
2118 pTos->z = zNewKey;
2119 pTos->flags = MEM_Str | MEM_Dyn;
2120 }
2121 break;
2122 }
2123
2124 /* Opcode: IncrKey * * *
2125 **
2126 ** The top of the stack should contain an index key generated by
2127 ** The MakeKey opcode. This routine increases the least significant
2128 ** byte of that key by one. This is used so that the MoveTo opcode
2129 ** will move to the first entry greater than the key rather than to
2130 ** the key itself.
2131 */
2132 case OP_IncrKey: {
2133 assert( pTos>=p->aStack );
2134 /* The IncrKey opcode is only applied to keys generated by
2135 ** MakeKey or MakeIdxKey and the results of those operands
2136 ** are always dynamic strings or zShort[] strings. So we
2137 ** are always free to modify the string in place.
2138 */
2139 assert( pTos->flags & (MEM_Dyn|MEM_Short) );
2140 pTos->z[pTos->n-1]++;
2141 break;
2142 }
2143
2144 /* Opcode: Checkpoint P1 * *
2145 **
2146 ** Begin a checkpoint. A checkpoint is the beginning of a operation that
2147 ** is part of a larger transaction but which might need to be rolled back
2148 ** itself without effecting the containing transaction. A checkpoint will
2149 ** be automatically committed or rollback when the VDBE halts.
2150 **
2151 ** The checkpoint is begun on the database file with index P1. The main
2152 ** database file has an index of 0 and the file used for temporary tables
2153 ** has an index of 1.
2154 */
2155 case OP_Checkpoint: {
2156 int i = pOp->p1;
2157 if( i>=0 && i<db->nDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){
2158 rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt);
2159 if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2;
2160 }
2161 break;
2162 }
2163
2164 /* Opcode: Transaction P1 * *
2165 **
2166 ** Begin a transaction. The transaction ends when a Commit or Rollback
2167 ** opcode is encountered. Depending on the ON CONFLICT setting, the
2168 ** transaction might also be rolled back if an error is encountered.
2169 **
2170 ** P1 is the index of the database file on which the transaction is
2171 ** started. Index 0 is the main database file and index 1 is the
2172 ** file used for temporary tables.
2173 **
2174 ** A write lock is obtained on the database file when a transaction is
2175 ** started. No other process can read or write the file while the
2176 ** transaction is underway. Starting a transaction also creates a
2177 ** rollback journal. A transaction must be started before any changes
2178 ** can be made to the database.
2179 */
2180 case OP_Transaction: {
2181 int busy = 1;
2182 int i = pOp->p1;
2183 assert( i>=0 && i<db->nDb );
2184 if( db->aDb[i].inTrans ) break;
2185 while( db->aDb[i].pBt!=0 && busy ){
2186 rc = sqliteBtreeBeginTrans(db->aDb[i].pBt);
2187 switch( rc ){
2188 case SQLITE_BUSY: {
2189 if( db->xBusyCallback==0 ){
2190 p->pc = pc;
2191 p->undoTransOnError = 1;
2192 p->rc = SQLITE_BUSY;
2193 p->pTos = pTos;
2194 return SQLITE_BUSY;
2195 }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
2196 sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
2197 busy = 0;
2198 }
2199 break;
2200 }
2201 case SQLITE_READONLY: {
2202 rc = SQLITE_OK;
2203 /* Fall thru into the next case */
2204 }
2205 case SQLITE_OK: {
2206 p->inTempTrans = 0;
2207 busy = 0;
2208 break;
2209 }
2210 default: {
2211 goto abort_due_to_error;
2212 }
2213 }
2214 }
2215 db->aDb[i].inTrans = 1;
2216 p->undoTransOnError = 1;
2217 break;
2218 }
2219
2220 /* Opcode: Commit * * *
2221 **
2222 ** Cause all modifications to the database that have been made since the
2223 ** last Transaction to actually take effect. No additional modifications
2224 ** are allowed until another transaction is started. The Commit instruction
2225 ** deletes the journal file and releases the write lock on the database.
2226 ** A read lock continues to be held if there are still cursors open.
2227 */
2228 case OP_Commit: {
2229 int i;
2230 if( db->xCommitCallback!=0 ){
2231 if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
2232 if( db->xCommitCallback(db->pCommitArg)!=0 ){
2233 rc = SQLITE_CONSTRAINT;
2234 }
2235 if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
2236 }
2237 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2238 if( db->aDb[i].inTrans ){
2239 rc = sqliteBtreeCommit(db->aDb[i].pBt);
2240 db->aDb[i].inTrans = 0;
2241 }
2242 }
2243 if( rc==SQLITE_OK ){
2244 sqliteCommitInternalChanges(db);
2245 }else{
2246 sqliteRollbackAll(db);
2247 }
2248 break;
2249 }
2250
2251 /* Opcode: Rollback P1 * *
2252 **
2253 ** Cause all modifications to the database that have been made since the
2254 ** last Transaction to be undone. The database is restored to its state
2255 ** before the Transaction opcode was executed. No additional modifications
2256 ** are allowed until another transaction is started.
2257 **
2258 ** P1 is the index of the database file that is committed. An index of 0
2259 ** is used for the main database and an index of 1 is used for the file used
2260 ** to hold temporary tables.
2261 **
2262 ** This instruction automatically closes all cursors and releases both
2263 ** the read and write locks on the indicated database.
2264 */
2265 case OP_Rollback: {
2266 sqliteRollbackAll(db);
2267 break;
2268 }
2269
2270 /* Opcode: ReadCookie P1 P2 *
2271 **
2272 ** Read cookie number P2 from database P1 and push it onto the stack.
2273 ** P2==0 is the schema version. P2==1 is the database format.
2274 ** P2==2 is the recommended pager cache size, and so forth. P1==0 is
2275 ** the main database file and P1==1 is the database file used to store
2276 ** temporary tables.
2277 **
2278 ** There must be a read-lock on the database (either a transaction
2279 ** must be started or there must be an open cursor) before
2280 ** executing this instruction.
2281 */
2282 case OP_ReadCookie: {
2283 int aMeta[SQLITE_N_BTREE_META];
2284 assert( pOp->p2<SQLITE_N_BTREE_META );
2285 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2286 assert( db->aDb[pOp->p1].pBt!=0 );
2287 rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
2288 pTos++;
2289 pTos->i = aMeta[1+pOp->p2];
2290 pTos->flags = MEM_Int;
2291 break;
2292 }
2293
2294 /* Opcode: SetCookie P1 P2 *
2295 **
2296 ** Write the top of the stack into cookie number P2 of database P1.
2297 ** P2==0 is the schema version. P2==1 is the database format.
2298 ** P2==2 is the recommended pager cache size, and so forth. P1==0 is
2299 ** the main database file and P1==1 is the database file used to store
2300 ** temporary tables.
2301 **
2302 ** A transaction must be started before executing this opcode.
2303 */
2304 case OP_SetCookie: {
2305 int aMeta[SQLITE_N_BTREE_META];
2306 assert( pOp->p2<SQLITE_N_BTREE_META );
2307 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2308 assert( db->aDb[pOp->p1].pBt!=0 );
2309 assert( pTos>=p->aStack );
2310 Integerify(pTos)
2311 rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
2312 if( rc==SQLITE_OK ){
2313 aMeta[1+pOp->p2] = pTos->i;
2314 rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta);
2315 }
2316 Release(pTos);
2317 pTos--;
2318 break;
2319 }
2320
2321 /* Opcode: VerifyCookie P1 P2 *
2322 **
2323 ** Check the value of global database parameter number 0 (the
2324 ** schema version) and make sure it is equal to P2.
2325 ** P1 is the database number which is 0 for the main database file
2326 ** and 1 for the file holding temporary tables and some higher number
2327 ** for auxiliary databases.
2328 **
2329 ** The cookie changes its value whenever the database schema changes.
2330 ** This operation is used to detect when that the cookie has changed
2331 ** and that the current process needs to reread the schema.
2332 **
2333 ** Either a transaction needs to have been started or an OP_Open needs
2334 ** to be executed (to establish a read lock) before this opcode is
2335 ** invoked.
2336 */
2337 case OP_VerifyCookie: {
2338 int aMeta[SQLITE_N_BTREE_META];
2339 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2340 rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
2341 if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){
2342 sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0);
2343 rc = SQLITE_SCHEMA;
2344 }
2345 break;
2346 }
2347
2348 /* Opcode: OpenRead P1 P2 P3
2349 **
2350 ** Open a read-only cursor for the database table whose root page is
2351 ** P2 in a database file. The database file is determined by an
2352 ** integer from the top of the stack. 0 means the main database and
2353 ** 1 means the database used for temporary tables. Give the new
2354 ** cursor an identifier of P1. The P1 values need not be contiguous
2355 ** but all P1 values should be small integers. It is an error for
2356 ** P1 to be negative.
2357 **
2358 ** If P2==0 then take the root page number from the next of the stack.
2359 **
2360 ** There will be a read lock on the database whenever there is an
2361 ** open cursor. If the database was unlocked prior to this instruction
2362 ** then a read lock is acquired as part of this instruction. A read
2363 ** lock allows other processes to read the database but prohibits
2364 ** any other process from modifying the database. The read lock is
2365 ** released when all cursors are closed. If this instruction attempts
2366 ** to get a read lock but fails, the script terminates with an
2367 ** SQLITE_BUSY error code.
2368 **
2369 ** The P3 value is the name of the table or index being opened.
2370 ** The P3 value is not actually used by this opcode and may be
2371 ** omitted. But the code generator usually inserts the index or
2372 ** table name into P3 to make the code easier to read.
2373 **
2374 ** See also OpenWrite.
2375 */
2376 /* Opcode: OpenWrite P1 P2 P3
2377 **
2378 ** Open a read/write cursor named P1 on the table or index whose root
2379 ** page is P2. If P2==0 then take the root page number from the stack.
2380 **
2381 ** The P3 value is the name of the table or index being opened.
2382 ** The P3 value is not actually used by this opcode and may be
2383 ** omitted. But the code generator usually inserts the index or
2384 ** table name into P3 to make the code easier to read.
2385 **
2386 ** This instruction works just like OpenRead except that it opens the cursor
2387 ** in read/write mode. For a given table, there can be one or more read-only
2388 ** cursors or a single read/write cursor but not both.
2389 **
2390 ** See also OpenRead.
2391 */
2392 case OP_OpenRead:
2393 case OP_OpenWrite: {
2394 int busy = 0;
2395 int i = pOp->p1;
2396 int p2 = pOp->p2;
2397 int wrFlag;
2398 Btree *pX;
2399 int iDb;
2400
2401 assert( pTos>=p->aStack );
2402 Integerify(pTos);
2403 iDb = pTos->i;
2404 pTos--;
2405 assert( iDb>=0 && iDb<db->nDb );
2406 pX = db->aDb[iDb].pBt;
2407 assert( pX!=0 );
2408 wrFlag = pOp->opcode==OP_OpenWrite;
2409 if( p2<=0 ){
2410 assert( pTos>=p->aStack );
2411 Integerify(pTos);
2412 p2 = pTos->i;
2413 pTos--;
2414 if( p2<2 ){
2415 sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0);
2416 rc = SQLITE_INTERNAL;
2417 break;
2418 }
2419 }
2420 assert( i>=0 );
2421 if( expandCursorArraySize(p, i) ) goto no_mem;
2422 sqliteVdbeCleanupCursor(&p->aCsr[i]);
2423 memset(&p->aCsr[i], 0, sizeof(Cursor));
2424 p->aCsr[i].nullRow = 1;
2425 if( pX==0 ) break;
2426 do{
2427 rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
2428 switch( rc ){
2429 case SQLITE_BUSY: {
2430 if( db->xBusyCallback==0 ){
2431 p->pc = pc;
2432 p->rc = SQLITE_BUSY;
2433 p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
2434 return SQLITE_BUSY;
2435 }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
2436 sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
2437 busy = 0;
2438 }
2439 break;
2440 }
2441 case SQLITE_OK: {
2442 busy = 0;
2443 break;
2444 }
2445 default: {
2446 goto abort_due_to_error;
2447 }
2448 }
2449 }while( busy );
2450 break;
2451 }
2452
2453 /* Opcode: OpenTemp P1 P2 *
2454 **
2455 ** Open a new cursor to a transient table.
2456 ** The transient cursor is always opened read/write even if
2457 ** the main database is read-only. The transient table is deleted
2458 ** automatically when the cursor is closed.
