xref: /linux/include/linux/blk-mq.h (revision 6e11664f148454a127dd89e8698c3e3e80e5f62f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11 #include <linux/rw_hint.h>
12 #include <linux/rwsem.h>
13 
14 struct blk_mq_tags;
15 struct blk_flush_queue;
16 
17 #define BLKDEV_MIN_RQ	4
18 #define BLKDEV_DEFAULT_RQ	128
19 
20 enum rq_end_io_ret {
21 	RQ_END_IO_NONE,
22 	RQ_END_IO_FREE,
23 };
24 
25 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
26 
27 /*
28  * request flags */
29 typedef __u32 __bitwise req_flags_t;
30 
31 /* Keep rqf_name[] in sync with the definitions below */
32 enum rqf_flags {
33 	/* drive already may have started this one */
34 	__RQF_STARTED,
35 	/* request for flush sequence */
36 	__RQF_FLUSH_SEQ,
37 	/* merge of different types, fail separately */
38 	__RQF_MIXED_MERGE,
39 	/* don't call prep for this one */
40 	__RQF_DONTPREP,
41 	/* use hctx->sched_tags */
42 	__RQF_SCHED_TAGS,
43 	/* use an I/O scheduler for this request */
44 	__RQF_USE_SCHED,
45 	/* vaguely specified driver internal error.  Ignored by block layer */
46 	__RQF_FAILED,
47 	/* don't warn about errors */
48 	__RQF_QUIET,
49 	/* account into disk and partition IO statistics */
50 	__RQF_IO_STAT,
51 	/* runtime pm request */
52 	__RQF_PM,
53 	/* on IO scheduler merge hash */
54 	__RQF_HASHED,
55 	/* track IO completion time */
56 	__RQF_STATS,
57 	/* Look at ->special_vec for the actual data payload instead of the
58 	   bio chain. */
59 	__RQF_SPECIAL_PAYLOAD,
60 	/* request completion needs to be signaled to zone write plugging. */
61 	__RQF_ZONE_WRITE_PLUGGING,
62 	/* ->timeout has been called, don't expire again */
63 	__RQF_TIMED_OUT,
64 	__RQF_RESV,
65 	__RQF_BITS
66 };
67 
68 #define RQF_STARTED		((__force req_flags_t)(1 << __RQF_STARTED))
69 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << __RQF_FLUSH_SEQ))
70 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << __RQF_MIXED_MERGE))
71 #define RQF_DONTPREP		((__force req_flags_t)(1 << __RQF_DONTPREP))
72 #define RQF_SCHED_TAGS		((__force req_flags_t)(1 << __RQF_SCHED_TAGS))
73 #define RQF_USE_SCHED		((__force req_flags_t)(1 << __RQF_USE_SCHED))
74 #define RQF_FAILED		((__force req_flags_t)(1 << __RQF_FAILED))
75 #define RQF_QUIET		((__force req_flags_t)(1 << __RQF_QUIET))
76 #define RQF_IO_STAT		((__force req_flags_t)(1 << __RQF_IO_STAT))
77 #define RQF_PM			((__force req_flags_t)(1 << __RQF_PM))
78 #define RQF_HASHED		((__force req_flags_t)(1 << __RQF_HASHED))
79 #define RQF_STATS		((__force req_flags_t)(1 << __RQF_STATS))
80 #define RQF_SPECIAL_PAYLOAD	\
81 			((__force req_flags_t)(1 << __RQF_SPECIAL_PAYLOAD))
82 #define RQF_ZONE_WRITE_PLUGGING	\
83 			((__force req_flags_t)(1 << __RQF_ZONE_WRITE_PLUGGING))
84 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << __RQF_TIMED_OUT))
85 #define RQF_RESV		((__force req_flags_t)(1 << __RQF_RESV))
86 
87 /* flags that prevent us from merging requests: */
88 #define RQF_NOMERGE_FLAGS \
89 	(RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
90 
91 enum mq_rq_state {
92 	MQ_RQ_IDLE		= 0,
93 	MQ_RQ_IN_FLIGHT		= 1,
94 	MQ_RQ_COMPLETE		= 2,
95 };
96 
97 /*
98  * Try to put the fields that are referenced together in the same cacheline.
99  *
100  * If you modify this structure, make sure to update blk_rq_init() and
101  * especially blk_mq_rq_ctx_init() to take care of the added fields.
102  */
103 struct request {
104 	struct request_queue *q;
105 	struct blk_mq_ctx *mq_ctx;
106 	struct blk_mq_hw_ctx *mq_hctx;
107 
108 	blk_opf_t cmd_flags;		/* op and common flags */
109 	req_flags_t rq_flags;
110 
111 	int tag;
112 	int internal_tag;
113 
114 	unsigned int timeout;
115 
116 	/* the following two fields are internal, NEVER access directly */
117 	unsigned int __data_len;	/* total data len */
118 	sector_t __sector;		/* sector cursor */
119 
120 	struct bio *bio;
121 	struct bio *biotail;
122 
123 	union {
124 		struct list_head queuelist;
125 		struct request *rq_next;
126 	};
127 
128 	struct block_device *part;
129 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
130 	/* Time that the first bio started allocating this request. */
131 	u64 alloc_time_ns;
132 #endif
133 	/* Time that this request was allocated for this IO. */
134 	u64 start_time_ns;
135 	/* Time that I/O was submitted to the device. */
136 	u64 io_start_time_ns;
137 
138 #ifdef CONFIG_BLK_WBT
139 	unsigned short wbt_flags;
140 #endif
141 	/*
142 	 * rq sectors used for blk stats. It has the same value
143 	 * with blk_rq_sectors(rq), except that it never be zeroed
144 	 * by completion.
