1 /*-
2 * Copyright (c) 2014-2018, Matthew Macy <mmacy@mattmacy.io>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Neither the name of Matthew Macy nor the names of its
12 * contributors may be used to endorse or promote products derived from
13 * this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_acpi.h"
32 #include "opt_sched.h"
33
34 #include <sys/param.h>
35 #include <sys/types.h>
36 #include <sys/bus.h>
37 #include <sys/eventhandler.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/module.h>
42 #include <sys/kobj.h>
43 #include <sys/rman.h>
44 #include <sys/sbuf.h>
45 #include <sys/smp.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/syslog.h>
50 #include <sys/taskqueue.h>
51 #include <sys/limits.h>
52
53 #include <net/if.h>
54 #include <net/if_var.h>
55 #include <net/if_private.h>
56 #include <net/if_types.h>
57 #include <net/if_media.h>
58 #include <net/bpf.h>
59 #include <net/ethernet.h>
60 #include <net/mp_ring.h>
61 #include <net/debugnet.h>
62 #include <net/pfil.h>
63 #include <net/vnet.h>
64
65 #include <netinet/in.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/tcp_lro.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/ip.h>
71 #include <netinet/ip6.h>
72 #include <netinet/tcp.h>
73 #include <netinet/ip_var.h>
74 #include <netinet6/ip6_var.h>
75
76 #include <machine/bus.h>
77 #include <machine/in_cksum.h>
78
79 #include <vm/vm.h>
80 #include <vm/pmap.h>
81
82 #include <dev/led/led.h>
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/pci_private.h>
86
87 #include <net/iflib.h>
88
89 #include "ifdi_if.h"
90
91 #ifdef PCI_IOV
92 #include <dev/pci/pci_iov.h>
93 #endif
94
95 #include <sys/bitstring.h>
96 /*
97 * enable accounting of every mbuf as it comes in to and goes out of
98 * iflib's software descriptor references
99 */
100 #define MEMORY_LOGGING 0
101 /*
102 * Enable mbuf vectors for compressing long mbuf chains
103 */
104
105 /*
106 * NB:
107 * - Prefetching in tx cleaning should perhaps be a tunable. The distance ahead
108 * we prefetch needs to be determined by the time spent in m_free vis a vis
109 * the cost of a prefetch. This will of course vary based on the workload:
110 * - NFLX's m_free path is dominated by vm-based M_EXT manipulation which
111 * is quite expensive, thus suggesting very little prefetch.
112 * - small packet forwarding which is just returning a single mbuf to
113 * UMA will typically be very fast vis a vis the cost of a memory
114 * access.
115 */
116
117 /*
118 * File organization:
119 * - private structures
120 * - iflib private utility functions
121 * - ifnet functions
122 * - vlan registry and other exported functions
123 * - iflib public core functions
124 *
125 *
126 */
127 static MALLOC_DEFINE(M_IFLIB, "iflib", "ifnet library");