2459 **
2460 ** The cursor points to a BTree table if P2==0 and to a BTree index
2461 ** if P2==1. A BTree table must have an integer key and can have arbitrary
2462 ** data. A BTree index has no data but can have an arbitrary key.
2463 **
2464 ** This opcode is used for tables that exist for the duration of a single
2465 ** SQL statement only. Tables created using CREATE TEMPORARY TABLE
2466 ** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the
2467 ** context of this opcode means for the duration of a single SQL statement
2468 ** whereas "Temporary" in the context of CREATE TABLE means for the duration
2469 ** of the connection to the database. Same word; different meanings.
2470 */
2471 case OP_OpenTemp: {
2472 int i = pOp->p1;
2473 Cursor *pCx;
2474 assert( i>=0 );
2475 if( expandCursorArraySize(p, i) ) goto no_mem;
2476 pCx = &p->aCsr[i];
2477 sqliteVdbeCleanupCursor(pCx);
2478 memset(pCx, 0, sizeof(*pCx));
2479 pCx->nullRow = 1;
2480 rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
2481
2482 if( rc==SQLITE_OK ){
2483 rc = sqliteBtreeBeginTrans(pCx->pBt);
2484 }
2485 if( rc==SQLITE_OK ){
2486 if( pOp->p2 ){
2487 int pgno;
2488 rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
2489 if( rc==SQLITE_OK ){
2490 rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
2491 }
2492 }else{
2493 rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
2494 }
2495 }
2496 break;
2497 }
2498
2499 /* Opcode: OpenPseudo P1 * *
2500 **
2501 ** Open a new cursor that points to a fake table that contains a single
2502 ** row of data. Any attempt to write a second row of data causes the
2503 ** first row to be deleted. All data is deleted when the cursor is
2504 ** closed.
2505 **
2506 ** A pseudo-table created by this opcode is useful for holding the
2507 ** NEW or OLD tables in a trigger.
2508 */
2509 case OP_OpenPseudo: {
2510 int i = pOp->p1;
2511 Cursor *pCx;
2512 assert( i>=0 );
2513 if( expandCursorArraySize(p, i) ) goto no_mem;
2514 pCx = &p->aCsr[i];
2515 sqliteVdbeCleanupCursor(pCx);
2516 memset(pCx, 0, sizeof(*pCx));
2517 pCx->nullRow = 1;
2518 pCx->pseudoTable = 1;
2519 break;
2520 }
2521
2522 /* Opcode: Close P1 * *
2523 **
2524 ** Close a cursor previously opened as P1. If P1 is not
2525 ** currently open, this instruction is a no-op.
2526 */
2527 case OP_Close: {
2528 int i = pOp->p1;
2529 if( i>=0 && i<p->nCursor ){
2530 sqliteVdbeCleanupCursor(&p->aCsr[i]);
2531 }
2532 break;
2533 }
2534
2535 /* Opcode: MoveTo P1 P2 *
2536 **
2537 ** Pop the top of the stack and use its value as a key. Reposition
2538 ** cursor P1 so that it points to an entry with a matching key. If
2539 ** the table contains no record with a matching key, then the cursor
2540 ** is left pointing at the first record that is greater than the key.
2541 ** If there are no records greater than the key and P2 is not zero,
2542 ** then an immediate jump to P2 is made.
2543 **
2544 ** See also: Found, NotFound, Distinct, MoveLt
2545 */
2546 /* Opcode: MoveLt P1 P2 *
2547 **
2548 ** Pop the top of the stack and use its value as a key. Reposition
2549 ** cursor P1 so that it points to the entry with the largest key that is
2550 ** less than the key popped from the stack.
2551 ** If there are no records less than than the key and P2
2552 ** is not zero then an immediate jump to P2 is made.
2553 **
2554 ** See also: MoveTo
2555 */
2556 case OP_MoveLt:
2557 case OP_MoveTo: {
2558 int i = pOp->p1;
2559 Cursor *pC;
2560
2561 assert( pTos>=p->aStack );
2562 assert( i>=0 && i<p->nCursor );
2563 pC = &p->aCsr[i];
2564 if( pC->pCursor!=0 ){
2565 int res, oc;
2566 pC->nullRow = 0;
2567 if( pTos->flags & MEM_Int ){
2568 int iKey = intToKey(pTos->i);
2569 if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){
2570 pC->movetoTarget = iKey;
2571 pC->deferredMoveto = 1;
2572 Release(pTos);
2573 pTos--;
2574 break;
2575 }
2576 sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
2577 pC->lastRecno = pTos->i;
2578 pC->recnoIsValid = res==0;
2579 }else{
2580 Stringify(pTos);
2581 sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
2582 pC->recnoIsValid = 0;
2583 }
2584 pC->deferredMoveto = 0;
2585 sqlite_search_count++;
2586 oc = pOp->opcode;
2587 if( oc==OP_MoveTo && res<0 ){
2588 sqliteBtreeNext(pC->pCursor, &res);
2589 pC->recnoIsValid = 0;
2590 if( res && pOp->p2>0 ){
2591 pc = pOp->p2 - 1;
2592 }
2593 }else if( oc==OP_MoveLt ){
2594 if( res>=0 ){
2595 sqliteBtreePrevious(pC->pCursor, &res);
2596 pC->recnoIsValid = 0;
2597 }else{
2598 /* res might be negative because the table is empty. Check to
2599 ** see if this is the case.
2600 */
2601 int keysize;
2602 res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
2603 }
2604 if( res && pOp->p2>0 ){
2605 pc = pOp->p2 - 1;
2606 }
2607 }
2608 }
2609 Release(pTos);
2610 pTos--;
2611 break;
2612 }
2613
2614 /* Opcode: Distinct P1 P2 *
2615 **
2616 ** Use the top of the stack as a string key. If a record with that key does
2617 ** not exist in the table of cursor P1, then jump to P2. If the record
2618 ** does already exist, then fall thru. The cursor is left pointing
2619 ** at the record if it exists. The key is not popped from the stack.
2620 **
2621 ** This operation is similar to NotFound except that this operation
2622 ** does not pop the key from the stack.
2623 **
2624 ** See also: Found, NotFound, MoveTo, IsUnique, NotExists
2625 */
2626 /* Opcode: Found P1 P2 *
2627 **
2628 ** Use the top of the stack as a string key. If a record with that key
2629 ** does exist in table of P1, then jump to P2. If the record
2630 ** does not exist, then fall thru. The cursor is left pointing
2631 ** to the record if it exists. The key is popped from the stack.
2632 **
2633 ** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
2634 */
2635 /* Opcode: NotFound P1 P2 *
2636 **
2637 ** Use the top of the stack as a string key. If a record with that key
2638 ** does not exist in table of P1, then jump to P2. If the record
2639 ** does exist, then fall thru. The cursor is left pointing to the
2640 ** record if it exists. The key is popped from the stack.
2641 **
2642 ** The difference between this operation and Distinct is that
2643 ** Distinct does not pop the key from the stack.
2644 **
2645 ** See also: Distinct, Found, MoveTo, NotExists, IsUnique
2646 */
2647 case OP_Distinct:
2648 case OP_NotFound:
2649 case OP_Found: {
2650 int i = pOp->p1;
2651 int alreadyExists = 0;
2652 Cursor *pC;
2653 assert( pTos>=p->aStack );
2654 assert( i>=0 && i<p->nCursor );
2655 if( (pC = &p->aCsr[i])->pCursor!=0 ){
2656 int res, rx;
2657 Stringify(pTos);
2658 rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
2659 alreadyExists = rx==SQLITE_OK && res==0;
2660 pC->deferredMoveto = 0;
2661 }
2662 if( pOp->opcode==OP_Found ){
2663 if( alreadyExists ) pc = pOp->p2 - 1;
2664 }else{
2665 if( !alreadyExists ) pc = pOp->p2 - 1;
2666 }
2667 if( pOp->opcode!=OP_Distinct ){
2668 Release(pTos);
2669 pTos--;
2670 }
2671 break;
2672 }
2673
2674 /* Opcode: IsUnique P1 P2 *
2675 **
2676 ** The top of the stack is an integer record number. Call this
2677 ** record number R. The next on the stack is an index key created
2678 ** using MakeIdxKey. Call it K. This instruction pops R from the
2679 ** stack but it leaves K unchanged.
2680 **
2681 ** P1 is an index. So all but the last four bytes of K are an
2682 ** index string. The last four bytes of K are a record number.
2683 **
2684 ** This instruction asks if there is an entry in P1 where the
2685 ** index string matches K but the record number is different
2686 ** from R. If there is no such entry, then there is an immediate
2687 ** jump to P2. If any entry does exist where the index string
2688 ** matches K but the record number is not R, then the record
2689 ** number for that entry is pushed onto the stack and control
2690 ** falls through to the next instruction.
2691 **
2692 ** See also: Distinct, NotFound, NotExists, Found
2693 */
2694 case OP_IsUnique: {
2695 int i = pOp->p1;
2696 Mem *pNos = &pTos[-1];
2697 BtCursor *pCrsr;
2698 int R;
2699
2700 /* Pop the value R off the top of the stack
2701 */
2702 assert( pNos>=p->aStack );
2703 Integerify(pTos);
2704 R = pTos->i;
2705 pTos--;
2706 assert( i>=0 && i<=p->nCursor );
2707 if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
2708 int res, rc;
2709 int v; /* The record number on the P1 entry that matches K */
2710 char *zKey; /* The value of K */
2711 int nKey; /* Number of bytes in K */
2712
2713 /* Make sure K is a string and make zKey point to K
2714 */
2715 Stringify(pNos);
2716 zKey = pNos->z;
2717 nKey = pNos->n;
2718 assert( nKey >= 4 );
2719
2720 /* Search for an entry in P1 where all but the last four bytes match K.
2721 ** If there is no such entry, jump immediately to P2.
2722 */
2723 assert( p->aCsr[i].deferredMoveto==0 );
2724 rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
2725 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2726 if( res<0 ){
2727 rc = sqliteBtreeNext(pCrsr, &res);
2728 if( res ){
2729 pc = pOp->p2 - 1;
2730 break;
2731 }
2732 }
2733 rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
2734 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2735 if( res>0 ){
2736 pc = pOp->p2 - 1;
2737 break;
2738 }
2739
2740 /* At this point, pCrsr is pointing to an entry in P1 where all but
2741 ** the last for bytes of the key match K. Check to see if the last
2742 ** four bytes of the key are different from R. If the last four
2743 ** bytes equal R then jump immediately to P2.
2744 */
2745 sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
2746 v = keyToInt(v);
2747 if( v==R ){
2748 pc = pOp->p2 - 1;
2749 break;
2750 }
2751
2752 /* The last four bytes of the key are different from R. Convert the
2753 ** last four bytes of the key into an integer and push it onto the
2754 ** stack. (These bytes are the record number of an entry that
2755 ** violates a UNIQUE constraint.)
2756 */
2757 pTos++;
2758 pTos->i = v;
2759 pTos->flags = MEM_Int;
2760 }
2761 break;
2762 }
2763
2764 /* Opcode: NotExists P1 P2 *
2765 **
2766 ** Use the top of the stack as a integer key. If a record with that key
2767 ** does not exist in table of P1, then jump to P2. If the record
2768 ** does exist, then fall thru. The cursor is left pointing to the
2769 ** record if it exists. The integer key is popped from the stack.
2770 **
2771 ** The difference between this operation and NotFound is that this
2772 ** operation assumes the key is an integer and NotFound assumes it
2773 ** is a string.
2774 **
2775 ** See also: Distinct, Found, MoveTo, NotFound, IsUnique
2776 */
2777 case OP_NotExists: {
2778 int i = pOp->p1;
2779 BtCursor *pCrsr;
2780 assert( pTos>=p->aStack );
2781 assert( i>=0 && i<p->nCursor );
2782 if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
2783 int res, rx, iKey;
2784 assert( pTos->flags & MEM_Int );
2785 iKey = intToKey(pTos->i);
2786 rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
2787 p->aCsr[i].lastRecno = pTos->i;
2788 p->aCsr[i].recnoIsValid = res==0;
2789 p->aCsr[i].nullRow = 0;
2790 if( rx!=SQLITE_OK || res!=0 ){
2791 pc = pOp->p2 - 1;
2792 p->aCsr[i].recnoIsValid = 0;
2793 }
2794 }
2795 Release(pTos);
2796 pTos--;
2797 break;
2798 }
2799
2800 /* Opcode: NewRecno P1 * *
2801 **
2802 ** Get a new integer record number used as the key to a table.
