1 /*
2 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * RSA low level APIs are deprecated for public use, but still ok for
12 * internal use.
13 */
14 #include "internal/deprecated.h"
15
16 #include <openssl/crypto.h>
17 #include <openssl/core_names.h>
18 #ifndef FIPS_MODULE
19 #include <openssl/engine.h>
20 #endif
21 #include <openssl/evp.h>
22 #include <openssl/param_build.h>
23 #include "internal/cryptlib.h"
24 #include "internal/refcount.h"
25 #include "crypto/bn.h"
26 #include "crypto/evp.h"
27 #include "crypto/rsa.h"
28 #include "crypto/security_bits.h"
29 #include "rsa_local.h"
30
31 static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx);
32
33 #ifndef FIPS_MODULE
RSA_new(void)34 RSA *RSA_new(void)
35 {
36 return rsa_new_intern(NULL, NULL);
37 }
38
RSA_get_method(const RSA * rsa)39 const RSA_METHOD *RSA_get_method(const RSA *rsa)
40 {
41 return rsa->meth;
42 }
43
RSA_set_method(RSA * rsa,const RSA_METHOD * meth)44 int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
45 {
46 /*
47 * NB: The caller is specifically setting a method, so it's not up to us
48 * to deal with which ENGINE it comes from.
49 */
50 const RSA_METHOD *mtmp;
51 mtmp = rsa->meth;
52 if (mtmp->finish)
53 mtmp->finish(rsa);
54 #ifndef OPENSSL_NO_ENGINE
55 ENGINE_finish(rsa->engine);
56 rsa->engine = NULL;
57 #endif
58 rsa->meth = meth;
59 if (meth->init)
60 meth->init(rsa);
61 return 1;
62 }
63
RSA_new_method(ENGINE * engine)64 RSA *RSA_new_method(ENGINE *engine)
65 {
66 return rsa_new_intern(engine, NULL);
67 }
68 #endif
69
ossl_rsa_new_with_ctx(OSSL_LIB_CTX * libctx)70 RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx)
71 {
72 return rsa_new_intern(NULL, libctx);
73 }
74
rsa_new_intern(ENGINE * engine,OSSL_LIB_CTX * libctx)75 static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx)
76 {
77 RSA *ret = OPENSSL_zalloc(sizeof(*ret));
78
79 if (ret == NULL)
80 return NULL;
81
82 ret->lock = CRYPTO_THREAD_lock_new();
83 if (ret->lock == NULL) {
84 ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB);
85 OPENSSL_free(ret);
86 return NULL;
87 }
88
89 if (!CRYPTO_NEW_REF(&ret->references, 1)) {
90 CRYPTO_THREAD_lock_free(ret->lock);
91 OPENSSL_free(ret);
92 return NULL;
93 }
94
95 ret->libctx = libctx;
96 ret->meth = RSA_get_default_method();
97 #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
98 ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
99 if (engine) {
100 if (!ENGINE_init(engine)) {
101 ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
102 goto err;
103 }
104 ret->engine = engine;
105 } else {
106 ret->engine = ENGINE_get_default_RSA();
107 }
108 if (ret->engine) {
109 ret->meth = ENGINE_get_RSA(ret->engine);
110 if (ret->meth == NULL) {
111 ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
112 goto err;
113 }
114 }
115 #endif
116
117 ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
118 #ifndef FIPS_MODULE
119 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
120 goto err;
121 }
122 #endif
123
124 if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
125 ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL);
126 goto err;
127 }
128
129 return ret;
130
131 err:
132 RSA_free(ret);
133 return NULL;
134 }
135
RSA_free(RSA * r)136 void RSA_free(RSA *r)
137 {
138 int i;
139
140 if (r == NULL)
141 return;
142
143 CRYPTO_DOWN_REF(&r->references, &i);
144 REF_PRINT_COUNT("RSA", i, r);
145 if (i > 0)
146 return;
147 REF_ASSERT_ISNT(i < 0);
148
149 if (r->meth != NULL && r->meth->finish != NULL)
150 r->meth->finish(r);
151 #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
152 ENGINE_finish(r->engine);
153 #endif
154
155 #ifndef FIPS_MODULE
156 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
157 #endif
158
159 CRYPTO_THREAD_lock_free(r->lock);
160 CRYPTO_FREE_REF(&r->references);
161
162 #ifdef OPENSSL_PEDANTIC_ZEROIZATION
163 BN_clear_free(r->n);
164 BN_clear_free(r->e);
165 #else
166 BN_free(r->n);
167 BN_free(r->e);
168 #endif
169 BN_clear_free(r->d);
170 BN_clear_free(r->p);
171 BN_clear_free(r->q);
172 BN_clear_free(r->dmp1);
173 BN_clear_free(r->dmq1);
174 BN_clear_free(r->iqmp);
175
176 #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS)
177 ossl_rsa_acvp_test_free(r->acvp_test);
178 #endif
179
180 #ifndef FIPS_MODULE
181 RSA_PSS_PARAMS_free(r->pss);
182 sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free);
183 #endif
184 BN_BLINDING_free(r->blinding);
185 BN_BLINDING_free(r->mt_blinding);
186 OPENSSL_free(r);
187 }
188
RSA_up_ref(RSA * r)189 int RSA_up_ref(RSA *r)
190 {
191 int i;
192
193 if (CRYPTO_UP_REF(&r->references, &i) <= 0)
194 return 0;
195
196 REF_PRINT_COUNT("RSA", i, r);
197 REF_ASSERT_ISNT(i < 2);
198 return i > 1 ? 1 : 0;
199 }
200
ossl_rsa_get0_libctx(RSA * r)201 OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r)
202 {
203 return r->libctx;
204 }
205
ossl_rsa_set0_libctx(RSA * r,OSSL_LIB_CTX * libctx)206 void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx)
207 {
208 r->libctx = libctx;
209 }
210
211 #ifndef FIPS_MODULE
RSA_set_ex_data(RSA * r,int idx,void * arg)212 int RSA_set_ex_data(RSA *r, int idx, void *arg)
213 {
214 return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
215 }
216
RSA_get_ex_data(const RSA * r,int idx)217 void *RSA_get_ex_data(const RSA *r, int idx)
218 {
219 return CRYPTO_get_ex_data(&r->ex_data, idx);
220 }
221 #endif
222
223 /*
224 * Define a scaling constant for our fixed point arithmetic.