128
129 #define IFLIB_RXEOF_MORE (1U << 0)
130 #define IFLIB_RXEOF_EMPTY (2U << 0)
131
132 struct iflib_txq;
133 typedef struct iflib_txq *iflib_txq_t;
134 struct iflib_rxq;
135 typedef struct iflib_rxq *iflib_rxq_t;
136 struct iflib_fl;
137 typedef struct iflib_fl *iflib_fl_t;
138
139 struct iflib_ctx;
140
141 static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid);
142 static void iflib_timer(void *arg);
143 static void iflib_tqg_detach(if_ctx_t ctx);
144
145 typedef struct iflib_filter_info {
146 driver_filter_t *ifi_filter;
147 void *ifi_filter_arg;
148 struct grouptask *ifi_task;
149 void *ifi_ctx;
150 } *iflib_filter_info_t;
151
152 struct iflib_ctx {
153 KOBJ_FIELDS;
154 /*
155 * Pointer to hardware driver's softc
156 */
157 void *ifc_softc;
158 device_t ifc_dev;
159 if_t ifc_ifp;
160
161 cpuset_t ifc_cpus;
162 if_shared_ctx_t ifc_sctx;
163 struct if_softc_ctx ifc_softc_ctx;
164
165 struct sx ifc_ctx_sx;
166 struct mtx ifc_state_mtx;
167
168 iflib_txq_t ifc_txqs;
169 iflib_rxq_t ifc_rxqs;
170 uint32_t ifc_if_flags;
171 uint32_t ifc_flags;
172 uint32_t ifc_max_fl_buf_size;
173 uint32_t ifc_rx_mbuf_sz;
174
175 int ifc_link_state;
176 int ifc_watchdog_events;
177 struct cdev *ifc_led_dev;
178 struct resource *ifc_msix_mem;
179
180 struct if_irq ifc_legacy_irq;
181 struct grouptask ifc_admin_task;
182 struct grouptask ifc_vflr_task;
183 struct iflib_filter_info ifc_filter_info;
184 struct ifmedia ifc_media;
185 struct ifmedia *ifc_mediap;
186
187 struct sysctl_oid *ifc_sysctl_node;
188 uint16_t ifc_sysctl_ntxqs;
189 uint16_t ifc_sysctl_nrxqs;
190 uint16_t ifc_sysctl_qs_eq_override;
191 uint16_t ifc_sysctl_rx_budget;
192 uint16_t ifc_sysctl_tx_abdicate;
193 uint16_t ifc_sysctl_core_offset;
194 #define CORE_OFFSET_UNSPECIFIED 0xffff
195 uint8_t ifc_sysctl_separate_txrx;
196 uint8_t ifc_sysctl_use_logical_cores;
197 uint16_t ifc_sysctl_extra_msix_vectors;
198 bool ifc_cpus_are_physical_cores;
199
200 qidx_t ifc_sysctl_ntxds[8];
201 qidx_t ifc_sysctl_nrxds[8];
202 struct if_txrx ifc_txrx;
203 #define isc_txd_encap ifc_txrx.ift_txd_encap
204 #define isc_txd_flush ifc_txrx.ift_txd_flush
205 #define isc_txd_credits_update ifc_txrx.ift_txd_credits_update
206 #define isc_rxd_available ifc_txrx.ift_rxd_available
207 #define isc_rxd_pkt_get ifc_txrx.ift_rxd_pkt_get
208 #define isc_rxd_refill ifc_txrx.ift_rxd_refill
209 #define isc_rxd_flush ifc_txrx.ift_rxd_flush
210 #define isc_legacy_intr ifc_txrx.ift_legacy_intr
211 #define isc_txq_select ifc_txrx.ift_txq_select
212 #define isc_txq_select_v2 ifc_txrx.ift_txq_select_v2
213
214 eventhandler_tag ifc_vlan_attach_event;
215 eventhandler_tag ifc_vlan_detach_event;
216 struct ether_addr ifc_mac;
217 };
218
219 void *
iflib_get_softc(if_ctx_t ctx)220 iflib_get_softc(if_ctx_t ctx)