2803 ** The record number is not previously used as a key in the database
2804 ** table that cursor P1 points to. The new record number is pushed
2805 ** onto the stack.
2806 */
2807 case OP_NewRecno: {
2808 int i = pOp->p1;
2809 int v = 0;
2810 Cursor *pC;
2811 assert( i>=0 && i<p->nCursor );
2812 if( (pC = &p->aCsr[i])->pCursor==0 ){
2813 v = 0;
2814 }else{
2815 /* The next rowid or record number (different terms for the same
2816 ** thing) is obtained in a two-step algorithm.
2817 **
2818 ** First we attempt to find the largest existing rowid and add one
2819 ** to that. But if the largest existing rowid is already the maximum
2820 ** positive integer, we have to fall through to the second
2821 ** probabilistic algorithm
2822 **
2823 ** The second algorithm is to select a rowid at random and see if
2824 ** it already exists in the table. If it does not exist, we have
2825 ** succeeded. If the random rowid does exist, we select a new one
2826 ** and try again, up to 1000 times.
2827 **
2828 ** For a table with less than 2 billion entries, the probability
2829 ** of not finding a unused rowid is about 1.0e-300. This is a
2830 ** non-zero probability, but it is still vanishingly small and should
2831 ** never cause a problem. You are much, much more likely to have a
2832 ** hardware failure than for this algorithm to fail.
2833 **
2834 ** The analysis in the previous paragraph assumes that you have a good
2835 ** source of random numbers. Is a library function like lrand48()
2836 ** good enough? Maybe. Maybe not. It's hard to know whether there
2837 ** might be subtle bugs is some implementations of lrand48() that
2838 ** could cause problems. To avoid uncertainty, SQLite uses its own
2839 ** random number generator based on the RC4 algorithm.
2840 **
2841 ** To promote locality of reference for repetitive inserts, the
2842 ** first few attempts at chosing a random rowid pick values just a little
2843 ** larger than the previous rowid. This has been shown experimentally
2844 ** to double the speed of the COPY operation.
2845 */
2846 int res, rx, cnt, x;
2847 cnt = 0;
2848 if( !pC->useRandomRowid ){
2849 if( pC->nextRowidValid ){
2850 v = pC->nextRowid;
2851 }else{
2852 rx = sqliteBtreeLast(pC->pCursor, &res);
2853 if( res ){
2854 v = 1;
2855 }else{
2856 sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
2857 v = keyToInt(v);
2858 if( v==0x7fffffff ){
2859 pC->useRandomRowid = 1;
2860 }else{
2861 v++;
2862 }
2863 }
2864 }
2865 if( v<0x7fffffff ){
2866 pC->nextRowidValid = 1;
2867 pC->nextRowid = v+1;
2868 }else{
2869 pC->nextRowidValid = 0;
2870 }
2871 }
2872 if( pC->useRandomRowid ){
2873 v = db->priorNewRowid;
2874 cnt = 0;
2875 do{
2876 if( v==0 || cnt>2 ){
2877 sqliteRandomness(sizeof(v), &v);
2878 if( cnt<5 ) v &= 0xffffff;
2879 }else{
2880 unsigned char r;
2881 sqliteRandomness(1, &r);
2882 v += r + 1;
2883 }
2884 if( v==0 ) continue;
2885 x = intToKey(v);
2886 rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
2887 cnt++;
2888 }while( cnt<1000 && rx==SQLITE_OK && res==0 );
2889 db->priorNewRowid = v;
2890 if( rx==SQLITE_OK && res==0 ){
2891 rc = SQLITE_FULL;
2892 goto abort_due_to_error;
2893 }
2894 }
2895 pC->recnoIsValid = 0;
2896 pC->deferredMoveto = 0;
2897 }
2898 pTos++;
2899 pTos->i = v;
2900 pTos->flags = MEM_Int;
2901 break;
2902 }
2903
2904 /* Opcode: PutIntKey P1 P2 *
2905 **
2906 ** Write an entry into the table of cursor P1. A new entry is
2907 ** created if it doesn't already exist or the data for an existing
2908 ** entry is overwritten. The data is the value on the top of the
2909 ** stack. The key is the next value down on the stack. The key must
2910 ** be an integer. The stack is popped twice by this instruction.
2911 **
2912 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
2913 ** incremented (otherwise not). If the OPFLAG_CSCHANGE flag is set,
2914 ** then the current statement change count is incremented (otherwise not).
2915 ** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is
2916 ** stored for subsequent return by the sqlite_last_insert_rowid() function
2917 ** (otherwise it's unmodified).
2918 */
2919 /* Opcode: PutStrKey P1 * *
2920 **
2921 ** Write an entry into the table of cursor P1. A new entry is
2922 ** created if it doesn't already exist or the data for an existing
2923 ** entry is overwritten. The data is the value on the top of the
2924 ** stack. The key is the next value down on the stack. The key must
2925 ** be a string. The stack is popped twice by this instruction.
2926 **
2927 ** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
2928 */
2929 case OP_PutIntKey:
2930 case OP_PutStrKey: {
2931 Mem *pNos = &pTos[-1];
2932 int i = pOp->p1;
2933 Cursor *pC;
2934 assert( pNos>=p->aStack );
2935 assert( i>=0 && i<p->nCursor );
2936 if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
2937 char *zKey;
2938 int nKey, iKey;
2939 if( pOp->opcode==OP_PutStrKey ){
2940 Stringify(pNos);
2941 nKey = pNos->n;
2942 zKey = pNos->z;
2943 }else{
2944 assert( pNos->flags & MEM_Int );
2945 nKey = sizeof(int);
2946 iKey = intToKey(pNos->i);
2947 zKey = (char*)&iKey;
2948 if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
2949 if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i;
2950 if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
2951 if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
2952 pC->nextRowidValid = 0;
2953 }
2954 }
2955 if( pTos->flags & MEM_Null ){
2956 pTos->z = 0;
2957 pTos->n = 0;
2958 }else{
2959 assert( pTos->flags & MEM_Str );
2960 }
2961 if( pC->pseudoTable ){
2962 /* PutStrKey does not work for pseudo-tables.
2963 ** The following assert makes sure we are not trying to use
2964 ** PutStrKey on a pseudo-table
2965 */
2966 assert( pOp->opcode==OP_PutIntKey );
2967 sqliteFree(pC->pData);
2968 pC->iKey = iKey;
2969 pC->nData = pTos->n;
2970 if( pTos->flags & MEM_Dyn ){
2971 pC->pData = pTos->z;
2972 pTos->flags = MEM_Null;
2973 }else{
2974 pC->pData = sqliteMallocRaw( pC->nData );
2975 if( pC->pData ){
2976 memcpy(pC->pData, pTos->z, pC->nData);
2977 }
2978 }
2979 pC->nullRow = 0;
2980 }else{
2981 rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
2982 }
2983 pC->recnoIsValid = 0;
2984 pC->deferredMoveto = 0;
2985 }
2986 popStack(&pTos, 2);
2987 break;
2988 }
2989
2990 /* Opcode: Delete P1 P2 *
2991 **
2992 ** Delete the record at which the P1 cursor is currently pointing.
2993 **
2994 ** The cursor will be left pointing at either the next or the previous
2995 ** record in the table. If it is left pointing at the next record, then
2996 ** the next Next instruction will be a no-op. Hence it is OK to delete
2997 ** a record from within an Next loop.
2998 **
2999 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
3000 ** incremented (otherwise not). If OPFLAG_CSCHANGE flag is set,
3001 ** then the current statement change count is incremented (otherwise not).
3002 **
3003 ** If P1 is a pseudo-table, then this instruction is a no-op.
3004 */
3005 case OP_Delete: {
3006 int i = pOp->p1;
3007 Cursor *pC;
3008 assert( i>=0 && i<p->nCursor );
3009 pC = &p->aCsr[i];
3010 if( pC->pCursor!=0 ){
3011 sqliteVdbeCursorMoveto(pC);
3012 rc = sqliteBtreeDelete(pC->pCursor);
3013 pC->nextRowidValid = 0;
3014 }
3015 if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
3016 if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
3017 break;
3018 }
3019
3020 /* Opcode: SetCounts * * *
3021 **
3022 ** Called at end of statement. Updates lsChange (last statement change count)
3023 ** and resets csChange (current statement change count) to 0.
3024 */
3025 case OP_SetCounts: {
3026 db->lsChange=db->csChange;
3027 db->csChange=0;
3028 break;
3029 }
3030
3031 /* Opcode: KeyAsData P1 P2 *
3032 **
3033 ** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
3034 ** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls
3035 ** data off of the key rather than the data. This is used for
3036 ** processing compound selects.
3037 */
3038 case OP_KeyAsData: {
3039 int i = pOp->p1;
3040 assert( i>=0 && i<p->nCursor );
3041 p->aCsr[i].keyAsData = pOp->p2;
3042 break;
3043 }
3044
3045 /* Opcode: RowData P1 * *
3046 **
3047 ** Push onto the stack the complete row data for cursor P1.
3048 ** There is no interpretation of the data. It is just copied
3049 ** onto the stack exactly as it is found in the database file.
3050 **
3051 ** If the cursor is not pointing to a valid row, a NULL is pushed
3052 ** onto the stack.
3053 */
3054 /* Opcode: RowKey P1 * *
3055 **
3056 ** Push onto the stack the complete row key for cursor P1.
3057 ** There is no interpretation of the key. It is just copied
3058 ** onto the stack exactly as it is found in the database file.
3059 **
3060 ** If the cursor is not pointing to a valid row, a NULL is pushed
3061 ** onto the stack.
3062 */
3063 case OP_RowKey:
3064 case OP_RowData: {
3065 int i = pOp->p1;
3066 Cursor *pC;
3067 int n;
3068
3069 pTos++;
3070 assert( i>=0 && i<p->nCursor );
3071 pC = &p->aCsr[i];
3072 if( pC->nullRow ){
3073 pTos->flags = MEM_Null;
3074 }else if( pC->pCursor!=0 ){
3075 BtCursor *pCrsr = pC->pCursor;
3076 sqliteVdbeCursorMoveto(pC);
3077 if( pC->nullRow ){
3078 pTos->flags = MEM_Null;
3079 break;
3080 }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
3081 sqliteBtreeKeySize(pCrsr, &n);
3082 }else{
3083 sqliteBtreeDataSize(pCrsr, &n);
3084 }
3085 pTos->n = n;
3086 if( n<=NBFS ){
3087 pTos->flags = MEM_Str | MEM_Short;
3088 pTos->z = pTos->zShort;
3089 }else{
3090 char *z = sqliteMallocRaw( n );
3091 if( z==0 ) goto no_mem;
3092 pTos->flags = MEM_Str | MEM_Dyn;
3093 pTos->z = z;
3094 }
3095 if( pC->keyAsData || pOp->opcode==OP_RowKey ){
3096 sqliteBtreeKey(pCrsr, 0, n, pTos->z);
3097 }else{
3098 sqliteBtreeData(pCrsr, 0, n, pTos->z);
3099 }
3100 }else if( pC->pseudoTable ){
3101 pTos->n = pC->nData;
3102 pTos->z = pC->pData;
3103 pTos->flags = MEM_Str|MEM_Ephem;
3104 }else{
3105 pTos->flags = MEM_Null;
3106 }
3107 break;
3108 }
3109
3110 /* Opcode: Column P1 P2 *
3111 **
3112 ** Interpret the data that cursor P1 points to as
3113 ** a structure built using the MakeRecord instruction.
3114 ** (See the MakeRecord opcode for additional information about
3115 ** the format of the data.)
3116 ** Push onto the stack the value of the P2-th column contained
3117 ** in the data.
3118 **
3119 ** If the KeyAsData opcode has previously executed on this cursor,
3120 ** then the field might be extracted from the key rather than the
3121 ** data.
3122 **
3123 ** If P1 is negative, then the record is stored on the stack rather
3124 ** than in a table. For P1==-1, the top of the stack is used.
3125 ** For P1==-2, the next on the stack is used. And so forth. The
3126 ** value pushed is always just a pointer into the record which is
3127 ** stored further down on the stack. The column value is not copied.
