xref: /linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 
39 #include "i915_drv.h"
40 #include "i915_reg.h"
41 #include "gt/intel_engine_regs.h"
42 #include "gt/intel_gpu_commands.h"
43 #include "gt/intel_gt_regs.h"
44 #include "gt/intel_lrc.h"
45 #include "gt/intel_ring.h"
46 #include "gt/intel_gt_requests.h"
47 #include "gt/shmem_utils.h"
48 #include "gvt.h"
49 #include "i915_pvinfo.h"
50 #include "trace.h"
51 
52 #include "display/i9xx_plane_regs.h"
53 #include "display/intel_sprite_regs.h"
54 #include "gem/i915_gem_context.h"
55 #include "gem/i915_gem_pm.h"
56 #include "gt/intel_context.h"
57 
58 #define INVALID_OP    (~0U)
59 
60 #define OP_LEN_MI           9
61 #define OP_LEN_2D           10
62 #define OP_LEN_3D_MEDIA     16
63 #define OP_LEN_MFX_VC       16
64 #define OP_LEN_VEBOX	    16
65 
66 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
67 
68 struct sub_op_bits {
69 	int hi;
70 	int low;
71 };
72 struct decode_info {
73 	const char *name;
74 	int op_len;
75 	int nr_sub_op;
76 	const struct sub_op_bits *sub_op;
77 };
78 
79 #define   MAX_CMD_BUDGET			0x7fffffff
80 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
81 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
82 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
83 
84 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
85 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
86 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
87 
88 /* Render Command Map */
89 
90 /* MI_* command Opcode (28:23) */
91 #define OP_MI_NOOP                          0x0
92 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
93 #define OP_MI_USER_INTERRUPT                0x2
94 #define OP_MI_WAIT_FOR_EVENT                0x3
95 #define OP_MI_FLUSH                         0x4
96 #define OP_MI_ARB_CHECK                     0x5
97 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
98 #define OP_MI_REPORT_HEAD                   0x7
99 #define OP_MI_ARB_ON_OFF                    0x8
100 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
101 #define OP_MI_BATCH_BUFFER_END              0xA
102 #define OP_MI_SUSPEND_FLUSH                 0xB
103 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
104 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
105 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
106 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
107 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
108 #define OP_MI_DISPLAY_FLIP                  0x14
109 #define OP_MI_SEMAPHORE_MBOX                0x16
110 #define OP_MI_SET_CONTEXT                   0x18
111 #define OP_MI_MATH                          0x1A
112 #define OP_MI_URB_CLEAR                     0x19
113 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
114 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
115 
116 #define OP_MI_STORE_DATA_IMM                0x20
117 #define OP_MI_STORE_DATA_INDEX              0x21
118 #define OP_MI_LOAD_REGISTER_IMM             0x22
119 #define OP_MI_UPDATE_GTT                    0x23
120 #define OP_MI_STORE_REGISTER_MEM            0x24
121 #define OP_MI_FLUSH_DW                      0x26
122 #define OP_MI_CLFLUSH                       0x27
123 #define OP_MI_REPORT_PERF_COUNT             0x28
124 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
125 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
126 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
127 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
128 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
129 #define OP_MI_2E			    0x2E  /* BDW+ */
130 #define OP_MI_2F			    0x2F  /* BDW+ */
131 #define OP_MI_BATCH_BUFFER_START            0x31
132 
133 /* Bit definition for dword 0 */
134 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
135 
136 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
137 
138 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
139 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
140 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
141 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
142 
143 /* 2D command: Opcode (28:22) */
144 #define OP_2D(x)    ((2<<7) | x)
145 
146 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
147 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
148 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
149 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
150 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
151 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
152 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
153 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
154 #define OP_XY_PAT_BLT                               OP_2D(0x51)
155 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
156 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
157 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
158 #define OP_XY_FULL_BLT                              OP_2D(0x55)
159 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
160 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
161 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
162 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
163 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
164 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
165 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
166 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
167 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
168 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
169 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
170 
171 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
172 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
173 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
174 
175 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
176 
177 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
178 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
179 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
180 #define OP_SWTESS_BASE_ADDRESS			OP_3D_MEDIA(0x0, 0x1, 0x03)
181 
182 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
183 
184 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
185 
186 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
187 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
188 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
189 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
190 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
191 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
192 
193 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
194 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
195 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
196 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
197 
198 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
199 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
200 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
201 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
202 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
203 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
204 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
205 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
206 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
207 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
208 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
209 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
210 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
211 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
212 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
213 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
214 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
215 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
216 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
217 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
218 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
219 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
220 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
221 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
222 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
223 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
224 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
225 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
226 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
227 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
228 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
229 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
230 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
231 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
232 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
233 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
234 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
235 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
236 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
237 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
238 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
239 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
240 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
241 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
242 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
243 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
244 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
245 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
246 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
247 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
248 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
249 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
250 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
251 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
252 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
253 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
254 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
255 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
256 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
257 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
258 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
259 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
260 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
261 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
262 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
263 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
264 
265 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
266 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
267 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
268 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
269 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
270 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
271 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
272 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
273 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
274 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
275 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
276 
277 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
278 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
279 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
280 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
281 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
282 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
283 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
284 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
285 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
286 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
287 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
288 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
289 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
290 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
291 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
292 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
293 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
294 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
295 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
296 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
297 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
298 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
299 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
300 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
301 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
302 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
303 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
304 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
305 
306 /* VCCP Command Parser */
307 
308 /*
309  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
310  * git://anongit.freedesktop.org/vaapi/intel-driver
311  * src/i965_defines.h
312  *
313  */
314 
315 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
316 	(3 << 13 | \
317 	 (pipeline) << 11 | \
318 	 (op) << 8 | \
319 	 (sub_opa) << 5 | \
320 	 (sub_opb))
321 
322 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
323 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
324 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
325 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
326 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
327 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
328 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
329 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
330 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
331 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
332 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
333 
334 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
335 
336 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
337 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
338 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
339 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
340 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
341 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
342 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
343 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
344 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
345 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
346 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
347 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
348 
349 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
350 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
351 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
352 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
353 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
354 
355 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
356 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
357 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
358 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
359 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
360 
361 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
362 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
363 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
364 
365 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
366 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
367 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
368 
369 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
370 	(3 << 13 | \
371 	 (pipeline) << 11 | \
372 	 (op) << 8 | \
373 	 (sub_opa) << 5 | \
374 	 (sub_opb))
375 
376 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
377 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
378 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
379 
380 struct parser_exec_state;
381 
382 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
383 
384 #define GVT_CMD_HASH_BITS   7
385 
386 /* which DWords need address fix */
387 #define ADDR_FIX_1(x1)			(1 << (x1))
388 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
389 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
390 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
391 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
392 
393 #define DWORD_FIELD(dword, end, start) \
394 	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
395 
396 #define OP_LENGTH_BIAS 2
397 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
398 
gvt_check_valid_cmd_length(int len,int valid_len)399 static int gvt_check_valid_cmd_length(int len, int valid_len)
400 {
401 	if (valid_len != len) {
402 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
403 			len, valid_len);
404 		return -EFAULT;
405 	}
406 	return 0;
407 }
408 
409 struct cmd_info {
410 	const char *name;
411 	u32 opcode;
412 
413 #define F_LEN_MASK	3U
414 #define F_LEN_CONST  1U
415 #define F_LEN_VAR    0U
416 /* value is const although LEN maybe variable */
417 #define F_LEN_VAR_FIXED    (1<<1)
418 
419 /*
420  * command has its own ip advance logic
421  * e.g. MI_BATCH_START, MI_BATCH_END
422  */
423 #define F_IP_ADVANCE_CUSTOM (1<<2)
424 	u32 flag;
425 
426 #define R_RCS	BIT(RCS0)
427 #define R_VCS1  BIT(VCS0)
428 #define R_VCS2  BIT(VCS1)
429 #define R_VCS	(R_VCS1 | R_VCS2)
430 #define R_BCS	BIT(BCS0)
431 #define R_VECS	BIT(VECS0)
432 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
433 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
434 	intel_engine_mask_t rings;
435 
436 	/* devices that support this cmd: SNB/IVB/HSW/... */
437 	u16 devices;
438 
439 	/* which DWords are address that need fix up.
440 	 * bit 0 means a 32-bit non address operand in command
441 	 * bit 1 means address operand, which could be 32-bit
442 	 * or 64-bit depending on different architectures.(
443 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
444 	 * No matter the address length, each address only takes
445 	 * one bit in the bitmap.
