1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6 <http://rt2x00.serialmonkey.com>
7
8 */
9
10 /*
11 Module: rt2x00
12 Abstract: rt2x00 global information.
13 */
14
15 #ifndef RT2X00_H
16 #define RT2X00_H
17
18 #include <linux/bitops.h>
19 #include <linux/interrupt.h>
20 #include <linux/skbuff.h>
21 #include <linux/workqueue.h>
22 #include <linux/firmware.h>
23 #include <linux/leds.h>
24 #include <linux/mutex.h>
25 #include <linux/etherdevice.h>
26 #include <linux/kfifo.h>
27 #include <linux/hrtimer.h>
28 #include <linux/average.h>
29 #include <linux/usb.h>
30 #include <linux/clk.h>
31
32 #include <net/mac80211.h>
33
34 #include "rt2x00debug.h"
35 #include "rt2x00dump.h"
36 #include "rt2x00leds.h"
37 #include "rt2x00reg.h"
38 #include "rt2x00queue.h"
39
40 /*
41 * Module information.
42 */
43 #define DRV_VERSION "2.3.0"
44 #define DRV_PROJECT "http://rt2x00.serialmonkey.com"
45
46 /* Debug definitions.
47 * Debug output has to be enabled during compile time.
48 */
49 #ifdef CONFIG_RT2X00_DEBUG
50 #define DEBUG
51 #endif /* CONFIG_RT2X00_DEBUG */
52
53 /* Utility printing macros
54 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
55 */
56 #define rt2x00_probe_err(fmt, ...) \
57 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \
58 __func__, ##__VA_ARGS__)
59 #define rt2x00_err(dev, fmt, ...) \
60 wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt, \
61 __func__, ##__VA_ARGS__)
62 #define rt2x00_warn(dev, fmt, ...) \
63 wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt, \
64 __func__, ##__VA_ARGS__)
65 #define rt2x00_info(dev, fmt, ...) \
66 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \
67 __func__, ##__VA_ARGS__)
68
69 /* Various debug levels */
70 #define rt2x00_dbg(dev, fmt, ...) \
71 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \
72 __func__, ##__VA_ARGS__)
73 #define rt2x00_eeprom_dbg(dev, fmt, ...) \
74 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \
75 __func__, ##__VA_ARGS__)
76
77 /*
78 * Duration calculations
79 * The rate variable passed is: 100kbs.
80 * To convert from bytes to bits we multiply size with 8,
81 * then the size is multiplied with 10 to make the
82 * real rate -> rate argument correction.
83 */
84 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate))
85 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
86
87 /*
88 * Determine the number of L2 padding bytes required between the header and
89 * the payload.
90 */
91 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3)
92
93 /*
94 * Determine the alignment requirement,
95 * to make sure the 802.11 payload is padded to a 4-byte boundrary
96 * we must determine the address of the payload and calculate the
97 * amount of bytes needed to move the data.
98 */
99 #define ALIGN_SIZE(__skb, __header) \
100 (((unsigned long)((__skb)->data + (__header))) & 3)
101
102 /*
103 * Constants for extra TX headroom for alignment purposes.
104 */
105 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */
106 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */
107
108 /*
109 * Standard timing and size defines.
110 * These values should follow the ieee80211 specifications.
111 */
112 #define ACK_SIZE 14
113 #define IEEE80211_HEADER 24
114 #define PLCP 48
115 #define BEACON 100
116 #define PREAMBLE 144
117 #define SHORT_PREAMBLE 72
118 #define SLOT_TIME 20
119 #define SHORT_SLOT_TIME 9
120 #define SIFS 10
121 #define PIFS (SIFS + SLOT_TIME)
122 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME)
123 #define DIFS (PIFS + SLOT_TIME)
124 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME)
125 #define EIFS (SIFS + DIFS + \
126 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
127 #define SHORT_EIFS (SIFS + SHORT_DIFS + \
128 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
129
130 enum rt2x00_chip_intf {
131 RT2X00_CHIP_INTF_PCI,
132 RT2X00_CHIP_INTF_PCIE,
133 RT2X00_CHIP_INTF_USB,
134 RT2X00_CHIP_INTF_SOC,
135 };
136
137 /*
138 * Chipset identification
139 * The chipset on the device is composed of a RT and RF chip.
140 * The chipset combination is important for determining device capabilities.
141 */
142 struct rt2x00_chip {
143 u16 rt;
144 #define RT2460 0x2460
145 #define RT2560 0x2560
146 #define RT2570 0x2570
147 #define RT2661 0x2661
148 #define RT2573 0x2573
149 #define RT2860 0x2860 /* 2.4GHz */
150 #define RT2872 0x2872 /* WSOC */
151 #define RT2883 0x2883 /* WSOC */
152 #define RT3070 0x3070
153 #define RT3071 0x3071
154 #define RT3090 0x3090 /* 2.4GHz PCIe */
155 #define RT3290 0x3290
156 #define RT3352 0x3352 /* WSOC */
157 #define RT3390 0x3390
158 #define RT3572 0x3572
159 #define RT3593 0x3593
160 #define RT3883 0x3883 /* WSOC */
161 #define RT5350 0x5350 /* WSOC 2.4GHz */
162 #define RT5390 0x5390 /* 2.4GHz */
163 #define RT5392 0x5392 /* 2.4GHz */
164 #define RT5592 0x5592
165 #define RT6352 0x6352 /* WSOC 2.4GHz */
166
167 u16 rf;
168 u16 rev;
169
170 enum rt2x00_chip_intf intf;
171 };
172
173 /*
174 * RF register values that belong to a particular channel.