225 * This value must be a power of two because the base two logarithm code
226 * makes this assumption. The exponent must also be a multiple of three so
227 * that the scale factor has an exact cube root. Finally, the scale factor
228 * should not be so large that a multiplication of two scaled numbers
229 * overflows a 64 bit unsigned integer.
230 */
231 static const unsigned int scale = 1 << 18;
232 static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
233
234 /* Define some constants, none exceed 32 bits */
235 static const unsigned int log_2 = 0x02c5c8; /* scale * log(2) */
236 static const unsigned int log_e = 0x05c551; /* scale * log2(M_E) */
237 static const unsigned int c1_923 = 0x07b126; /* scale * 1.923 */
238 static const unsigned int c4_690 = 0x12c28f; /* scale * 4.690 */
239
240 /*
241 * Multiply two scaled integers together and rescale the result.
242 */
mul2(uint64_t a,uint64_t b)243 static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
244 {
245 return a * b / scale;
246 }
247
248 /*
249 * Calculate the cube root of a 64 bit scaled integer.
250 * Although the cube root of a 64 bit number does fit into a 32 bit unsigned
251 * integer, this is not guaranteed after scaling, so this function has a
252 * 64 bit return. This uses the shifting nth root algorithm with some
253 * algebraic simplifications.
254 */
icbrt64(uint64_t x)255 static uint64_t icbrt64(uint64_t x)
256 {
257 uint64_t r = 0;
258 uint64_t b;
259 int s;
260
261 for (s = 63; s >= 0; s -= 3) {
262 r <<= 1;
263 b = 3 * r * (r + 1) + 1;
264 if ((x >> s) >= b) {
265 x -= b << s;
266 r++;
267 }
268 }
269 return r * cbrt_scale;
270 }
271
272 /*
273 * Calculate the natural logarithm of a 64 bit scaled integer.
274 * This is done by calculating a base two logarithm and scaling.
275 * The maximum logarithm (base 2) is 64 and this reduces base e, so
276 * a 32 bit result should not overflow. The argument passed must be
277 * greater than unity so we don't need to handle negative results.
278 */
ilog_e(uint64_t v)279 static uint32_t ilog_e(uint64_t v)
280 {
281 uint32_t i, r = 0;
282
283 /*
284 * Scale down the value into the range 1 .. 2.
285 *
286 * If fractional numbers need to be processed, another loop needs
287 * to go here that checks v < scale and if so multiplies it by 2 and
288 * reduces r by scale. This also means making r signed.
289 */
290 while (v >= 2 * scale) {
291 v >>= 1;
292 r += scale;
293 }
294 for (i = scale / 2; i != 0; i /= 2) {
295 v = mul2(v, v);
296 if (v >= 2 * scale) {
297 v >>= 1;
298 r += i;
299 }
300 }
301 r = (r * (uint64_t)scale) / log_e;
302 return r;
303 }
304
305 /*
306 * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
307 * Modulus Lengths.
308 *
309 * Note that this formula is also referred to in SP800-56A rev3 Appendix D:
310 * for FFC safe prime groups for modp and ffdhe.
311 * After Table 25 and Table 26 it refers to
312 * "The maximum security strength estimates were calculated using the formula in
313 * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight
314 * bits".
315 *
316 * The formula is:
317 *
318 * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
319 * \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
320 * The two cube roots are merged together here.
321 */
ossl_ifc_ffc_compute_security_bits(int n)322 uint16_t ossl_ifc_ffc_compute_security_bits(int n)
323 {
324 uint64_t x;
325 uint32_t lx;
326 uint16_t y, cap;
327
328 /*
329 * Look for common values as listed in standards.
