1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2020 Unisoc Inc.
4 */
5
6 #include <linux/component.h>
7 #include <linux/delay.h>
8 #include <linux/dma-buf.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_graph.h>
13 #include <linux/platform_device.h>
14 #include <linux/wait.h>
15 #include <linux/workqueue.h>
16
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_blend.h>
19 #include <drm/drm_fb_dma_helper.h>
20 #include <drm/drm_framebuffer.h>
21 #include <drm/drm_gem_dma_helper.h>
22 #include <drm/drm_gem_framebuffer_helper.h>
23
24 #include "sprd_drm.h"
25 #include "sprd_dpu.h"
26 #include "sprd_dsi.h"
27
28 /* Global control registers */
29 #define REG_DPU_CTRL 0x04
30 #define REG_DPU_CFG0 0x08
31 #define REG_PANEL_SIZE 0x20
32 #define REG_BLEND_SIZE 0x24
33 #define REG_BG_COLOR 0x2C
34
35 /* Layer0 control registers */
36 #define REG_LAY_BASE_ADDR0 0x30
37 #define REG_LAY_BASE_ADDR1 0x34
38 #define REG_LAY_BASE_ADDR2 0x38
39 #define REG_LAY_CTRL 0x40
40 #define REG_LAY_SIZE 0x44
41 #define REG_LAY_PITCH 0x48
42 #define REG_LAY_POS 0x4C
43 #define REG_LAY_ALPHA 0x50
44 #define REG_LAY_CROP_START 0x5C
45
46 /* Interrupt control registers */
47 #define REG_DPU_INT_EN 0x1E0
48 #define REG_DPU_INT_CLR 0x1E4
49 #define REG_DPU_INT_STS 0x1E8
50
51 /* DPI control registers */
52 #define REG_DPI_CTRL 0x1F0
53 #define REG_DPI_H_TIMING 0x1F4
54 #define REG_DPI_V_TIMING 0x1F8
55
56 /* MMU control registers */
57 #define REG_MMU_EN 0x800
58 #define REG_MMU_VPN_RANGE 0x80C
59 #define REG_MMU_PPN1 0x83C
60 #define REG_MMU_RANGE1 0x840
61 #define REG_MMU_PPN2 0x844
62 #define REG_MMU_RANGE2 0x848
63
64 /* Global control bits */
65 #define BIT_DPU_RUN BIT(0)
66 #define BIT_DPU_STOP BIT(1)
67 #define BIT_DPU_REG_UPDATE BIT(2)
68 #define BIT_DPU_IF_EDPI BIT(0)
69
70 /* Layer control bits */
71 #define BIT_DPU_LAY_EN BIT(0)
72 #define BIT_DPU_LAY_LAYER_ALPHA (0x01 << 2)
73 #define BIT_DPU_LAY_COMBO_ALPHA (0x02 << 2)
74 #define BIT_DPU_LAY_FORMAT_YUV422_2PLANE (0x00 << 4)
75 #define BIT_DPU_LAY_FORMAT_YUV420_2PLANE (0x01 << 4)
76 #define BIT_DPU_LAY_FORMAT_YUV420_3PLANE (0x02 << 4)
77 #define BIT_DPU_LAY_FORMAT_ARGB8888 (0x03 << 4)
78 #define BIT_DPU_LAY_FORMAT_RGB565 (0x04 << 4)
79 #define BIT_DPU_LAY_DATA_ENDIAN_B0B1B2B3 (0x00 << 8)
80 #define BIT_DPU_LAY_DATA_ENDIAN_B3B2B1B0 (0x01 << 8)
81 #define BIT_DPU_LAY_NO_SWITCH (0x00 << 10)
82 #define BIT_DPU_LAY_RB_OR_UV_SWITCH (0x01 << 10)
83 #define BIT_DPU_LAY_MODE_BLEND_NORMAL (0x00 << 16)
84 #define BIT_DPU_LAY_MODE_BLEND_PREMULT (0x01 << 16)
85 #define BIT_DPU_LAY_ROTATION_0 (0x00 << 20)
86 #define BIT_DPU_LAY_ROTATION_90 (0x01 << 20)
87 #define BIT_DPU_LAY_ROTATION_180 (0x02 << 20)
88 #define BIT_DPU_LAY_ROTATION_270 (0x03 << 20)
89 #define BIT_DPU_LAY_ROTATION_0_M (0x04 << 20)
90 #define BIT_DPU_LAY_ROTATION_90_M (0x05 << 20)
91 #define BIT_DPU_LAY_ROTATION_180_M (0x06 << 20)
92 #define BIT_DPU_LAY_ROTATION_270_M (0x07 << 20)
93
94 /* Interrupt control & status bits */
95 #define BIT_DPU_INT_DONE BIT(0)
96 #define BIT_DPU_INT_TE BIT(1)
97 #define BIT_DPU_INT_ERR BIT(2)
98 #define BIT_DPU_INT_UPDATE_DONE BIT(4)
99 #define BIT_DPU_INT_VSYNC BIT(5)
100
101 /* DPI control bits */
102 #define BIT_DPU_EDPI_TE_EN BIT(8)
103 #define BIT_DPU_EDPI_FROM_EXTERNAL_PAD BIT(10)