175 */
176 struct rf_channel {
177 int channel;
178 u32 rf1;
179 u32 rf2;
180 u32 rf3;
181 u32 rf4;
182 };
183
184 /*
185 * Information structure for channel survey.
186 */
187 struct rt2x00_chan_survey {
188 u64 time_idle;
189 u64 time_busy;
190 u64 time_ext_busy;
191 };
192
193 /*
194 * Channel information structure
195 */
196 struct channel_info {
197 unsigned int flags;
198 #define GEOGRAPHY_ALLOWED 0x00000001
199
200 short max_power;
201 short default_power1;
202 short default_power2;
203 short default_power3;
204 };
205
206 /*
207 * Antenna setup values.
208 */
209 struct antenna_setup {
210 enum antenna rx;
211 enum antenna tx;
212 u8 rx_chain_num;
213 u8 tx_chain_num;
214 };
215
216 /*
217 * Quality statistics about the currently active link.
218 */
219 struct link_qual {
220 /*
221 * Statistics required for Link tuning by driver
222 * The rssi value is provided by rt2x00lib during the
223 * link_tuner() callback function.
224 * The false_cca field is filled during the link_stats()
225 * callback function and could be used during the
226 * link_tuner() callback function.
227 */
228 int rssi;
229 int false_cca;
230
231 /*
232 * VGC levels
233 * Hardware driver will tune the VGC level during each call
234 * to the link_tuner() callback function. This vgc_level is
235 * determined based on the link quality statistics like
236 * average RSSI and the false CCA count.
237 *
238 * In some cases the drivers need to differentiate between
239 * the currently "desired" VGC level and the level configured
240 * in the hardware. The latter is important to reduce the
241 * number of BBP register reads to reduce register access
242 * overhead. For this reason we store both values here.
243 */
244 u8 vgc_level;
245 u8 vgc_level_reg;
246
247 /*
248 * Statistics required for Signal quality calculation.
249 * These fields might be changed during the link_stats()
250 * callback function.
251 */
252 int rx_success;
253 int rx_failed;
254 int tx_success;
255 int tx_failed;
256 };
257
258 DECLARE_EWMA(rssi, 10, 8)
259
260 /*
261 * Antenna settings about the currently active link.
262 */
263 struct link_ant {
264 /*
265 * Antenna flags
266 */
267 unsigned int flags;
268 #define ANTENNA_RX_DIVERSITY 0x00000001
269 #define ANTENNA_TX_DIVERSITY 0x00000002
270 #define ANTENNA_MODE_SAMPLE 0x00000004
271
272 /*
273 * Currently active TX/RX antenna setup.
274 * When software diversity is used, this will indicate
275 * which antenna is actually used at this time.
276 */
277 struct antenna_setup active;
278
279 /*
280 * RSSI history information for the antenna.
281 * Used to determine when to switch antenna
282 * when using software diversity.
283 */
284 int rssi_history;
285
286 /*
287 * Current RSSI average of the currently active antenna.
288 * Similar to the avg_rssi in the link_qual structure
289 * this value is updated by using the walking average.
290 */
291 struct ewma_rssi rssi_ant;
292 };
293
294 /*
295 * To optimize the quality of the link we need to store
296 * the quality of received frames and periodically
297 * optimize the link.
298 */
299 struct link {
300 /*
301 * Link tuner counter
302 * The number of times the link has been tuned
303 * since the radio has been switched on.
304 */
305 u32 count;
306
307 /*
308 * Quality measurement values.
309 */
310 struct link_qual qual;
311
312 /*
313 * TX/RX antenna setup.
314 */
315 struct link_ant ant;
316
317 /*
318 * Currently active average RSSI value
319 */
320 struct ewma_rssi avg_rssi;
321
322 /*
323 * Work structure for scheduling periodic link tuning.
324 */
325 struct delayed_work work;
326
327 /*
328 * Work structure for scheduling periodic watchdog monitoring.
329 * This work must be scheduled on the kernel workqueue, while
330 * all other work structures must be queued on the mac80211
331 * workqueue. This guarantees that the watchdog can schedule
332 * other work structures and wait for their completion in order
333 * to bring the device/driver back into the desired state.
334 */
335 struct delayed_work watchdog_work;
336 unsigned int watchdog_interval;
337 unsigned int watchdog;
338 };
339
340 enum rt2x00_delayed_flags {
341 DELAYED_UPDATE_BEACON,
342 };
343
344 /*
345 * Interface structure
346 * Per interface configuration details, this structure
347 * is allocated as the private data for ieee80211_vif.
348 */
349 struct rt2x00_intf {
350 /*
351 * beacon->skb must be protected with the mutex.
352 */
353 struct mutex beacon_skb_mutex;
354
355 /*
356 * Entry in the beacon queue which belongs to
357 * this interface. Each interface has its own
358 * dedicated beacon entry.
