xref: /linux/drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023, 2025 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM REGULATORY -Section offset (in words) definitions */
42 	NVM_CHANNELS_SDP = 0,
43 };
44 
45 enum ext_nvm_offsets {
46 	/* NVM HW-Section offset (in words) definitions */
47 
48 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
49 
50 	/* NVM SW-Section offset (in words) definitions */
51 	NVM_VERSION_EXT_NVM = 0,
52 	N_HW_ADDRS_FAMILY_8000 = 3,
53 
54 	/* NVM PHY_SKU-Section offset (in words) definitions */
55 	RADIO_CFG_FAMILY_EXT_NVM = 0,
56 	SKU_FAMILY_8000 = 2,
57 
58 	/* NVM REGULATORY -Section offset (in words) definitions */
59 	NVM_CHANNELS_EXTENDED = 0,
60 	NVM_LAR_OFFSET_OLD = 0x4C7,
61 	NVM_LAR_OFFSET = 0x507,
62 	NVM_LAR_ENABLED = 0x7,
63 };
64 
65 /* SKU Capabilities (actual values from NVM definition) */
66 enum nvm_sku_bits {
67 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
68 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
69 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
70 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
71 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
72 };
73 
74 /*
75  * These are the channel numbers in the order that they are stored in the NVM
76  */
77 static const u16 iwl_nvm_channels[] = {
78 	/* 2.4 GHz */
79 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
80 	/* 5 GHz */
81 	36, 40, 44, 48, 52, 56, 60, 64,
82 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
83 	149, 153, 157, 161, 165
84 };
85 
86 static const u16 iwl_ext_nvm_channels[] = {
87 	/* 2.4 GHz */
88 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
89 	/* 5 GHz */
90 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
91 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
92 	149, 153, 157, 161, 165, 169, 173, 177, 181
93 };
94 
95 static const u16 iwl_uhb_nvm_channels[] = {
96 	/* 2.4 GHz */
97 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
98 	/* 5 GHz */
99 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
100 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
101 	149, 153, 157, 161, 165, 169, 173, 177, 181,
102 	/* 6-7 GHz */
103 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
104 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
105 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
106 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
107 };
108 
109 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
110 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
111 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
112 #define NUM_2GHZ_CHANNELS		14
113 #define NUM_5GHZ_CHANNELS		37
114 #define FIRST_2GHZ_HT_MINUS		5
115 #define LAST_2GHZ_HT_PLUS		9
116 #define N_HW_ADDR_MASK			0xF
117 
118 /* rate data (static) */
119 static struct ieee80211_rate iwl_cfg80211_rates[] = {
120 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
121 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
122 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
123 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
124 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
125 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
126 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
127 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
128 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
129 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
130 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
131 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
132 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
133 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
134 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
135 };
136 #define RATES_24_OFFS	0
137 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
138 #define RATES_52_OFFS	4
139 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
140 
141 /**
142  * enum iwl_nvm_channel_flags - channel flags in NVM
143  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
144  * @NVM_CHANNEL_IBSS: usable as an IBSS channel and deprecated
145  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
146  * @NVM_CHANNEL_ACTIVE: active scanning allowed and allows IBSS
147  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
148  * @NVM_CHANNEL_RADAR: radar detection required
149  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
150  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
151  *	on same channel on 2.4 or same UNII band on 5.2
152  * @NVM_CHANNEL_UNIFORM: uniform spreading required
153  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
154  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
155  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
156  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
157  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
158  * @NVM_CHANNEL_VLP: client support connection to UHB VLP AP
159  * @NVM_CHANNEL_AFC: client support connection to UHB AFC AP
160  */
161 enum iwl_nvm_channel_flags {
162 	NVM_CHANNEL_VALID		= BIT(0),
163 	NVM_CHANNEL_IBSS		= BIT(1),
164 	NVM_CHANNEL_ACTIVE		= BIT(3),
165 	NVM_CHANNEL_RADAR		= BIT(4),
166 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
167 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
168 	NVM_CHANNEL_UNIFORM		= BIT(7),
169 	NVM_CHANNEL_20MHZ		= BIT(8),
170 	NVM_CHANNEL_40MHZ		= BIT(9),
171 	NVM_CHANNEL_80MHZ		= BIT(10),
172 	NVM_CHANNEL_160MHZ		= BIT(11),
173 	NVM_CHANNEL_DC_HIGH		= BIT(12),
174 	NVM_CHANNEL_VLP			= BIT(13),
175 	NVM_CHANNEL_AFC			= BIT(14),
176 };
177 
178 /**
179  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
180  * domain.
181  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
182  *	2.4Ghz band is allowed.
183  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
184  *	5Ghz band is allowed.
185  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
186  *	for this regulatory domain (valid only in 5Ghz).
187  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
188  *	for this regulatory domain (valid only in 5Ghz).
189  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
190  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
191  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
192  *	for this regulatory domain (valid only in 5Ghz).
193  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
194  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
195  */
196 enum iwl_reg_capa_flags_v1 {
197 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
198 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
199 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
200 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
201 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
202 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
203 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
204 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
205 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
206 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
207 
208 /**
209  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
210  * domain (version 2).
211  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
212  *	disabled.
213  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
214  *	2.4Ghz band is allowed.
215  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
216  *	5Ghz band is allowed.
217  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
218  *	for this regulatory domain (valid only in 5Ghz).
219  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
220  *	for this regulatory domain (valid only in 5Ghz).
221  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
222  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
223  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
224  *	126, 122) are disabled.
225  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
226  *	for this regulatory domain (uvalid only in 5Ghz).
227  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
228  */
229 enum iwl_reg_capa_flags_v2 {
230 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
231 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
232 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
233 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
234 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
235 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
236 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
237 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
238 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
239 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
240 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
241 
242 /**
243  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
244  * domain.
245  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
246  *	for this regulatory domain (valid only in 5Ghz).
247  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
248  *	for this regulatory domain (valid only in 5Ghz).
249  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
250  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
251  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
252  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
253  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
254  *	for this regulatory domain (valid only in 5GHz).
255  */
256 enum iwl_reg_capa_flags_v4 {
257 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
258 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
259 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
260 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
261 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
262 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
263 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
264 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
265 
266 /*
267 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
268 * MCC update command response.
269 */
270 #define REG_CAPA_V2_RESP_VER	6
271 
272 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
273  * MCC update command response.
274  */
275 #define REG_CAPA_V4_RESP_VER	8
276 
277 /**
278  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
279  * handling the different APIs of reg_capa_flags.
280  *
281  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
282  *	for this regulatory domain.
283  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
284  *	for this regulatory domain (valid only in 5 and 6 Ghz).
285  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
286  *	for this regulatory domain (valid only in 5 and 6 Ghz).
287  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
288  *	for this regulatory domain (valid only in 6 Ghz).
289  * @disable_11ax: 11ax is forbidden for this regulatory domain.
290  * @disable_11be: 11be is forbidden for this regulatory domain.