145 	 */
146 	unsigned short stats_sectors;
147 
148 	/*
149 	 * Number of scatter-gather DMA addr+len pairs after
150 	 * physical address coalescing is performed.
151 	 */
152 	unsigned short nr_phys_segments;
153 	unsigned short nr_integrity_segments;
154 
155 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
156 	struct bio_crypt_ctx *crypt_ctx;
157 	struct blk_crypto_keyslot *crypt_keyslot;
158 #endif
159 
160 	enum mq_rq_state state;
161 	atomic_t ref;
162 
163 	unsigned long deadline;
164 
165 	/*
166 	 * The hash is used inside the scheduler, and killed once the
167 	 * request reaches the dispatch list. The ipi_list is only used
168 	 * to queue the request for softirq completion, which is long
169 	 * after the request has been unhashed (and even removed from
170 	 * the dispatch list).
171 	 */
172 	union {
173 		struct hlist_node hash;	/* merge hash */
174 		struct llist_node ipi_list;
175 	};
176 
177 	/*
178 	 * The rb_node is only used inside the io scheduler, requests
179 	 * are pruned when moved to the dispatch queue. special_vec must
180 	 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
181 	 * insert into an IO scheduler.
182 	 */
183 	union {
184 		struct rb_node rb_node;	/* sort/lookup */
185 		struct bio_vec special_vec;
186 	};
187 
188 	/*
189 	 * Three pointers are available for the IO schedulers, if they need
190 	 * more they have to dynamically allocate it.
191 	 */
192 	struct {
193 		struct io_cq		*icq;
194 		void			*priv[2];
195 	} elv;
196 
197 	struct {
198 		unsigned int		seq;
199 		rq_end_io_fn		*saved_end_io;
200 	} flush;
201 
202 	u64 fifo_time;
203 
204 	/*
205 	 * completion callback.
206 	 */
207 	rq_end_io_fn *end_io;
208 	void *end_io_data;
209 };
210 
req_op(const struct request * req)211 static inline enum req_op req_op(const struct request *req)
212 {
213 	return req->cmd_flags & REQ_OP_MASK;
214 }
215 
blk_rq_is_passthrough(struct request * rq)216 static inline bool blk_rq_is_passthrough(struct request *rq)
217 {
218 	return blk_op_is_passthrough(rq->cmd_flags);
219 }
220 
req_get_ioprio(struct request * req)221 static inline unsigned short req_get_ioprio(struct request *req)
222 {
223 	if (req->bio)
224 		return req->bio->bi_ioprio;
225 	return 0;
226 }
227 
228 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
229 
230 #define rq_dma_dir(rq) \
231 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
232 
rq_list_empty(const struct rq_list * rl)233 static inline int rq_list_empty(const struct rq_list *rl)
234 {
235 	return rl->head == NULL;
236 }
237 
rq_list_init(struct rq_list * rl)238 static inline void rq_list_init(struct rq_list *rl)
239 {
240 	rl->head = NULL;
241 	rl->tail = NULL;
242 }
243 
rq_list_add_tail(struct rq_list * rl,struct request * rq)244 static inline void rq_list_add_tail(struct rq_list *rl, struct request *rq)
245 {
246 	rq->rq_next = NULL;
247 	if (rl->tail)
248 		rl->tail->rq_next = rq;
249 	else
250 		rl->head = rq;
251 	rl->tail = rq;
252 }
253 
rq_list_add_head(struct rq_list * rl,struct request * rq)254 static inline void rq_list_add_head(struct rq_list *rl, struct request *rq)
255 {
256 	rq->rq_next = rl->head;
257 	rl->head = rq;
258 	if (!rl->tail)
259 		rl->tail = rq;
260 }
261 
rq_list_pop(struct rq_list * rl)262 static inline struct request *rq_list_pop(struct rq_list *rl)
263 {
264 	struct request *rq = rl->head;
265 
266 	if (rq) {
267 		rl->head = rl->head->rq_next;
268 		if (!rl->head)
269 			rl->tail = NULL;
270 		rq->rq_next = NULL;
271 	}
272 
273 	return rq;
274 }
275 
rq_list_peek(struct rq_list * rl)276 static inline struct request *rq_list_peek(struct rq_list *rl)
277 {
278 	return rl->head;
279 }
280 
281 #define rq_list_for_each(rl, pos)					\
282 	for (pos = rq_list_peek((rl)); (pos); pos = pos->rq_next)
283 
284 #define rq_list_for_each_safe(rl, pos, nxt)				\
285 	for (pos = rq_list_peek((rl)), nxt = pos->rq_next;		\
286 		pos; pos = nxt, nxt = pos ? pos->rq_next : NULL)
287 
288 /**
289  * enum blk_eh_timer_return - How the timeout handler should proceed
290  * @BLK_EH_DONE: The block driver completed the command or will complete it at
291  *	a later time.