330 * These values are not exactly equal to the results from the formulae in
331 * the standards but are defined to be canonical.
332 */
333 switch (n) {
334 case 2048: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
335 return 112;
336 case 3072: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
337 return 128;
338 case 4096: /* SP 800-56B rev 2 Appendix D */
339 return 152;
340 case 6144: /* SP 800-56B rev 2 Appendix D */
341 return 176;
342 case 7680: /* FIPS 140-2 IG 7.5 */
343 return 192;
344 case 8192: /* SP 800-56B rev 2 Appendix D */
345 return 200;
346 case 15360: /* FIPS 140-2 IG 7.5 */
347 return 256;
348 }
349
350 /*
351 * The first incorrect result (i.e. not accurate or off by one low) occurs
352 * for n = 699668. The true value here is 1200. Instead of using this n
353 * as the check threshold, the smallest n such that the correct result is
354 * 1200 is used instead.
355 */
356 if (n >= 687737)
357 return 1200;
358 if (n < 8)
359 return 0;
360
361 /*
362 * To ensure that the output is non-decreasing with respect to n,
363 * a cap needs to be applied to the two values where the function over
364 * estimates the strength (according to the above fast path).
365 */
366 if (n <= 7680)
367 cap = 192;
368 else if (n <= 15360)
369 cap = 256;
370 else
371 cap = 1200;
372
373 x = n * (uint64_t)log_2;
374 lx = ilog_e(x);
375 y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
376 / log_2);
377 y = (y + 4) & ~7;
378 if (y > cap)
379 y = cap;
380 return y;
381 }
382
RSA_security_bits(const RSA * rsa)383 int RSA_security_bits(const RSA *rsa)
384 {
385 int bits = BN_num_bits(rsa->n);
386
387 #ifndef FIPS_MODULE
388 if (rsa->version == RSA_ASN1_VERSION_MULTI) {
389 /* This ought to mean that we have private key at hand. */
390 int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
391
392 if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits))
393 return 0;
394 }
395 #endif
396 return ossl_ifc_ffc_compute_security_bits(bits);
397 }
398
RSA_set0_key(RSA * r,BIGNUM * n,BIGNUM * e,BIGNUM * d)399 int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
400 {
401 /* If the fields n and e in r are NULL, the corresponding input
402 * parameters MUST be non-NULL for n and e. d may be
403 * left NULL (in case only the public key is used).
404 */
405 if ((r->n == NULL && n == NULL)
406 || (r->e == NULL && e == NULL))
407 return 0;
408
409 if (n != NULL) {
410 BN_free(r->n);
411 r->n = n;
412 }
413 if (e != NULL) {
414 BN_free(r->e);
415 r->e = e;
416 }
417 if (d != NULL) {
418 BN_clear_free(r->d);
419 r->d = d;
420 BN_set_flags(r->d, BN_FLG_CONSTTIME);
421 }
422 r->dirty_cnt++;
423
424 return 1;
425 }
426
RSA_set0_factors(RSA * r,BIGNUM * p,BIGNUM * q)427 int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
428 {
429 /* If the fields p and q in r are NULL, the corresponding input
430 * parameters MUST be non-NULL.
431 */
432 if ((r->p == NULL && p == NULL)
433 || (r->q == NULL && q == NULL))
434 return 0;
435
436 if (p != NULL) {
437 BN_clear_free(r->p);
438 r->p = p;
439 BN_set_flags(r->p, BN_FLG_CONSTTIME);
440 }
441 if (q != NULL) {
442 BN_clear_free(r->q);
443 r->q = q;
444 BN_set_flags(r->q, BN_FLG_CONSTTIME);
445 }
446 r->dirty_cnt++;
447
448 return 1;
449 }
450
RSA_set0_crt_params(RSA * r,BIGNUM * dmp1,BIGNUM * dmq1,BIGNUM * iqmp)451 int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
452 {
453 /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
454 * parameters MUST be non-NULL.
455 */
456 if ((r->dmp1 == NULL && dmp1 == NULL)
457 || (r->dmq1 == NULL && dmq1 == NULL)
458 || (r->iqmp == NULL && iqmp == NULL))
459 return 0;
460
461 if (dmp1 != NULL) {
462 BN_clear_free(r->dmp1);
463 r->dmp1 = dmp1;
464 BN_set_flags(r->dmp1, BN_FLG_CONSTTIME);
465 }
466 if (dmq1 != NULL) {
467 BN_clear_free(r->dmq1);
468 r->dmq1 = dmq1;
469 BN_set_flags(r->dmq1, BN_FLG_CONSTTIME);
470 }
471 if (iqmp != NULL) {
472 BN_clear_free(r->iqmp);
473 r->iqmp = iqmp;
474 BN_set_flags(r->iqmp, BN_FLG_CONSTTIME);
475 }
476 r->dirty_cnt++;
477
478 return 1;
479 }
480
481 #ifndef FIPS_MODULE
482 /*
483 * Is it better to export RSA_PRIME_INFO structure
484 * and related functions to let user pass a triplet?