221 {
222
223 return (ctx->ifc_softc);
224 }
225
226 device_t
iflib_get_dev(if_ctx_t ctx)227 iflib_get_dev(if_ctx_t ctx)
228 {
229
230 return (ctx->ifc_dev);
231 }
232
233 if_t
iflib_get_ifp(if_ctx_t ctx)234 iflib_get_ifp(if_ctx_t ctx)
235 {
236
237 return (ctx->ifc_ifp);
238 }
239
240 struct ifmedia *
iflib_get_media(if_ctx_t ctx)241 iflib_get_media(if_ctx_t ctx)
242 {
243
244 return (ctx->ifc_mediap);
245 }
246
247 void
iflib_set_mac(if_ctx_t ctx,uint8_t mac[ETHER_ADDR_LEN])248 iflib_set_mac(if_ctx_t ctx, uint8_t mac[ETHER_ADDR_LEN])
249 {
250
251 bcopy(mac, ctx->ifc_mac.octet, ETHER_ADDR_LEN);
252 }
253
254 if_softc_ctx_t
iflib_get_softc_ctx(if_ctx_t ctx)255 iflib_get_softc_ctx(if_ctx_t ctx)
256 {
257
258 return (&ctx->ifc_softc_ctx);
259 }
260
261 if_shared_ctx_t
iflib_get_sctx(if_ctx_t ctx)262 iflib_get_sctx(if_ctx_t ctx)
263 {
264
265 return (ctx->ifc_sctx);
266 }
267
268 uint16_t
iflib_get_extra_msix_vectors_sysctl(if_ctx_t ctx)269 iflib_get_extra_msix_vectors_sysctl(if_ctx_t ctx)
270 {
271
272 return (ctx->ifc_sysctl_extra_msix_vectors);
273 }
274
275 #define IP_ALIGNED(m) ((((uintptr_t)(m)->m_data) & 0x3) == 0x2)
276 #define CACHE_PTR_INCREMENT (CACHE_LINE_SIZE / sizeof(void *))
277 #define CACHE_PTR_NEXT(ptr) ((void *)(((uintptr_t)(ptr) + CACHE_LINE_SIZE - 1) & (CACHE_LINE_SIZE - 1)))
278
279 #define LINK_ACTIVE(ctx) ((ctx)->ifc_link_state == LINK_STATE_UP)
280 #define CTX_IS_VF(ctx) ((ctx)->ifc_sctx->isc_flags & IFLIB_IS_VF)
281
282 typedef struct iflib_sw_rx_desc_array {
283 bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */
284 struct mbuf **ifsd_m; /* pkthdr mbufs */
285 caddr_t *ifsd_cl; /* direct cluster pointer for rx */
286 bus_addr_t *ifsd_ba; /* bus addr of cluster for rx */
287 } iflib_rxsd_array_t;
288
289 typedef struct iflib_sw_tx_desc_array {
290 bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */
291 bus_dmamap_t *ifsd_tso_map; /* bus_dma maps for TSO packet */
292 struct mbuf **ifsd_m; /* pkthdr mbufs */
293 } if_txsd_vec_t;
294
295 /* magic number that should be high enough for any hardware */
296 #define IFLIB_MAX_TX_SEGS 128
297 #define IFLIB_RX_COPY_THRESH 128
298 #define IFLIB_MAX_RX_REFRESH 32
299 /* The minimum descriptors per second before we start coalescing */
300 #define IFLIB_MIN_DESC_SEC 16384
301 #define IFLIB_DEFAULT_TX_UPDATE_FREQ 16
302 #define IFLIB_QUEUE_IDLE 0
303 #define IFLIB_QUEUE_HUNG 1
304 #define IFLIB_QUEUE_WORKING 2
305 /* maximum number of txqs that can share an rx interrupt */
306 #define IFLIB_MAX_TX_SHARED_INTR 4
307
308 /* this should really scale with ring size - this is a fairly arbitrary value */
309 #define TX_BATCH_SIZE 32
310
311 #define IFLIB_RESTART_BUDGET 8
312
313 #define IFC_LEGACY 0x001