104 #define BIT_DPU_DPI_HALT_EN BIT(16)
105
106 static const u32 layer_fmts[] = {
107 DRM_FORMAT_XRGB8888,
108 DRM_FORMAT_XBGR8888,
109 DRM_FORMAT_ARGB8888,
110 DRM_FORMAT_ABGR8888,
111 DRM_FORMAT_RGBA8888,
112 DRM_FORMAT_BGRA8888,
113 DRM_FORMAT_RGBX8888,
114 DRM_FORMAT_RGB565,
115 DRM_FORMAT_BGR565,
116 DRM_FORMAT_NV12,
117 DRM_FORMAT_NV21,
118 DRM_FORMAT_NV16,
119 DRM_FORMAT_NV61,
120 DRM_FORMAT_YUV420,
121 DRM_FORMAT_YVU420,
122 };
123
124 struct sprd_plane {
125 struct drm_plane base;
126 };
127
dpu_wait_stop_done(struct sprd_dpu * dpu)128 static int dpu_wait_stop_done(struct sprd_dpu *dpu)
129 {
130 struct dpu_context *ctx = &dpu->ctx;
131 int rc;
132
133 if (ctx->stopped)
134 return 0;
135
136 rc = wait_event_interruptible_timeout(ctx->wait_queue, ctx->evt_stop,
137 msecs_to_jiffies(500));
138 ctx->evt_stop = false;
139
140 ctx->stopped = true;
141
142 if (!rc) {
143 drm_err(dpu->drm, "dpu wait for stop done time out!\n");
144 return -ETIMEDOUT;
145 }
146
147 return 0;
148 }
149
dpu_wait_update_done(struct sprd_dpu * dpu)150 static int dpu_wait_update_done(struct sprd_dpu *dpu)
151 {
152 struct dpu_context *ctx = &dpu->ctx;
153 int rc;
154
155 ctx->evt_update = false;
156
157 rc = wait_event_interruptible_timeout(ctx->wait_queue, ctx->evt_update,
158 msecs_to_jiffies(500));
159
160 if (!rc) {
161 drm_err(dpu->drm, "dpu wait for reg update done time out!\n");
162 return -ETIMEDOUT;
163 }
164
165 return 0;
166 }
167
drm_format_to_dpu(struct drm_framebuffer * fb)168 static u32 drm_format_to_dpu(struct drm_framebuffer *fb)
169 {
170 u32 format = 0;
171
172 switch (fb->format->format) {
173 case DRM_FORMAT_BGRA8888:
174 /* BGRA8888 -> ARGB8888 */
175 format |= BIT_DPU_LAY_DATA_ENDIAN_B3B2B1B0;
176 format |= BIT_DPU_LAY_FORMAT_ARGB8888;
177 break;
178 case DRM_FORMAT_RGBX8888:
179 case DRM_FORMAT_RGBA8888:
180 /* RGBA8888 -> ABGR8888 */
181 format |= BIT_DPU_LAY_DATA_ENDIAN_B3B2B1B0;
182 fallthrough;
183 case DRM_FORMAT_ABGR8888:
184 /* RB switch */
185 format |= BIT_DPU_LAY_RB_OR_UV_SWITCH;
186 fallthrough;
187 case DRM_FORMAT_ARGB8888:
188 format |= BIT_DPU_LAY_FORMAT_ARGB8888;
189 break;
190 case DRM_FORMAT_XBGR8888:
191 /* RB switch */
192 format |= BIT_DPU_LAY_RB_OR_UV_SWITCH;
193 fallthrough;
194 case DRM_FORMAT_XRGB8888:
195 format |= BIT_DPU_LAY_FORMAT_ARGB8888;
196 break;
197 case DRM_FORMAT_BGR565:
198 /* RB switch */
199 format |= BIT_DPU_LAY_RB_OR_UV_SWITCH;
200 fallthrough;
201 case DRM_FORMAT_RGB565:
202 format |= BIT_DPU_LAY_FORMAT_RGB565;
203 break;
204 case DRM_FORMAT_NV12:
205 /* 2-Lane: Yuv420 */
206 format |= BIT_DPU_LAY_FORMAT_YUV420_2PLANE;
207 /* Y endian */
208 format |= BIT_DPU_LAY_DATA_ENDIAN_B0B1B2B3;
209 /* UV endian */
210 format |= BIT_DPU_LAY_NO_SWITCH;
211 break;
212 case DRM_FORMAT_NV21:
213 /* 2-Lane: Yuv420 */
214 format |= BIT_DPU_LAY_FORMAT_YUV420_2PLANE;
215 /* Y endian */
216 format |= BIT_DPU_LAY_DATA_ENDIAN_B0B1B2B3;
217 /* UV endian */
218 format |= BIT_DPU_LAY_RB_OR_UV_SWITCH;
219 break;
220 case DRM_FORMAT_NV16:
221 /* 2-Lane: Yuv422 */
222 format |= BIT_DPU_LAY_FORMAT_YUV422_2PLANE;
223 /* Y endian */
224 format |= BIT_DPU_LAY_DATA_ENDIAN_B3B2B1B0;
225 /* UV endian */
226 format |= BIT_DPU_LAY_RB_OR_UV_SWITCH;
227 break;
228 case DRM_FORMAT_NV61:
229 /* 2-Lane: Yuv422 */
230 format |= BIT_DPU_LAY_FORMAT_YUV422_2PLANE;