359 */
360 struct queue_entry *beacon;
361 bool enable_beacon;
362
363 /*
364 * Actions that needed rescheduling.
365 */
366 unsigned long delayed_flags;
367
368 /*
369 * Software sequence counter, this is only required
370 * for hardware which doesn't support hardware
371 * sequence counting.
372 */
373 atomic_t seqno;
374 };
375
vif_to_intf(struct ieee80211_vif * vif)376 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
377 {
378 return (struct rt2x00_intf *)vif->drv_priv;
379 }
380
381 /**
382 * struct hw_mode_spec: Hardware specifications structure
383 *
384 * Details about the supported modes, rates and channels
385 * of a particular chipset. This is used by rt2x00lib
386 * to build the ieee80211_hw_mode array for mac80211.
387 *
388 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
389 * @supported_rates: Rate types which are supported (CCK, OFDM).
390 * @num_channels: Number of supported channels. This is used as array size
391 * for @tx_power_a, @tx_power_bg and @channels.
392 * @channels: Device/chipset specific channel values (See &struct rf_channel).
393 * @channels_info: Additional information for channels (See &struct channel_info).
394 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
395 */
396 struct hw_mode_spec {
397 unsigned int supported_bands;
398 #define SUPPORT_BAND_2GHZ 0x00000001
399 #define SUPPORT_BAND_5GHZ 0x00000002
400
401 unsigned int supported_rates;
402 #define SUPPORT_RATE_CCK 0x00000001
403 #define SUPPORT_RATE_OFDM 0x00000002
404
405 unsigned int num_channels;
406 const struct rf_channel *channels;
407 const struct channel_info *channels_info;
408
409 struct ieee80211_sta_ht_cap ht;
410 };
411
412 /*
413 * Configuration structure wrapper around the
414 * mac80211 configuration structure.
415 * When mac80211 configures the driver, rt2x00lib
416 * can precalculate values which are equal for all
417 * rt2x00 drivers. Those values can be stored in here.
418 */
419 struct rt2x00lib_conf {
420 struct ieee80211_conf *conf;
421
422 struct rf_channel rf;
423 struct channel_info channel;
424 };
425
426 /*
427 * Configuration structure for erp settings.
428 */
429 struct rt2x00lib_erp {
430 int short_preamble;
431 int cts_protection;
432
433 u32 basic_rates;
434
435 int slot_time;
436
437 short sifs;
438 short pifs;
439 short difs;
440 short eifs;
441
442 u16 beacon_int;
443 u16 ht_opmode;
444 };
445
446 /*
447 * Configuration structure for hardware encryption.
448 */
449 struct rt2x00lib_crypto {
450 enum cipher cipher;
451
452 enum set_key_cmd cmd;
453 const u8 *address;
454
455 u32 bssidx;
456
457 u8 key[16];
458 u8 tx_mic[8];
459 u8 rx_mic[8];
460
461 int wcid;
462 };
463
464 /*
465 * Configuration structure wrapper around the
466 * rt2x00 interface configuration handler.
467 */
468 struct rt2x00intf_conf {
469 /*
470 * Interface type
471 */
472 enum nl80211_iftype type;
473
474 /*
475 * TSF sync value, this is dependent on the operation type.
476 */
477 enum tsf_sync sync;
478
479 /*
480 * The MAC and BSSID addresses are simple array of bytes,
481 * these arrays are little endian, so when sending the addresses
482 * to the drivers, copy the it into a endian-signed variable.
483 *
484 * Note that all devices (except rt2500usb) have 32 bits
485 * register word sizes. This means that whatever variable we
486 * pass _must_ be a multiple of 32 bits. Otherwise the device
487 * might not accept what we are sending to it.
488 * This will also make it easier for the driver to write
489 * the data to the device.
490 */
491 __le32 mac[2];
492 __le32 bssid[2];
493 };
494
495 /*
496 * Private structure for storing STA details
497 * wcid: Wireless Client ID
498 */
499 struct rt2x00_sta {
500 int wcid;
501 };
502
sta_to_rt2x00_sta(struct ieee80211_sta * sta)503 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
504 {
505 return (struct rt2x00_sta *)sta->drv_priv;
506 }
507
508 /*
509 * rt2x00lib callback functions.
510 */
511 struct rt2x00lib_ops {
512 /*
513 * Interrupt handlers.
514 */
515 irq_handler_t irq_handler;
516
517 /*
518 * TX status tasklet handler.
519 */
520 void (*txstatus_tasklet) (struct tasklet_struct *t);
521 void (*pretbtt_tasklet) (struct tasklet_struct *t);
522 void (*tbtt_tasklet) (struct tasklet_struct *t);
523 void (*rxdone_tasklet) (struct tasklet_struct *t);
524 void (*autowake_tasklet) (struct tasklet_struct *t);
525
526 /*
527 * Device init handlers.
528 */
529 int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
530 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
531 int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
532 const u8 *data, const size_t len);
533 int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
534 const u8 *data, const size_t len);
535
536 /*
537 * Device initialization/deinitialization handlers.