446 	 */
447 	u16 addr_bitmap;
448 
449 	/* flag == F_LEN_CONST : command length
450 	 * flag == F_LEN_VAR : length bias bits
451 	 * Note: length is in DWord
452 	 */
453 	u32 len;
454 
455 	parser_cmd_handler handler;
456 
457 	/* valid length in DWord */
458 	u32 valid_len;
459 };
460 
461 struct cmd_entry {
462 	struct hlist_node hlist;
463 	const struct cmd_info *info;
464 };
465 
466 enum {
467 	RING_BUFFER_INSTRUCTION,
468 	BATCH_BUFFER_INSTRUCTION,
469 	BATCH_BUFFER_2ND_LEVEL,
470 	RING_BUFFER_CTX,
471 };
472 
473 enum {
474 	GTT_BUFFER,
475 	PPGTT_BUFFER
476 };
477 
478 struct parser_exec_state {
479 	struct intel_vgpu *vgpu;
480 	const struct intel_engine_cs *engine;
481 
482 	int buf_type;
483 
484 	/* batch buffer address type */
485 	int buf_addr_type;
486 
487 	/* graphics memory address of ring buffer start */
488 	unsigned long ring_start;
489 	unsigned long ring_size;
490 	unsigned long ring_head;
491 	unsigned long ring_tail;
492 
493 	/* instruction graphics memory address */
494 	unsigned long ip_gma;
495 
496 	/* mapped va of the instr_gma */
497 	void *ip_va;
498 	void *rb_va;
499 
500 	void *ret_bb_va;
501 	/* next instruction when return from  batch buffer to ring buffer */
502 	unsigned long ret_ip_gma_ring;
503 
504 	/* next instruction when return from 2nd batch buffer to batch buffer */
505 	unsigned long ret_ip_gma_bb;
506 
507 	/* batch buffer address type (GTT or PPGTT)
508 	 * used when ret from 2nd level batch buffer
509 	 */
510 	int saved_buf_addr_type;
511 	bool is_ctx_wa;
512 	bool is_init_ctx;
513 
514 	const struct cmd_info *info;
515 
516 	struct intel_vgpu_workload *workload;
517 };
518 
519 #define gmadr_dw_number(s)	\
520 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
521 
522 static unsigned long bypass_scan_mask = 0;
523 
524 /* ring ALL, type = 0 */
525 static const struct sub_op_bits sub_op_mi[] = {
526 	{31, 29},
527 	{28, 23},
528 };
529 
530 static const struct decode_info decode_info_mi = {
531 	"MI",
532 	OP_LEN_MI,
533 	ARRAY_SIZE(sub_op_mi),
534 	sub_op_mi,
535 };
536 
537 /* ring RCS, command type 2 */
538 static const struct sub_op_bits sub_op_2d[] = {
539 	{31, 29},
540 	{28, 22},
541 };
542 
543 static const struct decode_info decode_info_2d = {
544 	"2D",
545 	OP_LEN_2D,
546 	ARRAY_SIZE(sub_op_2d),
547 	sub_op_2d,
548 };
549 
550 /* ring RCS, command type 3 */
551 static const struct sub_op_bits sub_op_3d_media[] = {
552 	{31, 29},
553 	{28, 27},
554 	{26, 24},
555 	{23, 16},
556 };
557 
558 static const struct decode_info decode_info_3d_media = {
559 	"3D_Media",
560 	OP_LEN_3D_MEDIA,
561 	ARRAY_SIZE(sub_op_3d_media),
562 	sub_op_3d_media,
563 };
564 
565 /* ring VCS, command type 3 */
566 static const struct sub_op_bits sub_op_mfx_vc[] = {
567 	{31, 29},
568 	{28, 27},
569 	{26, 24},
570 	{23, 21},
571 	{20, 16},
572 };
573 
574 static const struct decode_info decode_info_mfx_vc = {
575 	"MFX_VC",
576 	OP_LEN_MFX_VC,
577 	ARRAY_SIZE(sub_op_mfx_vc),
578 	sub_op_mfx_vc,
579 };
580 
581 /* ring VECS, command type 3 */
582 static const struct sub_op_bits sub_op_vebox[] = {
583 	{31, 29},
584 	{28, 27},
585 	{26, 24},
586 	{23, 21},
587 	{20, 16},
588 };
589 
590 static const struct decode_info decode_info_vebox = {
591 	"VEBOX",
592 	OP_LEN_VEBOX,
593 	ARRAY_SIZE(sub_op_vebox),
594 	sub_op_vebox,
595 };
596 
597 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
598 	[RCS0] = {
599 		&decode_info_mi,
600 		NULL,
601 		NULL,
602 		&decode_info_3d_media,
603 		NULL,
604 		NULL,
605 		NULL,
606 		NULL,
607 	},
608 
609 	[VCS0] = {
610 		&decode_info_mi,
611 		NULL,
612 		NULL,
613 		&decode_info_mfx_vc,
614 		NULL,
615 		NULL,
616 		NULL,
617 		NULL,
618 	},
619 
620 	[BCS0] = {
621 		&decode_info_mi,
622 		NULL,
623 		&decode_info_2d,
624 		NULL,
625 		NULL,
626 		NULL,
627 		NULL,
628 		NULL,
629 	},
630 
631 	[VECS0] = {
632 		&decode_info_mi,
633 		NULL,
634 		NULL,
635 		&decode_info_vebox,
636 		NULL,
637 		NULL,
638 		NULL,
639 		NULL,
640 	},
641 
642 	[VCS1] = {
643 		&decode_info_mi,
644 		NULL,
645 		NULL,
646 		&decode_info_mfx_vc,
647 		NULL,
648 		NULL,
649 		NULL,
650 		NULL,
651 	},
652 };
653 
get_opcode(u32 cmd,const struct intel_engine_cs * engine)654 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
655 {
656 	const struct decode_info *d_info;
657 
658 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
659 	if (d_info == NULL)
660 		return INVALID_OP;
661 
662 	return cmd >> (32 - d_info->op_len);
663 }
664 
665 static inline const struct cmd_info *
find_cmd_entry(struct intel_gvt * gvt,unsigned int opcode,const struct intel_engine_cs * engine)666 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
667 	       const struct intel_engine_cs *engine)
668 {
669 	struct cmd_entry *e;
670 
671 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
672 		if (opcode == e->info->opcode &&
673 		    e->info->rings & engine->mask)
674 			return e->info;
675 	}
676 	return NULL;
677 }
678 
679 static inline const struct cmd_info *
get_cmd_info(struct intel_gvt * gvt,u32 cmd,const struct intel_engine_cs * engine)680 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
681 	     const struct intel_engine_cs *engine)
682 {
683 	u32 opcode;
684 
685 	opcode = get_opcode(cmd, engine);
686 	if (opcode == INVALID_OP)
687 		return NULL;
688 
689 	return find_cmd_entry(gvt, opcode, engine);
690 }
691 
sub_op_val(u32 cmd,u32 hi,u32 low)692 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
693 {
694 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
695 }
696 
print_opcode(u32 cmd,const struct intel_engine_cs * engine)697 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
698 {
699 	const struct decode_info *d_info;
700 	int i;
701 
702 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
703 	if (d_info == NULL)
704 		return;
705 
706 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
707 			cmd >> (32 - d_info->op_len), d_info->name);
708 
709 	for (i = 0; i < d_info->nr_sub_op; i++)
710 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
711 					d_info->sub_op[i].low));
712 
713 	pr_err("\n");
714 }
715 
cmd_ptr(struct parser_exec_state * s,int index)716 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
717 {
718 	return s->ip_va + (index << 2);
719 }
720 
cmd_val(struct parser_exec_state * s,int index)721 static inline u32 cmd_val(struct parser_exec_state *s, int index)
722 {
723 	return *cmd_ptr(s, index);
724 }
725 
is_init_ctx(struct parser_exec_state * s)726 static inline bool is_init_ctx(struct parser_exec_state *s)
727 {
728 	return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
729 }
730 
parser_exec_state_dump(struct parser_exec_state * s)731 static void parser_exec_state_dump(struct parser_exec_state *s)
732 {
733 	int cnt = 0;
734 	int i;
735 
736 	gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
737 		    " ring_head(%08lx) ring_tail(%08lx)\n",
738 		    s->vgpu->id, s->engine->name,
739 		    s->ring_start, s->ring_start + s->ring_size,
740 		    s->ring_head, s->ring_tail);
741 
742 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
743 			s->buf_type == RING_BUFFER_INSTRUCTION ?
744 			"RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
745 				"CTX_BUFFER" : "BATCH_BUFFER"),
746 			s->buf_addr_type == GTT_BUFFER ?
747 			"GTT" : "PPGTT", s->ip_gma);
748 
749 	if (s->ip_va == NULL) {
750 		gvt_dbg_cmd(" ip_va(NULL)");
751 		return;
752 	}
753 
754 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
755 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
756 			cmd_val(s, 2), cmd_val(s, 3));
757 
758 	print_opcode(cmd_val(s, 0), s->engine);
759 
760 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
761 
762 	while (cnt < 1024) {
763 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
764 		for (i = 0; i < 8; i++)
765 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
766 		gvt_dbg_cmd("\n");
767 
768 		s->ip_va += 8 * sizeof(u32);
769 		cnt += 8;
770 	}
771 }
772 
update_ip_va(struct parser_exec_state * s)773 static inline void update_ip_va(struct parser_exec_state *s)
774 {
775 	unsigned long len = 0;
776 
777 	if (WARN_ON(s->ring_head == s->ring_tail))
778 		return;
779 
780 	if (s->buf_type == RING_BUFFER_INSTRUCTION ||
781 			s->buf_type == RING_BUFFER_CTX) {
782 		unsigned long ring_top = s->ring_start + s->ring_size;
783 
784 		if (s->ring_head > s->ring_tail) {
785 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
786 				len = (s->ip_gma - s->ring_head);
787 			else if (s->ip_gma >= s->ring_start &&
788 					s->ip_gma <= s->ring_tail)
789 				len = (ring_top - s->ring_head) +
790 					(s->ip_gma - s->ring_start);
791 		} else
792 			len = (s->ip_gma - s->ring_head);
793 
794 		s->ip_va = s->rb_va + len;
795 	} else {/* shadow batch buffer */
796 		s->ip_va = s->ret_bb_va;
797 	}
798 }
799 
ip_gma_set(struct parser_exec_state * s,unsigned long ip_gma)800 static inline int ip_gma_set(struct parser_exec_state *s,
801 		unsigned long ip_gma)
802 {
803 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
804 
805 	s->ip_gma = ip_gma;
806 	update_ip_va(s);
807 	return 0;
808 }
809 
ip_gma_advance(struct parser_exec_state * s,unsigned int dw_len)810 static inline int ip_gma_advance(struct parser_exec_state *s,
811 		unsigned int dw_len)
812 {
813 	s->ip_gma += (dw_len << 2);
814 
815 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
816 		if (s->ip_gma >= s->ring_start + s->ring_size)
817 			s->ip_gma -= s->ring_size;
818 		update_ip_va(s);
819 	} else {
820 		s->ip_va += (dw_len << 2);
821 	}
822 
823 	return 0;
824 }
825 
get_cmd_length(const struct cmd_info * info,u32 cmd)826 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
827 {
828 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
829 		return info->len;
830 	else
831 		return (cmd & ((1U << info->len) - 1)) + 2;
832 	return 0;
833 }
834 
cmd_length(struct parser_exec_state * s)835 static inline int cmd_length(struct parser_exec_state *s)
836 {
837 	return get_cmd_length(s->info, cmd_val(s, 0));
838 }
839 
840 /* do not remove this, some platform may need clflush here */
841 #define patch_value(s, addr, val) do { \
842 	*addr = val; \
843 } while (0)
844 
is_mocs_mmio(unsigned int offset)845 static inline bool is_mocs_mmio(unsigned int offset)
846 {
847 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
848 		((offset >= 0xb020) && (offset <= 0xb0a0));
849 }
850 
is_cmd_update_pdps(unsigned int offset,struct parser_exec_state * s)851 static int is_cmd_update_pdps(unsigned int offset,
852 			      struct parser_exec_state *s)
853 {
854 	u32 base = s->workload->engine->mmio_base;
855 	return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
856 }
857 
cmd_pdp_mmio_update_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index)858 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
859 				       unsigned int offset, unsigned int index)
860 {
861 	struct intel_vgpu *vgpu = s->vgpu;
862 	struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
863 	struct intel_vgpu_mm *mm;
864 	u64 pdps[GEN8_3LVL_PDPES];
865 
866 	if (shadow_mm->ppgtt_mm.root_entry_type ==
867 	    GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
868 		pdps[0] = (u64)cmd_val(s, 2) << 32;
869 		pdps[0] |= cmd_val(s, 4);
870 
871 		mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
872 		if (!mm) {
873 			gvt_vgpu_err("failed to get the 4-level shadow vm\n");
874 			return -EINVAL;
875 		}
876 		intel_vgpu_mm_get(mm);
877 		list_add_tail(&mm->ppgtt_mm.link,
878 			      &s->workload->lri_shadow_mm);
879 		*cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