292  * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
293  *	request to complete.
294  */
295 enum blk_eh_timer_return {
296 	BLK_EH_DONE,
297 	BLK_EH_RESET_TIMER,
298 };
299 
300 /**
301  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
302  * block device
303  */
304 struct blk_mq_hw_ctx {
305 	struct {
306 		/** @lock: Protects the dispatch list. */
307 		spinlock_t		lock;
308 		/**
309 		 * @dispatch: Used for requests that are ready to be
310 		 * dispatched to the hardware but for some reason (e.g. lack of
311 		 * resources) could not be sent to the hardware. As soon as the
312 		 * driver can send new requests, requests at this list will
313 		 * be sent first for a fairer dispatch.
314 		 */
315 		struct list_head	dispatch;
316 		 /**
317 		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
318 		  * queue (active, scheduled to restart, stopped).
319 		  */
320 		unsigned long		state;
321 	} ____cacheline_aligned_in_smp;
322 
323 	/**
324 	 * @run_work: Used for scheduling a hardware queue run at a later time.
325 	 */
326 	struct delayed_work	run_work;
327 	/** @cpumask: Map of available CPUs where this hctx can run. */
328 	cpumask_var_t		cpumask;
329 	/**
330 	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
331 	 * selection from @cpumask.
332 	 */
333 	int			next_cpu;
334 	/**
335 	 * @next_cpu_batch: Counter of how many works left in the batch before
336 	 * changing to the next CPU.
337 	 */
338 	int			next_cpu_batch;
339 
340 	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
341 	unsigned long		flags;
342 
343 	/**
344 	 * @sched_data: Pointer owned by the IO scheduler attached to a request
345 	 * queue. It's up to the IO scheduler how to use this pointer.
346 	 */
347 	void			*sched_data;
348 	/**
349 	 * @queue: Pointer to the request queue that owns this hardware context.
350 	 */
351 	struct request_queue	*queue;
352 	/** @fq: Queue of requests that need to perform a flush operation. */
353 	struct blk_flush_queue	*fq;
354 
355 	/**
356 	 * @driver_data: Pointer to data owned by the block driver that created
357 	 * this hctx
358 	 */
359 	void			*driver_data;
360 
361 	/**
362 	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
363 	 * pending request in that software queue.
364 	 */
365 	struct sbitmap		ctx_map;
366 
367 	/**
368 	 * @dispatch_from: Software queue to be used when no scheduler was
369 	 * selected.
370 	 */
371 	struct blk_mq_ctx	*dispatch_from;
372 	/**
373 	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
374 	 * decide if the hw_queue is busy using Exponential Weighted Moving
375 	 * Average algorithm.
376 	 */
377 	unsigned int		dispatch_busy;
378 
379 	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
380 	unsigned short		type;
381 	/** @nr_ctx: Number of software queues. */
382 	unsigned short		nr_ctx;
383 	/** @ctxs: Array of software queues. */
384 	struct blk_mq_ctx	**ctxs;
385 
386 	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
387 	spinlock_t		dispatch_wait_lock;
388 	/**
389 	 * @dispatch_wait: Waitqueue to put requests when there is no tag
390 	 * available at the moment, to wait for another try in the future.
391 	 */
392 	wait_queue_entry_t	dispatch_wait;
393 
394 	/**
395 	 * @wait_index: Index of next available dispatch_wait queue to insert
396 	 * requests.
397 	 */
398 	atomic_t		wait_index;
399 
400 	/**
401 	 * @tags: Tags owned by the block driver. A tag at this set is only
402 	 * assigned when a request is dispatched from a hardware queue.
403 	 */
404 	struct blk_mq_tags	*tags;
405 	/**
406 	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
407 	 * scheduler associated with a request queue, a tag is assigned when
408 	 * that request is allocated. Else, this member is not used.
409 	 */
410 	struct blk_mq_tags	*sched_tags;
411 
412 	/** @numa_node: NUMA node the storage adapter has been connected to. */
413 	unsigned int		numa_node;
414 	/** @queue_num: Index of this hardware queue. */
415 	unsigned int		queue_num;
416 
417 	/**
418 	 * @nr_active: Number of active requests. Only used when a tag set is
419 	 * shared across request queues.
420 	 */
421 	atomic_t		nr_active;
422 
423 	/** @cpuhp_online: List to store request if CPU is going to die */
424 	struct hlist_node	cpuhp_online;
425 	/** @cpuhp_dead: List to store request if some CPU die. */
426 	struct hlist_node	cpuhp_dead;
427 	/** @kobj: Kernel object for sysfs. */
428 	struct kobject		kobj;
429 
430 #ifdef CONFIG_BLK_DEBUG_FS
431 	/**
432 	 * @debugfs_dir: debugfs directory for this hardware queue. Named
433 	 * as cpu<cpu_number>.
434 	 */
435 	struct dentry		*debugfs_dir;
436 	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
437 	struct dentry		*sched_debugfs_dir;
438 #endif
439 
440 	/**
441 	 * @hctx_list: if this hctx is not in use, this is an entry in
442 	 * q->unused_hctx_list.