538 */
539 int (*initialize) (struct rt2x00_dev *rt2x00dev);
540 void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
541
542 /*
543 * queue initialization handlers
544 */
545 bool (*get_entry_state) (struct queue_entry *entry);
546 void (*clear_entry) (struct queue_entry *entry);
547
548 /*
549 * Radio control handlers.
550 */
551 int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
552 enum dev_state state);
553 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
554 void (*link_stats) (struct rt2x00_dev *rt2x00dev,
555 struct link_qual *qual);
556 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
557 struct link_qual *qual);
558 void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
559 struct link_qual *qual, const u32 count);
560 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
561 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
562
563 /*
564 * Data queue handlers.
565 */
566 void (*watchdog) (struct rt2x00_dev *rt2x00dev);
567 void (*start_queue) (struct data_queue *queue);
568 void (*kick_queue) (struct data_queue *queue);
569 void (*stop_queue) (struct data_queue *queue);
570 void (*flush_queue) (struct data_queue *queue, bool drop);
571 void (*tx_dma_done) (struct queue_entry *entry);
572
573 /*
574 * TX control handlers
575 */
576 void (*write_tx_desc) (struct queue_entry *entry,
577 struct txentry_desc *txdesc);
578 void (*write_tx_data) (struct queue_entry *entry,
579 struct txentry_desc *txdesc);
580 void (*write_beacon) (struct queue_entry *entry,
581 struct txentry_desc *txdesc);
582 void (*clear_beacon) (struct queue_entry *entry);
583 int (*get_tx_data_len) (struct queue_entry *entry);
584
585 /*
586 * RX control handlers
587 */
588 void (*fill_rxdone) (struct queue_entry *entry,
589 struct rxdone_entry_desc *rxdesc);
590
591 /*
592 * Configuration handlers.
593 */
594 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
595 struct rt2x00lib_crypto *crypto,
596 struct ieee80211_key_conf *key);
597 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
598 struct rt2x00lib_crypto *crypto,
599 struct ieee80211_key_conf *key);
600 void (*config_filter) (struct rt2x00_dev *rt2x00dev,
601 const unsigned int filter_flags);
602 void (*config_intf) (struct rt2x00_dev *rt2x00dev,
603 struct rt2x00_intf *intf,
604 struct rt2x00intf_conf *conf,
605 const unsigned int flags);
606 #define CONFIG_UPDATE_TYPE ( 1 << 1 )
607 #define CONFIG_UPDATE_MAC ( 1 << 2 )
608 #define CONFIG_UPDATE_BSSID ( 1 << 3 )
609
610 void (*config_erp) (struct rt2x00_dev *rt2x00dev,
611 struct rt2x00lib_erp *erp,
612 u32 changed);
613 void (*config_ant) (struct rt2x00_dev *rt2x00dev,
614 struct antenna_setup *ant);
615 void (*config) (struct rt2x00_dev *rt2x00dev,
616 struct rt2x00lib_conf *libconf,
617 const unsigned int changed_flags);
618 void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev);
619 int (*sta_add) (struct rt2x00_dev *rt2x00dev,
620 struct ieee80211_vif *vif,
621 struct ieee80211_sta *sta);
622 int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
623 struct ieee80211_sta *sta);
624 };
625
626 /*
627 * rt2x00 driver callback operation structure.
628 */
629 struct rt2x00_ops {
630 const char *name;
631 const unsigned int drv_data_size;
632 const unsigned int max_ap_intf;
633 const unsigned int eeprom_size;
634 const unsigned int rf_size;
635 const unsigned int tx_queues;
636 void (*queue_init)(struct data_queue *queue);
637 const struct rt2x00lib_ops *lib;
638 const void *drv;
639 const struct ieee80211_ops *hw;
640 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
641 const struct rt2x00debug *debugfs;
642 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
643 };
644
645 /*
646 * rt2x00 state flags
647 */
648 enum rt2x00_state_flags {
649 /*
650 * Device flags
651 */
652 DEVICE_STATE_PRESENT,
653 DEVICE_STATE_REGISTERED_HW,
654 DEVICE_STATE_INITIALIZED,
655 DEVICE_STATE_STARTED,
656 DEVICE_STATE_ENABLED_RADIO,
657 DEVICE_STATE_SCANNING,
658 DEVICE_STATE_FLUSHING,
659 DEVICE_STATE_RESET,
660
661 /*
662 * Driver configuration
663 */
664 CONFIG_CHANNEL_HT40,
665 CONFIG_POWERSAVING,
666 CONFIG_HT_DISABLED,
667 CONFIG_MONITORING,
668
669 /*
670 * Mark we currently are sequentially reading TX_STA_FIFO register
671 * FIXME: this is for only rt2800usb, should go to private data
672 */
673 TX_STATUS_READING,
674 };
675
676 /*
677 * rt2x00 capability flags
678 */
679 enum rt2x00_capability_flags {
680 /*
681 * Requirements
682 */
683 REQUIRE_FIRMWARE,
684 REQUIRE_BEACON_GUARD,
685 REQUIRE_ATIM_QUEUE,
686 REQUIRE_DMA,
687 REQUIRE_COPY_IV,
688 REQUIRE_L2PAD,
689 REQUIRE_TXSTATUS_FIFO,
690 REQUIRE_TASKLET_CONTEXT,
691 REQUIRE_SW_SEQNO,
692 REQUIRE_HT_TX_DESC,
693 REQUIRE_PS_AUTOWAKE,
694 REQUIRE_DELAYED_RFKILL,
695
696 /*
697 * Capabilities
698 */
699 CAPABILITY_HW_BUTTON,
700 CAPABILITY_HW_CRYPTO,
701 CAPABILITY_POWER_LIMIT,
702 CAPABILITY_CONTROL_FILTERS,
703 CAPABILITY_CONTROL_FILTER_PSPOLL,
704 CAPABILITY_PRE_TBTT_INTERRUPT,
705 CAPABILITY_LINK_TUNING,
706 CAPABILITY_FRAME_TYPE,
707 CAPABILITY_RF_SEQUENCE,
708 CAPABILITY_EXTERNAL_LNA_A,
709 CAPABILITY_EXTERNAL_LNA_BG,
710 CAPABILITY_DOUBLE_ANTENNA,
711 CAPABILITY_BT_COEXIST,
712 CAPABILITY_VCO_RECALIBRATION,
713 CAPABILITY_EXTERNAL_PA_TX0,
714 CAPABILITY_EXTERNAL_PA_TX1,
715 CAPABILITY_RESTART_HW,
716 };
717
718 /*
719 * Interface combinations
720 */
721 enum {
722 IF_COMB_AP = 0,
723 NUM_IF_COMB,
724 };
725
726 /*
727 * rt2x00 device structure.