3128 */
3129 case OP_Column: {
3130 int amt, offset, end, payloadSize;
3131 int i = pOp->p1;
3132 int p2 = pOp->p2;
3133 Cursor *pC;
3134 char *zRec;
3135 BtCursor *pCrsr;
3136 int idxWidth;
3137 unsigned char aHdr[10];
3138
3139 assert( i<p->nCursor );
3140 pTos++;
3141 if( i<0 ){
3142 assert( &pTos[i]>=p->aStack );
3143 assert( pTos[i].flags & MEM_Str );
3144 zRec = pTos[i].z;
3145 payloadSize = pTos[i].n;
3146 }else if( (pC = &p->aCsr[i])->pCursor!=0 ){
3147 sqliteVdbeCursorMoveto(pC);
3148 zRec = 0;
3149 pCrsr = pC->pCursor;
3150 if( pC->nullRow ){
3151 payloadSize = 0;
3152 }else if( pC->keyAsData ){
3153 sqliteBtreeKeySize(pCrsr, &payloadSize);
3154 }else{
3155 sqliteBtreeDataSize(pCrsr, &payloadSize);
3156 }
3157 }else if( pC->pseudoTable ){
3158 payloadSize = pC->nData;
3159 zRec = pC->pData;
3160 assert( payloadSize==0 || zRec!=0 );
3161 }else{
3162 payloadSize = 0;
3163 }
3164
3165 /* Figure out how many bytes in the column data and where the column
3166 ** data begins.
3167 */
3168 if( payloadSize==0 ){
3169 pTos->flags = MEM_Null;
3170 break;
3171 }else if( payloadSize<256 ){
3172 idxWidth = 1;
3173 }else if( payloadSize<65536 ){
3174 idxWidth = 2;
3175 }else{
3176 idxWidth = 3;
3177 }
3178
3179 /* Figure out where the requested column is stored and how big it is.
3180 */
3181 if( payloadSize < idxWidth*(p2+1) ){
3182 rc = SQLITE_CORRUPT;
3183 goto abort_due_to_error;
3184 }
3185 if( zRec ){
3186 memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2);
3187 }else if( pC->keyAsData ){
3188 sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
3189 }else{
3190 sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
3191 }
3192 offset = aHdr[0];
3193 end = aHdr[idxWidth];
3194 if( idxWidth>1 ){
3195 offset |= aHdr[1]<<8;
3196 end |= aHdr[idxWidth+1]<<8;
3197 if( idxWidth>2 ){
3198 offset |= aHdr[2]<<16;
3199 end |= aHdr[idxWidth+2]<<16;
3200 }
3201 }
3202 amt = end - offset;
3203 if( amt<0 || offset<0 || end>payloadSize ){
3204 rc = SQLITE_CORRUPT;
3205 goto abort_due_to_error;
3206 }
3207
3208 /* amt and offset now hold the offset to the start of data and the
3209 ** amount of data. Go get the data and put it on the stack.
3210 */
3211 pTos->n = amt;
3212 if( amt==0 ){
3213 pTos->flags = MEM_Null;
3214 }else if( zRec ){
3215 pTos->flags = MEM_Str | MEM_Ephem;
3216 pTos->z = &zRec[offset];
3217 }else{
3218 if( amt<=NBFS ){
3219 pTos->flags = MEM_Str | MEM_Short;
3220 pTos->z = pTos->zShort;
3221 }else{
3222 char *z = sqliteMallocRaw( amt );
3223 if( z==0 ) goto no_mem;
3224 pTos->flags = MEM_Str | MEM_Dyn;
3225 pTos->z = z;
3226 }
3227 if( pC->keyAsData ){
3228 sqliteBtreeKey(pCrsr, offset, amt, pTos->z);
3229 }else{
3230 sqliteBtreeData(pCrsr, offset, amt, pTos->z);
3231 }
3232 }
3233 break;
3234 }
3235
3236 /* Opcode: Recno P1 * *
3237 **
3238 ** Push onto the stack an integer which is the first 4 bytes of the
3239 ** the key to the current entry in a sequential scan of the database
3240 ** file P1. The sequential scan should have been started using the
3241 ** Next opcode.
3242 */
3243 case OP_Recno: {
3244 int i = pOp->p1;
3245 Cursor *pC;
3246 int v;
3247
3248 assert( i>=0 && i<p->nCursor );
3249 pC = &p->aCsr[i];
3250 sqliteVdbeCursorMoveto(pC);
3251 pTos++;
3252 if( pC->recnoIsValid ){
3253 v = pC->lastRecno;
3254 }else if( pC->pseudoTable ){
3255 v = keyToInt(pC->iKey);
3256 }else if( pC->nullRow || pC->pCursor==0 ){
3257 pTos->flags = MEM_Null;
3258 break;
3259 }else{
3260 assert( pC->pCursor!=0 );
3261 sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
3262 v = keyToInt(v);
3263 }
3264 pTos->i = v;
3265 pTos->flags = MEM_Int;
3266 break;
3267 }
3268
3269 /* Opcode: FullKey P1 * *
3270 **
3271 ** Extract the complete key from the record that cursor P1 is currently
3272 ** pointing to and push the key onto the stack as a string.
3273 **
3274 ** Compare this opcode to Recno. The Recno opcode extracts the first
3275 ** 4 bytes of the key and pushes those bytes onto the stack as an
3276 ** integer. This instruction pushes the entire key as a string.
3277 **
3278 ** This opcode may not be used on a pseudo-table.
3279 */
3280 case OP_FullKey: {
3281 int i = pOp->p1;
3282 BtCursor *pCrsr;
3283
3284 assert( p->aCsr[i].keyAsData );
3285 assert( !p->aCsr[i].pseudoTable );
3286 assert( i>=0 && i<p->nCursor );
3287 pTos++;
3288 if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
3289 int amt;
3290 char *z;
3291
3292 sqliteVdbeCursorMoveto(&p->aCsr[i]);
3293 sqliteBtreeKeySize(pCrsr, &amt);
3294 if( amt<=0 ){
3295 rc = SQLITE_CORRUPT;
3296 goto abort_due_to_error;
3297 }
3298 if( amt>NBFS ){
3299 z = sqliteMallocRaw( amt );
3300 if( z==0 ) goto no_mem;
3301 pTos->flags = MEM_Str | MEM_Dyn;
3302 }else{
3303 z = pTos->zShort;
3304 pTos->flags = MEM_Str | MEM_Short;
3305 }
3306 sqliteBtreeKey(pCrsr, 0, amt, z);
3307 pTos->z = z;
3308 pTos->n = amt;
3309 }
3310 break;
3311 }
3312
3313 /* Opcode: NullRow P1 * *
3314 **
3315 ** Move the cursor P1 to a null row. Any OP_Column operations
3316 ** that occur while the cursor is on the null row will always push
3317 ** a NULL onto the stack.
3318 */
3319 case OP_NullRow: {
3320 int i = pOp->p1;
3321
3322 assert( i>=0 && i<p->nCursor );
3323 p->aCsr[i].nullRow = 1;
3324 p->aCsr[i].recnoIsValid = 0;
3325 break;
3326 }
3327
3328 /* Opcode: Last P1 P2 *
3329 **
3330 ** The next use of the Recno or Column or Next instruction for P1
3331 ** will refer to the last entry in the database table or index.
3332 ** If the table or index is empty and P2>0, then jump immediately to P2.
3333 ** If P2 is 0 or if the table or index is not empty, fall through
3334 ** to the following instruction.
3335 */
3336 case OP_Last: {
3337 int i = pOp->p1;
3338 Cursor *pC;
3339 BtCursor *pCrsr;
3340
3341 assert( i>=0 && i<p->nCursor );
3342 pC = &p->aCsr[i];
3343 if( (pCrsr = pC->pCursor)!=0 ){
3344 int res;
3345 rc = sqliteBtreeLast(pCrsr, &res);
3346 pC->nullRow = res;
3347 pC->deferredMoveto = 0;
3348 if( res && pOp->p2>0 ){
3349 pc = pOp->p2 - 1;
3350 }
3351 }else{
3352 pC->nullRow = 0;
3353 }
3354 break;
3355 }
3356
3357 /* Opcode: Rewind P1 P2 *
3358 **
3359 ** The next use of the Recno or Column or Next instruction for P1
3360 ** will refer to the first entry in the database table or index.
3361 ** If the table or index is empty and P2>0, then jump immediately to P2.
3362 ** If P2 is 0 or if the table or index is not empty, fall through
3363 ** to the following instruction.
3364 */
3365 case OP_Rewind: {
3366 int i = pOp->p1;
3367 Cursor *pC;
3368 BtCursor *pCrsr;
3369
3370 assert( i>=0 && i<p->nCursor );
3371 pC = &p->aCsr[i];
3372 if( (pCrsr = pC->pCursor)!=0 ){
3373 int res;
3374 rc = sqliteBtreeFirst(pCrsr, &res);
3375 pC->atFirst = res==0;
3376 pC->nullRow = res;
3377 pC->deferredMoveto = 0;
3378 if( res && pOp->p2>0 ){
3379 pc = pOp->p2 - 1;
3380 }
3381 }else{
3382 pC->nullRow = 0;
3383 }
3384 break;
3385 }
3386
3387 /* Opcode: Next P1 P2 *
3388 **
3389 ** Advance cursor P1 so that it points to the next key/data pair in its
3390 ** table or index. If there are no more key/value pairs then fall through
3391 ** to the following instruction. But if the cursor advance was successful,
3392 ** jump immediately to P2.
3393 **
3394 ** See also: Prev
3395 */
3396 /* Opcode: Prev P1 P2 *
3397 **
3398 ** Back up cursor P1 so that it points to the previous key/data pair in its
3399 ** table or index. If there is no previous key/value pairs then fall through
3400 ** to the following instruction. But if the cursor backup was successful,
3401 ** jump immediately to P2.
3402 */
3403 case OP_Prev:
3404 case OP_Next: {
3405 Cursor *pC;
3406 BtCursor *pCrsr;
3407
3408 CHECK_FOR_INTERRUPT;
3409 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3410 pC = &p->aCsr[pOp->p1];
3411 if( (pCrsr = pC->pCursor)!=0 ){
3412 int res;
3413 if( pC->nullRow ){
3414 res = 1;
3415 }else{
3416 assert( pC->deferredMoveto==0 );
3417 rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) :
3418 sqliteBtreePrevious(pCrsr, &res);
3419 pC->nullRow = res;
3420 }
3421 if( res==0 ){
3422 pc = pOp->p2 - 1;
3423 sqlite_search_count++;
3424 }
3425 }else{
3426 pC->nullRow = 1;
3427 }
3428 pC->recnoIsValid = 0;
3429 break;
3430 }
3431
3432 /* Opcode: IdxPut P1 P2 P3
3433 **
3434 ** The top of the stack holds a SQL index key made using the
3435 ** MakeIdxKey instruction. This opcode writes that key into the
3436 ** index P1. Data for the entry is nil.
3437 **
3438 ** If P2==1, then the key must be unique. If the key is not unique,
3439 ** the program aborts with a SQLITE_CONSTRAINT error and the database
3440 ** is rolled back. If P3 is not null, then it becomes part of the
3441 ** error message returned with the SQLITE_CONSTRAINT.
3442 */
3443 case OP_IdxPut: {
3444 int i = pOp->p1;
3445 BtCursor *pCrsr;
3446 assert( pTos>=p->aStack );
3447 assert( i>=0 && i<p->nCursor );
3448 assert( pTos->flags & MEM_Str );
3449 if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
3450 int nKey = pTos->n;
3451 const char *zKey = pTos->z;
3452 if( pOp->p2 ){
3453 int res, n;
3454 assert( nKey >= 4 );
3455 rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
3456 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3457 while( res!=0 ){
3458 int c;
3459 sqliteBtreeKeySize(pCrsr, &n);
3460 if( n==nKey
3461 && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
3462 && c==0
3463 ){
3464 rc = SQLITE_CONSTRAINT;
3465 if( pOp->p3 && pOp->p3[0] ){
3466 sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
3467 }
3468 goto abort_due_to_error;
3469 }
3470 if( res<0 ){
3471 sqliteBtreeNext(pCrsr, &res);
3472 res = +1;
3473 }else{
3474 break;
3475 }
3476 }
3477 }
3478 rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
3479 assert( p->aCsr[i].deferredMoveto==0 );
3480 }
3481 Release(pTos);
3482 pTos--;
3483 break;
3484 }
3485
3486 /* Opcode: IdxDelete P1 * *
3487 **
3488 ** The top of the stack is an index key built using the MakeIdxKey opcode.
3489 ** This opcode removes that entry from the index.