880 		*cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
881 	} else {
882 		/* Currently all guests use PML4 table and now can't
883 		 * have a guest with 3-level table but uses LRI for
884 		 * PPGTT update. So this is simply un-testable. */
885 		GEM_BUG_ON(1);
886 		gvt_vgpu_err("invalid shared shadow vm type\n");
887 		return -EINVAL;
888 	}
889 	return 0;
890 }
891 
cmd_reg_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index,char * cmd)892 static int cmd_reg_handler(struct parser_exec_state *s,
893 	unsigned int offset, unsigned int index, char *cmd)
894 {
895 	struct intel_vgpu *vgpu = s->vgpu;
896 	struct intel_gvt *gvt = vgpu->gvt;
897 	u32 ctx_sr_ctl;
898 	u32 *vreg, vreg_old;
899 
900 	if (offset + 4 > gvt->device_info.mmio_size) {
901 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
902 				cmd, offset);
903 		return -EFAULT;
904 	}
905 
906 	if (is_init_ctx(s)) {
907 		struct intel_gvt_mmio_info *mmio_info;
908 
909 		intel_gvt_mmio_set_cmd_accessible(gvt, offset);
910 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
911 		if (mmio_info && mmio_info->write)
912 			intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
913 		return 0;
914 	}
915 
916 	if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
917 		gvt_vgpu_err("%s access to non-render register (%x)\n",
918 				cmd, offset);
919 		return -EBADRQC;
920 	}
921 
922 	if (!strncmp(cmd, "srm", 3) ||
923 			!strncmp(cmd, "lrm", 3)) {
924 		if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
925 		    offset == 0x21f0 ||
926 		    (IS_BROADWELL(gvt->gt->i915) &&
927 		     offset == i915_mmio_reg_offset(INSTPM)))
928 			return 0;
929 		else {
930 			gvt_vgpu_err("%s access to register (%x)\n",
931 					cmd, offset);
932 			return -EPERM;
933 		}
934 	}
935 
936 	if (!strncmp(cmd, "lrr-src", 7) ||
937 			!strncmp(cmd, "lrr-dst", 7)) {
938 		if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
939 			return 0;
940 		else {
941 			gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
942 			return -EPERM;
943 		}
944 	}
945 
946 	if (!strncmp(cmd, "pipe_ctrl", 9)) {
947 		/* TODO: add LRI POST logic here */
948 		return 0;
949 	}
950 
951 	if (strncmp(cmd, "lri", 3))
952 		return -EPERM;
953 
954 	/* below are all lri handlers */
955 	vreg = &vgpu_vreg(s->vgpu, offset);
956 
957 	if (is_cmd_update_pdps(offset, s) &&
958 	    cmd_pdp_mmio_update_handler(s, offset, index))
959 		return -EINVAL;
960 
961 	if (offset == i915_mmio_reg_offset(DERRMR) ||
962 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
963 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
964 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
965 	}
966 
967 	if (is_mocs_mmio(offset))
968 		*vreg = cmd_val(s, index + 1);
969 
970 	vreg_old = *vreg;
971 
972 	if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
973 		u32 cmdval_new, cmdval;
974 		struct intel_gvt_mmio_info *mmio_info;
975 
976 		cmdval = cmd_val(s, index + 1);
977 
978 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
979 		if (!mmio_info) {
980 			cmdval_new = cmdval;
981 		} else {
982 			u64 ro_mask = mmio_info->ro_mask;
983 			int ret;
984 
985 			if (likely(!ro_mask))
986 				ret = mmio_info->write(s->vgpu, offset,
987 						&cmdval, 4);
988 			else {
989 				gvt_vgpu_err("try to write RO reg %x\n",
990 						offset);
991 				ret = -EBADRQC;
992 			}
993 			if (ret)
994 				return ret;
995 			cmdval_new = *vreg;
996 		}
997 		if (cmdval_new != cmdval)
998 			patch_value(s, cmd_ptr(s, index+1), cmdval_new);
999 	}
1000 
1001 	/* only patch cmd. restore vreg value if changed in mmio write handler*/
1002 	*vreg = vreg_old;
1003 
1004 	/* TODO
1005 	 * In order to let workload with inhibit context to generate
1006 	 * correct image data into memory, vregs values will be loaded to
1007 	 * hw via LRIs in the workload with inhibit context. But as
1008 	 * indirect context is loaded prior to LRIs in workload, we don't
1009 	 * want reg values specified in indirect context overwritten by
1010 	 * LRIs in workloads. So, when scanning an indirect context, we
1011 	 * update reg values in it into vregs, so LRIs in workload with
1012 	 * inhibit context will restore with correct values
1013 	 */
1014 	if (GRAPHICS_VER(s->engine->i915) == 9 &&
1015 	    intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1016 	    !strncmp(cmd, "lri", 3)) {
1017 		intel_gvt_read_gpa(s->vgpu,
1018 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1019 		/* check inhibit context */
1020 		if (ctx_sr_ctl & 1) {
1021 			u32 data = cmd_val(s, index + 1);
1022 
1023 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1024 				intel_vgpu_mask_mmio_write(vgpu,
1025 							offset, &data, 4);
1026 			else
1027 				vgpu_vreg(vgpu, offset) = data;
1028 		}
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 #define cmd_reg(s, i) \
1035 	(cmd_val(s, i) & GENMASK(22, 2))
1036 
1037 #define cmd_reg_inhibit(s, i) \
1038 	(cmd_val(s, i) & GENMASK(22, 18))
1039 
1040 #define cmd_gma(s, i) \
1041 	(cmd_val(s, i) & GENMASK(31, 2))
1042 
1043 #define cmd_gma_hi(s, i) \
1044 	(cmd_val(s, i) & GENMASK(15, 0))
1045 
cmd_handler_lri(struct parser_exec_state * s)1046 static int cmd_handler_lri(struct parser_exec_state *s)
1047 {
1048 	int i, ret = 0;
1049 	int cmd_len = cmd_length(s);
1050 
1051 	for (i = 1; i < cmd_len; i += 2) {
1052 		if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1053 			if (s->engine->id == BCS0 &&
1054 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1055 				ret |= 0;
1056 			else
1057 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1058 		}
1059 		if (ret)
1060 			break;
1061 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1062 		if (ret)
1063 			break;
1064 	}
1065 	return ret;
1066 }
1067 
cmd_handler_lrr(struct parser_exec_state * s)1068 static int cmd_handler_lrr(struct parser_exec_state *s)
1069 {
1070 	int i, ret = 0;
1071 	int cmd_len = cmd_length(s);
1072 
1073 	for (i = 1; i < cmd_len; i += 2) {
1074 		if (IS_BROADWELL(s->engine->i915))
1075 			ret |= ((cmd_reg_inhibit(s, i) ||
1076 				 (cmd_reg_inhibit(s, i + 1)))) ?
1077 				-EBADRQC : 0;
1078 		if (ret)
1079 			break;
1080 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1081 		if (ret)
1082 			break;
1083 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1084 		if (ret)
1085 			break;
1086 	}
1087 	return ret;
1088 }
1089 
1090 static inline int cmd_address_audit(struct parser_exec_state *s,
1091 		unsigned long guest_gma, int op_size, bool index_mode);
1092 
cmd_handler_lrm(struct parser_exec_state * s)1093 static int cmd_handler_lrm(struct parser_exec_state *s)
1094 {
1095 	struct intel_gvt *gvt = s->vgpu->gvt;
1096 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1097 	unsigned long gma;
1098 	int i, ret = 0;
1099 	int cmd_len = cmd_length(s);
1100 
1101 	for (i = 1; i < cmd_len;) {
1102 		if (IS_BROADWELL(s->engine->i915))
1103 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1104 		if (ret)
1105 			break;
1106 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1107 		if (ret)
1108 			break;
1109 		if (cmd_val(s, 0) & (1 << 22)) {
1110 			gma = cmd_gma(s, i + 1);
1111 			if (gmadr_bytes == 8)
1112 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1113 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1114 			if (ret)
1115 				break;
1116 		}
1117 		i += gmadr_dw_number(s) + 1;
1118 	}
1119 	return ret;
1120 }
1121 
cmd_handler_srm(struct parser_exec_state * s)1122 static int cmd_handler_srm(struct parser_exec_state *s)
1123 {
1124 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1125 	unsigned long gma;
1126 	int i, ret = 0;
1127 	int cmd_len = cmd_length(s);
1128 
1129 	for (i = 1; i < cmd_len;) {
1130 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1131 		if (ret)
1132 			break;
1133 		if (cmd_val(s, 0) & (1 << 22)) {
1134 			gma = cmd_gma(s, i + 1);
1135 			if (gmadr_bytes == 8)
1136 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1137 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1138 			if (ret)
1139 				break;
1140 		}
1141 		i += gmadr_dw_number(s) + 1;
1142 	}
1143 	return ret;
1144 }
1145 
1146 struct cmd_interrupt_event {
1147 	int pipe_control_notify;
1148 	int mi_flush_dw;
1149 	int mi_user_interrupt;
1150 };
1151 
1152 static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1153 	[RCS0] = {
1154 		.pipe_control_notify = RCS_PIPE_CONTROL,
1155 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1156 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1157 	},
1158 	[BCS0] = {
1159 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1160 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1161 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1162 	},
1163 	[VCS0] = {
1164 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1165 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1166 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1167 	},
1168 	[VCS1] = {
1169 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1170 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1171 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1172 	},
1173 	[VECS0] = {
1174 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1175 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1176 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1177 	},
1178 };
1179 
cmd_handler_pipe_control(struct parser_exec_state * s)1180 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1181 {
1182 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1183 	unsigned long gma;
1184 	bool index_mode = false;
1185 	unsigned int post_sync;
1186 	int ret = 0;
1187 	u32 hws_pga, val;
1188 
1189 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1190 
1191 	/* LRI post sync */
1192 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1193 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1194 	/* post sync */
1195 	else if (post_sync) {
1196 		if (post_sync == 2)
1197 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1198 		else if (post_sync == 3)
1199 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1200 		else if (post_sync == 1) {
1201 			/* check ggtt*/
1202 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1203 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1204 				if (gmadr_bytes == 8)
1205 					gma |= (cmd_gma_hi(s, 3)) << 32;
1206 				/* Store Data Index */
1207 				if (cmd_val(s, 1) & (1 << 21))
1208 					index_mode = true;
1209 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1210 						index_mode);
1211 				if (ret)
1212 					return ret;
1213 				if (index_mode) {
1214 					hws_pga = s->vgpu->hws_pga[s->engine->id];
1215 					gma = hws_pga + gma;
1216 					patch_value(s, cmd_ptr(s, 2), gma);
1217 					val = cmd_val(s, 1) & (~(1 << 21));
1218 					patch_value(s, cmd_ptr(s, 1), val);
1219 				}
1220 			}
1221 		}
1222 	}
1223 
1224 	if (ret)
1225 		return ret;
1226 
1227 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1228 		set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1229 			s->workload->pending_events);
1230 	return 0;
1231 }
1232 
cmd_handler_mi_user_interrupt(struct parser_exec_state * s)1233 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1234 {
1235 	set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1236 		s->workload->pending_events);
1237 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1238 	return 0;
1239 }
1240 
cmd_advance_default(struct parser_exec_state * s)1241 static int cmd_advance_default(struct parser_exec_state *s)
1242 {
1243 	return ip_gma_advance(s, cmd_length(s));
1244 }
1245 