231 /* Y endian */
232 format |= BIT_DPU_LAY_DATA_ENDIAN_B0B1B2B3;
233 /* UV endian */
234 format |= BIT_DPU_LAY_NO_SWITCH;
235 break;
236 case DRM_FORMAT_YUV420:
237 format |= BIT_DPU_LAY_FORMAT_YUV420_3PLANE;
238 /* Y endian */
239 format |= BIT_DPU_LAY_DATA_ENDIAN_B0B1B2B3;
240 /* UV endian */
241 format |= BIT_DPU_LAY_NO_SWITCH;
242 break;
243 case DRM_FORMAT_YVU420:
244 format |= BIT_DPU_LAY_FORMAT_YUV420_3PLANE;
245 /* Y endian */
246 format |= BIT_DPU_LAY_DATA_ENDIAN_B0B1B2B3;
247 /* UV endian */
248 format |= BIT_DPU_LAY_RB_OR_UV_SWITCH;
249 break;
250 default:
251 break;
252 }
253
254 return format;
255 }
256
drm_rotation_to_dpu(struct drm_plane_state * state)257 static u32 drm_rotation_to_dpu(struct drm_plane_state *state)
258 {
259 u32 rotation = 0;
260
261 switch (state->rotation) {
262 default:
263 case DRM_MODE_ROTATE_0:
264 rotation = BIT_DPU_LAY_ROTATION_0;
265 break;
266 case DRM_MODE_ROTATE_90:
267 rotation = BIT_DPU_LAY_ROTATION_90;
268 break;
269 case DRM_MODE_ROTATE_180:
270 rotation = BIT_DPU_LAY_ROTATION_180;
271 break;
272 case DRM_MODE_ROTATE_270:
273 rotation = BIT_DPU_LAY_ROTATION_270;
274 break;
275 case DRM_MODE_REFLECT_Y:
276 rotation = BIT_DPU_LAY_ROTATION_180_M;
277 break;
278 case (DRM_MODE_REFLECT_Y | DRM_MODE_ROTATE_90):
279 rotation = BIT_DPU_LAY_ROTATION_90_M;
280 break;
281 case DRM_MODE_REFLECT_X:
282 rotation = BIT_DPU_LAY_ROTATION_0_M;
283 break;
284 case (DRM_MODE_REFLECT_X | DRM_MODE_ROTATE_90):
285 rotation = BIT_DPU_LAY_ROTATION_270_M;
286 break;
287 }
288
289 return rotation;
290 }
291
drm_blend_to_dpu(struct drm_plane_state * state)292 static u32 drm_blend_to_dpu(struct drm_plane_state *state)
293 {
294 u32 blend = 0;
295
296 switch (state->pixel_blend_mode) {
297 case DRM_MODE_BLEND_COVERAGE:
298 /* alpha mode select - combo alpha */
299 blend |= BIT_DPU_LAY_COMBO_ALPHA;
300 /* Normal mode */
301 blend |= BIT_DPU_LAY_MODE_BLEND_NORMAL;
302 break;
303 case DRM_MODE_BLEND_PREMULTI:
304 /* alpha mode select - combo alpha */
305 blend |= BIT_DPU_LAY_COMBO_ALPHA;
306 /* Pre-mult mode */
307 blend |= BIT_DPU_LAY_MODE_BLEND_PREMULT;
308 break;
309 case DRM_MODE_BLEND_PIXEL_NONE:
310 default:
311 /* don't do blending, maybe RGBX */
312 /* alpha mode select - layer alpha */
313 blend |= BIT_DPU_LAY_LAYER_ALPHA;
314 break;
315 }
316
317 return blend;
318 }
319
sprd_dpu_layer(struct sprd_dpu * dpu,struct drm_plane_state * state)320 static void sprd_dpu_layer(struct sprd_dpu *dpu, struct drm_plane_state *state)
321 {
322 struct dpu_context *ctx = &dpu->ctx;
323 struct drm_gem_dma_object *dma_obj;
324 struct drm_framebuffer *fb = state->fb;
325 u32 addr, size, offset, pitch, blend, format, rotation;
326 u32 src_x = state->src_x >> 16;
327 u32 src_y = state->src_y >> 16;
328 u32 src_w = state->src_w >> 16;
329 u32 src_h = state->src_h >> 16;
330 u32 dst_x = state->crtc_x;
331 u32 dst_y = state->crtc_y;
332 u32 alpha = state->alpha;
333 u32 index = state->zpos;
334 int i;
335
336 offset = (dst_x & 0xffff) | (dst_y << 16);
337 size = (src_w & 0xffff) | (src_h << 16);
338
339 for (i = 0; i < fb->format->num_planes; i++) {
340 dma_obj = drm_fb_dma_get_gem_obj(fb, i);
341 addr = dma_obj->dma_addr + fb->offsets[i];
342
343 if (i == 0)
344 layer_reg_wr(ctx, REG_LAY_BASE_ADDR0, addr, index);