3490 */
3491 case OP_IdxDelete: {
3492 int i = pOp->p1;
3493 BtCursor *pCrsr;
3494 assert( pTos>=p->aStack );
3495 assert( pTos->flags & MEM_Str );
3496 assert( i>=0 && i<p->nCursor );
3497 if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
3498 int rx, res;
3499 rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
3500 if( rx==SQLITE_OK && res==0 ){
3501 rc = sqliteBtreeDelete(pCrsr);
3502 }
3503 assert( p->aCsr[i].deferredMoveto==0 );
3504 }
3505 Release(pTos);
3506 pTos--;
3507 break;
3508 }
3509
3510 /* Opcode: IdxRecno P1 * *
3511 **
3512 ** Push onto the stack an integer which is the last 4 bytes of the
3513 ** the key to the current entry in index P1. These 4 bytes should
3514 ** be the record number of the table entry to which this index entry
3515 ** points.
3516 **
3517 ** See also: Recno, MakeIdxKey.
3518 */
3519 case OP_IdxRecno: {
3520 int i = pOp->p1;
3521 BtCursor *pCrsr;
3522
3523 assert( i>=0 && i<p->nCursor );
3524 pTos++;
3525 if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
3526 int v;
3527 int sz;
3528 assert( p->aCsr[i].deferredMoveto==0 );
3529 sqliteBtreeKeySize(pCrsr, &sz);
3530 if( sz<sizeof(u32) ){
3531 pTos->flags = MEM_Null;
3532 }else{
3533 sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
3534 v = keyToInt(v);
3535 pTos->i = v;
3536 pTos->flags = MEM_Int;
3537 }
3538 }else{
3539 pTos->flags = MEM_Null;
3540 }
3541 break;
3542 }
3543
3544 /* Opcode: IdxGT P1 P2 *
3545 **
3546 ** Compare the top of the stack against the key on the index entry that
3547 ** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
3548 ** index entry. If the index entry is greater than the top of the stack
3549 ** then jump to P2. Otherwise fall through to the next instruction.
3550 ** In either case, the stack is popped once.
3551 */
3552 /* Opcode: IdxGE P1 P2 *
3553 **
3554 ** Compare the top of the stack against the key on the index entry that
3555 ** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
3556 ** index entry. If the index entry is greater than or equal to
3557 ** the top of the stack
3558 ** then jump to P2. Otherwise fall through to the next instruction.
3559 ** In either case, the stack is popped once.
3560 */
3561 /* Opcode: IdxLT P1 P2 *
3562 **
3563 ** Compare the top of the stack against the key on the index entry that
3564 ** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
3565 ** index entry. If the index entry is less than the top of the stack
3566 ** then jump to P2. Otherwise fall through to the next instruction.
3567 ** In either case, the stack is popped once.
3568 */
3569 case OP_IdxLT:
3570 case OP_IdxGT:
3571 case OP_IdxGE: {
3572 int i= pOp->p1;
3573 BtCursor *pCrsr;
3574
3575 assert( i>=0 && i<p->nCursor );
3576 assert( pTos>=p->aStack );
3577 if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
3578 int res, rc;
3579
3580 Stringify(pTos);
3581 assert( p->aCsr[i].deferredMoveto==0 );
3582 rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res);
3583 if( rc!=SQLITE_OK ){
3584 break;
3585 }
3586 if( pOp->opcode==OP_IdxLT ){
3587 res = -res;
3588 }else if( pOp->opcode==OP_IdxGE ){
3589 res++;
3590 }
3591 if( res>0 ){
3592 pc = pOp->p2 - 1 ;
3593 }
3594 }
3595 Release(pTos);
3596 pTos--;
3597 break;
3598 }
3599
3600 /* Opcode: IdxIsNull P1 P2 *
3601 **
3602 ** The top of the stack contains an index entry such as might be generated
3603 ** by the MakeIdxKey opcode. This routine looks at the first P1 fields of
3604 ** that key. If any of the first P1 fields are NULL, then a jump is made
3605 ** to address P2. Otherwise we fall straight through.
3606 **
3607 ** The index entry is always popped from the stack.
3608 */
3609 case OP_IdxIsNull: {
3610 int i = pOp->p1;
3611 int k, n;
3612 const char *z;
3613
3614 assert( pTos>=p->aStack );
3615 assert( pTos->flags & MEM_Str );
3616 z = pTos->z;
3617 n = pTos->n;
3618 for(k=0; k<n && i>0; i--){
3619 if( z[k]=='a' ){
3620 pc = pOp->p2-1;
3621 break;
3622 }
3623 while( k<n && z[k] ){ k++; }
3624 k++;
3625 }
3626 Release(pTos);
3627 pTos--;
3628 break;
3629 }
3630
3631 /* Opcode: Destroy P1 P2 *
3632 **
3633 ** Delete an entire database table or index whose root page in the database
3634 ** file is given by P1.
3635 **
3636 ** The table being destroyed is in the main database file if P2==0. If
3637 ** P2==1 then the table to be clear is in the auxiliary database file
3638 ** that is used to store tables create using CREATE TEMPORARY TABLE.
3639 **
3640 ** See also: Clear
3641 */
3642 case OP_Destroy: {
3643 rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1);
3644 break;
3645 }
3646
3647 /* Opcode: Clear P1 P2 *
3648 **
3649 ** Delete all contents of the database table or index whose root page
3650 ** in the database file is given by P1. But, unlike Destroy, do not
3651 ** remove the table or index from the database file.
3652 **
3653 ** The table being clear is in the main database file if P2==0. If
3654 ** P2==1 then the table to be clear is in the auxiliary database file
3655 ** that is used to store tables create using CREATE TEMPORARY TABLE.
3656 **
3657 ** See also: Destroy
3658 */
3659 case OP_Clear: {
3660 rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
3661 break;
3662 }
3663
3664 /* Opcode: CreateTable * P2 P3
3665 **
3666 ** Allocate a new table in the main database file if P2==0 or in the
3667 ** auxiliary database file if P2==1. Push the page number
3668 ** for the root page of the new table onto the stack.
3669 **
3670 ** The root page number is also written to a memory location that P3
3671 ** points to. This is the mechanism is used to write the root page
3672 ** number into the parser's internal data structures that describe the
3673 ** new table.
3674 **
3675 ** The difference between a table and an index is this: A table must
3676 ** have a 4-byte integer key and can have arbitrary data. An index
3677 ** has an arbitrary key but no data.
3678 **
3679 ** See also: CreateIndex
3680 */
3681 /* Opcode: CreateIndex * P2 P3
3682 **
3683 ** Allocate a new index in the main database file if P2==0 or in the
3684 ** auxiliary database file if P2==1. Push the page number of the
3685 ** root page of the new index onto the stack.
3686 **
3687 ** See documentation on OP_CreateTable for additional information.
3688 */
3689 case OP_CreateIndex:
3690 case OP_CreateTable: {
3691 int pgno;
3692 assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
3693 assert( pOp->p2>=0 && pOp->p2<db->nDb );
3694 assert( db->aDb[pOp->p2].pBt!=0 );
3695 if( pOp->opcode==OP_CreateTable ){
3696 rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno);
3697 }else{
3698 rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno);
3699 }
3700 pTos++;
3701 if( rc==SQLITE_OK ){
3702 pTos->i = pgno;
3703 pTos->flags = MEM_Int;
3704 *(u32*)pOp->p3 = pgno;
3705 pOp->p3 = 0;
3706 }else{
3707 pTos->flags = MEM_Null;
3708 }
3709 break;
3710 }
3711
3712 /* Opcode: IntegrityCk P1 P2 *
3713 **
3714 ** Do an analysis of the currently open database. Push onto the
3715 ** stack the text of an error message describing any problems.
3716 ** If there are no errors, push a "ok" onto the stack.
3717 **
3718 ** P1 is the index of a set that contains the root page numbers
3719 ** for all tables and indices in the main database file. The set
3720 ** is cleared by this opcode. In other words, after this opcode
3721 ** has executed, the set will be empty.
3722 **
3723 ** If P2 is not zero, the check is done on the auxiliary database
3724 ** file, not the main database file.
3725 **
3726 ** This opcode is used for testing purposes only.
3727 */
3728 case OP_IntegrityCk: {
3729 int nRoot;
3730 int *aRoot;
3731 int iSet = pOp->p1;
3732 Set *pSet;
3733 int j;
3734 HashElem *i;
3735 char *z;
3736
3737 assert( iSet>=0 && iSet<p->nSet );
3738 pTos++;
3739 pSet = &p->aSet[iSet];
3740 nRoot = sqliteHashCount(&pSet->hash);
3741 aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
3742 if( aRoot==0 ) goto no_mem;
3743 for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
3744 toInt((char*)sqliteHashKey(i), &aRoot[j]);
3745 }
3746 aRoot[j] = 0;
3747 sqliteHashClear(&pSet->hash);
3748 pSet->prev = 0;
3749 z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
3750 if( z==0 || z[0]==0 ){
3751 if( z ) sqliteFree(z);
3752 pTos->z = "ok";
3753 pTos->n = 3;
3754 pTos->flags = MEM_Str | MEM_Static;
3755 }else{
3756 pTos->z = z;
3757 pTos->n = strlen(z) + 1;
3758 pTos->flags = MEM_Str | MEM_Dyn;
3759 }
3760 sqliteFree(aRoot);
3761 break;
3762 }
3763
3764 /* Opcode: ListWrite * * *
3765 **
3766 ** Write the integer on the top of the stack
3767 ** into the temporary storage list.
3768 */
3769 case OP_ListWrite: {
3770 Keylist *pKeylist;
3771 assert( pTos>=p->aStack );
3772 pKeylist = p->pList;
3773 if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
3774 pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
3775 if( pKeylist==0 ) goto no_mem;
3776 pKeylist->nKey = 1000;
3777 pKeylist->nRead = 0;
3778 pKeylist->nUsed = 0;
3779 pKeylist->pNext = p->pList;
3780 p->pList = pKeylist;
3781 }
3782 Integerify(pTos);
3783 pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
3784 Release(pTos);
3785 pTos--;
3786 break;
3787 }
3788
3789 /* Opcode: ListRewind * * *
3790 **
3791 ** Rewind the temporary buffer back to the beginning.
3792 */
3793 case OP_ListRewind: {
3794 /* What this opcode codes, really, is reverse the order of the
3795 ** linked list of Keylist structures so that they are read out
3796 ** in the same order that they were read in. */
3797 Keylist *pRev, *pTop;
3798 pRev = 0;
3799 while( p->pList ){
3800 pTop = p->pList;
3801 p->pList = pTop->pNext;
3802 pTop->pNext = pRev;
3803 pRev = pTop;
3804 }
3805 p->pList = pRev;
3806 break;
3807 }
3808
3809 /* Opcode: ListRead * P2 *
3810 **
3811 ** Attempt to read an integer from the temporary storage buffer
3812 ** and push it onto the stack. If the storage buffer is empty,
3813 ** push nothing but instead jump to P2.
3814 */
3815 case OP_ListRead: {
3816 Keylist *pKeylist;
3817 CHECK_FOR_INTERRUPT;
3818 pKeylist = p->pList;
3819 if( pKeylist!=0 ){
3820 assert( pKeylist->nRead>=0 );
3821 assert( pKeylist->nRead<pKeylist->nUsed );
3822 assert( pKeylist->nRead<pKeylist->nKey );
3823 pTos++;
3824 pTos->i = pKeylist->aKey[pKeylist->nRead++];
3825 pTos->flags = MEM_Int;
3826 if( pKeylist->nRead>=pKeylist->nUsed ){
3827 p->pList = pKeylist->pNext;
3828 sqliteFree(pKeylist);
3829 }
3830 }else{
3831 pc = pOp->p2 - 1;
3832 }
3833 break;
3834 }
3835
3836 /* Opcode: ListReset * * *
3837 **
3838 ** Reset the temporary storage buffer so that it holds nothing.
3839 */
3840 case OP_ListReset: {
3841 if( p->pList ){
3842 sqliteVdbeKeylistFree(p->pList);
3843 p->pList = 0;
3844 }
3845 break;
3846 }
3847
3848 /* Opcode: ListPush * * *
3849 **
3850 ** Save the current Vdbe list such that it can be restored by a ListPop
3851 ** opcode. The list is empty after this is executed.