443 	 */
444 	struct list_head	hctx_list;
445 };
446 
447 /**
448  * struct blk_mq_queue_map - Map software queues to hardware queues
449  * @mq_map:       CPU ID to hardware queue index map. This is an array
450  *	with nr_cpu_ids elements. Each element has a value in the range
451  *	[@queue_offset, @queue_offset + @nr_queues).
452  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
453  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
454  *	driver to map each hardware queue type (enum hctx_type) onto a distinct
455  *	set of hardware queues.
456  */
457 struct blk_mq_queue_map {
458 	unsigned int *mq_map;
459 	unsigned int nr_queues;
460 	unsigned int queue_offset;
461 };
462 
463 /**
464  * enum hctx_type - Type of hardware queue
465  * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
466  * @HCTX_TYPE_READ:	Just for READ I/O.
467  * @HCTX_TYPE_POLL:	Polled I/O of any kind.
468  * @HCTX_MAX_TYPES:	Number of types of hctx.
469  */
470 enum hctx_type {
471 	HCTX_TYPE_DEFAULT,
472 	HCTX_TYPE_READ,
473 	HCTX_TYPE_POLL,
474 
475 	HCTX_MAX_TYPES,
476 };
477 
478 /**
479  * struct blk_mq_tag_set - tag set that can be shared between request queues
480  * @ops:	   Pointers to functions that implement block driver behavior.
481  * @map:	   One or more ctx -> hctx mappings. One map exists for each
482  *		   hardware queue type (enum hctx_type) that the driver wishes
483  *		   to support. There are no restrictions on maps being of the
484  *		   same size, and it's perfectly legal to share maps between
485  *		   types.
486  * @nr_maps:	   Number of elements in the @map array. A number in the range
487  *		   [1, HCTX_MAX_TYPES].
488  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
489  *		   owns this data structure.
490  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
491  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
492  *		   allocations.
493  * @cmd_size:	   Number of additional bytes to allocate per request. The block
494  *		   driver owns these additional bytes.
495  * @numa_node:	   NUMA node the storage adapter has been connected to.
496  * @timeout:	   Request processing timeout in jiffies.
497  * @flags:	   Zero or more BLK_MQ_F_* flags.
498  * @driver_data:   Pointer to data owned by the block driver that created this
499  *		   tag set.
500  * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
501  *		   elements.
502  * @shared_tags:
503  *		   Shared set of tags. Has @nr_hw_queues elements. If set,
504  *		   shared by all @tags.
505  * @tag_list_lock: Serializes tag_list accesses.
506  * @tag_list:	   List of the request queues that use this tag set. See also
507  *		   request_queue.tag_set_list.
508  * @srcu:	   Use as lock when type of the request queue is blocking
509  *		   (BLK_MQ_F_BLOCKING).
510  * @update_nr_hwq_lock:
511  * 		   Synchronize updating nr_hw_queues with add/del disk &
512  * 		   switching elevator.
513  */
514 struct blk_mq_tag_set {
515 	const struct blk_mq_ops	*ops;
516 	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
517 	unsigned int		nr_maps;
518 	unsigned int		nr_hw_queues;
519 	unsigned int		queue_depth;
520 	unsigned int		reserved_tags;
521 	unsigned int		cmd_size;
522 	int			numa_node;
523 	unsigned int		timeout;
524 	unsigned int		flags;
525 	void			*driver_data;
526 
527 	struct blk_mq_tags	**tags;
528 
529 	struct blk_mq_tags	*shared_tags;
530 
531 	struct mutex		tag_list_lock;
532 	struct list_head	tag_list;
533 	struct srcu_struct	*srcu;
534 
535 	struct rw_semaphore	update_nr_hwq_lock;
536 };
537 
538 /**
539  * struct blk_mq_queue_data - Data about a request inserted in a queue
540  *
541  * @rq:   Request pointer.
542  * @last: If it is the last request in the queue.
543  */
544 struct blk_mq_queue_data {
545 	struct request *rq;
546 	bool last;
547 };
548 
549 typedef bool (busy_tag_iter_fn)(struct request *, void *);
550 
551 /**
552  * struct blk_mq_ops - Callback functions that implements block driver
553  * behaviour.
554  */
555 struct blk_mq_ops {
556 	/**
557 	 * @queue_rq: Queue a new request from block IO.
558 	 */
559 	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
560 				 const struct blk_mq_queue_data *);
561 
562 	/**
563 	 * @commit_rqs: If a driver uses bd->last to judge when to submit
564 	 * requests to hardware, it must define this function. In case of errors
565 	 * that make us stop issuing further requests, this hook serves the
566 	 * purpose of kicking the hardware (which the last request otherwise
567 	 * would have done).
568 	 */
569 	void (*commit_rqs)(struct blk_mq_hw_ctx *);
570 
571 	/**
572 	 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
573 	 * that each request belongs to the same queue. If the driver doesn't
574 	 * empty the @rqlist completely, then the rest will be queued
575 	 * individually by the block layer upon return.
576 	 */
577 	void (*queue_rqs)(struct rq_list *rqlist);
578 
579 	/**
580 	 * @get_budget: Reserve budget before queue request, once .queue_rq is
581 	 * run, it is driver's responsibility to release the
582 	 * reserved budget. Also we have to handle failure case
583 	 * of .get_budget for avoiding I/O deadlock.