291  */
292 struct iwl_reg_capa {
293 	bool allow_40mhz;
294 	bool allow_80mhz;
295 	bool allow_160mhz;
296 	bool allow_320mhz;
297 	bool disable_11ax;
298 	bool disable_11be;
299 };
300 
iwl_nvm_print_channel_flags(struct device * dev,u32 level,int chan,u32 flags)301 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
302 					       int chan, u32 flags)
303 {
304 #define CHECK_AND_PRINT_I(x)	\
305 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
306 
307 	if (!(flags & NVM_CHANNEL_VALID)) {
308 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
309 			      chan, flags);
310 		return;
311 	}
312 
313 	/* Note: already can print up to 101 characters, 110 is the limit! */
314 	IWL_DEBUG_DEV(dev, level,
315 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
316 		      chan, flags,
317 		      CHECK_AND_PRINT_I(VALID),
318 		      CHECK_AND_PRINT_I(IBSS),
319 		      CHECK_AND_PRINT_I(ACTIVE),
320 		      CHECK_AND_PRINT_I(RADAR),
321 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
322 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
323 		      CHECK_AND_PRINT_I(UNIFORM),
324 		      CHECK_AND_PRINT_I(20MHZ),
325 		      CHECK_AND_PRINT_I(40MHZ),
326 		      CHECK_AND_PRINT_I(80MHZ),
327 		      CHECK_AND_PRINT_I(160MHZ),
328 		      CHECK_AND_PRINT_I(DC_HIGH),
329 		      CHECK_AND_PRINT_I(VLP),
330 		      CHECK_AND_PRINT_I(AFC));
331 #undef CHECK_AND_PRINT_I
332 }
333 
iwl_get_channel_flags(u8 ch_num,int ch_idx,enum nl80211_band band,u32 nvm_flags,const struct iwl_cfg * cfg)334 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
335 				 u32 nvm_flags, const struct iwl_cfg *cfg)
336 {
337 	u32 flags = IEEE80211_CHAN_NO_HT40;
338 
339 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
340 		if (ch_num <= LAST_2GHZ_HT_PLUS)
341 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
342 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
343 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
344 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
345 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
346 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
347 		else
348 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
349 	}
350 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
351 		flags |= IEEE80211_CHAN_NO_80MHZ;
352 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
353 		flags |= IEEE80211_CHAN_NO_160MHZ;
354 
355 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
356 		flags |= IEEE80211_CHAN_NO_IR;
357 
358 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
359 		flags |= IEEE80211_CHAN_NO_IR;
360 
361 	if (nvm_flags & NVM_CHANNEL_RADAR)
362 		flags |= IEEE80211_CHAN_RADAR;
363 
364 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
365 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
366 
367 	/* Set the GO concurrent flag only in case that NO_IR is set.
368 	 * Otherwise it is meaningless
369 	 */
370 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
371 	    (flags & IEEE80211_CHAN_NO_IR))
372 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
373 
374 	/* Set the AP type for the UHB case. */
375 	if (nvm_flags & NVM_CHANNEL_VLP)
376 		flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
377 	else
378 		flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
379 	if (!(nvm_flags & NVM_CHANNEL_AFC))
380 		flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
381 
382 	return flags;
383 }
384 
iwl_nl80211_band_from_channel_idx(int ch_idx)385 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
386 {
387 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
388 		return NL80211_BAND_6GHZ;
389 	}
390 
391 	if (ch_idx >= NUM_2GHZ_CHANNELS)
392 		return NL80211_BAND_5GHZ;
393 	return NL80211_BAND_2GHZ;
394 }
395 
iwl_init_channel_map(struct iwl_trans * trans,const struct iwl_fw * fw,struct iwl_nvm_data * data,const void * const nvm_ch_flags,u32 sbands_flags,bool v4)396 static int iwl_init_channel_map(struct iwl_trans *trans,
397 				const struct iwl_fw *fw,
398 				struct iwl_nvm_data *data,
399 				const void * const nvm_ch_flags,
400 				u32 sbands_flags, bool v4)
401 {
402 	const struct iwl_cfg *cfg = trans->cfg;
403 	struct device *dev = trans->dev;
404 	int ch_idx;
405 	int n_channels = 0;
406 	struct ieee80211_channel *channel;
407 	u32 ch_flags;
408 	int num_of_ch;
409 	const u16 *nvm_chan;
410 
411 	if (cfg->uhb_supported) {
412 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
413 		nvm_chan = iwl_uhb_nvm_channels;
414 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
415 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
416 		nvm_chan = iwl_ext_nvm_channels;
417 	} else {
418 		num_of_ch = IWL_NVM_NUM_CHANNELS;
419 		nvm_chan = iwl_nvm_channels;
420 	}
421 
422 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
423 		enum nl80211_band band =
424 			iwl_nl80211_band_from_channel_idx(ch_idx);
425 
426 		if (v4)
427 			ch_flags =
428 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
429 		else
430 			ch_flags =
431 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
432 
433 		if (band == NL80211_BAND_5GHZ &&
434 		    !data->sku_cap_band_52ghz_enable)
435 			continue;
436 
437 		/* workaround to disable wide channels in 5GHz */
438 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
439 		    band == NL80211_BAND_5GHZ) {
440 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
441 				     NVM_CHANNEL_80MHZ |
442 				     NVM_CHANNEL_160MHZ);
443 		}
444 
445 		if (ch_flags & NVM_CHANNEL_160MHZ)
446 			data->vht160_supported = true;
447 
448 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
449 		    !(ch_flags & NVM_CHANNEL_VALID)) {
450 			/*
451 			 * Channels might become valid later if lar is
452 			 * supported, hence we still want to add them to
453 			 * the list of supported channels to cfg80211.
454 			 */
455 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
456 						    nvm_chan[ch_idx], ch_flags);
457 			continue;
458 		}
459 
460 		channel = &data->channels[n_channels];
461 		n_channels++;
462 
463 		channel->hw_value = nvm_chan[ch_idx];
464 		channel->band = band;
465 		channel->center_freq =
466 			ieee80211_channel_to_frequency(
467 				channel->hw_value, channel->band);
468 
469 		/* Initialize regulatory-based run-time data */
470 
471 		/*
472 		 * Default value - highest tx power value.  max_power
473 		 * is not used in mvm, and is used for backwards compatibility
474 		 */
475 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
476 
477 		/* don't put limitations in case we're using LAR */
478 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
479 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
480 							       ch_idx, band,
481 							       ch_flags, cfg);
482 		else
483 			channel->flags = 0;
484 
485 		if (fw_has_capa(&fw->ucode_capa,
486 				IWL_UCODE_TLV_CAPA_MONITOR_PASSIVE_CHANS))
487 			channel->flags |= IEEE80211_CHAN_CAN_MONITOR;
488 
489 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
490 					    channel->hw_value, ch_flags);
491 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
492 				 channel->hw_value, channel->max_power);
493 	}
494 
495 	return n_channels;
496 }
497 
iwl_init_vht_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)498 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
499 				  struct iwl_nvm_data *data,
500 				  struct ieee80211_sta_vht_cap *vht_cap,
501 				  u8 tx_chains, u8 rx_chains)
502 {
503 	const struct iwl_cfg *cfg = trans->cfg;
504 	int num_rx_ants = num_of_ant(rx_chains);
505 	int num_tx_ants = num_of_ant(tx_chains);
506 
507 	vht_cap->vht_supported = true;
508 
509 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
510 		       IEEE80211_VHT_CAP_RXSTBC_1 |
511 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
512 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
513 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
514 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
515 
516 	if (!trans->cfg->ht_params->stbc)
517 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
518 
519 	if (data->vht160_supported)
520 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
521 				IEEE80211_VHT_CAP_SHORT_GI_160;
522 
523 	if (cfg->vht_mu_mimo_supported)
524 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
525 
526 	if (cfg->ht_params->ldpc)
527 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
528 
529 	if (data->sku_cap_mimo_disabled) {
530 		num_rx_ants = 1;
531 		num_tx_ants = 1;
532 	}
533 
534 	if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
535 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
536 	else
537 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
538 
539 	switch (iwlwifi_mod_params.amsdu_size) {
540 	case IWL_AMSDU_DEF:
541 		if (trans->trans_cfg->mq_rx_supported)
542 			vht_cap->cap |=
543 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
544 		else
545 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
546 		break;
547 	case IWL_AMSDU_2K:
548 		if (trans->trans_cfg->mq_rx_supported)
549 			vht_cap->cap |=
550 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
551 		else
552 			WARN(1, "RB size of 2K is not supported by this device\n");
553 		break;
554 	case IWL_AMSDU_4K:
555 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
556 		break;
557 	case IWL_AMSDU_8K:
558 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
559 		break;
560 	case IWL_AMSDU_12K:
561 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
562 		break;
563 	default:
564 		break;
565 	}
566 
567 	vht_cap->vht_mcs.rx_mcs_map =
568 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
569 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
570 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
571 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
572 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
573 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
574 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
575 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
576 
577 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
578 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
579 		/* this works because NOT_SUPPORTED == 3 */
580 		vht_cap->vht_mcs.rx_mcs_map |=
581 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
582 	}
583 
584 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
585 
586 	vht_cap->vht_mcs.tx_highest |=
587 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
588 }
589 
590 static const u8 iwl_vendor_caps[] = {
591 	0xdd,			/* vendor element */
592 	0x06,			/* length */
593 	0x00, 0x17, 0x35,	/* Intel OUI */
594 	0x08,			/* type (Intel Capabilities) */
595 	/* followed by 16 bits of capabilities */
596 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
597 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
598 	0x00
599 };
600 
601 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
602 	{
603 		.types_mask = BIT(NL80211_IFTYPE_STATION) |
604 			      BIT(NL80211_IFTYPE_P2P_CLIENT),
605 		.he_cap = {
606 			.has_he = true,
607 			.he_cap_elem = {
608 				.mac_cap_info[0] =
609 					IEEE80211_HE_MAC_CAP0_HTC_HE,
610 				.mac_cap_info[1] =
611 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
612 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
613 				.mac_cap_info[2] =
614 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
615 				.mac_cap_info[3] =
616 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
617 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
618 				.mac_cap_info[4] =
619 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
620 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
621 				.mac_cap_info[5] =
622 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
623 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
624 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
625 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
626 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
627 				.phy_cap_info[1] =
628 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
629 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
630 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
631 				.phy_cap_info[2] =
632 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
633 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
634 				.phy_cap_info[3] =
635 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
636 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
637 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
638 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
639 				.phy_cap_info[4] =
640 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
641 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
642 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
643 				.phy_cap_info[6] =
644 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
645 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
646 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
647 				.phy_cap_info[7] =
648 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
649 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
650 				.phy_cap_info[8] =
651 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
652 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
653 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
654 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
655 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
656 				.phy_cap_info[9] =
657 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
658 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
659 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
660 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
661 				.phy_cap_info[10] =
662 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
663 			},
664 			/*
665 			 * Set default Tx/Rx HE MCS NSS Support field.