485 */
RSA_set0_multi_prime_params(RSA * r,BIGNUM * primes[],BIGNUM * exps[],BIGNUM * coeffs[],int pnum)486 int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
487 BIGNUM *coeffs[], int pnum)
488 {
489 STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
490 RSA_PRIME_INFO *pinfo;
491 int i;
492
493 if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
494 return 0;
495
496 prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
497 if (prime_infos == NULL)
498 return 0;
499
500 if (r->prime_infos != NULL)
501 old = r->prime_infos;
502
503 for (i = 0; i < pnum; i++) {
504 pinfo = ossl_rsa_multip_info_new();
505 if (pinfo == NULL)
506 goto err;
507 if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
508 BN_clear_free(pinfo->r);
509 BN_clear_free(pinfo->d);
510 BN_clear_free(pinfo->t);
511 pinfo->r = primes[i];
512 pinfo->d = exps[i];
513 pinfo->t = coeffs[i];
514 BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
515 BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
516 BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
517 } else {
518 ossl_rsa_multip_info_free(pinfo);
519 goto err;
520 }
521 (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
522 }
523
524 r->prime_infos = prime_infos;
525
526 if (!ossl_rsa_multip_calc_product(r)) {
527 r->prime_infos = old;
528 goto err;
529 }
530
531 if (old != NULL) {
532 /*
533 * This is hard to deal with, since the old infos could
534 * also be set by this function and r, d, t should not
535 * be freed in that case. So currently, stay consistent
536 * with other *set0* functions: just free it...
537 */
538 sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free);
539 }
540
541 r->version = RSA_ASN1_VERSION_MULTI;
542 r->dirty_cnt++;
543
544 return 1;
545 err:
546 /* r, d, t should not be freed */
547 sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
548 return 0;
549 }
550 #endif
551
RSA_get0_key(const RSA * r,const BIGNUM ** n,const BIGNUM ** e,const BIGNUM ** d)552 void RSA_get0_key(const RSA *r,
553 const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
554 {
555 if (n != NULL)
556 *n = r->n;
557 if (e != NULL)
558 *e = r->e;
559 if (d != NULL)
560 *d = r->d;
561 }
562
RSA_get0_factors(const RSA * r,const BIGNUM ** p,const BIGNUM ** q)563 void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
564 {
565 if (p != NULL)
566 *p = r->p;
567 if (q != NULL)
568 *q = r->q;
569 }
570
571 #ifndef FIPS_MODULE
RSA_get_multi_prime_extra_count(const RSA * r)572 int RSA_get_multi_prime_extra_count(const RSA *r)
573 {
574 int pnum;
575
576 pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
577 if (pnum <= 0)
578 pnum = 0;
579 return pnum;
580 }
581
RSA_get0_multi_prime_factors(const RSA * r,const BIGNUM * primes[])582 int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
583 {
584 int pnum, i;
585 RSA_PRIME_INFO *pinfo;
586
587 if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
588 return 0;
589
590 /*
591 * return other primes
592 * it's caller's responsibility to allocate oth_primes[pnum]
593 */
594 for (i = 0; i < pnum; i++) {
595 pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
596 primes[i] = pinfo->r;
597 }
598
599 return 1;
600 }
601 #endif
602
RSA_get0_crt_params(const RSA * r,const BIGNUM ** dmp1,const BIGNUM ** dmq1,const BIGNUM ** iqmp)603 void RSA_get0_crt_params(const RSA *r,
604 const BIGNUM **dmp1, const BIGNUM **dmq1,
605 const BIGNUM **iqmp)
606 {
607 if (dmp1 != NULL)
608 *dmp1 = r->dmp1;
609 if (dmq1 != NULL)
610 *dmq1 = r->dmq1;
611 if (iqmp != NULL)
612 *iqmp = r->iqmp;
613 }
614
615 #ifndef FIPS_MODULE
RSA_get0_multi_prime_crt_params(const RSA * r,const BIGNUM * exps[],const BIGNUM * coeffs[])616 int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
617 const BIGNUM *coeffs[])
618 {
619 int pnum;
620
621 if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
622 return 0;
623
624 /* return other primes */
625 if (exps != NULL || coeffs != NULL) {
626 RSA_PRIME_INFO *pinfo;
627 int i;
628
629 /* it's the user's job to guarantee the buffer length */
630 for (i = 0; i < pnum; i++) {
631 pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
632 if (exps != NULL)
633 exps[i] = pinfo->d;
634 if (coeffs != NULL)
635 coeffs[i] = pinfo->t;
636 }
637 }
638
639 return 1;
640 }
641 #endif
642
RSA_get0_n(const RSA * r)643 const BIGNUM *RSA_get0_n(const RSA *r)
644 {
645 return r->n;
646 }
647
RSA_get0_e(const RSA * r)648 const BIGNUM *RSA_get0_e(const RSA *r)
649 {
650 return r->e;
651 }
652
RSA_get0_d(const RSA * r)653 const BIGNUM *RSA_get0_d(const RSA *r)
654 {
655 return r->d;
656 }
657
RSA_get0_p(const RSA * r)658 const BIGNUM *RSA_get0_p(const RSA *r)
659 {
660 return r->p;
661 }
662
RSA_get0_q(const RSA * r)663 const BIGNUM *RSA_get0_q(const RSA *r)
664 {
665 return r->q;
666 }
667
RSA_get0_dmp1(const RSA * r)668 const BIGNUM *RSA_get0_dmp1(const RSA *r)
669 {
670 return r->dmp1;
671 }
672