584 	 */
585 	int (*get_budget)(struct request_queue *);
586 
587 	/**
588 	 * @put_budget: Release the reserved budget.
589 	 */
590 	void (*put_budget)(struct request_queue *, int);
591 
592 	/**
593 	 * @set_rq_budget_token: store rq's budget token
594 	 */
595 	void (*set_rq_budget_token)(struct request *, int);
596 	/**
597 	 * @get_rq_budget_token: retrieve rq's budget token
598 	 */
599 	int (*get_rq_budget_token)(struct request *);
600 
601 	/**
602 	 * @timeout: Called on request timeout.
603 	 */
604 	enum blk_eh_timer_return (*timeout)(struct request *);
605 
606 	/**
607 	 * @poll: Called to poll for completion of a specific tag.
608 	 */
609 	int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
610 
611 	/**
612 	 * @complete: Mark the request as complete.
613 	 */
614 	void (*complete)(struct request *);
615 
616 	/**
617 	 * @init_hctx: Called when the block layer side of a hardware queue has
618 	 * been set up, allowing the driver to allocate/init matching
619 	 * structures.
620 	 */
621 	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
622 	/**
623 	 * @exit_hctx: Ditto for exit/teardown.
624 	 */
625 	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
626 
627 	/**
628 	 * @init_request: Called for every command allocated by the block layer
629 	 * to allow the driver to set up driver specific data.
630 	 *
631 	 * Tag greater than or equal to queue_depth is for setting up
632 	 * flush request.
633 	 */
634 	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
635 			    unsigned int, unsigned int);
636 	/**
637 	 * @exit_request: Ditto for exit/teardown.
638 	 */
639 	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
640 			     unsigned int);
641 
642 	/**
643 	 * @cleanup_rq: Called before freeing one request which isn't completed
644 	 * yet, and usually for freeing the driver private data.
645 	 */
646 	void (*cleanup_rq)(struct request *);
647 
648 	/**
649 	 * @busy: If set, returns whether or not this queue currently is busy.
650 	 */
651 	bool (*busy)(struct request_queue *);
652 
653 	/**
654 	 * @map_queues: This allows drivers specify their own queue mapping by
655 	 * overriding the setup-time function that builds the mq_map.
656 	 */
657 	void (*map_queues)(struct blk_mq_tag_set *set);
658 
659 #ifdef CONFIG_BLK_DEBUG_FS
660 	/**
661 	 * @show_rq: Used by the debugfs implementation to show driver-specific
662 	 * information about a request.
663 	 */
664 	void (*show_rq)(struct seq_file *m, struct request *rq);
665 #endif
666 };
667 
668 /* Keep hctx_flag_name[] in sync with the definitions below */
669 enum {
670 	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
671 	/*
672 	 * Set when this device requires underlying blk-mq device for
673 	 * completing IO:
674 	 */
675 	BLK_MQ_F_STACKING	= 1 << 2,
676 	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
677 	BLK_MQ_F_BLOCKING	= 1 << 4,
678 
679 	/*
680 	 * Alloc tags on a round-robin base instead of the first available one.
681 	 */
682 	BLK_MQ_F_TAG_RR		= 1 << 5,
683 
684 	/*
685 	 * Select 'none' during queue registration in case of a single hwq
686 	 * or shared hwqs instead of 'mq-deadline'.
687 	 */
688 	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 6,
689 
690 	BLK_MQ_F_MAX = 1 << 7,
691 };
692 
693 #define BLK_MQ_MAX_DEPTH	(10240)
694 #define BLK_MQ_NO_HCTX_IDX	(-1U)
695 
696 enum {
697 	/* Keep hctx_state_name[] in sync with the definitions below */
698 	BLK_MQ_S_STOPPED,
699 	BLK_MQ_S_TAG_ACTIVE,
700 	BLK_MQ_S_SCHED_RESTART,
701 	/* hw queue is inactive after all its CPUs become offline */
702 	BLK_MQ_S_INACTIVE,
703 	BLK_MQ_S_MAX
704 };
705 
706 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
707 		struct queue_limits *lim, void *queuedata,
708 		struct lock_class_key *lkclass);
709 #define blk_mq_alloc_disk(set, lim, queuedata)				\
710 ({									\
711 	static struct lock_class_key __key;				\
712 									\
713 	__blk_mq_alloc_disk(set, lim, queuedata, &__key);		\
714 })
715 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
716 		struct lock_class_key *lkclass);
717 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
718 		struct queue_limits *lim, void *queuedata);
719 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
720 		struct request_queue *q);
721 void blk_mq_destroy_queue(struct request_queue *);
722 
723 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
724 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
725 		const struct blk_mq_ops *ops, unsigned int queue_depth,
726 		unsigned int set_flags);
727 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
728 
729 void blk_mq_free_request(struct request *rq);
730 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
731 		unsigned int poll_flags);
732 
733 bool blk_mq_queue_inflight(struct request_queue *q);
734 
735 enum {
736 	/* return when out of requests */
737 	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
738 	/* allocate from reserved pool */
739 	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
740 	/* set RQF_PM */
741 	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
742 };
743 
744 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
745 		blk_mq_req_flags_t flags);
746 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
747 		blk_opf_t opf, blk_mq_req_flags_t flags,
748 		unsigned int hctx_idx);
749 
750 /*
751  * Tag address space map.