314 #define IFC_QFLUSH 0x002
315 #define IFC_MULTISEG 0x004
316 #define IFC_SPARE1 0x008
317 #define IFC_SC_ALLOCATED 0x010
318 #define IFC_INIT_DONE 0x020
319 #define IFC_PREFETCH 0x040
320 #define IFC_DO_RESET 0x080
321 #define IFC_DO_WATCHDOG 0x100
322 #define IFC_SPARE0 0x200
323 #define IFC_SPARE2 0x400
324 #define IFC_IN_DETACH 0x800
325
326 #define IFC_NETMAP_TX_IRQ 0x80000000
327
328 #define CSUM_OFFLOAD (CSUM_IP_TSO | CSUM_IP6_TSO | CSUM_IP | \
329 CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \
330 CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP)
331
332 struct iflib_txq {
333 qidx_t ift_in_use;
334 qidx_t ift_cidx;
335 qidx_t ift_cidx_processed;
336 qidx_t ift_pidx;
337 uint8_t ift_gen;
338 uint8_t ift_br_offset;
339 uint16_t ift_npending;
340 uint16_t ift_db_pending;
341 uint16_t ift_rs_pending;
342 /* implicit pad */
343 uint8_t ift_txd_size[8];
344 uint64_t ift_processed;
345 uint64_t ift_cleaned;
346 uint64_t ift_cleaned_prev;
347 #if MEMORY_LOGGING
348 uint64_t ift_enqueued;
349 uint64_t ift_dequeued;
350 #endif
351 uint64_t ift_no_tx_dma_setup;
352 uint64_t ift_no_desc_avail;
353 uint64_t ift_mbuf_defrag_failed;
354 uint64_t ift_mbuf_defrag;
355 uint64_t ift_map_failed;
356 uint64_t ift_txd_encap_efbig;
357 uint64_t ift_pullups;
358 uint64_t ift_last_timer_tick;
359
360 struct mtx ift_mtx;
361 struct mtx ift_db_mtx;
362
363 /* constant values */
364 if_ctx_t ift_ctx;
365 struct ifmp_ring *ift_br;
366 struct grouptask ift_task;
367 qidx_t ift_size;
368 uint16_t ift_id;
369 struct callout ift_timer;
370 #ifdef DEV_NETMAP
371 struct callout ift_netmap_timer;
372 #endif /* DEV_NETMAP */
373
374 if_txsd_vec_t ift_sds;
375 uint8_t ift_qstatus;
376 uint8_t ift_closed;
377 uint8_t ift_update_freq;
378 struct iflib_filter_info ift_filter_info;
379 bus_dma_tag_t ift_buf_tag;
380 bus_dma_tag_t ift_tso_buf_tag;
381 iflib_dma_info_t ift_ifdi;
382 #define MTX_NAME_LEN 32
383 char ift_mtx_name[MTX_NAME_LEN];
384 bus_dma_segment_t ift_segs[IFLIB_MAX_TX_SEGS] __aligned(CACHE_LINE_SIZE);
385 #ifdef IFLIB_DIAGNOSTICS
386 uint64_t ift_cpu_exec_count[256];
387 #endif
388 } __aligned(CACHE_LINE_SIZE);
389
390 struct iflib_fl {
391 qidx_t ifl_cidx;
392 qidx_t ifl_pidx;
393 qidx_t ifl_credits;
394 uint8_t ifl_gen;
395 uint8_t ifl_rxd_size;
396 #if MEMORY_LOGGING
397 uint64_t ifl_m_enqueued;
398 uint64_t ifl_m_dequeued;
399 uint64_t ifl_cl_enqueued;
400 uint64_t ifl_cl_dequeued;
401 #endif
402 /* implicit pad */
403 bitstr_t *ifl_rx_bitmap;
404 qidx_t ifl_fragidx;
405 /* constant */
406 qidx_t ifl_size;
407 uint16_t ifl_buf_size;
408 uint16_t ifl_cltype;
409 uma_zone_t ifl_zone;
410 iflib_rxsd_array_t ifl_sds;
411 iflib_rxq_t ifl_rxq;
412 uint8_t ifl_id;
413 bus_dma_tag_t ifl_buf_tag;