cmd_handler_mi_batch_buffer_end(struct parser_exec_state * s)1246 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1247 {
1248 	int ret;
1249 
1250 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1251 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1252 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1253 		s->buf_addr_type = s->saved_buf_addr_type;
1254 	} else if (s->buf_type == RING_BUFFER_CTX) {
1255 		ret = ip_gma_set(s, s->ring_tail);
1256 	} else {
1257 		s->buf_type = RING_BUFFER_INSTRUCTION;
1258 		s->buf_addr_type = GTT_BUFFER;
1259 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1260 			s->ret_ip_gma_ring -= s->ring_size;
1261 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1262 	}
1263 	return ret;
1264 }
1265 
1266 struct mi_display_flip_command_info {
1267 	int pipe;
1268 	int plane;
1269 	int event;
1270 	i915_reg_t stride_reg;
1271 	i915_reg_t ctrl_reg;
1272 	i915_reg_t surf_reg;
1273 	u64 stride_val;
1274 	u64 tile_val;
1275 	u64 surf_val;
1276 	bool async_flip;
1277 };
1278 
1279 struct plane_code_mapping {
1280 	int pipe;
1281 	int plane;
1282 	int event;
1283 };
1284 
gen8_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1285 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1286 		struct mi_display_flip_command_info *info)
1287 {
1288 	struct drm_i915_private *dev_priv = s->engine->i915;
1289 	struct intel_display *display = &dev_priv->display;
1290 	struct plane_code_mapping gen8_plane_code[] = {
1291 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1292 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1293 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1294 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1295 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1296 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1297 	};
1298 	u32 dword0, dword1, dword2;
1299 	u32 v;
1300 
1301 	dword0 = cmd_val(s, 0);
1302 	dword1 = cmd_val(s, 1);
1303 	dword2 = cmd_val(s, 2);
1304 
1305 	v = (dword0 & GENMASK(21, 19)) >> 19;
1306 	if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1307 		return -EBADRQC;
1308 
1309 	info->pipe = gen8_plane_code[v].pipe;
1310 	info->plane = gen8_plane_code[v].plane;
1311 	info->event = gen8_plane_code[v].event;
1312 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1313 	info->tile_val = (dword1 & 0x1);
1314 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1315 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1316 
1317 	if (info->plane == PLANE_A) {
1318 		info->ctrl_reg = DSPCNTR(display, info->pipe);
1319 		info->stride_reg = DSPSTRIDE(display, info->pipe);
1320 		info->surf_reg = DSPSURF(display, info->pipe);
1321 	} else if (info->plane == PLANE_B) {
1322 		info->ctrl_reg = SPRCTL(info->pipe);
1323 		info->stride_reg = SPRSTRIDE(info->pipe);
1324 		info->surf_reg = SPRSURF(info->pipe);
1325 	} else {
1326 		drm_WARN_ON(&dev_priv->drm, 1);
1327 		return -EBADRQC;
1328 	}
1329 	return 0;
1330 }
1331 
skl_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1332 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1333 		struct mi_display_flip_command_info *info)
1334 {
1335 	struct drm_i915_private *dev_priv = s->engine->i915;
1336 	struct intel_display *display = &dev_priv->display;
1337 	struct intel_vgpu *vgpu = s->vgpu;
1338 	u32 dword0 = cmd_val(s, 0);
1339 	u32 dword1 = cmd_val(s, 1);
1340 	u32 dword2 = cmd_val(s, 2);
1341 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1342 
1343 	info->plane = PRIMARY_PLANE;
1344 
1345 	switch (plane) {
1346 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1347 		info->pipe = PIPE_A;
1348 		info->event = PRIMARY_A_FLIP_DONE;
1349 		break;
1350 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1351 		info->pipe = PIPE_B;
1352 		info->event = PRIMARY_B_FLIP_DONE;
1353 		break;
1354 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1355 		info->pipe = PIPE_C;
1356 		info->event = PRIMARY_C_FLIP_DONE;
1357 		break;
1358 
1359 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1360 		info->pipe = PIPE_A;
1361 		info->event = SPRITE_A_FLIP_DONE;
1362 		info->plane = SPRITE_PLANE;
1363 		break;
1364 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1365 		info->pipe = PIPE_B;
1366 		info->event = SPRITE_B_FLIP_DONE;
1367 		info->plane = SPRITE_PLANE;
1368 		break;
1369 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1370 		info->pipe = PIPE_C;
1371 		info->event = SPRITE_C_FLIP_DONE;
1372 		info->plane = SPRITE_PLANE;
1373 		break;
1374 
1375 	default:
1376 		gvt_vgpu_err("unknown plane code %d\n", plane);
1377 		return -EBADRQC;
1378 	}
1379 
1380 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1381 	info->tile_val = (dword1 & GENMASK(2, 0));
1382 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1383 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1384 
1385 	info->ctrl_reg = DSPCNTR(display, info->pipe);
1386 	info->stride_reg = DSPSTRIDE(display, info->pipe);
1387 	info->surf_reg = DSPSURF(display, info->pipe);
1388 
1389 	return 0;
1390 }
1391 
gen8_check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1392 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1393 		struct mi_display_flip_command_info *info)
1394 {
1395 	u32 stride, tile;
1396 
1397 	if (!info->async_flip)
1398 		return 0;
1399 
1400 	if (GRAPHICS_VER(s->engine->i915) >= 9) {
1401 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1402 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1403 				GENMASK(12, 10)) >> 10;
1404 	} else {
1405 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1406 				GENMASK(15, 6)) >> 6;
1407 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1408 	}
1409 
1410 	if (stride != info->stride_val)
1411 		gvt_dbg_cmd("cannot change stride during async flip\n");
1412 
1413 	if (tile != info->tile_val)
1414 		gvt_dbg_cmd("cannot change tile during async flip\n");
1415 
1416 	return 0;
1417 }
1418 
gen8_update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1419 static int gen8_update_plane_mmio_from_mi_display_flip(
1420 		struct parser_exec_state *s,
1421 		struct mi_display_flip_command_info *info)
1422 {
1423 	struct drm_i915_private *dev_priv = s->engine->i915;
1424 	struct intel_display *display = &dev_priv->display;
1425 	struct intel_vgpu *vgpu = s->vgpu;
1426 
1427 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1428 		      info->surf_val << 12);
1429 	if (GRAPHICS_VER(dev_priv) >= 9) {
1430 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1431 			      info->stride_val);
1432 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1433 			      info->tile_val << 10);
1434 	} else {
1435 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1436 			      info->stride_val << 6);
1437 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1438 			      info->tile_val << 10);
1439 	}
1440 
1441 	if (info->plane == PLANE_PRIMARY)
1442 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, info->pipe))++;
1443 
1444 	if (info->async_flip)
1445 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1446 	else
1447 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1448 
1449 	return 0;
1450 }
1451 
decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1452 static int decode_mi_display_flip(struct parser_exec_state *s,
1453 		struct mi_display_flip_command_info *info)
1454 {
1455 	if (IS_BROADWELL(s->engine->i915))
1456 		return gen8_decode_mi_display_flip(s, info);
1457 	if (GRAPHICS_VER(s->engine->i915) >= 9)
1458 		return skl_decode_mi_display_flip(s, info);
1459 
1460 	return -ENODEV;
1461 }
1462 
check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1463 static int check_mi_display_flip(struct parser_exec_state *s,
1464 		struct mi_display_flip_command_info *info)
1465 {
1466 	return gen8_check_mi_display_flip(s, info);
1467 }
1468 
update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1469 static int update_plane_mmio_from_mi_display_flip(
1470 		struct parser_exec_state *s,
1471 		struct mi_display_flip_command_info *info)
1472 {
1473 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1474 }
1475 
cmd_handler_mi_display_flip(struct parser_exec_state * s)1476 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1477 {
1478 	struct mi_display_flip_command_info info;
1479 	struct intel_vgpu *vgpu = s->vgpu;
1480 	int ret;
1481 	int i;
1482 	int len = cmd_length(s);
1483 	u32 valid_len = CMD_LEN(1);
1484 
1485 	/* Flip Type == Stereo 3D Flip */
1486 	if (DWORD_FIELD(2, 1, 0) == 2)
1487 		valid_len++;
1488 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1489 			valid_len);
1490 	if (ret)
1491 		return ret;
1492 
1493 	ret = decode_mi_display_flip(s, &info);
1494 	if (ret) {
1495 		gvt_vgpu_err("fail to decode MI display flip command\n");
1496 		return ret;
1497 	}
1498 
1499 	ret = check_mi_display_flip(s, &info);
1500 	if (ret) {
1501 		gvt_vgpu_err("invalid MI display flip command\n");
1502 		return ret;
1503 	}
1504 
1505 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1506 	if (ret) {
1507 		gvt_vgpu_err("fail to update plane mmio\n");
1508 		return ret;
1509 	}
1510 
1511 	for (i = 0; i < len; i++)
1512 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1513 	return 0;
1514 }
1515 
is_wait_for_flip_pending(u32 cmd)1516 static bool is_wait_for_flip_pending(u32 cmd)
1517 {
1518 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1519 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1520 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1521 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1522 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1523 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1524 }
1525 
cmd_handler_mi_wait_for_event(struct parser_exec_state * s)1526 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1527 {
1528 	u32 cmd = cmd_val(s, 0);
1529 
1530 	if (!is_wait_for_flip_pending(cmd))
1531 		return 0;
1532 
1533 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1534 	return 0;
1535 }
1536 
get_gma_bb_from_cmd(struct parser_exec_state * s,int index)1537 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1538 {
1539 	unsigned long addr;
1540 	unsigned long gma_high, gma_low;
1541 	struct intel_vgpu *vgpu = s->vgpu;
1542 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1543 
1544 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1545 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1546 		return INTEL_GVT_INVALID_ADDR;
1547 	}
1548 
1549 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1550 	if (gmadr_bytes == 4) {
1551 		addr = gma_low;
1552 	} else {
1553 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1554 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1555 	}
1556 	return addr;
1557 }
1558 
cmd_address_audit(struct parser_exec_state * s,unsigned long guest_gma,int op_size,bool index_mode)1559 static inline int cmd_address_audit(struct parser_exec_state *s,
1560 		unsigned long guest_gma, int op_size, bool index_mode)
1561 {
1562 	struct intel_vgpu *vgpu = s->vgpu;
1563 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1564 	int i;
1565 	int ret;
1566 
1567 	if (op_size > max_surface_size) {
1568 		gvt_vgpu_err("command address audit fail name %s\n",
1569 			s->info->name);
1570 		return -EFAULT;
1571 	}
1572 
1573 	if (index_mode)	{
1574 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1575 			ret = -EFAULT;
1576 			goto err;
1577 		}
1578 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1579 		ret = -EFAULT;
1580 		goto err;
1581 	}
1582 
1583 	return 0;
1584 
1585 err:
1586 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1587 			s->info->name, guest_gma, op_size);