666 			 * Indicate support for up to 2 spatial streams and all
667 			 * MCS, without any special cases
668 			 */
669 			.he_mcs_nss_supp = {
670 				.rx_mcs_80 = cpu_to_le16(0xfffa),
671 				.tx_mcs_80 = cpu_to_le16(0xfffa),
672 				.rx_mcs_160 = cpu_to_le16(0xfffa),
673 				.tx_mcs_160 = cpu_to_le16(0xfffa),
674 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
675 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
676 			},
677 			/*
678 			 * Set default PPE thresholds, with PPET16 set to 0,
679 			 * PPET8 set to 7
680 			 */
681 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
682 		},
683 		.eht_cap = {
684 			.has_eht = true,
685 			.eht_cap_elem = {
686 				.mac_cap_info[0] =
687 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
688 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
689 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
690 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
691 					IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
692 				.mac_cap_info[1] =
693 					IEEE80211_EHT_MAC_CAP1_UNSOL_EPCS_PRIO_ACCESS,
694 				.phy_cap_info[0] =
695 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
696 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
697 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
698 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
699 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
700 				.phy_cap_info[1] =
701 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
702 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
703 				.phy_cap_info[3] =
704 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
705 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
706 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
707 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
708 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
709 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
710 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
711 
712 				.phy_cap_info[4] =
713 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
714 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
715 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
716 				.phy_cap_info[5] =
717 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
718 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US) |
719 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
720 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
721 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP,
722 				.phy_cap_info[6] =
723 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
724 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
725 				.phy_cap_info[8] =
726 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
727 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
728 			},
729 
730 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
731 			 * Rx - note we don't set the only_20mhz, but due to this
732 			 * being a union, it gets set correctly anyway.
733 			 */
734 			.eht_mcs_nss_supp = {
735 				.bw._80 = {
736 					.rx_tx_mcs9_max_nss = 0x22,
737 					.rx_tx_mcs11_max_nss = 0x22,
738 					.rx_tx_mcs13_max_nss = 0x22,
739 				},
740 				.bw._160 = {
741 					.rx_tx_mcs9_max_nss = 0x22,
742 					.rx_tx_mcs11_max_nss = 0x22,
743 					.rx_tx_mcs13_max_nss = 0x22,
744 				},
745 				.bw._320 = {
746 					.rx_tx_mcs9_max_nss = 0x22,
747 					.rx_tx_mcs11_max_nss = 0x22,
748 					.rx_tx_mcs13_max_nss = 0x22,
749 				},
750 			},
751 
752 			/*
753 			 * PPE thresholds for NSS = 2, and RU index bitmap set
754 			 * to 0xc.
755 			 * Note: just for stating what we want, not present in
756 			 * the transmitted data due to not including
757 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
758 			 */
759 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
760 		},
761 	},
762 	{
763 		.types_mask = BIT(NL80211_IFTYPE_AP) |
764 			      BIT(NL80211_IFTYPE_P2P_GO),
765 		.he_cap = {
766 			.has_he = true,
767 			.he_cap_elem = {
768 				.mac_cap_info[0] =
769 					IEEE80211_HE_MAC_CAP0_HTC_HE,
770 				.mac_cap_info[1] =
771 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
772 				.mac_cap_info[3] =
773 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
774 				.phy_cap_info[1] =
775 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
776 				.phy_cap_info[2] =
777 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
778 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
779 				.phy_cap_info[3] =
780 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
781 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
782 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
783 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
784 				.phy_cap_info[6] =
785 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
786 				.phy_cap_info[7] =
787 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
788 				.phy_cap_info[8] =
789 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
790 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
791 				.phy_cap_info[9] =
792 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
793 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
794 			},
795 			/*
796 			 * Set default Tx/Rx HE MCS NSS Support field.
797 			 * Indicate support for up to 2 spatial streams and all
798 			 * MCS, without any special cases
799 			 */
800 			.he_mcs_nss_supp = {
801 				.rx_mcs_80 = cpu_to_le16(0xfffa),
802 				.tx_mcs_80 = cpu_to_le16(0xfffa),
803 				.rx_mcs_160 = cpu_to_le16(0xfffa),
804 				.tx_mcs_160 = cpu_to_le16(0xfffa),
805 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
806 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
807 			},
808 			/*
809 			 * Set default PPE thresholds, with PPET16 set to 0,
810 			 * PPET8 set to 7
811 			 */
812 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
813 		},
814 		.eht_cap = {
815 			.has_eht = true,
816 			.eht_cap_elem = {
817 				.mac_cap_info[0] =
818 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
819 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
820 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
821 				.phy_cap_info[0] =
822 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
823 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
824 				.phy_cap_info[5] =
825 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
826 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US),
827 			},
828 
829 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
830 			 * Rx - note we don't set the only_20mhz, but due to this
831 			 * being a union, it gets set correctly anyway.
832 			 */
833 			.eht_mcs_nss_supp = {
834 				.bw._80 = {
835 					.rx_tx_mcs9_max_nss = 0x22,
836 					.rx_tx_mcs11_max_nss = 0x22,
837 					.rx_tx_mcs13_max_nss = 0x22,
838 				},
839 				.bw._160 = {
840 					.rx_tx_mcs9_max_nss = 0x22,
841 					.rx_tx_mcs11_max_nss = 0x22,
842 					.rx_tx_mcs13_max_nss = 0x22,
843 				},
844 				.bw._320 = {
845 					.rx_tx_mcs9_max_nss = 0x22,
846 					.rx_tx_mcs11_max_nss = 0x22,
847 					.rx_tx_mcs13_max_nss = 0x22,
848 				},
849 			},
850 
851 			/*
852 			 * PPE thresholds for NSS = 2, and RU index bitmap set
853 			 * to 0xc.