345 else if (i == 1)
346 layer_reg_wr(ctx, REG_LAY_BASE_ADDR1, addr, index);
347 else
348 layer_reg_wr(ctx, REG_LAY_BASE_ADDR2, addr, index);
349 }
350
351 if (fb->format->num_planes == 3) {
352 /* UV pitch is 1/2 of Y pitch */
353 pitch = (fb->pitches[0] / fb->format->cpp[0]) |
354 (fb->pitches[0] / fb->format->cpp[0] << 15);
355 } else {
356 pitch = fb->pitches[0] / fb->format->cpp[0];
357 }
358
359 layer_reg_wr(ctx, REG_LAY_POS, offset, index);
360 layer_reg_wr(ctx, REG_LAY_SIZE, size, index);
361 layer_reg_wr(ctx, REG_LAY_CROP_START,
362 src_y << 16 | src_x, index);
363 layer_reg_wr(ctx, REG_LAY_ALPHA, alpha, index);
364 layer_reg_wr(ctx, REG_LAY_PITCH, pitch, index);
365
366 format = drm_format_to_dpu(fb);
367 blend = drm_blend_to_dpu(state);
368 rotation = drm_rotation_to_dpu(state);
369
370 layer_reg_wr(ctx, REG_LAY_CTRL, BIT_DPU_LAY_EN |
371 format |
372 blend |
373 rotation,
374 index);
375 }
376
sprd_dpu_flip(struct sprd_dpu * dpu)377 static void sprd_dpu_flip(struct sprd_dpu *dpu)
378 {
379 struct dpu_context *ctx = &dpu->ctx;
380
381 /*
382 * Make sure the dpu is in stop status. DPU has no shadow
383 * registers in EDPI mode. So the config registers can only be
384 * updated in the rising edge of DPU_RUN bit.
385 */
386 if (ctx->if_type == SPRD_DPU_IF_EDPI)
387 dpu_wait_stop_done(dpu);
388
389 /* update trigger and wait */
390 if (ctx->if_type == SPRD_DPU_IF_DPI) {
391 if (!ctx->stopped) {
392 dpu_reg_set(ctx, REG_DPU_CTRL, BIT_DPU_REG_UPDATE);
393 dpu_wait_update_done(dpu);
394 }
395
396 dpu_reg_set(ctx, REG_DPU_INT_EN, BIT_DPU_INT_ERR);
397 } else if (ctx->if_type == SPRD_DPU_IF_EDPI) {
398 dpu_reg_set(ctx, REG_DPU_CTRL, BIT_DPU_RUN);
399
400 ctx->stopped = false;
401 }
402 }
403
sprd_dpu_init(struct sprd_dpu * dpu)404 static void sprd_dpu_init(struct sprd_dpu *dpu)
405 {
406 struct dpu_context *ctx = &dpu->ctx;
407 u32 int_mask = 0;
408
409 writel(0x00, ctx->base + REG_BG_COLOR);
410 writel(0x00, ctx->base + REG_MMU_EN);
411 writel(0x00, ctx->base + REG_MMU_PPN1);
412 writel(0xffff, ctx->base + REG_MMU_RANGE1);
413 writel(0x00, ctx->base + REG_MMU_PPN2);
414 writel(0xffff, ctx->base + REG_MMU_RANGE2);
415 writel(0x1ffff, ctx->base + REG_MMU_VPN_RANGE);
416
417 if (ctx->if_type == SPRD_DPU_IF_DPI) {
418 /* use dpi as interface */
419 dpu_reg_clr(ctx, REG_DPU_CFG0, BIT_DPU_IF_EDPI);
420 /* disable Halt function for SPRD DSI */
421 dpu_reg_clr(ctx, REG_DPI_CTRL, BIT_DPU_DPI_HALT_EN);
422 /* select te from external pad */
423 dpu_reg_set(ctx, REG_DPI_CTRL, BIT_DPU_EDPI_FROM_EXTERNAL_PAD);
424
425 /* enable dpu update done INT */
426 int_mask |= BIT_DPU_INT_UPDATE_DONE;
427 /* enable dpu done INT */
428 int_mask |= BIT_DPU_INT_DONE;
429 /* enable dpu dpi vsync */
430 int_mask |= BIT_DPU_INT_VSYNC;
431 /* enable dpu TE INT */
432 int_mask |= BIT_DPU_INT_TE;
433 /* enable underflow err INT */
434 int_mask |= BIT_DPU_INT_ERR;
435 } else if (ctx->if_type == SPRD_DPU_IF_EDPI) {
436 /* use edpi as interface */
437 dpu_reg_set(ctx, REG_DPU_CFG0, BIT_DPU_IF_EDPI);
438 /* use external te */
439 dpu_reg_set(ctx, REG_DPI_CTRL, BIT_DPU_EDPI_FROM_EXTERNAL_PAD);
440 /* enable te */
441 dpu_reg_set(ctx, REG_DPI_CTRL, BIT_DPU_EDPI_TE_EN);
442
443 /* enable stop done INT */
444 int_mask |= BIT_DPU_INT_DONE;
445 /* enable TE INT */