728 */
729 struct rt2x00_dev {
730 /*
731 * Device structure.
732 * The structure stored in here depends on the
733 * system bus (PCI or USB).
734 * When accessing this variable, the rt2x00dev_{pci,usb}
735 * macros should be used for correct typecasting.
736 */
737 struct device *dev;
738
739 /*
740 * Callback functions.
741 */
742 const struct rt2x00_ops *ops;
743
744 /*
745 * Driver data.
746 */
747 void *drv_data;
748
749 /*
750 * IEEE80211 control structure.
751 */
752 struct ieee80211_hw *hw;
753 struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
754 struct rt2x00_chan_survey *chan_survey;
755 enum nl80211_band curr_band;
756 int curr_freq;
757
758 /*
759 * If enabled, the debugfs interface structures
760 * required for deregistration of debugfs.
761 */
762 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
763 struct rt2x00debug_intf *debugfs_intf;
764 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
765
766 /*
767 * LED structure for changing the LED status
768 * by mac8011 or the kernel.
769 */
770 #ifdef CONFIG_RT2X00_LIB_LEDS
771 struct rt2x00_led led_radio;
772 struct rt2x00_led led_assoc;
773 struct rt2x00_led led_qual;
774 u16 led_mcu_reg;
775 #endif /* CONFIG_RT2X00_LIB_LEDS */
776
777 /*
778 * Device state flags.
779 * In these flags the current status is stored.
780 * Access to these flags should occur atomically.
781 */
782 unsigned long flags;
783
784 /*
785 * Device capabiltiy flags.
786 * In these flags the device/driver capabilities are stored.
787 * Access to these flags should occur non-atomically.
788 */
789 unsigned long cap_flags;
790
791 /*
792 * Device information, Bus IRQ and name (PCI, SoC)
793 */
794 int irq;
795 const char *name;
796
797 /*
798 * Chipset identification.
799 */
800 struct rt2x00_chip chip;
801
802 /*
803 * hw capability specifications.
804 */
805 struct hw_mode_spec spec;
806
807 /*
808 * This is the default TX/RX antenna setup as indicated
809 * by the device's EEPROM.
810 */
811 struct antenna_setup default_ant;
812
813 /*
814 * Register pointers
815 * csr.base: CSR base register address. (PCI)
816 * csr.cache: CSR cache for usb_control_msg. (USB)
817 */
818 union csr {
819 void __iomem *base;
820 void *cache;
821 } csr;
822
823 /*
824 * Mutex to protect register accesses.
825 * For PCI and USB devices it protects against concurrent indirect
826 * register access (BBP, RF, MCU) since accessing those
827 * registers require multiple calls to the CSR registers.
828 * For USB devices it also protects the csr_cache since that
829 * field is used for normal CSR access and it cannot support
830 * multiple callers simultaneously.
831 */
832 struct mutex csr_mutex;
833
834 /*
835 * Mutex to synchronize config and link tuner.
836 */
837 struct mutex conf_mutex;
838 /*
839 * Current packet filter configuration for the device.
840 * This contains all currently active FIF_* flags send
841 * to us by mac80211 during configure_filter().
842 */
843 unsigned int packet_filter;
844
845 /*
846 * Interface details:
847 * - Open ap interface count.
848 * - Open sta interface count.
849 * - Association count.
850 * - Beaconing enabled count.
851 */
852 unsigned int intf_ap_count;
853 unsigned int intf_sta_count;
854 unsigned int intf_associated;
855 unsigned int intf_beaconing;
856
857 /*
858 * Interface combinations
859 */
860 struct ieee80211_iface_limit if_limits_ap;
861 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
862
863 /*
864 * Link quality
865 */
866 struct link link;
867
868 /*
869 * EEPROM data.