3852 */
3853 case OP_ListPush: {
3854 p->keylistStackDepth++;
3855 assert(p->keylistStackDepth > 0);
3856 p->keylistStack = sqliteRealloc(p->keylistStack,
3857 sizeof(Keylist *) * p->keylistStackDepth);
3858 if( p->keylistStack==0 ) goto no_mem;
3859 p->keylistStack[p->keylistStackDepth - 1] = p->pList;
3860 p->pList = 0;
3861 break;
3862 }
3863
3864 /* Opcode: ListPop * * *
3865 **
3866 ** Restore the Vdbe list to the state it was in when ListPush was last
3867 ** executed.
3868 */
3869 case OP_ListPop: {
3870 assert(p->keylistStackDepth > 0);
3871 p->keylistStackDepth--;
3872 sqliteVdbeKeylistFree(p->pList);
3873 p->pList = p->keylistStack[p->keylistStackDepth];
3874 p->keylistStack[p->keylistStackDepth] = 0;
3875 if( p->keylistStackDepth == 0 ){
3876 sqliteFree(p->keylistStack);
3877 p->keylistStack = 0;
3878 }
3879 break;
3880 }
3881
3882 /* Opcode: ContextPush * * *
3883 **
3884 ** Save the current Vdbe context such that it can be restored by a ContextPop
3885 ** opcode. The context stores the last insert row id, the last statement change
3886 ** count, and the current statement change count.
3887 */
3888 case OP_ContextPush: {
3889 p->contextStackDepth++;
3890 assert(p->contextStackDepth > 0);
3891 p->contextStack = sqliteRealloc(p->contextStack,
3892 sizeof(Context) * p->contextStackDepth);
3893 if( p->contextStack==0 ) goto no_mem;
3894 p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid;
3895 p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange;
3896 p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange;
3897 break;
3898 }
3899
3900 /* Opcode: ContextPop * * *
3901 **
3902 ** Restore the Vdbe context to the state it was in when contextPush was last
3903 ** executed. The context stores the last insert row id, the last statement
3904 ** change count, and the current statement change count.
3905 */
3906 case OP_ContextPop: {
3907 assert(p->contextStackDepth > 0);
3908 p->contextStackDepth--;
3909 p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid;
3910 p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange;
3911 p->db->csChange = p->contextStack[p->contextStackDepth].csChange;
3912 if( p->contextStackDepth == 0 ){
3913 sqliteFree(p->contextStack);
3914 p->contextStack = 0;
3915 }
3916 break;
3917 }
3918
3919 /* Opcode: SortPut * * *
3920 **
3921 ** The TOS is the key and the NOS is the data. Pop both from the stack
3922 ** and put them on the sorter. The key and data should have been
3923 ** made using SortMakeKey and SortMakeRec, respectively.
3924 */
3925 case OP_SortPut: {
3926 Mem *pNos = &pTos[-1];
3927 Sorter *pSorter;
3928 assert( pNos>=p->aStack );
3929 if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem;
3930 pSorter = sqliteMallocRaw( sizeof(Sorter) );
3931 if( pSorter==0 ) goto no_mem;
3932 pSorter->pNext = p->pSort;
3933 p->pSort = pSorter;
3934 assert( pTos->flags & MEM_Dyn );
3935 pSorter->nKey = pTos->n;
3936 pSorter->zKey = pTos->z;
3937 assert( pNos->flags & MEM_Dyn );
3938 pSorter->nData = pNos->n;
3939 pSorter->pData = pNos->z;
3940 pTos -= 2;
3941 break;
3942 }
3943
3944 /* Opcode: SortMakeRec P1 * *
3945 **
3946 ** The top P1 elements are the arguments to a callback. Form these
3947 ** elements into a single data entry that can be stored on a sorter
3948 ** using SortPut and later fed to a callback using SortCallback.
3949 */
3950 case OP_SortMakeRec: {
3951 char *z;
3952 char **azArg;
3953 int nByte;
3954 int nField;
3955 int i;
3956 Mem *pRec;
3957
3958 nField = pOp->p1;
3959 pRec = &pTos[1-nField];
3960 assert( pRec>=p->aStack );
3961 nByte = 0;
3962 for(i=0; i<nField; i++, pRec++){
3963 if( (pRec->flags & MEM_Null)==0 ){
3964 Stringify(pRec);
3965 nByte += pRec->n;
3966 }
3967 }
3968 nByte += sizeof(char*)*(nField+1);
3969 azArg = sqliteMallocRaw( nByte );
3970 if( azArg==0 ) goto no_mem;
3971 z = (char*)&azArg[nField+1];
3972 for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
3973 if( pRec->flags & MEM_Null ){
3974 azArg[i] = 0;
3975 }else{
3976 azArg[i] = z;
3977 memcpy(z, pRec->z, pRec->n);
3978 z += pRec->n;
3979 }
3980 }
3981 popStack(&pTos, nField);
3982 pTos++;
3983 pTos->n = nByte;
3984 pTos->z = (char*)azArg;
3985 pTos->flags = MEM_Str | MEM_Dyn;
3986 break;
3987 }
3988
3989 /* Opcode: SortMakeKey * * P3
3990 **
3991 ** Convert the top few entries of the stack into a sort key. The
3992 ** number of stack entries consumed is the number of characters in
3993 ** the string P3. One character from P3 is prepended to each entry.
3994 ** The first character of P3 is prepended to the element lowest in
3995 ** the stack and the last character of P3 is prepended to the top of
3996 ** the stack. All stack entries are separated by a \000 character
3997 ** in the result. The whole key is terminated by two \000 characters
3998 ** in a row.
3999 **
4000 ** "N" is substituted in place of the P3 character for NULL values.
4001 **
4002 ** See also the MakeKey and MakeIdxKey opcodes.
4003 */
4004 case OP_SortMakeKey: {
4005 char *zNewKey;
4006 int nByte;
4007 int nField;
4008 int i, j, k;
4009 Mem *pRec;
4010
4011 nField = strlen(pOp->p3);
4012 pRec = &pTos[1-nField];
4013 nByte = 1;
4014 for(i=0; i<nField; i++, pRec++){
4015 if( pRec->flags & MEM_Null ){
4016 nByte += 2;
4017 }else{
4018 Stringify(pRec);
4019 nByte += pRec->n+2;
4020 }
4021 }
4022 zNewKey = sqliteMallocRaw( nByte );
4023 if( zNewKey==0 ) goto no_mem;
4024 j = 0;
4025 k = 0;
4026 for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
4027 if( pRec->flags & MEM_Null ){
4028 zNewKey[j++] = 'N';
4029 zNewKey[j++] = 0;
4030 k++;
4031 }else{
4032 zNewKey[j++] = pOp->p3[k++];
4033 memcpy(&zNewKey[j], pRec->z, pRec->n-1);
4034 j += pRec->n-1;
4035 zNewKey[j++] = 0;
4036 }
4037 }
4038 zNewKey[j] = 0;
4039 assert( j<nByte );
4040 popStack(&pTos, nField);
4041 pTos++;
4042 pTos->n = nByte;
4043 pTos->flags = MEM_Str|MEM_Dyn;
4044 pTos->z = zNewKey;
4045 break;
4046 }
4047
4048 /* Opcode: Sort * * *
4049 **
4050 ** Sort all elements on the sorter. The algorithm is a
4051 ** mergesort.
4052 */
4053 case OP_Sort: {
4054 int i;
4055 Sorter *pElem;
4056 Sorter *apSorter[NSORT];
4057 for(i=0; i<NSORT; i++){
4058 apSorter[i] = 0;
4059 }
4060 while( p->pSort ){
4061 pElem = p->pSort;
4062 p->pSort = pElem->pNext;
4063 pElem->pNext = 0;
4064 for(i=0; i<NSORT-1; i++){
4065 if( apSorter[i]==0 ){
4066 apSorter[i] = pElem;
4067 break;
4068 }else{
4069 pElem = Merge(apSorter[i], pElem);
4070 apSorter[i] = 0;
4071 }
4072 }
4073 if( i>=NSORT-1 ){
4074 apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
4075 }
4076 }
4077 pElem = 0;
4078 for(i=0; i<NSORT; i++){
4079 pElem = Merge(apSorter[i], pElem);
4080 }
4081 p->pSort = pElem;
4082 break;
4083 }
4084
4085 /* Opcode: SortNext * P2 *
4086 **
4087 ** Push the data for the topmost element in the sorter onto the
4088 ** stack, then remove the element from the sorter. If the sorter
4089 ** is empty, push nothing on the stack and instead jump immediately
4090 ** to instruction P2.
4091 */
4092 case OP_SortNext: {
4093 Sorter *pSorter = p->pSort;
4094 CHECK_FOR_INTERRUPT;
4095 if( pSorter!=0 ){
4096 p->pSort = pSorter->pNext;
4097 pTos++;
4098 pTos->z = pSorter->pData;
4099 pTos->n = pSorter->nData;
4100 pTos->flags = MEM_Str|MEM_Dyn;
4101 sqliteFree(pSorter->zKey);
4102 sqliteFree(pSorter);
4103 }else{
4104 pc = pOp->p2 - 1;
4105 }
4106 break;
4107 }
4108
4109 /* Opcode: SortCallback P1 * *
4110 **
4111 ** The top of the stack contains a callback record built using
4112 ** the SortMakeRec operation with the same P1 value as this
4113 ** instruction. Pop this record from the stack and invoke the
4114 ** callback on it.
4115 */
4116 case OP_SortCallback: {
4117 assert( pTos>=p->aStack );
4118 assert( pTos->flags & MEM_Str );
4119 p->nCallback++;
4120 p->pc = pc+1;
4121 p->azResColumn = (char**)pTos->z;
4122 assert( p->nResColumn==pOp->p1 );
4123 p->popStack = 1;
4124 p->pTos = pTos;
4125 return SQLITE_ROW;
4126 }
4127
4128 /* Opcode: SortReset * * *
4129 **
4130 ** Remove any elements that remain on the sorter.
4131 */
4132 case OP_SortReset: {
4133 sqliteVdbeSorterReset(p);
4134 break;
4135 }
4136
4137 /* Opcode: FileOpen * * P3
4138 **
4139 ** Open the file named by P3 for reading using the FileRead opcode.
4140 ** If P3 is "stdin" then open standard input for reading.
4141 */
4142 case OP_FileOpen: {
4143 assert( pOp->p3!=0 );
4144 if( p->pFile ){
4145 if( p->pFile!=stdin ) fclose(p->pFile);
4146 p->pFile = 0;
4147 }
4148 if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
4149 p->pFile = stdin;
4150 }else{
4151 p->pFile = fopen(pOp->p3, "r");
4152 }
4153 if( p->pFile==0 ){
4154 sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0);
4155 rc = SQLITE_ERROR;
4156 }
4157 break;
4158 }
4159
4160 /* Opcode: FileRead P1 P2 P3
4161 **
4162 ** Read a single line of input from the open file (the file opened using
4163 ** FileOpen). If we reach end-of-file, jump immediately to P2. If
4164 ** we are able to get another line, split the line apart using P3 as
4165 ** a delimiter. There should be P1 fields. If the input line contains
4166 ** more than P1 fields, ignore the excess. If the input line contains
4167 ** fewer than P1 fields, assume the remaining fields contain NULLs.
4168 **
4169 ** Input ends if a line consists of just "\.". A field containing only
4170 ** "\N" is a null field. The backslash \ character can be used be used
4171 ** to escape newlines or the delimiter.