446 int_mask |= BIT_DPU_INT_TE;
447 }
448
449 writel(int_mask, ctx->base + REG_DPU_INT_EN);
450 }
451
sprd_dpu_fini(struct sprd_dpu * dpu)452 static void sprd_dpu_fini(struct sprd_dpu *dpu)
453 {
454 struct dpu_context *ctx = &dpu->ctx;
455
456 writel(0x00, ctx->base + REG_DPU_INT_EN);
457 writel(0xff, ctx->base + REG_DPU_INT_CLR);
458 }
459
sprd_dpi_init(struct sprd_dpu * dpu)460 static void sprd_dpi_init(struct sprd_dpu *dpu)
461 {
462 struct dpu_context *ctx = &dpu->ctx;
463 u32 reg_val;
464 u32 size;
465
466 size = (ctx->vm.vactive << 16) | ctx->vm.hactive;
467 writel(size, ctx->base + REG_PANEL_SIZE);
468 writel(size, ctx->base + REG_BLEND_SIZE);
469
470 if (ctx->if_type == SPRD_DPU_IF_DPI) {
471 /* set dpi timing */
472 reg_val = ctx->vm.hsync_len << 0 |
473 ctx->vm.hback_porch << 8 |
474 ctx->vm.hfront_porch << 20;
475 writel(reg_val, ctx->base + REG_DPI_H_TIMING);
476
477 reg_val = ctx->vm.vsync_len << 0 |
478 ctx->vm.vback_porch << 8 |
479 ctx->vm.vfront_porch << 20;
480 writel(reg_val, ctx->base + REG_DPI_V_TIMING);
481 }
482 }
483
sprd_dpu_run(struct sprd_dpu * dpu)484 void sprd_dpu_run(struct sprd_dpu *dpu)
485 {
486 struct dpu_context *ctx = &dpu->ctx;
487
488 dpu_reg_set(ctx, REG_DPU_CTRL, BIT_DPU_RUN);
489
490 ctx->stopped = false;
491 }
492
sprd_dpu_stop(struct sprd_dpu * dpu)493 void sprd_dpu_stop(struct sprd_dpu *dpu)
494 {
495 struct dpu_context *ctx = &dpu->ctx;
496
497 if (ctx->if_type == SPRD_DPU_IF_DPI)
498 dpu_reg_set(ctx, REG_DPU_CTRL, BIT_DPU_STOP);
499
500 dpu_wait_stop_done(dpu);
501 }
502
sprd_plane_atomic_check(struct drm_plane * plane,struct drm_atomic_state * state)503 static int sprd_plane_atomic_check(struct drm_plane *plane,
504 struct drm_atomic_state *state)
505 {
506 struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state,
507 plane);
508 struct drm_crtc_state *crtc_state;
509 u32 fmt;
510
511 if (!plane_state->fb || !plane_state->crtc)
512 return 0;
513
514 fmt = drm_format_to_dpu(plane_state->fb);
515 if (!fmt)
516 return -EINVAL;
517
518 crtc_state = drm_atomic_get_crtc_state(plane_state->state, plane_state->crtc);
519 if (IS_ERR(crtc_state))
520 return PTR_ERR(crtc_state);
521
522 return drm_atomic_helper_check_plane_state(plane_state, crtc_state,
523 DRM_PLANE_NO_SCALING,
524 DRM_PLANE_NO_SCALING,
525 true, true);
526 }
527
sprd_plane_atomic_update(struct drm_plane * drm_plane,struct drm_atomic_state * state)528 static void sprd_plane_atomic_update(struct drm_plane *drm_plane,
529 struct drm_atomic_state *state)
530 {
531 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
532 drm_plane);
533 struct sprd_dpu *dpu = to_sprd_crtc(new_state->crtc);
534
535 /* start configure dpu layers */
536 sprd_dpu_layer(dpu, new_state);
537 }
538
sprd_plane_atomic_disable(struct drm_plane * drm_plane,struct drm_atomic_state * state)539 static void sprd_plane_atomic_disable(struct drm_plane *drm_plane,
540 struct drm_atomic_state *state)
541 {
542 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
543 drm_plane);
544 struct sprd_dpu *dpu = to_sprd_crtc(old_state->crtc);
545
546 layer_reg_wr(&dpu->ctx, REG_LAY_CTRL, 0x00, old_state->zpos);
547 }
548
sprd_plane_create_properties(struct sprd_plane * plane,int index)549 static void sprd_plane_create_properties(struct sprd_plane *plane, int index)