414 iflib_dma_info_t ifl_ifdi;
415 uint64_t ifl_bus_addrs[IFLIB_MAX_RX_REFRESH] __aligned(CACHE_LINE_SIZE);
416 qidx_t ifl_rxd_idxs[IFLIB_MAX_RX_REFRESH];
417 } __aligned(CACHE_LINE_SIZE);
418
419 static inline qidx_t
get_inuse(int size,qidx_t cidx,qidx_t pidx,uint8_t gen)420 get_inuse(int size, qidx_t cidx, qidx_t pidx, uint8_t gen)
421 {
422 qidx_t used;
423
424 if (pidx > cidx)
425 used = pidx - cidx;
426 else if (pidx < cidx)
427 used = size - cidx + pidx;
428 else if (gen == 0 && pidx == cidx)
429 used = 0;
430 else if (gen == 1 && pidx == cidx)
431 used = size;
432 else
433 panic("bad state");
434
435 return (used);
436 }
437
438 #define TXQ_AVAIL(txq) (txq->ift_size - get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen))
439
440 #define IDXDIFF(head, tail, wrap) \
441 ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
442
443 struct iflib_rxq {
444 if_ctx_t ifr_ctx;
445 iflib_fl_t ifr_fl;
446 uint64_t ifr_rx_irq;
447 struct pfil_head *pfil;
448 /*
449 * If there is a separate completion queue (IFLIB_HAS_RXCQ), this is
450 * the completion queue consumer index. Otherwise it's unused.
451 */
452 qidx_t ifr_cq_cidx;
453 uint16_t ifr_id;
454 uint8_t ifr_nfl;
455 uint8_t ifr_ntxqirq;
456 uint8_t ifr_txqid[IFLIB_MAX_TX_SHARED_INTR];
457 uint8_t ifr_fl_offset;
458 struct lro_ctrl ifr_lc;
459 struct grouptask ifr_task;
460 struct callout ifr_watchdog;
461 struct iflib_filter_info ifr_filter_info;
462 iflib_dma_info_t ifr_ifdi;
463
464 /* dynamically allocate if any drivers need a value substantially larger than this */
465 struct if_rxd_frag ifr_frags[IFLIB_MAX_RX_SEGS] __aligned(CACHE_LINE_SIZE);
466 #ifdef IFLIB_DIAGNOSTICS
467 uint64_t ifr_cpu_exec_count[256];
468 #endif
469 } __aligned(CACHE_LINE_SIZE);
470
471 typedef struct if_rxsd {
472 caddr_t *ifsd_cl;
473 iflib_fl_t ifsd_fl;
474 } *if_rxsd_t;
475
476 /* multiple of word size */
477 #ifdef __LP64__
478 #define PKT_INFO_SIZE 6
479 #define RXD_INFO_SIZE 5
480 #define PKT_TYPE uint64_t
481 #else
482 #define PKT_INFO_SIZE 11
483 #define RXD_INFO_SIZE 8
484 #define PKT_TYPE uint32_t
485 #endif
486 #define PKT_LOOP_BOUND ((PKT_INFO_SIZE / 3) * 3)
487 #define RXD_LOOP_BOUND ((RXD_INFO_SIZE / 4) * 4)
488
489 typedef struct if_pkt_info_pad {
490 PKT_TYPE pkt_val[PKT_INFO_SIZE];
491 } *if_pkt_info_pad_t;
492 typedef struct if_rxd_info_pad {
493 PKT_TYPE rxd_val[RXD_INFO_SIZE];
494 } *if_rxd_info_pad_t;
495
496 CTASSERT(sizeof(struct if_pkt_info_pad) == sizeof(struct if_pkt_info));
497 CTASSERT(sizeof(struct if_rxd_info_pad) == sizeof(struct if_rxd_info));
498
499 static inline void
pkt_info_zero(if_pkt_info_t pi)500 pkt_info_zero(if_pkt_info_t pi)
501 {
502 if_pkt_info_pad_t pi_pad;
503
504 pi_pad = (if_pkt_info_pad_t)pi;