854 			 * Note: just for stating what we want, not present in
855 			 * the transmitted data due to not including
856 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
857 			 */
858 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
859 		},
860 	},
861 };
862 
iwl_init_he_6ghz_capa(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains)863 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
864 				  struct iwl_nvm_data *data,
865 				  struct ieee80211_supported_band *sband,
866 				  u8 tx_chains, u8 rx_chains)
867 {
868 	struct ieee80211_sta_ht_cap ht_cap;
869 	struct ieee80211_sta_vht_cap vht_cap = {};
870 	struct ieee80211_sband_iftype_data *iftype_data;
871 	u16 he_6ghz_capa = 0;
872 	u32 exp;
873 	int i;
874 
875 	if (sband->band != NL80211_BAND_6GHZ)
876 		return;
877 
878 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
879 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
880 			     tx_chains, rx_chains);
881 	WARN_ON(!ht_cap.ht_supported);
882 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
883 	WARN_ON(!vht_cap.vht_supported);
884 
885 	he_6ghz_capa |=
886 		u16_encode_bits(ht_cap.ampdu_density,
887 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
888 	exp = u32_get_bits(vht_cap.cap,
889 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
890 	he_6ghz_capa |=
891 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
892 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
893 	he_6ghz_capa |=
894 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
895 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
896 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
897 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
898 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
899 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
900 
901 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
902 
903 	/* we know it's writable - we set it before ourselves */
904 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
905 	for (i = 0; i < sband->n_iftype_data; i++)
906 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
907 }
908 
909 static void
iwl_nvm_fixup_sband_iftd(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,struct ieee80211_sband_iftype_data * iftype_data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)910 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
911 			 struct iwl_nvm_data *data,
912 			 struct ieee80211_supported_band *sband,
913 			 struct ieee80211_sband_iftype_data *iftype_data,
914 			 u8 tx_chains, u8 rx_chains,
915 			 const struct iwl_fw *fw)
916 {
917 	bool is_ap = iftype_data->types_mask & (BIT(NL80211_IFTYPE_AP) |
918 						BIT(NL80211_IFTYPE_P2P_GO));
919 	bool slow_pcie = (!trans->trans_cfg->integrated &&
920 			  trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB);
921 
922 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
923 		iftype_data->eht_cap.has_eht = false;
924 
925 	/* Advertise an A-MPDU exponent extension based on
926 	 * operating band
927 	 */
928 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
929 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
930 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
931 	else if (sband->band != NL80211_BAND_2GHZ)
932 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
933 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
934 	else
935 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
936 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
937 
938 	switch (sband->band) {
939 	case NL80211_BAND_2GHZ:
940 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
941 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
942 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
943 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
944 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
945 		break;
946 	case NL80211_BAND_6GHZ:
947 		if (!trans->reduced_cap_sku &&
948 		    trans->bw_limit >= 320) {
949 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
950 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
951 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
952 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
953 		}
954 		fallthrough;
955 	case NL80211_BAND_5GHZ:
956 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
957 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
958 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
959 		break;
960 	default:
961 		WARN_ON(1);
962 		break;
963 	}
964 
965 	if ((tx_chains & rx_chains) == ANT_AB) {
966 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
967 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
968 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
969 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
970 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
971 		if (!is_ap) {
972 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
973 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
974 
975 			if (iftype_data->eht_cap.has_eht) {
976 				/*
977 				 * Set the number of sounding dimensions for each
978 				 * bandwidth to 1 to indicate the maximal supported
979 				 * value of TXVECTOR parameter NUM_STS of 2
980 				 */
981 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
982 
983 				/*
984 				 * Set the MAX NC to 1 to indicate sounding feedback of
985 				 * 2 supported by the beamfomee.
986 				 */
987 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
988 			}
989 		}
990 
991 		if (slow_pcie) {
992 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
993 				&iftype_data->eht_cap.eht_mcs_nss_supp;
994 
995 			mcs_nss->bw._320.rx_tx_mcs11_max_nss = 0;
996 			mcs_nss->bw._320.rx_tx_mcs13_max_nss = 0;
997 		}
998 	} else {
999 		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
1000 			&iftype_data->he_cap.he_mcs_nss_supp;
1001 
1002 		if (iftype_data->eht_cap.has_eht) {
1003 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
1004 				&iftype_data->eht_cap.eht_mcs_nss_supp;
1005 
1006 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
1007 		}
1008 
1009 		if (!is_ap) {
1010 			/* If not 2x2, we need to indicate 1x1 in the
1011 			 * Midamble RX Max NSTS - but not for AP mode
1012 			 */
1013 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
1014 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
1015 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1016 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
1017 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
1018 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
1019 		}
1020 
1021 		he_mcs_nss_supp->rx_mcs_80 |=
1022 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1023 		he_mcs_nss_supp->tx_mcs_80 |=
1024 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1025 		he_mcs_nss_supp->rx_mcs_160 |=
1026 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1027 		he_mcs_nss_supp->tx_mcs_160 |=
1028 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1029 		he_mcs_nss_supp->rx_mcs_80p80 |=
1030 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1031 		he_mcs_nss_supp->tx_mcs_80p80 |=
1032 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1033 	}
1034 
1035 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1036 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1037 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1038 
1039 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
1040 	case IWL_CFG_RF_TYPE_GF:
1041 	case IWL_CFG_RF_TYPE_FM:
1042 	case IWL_CFG_RF_TYPE_WH:
1043 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1044 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1045 		if (!is_ap)
1046 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1047 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1048 		break;
1049 	}
1050 
1051 	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1052 	    iftype_data->eht_cap.has_eht) {
1053 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1054 			~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1055 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1056 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1057 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1058 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1059 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1060 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1061 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1062 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1063 			  IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1064 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1065 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1066 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1067 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1068 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1069 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1070 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1071 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1072 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1073 			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1074 	}
1075 
1076 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1077 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1078 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1079 
1080 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1081 	    !is_ap) {
1082 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1083 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1084 	}
1085 
1086 	if (!trans->cfg->ht_params->stbc) {
1087 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1088 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1089 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1090 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1091 	}
1092 
1093 	if (trans->step_urm) {
1094 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs11_max_nss = 0;
1095 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs13_max_nss = 0;
1096 	}
1097 
1098 	if (trans->bw_limit < 160)
1099 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] &=
1100 			~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1101 
1102 	if (trans->bw_limit < 320 || trans->reduced_cap_sku) {
1103 		memset(&iftype_data->eht_cap.eht_mcs_nss_supp.bw._320, 0,
1104 		       sizeof(iftype_data->eht_cap.eht_mcs_nss_supp.bw._320));
1105 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] &=
1106 			~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK;
1107 	}
1108 
1109 	if (trans->reduced_cap_sku) {
1110 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss = 0;
1111 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._160.rx_tx_mcs13_max_nss = 0;
1112 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[8] &=
1113 			~IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA;
1114 	}
1115 }
1116 
iwl_init_he_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1117 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1118 				 struct iwl_nvm_data *data,
1119 				 struct ieee80211_supported_band *sband,
1120 				 u8 tx_chains, u8 rx_chains,
1121 				 const struct iwl_fw *fw)
1122 {
1123 	struct ieee80211_sband_iftype_data *iftype_data;
1124 	int i;
1125 
1126 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1127 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1128 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1129 
1130 	switch (sband->band) {
1131 	case NL80211_BAND_2GHZ:
1132 		iftype_data = data->iftd.low;