550 {
551 unsigned int supported_modes = BIT(DRM_MODE_BLEND_PIXEL_NONE) |
552 BIT(DRM_MODE_BLEND_PREMULTI) |
553 BIT(DRM_MODE_BLEND_COVERAGE);
554
555 /* create rotation property */
556 drm_plane_create_rotation_property(&plane->base,
557 DRM_MODE_ROTATE_0,
558 DRM_MODE_ROTATE_MASK |
559 DRM_MODE_REFLECT_MASK);
560
561 /* create alpha property */
562 drm_plane_create_alpha_property(&plane->base);
563
564 /* create blend mode property */
565 drm_plane_create_blend_mode_property(&plane->base, supported_modes);
566
567 /* create zpos property */
568 drm_plane_create_zpos_immutable_property(&plane->base, index);
569 }
570
571 static const struct drm_plane_helper_funcs sprd_plane_helper_funcs = {
572 .atomic_check = sprd_plane_atomic_check,
573 .atomic_update = sprd_plane_atomic_update,
574 .atomic_disable = sprd_plane_atomic_disable,
575 };
576
577 static const struct drm_plane_funcs sprd_plane_funcs = {
578 .update_plane = drm_atomic_helper_update_plane,
579 .disable_plane = drm_atomic_helper_disable_plane,
580 .destroy = drm_plane_cleanup,
581 .reset = drm_atomic_helper_plane_reset,
582 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
583 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
584 };
585
sprd_planes_init(struct drm_device * drm)586 static struct sprd_plane *sprd_planes_init(struct drm_device *drm)
587 {
588 struct sprd_plane *plane, *primary;
589 enum drm_plane_type plane_type;
590 int i;
591
592 for (i = 0; i < 6; i++) {
593 plane_type = (i == 0) ? DRM_PLANE_TYPE_PRIMARY :
594 DRM_PLANE_TYPE_OVERLAY;
595
596 plane = drmm_universal_plane_alloc(drm, struct sprd_plane, base,
597 1, &sprd_plane_funcs,
598 layer_fmts, ARRAY_SIZE(layer_fmts),
599 NULL, plane_type, NULL);
600 if (IS_ERR(plane)) {
601 drm_err(drm, "failed to init drm plane: %d\n", i);
602 return plane;
603 }
604
605 drm_plane_helper_add(&plane->base, &sprd_plane_helper_funcs);
606
607 sprd_plane_create_properties(plane, i);
608
609 if (i == 0)
610 primary = plane;
611 }
612
613 return primary;
614 }
615
sprd_crtc_mode_set_nofb(struct drm_crtc * crtc)616 static void sprd_crtc_mode_set_nofb(struct drm_crtc *crtc)
617 {
618 struct sprd_dpu *dpu = to_sprd_crtc(crtc);
619 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
620 struct drm_encoder *encoder;
621 struct sprd_dsi *dsi;
622
623 drm_display_mode_to_videomode(mode, &dpu->ctx.vm);
624
625 drm_for_each_encoder_mask(encoder, crtc->dev,
626 crtc->state->encoder_mask) {
627 dsi = encoder_to_dsi(encoder);
628
629 if (dsi->slave->mode_flags & MIPI_DSI_MODE_VIDEO)
630 dpu->ctx.if_type = SPRD_DPU_IF_DPI;
631 else
632 dpu->ctx.if_type = SPRD_DPU_IF_EDPI;
633 }
634
635 sprd_dpi_init(dpu);
636 }
637
sprd_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)638 static void sprd_crtc_atomic_enable(struct drm_crtc *crtc,
639 struct drm_atomic_state *state)
640 {
641 struct sprd_dpu *dpu = to_sprd_crtc(crtc);
642
643 sprd_dpu_init(dpu);
644
645 drm_crtc_vblank_on(&dpu->base);
646 }
647
sprd_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)648 static void sprd_crtc_atomic_disable(struct drm_crtc *crtc,
649 struct drm_atomic_state *state)
650 {
651 struct sprd_dpu *dpu = to_sprd_crtc(crtc);
652 struct drm_device *drm = dpu->base.dev;
653
654 drm_crtc_vblank_off(&dpu->base);
655
656 sprd_dpu_fini(dpu);