505 pi_pad->pkt_val[0] = 0; pi_pad->pkt_val[1] = 0; pi_pad->pkt_val[2] = 0;
506 pi_pad->pkt_val[3] = 0; pi_pad->pkt_val[4] = 0; pi_pad->pkt_val[5] = 0;
507 #ifndef __LP64__
508 pi_pad->pkt_val[6] = 0; pi_pad->pkt_val[7] = 0; pi_pad->pkt_val[8] = 0;
509 pi_pad->pkt_val[9] = 0; pi_pad->pkt_val[10] = 0;
510 #endif
511 }
512
513 static inline void
rxd_info_zero(if_rxd_info_t ri)514 rxd_info_zero(if_rxd_info_t ri)
515 {
516 if_rxd_info_pad_t ri_pad;
517 int i;
518
519 ri_pad = (if_rxd_info_pad_t)ri;
520 for (i = 0; i < RXD_LOOP_BOUND; i += 4) {
521 ri_pad->rxd_val[i] = 0;
522 ri_pad->rxd_val[i + 1] = 0;
523 ri_pad->rxd_val[i + 2] = 0;
524 ri_pad->rxd_val[i + 3] = 0;
525 }
526 #ifdef __LP64__
527 ri_pad->rxd_val[RXD_INFO_SIZE - 1] = 0;
528 #endif
529 }
530
531 /*
532 * Only allow a single packet to take up most 1/nth of the tx ring
533 */
534 #define MAX_SINGLE_PACKET_FRACTION 12
535 #define IF_BAD_DMA ((bus_addr_t)-1)
536
537 #define CTX_ACTIVE(ctx) ((if_getdrvflags((ctx)->ifc_ifp) & IFF_DRV_RUNNING))
538
539 #define CTX_LOCK_INIT(_sc) sx_init(&(_sc)->ifc_ctx_sx, "iflib ctx lock")
540 #define CTX_LOCK(ctx) sx_xlock(&(ctx)->ifc_ctx_sx)
541 #define CTX_UNLOCK(ctx) sx_xunlock(&(ctx)->ifc_ctx_sx)
542 #define CTX_LOCK_DESTROY(ctx) sx_destroy(&(ctx)->ifc_ctx_sx)
543
544 #define STATE_LOCK_INIT(_sc, _name) mtx_init(&(_sc)->ifc_state_mtx, _name, "iflib state lock", MTX_DEF)
545 #define STATE_LOCK(ctx) mtx_lock(&(ctx)->ifc_state_mtx)
546 #define STATE_UNLOCK(ctx) mtx_unlock(&(ctx)->ifc_state_mtx)
547 #define STATE_LOCK_DESTROY(ctx) mtx_destroy(&(ctx)->ifc_state_mtx)
548
549 #define CALLOUT_LOCK(txq) mtx_lock(&txq->ift_mtx)
550 #define CALLOUT_UNLOCK(txq) mtx_unlock(&txq->ift_mtx)
551
552 /* Our boot-time initialization hook */
553 static int iflib_module_event_handler(module_t, int, void *);
554
555 static moduledata_t iflib_moduledata = {
556 "iflib",
557 iflib_module_event_handler,
558 NULL
559 };
560
561 DECLARE_MODULE(iflib, iflib_moduledata, SI_SUB_INIT_IF, SI_ORDER_ANY);
562 MODULE_VERSION(iflib, 1);
563
564 MODULE_DEPEND(iflib, pci, 1, 1, 1);
565 MODULE_DEPEND(iflib, ether, 1, 1, 1);
566
567 TASKQGROUP_DEFINE(if_io_tqg, mp_ncpus, 1);
568 TASKQGROUP_DEFINE(if_config_tqg, 1, 1);
569
570 #ifndef IFLIB_DEBUG_COUNTERS
571 #ifdef INVARIANTS
572 #define IFLIB_DEBUG_COUNTERS 1
573 #else
574 #define IFLIB_DEBUG_COUNTERS 0
575 #endif /* !INVARIANTS */
576 #endif
577
578 static SYSCTL_NODE(_net, OID_AUTO, iflib, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
579 "iflib driver parameters");
580
581 /*
582 * XXX need to ensure that this can't accidentally cause the head to be moved backwards
583 */
584 static int iflib_min_tx_latency = 0;
585 SYSCTL_INT(_net_iflib, OID_AUTO, min_tx_latency, CTLFLAG_RW,
586 &iflib_min_tx_latency, 0,