1133 		break;
1134 	case NL80211_BAND_5GHZ:
1135 		iftype_data = data->iftd.high;
1136 		break;
1137 	case NL80211_BAND_6GHZ:
1138 		iftype_data = data->iftd.uhb;
1139 		break;
1140 	default:
1141 		WARN_ON(1);
1142 		return;
1143 	}
1144 
1145 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1146 
1147 	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1148 					 ARRAY_SIZE(iwl_he_eht_capa));
1149 
1150 	for (i = 0; i < sband->n_iftype_data; i++)
1151 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1152 					 tx_chains, rx_chains, fw);
1153 
1154 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1155 }
1156 
iwl_reinit_cab(struct iwl_trans * trans,struct iwl_nvm_data * data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1157 void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1158 		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1159 {
1160 	struct ieee80211_supported_band *sband;
1161 
1162 	sband = &data->bands[NL80211_BAND_2GHZ];
1163 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1164 			     tx_chains, rx_chains);
1165 
1166 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1167 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1168 				     fw);
1169 
1170 	sband = &data->bands[NL80211_BAND_5GHZ];
1171 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1172 			     tx_chains, rx_chains);
1173 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1174 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1175 				      tx_chains, rx_chains);
1176 
1177 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1178 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1179 				     fw);
1180 
1181 	sband = &data->bands[NL80211_BAND_6GHZ];
1182 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1183 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1184 				     fw);
1185 }
1186 IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1187 
iwl_init_sbands(struct iwl_trans * trans,struct iwl_nvm_data * data,const void * nvm_ch_flags,u8 tx_chains,u8 rx_chains,u32 sbands_flags,bool v4,const struct iwl_fw * fw)1188 static void iwl_init_sbands(struct iwl_trans *trans,
1189 			    struct iwl_nvm_data *data,
1190 			    const void *nvm_ch_flags, u8 tx_chains,
1191 			    u8 rx_chains, u32 sbands_flags, bool v4,
1192 			    const struct iwl_fw *fw)
1193 {
1194 	struct device *dev = trans->dev;
1195 	int n_channels;
1196 	int n_used = 0;
1197 	struct ieee80211_supported_band *sband;
1198 
1199 	n_channels = iwl_init_channel_map(trans, fw, data, nvm_ch_flags,
1200 					  sbands_flags, v4);
1201 	sband = &data->bands[NL80211_BAND_2GHZ];
1202 	sband->band = NL80211_BAND_2GHZ;
1203 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1204 	sband->n_bitrates = N_RATES_24;
1205 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1206 					  NL80211_BAND_2GHZ);
1207 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1208 			     tx_chains, rx_chains);
1209 
1210 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1211 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1212 				     fw);
1213 
1214 	sband = &data->bands[NL80211_BAND_5GHZ];
1215 	sband->band = NL80211_BAND_5GHZ;
1216 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1217 	sband->n_bitrates = N_RATES_52;
1218 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1219 					  NL80211_BAND_5GHZ);
1220 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1221 			     tx_chains, rx_chains);
1222 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1223 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1224 				      tx_chains, rx_chains);
1225 
1226 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1227 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1228 				     fw);
1229 
1230 	/* 6GHz band. */
1231 	sband = &data->bands[NL80211_BAND_6GHZ];
1232 	sband->band = NL80211_BAND_6GHZ;
1233 	/* use the same rates as 5GHz band */
1234 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1235 	sband->n_bitrates = N_RATES_52;
1236 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1237 					  NL80211_BAND_6GHZ);
1238 
1239 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1240 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1241 				     fw);
1242 	else
1243 		sband->n_channels = 0;
1244 	if (n_channels != n_used)
1245 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1246 			    n_used, n_channels);
1247 }
1248 
iwl_get_sku(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1249 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1250 		       const __le16 *phy_sku)
1251 {
1252 	if (cfg->nvm_type != IWL_NVM_EXT)
1253 		return le16_to_cpup(nvm_sw + SKU);
1254 
1255 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1256 }
1257 
iwl_get_nvm_version(const struct iwl_cfg * cfg,const __le16 * nvm_sw)1258 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1259 {
1260 	if (cfg->nvm_type != IWL_NVM_EXT)
1261 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1262 	else
1263 		return le32_to_cpup((const __le32 *)(nvm_sw +
1264 						     NVM_VERSION_EXT_NVM));
1265 }
1266 
iwl_get_radio_cfg(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1267 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1268 			     const __le16 *phy_sku)
1269 {
1270 	if (cfg->nvm_type != IWL_NVM_EXT)
1271 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1272 
1273 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1274 
1275 }
1276 
iwl_get_n_hw_addrs(const struct iwl_cfg * cfg,const __le16 * nvm_sw)1277 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1278 {
1279 	int n_hw_addr;
1280 
1281 	if (cfg->nvm_type != IWL_NVM_EXT)
1282 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1283 
1284 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1285 
1286 	return n_hw_addr & N_HW_ADDR_MASK;
1287 }
1288 
iwl_set_radio_cfg(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)1289 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1290 			      struct iwl_nvm_data *data,
1291 			      u32 radio_cfg)
1292 {
1293 	if (cfg->nvm_type != IWL_NVM_EXT) {
1294 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1295 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1296 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1297 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1298 		return;
1299 	}
1300 
1301 	/* set the radio configuration for family 8000 */
1302 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1303 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1304 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1305 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1306 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1307 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1308 }
1309 
iwl_flip_hw_address(__le32 mac_addr0,__le32 mac_addr1,u8 * dest)1310 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1311 {
1312 	const u8 *hw_addr;
1313 
1314 	hw_addr = (const u8 *)&mac_addr0;
1315 	dest[0] = hw_addr[3];
1316 	dest[1] = hw_addr[2];
1317 	dest[2] = hw_addr[1];
1318 	dest[3] = hw_addr[0];
1319 
1320 	hw_addr = (const u8 *)&mac_addr1;
1321 	dest[4] = hw_addr[1];
1322 	dest[5] = hw_addr[0];
1323 }
1324 
iwl_set_hw_address_from_csr(struct iwl_trans * trans,struct iwl_nvm_data * data)1325 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1326 					struct iwl_nvm_data *data)
1327 {
1328 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1329 						  CSR_MAC_ADDR0_STRAP(trans)));
1330 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1331 						  CSR_MAC_ADDR1_STRAP(trans)));
1332 
1333 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1334 	/*
1335 	 * If the OEM fused a valid address, use it instead of the one in the
1336 	 * OTP
1337 	 */
1338 	if (is_valid_ether_addr(data->hw_addr))
1339 		return;
1340 
1341 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1342 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1343 
1344 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1345 }
1346 
iwl_set_hw_address_family_8000(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __be16 * nvm_hw)1347 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1348 					   const struct iwl_cfg *cfg,
1349 					   struct iwl_nvm_data *data,
1350 					   const __le16 *mac_override,
1351 					   const __be16 *nvm_hw)
1352 {
1353 	const u8 *hw_addr;
1354 
1355 	if (mac_override) {
1356 		static const u8 reserved_mac[] = {
1357 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1358 		};
1359 
1360 		hw_addr = (const u8 *)(mac_override +
1361 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1362 
1363 		/*
1364 		 * Store the MAC address from MAO section.
1365 		 * No byte swapping is required in MAO section
1366 		 */
1367 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1368 
1369 		/*
1370 		 * Force the use of the OTP MAC address in case of reserved MAC
1371 		 * address in the NVM, or if address is given but invalid.
1372 		 */
1373 		if (is_valid_ether_addr(data->hw_addr) &&
1374 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1375 			return;
1376 
1377 		IWL_ERR(trans,
1378 			"mac address from nvm override section is not valid\n");
1379 	}
1380 
1381 	if (nvm_hw) {
1382 		/* read the mac address from WFMP registers */
1383 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1384 						WFMP_MAC_ADDR_0));
1385 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1386 						WFMP_MAC_ADDR_1));
1387 
1388 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1389 
1390 		return;
1391 	}
1392 
1393 	IWL_ERR(trans, "mac address is not found\n");
1394 }
1395 
iwl_set_hw_address(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __be16 * nvm_hw,const __le16 * mac_override)1396 static int iwl_set_hw_address(struct iwl_trans *trans,
1397 			      const struct iwl_cfg *cfg,
1398 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1399 			      const __le16 *mac_override)
1400 {
1401 	if (cfg->mac_addr_from_csr) {
1402 		iwl_set_hw_address_from_csr(trans, data);
1403 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1404 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1405 
1406 		/* The byte order is little endian 16 bit, meaning 214365 */
1407 		data->hw_addr[0] = hw_addr[1];
1408 		data->hw_addr[1] = hw_addr[0];
1409 		data->hw_addr[2] = hw_addr[3];
1410 		data->hw_addr[3] = hw_addr[2];
1411 		data->hw_addr[4] = hw_addr[5];
1412 		data->hw_addr[5] = hw_addr[4];
1413 	} else {
1414 		iwl_set_hw_address_family_8000(trans, cfg, data,
1415 					       mac_override, nvm_hw);
1416 	}
1417 
1418 	if (!is_valid_ether_addr(data->hw_addr)) {
1419 		IWL_ERR(trans, "no valid mac address was found\n");
1420 		return -EINVAL;
1421 	}
1422 
1423 	if (!trans->csme_own)
1424 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1425 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1426 
1427 	return 0;
1428 }
1429 
1430 static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans * trans,const struct iwl_cfg * cfg,const __be16 * nvm_hw)1431 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1432 			const __be16 *nvm_hw)
1433 {
1434 	/*
1435 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1436 	 * some 7000-family OTPs erroneously allow wide channels in
1437 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1438 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1439 	 * 9.  In those cases, we need to force-disable wide channels
1440 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1441 	 * to use them.