752  */
753 struct blk_mq_tags {
754 	unsigned int nr_tags;
755 	unsigned int nr_reserved_tags;
756 	unsigned int active_queues;
757 
758 	struct sbitmap_queue bitmap_tags;
759 	struct sbitmap_queue breserved_tags;
760 
761 	struct request **rqs;
762 	struct request **static_rqs;
763 	struct list_head page_list;
764 
765 	/*
766 	 * used to clear request reference in rqs[] before freeing one
767 	 * request pool
768 	 */
769 	spinlock_t lock;
770 };
771 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)772 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
773 					       unsigned int tag)
774 {
775 	if (tag < tags->nr_tags) {
776 		prefetch(tags->rqs[tag]);
777 		return tags->rqs[tag];
778 	}
779 
780 	return NULL;
781 }
782 
783 enum {
784 	BLK_MQ_UNIQUE_TAG_BITS = 16,
785 	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
786 };
787 
788 u32 blk_mq_unique_tag(struct request *rq);
789 
blk_mq_unique_tag_to_hwq(u32 unique_tag)790 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
791 {
792 	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
793 }
794 
blk_mq_unique_tag_to_tag(u32 unique_tag)795 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
796 {
797 	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
798 }
799 
800 /**
801  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
802  * @rq: target request.
803  */
blk_mq_rq_state(struct request * rq)804 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
805 {
806 	return READ_ONCE(rq->state);
807 }
808 
blk_mq_request_started(struct request * rq)809 static inline int blk_mq_request_started(struct request *rq)
810 {
811 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
812 }
813 
blk_mq_request_completed(struct request * rq)814 static inline int blk_mq_request_completed(struct request *rq)
815 {
816 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
817 }
818 
819 /*
820  *
821  * Set the state to complete when completing a request from inside ->queue_rq.
822  * This is used by drivers that want to ensure special complete actions that
823  * need access to the request are called on failure, e.g. by nvme for
824  * multipathing.
825  */
blk_mq_set_request_complete(struct request * rq)826 static inline void blk_mq_set_request_complete(struct request *rq)
827 {
828 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
829 }
830 
831 /*
832  * Complete the request directly instead of deferring it to softirq or
833  * completing it another CPU. Useful in preemptible instead of an interrupt.
834  */
blk_mq_complete_request_direct(struct request * rq,void (* complete)(struct request * rq))835 static inline void blk_mq_complete_request_direct(struct request *rq,
836 		   void (*complete)(struct request *rq))
837 {
838 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
839 	complete(rq);
840 }
841 
842 void blk_mq_start_request(struct request *rq);
843 void blk_mq_end_request(struct request *rq, blk_status_t error);
844 void __blk_mq_end_request(struct request *rq, blk_status_t error);
845 void blk_mq_end_request_batch(struct io_comp_batch *ib);
846 
847 /*
848  * Only need start/end time stamping if we have iostat or
849  * blk stats enabled, or using an IO scheduler.
850  */
blk_mq_need_time_stamp(struct request * rq)851 static inline bool blk_mq_need_time_stamp(struct request *rq)
852 {
853 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
854 }
855 
blk_mq_is_reserved_rq(struct request * rq)856 static inline bool blk_mq_is_reserved_rq(struct request *rq)
857 {
858 	return rq->rq_flags & RQF_RESV;
859 }
860 
861 /**
862  * blk_mq_add_to_batch() - add a request to the completion batch
863  * @req: The request to add to batch
864  * @iob: The batch to add the request
865  * @is_error: Specify true if the request failed with an error
866  * @complete: The completaion handler for the request
867  *
868  * Batched completions only work when there is no I/O error and no special
869  * ->end_io handler.