870 */
871 __le16 *eeprom;
872
873 /*
874 * Active RF register values.
875 * These are stored here so we don't need
876 * to read the rf registers and can directly
877 * use this value instead.
878 * This field should be accessed by using
879 * rt2x00_rf_read() and rt2x00_rf_write().
880 */
881 u32 *rf;
882
883 /*
884 * LNA gain
885 */
886 short lna_gain;
887
888 /*
889 * Current TX power value.
890 */
891 u16 tx_power;
892
893 /*
894 * Current retry values.
895 */
896 u8 short_retry;
897 u8 long_retry;
898
899 /*
900 * Rssi <-> Dbm offset
901 */
902 u8 rssi_offset;
903
904 /*
905 * Frequency offset.
906 */
907 u8 freq_offset;
908
909 /*
910 * Association id.
911 */
912 u16 aid;
913
914 /*
915 * Beacon interval.
916 */
917 u16 beacon_int;
918
919 /* Rx/Tx DMA busy watchdog counter */
920 u16 rxdma_busy, txdma_busy;
921
922 /**
923 * Timestamp of last received beacon
924 */
925 unsigned long last_beacon;
926
927 /*
928 * Low level statistics which will have
929 * to be kept up to date while device is running.
930 */
931 struct ieee80211_low_level_stats low_level_stats;
932
933 /**
934 * Work queue for all work which should not be placed
935 * on the mac80211 workqueue (because of dependencies
936 * between various work structures).
937 */
938 struct workqueue_struct *workqueue;
939
940 /*
941 * Scheduled work.
942 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
943 * which means it cannot be placed on the hw->workqueue
944 * due to RTNL locking requirements.
945 */
946 struct work_struct intf_work;
947
948 /**
949 * Scheduled work for TX/RX done handling (USB devices)
950 */
951 struct work_struct rxdone_work;
952 struct work_struct txdone_work;
953
954 /*
955 * Powersaving work
956 */
957 struct delayed_work autowakeup_work;
958 struct work_struct sleep_work;
959
960 /*
961 * Data queue arrays for RX, TX, Beacon and ATIM.
962 */
963 unsigned int data_queues;
964 struct data_queue *rx;
965 struct data_queue *tx;
966 struct data_queue *bcn;
967 struct data_queue *atim;
968
969 /*
970 * Firmware image.
971 */
972 const struct firmware *fw;
973
974 /*
975 * FIFO for storing tx status reports between isr and tasklet.
976 */
977 DECLARE_KFIFO_PTR(txstatus_fifo, u32);
978
979 /*
980 * Timer to ensure tx status reports are read (rt2800usb).
981 */
982 struct hrtimer txstatus_timer;
983
984 /*
985 * Tasklet for processing tx status reports (rt2800pci).
986 */
987 struct tasklet_struct txstatus_tasklet;
988 struct tasklet_struct pretbtt_tasklet;
989 struct tasklet_struct tbtt_tasklet;
990 struct tasklet_struct rxdone_tasklet;
991 struct tasklet_struct autowake_tasklet;
992
993 /*
994 * Used for VCO periodic calibration.
995 */
996 int rf_channel;
997
998 /*
999 * Protect the interrupt mask register.
1000 */
1001 spinlock_t irqmask_lock;
1002
1003 /*
1004 * List of BlockAckReq TX entries that need driver BlockAck processing.
1005 */
1006 struct list_head bar_list;
1007 spinlock_t bar_list_lock;
1008
1009 /* Extra TX headroom required for alignment purposes. */
1010 unsigned int extra_tx_headroom;
1011
1012 struct usb_anchor *anchor;
1013 unsigned int num_proto_errs;
1014
1015 /* Clock for System On Chip devices. */
1016 struct clk *clk;
1017 };
1018
1019 struct rt2x00_bar_list_entry {
1020 struct list_head list;
1021 struct rcu_head head;
1022
1023 struct queue_entry *entry;
1024 int block_acked;
1025
1026 /* Relevant parts of the IEEE80211 BAR header */
1027 __u8 ra[6];
1028 __u8 ta[6];
1029 __le16 control;
1030 __le16 start_seq_num;
1031 };
1032
1033 /*
1034 * Register defines.
1035 * Some registers require multiple attempts before success,
1036 * in those cases REGISTER_BUSY_COUNT attempts should be
1037 * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1038 * bus delays, we do not have to loop so many times to wait
1039 * for valid register value on that bus.
1040 */
1041 #define REGISTER_BUSY_COUNT 100
1042 #define REGISTER_USB_BUSY_COUNT 20
1043 #define REGISTER_BUSY_DELAY 100
1044
1045 /*
1046 * Generic RF access.
1047 * The RF is being accessed by word index.