1442 	 */
1443 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1444 		/*
1445 		 * Unlike the other sections in the NVM, the hw
1446 		 * section uses big-endian.
1447 		 */
1448 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1449 		u8 sku = (subsystem_id & 0x1e) >> 1;
1450 
1451 		if (sku == 5 || sku == 9) {
1452 			IWL_DEBUG_EEPROM(trans->dev,
1453 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1454 					 subsystem_id, sku);
1455 			return true;
1456 		}
1457 	}
1458 
1459 	return false;
1460 }
1461 
1462 struct iwl_nvm_data *
iwl_parse_mei_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_mei_nvm * mei_nvm,const struct iwl_fw * fw,u8 tx_ant,u8 rx_ant)1463 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1464 		       const struct iwl_mei_nvm *mei_nvm,
1465 		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1466 {
1467 	struct iwl_nvm_data *data;
1468 	u32 sbands_flags = 0;
1469 	u8 rx_chains = fw->valid_rx_ant;
1470 	u8 tx_chains = fw->valid_rx_ant;
1471 
1472 	if (cfg->uhb_supported)
1473 		data = kzalloc(struct_size(data, channels,
1474 					   IWL_NVM_NUM_CHANNELS_UHB),
1475 					   GFP_KERNEL);
1476 	else
1477 		data = kzalloc(struct_size(data, channels,
1478 					   IWL_NVM_NUM_CHANNELS_EXT),
1479 					   GFP_KERNEL);
1480 	if (!data)
1481 		return NULL;
1482 
1483 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1484 		     IWL_NVM_NUM_CHANNELS_UHB);
1485 	data->nvm_version = mei_nvm->nvm_version;
1486 
1487 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1488 	if (data->valid_tx_ant)
1489 		tx_chains &= data->valid_tx_ant;
1490 	if (data->valid_rx_ant)
1491 		rx_chains &= data->valid_rx_ant;
1492 	if (tx_ant)
1493 		tx_chains &= tx_ant;
1494 	if (rx_ant)
1495 		rx_chains &= rx_ant;
1496 
1497 	data->sku_cap_mimo_disabled = false;
1498 	data->sku_cap_band_24ghz_enable = true;
1499 	data->sku_cap_band_52ghz_enable = true;
1500 	data->sku_cap_11n_enable =
1501 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1502 	data->sku_cap_11ac_enable = true;
1503 	data->sku_cap_11ax_enable =
1504 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1505 
1506 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1507 
1508 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1509 	/* If no valid mac address was found - bail out */
1510 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1511 		kfree(data);
1512 		return NULL;
1513 	}
1514 
1515 	if (data->lar_enabled &&
1516 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1517 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1518 
1519 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1520 			sbands_flags, true, fw);
1521 
1522 	return data;
1523 }
1524 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1525 
1526 struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_fw * fw,const __be16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,const __le16 * phy_sku,u8 tx_chains,u8 rx_chains)1527 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1528 		   const struct iwl_fw *fw,
1529 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1530 		   const __le16 *nvm_calib, const __le16 *regulatory,
1531 		   const __le16 *mac_override, const __le16 *phy_sku,
1532 		   u8 tx_chains, u8 rx_chains)
1533 {
1534 	struct iwl_nvm_data *data;
1535 	bool lar_enabled;
1536 	u32 sku, radio_cfg;
1537 	u32 sbands_flags = 0;
1538 	u16 lar_config;
1539 	const __le16 *ch_section;
1540 
1541 	if (cfg->uhb_supported)
1542 		data = kzalloc(struct_size(data, channels,
1543 					   IWL_NVM_NUM_CHANNELS_UHB),
1544 					   GFP_KERNEL);
1545 	else if (cfg->nvm_type != IWL_NVM_EXT)
1546 		data = kzalloc(struct_size(data, channels,
1547 					   IWL_NVM_NUM_CHANNELS),
1548 					   GFP_KERNEL);
1549 	else
1550 		data = kzalloc(struct_size(data, channels,
1551 					   IWL_NVM_NUM_CHANNELS_EXT),
1552 					   GFP_KERNEL);
1553 	if (!data)
1554 		return NULL;
1555 
1556 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1557 
1558 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1559 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1560 	if (data->valid_tx_ant)
1561 		tx_chains &= data->valid_tx_ant;
1562 	if (data->valid_rx_ant)
1563 		rx_chains &= data->valid_rx_ant;
1564 
1565 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1566 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1567 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1568 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1569 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1570 		data->sku_cap_11n_enable = false;
1571 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1572 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1573 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1574 
1575 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1576 
1577 	if (cfg->nvm_type != IWL_NVM_EXT) {
1578 		/* Checking for required sections */
1579 		if (!nvm_calib) {
1580 			IWL_ERR(trans,
1581 				"Can't parse empty Calib NVM sections\n");
1582 			kfree(data);
1583 			return NULL;
1584 		}
1585 
1586 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1587 			     &regulatory[NVM_CHANNELS_SDP] :
1588 			     &nvm_sw[NVM_CHANNELS];
1589 
1590 		lar_enabled = true;
1591 	} else {
1592 		u16 lar_offset = data->nvm_version < 0xE39 ?
1593 				 NVM_LAR_OFFSET_OLD :
1594 				 NVM_LAR_OFFSET;
1595 
1596 		lar_config = le16_to_cpup(regulatory + lar_offset);
1597 		data->lar_enabled = !!(lar_config &
1598 				       NVM_LAR_ENABLED);
1599 		lar_enabled = data->lar_enabled;
1600 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1601 	}
1602 
1603 	/* If no valid mac address was found - bail out */
1604 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1605 		kfree(data);
1606 		return NULL;
1607 	}
1608 
1609 	if (lar_enabled &&
1610 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1611 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1612 
1613 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1614 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1615 
1616 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1617 			sbands_flags, false, fw);
1618 	data->calib_version = 255;
1619 
1620 	return data;
1621 }
1622 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1623 
iwl_nvm_get_regdom_bw_flags(const u16 * nvm_chan,int ch_idx,u16 nvm_flags,struct iwl_reg_capa reg_capa,const struct iwl_cfg * cfg)1624 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1625 				       int ch_idx, u16 nvm_flags,
1626 				       struct iwl_reg_capa reg_capa,
1627 				       const struct iwl_cfg *cfg)
1628 {
1629 	u32 flags = NL80211_RRF_NO_HT40;
1630 
1631 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1632 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1633 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1634 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1635 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1636 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1637 	} else if (ch_idx < NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS &&
1638 		   nvm_flags & NVM_CHANNEL_40MHZ) {
1639 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1640 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1641 		else
1642 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1643 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1644 		flags &= ~NL80211_RRF_NO_HT40PLUS;
1645 		flags &= ~NL80211_RRF_NO_HT40MINUS;
1646 	}
1647 
1648 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1649 		flags |= NL80211_RRF_NO_80MHZ;
1650 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1651 		flags |= NL80211_RRF_NO_160MHZ;
1652 
1653 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1654 		flags |= NL80211_RRF_NO_IR;
1655 
1656 	if (nvm_flags & NVM_CHANNEL_RADAR)
1657 		flags |= NL80211_RRF_DFS;
1658 
1659 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1660 		flags |= NL80211_RRF_NO_OUTDOOR;
1661 
1662 	/* Set the GO concurrent flag only in case that NO_IR is set.
1663 	 * Otherwise it is meaningless
1664 	 */
1665 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1666 		if (flags & NL80211_RRF_NO_IR)
1667 			flags |= NL80211_RRF_GO_CONCURRENT;
1668 		if (flags & NL80211_RRF_DFS) {
1669 			flags |= NL80211_RRF_DFS_CONCURRENT;
1670 			/* Our device doesn't set active bit for DFS channels
1671 			 * however, once marked as DFS no-ir is not needed.