870  *
871  * Return: true when the request was added to the batch, otherwise false
872  */
blk_mq_add_to_batch(struct request * req,struct io_comp_batch * iob,bool is_error,void (* complete)(struct io_comp_batch *))873 static inline bool blk_mq_add_to_batch(struct request *req,
874 				       struct io_comp_batch *iob, bool is_error,
875 				       void (*complete)(struct io_comp_batch *))
876 {
877 	/*
878 	 * Check various conditions that exclude batch processing:
879 	 * 1) No batch container
880 	 * 2) Has scheduler data attached
881 	 * 3) Not a passthrough request and end_io set
882 	 * 4) Not a passthrough request and failed with an error
883 	 */
884 	if (!iob)
885 		return false;
886 	if (req->rq_flags & RQF_SCHED_TAGS)
887 		return false;
888 	if (!blk_rq_is_passthrough(req)) {
889 		if (req->end_io)
890 			return false;
891 		if (is_error)
892 			return false;
893 	}
894 
895 	if (!iob->complete)
896 		iob->complete = complete;
897 	else if (iob->complete != complete)
898 		return false;
899 	iob->need_ts |= blk_mq_need_time_stamp(req);
900 	rq_list_add_tail(&iob->req_list, req);
901 	return true;
902 }
903 
904 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
905 void blk_mq_kick_requeue_list(struct request_queue *q);
906 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
907 void blk_mq_complete_request(struct request *rq);
908 bool blk_mq_complete_request_remote(struct request *rq);
909 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
910 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
911 void blk_mq_stop_hw_queues(struct request_queue *q);
912 void blk_mq_start_hw_queues(struct request_queue *q);
913 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
914 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
915 void blk_mq_quiesce_queue(struct request_queue *q);
916 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
917 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
918 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
919 void blk_mq_unquiesce_queue(struct request_queue *q);
920 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
921 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
922 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
923 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
924 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
925 		busy_tag_iter_fn *fn, void *priv);
926 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
927 void blk_mq_freeze_queue_nomemsave(struct request_queue *q);
928 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q);
929 static inline unsigned int __must_check
blk_mq_freeze_queue(struct request_queue * q)930 blk_mq_freeze_queue(struct request_queue *q)
931 {
932 	unsigned int memflags = memalloc_noio_save();
933 
934 	blk_mq_freeze_queue_nomemsave(q);
935 	return memflags;
936 }
937 static inline void
blk_mq_unfreeze_queue(struct request_queue * q,unsigned int memflags)938 blk_mq_unfreeze_queue(struct request_queue *q, unsigned int memflags)
939 {
940 	blk_mq_unfreeze_queue_nomemrestore(q);
941 	memalloc_noio_restore(memflags);
942 }
943 void blk_freeze_queue_start(struct request_queue *q);
944 void blk_mq_freeze_queue_wait(struct request_queue *q);
945 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
946 				     unsigned long timeout);
947 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q);
948 void blk_freeze_queue_start_non_owner(struct request_queue *q);
949 
950 unsigned int blk_mq_num_possible_queues(unsigned int max_queues);
951 unsigned int blk_mq_num_online_queues(unsigned int max_queues);
952 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
953 void blk_mq_map_hw_queues(struct blk_mq_queue_map *qmap,
954 			  struct device *dev, unsigned int offset);
955 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
956 
957 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
958 
959 unsigned int blk_mq_rq_cpu(struct request *rq);
960 
961 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)962 static inline bool blk_should_fake_timeout(struct request_queue *q)
963 {
964 	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
965 	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
966 		return __blk_should_fake_timeout(q);
967 	return false;
968 }
969 
970 /**
971  * blk_mq_rq_from_pdu - cast a PDU to a request
972  * @pdu: the PDU (Protocol Data Unit) to be casted
973  *
974  * Return: request
975  *
976  * Driver command data is immediately after the request. So subtract request
977  * size to get back to the original request.
978  */
blk_mq_rq_from_pdu(void * pdu)979 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
980 {
981 	return pdu - sizeof(struct request);
982 }
983 
984 /**
985  * blk_mq_rq_to_pdu - cast a request to a PDU
986  * @rq: the request to be casted
987  *
988  * Return: pointer to the PDU
989  *
990  * Driver command data is immediately after the request. So add request to get
991  * the PDU.
992  */
blk_mq_rq_to_pdu(struct request * rq)993 static inline void *blk_mq_rq_to_pdu(struct request *rq)
994 {
995 	return rq + 1;
996 }
997 
998 #define queue_for_each_hw_ctx(q, hctx, i)				\
999 	xa_for_each(&(q)->hctx_table, (i), (hctx))
1000 
1001 #define hctx_for_each_ctx(hctx, ctx, i)					\
1002 	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
1003 	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
1004 
blk_mq_cleanup_rq(struct request * rq)1005 static inline void blk_mq_cleanup_rq(struct request *rq)
1006 {
1007 	if (rq->q->mq_ops->cleanup_rq)
1008 		rq->q->mq_ops->cleanup_rq(rq);
1009 }
1010 
1011 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
1012 		struct lock_class_key *key);
1013 
rq_is_sync(struct request * rq)1014 static inline bool rq_is_sync(struct request *rq)
1015 {
1016 	return op_is_sync(rq->cmd_flags);
1017 }
1018 
1019 void blk_rq_init(struct request_queue *q, struct request *rq);
1020 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1021 		struct bio_set *bs, gfp_t gfp_mask,
1022 		int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
1023 void blk_rq_unprep_clone(struct request *rq);
1024 blk_status_t blk_insert_cloned_request(struct request *rq);
1025 
1026 struct rq_map_data {
1027 	struct page **pages;
1028 	unsigned long offset;