RSA_get0_dmq1(const RSA * r)673 const BIGNUM *RSA_get0_dmq1(const RSA *r)
674 {
675 return r->dmq1;
676 }
677
RSA_get0_iqmp(const RSA * r)678 const BIGNUM *RSA_get0_iqmp(const RSA *r)
679 {
680 return r->iqmp;
681 }
682
RSA_get0_pss_params(const RSA * r)683 const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r)
684 {
685 #ifdef FIPS_MODULE
686 return NULL;
687 #else
688 return r->pss;
689 #endif
690 }
691
692 /* Internal */
ossl_rsa_set0_pss_params(RSA * r,RSA_PSS_PARAMS * pss)693 int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss)
694 {
695 #ifdef FIPS_MODULE
696 return 0;
697 #else
698 RSA_PSS_PARAMS_free(r->pss);
699 r->pss = pss;
700 return 1;
701 #endif
702 }
703
704 /* Internal */
ossl_rsa_get0_pss_params_30(RSA * r)705 RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r)
706 {
707 return &r->pss_params;
708 }
709
RSA_clear_flags(RSA * r,int flags)710 void RSA_clear_flags(RSA *r, int flags)
711 {
712 r->flags &= ~flags;
713 }
714
RSA_test_flags(const RSA * r,int flags)715 int RSA_test_flags(const RSA *r, int flags)
716 {
717 return r->flags & flags;
718 }
719
RSA_set_flags(RSA * r,int flags)720 void RSA_set_flags(RSA *r, int flags)
721 {
722 r->flags |= flags;
723 }
724
RSA_get_version(RSA * r)725 int RSA_get_version(RSA *r)
726 {
727 /* { two-prime(0), multi(1) } */
728 return r->version;
729 }
730
731 #ifndef FIPS_MODULE
RSA_get0_engine(const RSA * r)732 ENGINE *RSA_get0_engine(const RSA *r)
733 {
734 return r->engine;
735 }
736
RSA_pkey_ctx_ctrl(EVP_PKEY_CTX * ctx,int optype,int cmd,int p1,void * p2)737 int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
738 {
739 /* If key type not RSA or RSA-PSS return error */
740 if (ctx != NULL && ctx->pmeth != NULL
741 && ctx->pmeth->pkey_id != EVP_PKEY_RSA
742 && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
743 return -1;
744 return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
745 }
746 #endif
747
DEFINE_STACK_OF(BIGNUM)748 DEFINE_STACK_OF(BIGNUM)
749
750 /*
751 * Note: This function deletes values from the parameter
752 * stack values as they are consumed and set in the RSA key.
753 */
754 int ossl_rsa_set0_all_params(RSA *r, STACK_OF(BIGNUM) *primes,
755 STACK_OF(BIGNUM) *exps,
756 STACK_OF(BIGNUM) *coeffs)
757 {
758 #ifndef FIPS_MODULE
759 STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL;
760 #endif
761 int pnum;
762
763 if (primes == NULL || exps == NULL || coeffs == NULL)
764 return 0;
765
766 pnum = sk_BIGNUM_num(primes);
767
768 /* we need at least 2 primes */
769 if (pnum < 2)
770 return 0;
771
772 if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0),
773 sk_BIGNUM_value(primes, 1)))
774 return 0;
775
776 /*
777 * if we managed to set everything above, remove those elements from the
778 * stack
779 * Note, we do this after the above all to ensure that we have taken
780 * ownership of all the elements in the RSA key to avoid memory leaks
781 * we also use delete 0 here as we are grabbing items from the end of the
782 * stack rather than the start, otherwise we could use pop
783 */
784 sk_BIGNUM_delete(primes, 0);
785 sk_BIGNUM_delete(primes, 0);
786
787 if (pnum == sk_BIGNUM_num(exps)
788 && pnum == sk_BIGNUM_num(coeffs) + 1) {
789
790 if (!RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0),
791 sk_BIGNUM_value(exps, 1),
792 sk_BIGNUM_value(coeffs, 0)))
793 return 0;
794
795 /* as above, once we consume the above params, delete them from the list */
796 sk_BIGNUM_delete(exps, 0);
797 sk_BIGNUM_delete(exps, 0);
798 sk_BIGNUM_delete(coeffs, 0);
799 }
800
801 #ifndef FIPS_MODULE
802 old_infos = r->prime_infos;
803 #endif
804
805 if (pnum > 2) {
806 #ifndef FIPS_MODULE
807 int i;
808
809 prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
810 if (prime_infos == NULL)
811 return 0;
812
813 for (i = 2; i < pnum; i++) {
814 BIGNUM *prime = sk_BIGNUM_pop(primes);
815 BIGNUM *exp = sk_BIGNUM_pop(exps);
816 BIGNUM *coeff = sk_BIGNUM_pop(coeffs);
817 RSA_PRIME_INFO *pinfo = NULL;
818
819 if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL))
820 goto err;
821
822 /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */
823 if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL)
824 goto err;
825
826 pinfo->r = prime;
827 pinfo->d = exp;
828 pinfo->t = coeff;
829 BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
830 BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
831 BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
832 (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
833 }
834
835 r->prime_infos = prime_infos;
836
837 if (!ossl_rsa_multip_calc_product(r)) {
838 r->prime_infos = old_infos;
839 goto err;
840 }
841 #else
842 return 0;
843 #endif
844 }
845
846 #ifndef FIPS_MODULE
847 if (old_infos != NULL) {
848 /*
849 * This is hard to deal with, since the old infos could
850 * also be set by this function and r, d, t should not
851 * be freed in that case. So currently, stay consistent
852 * with other *set0* functions: just free it...