1672 			 */
1673 			flags &= ~NL80211_RRF_NO_IR;
1674 		}
1675 	}
1676 
1677 	/* Set the AP type for the UHB case. */
1678 	if (nvm_flags & NVM_CHANNEL_VLP)
1679 		flags |= NL80211_RRF_ALLOW_6GHZ_VLP_AP;
1680 	else
1681 		flags |= NL80211_RRF_NO_6GHZ_VLP_CLIENT;
1682 
1683 	if (!(nvm_flags & NVM_CHANNEL_AFC))
1684 		flags |= NL80211_RRF_NO_6GHZ_AFC_CLIENT;
1685 
1686 	/*
1687 	 * reg_capa is per regulatory domain so apply it for every channel
1688 	 */
1689 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1690 		if (!reg_capa.allow_40mhz)
1691 			flags |= NL80211_RRF_NO_HT40;
1692 
1693 		if (!reg_capa.allow_80mhz)
1694 			flags |= NL80211_RRF_NO_80MHZ;
1695 
1696 		if (!reg_capa.allow_160mhz)
1697 			flags |= NL80211_RRF_NO_160MHZ;
1698 
1699 		if (!reg_capa.allow_320mhz)
1700 			flags |= NL80211_RRF_NO_320MHZ;
1701 	}
1702 
1703 	if (reg_capa.disable_11ax)
1704 		flags |= NL80211_RRF_NO_HE;
1705 
1706 	if (reg_capa.disable_11be)
1707 		flags |= NL80211_RRF_NO_EHT;
1708 
1709 	return flags;
1710 }
1711 
iwl_get_reg_capa(u32 flags,u8 resp_ver)1712 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1713 {
1714 	struct iwl_reg_capa reg_capa = {};
1715 
1716 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1717 		reg_capa.allow_40mhz = true;
1718 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1719 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1720 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1721 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1722 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1723 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1724 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1725 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1726 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1727 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1728 	} else {
1729 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1730 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1731 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1732 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1733 	}
1734 	return reg_capa;
1735 }
1736 
1737 struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct device * dev,const struct iwl_cfg * cfg,int num_of_ch,__le32 * channels,u16 fw_mcc,u16 geo_info,u32 cap,u8 resp_ver)1738 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1739 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1740 		       u16 geo_info, u32 cap, u8 resp_ver)
1741 {
1742 	int ch_idx;
1743 	u16 ch_flags;
1744 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1745 	const u16 *nvm_chan;
1746 	struct ieee80211_regdomain *regd, *copy_rd;
1747 	struct ieee80211_reg_rule *rule;
1748 	int center_freq, prev_center_freq = 0;
1749 	int valid_rules = 0;
1750 	bool new_rule;
1751 	int max_num_ch;
1752 	struct iwl_reg_capa reg_capa;
1753 
1754 	if (cfg->uhb_supported) {
1755 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1756 		nvm_chan = iwl_uhb_nvm_channels;
1757 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1758 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1759 		nvm_chan = iwl_ext_nvm_channels;
1760 	} else {
1761 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1762 		nvm_chan = iwl_nvm_channels;
1763 	}
1764 
1765 	if (num_of_ch > max_num_ch) {
1766 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1767 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1768 			      num_of_ch, max_num_ch);
1769 		num_of_ch = max_num_ch;
1770 	}
1771 
1772 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1773 		return ERR_PTR(-EINVAL);
1774 
1775 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1776 		      num_of_ch);
1777 
1778 	/* build a regdomain rule for every valid channel */
1779 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1780 	if (!regd)
1781 		return ERR_PTR(-ENOMEM);
1782 
1783 	/* set alpha2 from FW. */
1784 	regd->alpha2[0] = fw_mcc >> 8;
1785 	regd->alpha2[1] = fw_mcc & 0xff;
1786 
1787 	/* parse regulatory capability flags */
1788 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1789 
1790 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1791 		enum nl80211_band band =
1792 			iwl_nl80211_band_from_channel_idx(ch_idx);
1793 
1794 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1795 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1796 							     band);
1797 		new_rule = false;
1798 
1799 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1800 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1801 						    nvm_chan[ch_idx], ch_flags);
1802 			continue;
1803 		}
1804 
1805 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1806 							     ch_flags, reg_capa,
1807 							     cfg);
1808 
1809 		/* we can't continue the same rule */
1810 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1811 		    center_freq - prev_center_freq > 20) {
1812 			valid_rules++;
1813 			new_rule = true;
1814 		}
1815 
1816 		rule = &regd->reg_rules[valid_rules - 1];
1817 
1818 		if (new_rule)
1819 			rule->freq_range.start_freq_khz =
1820 						MHZ_TO_KHZ(center_freq - 10);
1821 
1822 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1823 
1824 		/* this doesn't matter - not used by FW */
1825 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1826 		rule->power_rule.max_eirp =
1827 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1828 
1829 		rule->flags = reg_rule_flags;
1830 
1831 		/* rely on auto-calculation to merge BW of contiguous chans */
1832 		rule->flags |= NL80211_RRF_AUTO_BW;
1833 		rule->freq_range.max_bandwidth_khz = 0;
1834 
1835 		prev_center_freq = center_freq;
1836 		prev_reg_rule_flags = reg_rule_flags;
1837 
1838 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1839 					    nvm_chan[ch_idx], ch_flags);
1840 
1841 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1842 		    band == NL80211_BAND_2GHZ)
1843 			continue;
1844 
1845 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1846 	}
1847 
1848 	/*
1849 	 * Certain firmware versions might report no valid channels
1850 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1851 	 * running. We'll get out of this situation later when the
1852 	 * rfkill is removed and we update the regdomain again, but
1853 	 * since cfg80211 doesn't accept an empty regdomain, add a
1854 	 * dummy (unusable) rule here in this case so we can init.
1855 	 */
1856 	if (!valid_rules) {
1857 		valid_rules = 1;
1858 		rule = &regd->reg_rules[valid_rules - 1];
1859 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1860 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1861 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1862 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1863 		rule->power_rule.max_eirp =
1864 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1865 	}
1866 
1867 	regd->n_reg_rules = valid_rules;
1868 
1869 	/*
1870 	 * Narrow down regdom for unused regulatory rules to prevent hole
1871 	 * between reg rules to wmm rules.
1872 	 */
1873 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1874 			  GFP_KERNEL);
1875 	if (!copy_rd)
1876 		copy_rd = ERR_PTR(-ENOMEM);
1877 
1878 	kfree(regd);
1879 	return copy_rd;
1880 }
1881 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1882 
1883 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1884 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1885 #define MAX_NVM_FILE_LEN	16384
1886 
iwl_nvm_fixups(u32 hw_id,unsigned int section,u8 * data,unsigned int len)1887 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1888 		    unsigned int len)
1889 {
1890 #define IWL_4165_DEVICE_ID	0x5501
1891 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1892 
1893 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1894 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1895 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1896 		/* OTP 0x52 bug work around: it's a 1x1 device */
1897 		data[3] = ANT_B | (ANT_B << 4);
1898 }
1899 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1900 
1901 /*
1902  * Reads external NVM from a file into mvm->nvm_sections
1903  *
1904  * HOW TO CREATE THE NVM FILE FORMAT:
1905  * ------------------------------
1906  * 1. create hex file, format:
1907  *      3800 -> header
1908  *      0000 -> header
1909  *      5a40 -> data
1910  *
1911  *   rev - 6 bit (word1)
1912  *   len - 10 bit (word1)
1913  *   id - 4 bit (word2)
1914  *   rsv - 12 bit (word2)
1915  *
1916  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1917  *
1918  * 3. create binary file from the hex file
1919  *
1920  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1921  */
iwl_read_external_nvm(struct iwl_trans * trans,const char * nvm_file_name,struct iwl_nvm_section * nvm_sections)1922 int iwl_read_external_nvm(struct iwl_trans *trans,
1923 			  const char *nvm_file_name,
1924 			  struct iwl_nvm_section *nvm_sections)
1925 {
1926 	int ret, section_size;
1927 	u16 section_id;
1928 	const struct firmware *fw_entry;
1929 	const struct {
1930 		__le16 word1;
1931 		__le16 word2;
1932 		u8 data[];
1933 	} *file_sec;
1934 	const u8 *eof;
1935 	u8 *temp;
1936 	int max_section_size;
1937 	const __le32 *dword_buff;
1938 
1939 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1940 #define NVM_WORD2_ID(x) (x >> 12)
1941 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1942 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1943 #define NVM_HEADER_0	(0x2A504C54)
1944 #define NVM_HEADER_1	(0x4E564D2A)
1945 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1946 
1947 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1948 
1949 	/* Maximal size depends on NVM version */
1950 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1951 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1952 	else
1953 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1954 
1955 	/*
1956 	 * Obtain NVM image via request_firmware. Since we already used
1957 	 * request_firmware_nowait() for the firmware binary load and only
1958 	 * get here after that we assume the NVM request can be satisfied
1959 	 * synchronously.