1048 */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1049 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1050 const unsigned int word)
1051 {
1052 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1053 return rt2x00dev->rf[word - 1];
1054 }
1055
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1056 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1057 const unsigned int word, u32 data)
1058 {
1059 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1060 rt2x00dev->rf[word - 1] = data;
1061 }
1062
1063 /*
1064 * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1065 */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1066 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1067 const unsigned int word)
1068 {
1069 return (void *)&rt2x00dev->eeprom[word];
1070 }
1071
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1072 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1073 const unsigned int word)
1074 {
1075 return le16_to_cpu(rt2x00dev->eeprom[word]);
1076 }
1077
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1078 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1079 const unsigned int word, u16 data)
1080 {
1081 rt2x00dev->eeprom[word] = cpu_to_le16(data);
1082 }
1083
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1084 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1085 const unsigned int byte)
1086 {
1087 return *(((u8 *)rt2x00dev->eeprom) + byte);
1088 }
1089
1090 /*
1091 * Chipset handlers
1092 */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1093 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1094 const u16 rt, const u16 rf, const u16 rev)
1095 {
1096 rt2x00dev->chip.rt = rt;
1097 rt2x00dev->chip.rf = rf;
1098 rt2x00dev->chip.rev = rev;
1099
1100 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1101 rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1102 rt2x00dev->chip.rev);
1103 }
1104
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1105 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1106 const u16 rt, const u16 rev)
1107 {
1108 rt2x00dev->chip.rt = rt;
1109 rt2x00dev->chip.rev = rev;
1110
1111 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1112 rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1113 }
1114
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1115 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1116 {
1117 rt2x00dev->chip.rf = rf;
1118
1119 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1120 rt2x00dev->chip.rf);
1121 }
1122
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1123 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1124 {
1125 return (rt2x00dev->chip.rt == rt);
1126 }
1127
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1128 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1129 {
1130 return (rt2x00dev->chip.rf == rf);
1131 }
1132
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1133 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1134 {
1135 return rt2x00dev->chip.rev;
1136 }
1137
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1138 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1139 const u16 rt, const u16 rev)
1140 {
1141 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1142 }
1143
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1144 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1145 const u16 rt, const u16 rev)
1146 {
1147 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1148 }
1149
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1150 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1151 const u16 rt, const u16 rev)
1152 {
1153 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1154 }
1155
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1156 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1157 enum rt2x00_chip_intf intf)
1158 {
1159 rt2x00dev->chip.intf = intf;
1160 }
1161
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1162 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1163 enum rt2x00_chip_intf intf)
1164 {
1165 return (rt2x00dev->chip.intf == intf);
1166 }
1167
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1168 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1169 {
1170 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1171 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1172 }
1173
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1174 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1175 {
1176 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1177 }
1178
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1179 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1180 {
1181 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1182 }
1183
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1184 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1185 {
1186 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1187 }
1188
1189 /* Helpers for capability flags */
1190
1191 static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1192 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1193 enum rt2x00_capability_flags cap_flag)
1194 {
1195 return test_bit(cap_flag, &rt2x00dev->cap_flags);
1196 }
1197
1198 static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1199 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1200 {
1201 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1202 }
1203
1204 static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1205 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1206 {
1207 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1208 }
1209
1210 static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1211 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1212 {
1213 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1214 }
1215
1216 static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1217 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1218 {
1219 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1220 }
1221
1222 static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1223 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1224 {
1225 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1226 }
1227
1228 static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1229 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1230 {
1231 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1232 }
1233
1234 static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1235 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1236 {
1237 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1238 }
1239
1240 static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1241 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1242 {
1243 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1244 }
1245
1246 static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1247 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1248 {
1249 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1250 }
1251
1252 static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1253 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1254 {
1255 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1256 }
1257
1258 static inline bool
rt2x00_has_cap_external_pa(struct rt2x00_dev * rt2x00dev)1259 rt2x00_has_cap_external_pa(struct rt2x00_dev *rt2x00dev)
1260 {
1261 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_PA_TX0);
1262 }
1263
1264 static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1265 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1266 {
1267 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1268 }
1269
1270 static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1271 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1272 {
1273 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1274 }
1275
1276 static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1277 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1278 {
1279 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1280 }
1281
1282 static inline bool
rt2x00_has_cap_restart_hw(struct rt2x00_dev * rt2x00dev)1283 rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev)
1284 {
1285 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW);
1286 }
1287
1288 /**
1289 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1290 * @entry: Pointer to &struct queue_entry
1291 *
1292 * Returns -ENOMEM if mapping fail, 0 otherwise.
1293 */
1294 int rt2x00queue_map_txskb(struct queue_entry *entry);
1295
1296 /**
1297 * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1298 * @entry: Pointer to &struct queue_entry
1299 */
1300 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1301
1302 /**
1303 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1304 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1305 * @queue: rt2x00 queue index (see &enum data_queue_qid).
1306 *
1307 * Returns NULL for non tx queues.
1308 */
1309 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,enum data_queue_qid queue)1310 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1311 enum data_queue_qid queue)
1312 {
1313 if (queue >= rt2x00dev->ops->tx_queues && queue < IEEE80211_NUM_ACS)
1314 queue = rt2x00dev->ops->tx_queues - 1;
1315
1316 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1317 return &rt2x00dev->tx[queue];
1318
1319 if (queue == QID_ATIM)
1320 return rt2x00dev->atim;
1321
1322 return NULL;
1323 }
1324
1325 /**
1326 * rt2x00queue_get_entry - Get queue entry where the given index points to.
1327 * @queue: Pointer to &struct data_queue from where we obtain the entry.