853 */
854 sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free);
855 }
856 #endif
857
858 r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT;
859 r->dirty_cnt++;
860
861 return 1;
862 #ifndef FIPS_MODULE
863 err:
864 /* r, d, t should not be freed */
865 sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
866 return 0;
867 #endif
868 }
869
DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const,BIGNUM)870 DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM)
871
872 int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes,
873 STACK_OF(BIGNUM_const) *exps,
874 STACK_OF(BIGNUM_const) *coeffs)
875 {
876 #ifndef FIPS_MODULE
877 RSA_PRIME_INFO *pinfo;
878 int i, pnum;
879 #endif
880
881 if (r == NULL)
882 return 0;
883
884 /* If |p| is NULL, there are no CRT parameters */
885 if (RSA_get0_p(r) == NULL)
886 return 1;
887
888 sk_BIGNUM_const_push(primes, RSA_get0_p(r));
889 sk_BIGNUM_const_push(primes, RSA_get0_q(r));
890 sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r));
891 sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r));
892 sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r));
893
894 #ifndef FIPS_MODULE
895 pnum = RSA_get_multi_prime_extra_count(r);
896 for (i = 0; i < pnum; i++) {
897 pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
898 sk_BIGNUM_const_push(primes, pinfo->r);
899 sk_BIGNUM_const_push(exps, pinfo->d);
900 sk_BIGNUM_const_push(coeffs, pinfo->t);
901 }
902 #endif
903
904 return 1;
905 }
906
907 #define safe_BN_num_bits(_k_) (((_k_) == NULL) ? 0 : BN_num_bits((_k_)))
ossl_rsa_check_factors(RSA * r)908 int ossl_rsa_check_factors(RSA *r)
909 {
910 int valid = 0;
911 int n, i, bits;
912 STACK_OF(BIGNUM_const) *factors = sk_BIGNUM_const_new_null();
913 STACK_OF(BIGNUM_const) *exps = sk_BIGNUM_const_new_null();
914 STACK_OF(BIGNUM_const) *coeffs = sk_BIGNUM_const_new_null();
915
916 if (factors == NULL || exps == NULL || coeffs == NULL)
917 goto done;
918
919 /*
920 * Simple sanity check for RSA key. All RSA key parameters
921 * must be less-than/equal-to RSA parameter n.
922 */
923 ossl_rsa_get0_all_params(r, factors, exps, coeffs);
924 n = safe_BN_num_bits(RSA_get0_n(r));
925
926 if (safe_BN_num_bits(RSA_get0_d(r)) > n)
927 goto done;
928
929 for (i = 0; i < sk_BIGNUM_const_num(exps); i++) {
930 bits = safe_BN_num_bits(sk_BIGNUM_const_value(exps, i));
931 if (bits > n)
932 goto done;
933 }
934
935 for (i = 0; i < sk_BIGNUM_const_num(factors); i++) {
936 bits = safe_BN_num_bits(sk_BIGNUM_const_value(factors, i));
937 if (bits > n)
938 goto done;
939 }
940
941 for (i = 0; i < sk_BIGNUM_const_num(coeffs); i++) {
942 bits = safe_BN_num_bits(sk_BIGNUM_const_value(coeffs, i));
943 if (bits > n)
944 goto done;
945 }
946
947 valid = 1;
948
949 done:
950 sk_BIGNUM_const_free(factors);
951 sk_BIGNUM_const_free(exps);
952 sk_BIGNUM_const_free(coeffs);
953
954 return valid;
955 }
956
957 #ifndef FIPS_MODULE
958 /* Helpers to set or get diverse hash algorithm names */
int_set_rsa_md_name(EVP_PKEY_CTX * ctx,int keytype,int optype,const char * mdkey,const char * mdname,const char * propkey,const char * mdprops)959 static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx,
960 /* For checks */
961 int keytype, int optype,
962 /* For EVP_PKEY_CTX_set_params() */
963 const char *mdkey, const char *mdname,
964 const char *propkey, const char *mdprops)
965 {
966 OSSL_PARAM params[3], *p = params;
967
968 if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
969 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
970 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
971 return -2;
972 }
973
974 /* If key type not RSA return error */
975 switch (keytype) {
976 case -1:
977 if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
978 && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
979 return -1;
980 break;
981 default:
982 if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
983 return -1;
984 break;
985 }
986
987 /* Cast away the const. This is read only so should be safe */
988 *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0);
989 if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) {
990 /* Cast away the const. This is read only so should be safe */
991 *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0);
992 }
993 *p++ = OSSL_PARAM_construct_end();
994
995 return evp_pkey_ctx_set_params_strict(ctx, params);
996 }
997
998 /* Helpers to set or get diverse hash algorithm names */
int_get_rsa_md_name(EVP_PKEY_CTX * ctx,int keytype,int optype,const char * mdkey,char * mdname,size_t mdnamesize)999 static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx,
1000 /* For checks */
1001 int keytype, int optype,
1002 /* For EVP_PKEY_CTX_get_params() */
1003 const char *mdkey,
1004 char *mdname, size_t mdnamesize)
1005 {
1006 OSSL_PARAM params[2], *p = params;
1007
1008 if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
1009 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1010 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1011 return -2;
1012 }
1013
1014 /* If key type not RSA return error */
1015 switch (keytype) {
1016 case -1:
1017 if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1018 && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1019 return -1;
1020 break;
1021 default:
1022 if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
1023 return -1;
1024 break;
1025 }
1026
1027 /* Cast away the const. This is read only so should be safe */
1028 *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize);
1029 *p++ = OSSL_PARAM_construct_end();
1030
1031 return evp_pkey_ctx_get_params_strict(ctx, params);
1032 }
1033
1034 /*
1035 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1036 * simply because that's easier.
1037 */
EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX * ctx,int pad_mode)1038 int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode)
1039 {
1040 return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING,
1041 pad_mode, NULL);
1042 }
1043
1044 /*
1045 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1046 * simply because that's easier.
1047 */
EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX * ctx,int * pad_mode)1048 int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode)
1049 {
1050 return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,
1051 0, pad_mode);
1052 }
1053
1054 /*
1055 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1056 * simply because that's easier.
1057 */
EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX * ctx,const EVP_MD * md)1058 int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1059 {
1060 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1061 EVP_PKEY_CTRL_MD, 0, (void *)(md));
1062 }
1063
EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX * ctx,const char * mdname,const char * mdprops)1064 int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx,
1065 const char *mdname,
1066 const char *mdprops)
1067 {
1068 return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1069 OSSL_PKEY_PARAM_RSA_DIGEST, mdname,
1070 OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops);
1071 }
1072
1073 /*
1074 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1075 * simply because that's easier.
1076 */
EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX * ctx,const EVP_MD * md)1077 int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1078 {
1079 /* If key type not RSA return error */
1080 if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1081 return -1;
1082
1083 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1084 EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md));
1085 }
1086
EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX * ctx,const char * mdname,const char * mdprops)1087 int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1088 const char *mdprops)
1089 {
1090 return int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1091 OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname,
1092 OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops);
1093 }
1094
EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX * ctx,char * name,size_t namesize)1095 int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
1096 size_t namesize)
1097 {
1098 return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1099 OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST,
1100 name, namesize);
1101 }
1102
1103 /*
1104 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1105 * simply because that's easier.
1106 */
EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX * ctx,const EVP_MD ** md)1107 int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1108 {
1109 /* If key type not RSA return error */
1110 if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1111 return -1;
1112
1113 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1114 EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md);
1115 }
1116
1117 /*
1118 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1119 * simply because that's easier.
1120 */
EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX * ctx,const EVP_MD * md)1121 int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1122 {
1123 return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1124 EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1125 }
1126
EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX * ctx,const char * mdname,const char * mdprops)1127 int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1128 const char *mdprops)
1129 {
1130 return int_set_rsa_md_name(ctx, -1,
1131 EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1132 OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1133 OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops);
1134 }
1135
EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX * ctx,char * name,size_t namesize)1136 int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
1137 size_t namesize)
1138 {
1139 return int_get_rsa_md_name(ctx, -1,
1140 EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1141 OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize);
1142 }
1143
1144 /*
1145 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1146 * simply because that's easier.
1147 */
EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX * ctx,const EVP_MD * md)1148 int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1149 {
1150 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1151 EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1152 }
1153
EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX * ctx,const char * mdname)1154 int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx,
1155 const char *mdname)
1156 {
1157 return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1158 OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1159 NULL, NULL);
1160 }
1161
1162 /*
1163 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1164 * simply because that's easier.
1165 */
EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX * ctx,const EVP_MD ** md)1166 int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1167 {
1168 return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1169 EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md));
1170 }
1171
EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX * ctx,void * label,int llen)1172 int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen)
1173 {
1174 OSSL_PARAM rsa_params[2], *p = rsa_params;
1175 const char *empty = "";
1176 /*
1177 * Needed as we swap label with empty if it is NULL, and label is
1178 * freed at the end of this function.