1029 	unsigned short page_order;
1030 	unsigned short nr_entries;
1031 	bool null_mapped;
1032 	bool from_user;
1033 };
1034 
1035 int blk_rq_map_user(struct request_queue *, struct request *,
1036 		struct rq_map_data *, void __user *, unsigned long, gfp_t);
1037 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
1038 		void __user *, unsigned long, gfp_t, bool, int, bool, int);
1039 int blk_rq_map_user_iov(struct request_queue *, struct request *,
1040 		struct rq_map_data *, const struct iov_iter *, gfp_t);
1041 int blk_rq_unmap_user(struct bio *);
1042 int blk_rq_map_kern(struct request *rq, void *kbuf, unsigned int len,
1043 		gfp_t gfp);
1044 int blk_rq_append_bio(struct request *rq, struct bio *bio);
1045 void blk_execute_rq_nowait(struct request *rq, bool at_head);
1046 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1047 bool blk_rq_is_poll(struct request *rq);
1048 
1049 struct req_iterator {
1050 	struct bvec_iter iter;
1051 	struct bio *bio;
1052 };
1053 
1054 #define __rq_for_each_bio(_bio, rq)	\
1055 	if ((rq->bio))			\
1056 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1057 
1058 #define rq_for_each_segment(bvl, _rq, _iter)			\
1059 	__rq_for_each_bio(_iter.bio, _rq)			\
1060 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1061 
1062 #define rq_for_each_bvec(bvl, _rq, _iter)			\
1063 	__rq_for_each_bio(_iter.bio, _rq)			\
1064 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1065 
1066 #define rq_iter_last(bvec, _iter)				\
1067 		(_iter.bio->bi_next == NULL &&			\
1068 		 bio_iter_last(bvec, _iter.iter))
1069 
1070 /*
1071  * blk_rq_pos()			: the current sector
1072  * blk_rq_bytes()		: bytes left in the entire request
1073  * blk_rq_cur_bytes()		: bytes left in the current segment
1074  * blk_rq_sectors()		: sectors left in the entire request
1075  * blk_rq_cur_sectors()		: sectors left in the current segment
1076  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
1077  */
blk_rq_pos(const struct request * rq)1078 static inline sector_t blk_rq_pos(const struct request *rq)
1079 {
1080 	return rq->__sector;
1081 }
1082 
blk_rq_bytes(const struct request * rq)1083 static inline unsigned int blk_rq_bytes(const struct request *rq)
1084 {
1085 	return rq->__data_len;
1086 }
1087 
blk_rq_cur_bytes(const struct request * rq)1088 static inline int blk_rq_cur_bytes(const struct request *rq)
1089 {
1090 	if (!rq->bio)
1091 		return 0;
1092 	if (!bio_has_data(rq->bio))	/* dataless requests such as discard */
1093 		return rq->bio->bi_iter.bi_size;
1094 	return bio_iovec(rq->bio).bv_len;
1095 }
1096 
blk_rq_sectors(const struct request * rq)1097 static inline unsigned int blk_rq_sectors(const struct request *rq)
1098 {
1099 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1100 }
1101 
blk_rq_cur_sectors(const struct request * rq)1102 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1103 {
1104 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1105 }
1106 
blk_rq_stats_sectors(const struct request * rq)1107 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1108 {
1109 	return rq->stats_sectors;
1110 }
1111 
1112 /*
1113  * Some commands like WRITE SAME have a payload or data transfer size which
1114  * is different from the size of the request.  Any driver that supports such
1115  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1116  * calculate the data transfer size.
1117  */
blk_rq_payload_bytes(struct request * rq)1118 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1119 {
1120 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1121 		return rq->special_vec.bv_len;
1122 	return blk_rq_bytes(rq);
1123 }
1124 
1125 /*
1126  * Return the first full biovec in the request.  The caller needs to check that
1127  * there are any bvecs before calling this helper.
1128  */
req_bvec(struct request * rq)1129 static inline struct bio_vec req_bvec(struct request *rq)
1130 {
1131 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1132 		return rq->special_vec;
1133 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1134 }
1135 
blk_rq_count_bios(struct request * rq)1136 static inline unsigned int blk_rq_count_bios(struct request *rq)
1137 {
1138 	unsigned int nr_bios = 0;
1139 	struct bio *bio;
1140 
1141 	__rq_for_each_bio(bio, rq)
1142 		nr_bios++;
1143 
1144 	return nr_bios;
1145 }
1146 
1147 void blk_steal_bios(struct bio_list *list, struct request *rq);
1148 
1149 /*
1150  * Request completion related functions.
1151  *
1152  * blk_update_request() completes given number of bytes and updates
1153  * the request without completing it.
1154  */
1155 bool blk_update_request(struct request *rq, blk_status_t error,
1156 			       unsigned int nr_bytes);
1157 void blk_abort_request(struct request *);
1158 
1159 /*
1160  * Number of physical segments as sent to the device.
1161  *
1162  * Normally this is the number of discontiguous data segments sent by the
1163  * submitter.  But for data-less command like discard we might have no
1164  * actual data segments submitted, but the driver might have to add it's
1165  * own special payload.  In that case we still return 1 here so that this
1166  * special payload will be mapped.
1167  */
blk_rq_nr_phys_segments(struct request * rq)1168 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1169 {
1170 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1171 		return 1;
1172 	return rq->nr_phys_segments;
1173 }
1174 
1175 /*
1176  * Number of discard segments (or ranges) the driver needs to fill in.
1177  * Each discard bio merged into a request is counted as one segment.
1178  */
blk_rq_nr_discard_segments(struct request * rq)1179 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1180 {
1181 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1182 }
1183 
1184 int __blk_rq_map_sg(struct request *rq, struct scatterlist *sglist,
1185 		struct scatterlist **last_sg);
blk_rq_map_sg(struct request * rq,struct scatterlist * sglist)1186 static inline int blk_rq_map_sg(struct request *rq, struct scatterlist *sglist)
1187 {
1188 	struct scatterlist *last_sg = NULL;
1189 
1190 	return __blk_rq_map_sg(rq, sglist, &last_sg);
1191 }
1192 void blk_dump_rq_flags(struct request *, char *);
1193 
1194 #endif /* BLK_MQ_H */
1195