1328 * @index: Index identifier for obtaining the correct index.
1329 */
1330 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1331 enum queue_index index);
1332
1333 /**
1334 * rt2x00queue_pause_queue - Pause a data queue
1335 * @queue: Pointer to &struct data_queue.
1336 *
1337 * This function will pause the data queue locally, preventing
1338 * new frames to be added to the queue (while the hardware is
1339 * still allowed to run).
1340 */
1341 void rt2x00queue_pause_queue(struct data_queue *queue);
1342
1343 /**
1344 * rt2x00queue_unpause_queue - unpause a data queue
1345 * @queue: Pointer to &struct data_queue.
1346 *
1347 * This function will unpause the data queue locally, allowing
1348 * new frames to be added to the queue again.
1349 */
1350 void rt2x00queue_unpause_queue(struct data_queue *queue);
1351
1352 /**
1353 * rt2x00queue_start_queue - Start a data queue
1354 * @queue: Pointer to &struct data_queue.
1355 *
1356 * This function will start handling all pending frames in the queue.
1357 */
1358 void rt2x00queue_start_queue(struct data_queue *queue);
1359
1360 /**
1361 * rt2x00queue_stop_queue - Halt a data queue
1362 * @queue: Pointer to &struct data_queue.
1363 *
1364 * This function will stop all pending frames in the queue.
1365 */
1366 void rt2x00queue_stop_queue(struct data_queue *queue);
1367
1368 /**
1369 * rt2x00queue_flush_queue - Flush a data queue
1370 * @queue: Pointer to &struct data_queue.
1371 * @drop: True to drop all pending frames.
1372 *
1373 * This function will flush the queue. After this call
1374 * the queue is guaranteed to be empty.
1375 */
1376 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1377
1378 /**
1379 * rt2x00queue_start_queues - Start all data queues
1380 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1381 *
1382 * This function will loop through all available queues to start them
1383 */
1384 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1385
1386 /**
1387 * rt2x00queue_stop_queues - Halt all data queues
1388 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1389 *
1390 * This function will loop through all available queues to stop
1391 * any pending frames.
1392 */
1393 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1394
1395 /**
1396 * rt2x00queue_flush_queues - Flush all data queues
1397 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1398 * @drop: True to drop all pending frames.
1399 *
1400 * This function will loop through all available queues to flush
1401 * any pending frames.
1402 */
1403 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1404
1405 /*
1406 * Debugfs handlers.
1407 */
1408 /**
1409 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1410 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1411 * @type: The type of frame that is being dumped.
1412 * @entry: The queue entry containing the frame to be dumped.
1413 */
1414 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1415 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1416 enum rt2x00_dump_type type, struct queue_entry *entry);
1417 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct queue_entry * entry)1418 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1419 enum rt2x00_dump_type type,
1420 struct queue_entry *entry)
1421 {
1422 }
1423 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1424
1425 /*
1426 * Utility functions.
1427 */
1428 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1429 struct ieee80211_vif *vif);
1430 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr);
1431
1432 /*
1433 * Interrupt context handlers.
1434 */
1435 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1436 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1437 void rt2x00lib_dmastart(struct queue_entry *entry);
1438 void rt2x00lib_dmadone(struct queue_entry *entry);
1439 void rt2x00lib_txdone(struct queue_entry *entry,
1440 struct txdone_entry_desc *txdesc);
1441 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
1442 struct txdone_entry_desc *txdesc);
1443 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1444 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1445
1446 /*
1447 * mac80211 handlers.
1448 */
1449 void rt2x00mac_tx(struct ieee80211_hw *hw,
1450 struct ieee80211_tx_control *control,
1451 struct sk_buff *skb);
1452 int rt2x00mac_start(struct ieee80211_hw *hw);
1453 void rt2x00mac_stop(struct ieee80211_hw *hw, bool suspend);
1454 void rt2x00mac_reconfig_complete(struct ieee80211_hw *hw,
1455 enum ieee80211_reconfig_type reconfig_type);
1456 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1457 struct ieee80211_vif *vif);
1458 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1459 struct ieee80211_vif *vif);
1460 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1461 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1462 unsigned int changed_flags,
1463 unsigned int *total_flags,
1464 u64 multicast);
1465 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1466 bool set);
1467 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1468 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1469 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1470 struct ieee80211_key_conf *key);
1471 #else
1472 #define rt2x00mac_set_key NULL
1473 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1474 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1475 struct ieee80211_vif *vif,
1476 const u8 *mac_addr);
1477 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1478 struct ieee80211_vif *vif);
1479 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1480 struct ieee80211_low_level_stats *stats);
1481 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1482 struct ieee80211_vif *vif,
1483 struct ieee80211_bss_conf *bss_conf,
1484 u64 changes);
1485 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1486 struct ieee80211_vif *vif,
1487 unsigned int link_id, u16 queue,
1488 const struct ieee80211_tx_queue_params *params);
1489 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1490 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1491 u32 queues, bool drop);
1492 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1493 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1494 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1495 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1496 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1497
1498 /*
1499 * Driver allocation handlers.
1500 */
1501 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1502 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1503
1504 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev);
1505 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1506
1507 #endif /* RT2X00_H */
1508