1179 */
1180 void *plabel = label;
1181 int ret;
1182
1183 if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1184 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1185 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1186 return -2;
1187 }
1188
1189 /* If key type not RSA return error */
1190 if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1191 return -1;
1192
1193 /* Accept NULL for backward compatibility */
1194 if (label == NULL && llen == 0)
1195 plabel = (void *)empty;
1196
1197 /* Cast away the const. This is read only so should be safe */
1198 *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1199 (void *)plabel, (size_t)llen);
1200 *p++ = OSSL_PARAM_construct_end();
1201
1202 ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params);
1203 if (ret <= 0)
1204 return ret;
1205
1206 /* Ownership is supposed to be transferred to the callee. */
1207 OPENSSL_free(label);
1208 return 1;
1209 }
1210
EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX * ctx,unsigned char ** label)1211 int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label)
1212 {
1213 OSSL_PARAM rsa_params[2], *p = rsa_params;
1214 size_t labellen;
1215
1216 if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1217 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1218 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1219 return -2;
1220 }
1221
1222 /* If key type not RSA return error */
1223 if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1224 return -1;
1225
1226 *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1227 (void **)label, 0);
1228 *p++ = OSSL_PARAM_construct_end();
1229
1230 if (!EVP_PKEY_CTX_get_params(ctx, rsa_params))
1231 return -1;
1232
1233 labellen = rsa_params[0].return_size;
1234 if (labellen > INT_MAX)
1235 return -1;
1236
1237 return (int)labellen;
1238 }
1239
1240 /*
1241 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1242 * simply because that's easier.
1243 */
EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX * ctx,int saltlen)1244 int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1245 {
1246 /*
1247 * For some reason, the optype was set to this:
1248 *
1249 * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1250 *
1251 * However, we do use RSA-PSS with the whole gamut of diverse signature
1252 * and verification operations, so the optype gets upgraded to this:
1253 *
1254 * EVP_PKEY_OP_TYPE_SIG
1255 */
1256 return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1257 EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL);
1258 }
1259
1260 /*
1261 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1262 * simply because that's easier.
1263 */
EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX * ctx,int * saltlen)1264 int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen)
1265 {
1266 /*
1267 * Because of circumstances, the optype is updated from:
1268 *
1269 * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1270 *
1271 * to:
1272 *
1273 * EVP_PKEY_OP_TYPE_SIG
1274 */
1275 return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1276 EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen);
1277 }
1278
EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX * ctx,int saltlen)1279 int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1280 {
1281 OSSL_PARAM pad_params[2], *p = pad_params;
1282
1283 if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1284 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1285 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1286 return -2;
1287 }
1288
1289 if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1290 return -1;
1291
1292 *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN,
1293 &saltlen);
1294 *p++ = OSSL_PARAM_construct_end();
1295
1296 return evp_pkey_ctx_set_params_strict(ctx, pad_params);
1297 }
1298
EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX * ctx,int bits)1299 int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits)
1300 {
1301 OSSL_PARAM params[2], *p = params;
1302 size_t bits2 = bits;
1303
1304 if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1305 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1306 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1307 return -2;
1308 }
1309
1310 /* If key type not RSA return error */
1311 if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1312 && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1313 return -1;
1314
1315 *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2);
1316 *p++ = OSSL_PARAM_construct_end();
1317
1318 return evp_pkey_ctx_set_params_strict(ctx, params);
1319 }
1320
EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX * ctx,BIGNUM * pubexp)1321 int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1322 {
1323 int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
1324 EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1325
1326 /*
1327 * Satisfy memory semantics for pre-3.0 callers of
1328 * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input
1329 * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success.
1330 */
1331 if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) {
1332 BN_free(ctx->rsa_pubexp);
1333 ctx->rsa_pubexp = pubexp;
1334 }
1335
1336 return ret;
1337 }
1338
EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX * ctx,BIGNUM * pubexp)1339 int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1340 {
1341 int ret = 0;
1342
1343 /*
1344 * When we're dealing with a provider, there's no need to duplicate
1345 * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway.
1346 */
1347 if (evp_pkey_ctx_is_legacy(ctx)) {
1348 pubexp = BN_dup(pubexp);
1349 if (pubexp == NULL)
1350 return 0;
1351 }
1352 ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
1353 EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1354 if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0)
1355 BN_free(pubexp);
1356 return ret;
1357 }
1358
EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX * ctx,int primes)1359 int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes)
1360 {
1361 OSSL_PARAM params[2], *p = params;
1362 size_t primes2 = primes;
1363
1364 if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1365 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1366 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1367 return -2;
1368 }
1369
1370 /* If key type not RSA return error */
1371 if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1372 && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1373 return -1;
1374
1375 *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2);
1376 *p++ = OSSL_PARAM_construct_end();
1377
1378 return evp_pkey_ctx_set_params_strict(ctx, params);
1379 }
1380 #endif
1381