657
658 spin_lock_irq(&drm->event_lock);
659 if (crtc->state->event) {
660 drm_crtc_send_vblank_event(crtc, crtc->state->event);
661 crtc->state->event = NULL;
662 }
663 spin_unlock_irq(&drm->event_lock);
664 }
665
sprd_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)666 static void sprd_crtc_atomic_flush(struct drm_crtc *crtc,
667 struct drm_atomic_state *state)
668
669 {
670 struct sprd_dpu *dpu = to_sprd_crtc(crtc);
671 struct drm_device *drm = dpu->base.dev;
672
673 sprd_dpu_flip(dpu);
674
675 spin_lock_irq(&drm->event_lock);
676 if (crtc->state->event) {
677 drm_crtc_send_vblank_event(crtc, crtc->state->event);
678 crtc->state->event = NULL;
679 }
680 spin_unlock_irq(&drm->event_lock);
681 }
682
sprd_crtc_enable_vblank(struct drm_crtc * crtc)683 static int sprd_crtc_enable_vblank(struct drm_crtc *crtc)
684 {
685 struct sprd_dpu *dpu = to_sprd_crtc(crtc);
686
687 dpu_reg_set(&dpu->ctx, REG_DPU_INT_EN, BIT_DPU_INT_VSYNC);
688
689 return 0;
690 }
691
sprd_crtc_disable_vblank(struct drm_crtc * crtc)692 static void sprd_crtc_disable_vblank(struct drm_crtc *crtc)
693 {
694 struct sprd_dpu *dpu = to_sprd_crtc(crtc);
695
696 dpu_reg_clr(&dpu->ctx, REG_DPU_INT_EN, BIT_DPU_INT_VSYNC);
697 }
698
699 static const struct drm_crtc_helper_funcs sprd_crtc_helper_funcs = {
700 .mode_set_nofb = sprd_crtc_mode_set_nofb,
701 .atomic_flush = sprd_crtc_atomic_flush,
702 .atomic_enable = sprd_crtc_atomic_enable,
703 .atomic_disable = sprd_crtc_atomic_disable,
704 };
705
706 static const struct drm_crtc_funcs sprd_crtc_funcs = {
707 .destroy = drm_crtc_cleanup,
708 .set_config = drm_atomic_helper_set_config,
709 .page_flip = drm_atomic_helper_page_flip,
710 .reset = drm_atomic_helper_crtc_reset,
711 .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
712 .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
713 .enable_vblank = sprd_crtc_enable_vblank,
714 .disable_vblank = sprd_crtc_disable_vblank,
715 };
716
sprd_crtc_init(struct drm_device * drm,struct drm_plane * primary,struct device * dev)717 static struct sprd_dpu *sprd_crtc_init(struct drm_device *drm,
718 struct drm_plane *primary, struct device *dev)
719 {
720 struct device_node *port;
721 struct sprd_dpu *dpu;
722
723 dpu = drmm_crtc_alloc_with_planes(drm, struct sprd_dpu, base,
724 primary, NULL,
725 &sprd_crtc_funcs, NULL);
726 if (IS_ERR(dpu)) {
727 drm_err(drm, "failed to init crtc\n");
728 return dpu;
729 }
730 drm_crtc_helper_add(&dpu->base, &sprd_crtc_helper_funcs);
731
732 /*
733 * set crtc port so that drm_of_find_possible_crtcs call works
734 */
735 port = of_graph_get_port_by_id(dev->of_node, 0);
736 if (!port) {
737 drm_err(drm, "failed to found crtc output port for %s\n",
738 dev->of_node->full_name);
739 return ERR_PTR(-EINVAL);
740 }
741 dpu->base.port = port;
742 of_node_put(port);
743
744 return dpu;
745 }
746
sprd_dpu_isr(int irq,void * data)747 static irqreturn_t sprd_dpu_isr(int irq, void *data)
748 {
749 struct sprd_dpu *dpu = data;
750 struct dpu_context *ctx = &dpu->ctx;
751 u32 reg_val, int_mask = 0;
752
753 reg_val = readl(ctx->base + REG_DPU_INT_STS);
754
755 /* disable err interrupt */
756 if (reg_val & BIT_DPU_INT_ERR) {
757 int_mask |= BIT_DPU_INT_ERR;
758 drm_warn(dpu->drm, "Warning: dpu underflow!\n");
759 }
760
761 /* dpu update done isr */