1588 
1589 	pr_err("cmd dump: ");
1590 	for (i = 0; i < cmd_length(s); i++) {
1591 		if (!(i % 4))
1592 			pr_err("\n%08x ", cmd_val(s, i));
1593 		else
1594 			pr_err("%08x ", cmd_val(s, i));
1595 	}
1596 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1597 			vgpu->id,
1598 			vgpu_aperture_gmadr_base(vgpu),
1599 			vgpu_aperture_gmadr_end(vgpu),
1600 			vgpu_hidden_gmadr_base(vgpu),
1601 			vgpu_hidden_gmadr_end(vgpu));
1602 	return ret;
1603 }
1604 
cmd_handler_mi_store_data_imm(struct parser_exec_state * s)1605 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1606 {
1607 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1608 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1609 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1610 	unsigned long gma, gma_low, gma_high;
1611 	u32 valid_len = CMD_LEN(2);
1612 	int ret = 0;
1613 
1614 	/* check ppggt */
1615 	if (!(cmd_val(s, 0) & (1 << 22)))
1616 		return 0;
1617 
1618 	/* check if QWORD */
1619 	if (DWORD_FIELD(0, 21, 21))
1620 		valid_len++;
1621 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1622 			valid_len);
1623 	if (ret)
1624 		return ret;
1625 
1626 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1627 
1628 	if (gmadr_bytes == 8) {
1629 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1630 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1631 		gma = (gma_high << 32) | gma_low;
1632 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1633 	}
1634 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1635 	return ret;
1636 }
1637 
unexpected_cmd(struct parser_exec_state * s)1638 static inline int unexpected_cmd(struct parser_exec_state *s)
1639 {
1640 	struct intel_vgpu *vgpu = s->vgpu;
1641 
1642 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1643 
1644 	return -EBADRQC;
1645 }
1646 
cmd_handler_mi_semaphore_wait(struct parser_exec_state * s)1647 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1648 {
1649 	return unexpected_cmd(s);
1650 }
1651 
cmd_handler_mi_report_perf_count(struct parser_exec_state * s)1652 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1653 {
1654 	return unexpected_cmd(s);
1655 }
1656 
cmd_handler_mi_op_2e(struct parser_exec_state * s)1657 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1658 {
1659 	return unexpected_cmd(s);
1660 }
1661 
cmd_handler_mi_op_2f(struct parser_exec_state * s)1662 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1663 {
1664 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1665 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1666 			sizeof(u32);
1667 	unsigned long gma, gma_high;
1668 	u32 valid_len = CMD_LEN(1);
1669 	int ret = 0;
1670 
1671 	if (!(cmd_val(s, 0) & (1 << 22)))
1672 		return ret;
1673 
1674 	/* check inline data */
1675 	if (cmd_val(s, 0) & BIT(18))
1676 		valid_len = CMD_LEN(9);
1677 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1678 			valid_len);
1679 	if (ret)
1680 		return ret;
1681 
1682 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1683 	if (gmadr_bytes == 8) {
1684 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1685 		gma = (gma_high << 32) | gma;
1686 	}
1687 	ret = cmd_address_audit(s, gma, op_size, false);
1688 	return ret;
1689 }
1690 
cmd_handler_mi_store_data_index(struct parser_exec_state * s)1691 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1692 {
1693 	return unexpected_cmd(s);
1694 }
1695 
cmd_handler_mi_clflush(struct parser_exec_state * s)1696 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1697 {
1698 	return unexpected_cmd(s);
1699 }
1700 
cmd_handler_mi_conditional_batch_buffer_end(struct parser_exec_state * s)1701 static int cmd_handler_mi_conditional_batch_buffer_end(
1702 		struct parser_exec_state *s)
1703 {
1704 	return unexpected_cmd(s);
1705 }
1706 
cmd_handler_mi_update_gtt(struct parser_exec_state * s)1707 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1708 {
1709 	return unexpected_cmd(s);
1710 }
1711 
cmd_handler_mi_flush_dw(struct parser_exec_state * s)1712 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1713 {
1714 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1715 	unsigned long gma;
1716 	bool index_mode = false;
1717 	int ret = 0;
1718 	u32 hws_pga, val;
1719 	u32 valid_len = CMD_LEN(2);
1720 
1721 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1722 			valid_len);
1723 	if (ret) {
1724 		/* Check again for Qword */
1725 		ret = gvt_check_valid_cmd_length(cmd_length(s),
1726 			++valid_len);
1727 		return ret;
1728 	}
1729 
1730 	/* Check post-sync and ppgtt bit */
1731 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1732 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1733 		if (gmadr_bytes == 8)
1734 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1735 		/* Store Data Index */
1736 		if (cmd_val(s, 0) & (1 << 21))
1737 			index_mode = true;
1738 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1739 		if (ret)
1740 			return ret;
1741 		if (index_mode) {
1742 			hws_pga = s->vgpu->hws_pga[s->engine->id];
1743 			gma = hws_pga + gma;
1744 			patch_value(s, cmd_ptr(s, 1), gma);
1745 			val = cmd_val(s, 0) & (~(1 << 21));
1746 			patch_value(s, cmd_ptr(s, 0), val);
1747 		}
1748 	}
1749 	/* Check notify bit */
1750 	if ((cmd_val(s, 0) & (1 << 8)))
1751 		set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1752 			s->workload->pending_events);
1753 	return ret;
1754 }
1755 
addr_type_update_snb(struct parser_exec_state * s)1756 static void addr_type_update_snb(struct parser_exec_state *s)
1757 {
1758 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1759 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1760 		s->buf_addr_type = PPGTT_BUFFER;
1761 	}
1762 }
1763 
1764 
copy_gma_to_hva(struct intel_vgpu * vgpu,struct intel_vgpu_mm * mm,unsigned long gma,unsigned long end_gma,void * va)1765 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1766 		unsigned long gma, unsigned long end_gma, void *va)
1767 {
1768 	unsigned long copy_len, offset;
1769 	unsigned long len = 0;
1770 	unsigned long gpa;
1771 
1772 	while (gma != end_gma) {
1773 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1774 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1775 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1776 			return -EFAULT;
1777 		}
1778 
1779 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1780 
1781 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1782 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1783 
1784 		intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1785 
1786 		len += copy_len;
1787 		gma += copy_len;
1788 	}
1789 	return len;
1790 }
1791 
1792 
1793 /*
1794  * Check whether a batch buffer needs to be scanned. Currently
1795  * the only criteria is based on privilege.
1796  */
batch_buffer_needs_scan(struct parser_exec_state * s)1797 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1798 {
1799 	/* Decide privilege based on address space */
1800 	if (cmd_val(s, 0) & BIT(8) &&
1801 	    !(s->vgpu->scan_nonprivbb & s->engine->mask))
1802 		return 0;
1803 
1804 	return 1;
1805 }
1806 
repr_addr_type(unsigned int type)1807 static const char *repr_addr_type(unsigned int type)
1808 {
1809 	return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1810 }
1811 
find_bb_size(struct parser_exec_state * s,unsigned long * bb_size,unsigned long * bb_end_cmd_offset)1812 static int find_bb_size(struct parser_exec_state *s,
1813 			unsigned long *bb_size,
1814 			unsigned long *bb_end_cmd_offset)
1815 {
1816 	unsigned long gma = 0;
1817 	const struct cmd_info *info;
1818 	u32 cmd_len = 0;
1819 	bool bb_end = false;
1820 	struct intel_vgpu *vgpu = s->vgpu;
1821 	u32 cmd;
1822 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1823 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1824 
1825 	*bb_size = 0;
1826 	*bb_end_cmd_offset = 0;
1827 
1828 	/* get the start gm address of the batch buffer */
1829 	gma = get_gma_bb_from_cmd(s, 1);
1830 	if (gma == INTEL_GVT_INVALID_ADDR)
1831 		return -EFAULT;
1832 
1833 	cmd = cmd_val(s, 0);
1834 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1835 	if (info == NULL) {
1836 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1837 			     cmd, get_opcode(cmd, s->engine),
1838 			     repr_addr_type(s->buf_addr_type),
1839 			     s->engine->name, s->workload);
1840 		return -EBADRQC;
1841 	}
1842 	do {
1843 		if (copy_gma_to_hva(s->vgpu, mm,
1844 				    gma, gma + 4, &cmd) < 0)
1845 			return -EFAULT;
1846 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1847 		if (info == NULL) {
1848 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1849 				     cmd, get_opcode(cmd, s->engine),
1850 				     repr_addr_type(s->buf_addr_type),
1851 				     s->engine->name, s->workload);
1852 			return -EBADRQC;
1853 		}
1854 
1855 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1856 			bb_end = true;
1857 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1858 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1859 				/* chained batch buffer */
1860 				bb_end = true;
1861 		}
1862 
1863 		if (bb_end)
1864 			*bb_end_cmd_offset = *bb_size;
1865 
1866 		cmd_len = get_cmd_length(info, cmd) << 2;
1867 		*bb_size += cmd_len;
1868 		gma += cmd_len;
1869 	} while (!bb_end);
1870 
1871 	return 0;
1872 }
1873 
audit_bb_end(struct parser_exec_state * s,void * va)1874 static int audit_bb_end(struct parser_exec_state *s, void *va)
1875 {
1876 	struct intel_vgpu *vgpu = s->vgpu;
1877 	u32 cmd = *(u32 *)va;
1878 	const struct cmd_info *info;
1879 
1880 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1881 	if (info == NULL) {
1882 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1883 			     cmd, get_opcode(cmd, s->engine),
1884 			     repr_addr_type(s->buf_addr_type),
1885 			     s->engine->name, s->workload);
1886 		return -EBADRQC;
1887 	}
1888 
1889 	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1890 	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1891 	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1892 		return 0;
1893 
1894 	return -EBADRQC;
1895 }
1896 
perform_bb_shadow(struct parser_exec_state * s)1897 static int perform_bb_shadow(struct parser_exec_state *s)
1898 {
1899 	struct intel_vgpu *vgpu = s->vgpu;
1900 	struct intel_vgpu_shadow_bb *bb;
1901 	unsigned long gma = 0;
1902 	unsigned long bb_size;
1903 	unsigned long bb_end_cmd_offset;
1904 	int ret = 0;
1905 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1906 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1907 	unsigned long start_offset = 0;
1908 
1909 	/* get the start gm address of the batch buffer */
1910 	gma = get_gma_bb_from_cmd(s, 1);
1911 	if (gma == INTEL_GVT_INVALID_ADDR)
1912 		return -EFAULT;
1913 
1914 	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1915 	if (ret)
1916 		return ret;
1917 
1918 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1919 	if (!bb)
1920 		return -ENOMEM;
1921 
1922 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1923 
1924 	/* the start_offset stores the batch buffer's start gma's
1925 	 * offset relative to page boundary. so for non-privileged batch
1926 	 * buffer, the shadowed gem object holds exactly the same page
1927 	 * layout as original gem object. This is for the convience of
1928 	 * replacing the whole non-privilged batch buffer page to this
1929 	 * shadowed one in PPGTT at the same gma address. (this replacing
1930 	 * action is not implemented yet now, but may be necessary in
1931 	 * future).
1932 	 * for prileged batch buffer, we just change start gma address to
1933 	 * that of shadowed page.