4172 */
4173 case OP_FileRead: {
4174 int n, eol, nField, i, c, nDelim;
4175 char *zDelim, *z;
4176 CHECK_FOR_INTERRUPT;
4177 if( p->pFile==0 ) goto fileread_jump;
4178 nField = pOp->p1;
4179 if( nField<=0 ) goto fileread_jump;
4180 if( nField!=p->nField || p->azField==0 ){
4181 char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
4182 if( azField==0 ){ goto no_mem; }
4183 p->azField = azField;
4184 p->nField = nField;
4185 }
4186 n = 0;
4187 eol = 0;
4188 while( eol==0 ){
4189 if( p->zLine==0 || n+200>p->nLineAlloc ){
4190 char *zLine;
4191 p->nLineAlloc = p->nLineAlloc*2 + 300;
4192 zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
4193 if( zLine==0 ){
4194 p->nLineAlloc = 0;
4195 sqliteFree(p->zLine);
4196 p->zLine = 0;
4197 goto no_mem;
4198 }
4199 p->zLine = zLine;
4200 }
4201 if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
4202 eol = 1;
4203 p->zLine[n] = 0;
4204 }else{
4205 int c;
4206 while( (c = p->zLine[n])!=0 ){
4207 if( c=='\\' ){
4208 if( p->zLine[n+1]==0 ) break;
4209 n += 2;
4210 }else if( c=='\n' ){
4211 p->zLine[n] = 0;
4212 eol = 1;
4213 break;
4214 }else{
4215 n++;
4216 }
4217 }
4218 }
4219 }
4220 if( n==0 ) goto fileread_jump;
4221 z = p->zLine;
4222 if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
4223 goto fileread_jump;
4224 }
4225 zDelim = pOp->p3;
4226 if( zDelim==0 ) zDelim = "\t";
4227 c = zDelim[0];
4228 nDelim = strlen(zDelim);
4229 p->azField[0] = z;
4230 for(i=1; *z!=0 && i<=nField; i++){
4231 int from, to;
4232 from = to = 0;
4233 if( z[0]=='\\' && z[1]=='N'
4234 && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
4235 if( i<=nField ) p->azField[i-1] = 0;
4236 z += 2 + nDelim;
4237 if( i<nField ) p->azField[i] = z;
4238 continue;
4239 }
4240 while( z[from] ){
4241 if( z[from]=='\\' && z[from+1]!=0 ){
4242 int tx = z[from+1];
4243 switch( tx ){
4244 case 'b': tx = '\b'; break;
4245 case 'f': tx = '\f'; break;
4246 case 'n': tx = '\n'; break;
4247 case 'r': tx = '\r'; break;
4248 case 't': tx = '\t'; break;
4249 case 'v': tx = '\v'; break;
4250 default: break;
4251 }
4252 z[to++] = tx;
4253 from += 2;
4254 continue;
4255 }
4256 if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
4257 z[to++] = z[from++];
4258 }
4259 if( z[from] ){
4260 z[to] = 0;
4261 z += from + nDelim;
4262 if( i<nField ) p->azField[i] = z;
4263 }else{
4264 z[to] = 0;
4265 z = "";
4266 }
4267 }
4268 while( i<nField ){
4269 p->azField[i++] = 0;
4270 }
4271 break;
4272
4273 /* If we reach end-of-file, or if anything goes wrong, jump here.
4274 ** This code will cause a jump to P2 */
4275 fileread_jump:
4276 pc = pOp->p2 - 1;
4277 break;
4278 }
4279
4280 /* Opcode: FileColumn P1 * *
4281 **
4282 ** Push onto the stack the P1-th column of the most recently read line
4283 ** from the input file.
4284 */
4285 case OP_FileColumn: {
4286 int i = pOp->p1;
4287 char *z;
4288 assert( i>=0 && i<p->nField );
4289 if( p->azField ){
4290 z = p->azField[i];
4291 }else{
4292 z = 0;
4293 }
4294 pTos++;
4295 if( z ){
4296 pTos->n = strlen(z) + 1;
4297 pTos->z = z;
4298 pTos->flags = MEM_Str | MEM_Ephem;
4299 }else{
4300 pTos->flags = MEM_Null;
4301 }
4302 break;
4303 }
4304
4305 /* Opcode: MemStore P1 P2 *
4306 **
4307 ** Write the top of the stack into memory location P1.
4308 ** P1 should be a small integer since space is allocated
4309 ** for all memory locations between 0 and P1 inclusive.
4310 **
4311 ** After the data is stored in the memory location, the
4312 ** stack is popped once if P2 is 1. If P2 is zero, then
4313 ** the original data remains on the stack.
4314 */
4315 case OP_MemStore: {
4316 int i = pOp->p1;
4317 Mem *pMem;
4318 assert( pTos>=p->aStack );
4319 if( i>=p->nMem ){
4320 int nOld = p->nMem;
4321 Mem *aMem;
4322 p->nMem = i + 5;
4323 aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
4324 if( aMem==0 ) goto no_mem;
4325 if( aMem!=p->aMem ){
4326 int j;
4327 for(j=0; j<nOld; j++){
4328 if( aMem[j].flags & MEM_Short ){
4329 aMem[j].z = aMem[j].zShort;
4330 }
4331 }
4332 }
4333 p->aMem = aMem;
4334 if( nOld<p->nMem ){
4335 memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
4336 }
4337 }
4338 Deephemeralize(pTos);
4339 pMem = &p->aMem[i];
4340 Release(pMem);
4341 *pMem = *pTos;
4342 if( pMem->flags & MEM_Dyn ){
4343 if( pOp->p2 ){
4344 pTos->flags = MEM_Null;
4345 }else{
4346 pMem->z = sqliteMallocRaw( pMem->n );
4347 if( pMem->z==0 ) goto no_mem;
4348 memcpy(pMem->z, pTos->z, pMem->n);
4349 }
4350 }else if( pMem->flags & MEM_Short ){
4351 pMem->z = pMem->zShort;
4352 }
4353 if( pOp->p2 ){
4354 Release(pTos);
4355 pTos--;
4356 }
4357 break;
4358 }
4359
4360 /* Opcode: MemLoad P1 * *
4361 **
4362 ** Push a copy of the value in memory location P1 onto the stack.
4363 **
4364 ** If the value is a string, then the value pushed is a pointer to
4365 ** the string that is stored in the memory location. If the memory
4366 ** location is subsequently changed (using OP_MemStore) then the
4367 ** value pushed onto the stack will change too.
4368 */
4369 case OP_MemLoad: {
4370 int i = pOp->p1;
4371 assert( i>=0 && i<p->nMem );
4372 pTos++;
4373 memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
4374 if( pTos->flags & MEM_Str ){
4375 pTos->flags |= MEM_Ephem;
4376 pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
4377 }
4378 break;
4379 }
4380
4381 /* Opcode: MemIncr P1 P2 *
4382 **
4383 ** Increment the integer valued memory cell P1 by 1. If P2 is not zero
4384 ** and the result after the increment is greater than zero, then jump
4385 ** to P2.
4386 **
4387 ** This instruction throws an error if the memory cell is not initially
4388 ** an integer.
4389 */
4390 case OP_MemIncr: {
4391 int i = pOp->p1;
4392 Mem *pMem;
4393 assert( i>=0 && i<p->nMem );
4394 pMem = &p->aMem[i];
4395 assert( pMem->flags==MEM_Int );
4396 pMem->i++;
4397 if( pOp->p2>0 && pMem->i>0 ){
4398 pc = pOp->p2 - 1;
4399 }
4400 break;
4401 }
4402
4403 /* Opcode: AggReset * P2 *
4404 **
4405 ** Reset the aggregator so that it no longer contains any data.
4406 ** Future aggregator elements will contain P2 values each.
4407 */
4408 case OP_AggReset: {
4409 sqliteVdbeAggReset(&p->agg);
4410 p->agg.nMem = pOp->p2;
4411 p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
4412 if( p->agg.apFunc==0 ) goto no_mem;
4413 break;
4414 }
4415
4416 /* Opcode: AggInit * P2 P3
4417 **
4418 ** Initialize the function parameters for an aggregate function.
4419 ** The aggregate will operate out of aggregate column P2.
4420 ** P3 is a pointer to the FuncDef structure for the function.
4421 */
4422 case OP_AggInit: {
4423 int i = pOp->p2;
4424 assert( i>=0 && i<p->agg.nMem );
4425 p->agg.apFunc[i] = (FuncDef*)pOp->p3;
4426 break;
4427 }
4428
4429 /* Opcode: AggFunc * P2 P3
4430 **
4431 ** Execute the step function for an aggregate. The
4432 ** function has P2 arguments. P3 is a pointer to the FuncDef
4433 ** structure that specifies the function.
4434 **
4435 ** The top of the stack must be an integer which is the index of
4436 ** the aggregate column that corresponds to this aggregate function.
4437 ** Ideally, this index would be another parameter, but there are
4438 ** no free parameters left. The integer is popped from the stack.
4439 */
4440 case OP_AggFunc: {
4441 int n = pOp->p2;
4442 int i;
4443 Mem *pMem, *pRec;
4444 char **azArgv = p->zArgv;
4445 sqlite_func ctx;
4446
4447 assert( n>=0 );
4448 assert( pTos->flags==MEM_Int );
4449 pRec = &pTos[-n];
4450 assert( pRec>=p->aStack );
4451 for(i=0; i<n; i++, pRec++){
4452 if( pRec->flags & MEM_Null ){
4453 azArgv[i] = 0;
4454 }else{
4455 Stringify(pRec);
4456 azArgv[i] = pRec->z;
4457 }
4458 }
4459 i = pTos->i;
4460 assert( i>=0 && i<p->agg.nMem );
4461 ctx.pFunc = (FuncDef*)pOp->p3;
4462 pMem = &p->agg.pCurrent->aMem[i];
4463 ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */
4464 ctx.pAgg = pMem->z;
4465 ctx.cnt = ++pMem->i;
4466 ctx.isError = 0;
4467 ctx.isStep = 1;
4468 (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv);
4469 pMem->z = ctx.pAgg;
4470 pMem->flags = MEM_AggCtx;
4471 popStack(&pTos, n+1);
4472 if( ctx.isError ){
4473 rc = SQLITE_ERROR;
4474 }
4475 break;
4476 }
4477
4478 /* Opcode: AggFocus * P2 *
4479 **
4480 ** Pop the top of the stack and use that as an aggregator key. If
4481 ** an aggregator with that same key already exists, then make the
4482 ** aggregator the current aggregator and jump to P2. If no aggregator
4483 ** with the given key exists, create one and make it current but
4484 ** do not jump.
4485 **
4486 ** The order of aggregator opcodes is important. The order is:
4487 ** AggReset AggFocus AggNext. In other words, you must execute
4488 ** AggReset first, then zero or more AggFocus operations, then
4489 ** zero or more AggNext operations. You must not execute an AggFocus
4490 ** in between an AggNext and an AggReset.
4491 */
4492 case OP_AggFocus: {
4493 AggElem *pElem;
4494 char *zKey;
4495 int nKey;
4496
4497 assert( pTos>=p->aStack );
4498 Stringify(pTos);
4499 zKey = pTos->z;
4500 nKey = pTos->n;
4501 pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
4502 if( pElem ){
4503 p->agg.pCurrent = pElem;
4504 pc = pOp->p2 - 1;
4505 }else{
4506 AggInsert(&p->agg, zKey, nKey);
4507 if( sqlite_malloc_failed ) goto no_mem;
4508 }
4509 Release(pTos);
4510 pTos--;
4511 break;
4512 }
4513
4514 /* Opcode: AggSet * P2 *
4515 **
4516 ** Move the top of the stack into the P2-th field of the current
4517 ** aggregate. String values are duplicated into new memory.
4518 */
4519 case OP_AggSet: {
4520 AggElem *pFocus = AggInFocus(p->agg);
4521 Mem *pMem;
4522 int i = pOp->p2;
4523 assert( pTos>=p->aStack );
4524 if( pFocus==0 ) goto no_mem;
4525 assert( i>=0 && i<p->agg.nMem );
4526 Deephemeralize(pTos);
4527 pMem = &pFocus->aMem[i];
4528 Release(pMem);
4529 *pMem = *pTos;
4530 if( pMem->flags & MEM_Dyn ){
4531 pTos->flags = MEM_Null;
4532 }else if( pMem->flags & MEM_Short ){
4533 pMem->z = pMem->zShort;
4534 }
4535 Release(pTos);
4536 pTos--;
4537 break;
4538 }
4539
4540 /* Opcode: AggGet * P2 *
4541 **
4542 ** Push a new entry onto the stack which is a copy of the P2-th field
4543 ** of the current aggregate. Strings are not duplicated so
4544 ** string values will be ephemeral.
4545 */
4546 case OP_AggGet: {
4547 AggElem *pFocus = AggInFocus(p->agg);
4548 Mem *pMem;
4549 int i = pOp->p2;
4550 if( pFocus==0 ) goto no_mem;
4551 assert( i>=0 && i<p->agg.nMem );
4552 pTos++;
4553 pMem = &pFocus->aMem[i];
4554 *pTos = *pMem;
4555 if( pTos->flags & MEM_Str ){
4556 pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
4557 pTos->flags |= MEM_Ephem;
4558 }
4559 break;
4560 }
4561
4562 /* Opcode: AggNext * P2 *
4563 **
4564 ** Make the next aggregate value the current aggregate. The prior
4565 ** aggregate is deleted. If all aggregate values have been consumed,
4566 ** jump to P2.