1960 	 */
1961 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1962 	if (ret) {
1963 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1964 			nvm_file_name, ret);
1965 		return ret;
1966 	}
1967 
1968 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1969 		 nvm_file_name, fw_entry->size);
1970 
1971 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1972 		IWL_ERR(trans, "NVM file too large\n");
1973 		ret = -EINVAL;
1974 		goto out;
1975 	}
1976 
1977 	eof = fw_entry->data + fw_entry->size;
1978 	dword_buff = (const __le32 *)fw_entry->data;
1979 
1980 	/* some NVM file will contain a header.
1981 	 * The header is identified by 2 dwords header as follow:
1982 	 * dword[0] = 0x2A504C54
1983 	 * dword[1] = 0x4E564D2A
1984 	 *
1985 	 * This header must be skipped when providing the NVM data to the FW.
1986 	 */
1987 	if (fw_entry->size > NVM_HEADER_SIZE &&
1988 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1989 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1990 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1991 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1992 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1993 			 le32_to_cpu(dword_buff[3]));
1994 
1995 		/* nvm file validation, dword_buff[2] holds the file version */
1996 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1997 		    trans->hw_rev_step == SILICON_C_STEP &&
1998 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1999 			ret = -EFAULT;
2000 			goto out;
2001 		}
2002 	} else {
2003 		file_sec = (const void *)fw_entry->data;
2004 	}
2005 
2006 	while (true) {
2007 		if (file_sec->data > eof) {
2008 			IWL_ERR(trans,
2009 				"ERROR - NVM file too short for section header\n");
2010 			ret = -EINVAL;
2011 			break;
2012 		}
2013 
2014 		/* check for EOF marker */
2015 		if (!file_sec->word1 && !file_sec->word2) {
2016 			ret = 0;
2017 			break;
2018 		}
2019 
2020 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
2021 			section_size =
2022 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
2023 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
2024 		} else {
2025 			section_size = 2 * EXT_NVM_WORD2_LEN(
2026 						le16_to_cpu(file_sec->word2));
2027 			section_id = EXT_NVM_WORD1_ID(
2028 						le16_to_cpu(file_sec->word1));
2029 		}
2030 
2031 		if (section_size > max_section_size) {
2032 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
2033 				section_size);
2034 			ret = -EINVAL;
2035 			break;
2036 		}
2037 
2038 		if (!section_size) {
2039 			IWL_ERR(trans, "ERROR - section empty\n");
2040 			ret = -EINVAL;
2041 			break;
2042 		}
2043 
2044 		if (file_sec->data + section_size > eof) {
2045 			IWL_ERR(trans,
2046 				"ERROR - NVM file too short for section (%d bytes)\n",
2047 				section_size);
2048 			ret = -EINVAL;
2049 			break;
2050 		}
2051 
2052 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
2053 			 "Invalid NVM section ID %d\n", section_id)) {
2054 			ret = -EINVAL;
2055 			break;
2056 		}
2057 
2058 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
2059 		if (!temp) {
2060 			ret = -ENOMEM;
2061 			break;
2062 		}
2063 
2064 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
2065 
2066 		kfree(nvm_sections[section_id].data);
2067 		nvm_sections[section_id].data = temp;
2068 		nvm_sections[section_id].length = section_size;
2069 
2070 		/* advance to the next section */
2071 		file_sec = (const void *)(file_sec->data + section_size);
2072 	}
2073 out:
2074 	release_firmware(fw_entry);
2075 	return ret;
2076 }
2077 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2078 
iwl_get_nvm(struct iwl_trans * trans,const struct iwl_fw * fw,u8 set_tx_ant,u8 set_rx_ant)2079 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2080 				 const struct iwl_fw *fw,
2081 				 u8 set_tx_ant, u8 set_rx_ant)
2082 {
2083 	struct iwl_nvm_get_info cmd = {};
2084 	struct iwl_nvm_data *nvm;
2085 	struct iwl_host_cmd hcmd = {
2086 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2087 		.data = { &cmd, },
2088 		.len = { sizeof(cmd) },
2089 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2090 	};
2091 	int  ret;
2092 	bool empty_otp;
2093 	u32 mac_flags;
2094 	u32 sbands_flags = 0;
2095 	u8 tx_ant;
2096 	u8 rx_ant;
2097 
2098 	/*
2099 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2100 	 * in v3, except for the channel profile part of the
2101 	 * regulatory.  So we can just access the new struct, with the
2102 	 * exception of the latter.
2103 	 */
2104 	struct iwl_nvm_get_info_rsp *rsp;
2105 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2106 	bool v4 = fw_has_api(&fw->ucode_capa,
2107 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2108 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2109 	void *channel_profile;
2110 
2111 	ret = iwl_trans_send_cmd(trans, &hcmd);
2112 	if (ret)
2113 		return ERR_PTR(ret);
2114 
2115 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2116 		 "Invalid payload len in NVM response from FW %d",
2117 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2118 		ret = -EINVAL;
2119 		goto out;
2120 	}
2121 
2122 	rsp = (void *)hcmd.resp_pkt->data;
2123 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2124 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2125 	if (empty_otp)
2126 		IWL_INFO(trans, "OTP is empty\n");
2127 
2128 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2129 	if (!nvm) {
2130 		ret = -ENOMEM;
2131 		goto out;
2132 	}
2133 
2134 	iwl_set_hw_address_from_csr(trans, nvm);
2135 	/* TODO: if platform NVM has MAC address - override it here */
2136 
2137 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2138 		IWL_ERR(trans, "no valid mac address was found\n");
2139 		ret = -EINVAL;
2140 		goto err_free;
2141 	}
2142 
2143 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2144 
2145 	/* Initialize general data */
2146 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2147 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2148 	if (nvm->n_hw_addrs == 0)
2149 		IWL_WARN(trans,
2150 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2151 			 empty_otp);
2152 
2153 	/* Initialize MAC sku data */
2154 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2155 	nvm->sku_cap_11ac_enable =
2156 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2157 	nvm->sku_cap_11n_enable =
2158 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2159 	nvm->sku_cap_11ax_enable =
2160 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2161 	nvm->sku_cap_band_24ghz_enable =
2162 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2163 	nvm->sku_cap_band_52ghz_enable =
2164 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2165 	nvm->sku_cap_mimo_disabled =
2166 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2167 	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) >= IWL_CFG_RF_TYPE_FM)
2168 		nvm->sku_cap_11be_enable = true;
2169 
2170 	/* Initialize PHY sku data */
2171 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2172 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2173 
2174 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2175 	    fw_has_capa(&fw->ucode_capa,
2176 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2177 		nvm->lar_enabled = true;
2178 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2179 	}
2180 
2181 	rsp_v3 = (void *)rsp;
2182 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2183 			  (void *)rsp_v3->regulatory.channel_profile;
2184 
2185 	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2186 	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2187 
2188 	if (set_tx_ant)
2189 		tx_ant &= set_tx_ant;
2190 	if (set_rx_ant)
2191 		rx_ant &= set_rx_ant;
2192 
2193 	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2194 			sbands_flags, v4, fw);
2195 
2196 	iwl_free_resp(&hcmd);
2197 	return nvm;
2198 
2199 err_free:
2200 	kfree(nvm);
2201 out:
2202 	iwl_free_resp(&hcmd);
2203 	return ERR_PTR(ret);
2204 }
2205 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2206