1934 	 */
1935 	if (bb->ppgtt)
1936 		start_offset = gma & ~I915_GTT_PAGE_MASK;
1937 
1938 	bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1939 					       round_up(bb_size + start_offset,
1940 							PAGE_SIZE));
1941 	if (IS_ERR(bb->obj)) {
1942 		ret = PTR_ERR(bb->obj);
1943 		goto err_free_bb;
1944 	}
1945 
1946 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1947 	if (IS_ERR(bb->va)) {
1948 		ret = PTR_ERR(bb->va);
1949 		goto err_free_obj;
1950 	}
1951 
1952 	ret = copy_gma_to_hva(s->vgpu, mm,
1953 			      gma, gma + bb_size,
1954 			      bb->va + start_offset);
1955 	if (ret < 0) {
1956 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1957 		ret = -EFAULT;
1958 		goto err_unmap;
1959 	}
1960 
1961 	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1962 	if (ret)
1963 		goto err_unmap;
1964 
1965 	i915_gem_object_unlock(bb->obj);
1966 	INIT_LIST_HEAD(&bb->list);
1967 	list_add(&bb->list, &s->workload->shadow_bb);
1968 
1969 	bb->bb_start_cmd_va = s->ip_va;
1970 
1971 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1972 		bb->bb_offset = s->ip_va - s->rb_va;
1973 	else
1974 		bb->bb_offset = 0;
1975 
1976 	/*
1977 	 * ip_va saves the virtual address of the shadow batch buffer, while
1978 	 * ip_gma saves the graphics address of the original batch buffer.
1979 	 * As the shadow batch buffer is just a copy from the originial one,
1980 	 * it should be right to use shadow batch buffer'va and original batch
1981 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1982 	 * buffer here (too early).
1983 	 */
1984 	s->ip_va = bb->va + start_offset;
1985 	s->ip_gma = gma;
1986 	return 0;
1987 err_unmap:
1988 	i915_gem_object_unpin_map(bb->obj);
1989 err_free_obj:
1990 	i915_gem_object_put(bb->obj);
1991 err_free_bb:
1992 	kfree(bb);
1993 	return ret;
1994 }
1995 
cmd_handler_mi_batch_buffer_start(struct parser_exec_state * s)1996 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1997 {
1998 	bool second_level;
1999 	int ret = 0;
2000 	struct intel_vgpu *vgpu = s->vgpu;
2001 
2002 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
2003 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
2004 		return -EFAULT;
2005 	}
2006 
2007 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2008 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2009 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2010 		return -EFAULT;
2011 	}
2012 
2013 	s->saved_buf_addr_type = s->buf_addr_type;
2014 	addr_type_update_snb(s);
2015 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2016 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2017 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
2018 	} else if (second_level) {
2019 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2020 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2021 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2022 	}
2023 
2024 	if (batch_buffer_needs_scan(s)) {
2025 		ret = perform_bb_shadow(s);
2026 		if (ret < 0)
2027 			gvt_vgpu_err("invalid shadow batch buffer\n");
2028 	} else {
2029 		/* emulate a batch buffer end to do return right */
2030 		ret = cmd_handler_mi_batch_buffer_end(s);
2031 		if (ret < 0)
2032 			return ret;
2033 	}
2034 	return ret;
2035 }
2036 
2037 static int mi_noop_index;
2038 
2039 static const struct cmd_info cmd_info[] = {
2040 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2041 
2042 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2043 		0, 1, NULL},
2044 
2045 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2046 		0, 1, cmd_handler_mi_user_interrupt},
2047 
2048 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2049 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2050 
2051 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2052 
2053 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2054 		NULL},
2055 
2056 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2057 		NULL},
2058 
2059 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2060 		NULL},
2061 
2062 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2063 		NULL},
2064 
2065 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2066 		D_ALL, 0, 1, NULL},
2067 
2068 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2069 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2070 		cmd_handler_mi_batch_buffer_end},
2071 
2072 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2073 		0, 1, NULL},
2074 
2075 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2076 		NULL},
2077 
2078 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2079 		D_ALL, 0, 1, NULL},
2080 
2081 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2082 		NULL},
2083 
2084 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2085 		NULL},
2086 
2087 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2088 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2089 
2090 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2091 		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2092 
2093 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2094 
2095 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2096 		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2097 
2098 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2099 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2100 		NULL, CMD_LEN(0)},
2101 
2102 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2103 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2104 		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2105 
2106 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2107 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2108 
2109 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2110 		0, 8, cmd_handler_mi_store_data_index},
2111 
2112 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2113 		D_ALL, 0, 8, cmd_handler_lri},
2114 
2115 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2116 		cmd_handler_mi_update_gtt},
2117 
2118 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2119 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2120 		cmd_handler_srm, CMD_LEN(2)},
2121 
2122 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2123 		cmd_handler_mi_flush_dw},
2124 
2125 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2126 		10, cmd_handler_mi_clflush},
2127 
2128 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2129 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2130 		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2131 
2132 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2133 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2134 		cmd_handler_lrm, CMD_LEN(2)},
2135 
2136 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2137 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2138 		cmd_handler_lrr, CMD_LEN(1)},
2139 
2140 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2141 		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2142 		8, NULL, CMD_LEN(2)},
2143 
2144 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2145 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2146 
2147 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2148 		ADDR_FIX_1(2), 8, NULL},
2149 
2150 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2151 		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2152 
2153 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2154 		8, cmd_handler_mi_op_2f},
2155 
2156 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2157 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2158 		cmd_handler_mi_batch_buffer_start},
2159 
2160 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2161 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2162 		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2163 
2164 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2165 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2166 
2167 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2168 		ADDR_FIX_2(4, 7), 8, NULL},
2169 
2170 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2171 		0, 8, NULL},
2172 
2173 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2174 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2175 
2176 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2177 
2178 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2179 		0, 8, NULL},
2180 
2181 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2182 		ADDR_FIX_1(3), 8, NULL},
2183 
2184 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2185 		D_ALL, 0, 8, NULL},
2186 
2187 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2188 		ADDR_FIX_1(4), 8, NULL},
2189 
2190 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2191 		ADDR_FIX_2(4, 5), 8, NULL},
2192 
2193 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2194 		ADDR_FIX_1(4), 8, NULL},
2195 
2196 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2197 		ADDR_FIX_2(4, 7), 8, NULL},
2198 
2199 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2200 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2201 
2202 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2203 
2204 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2205 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2206 
2207 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2208 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2209 
2210 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2211 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2212 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2213 
2214 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2215 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2216 
2217 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2218 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2219 
2220 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2221 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2222 
2223 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2224 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2225 
2226 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2227 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2228 
2229 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2230 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2231 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2232 
2233 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2234 		ADDR_FIX_2(4, 5), 8, NULL},
2235 
2236 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2237 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2238 
2239 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2240 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2241 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2242 
2243 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2244 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2245 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2246 
2247 	{"3DSTATE_BLEND_STATE_POINTERS",
2248 		OP_3DSTATE_BLEND_STATE_POINTERS,
2249 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2250 
2251 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2252 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2253 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2254 
2255 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2256 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2257 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2258 
2259 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2260 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2261 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2262 
2263 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2264 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2265 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2266 
2267 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2268 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2269 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2270 
2271 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2272 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2273 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274 
2275 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2276 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2277 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2278 
2279 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2280 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2281 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2282 
2283 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2284 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2285 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2286 
2287 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2288 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2289 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2290 
2291 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2292 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2293 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2294 
2295 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2296 		0, 8, NULL},
2297 
2298 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2299 		0, 8, NULL},
2300 
2301 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2302 		0, 8, NULL},
2303 
2304 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2305 		0, 8, NULL},
2306 
2307 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2308 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2309 
2310 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2311 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2312 
2313 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2314 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2315 
2316 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2317 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2318 
2319 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2320 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2321 
2322 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2323 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2324 
2325 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2326 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2327 
2328 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2329 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2330 
2331 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2332 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2333 
2334 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2335 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2336 
2337 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2338 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2339 
2340 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2341 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2342 
2343 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2344 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2345 
2346 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2347 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2348 
2349 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2350 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2351 
2352 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2353 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2354 
2355 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2356 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2357 
2358 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2359 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2360 