4567 **
4568 ** The order of aggregator opcodes is important. The order is:
4569 ** AggReset AggFocus AggNext. In other words, you must execute
4570 ** AggReset first, then zero or more AggFocus operations, then
4571 ** zero or more AggNext operations. You must not execute an AggFocus
4572 ** in between an AggNext and an AggReset.
4573 */
4574 case OP_AggNext: {
4575 CHECK_FOR_INTERRUPT;
4576 if( p->agg.pSearch==0 ){
4577 p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
4578 }else{
4579 p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
4580 }
4581 if( p->agg.pSearch==0 ){
4582 pc = pOp->p2 - 1;
4583 } else {
4584 int i;
4585 sqlite_func ctx;
4586 Mem *aMem;
4587 p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
4588 aMem = p->agg.pCurrent->aMem;
4589 for(i=0; i<p->agg.nMem; i++){
4590 int freeCtx;
4591 if( p->agg.apFunc[i]==0 ) continue;
4592 if( p->agg.apFunc[i]->xFinalize==0 ) continue;
4593 ctx.s.flags = MEM_Null;
4594 ctx.s.z = aMem[i].zShort;
4595 ctx.pAgg = (void*)aMem[i].z;
4596 freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort;
4597 ctx.cnt = aMem[i].i;
4598 ctx.isStep = 0;
4599 ctx.pFunc = p->agg.apFunc[i];
4600 (*p->agg.apFunc[i]->xFinalize)(&ctx);
4601 if( freeCtx ){
4602 sqliteFree( aMem[i].z );
4603 }
4604 aMem[i] = ctx.s;
4605 if( aMem[i].flags & MEM_Short ){
4606 aMem[i].z = aMem[i].zShort;
4607 }
4608 }
4609 }
4610 break;
4611 }
4612
4613 /* Opcode: SetInsert P1 * P3
4614 **
4615 ** If Set P1 does not exist then create it. Then insert value
4616 ** P3 into that set. If P3 is NULL, then insert the top of the
4617 ** stack into the set.
4618 */
4619 case OP_SetInsert: {
4620 int i = pOp->p1;
4621 if( p->nSet<=i ){
4622 int k;
4623 Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
4624 if( aSet==0 ) goto no_mem;
4625 p->aSet = aSet;
4626 for(k=p->nSet; k<=i; k++){
4627 sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
4628 }
4629 p->nSet = i+1;
4630 }
4631 if( pOp->p3 ){
4632 sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
4633 }else{
4634 assert( pTos>=p->aStack );
4635 Stringify(pTos);
4636 sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p);
4637 Release(pTos);
4638 pTos--;
4639 }
4640 if( sqlite_malloc_failed ) goto no_mem;
4641 break;
4642 }
4643
4644 /* Opcode: SetFound P1 P2 *
4645 **
4646 ** Pop the stack once and compare the value popped off with the
4647 ** contents of set P1. If the element popped exists in set P1,
4648 ** then jump to P2. Otherwise fall through.
4649 */
4650 case OP_SetFound: {
4651 int i = pOp->p1;
4652 assert( pTos>=p->aStack );
4653 Stringify(pTos);
4654 if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){
4655 pc = pOp->p2 - 1;
4656 }
4657 Release(pTos);
4658 pTos--;
4659 break;
4660 }
4661
4662 /* Opcode: SetNotFound P1 P2 *
4663 **
4664 ** Pop the stack once and compare the value popped off with the
4665 ** contents of set P1. If the element popped does not exists in
4666 ** set P1, then jump to P2. Otherwise fall through.
4667 */
4668 case OP_SetNotFound: {
4669 int i = pOp->p1;
4670 assert( pTos>=p->aStack );
4671 Stringify(pTos);
4672 if( i<0 || i>=p->nSet ||
4673 sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){
4674 pc = pOp->p2 - 1;
4675 }
4676 Release(pTos);
4677 pTos--;
4678 break;
4679 }
4680
4681 /* Opcode: SetFirst P1 P2 *
4682 **
4683 ** Read the first element from set P1 and push it onto the stack. If the
4684 ** set is empty, push nothing and jump immediately to P2. This opcode is
4685 ** used in combination with OP_SetNext to loop over all elements of a set.
4686 */
4687 /* Opcode: SetNext P1 P2 *
4688 **
4689 ** Read the next element from set P1 and push it onto the stack. If there
4690 ** are no more elements in the set, do not do the push and fall through.
4691 ** Otherwise, jump to P2 after pushing the next set element.
4692 */
4693 case OP_SetFirst:
4694 case OP_SetNext: {
4695 Set *pSet;
4696 CHECK_FOR_INTERRUPT;
4697 if( pOp->p1<0 || pOp->p1>=p->nSet ){
4698 if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
4699 break;
4700 }
4701 pSet = &p->aSet[pOp->p1];
4702 if( pOp->opcode==OP_SetFirst ){
4703 pSet->prev = sqliteHashFirst(&pSet->hash);
4704 if( pSet->prev==0 ){
4705 pc = pOp->p2 - 1;
4706 break;
4707 }
4708 }else{
4709 if( pSet->prev ){
4710 pSet->prev = sqliteHashNext(pSet->prev);
4711 }
4712 if( pSet->prev==0 ){
4713 break;
4714 }else{
4715 pc = pOp->p2 - 1;
4716 }
4717 }
4718 pTos++;
4719 pTos->z = sqliteHashKey(pSet->prev);
4720 pTos->n = sqliteHashKeysize(pSet->prev);
4721 pTos->flags = MEM_Str | MEM_Ephem;
4722 break;
4723 }
4724
4725 /* Opcode: Vacuum * * *
4726 **
4727 ** Vacuum the entire database. This opcode will cause other virtual
4728 ** machines to be created and run. It may not be called from within
4729 ** a transaction.
4730 */
4731 case OP_Vacuum: {
4732 if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
4733 rc = sqliteRunVacuum(&p->zErrMsg, db);
4734 if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
4735 break;
4736 }
4737
4738 /* Opcode: StackDepth * * *
4739 **
4740 ** Push an integer onto the stack which is the depth of the stack prior
4741 ** to that integer being pushed.
4742 */
4743 case OP_StackDepth: {
4744 int depth = (&pTos[1]) - p->aStack;
4745 pTos++;
4746 pTos->i = depth;
4747 pTos->flags = MEM_Int;
4748 break;
4749 }
4750
4751 /* Opcode: StackReset * * *
4752 **
4753 ** Pop a single integer off of the stack. Then pop the stack
4754 ** as many times as necessary to get the depth of the stack down
4755 ** to the value of the integer that was popped.
4756 */
4757 case OP_StackReset: {
4758 int depth, goal;
4759 assert( pTos>=p->aStack );
4760 Integerify(pTos);
4761 goal = pTos->i;
4762 depth = (&pTos[1]) - p->aStack;
4763 assert( goal<depth );
4764 popStack(&pTos, depth-goal);
4765 break;
4766 }
4767
4768 /* An other opcode is illegal...
4769 */
4770 default: {
4771 sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode);
4772 sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
4773 rc = SQLITE_INTERNAL;
4774 break;
4775 }
4776
4777 /*****************************************************************************
4778 ** The cases of the switch statement above this line should all be indented
4779 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
4780 ** readability. From this point on down, the normal indentation rules are
4781 ** restored.
4782 *****************************************************************************/
4783 }
4784
4785 #ifdef VDBE_PROFILE
4786 {
4787 long long elapse = hwtime() - start;
4788 pOp->cycles += elapse;
4789 pOp->cnt++;
4790 #if 0
4791 fprintf(stdout, "%10lld ", elapse);
4792 sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]);
4793 #endif
4794 }
4795 #endif
4796
4797 /* The following code adds nothing to the actual functionality
4798 ** of the program. It is only here for testing and debugging.
4799 ** On the other hand, it does burn CPU cycles every time through
4800 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
4801 */
4802 #ifndef NDEBUG
4803 /* Sanity checking on the top element of the stack */
4804 if( pTos>=p->aStack ){
4805 assert( pTos->flags!=0 ); /* Must define some type */
4806 if( pTos->flags & MEM_Str ){
4807 int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
4808 assert( x!=0 ); /* Strings must define a string subtype */
4809 assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
4810 assert( pTos->z!=0 ); /* Strings must have a value */
4811 /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
4812 assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort );
4813 assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort );
4814 }else{
4815 /* Cannot define a string subtype for non-string objects */
4816 assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
4817 }
4818 /* MEM_Null excludes all other types */
4819 assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 );
4820 }
4821 if( pc<-1 || pc>=p->nOp ){
4822 sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0);
4823 rc = SQLITE_INTERNAL;
4824 }
4825 if( p->trace && pTos>=p->aStack ){
4826 int i;
4827 fprintf(p->trace, "Stack:");
4828 for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
4829 if( pTos[i].flags & MEM_Null ){
4830 fprintf(p->trace, " NULL");
4831 }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
4832 fprintf(p->trace, " si:%d", pTos[i].i);
4833 }else if( pTos[i].flags & MEM_Int ){
4834 fprintf(p->trace, " i:%d", pTos[i].i);
4835 }else if( pTos[i].flags & MEM_Real ){
4836 fprintf(p->trace, " r:%g", pTos[i].r);
4837 }else if( pTos[i].flags & MEM_Str ){
4838 int j, k;
4839 char zBuf[100];
4840 zBuf[0] = ' ';
4841 if( pTos[i].flags & MEM_Dyn ){
4842 zBuf[1] = 'z';
4843 assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
4844 }else if( pTos[i].flags & MEM_Static ){
4845 zBuf[1] = 't';
4846 assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
4847 }else if( pTos[i].flags & MEM_Ephem ){
4848 zBuf[1] = 'e';
4849 assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 );
4850 }else{
4851 zBuf[1] = 's';
4852 }
4853 zBuf[2] = '[';
4854 k = 3;
4855 for(j=0; j<20 && j<pTos[i].n; j++){
4856 int c = pTos[i].z[j];
4857 if( c==0 && j==pTos[i].n-1 ) break;
4858 if( isprint(c) && !isspace(c) ){
4859 zBuf[k++] = c;
4860 }else{
4861 zBuf[k++] = '.';
4862 }
4863 }
4864 zBuf[k++] = ']';
4865 zBuf[k++] = 0;
4866 fprintf(p->trace, "%s", zBuf);
4867 }else{
4868 fprintf(p->trace, " ???");
4869 }
4870 }
4871 if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
4872 fprintf(p->trace,"\n");
4873 }
4874 #endif
4875 } /* The end of the for(;;) loop the loops through opcodes */
4876
4877 /* If we reach this point, it means that execution is finished.
4878 */
4879 vdbe_halt:
4880 CHECK_FOR_INTERRUPT
4881 if( rc ){
4882 p->rc = rc;
4883 rc = SQLITE_ERROR;
4884 }else{
4885 rc = SQLITE_DONE;
4886 }
4887 p->magic = VDBE_MAGIC_HALT;
4888 p->pTos = pTos;
4889 return rc;
4890
4891 /* Jump to here if a malloc() fails. It's hard to get a malloc()
4892 ** to fail on a modern VM computer, so this code is untested.
4893 */
4894 no_mem:
4895 sqliteSetString(&p->zErrMsg, "out of memory", (char*)0);
4896 rc = SQLITE_NOMEM;
4897 goto vdbe_halt;
4898
4899 /* Jump to here for an SQLITE_MISUSE error.
4900 */
4901 abort_due_to_misuse:
4902 rc = SQLITE_MISUSE;
4903 /* Fall thru into abort_due_to_error */
4904
4905 /* Jump to here for any other kind of fatal error. The "rc" variable
4906 ** should hold the error number.
4907 */
4908 abort_due_to_error:
4909 if( p->zErrMsg==0 ){
4910 if( sqlite_malloc_failed ) rc = SQLITE_NOMEM;
4911 sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
4912 }
4913 goto vdbe_halt;
4914
4915 /* Jump to here if the sqlite_interrupt() API sets the interrupt
4916 ** flag.
4917 */
4918 abort_due_to_interrupt:
4919 assert( db->flags & SQLITE_Interrupt );
4920 db->flags &= ~SQLITE_Interrupt;
4921 if( db->magic!=SQLITE_MAGIC_BUSY ){
4922 rc = SQLITE_MISUSE;
4923 }else{
4924 rc = SQLITE_INTERRUPT;
4925 }
4926 sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
4927 goto vdbe_halt;
4928 }
4929