762 if (reg_val & BIT_DPU_INT_UPDATE_DONE) {
763 ctx->evt_update = true;
764 wake_up_interruptible_all(&ctx->wait_queue);
765 }
766
767 /* dpu stop done isr */
768 if (reg_val & BIT_DPU_INT_DONE) {
769 ctx->evt_stop = true;
770 wake_up_interruptible_all(&ctx->wait_queue);
771 }
772
773 if (reg_val & BIT_DPU_INT_VSYNC)
774 drm_crtc_handle_vblank(&dpu->base);
775
776 writel(reg_val, ctx->base + REG_DPU_INT_CLR);
777 dpu_reg_clr(ctx, REG_DPU_INT_EN, int_mask);
778
779 return IRQ_HANDLED;
780 }
781
sprd_dpu_context_init(struct sprd_dpu * dpu,struct device * dev)782 static int sprd_dpu_context_init(struct sprd_dpu *dpu,
783 struct device *dev)
784 {
785 struct platform_device *pdev = to_platform_device(dev);
786 struct dpu_context *ctx = &dpu->ctx;
787 struct resource *res;
788 int ret;
789
790 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
791 if (!res) {
792 dev_err(dev, "failed to get I/O resource\n");
793 return -EINVAL;
794 }
795
796 ctx->base = devm_ioremap(dev, res->start, resource_size(res));
797 if (!ctx->base) {
798 dev_err(dev, "failed to map dpu registers\n");
799 return -EFAULT;
800 }
801
802 ctx->irq = platform_get_irq(pdev, 0);
803 if (ctx->irq < 0)
804 return ctx->irq;
805
806 /* disable and clear interrupts before register dpu IRQ. */
807 writel(0x00, ctx->base + REG_DPU_INT_EN);
808 writel(0xff, ctx->base + REG_DPU_INT_CLR);
809
810 ret = devm_request_irq(dev, ctx->irq, sprd_dpu_isr,
811 IRQF_TRIGGER_NONE, "DPU", dpu);
812 if (ret) {
813 dev_err(dev, "failed to register dpu irq handler\n");
814 return ret;
815 }
816
817 init_waitqueue_head(&ctx->wait_queue);
818
819 return 0;
820 }
821
sprd_dpu_bind(struct device * dev,struct device * master,void * data)822 static int sprd_dpu_bind(struct device *dev, struct device *master, void *data)
823 {
824 struct drm_device *drm = data;
825 struct sprd_dpu *dpu;
826 struct sprd_plane *plane;
827 int ret;
828
829 plane = sprd_planes_init(drm);
830 if (IS_ERR(plane))
831 return PTR_ERR(plane);
832
833 dpu = sprd_crtc_init(drm, &plane->base, dev);
834 if (IS_ERR(dpu))
835 return PTR_ERR(dpu);
836
837 dpu->drm = drm;
838 dev_set_drvdata(dev, dpu);
839
840 ret = sprd_dpu_context_init(dpu, dev);
841 if (ret)
842 return ret;
843
844 return 0;
845 }
846
847 static const struct component_ops dpu_component_ops = {
848 .bind = sprd_dpu_bind,
849 };
850
851 static const struct of_device_id dpu_match_table[] = {
852 { .compatible = "sprd,sharkl3-dpu" },
853 { /* sentinel */ },
854 };
855 MODULE_DEVICE_TABLE(of, dpu_match_table);
856
sprd_dpu_probe(struct platform_device * pdev)857 static int sprd_dpu_probe(struct platform_device *pdev)
858 {
859 return component_add(&pdev->dev, &dpu_component_ops);
860 }
861
sprd_dpu_remove(struct platform_device * pdev)862 static void sprd_dpu_remove(struct platform_device *pdev)
863 {
864 component_del(&pdev->dev, &dpu_component_ops);
865 }
866
867 struct platform_driver sprd_dpu_driver = {
868 .probe = sprd_dpu_probe,
869 .remove = sprd_dpu_remove,
870 .driver = {
871 .name = "sprd-dpu-drv",
872 .of_match_table = dpu_match_table,
873 },
874 };
875
876 MODULE_AUTHOR("Leon He <leon.he@unisoc.com>");
877 MODULE_AUTHOR("Kevin Tang <kevin.tang@unisoc.com>");
878 MODULE_DESCRIPTION("Unisoc Display Controller Driver");
879 MODULE_LICENSE("GPL v2");
880