2361 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2362 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2363 
2364 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2365 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2366 
2367 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2368 		D_BDW_PLUS, 0, 8, NULL},
2369 
2370 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2371 		NULL},
2372 
2373 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2374 		D_BDW_PLUS, 0, 8, NULL},
2375 
2376 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2377 		D_BDW_PLUS, 0, 8, NULL},
2378 
2379 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2380 		8, NULL},
2381 
2382 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2383 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2384 
2385 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2386 		8, NULL},
2387 
2388 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2389 		NULL},
2390 
2391 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2392 		NULL},
2393 
2394 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2395 		NULL},
2396 
2397 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2398 		D_BDW_PLUS, 0, 8, NULL},
2399 
2400 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2401 		R_RCS, D_ALL, 0, 8, NULL},
2402 
2403 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2404 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2405 
2406 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2407 		R_RCS, D_ALL, 0, 1, NULL},
2408 
2409 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2410 
2411 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2412 		R_RCS, D_ALL, 0, 8, NULL},
2413 
2414 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2415 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2416 
2417 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2418 
2419 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2420 
2421 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2422 
2423 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2424 		D_BDW_PLUS, 0, 8, NULL},
2425 
2426 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2427 		D_BDW_PLUS, 0, 8, NULL},
2428 
2429 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2430 		D_ALL, 0, 8, NULL},
2431 
2432 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2433 		D_BDW_PLUS, 0, 8, NULL},
2434 
2435 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2436 		D_BDW_PLUS, 0, 8, NULL},
2437 
2438 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2439 
2440 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2441 
2442 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2443 
2444 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2445 		D_ALL, 0, 8, NULL},
2446 
2447 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2448 
2449 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2450 
2451 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2452 		R_RCS, D_ALL, 0, 8, NULL},
2453 
2454 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2455 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2456 
2457 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2458 		0, 8, NULL},
2459 
2460 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2461 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2462 
2463 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2464 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2465 
2466 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2467 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2468 
2469 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2470 		D_ALL, 0, 8, NULL},
2471 
2472 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2473 		D_ALL, 0, 8, NULL},
2474 
2475 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2476 		D_ALL, 0, 8, NULL},
2477 
2478 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2479 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2480 
2481 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2482 		D_BDW_PLUS, 0, 8, NULL},
2483 
2484 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2485 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2486 
2487 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2488 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2489 
2490 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2491 		R_RCS, D_ALL, 0, 8, NULL},
2492 
2493 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2494 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2495 
2496 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2497 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2498 
2499 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2500 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2501 
2502 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2503 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2504 
2505 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2506 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2507 
2508 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2509 		R_RCS, D_ALL, 0, 8, NULL},
2510 
2511 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2512 		D_ALL, 0, 9, NULL},
2513 
2514 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2515 		ADDR_FIX_2(2, 4), 8, NULL},
2516 
2517 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2518 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2519 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2520 
2521 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2522 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2523 
2524 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2525 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2526 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2527 
2528 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2529 		D_BDW_PLUS, 0, 8, NULL},
2530 
2531 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2532 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2533 
2534 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2535 
2536 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2537 		1, NULL},
2538 
2539 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2540 		ADDR_FIX_1(1), 8, NULL},
2541 
2542 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2543 
2544 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2545 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2546 
2547 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2548 		ADDR_FIX_1(1), 8, NULL},
2549 
2550 	{"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2551 		F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2552 
2553 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2554 
2555 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2556 
2557 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2558 		0, 8, NULL},
2559 
2560 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2561 		D_SKL_PLUS, 0, 8, NULL},
2562 
2563 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2564 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2565 
2566 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2567 		0, 16, NULL},
2568 
2569 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2570 		0, 16, NULL},
2571 
2572 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2573 		0, 16, NULL},
2574 
2575 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2576 
2577 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2578 		0, 16, NULL},
2579 
2580 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2581 		0, 16, NULL},
2582 
2583 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2584 		0, 16, NULL},
2585 
2586 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2587 		0, 8, NULL},
2588 
2589 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2590 		NULL},
2591 
2592 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2593 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2594 
2595 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2596 		R_VCS, D_ALL, 0, 12, NULL},
2597 
2598 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2599 		R_VCS, D_ALL, 0, 12, NULL},
2600 
2601 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2602 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2603 
2604 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2605 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2606 
2607 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2608 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2609 
2610 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2611 
2612 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2613 		R_VCS, D_ALL, 0, 12, NULL},
2614 
2615 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2616 		R_VCS, D_ALL, 0, 12, NULL},
2617 
2618 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2619 		R_VCS, D_ALL, 0, 12, NULL},
2620 
2621 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2622 		R_VCS, D_ALL, 0, 12, NULL},
2623 
2624 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2625 		R_VCS, D_ALL, 0, 12, NULL},
2626 
2627 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2628 		R_VCS, D_ALL, 0, 12, NULL},
2629 
2630 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2631 		R_VCS, D_ALL, 0, 6, NULL},
2632 
2633 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2634 		R_VCS, D_ALL, 0, 12, NULL},
2635 
2636 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2637 		R_VCS, D_ALL, 0, 12, NULL},
2638 
2639 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2640 		R_VCS, D_ALL, 0, 12, NULL},
2641 
2642 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2643 		R_VCS, D_ALL, 0, 12, NULL},
2644 
2645 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2646 		R_VCS, D_ALL, 0, 12, NULL},
2647 
2648 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2649 		R_VCS, D_ALL, 0, 12, NULL},
2650 
2651 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2652 		R_VCS, D_ALL, 0, 12, NULL},
2653 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2654 		R_VCS, D_ALL, 0, 12, NULL},
2655 
2656 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2657 		R_VCS, D_ALL, 0, 12, NULL},
2658 
2659 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2660 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2661 
2662 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2663 		R_VCS, D_ALL, 0, 12, NULL},
2664 
2665 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2666 		R_VCS, D_ALL, 0, 12, NULL},
2667 
2668 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2669 		R_VCS, D_ALL, 0, 12, NULL},
2670 
2671 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2672 		R_VCS, D_ALL, 0, 12, NULL},
2673 
2674 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2675 		R_VCS, D_ALL, 0, 12, NULL},
2676 
2677 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2678 		R_VCS, D_ALL, 0, 12, NULL},
2679 
2680 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2681 		R_VCS, D_ALL, 0, 12, NULL},
2682 
2683 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2684 		R_VCS, D_ALL, 0, 12, NULL},
2685 
2686 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2687 		R_VCS, D_ALL, 0, 12, NULL},
2688 
2689 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2690 		R_VCS, D_ALL, 0, 12, NULL},
2691 
2692 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2693 		R_VCS, D_ALL, 0, 12, NULL},
2694 
2695 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2696 		0, 16, NULL},
2697 
2698 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2699 
2700 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2701 
2702 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2703 		R_VCS, D_ALL, 0, 12, NULL},
2704 
2705 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2706 		R_VCS, D_ALL, 0, 12, NULL},
2707 
2708 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2709 		R_VCS, D_ALL, 0, 12, NULL},
2710 
2711 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2712 
2713 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2714 		0, 12, NULL},
2715 
2716 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2717 		0, 12, NULL},
2718 };
2719 
add_cmd_entry(struct intel_gvt * gvt,struct cmd_entry * e)2720 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2721 {
2722 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2723 }
2724 
2725 /* call the cmd handler, and advance ip */
cmd_parser_exec(struct parser_exec_state * s)2726 static int cmd_parser_exec(struct parser_exec_state *s)
2727 {
2728 	struct intel_vgpu *vgpu = s->vgpu;
2729 	const struct cmd_info *info;
2730 	u32 cmd;
2731 	int ret = 0;
2732 
2733 	cmd = cmd_val(s, 0);
2734 
2735 	/* fastpath for MI_NOOP */
2736 	if (cmd == MI_NOOP)
2737 		info = &cmd_info[mi_noop_index];
2738 	else
2739 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2740 
2741 	if (info == NULL) {
2742 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2743 			     cmd, get_opcode(cmd, s->engine),
2744 			     repr_addr_type(s->buf_addr_type),
2745 			     s->engine->name, s->workload);
2746 		return -EBADRQC;
2747 	}
2748 
2749 	s->info = info;
2750 
2751 	trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2752 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2753 			  s->workload, info->name);
2754 
2755 	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2756 		ret = gvt_check_valid_cmd_length(cmd_length(s),
2757 						 info->valid_len);
2758 		if (ret)
2759 			return ret;
2760 	}
2761 
2762 	if (info->handler) {
2763 		ret = info->handler(s);
2764 		if (ret < 0) {
2765 			gvt_vgpu_err("%s handler error\n", info->name);
2766 			return ret;
2767 		}
2768 	}
2769 
2770 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2771 		ret = cmd_advance_default(s);
2772 		if (ret) {
2773 			gvt_vgpu_err("%s IP advance error\n", info->name);
2774 			return ret;
2775 		}
2776 	}
2777 	return 0;
2778 }
2779 
gma_out_of_range(unsigned long gma,unsigned long gma_head,unsigned int gma_tail)2780 static inline bool gma_out_of_range(unsigned long gma,
2781 		unsigned long gma_head, unsigned int gma_tail)
2782 {
2783 	if (gma_tail >= gma_head)
2784 		return (gma < gma_head) || (gma > gma_tail);
2785 	else
2786 		return (gma > gma_tail) && (gma < gma_head);
2787 }
2788 
2789 /* Keep the consistent return type, e.g EBADRQC for unknown
2790  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2791  * works as the input of VM healthy status.
2792  */
command_scan(struct parser_exec_state * s,unsigned long rb_head,unsigned long rb_tail,unsigned long rb_start,unsigned long rb_len)2793 static int command_scan(struct parser_exec_state *s,
2794 		unsigned long rb_head, unsigned long rb_tail,
2795 		unsigned long rb_start, unsigned long rb_len)
2796 {
2797 
2798 	unsigned long gma_head, gma_tail, gma_bottom;
2799 	int ret = 0;
2800 	struct intel_vgpu *vgpu = s->vgpu;
2801 
2802 	gma_head = rb_start + rb_head;
2803 	gma_tail = rb_start + rb_tail;
2804 	gma_bottom = rb_start +  rb_len;
2805 
2806 	while (s->ip_gma != gma_tail) {
2807 		if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2808 				s->buf_type == RING_BUFFER_CTX) {
2809 			if (!(s->ip_gma >= rb_start) ||
2810 				!(s->ip_gma < gma_bottom)) {
2811 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2812 					"(base:0x%lx, bottom: 0x%lx)\n",
2813 					s->ip_gma, rb_start,
2814 					gma_bottom);
2815 				parser_exec_state_dump(s);
2816 				return -EFAULT;
2817 			}
2818 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2819 				gvt_vgpu_err("ip_gma %lx out of range."
2820 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2821 					s->ip_gma, rb_start,
2822 					rb_head, rb_tail);
2823 				parser_exec_state_dump(s);
2824 				break;
2825 			}
2826 		}
2827 		ret = cmd_parser_exec(s);
2828 		if (ret) {
2829 			gvt_vgpu_err("cmd parser error\n");
2830 			parser_exec_state_dump(s);
2831 			break;
2832 		}
2833 	}
2834 
2835 	return ret;
2836 }
2837 
scan_workload(struct intel_vgpu_workload * workload)2838 static int scan_workload(struct intel_vgpu_workload *workload)
2839 {
2840 	unsigned long gma_head, gma_tail;
2841 	struct parser_exec_state s;
2842 	int ret = 0;
2843 
2844 	/* ring base is page aligned */
2845 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2846 		return -EINVAL;
2847 
2848 	gma_head = workload->rb_start + workload->rb_head;
2849 	gma_tail = workload->rb_start + workload->rb_tail;
2850 
2851 	s.buf_type = RING_BUFFER_INSTRUCTION;
2852 	s.buf_addr_type = GTT_BUFFER;
2853 	s.vgpu = workload->vgpu;
2854 	s.engine = workload->engine;
2855 	s.ring_start = workload->rb_start;
2856 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2857 	s.ring_head = gma_head;
2858 	s.ring_tail = gma_tail;
2859 	s.rb_va = workload->shadow_ring_buffer_va;
2860 	s.workload = workload;
2861 	s.is_ctx_wa = false;
2862 
2863 	if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2864 		return 0;
2865 
2866 	ret = ip_gma_set(&s, gma_head);
2867 	if (ret)
2868 		goto out;
2869 
2870 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2871 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2872 
2873 out:
2874 	return ret;
2875 }
2876 
scan_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)2877 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2878 {
2879 
2880 	unsigned long gma_head, gma_tail, ring_size, ring_tail;
2881 	struct parser_exec_state s;
2882 	int ret = 0;
2883 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2884 				struct intel_vgpu_workload,
2885 				wa_ctx);
2886 
2887 	/* ring base is page aligned */
2888 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2889 					I915_GTT_PAGE_SIZE)))
2890 		return -EINVAL;
2891 
2892 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2893 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2894 			PAGE_SIZE);
2895 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2896 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2897 
2898 	s.buf_type = RING_BUFFER_INSTRUCTION;
2899 	s.buf_addr_type = GTT_BUFFER;
2900 	s.vgpu = workload->vgpu;
2901 	s.engine = workload->engine;
2902 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2903 	s.ring_size = ring_size;
2904 	s.ring_head = gma_head;
2905 	s.ring_tail = gma_tail;
2906 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2907 	s.workload = workload;
2908 	s.is_ctx_wa = true;
2909 
2910 	ret = ip_gma_set(&s, gma_head);
2911 	if (ret)
2912 		goto out;
2913 
2914 	ret = command_scan(&s, 0, ring_tail,
2915 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2916 out:
2917 	return ret;
2918 }
2919 
shadow_workload_ring_buffer(struct intel_vgpu_workload * workload)2920 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2921 {
2922 	struct intel_vgpu *vgpu = workload->vgpu;
2923 	struct intel_vgpu_submission *s = &vgpu->submission;
2924 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2925 	void *shadow_ring_buffer_va;
2926 	int ret;
2927 
2928 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2929 
2930 	/* calculate workload ring buffer size */
2931 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2932 			workload->rb_head) % guest_rb_size;
2933 
2934 	gma_head = workload->rb_start + workload->rb_head;
2935 	gma_tail = workload->rb_start + workload->rb_tail;
2936 	gma_top = workload->rb_start + guest_rb_size;
2937 
2938 	if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2939 		void *p;
2940 
2941 		/* realloc the new ring buffer if needed */
2942 		p = krealloc(s->ring_scan_buffer[workload->engine->id],
2943 			     workload->rb_len, GFP_KERNEL);
2944 		if (!p) {
2945 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2946 			return -ENOMEM;
2947 		}
2948 		s->ring_scan_buffer[workload->engine->id] = p;
2949 		s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2950 	}
2951 
2952 	shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2953 
2954 	/* get shadow ring buffer va */
2955 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2956 
2957 	/* head > tail --> copy head <-> top */
2958 	if (gma_head > gma_tail) {
2959 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2960 				      gma_head, gma_top, shadow_ring_buffer_va);
2961 		if (ret < 0) {
2962 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2963 			return ret;
2964 		}
2965 		shadow_ring_buffer_va += ret;
2966 		gma_head = workload->rb_start;
2967 	}
2968 
2969 	/* copy head or start <-> tail */
2970 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2971 				shadow_ring_buffer_va);
2972 	if (ret < 0) {
2973 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2974 		return ret;
2975 	}
2976 	return 0;
2977 }
2978 
intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload * workload)2979 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2980 {
2981 	int ret;
2982 	struct intel_vgpu *vgpu = workload->vgpu;
2983 
2984 	ret = shadow_workload_ring_buffer(workload);
2985 	if (ret) {
2986 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2987 		return ret;
2988 	}
2989 
2990 	ret = scan_workload(workload);
2991 	if (ret) {
2992 		gvt_vgpu_err("scan workload error\n");
2993 		return ret;
2994 	}
2995 	return 0;
2996 }
2997 
shadow_indirect_ctx(struct intel_shadow_wa_ctx * wa_ctx)2998 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2999 {
3000 	int ctx_size = wa_ctx->indirect_ctx.size;
3001 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
3002 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3003 					struct intel_vgpu_workload,
3004 					wa_ctx);
3005 	struct intel_vgpu *vgpu = workload->vgpu;
3006 	struct drm_i915_gem_object *obj;
3007 	int ret = 0;
3008 	void *map;
3009 
3010 	obj = i915_gem_object_create_shmem(workload->engine->i915,
3011 					   roundup(ctx_size + CACHELINE_BYTES,
3012 						   PAGE_SIZE));
3013 	if (IS_ERR(obj))
3014 		return PTR_ERR(obj);
3015 
3016 	/* get the va of the shadow batch buffer */
3017 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3018 	if (IS_ERR(map)) {
3019 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3020 		ret = PTR_ERR(map);
3021 		goto put_obj;
3022 	}
3023 
3024 	i915_gem_object_lock(obj, NULL);
3025 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
3026 	i915_gem_object_unlock(obj);
3027 	if (ret) {
3028 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3029 		goto unmap_src;
3030 	}
3031 
3032 	ret = copy_gma_to_hva(workload->vgpu,
3033 				workload->vgpu->gtt.ggtt_mm,
3034 				guest_gma, guest_gma + ctx_size,
3035 				map);
3036 	if (ret < 0) {
3037 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
3038 		goto unmap_src;
3039 	}
3040 
3041 	wa_ctx->indirect_ctx.obj = obj;
3042 	wa_ctx->indirect_ctx.shadow_va = map;
3043 	return 0;
3044 
3045 unmap_src:
3046 	i915_gem_object_unpin_map(obj);
3047 put_obj:
3048 	i915_gem_object_put(obj);
3049 	return ret;
3050 }
3051 
combine_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3052 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3053 {
3054 	u32 per_ctx_start[CACHELINE_DWORDS] = {};
3055 	unsigned char *bb_start_sva;
3056 
3057 	if (!wa_ctx->per_ctx.valid)
3058 		return 0;
3059 
3060 	per_ctx_start[0] = 0x18800001;
3061 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3062 
3063 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3064 				wa_ctx->indirect_ctx.size;
3065 
3066 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3067 
3068 	return 0;
3069 }
3070 
intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3071 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3072 {
3073 	int ret;
3074 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3075 					struct intel_vgpu_workload,
3076 					wa_ctx);
3077 	struct intel_vgpu *vgpu = workload->vgpu;
3078 
3079 	if (wa_ctx->indirect_ctx.size == 0)
3080 		return 0;
3081 
3082 	ret = shadow_indirect_ctx(wa_ctx);
3083 	if (ret) {
3084 		gvt_vgpu_err("fail to shadow indirect ctx\n");
3085 		return ret;
3086 	}
3087 
3088 	combine_wa_ctx(wa_ctx);
3089 
3090 	ret = scan_wa_ctx(wa_ctx);
3091 	if (ret) {
3092 		gvt_vgpu_err("scan wa ctx error\n");
3093 		return ret;
3094 	}
3095 
3096 	return 0;
3097 }
3098 
3099 /* generate dummy contexts by sending empty requests to HW, and let
3100  * the HW to fill Engine Contexts. This dummy contexts are used for
3101  * initialization purpose (update reg whitelist), so referred to as
3102  * init context here
3103  */
intel_gvt_update_reg_whitelist(struct intel_vgpu * vgpu)3104 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3105 {
3106 	const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3107 	struct intel_gvt *gvt = vgpu->gvt;
3108 	struct intel_engine_cs *engine;
3109 	enum intel_engine_id id;
3110 
3111 	if (gvt->is_reg_whitelist_updated)
3112 		return;
3113 
3114 	/* scan init ctx to update cmd accessible list */
3115 	for_each_engine(engine, gvt->gt, id) {
3116 		struct parser_exec_state s;
3117 		void *vaddr;
3118 		int ret;
3119 
3120 		if (!engine->default_state)
3121 			continue;
3122 
3123 		vaddr = shmem_pin_map(engine->default_state);
3124 		if (!vaddr) {
3125 			gvt_err("failed to map %s->default state\n",
3126 				engine->name);
3127 			return;
3128 		}
3129 
3130 		s.buf_type = RING_BUFFER_CTX;
3131 		s.buf_addr_type = GTT_BUFFER;
3132 		s.vgpu = vgpu;
3133 		s.engine = engine;
3134 		s.ring_start = 0;
3135 		s.ring_size = engine->context_size - start;
3136 		s.ring_head = 0;
3137 		s.ring_tail = s.ring_size;
3138 		s.rb_va = vaddr + start;
3139 		s.workload = NULL;
3140 		s.is_ctx_wa = false;
3141 		s.is_init_ctx = true;
3142 
3143 		/* skipping the first RING_CTX_SIZE(0x50) dwords */
3144 		ret = ip_gma_set(&s, RING_CTX_SIZE);
3145 		if (ret == 0) {
3146 			ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3147 			if (ret)
3148 				gvt_err("Scan init ctx error\n");
3149 		}
3150 
3151 		shmem_unpin_map(engine->default_state, vaddr);
3152 		if (ret)
3153 			return;
3154 	}
3155 
3156 	gvt->is_reg_whitelist_updated = true;
3157 }
3158 
intel_gvt_scan_engine_context(struct intel_vgpu_workload * workload)3159 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3160 {
3161 	struct intel_vgpu *vgpu = workload->vgpu;
3162 	unsigned long gma_head, gma_tail, gma_start, ctx_size;
3163 	struct parser_exec_state s;
3164 	int ring_id = workload->engine->id;
3165 	struct intel_context *ce = vgpu->submission.shadow[ring_id];
3166 	int ret;
3167 
3168 	GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3169 
3170 	ctx_size = workload->engine->context_size - PAGE_SIZE;
3171 
3172 	/* Only ring contxt is loaded to HW for inhibit context, no need to
3173 	 * scan engine context
3174 	 */
3175 	if (is_inhibit_context(ce))
3176 		return 0;
3177 
3178 	gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3179 	gma_head = 0;
3180 	gma_tail = ctx_size;
3181 
3182 	s.buf_type = RING_BUFFER_CTX;
3183 	s.buf_addr_type = GTT_BUFFER;
3184 	s.vgpu = workload->vgpu;
3185 	s.engine = workload->engine;
3186 	s.ring_start = gma_start;
3187 	s.ring_size = ctx_size;
3188 	s.ring_head = gma_start + gma_head;
3189 	s.ring_tail = gma_start + gma_tail;
3190 	s.rb_va = ce->lrc_reg_state;
3191 	s.workload = workload;
3192 	s.is_ctx_wa = false;
3193 	s.is_init_ctx = false;
3194 
3195 	/* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3196 	 * context
3197 	 */
3198 	ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3199 	if (ret)
3200 		goto out;
3201 
3202 	ret = command_scan(&s, gma_head, gma_tail,
3203 		gma_start, ctx_size);
3204 out:
3205 	if (ret)
3206 		gvt_vgpu_err("scan shadow ctx error\n");
3207 
3208 	return ret;
3209 }
3210 
init_cmd_table(struct intel_gvt * gvt)3211 static int init_cmd_table(struct intel_gvt *gvt)
3212 {
3213 	unsigned int gen_type = intel_gvt_get_device_type(gvt);
3214 	int i;
3215 
3216 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3217 		struct cmd_entry *e;
3218 
3219 		if (!(cmd_info[i].devices & gen_type))
3220 			continue;
3221 
3222 		e = kzalloc(sizeof(*e), GFP_KERNEL);
3223 		if (!e)
3224 			return -ENOMEM;
3225 
3226 		e->info = &cmd_info[i];
3227 		if (cmd_info[i].opcode == OP_MI_NOOP)
3228 			mi_noop_index = i;
3229 
3230 		INIT_HLIST_NODE(&e->hlist);
3231 		add_cmd_entry(gvt, e);
3232 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3233 			    e->info->name, e->info->opcode, e->info->flag,
3234 			    e->info->devices, e->info->rings);
3235 	}
3236 
3237 	return 0;
3238 }
3239 
clean_cmd_table(struct intel_gvt * gvt)3240 static void clean_cmd_table(struct intel_gvt *gvt)
3241 {
3242 	struct hlist_node *tmp;
3243 	struct cmd_entry *e;
3244 	int i;
3245 
3246 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3247 		kfree(e);
3248 
3249 	hash_init(gvt->cmd_table);
3250 }
3251 
intel_gvt_clean_cmd_parser(struct intel_gvt * gvt)3252 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3253 {
3254 	clean_cmd_table(gvt);
3255 }
3256 
intel_gvt_init_cmd_parser(struct intel_gvt * gvt)3257 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3258 {
3259 	int ret;
3260 
3261 	ret = init_cmd_table(gvt);
3262 	if (ret) {
3263 		intel_gvt_clean_cmd_parser(gvt);
3264 		return ret;
3265 	}
3266 	return 0;
3267 }
3268