587 "minimize transmit latency at the possible expense of throughput");
588 static int iflib_no_tx_batch = 0;
589 SYSCTL_INT(_net_iflib, OID_AUTO, no_tx_batch, CTLFLAG_RW,
590 &iflib_no_tx_batch, 0,
591 "minimize transmit latency at the possible expense of throughput");
592 static int iflib_timer_default = 1000;
593 SYSCTL_INT(_net_iflib, OID_AUTO, timer_default, CTLFLAG_RW,
594 &iflib_timer_default, 0, "number of ticks between iflib_timer calls");
595
596
597 #if IFLIB_DEBUG_COUNTERS
598
599 static int iflib_tx_seen;
600 static int iflib_tx_sent;
601 static int iflib_tx_encap;
602 static int iflib_rx_allocs;
603 static int iflib_fl_refills;
604 static int iflib_fl_refills_large;
605 static int iflib_tx_frees;
606
607 SYSCTL_INT(_net_iflib, OID_AUTO, tx_seen, CTLFLAG_RD, &iflib_tx_seen, 0,
608 "# TX mbufs seen");
609 SYSCTL_INT(_net_iflib, OID_AUTO, tx_sent, CTLFLAG_RD, &iflib_tx_sent, 0,
610 "# TX mbufs sent");
611 SYSCTL_INT(_net_iflib, OID_AUTO, tx_encap, CTLFLAG_RD, &iflib_tx_encap, 0,
612 "# TX mbufs encapped");
613 SYSCTL_INT(_net_iflib, OID_AUTO, tx_frees, CTLFLAG_RD, &iflib_tx_frees, 0,
614 "# TX frees");
615 SYSCTL_INT(_net_iflib, OID_AUTO, rx_allocs, CTLFLAG_RD, &iflib_rx_allocs, 0,
616 "# RX allocations");
617 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills, CTLFLAG_RD, &iflib_fl_refills, 0,
618 "# refills");
619 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills_large, CTLFLAG_RD,
620 &iflib_fl_refills_large, 0, "# large refills");
621
622 static int iflib_txq_drain_flushing;
623 static int iflib_txq_drain_oactive;
624 static int iflib_txq_drain_notready;
625
626 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_flushing, CTLFLAG_RD,
627 &iflib_txq_drain_flushing, 0, "# drain flushes");
628 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_oactive, CTLFLAG_RD,
629 &iflib_txq_drain_oactive, 0, "# drain oactives");
630 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_notready, CTLFLAG_RD,
631 &iflib_txq_drain_notready, 0, "# drain notready");
632
633 static int iflib_encap_load_mbuf_fail;
634 static int iflib_encap_pad_mbuf_fail;
635 static int iflib_encap_txq_avail_fail;
636 static int iflib_encap_txd_encap_fail;
637
638 SYSCTL_INT(_net_iflib, OID_AUTO, encap_load_mbuf_fail, CTLFLAG_RD,
639 &iflib_encap_load_mbuf_fail, 0, "# busdma load failures");
640 SYSCTL_INT(_net_iflib, OID_AUTO, encap_pad_mbuf_fail, CTLFLAG_RD,
641 &iflib_encap_pad_mbuf_fail, 0, "# runt frame pad failures");
642 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txq_avail_fail, CTLFLAG_RD,
643 &iflib_encap_txq_avail_fail, 0, "# txq avail failures");
644 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txd_encap_fail, CTLFLAG_RD,
645 &iflib_encap_txd_encap_fail, 0, "# driver encap failures");
646
647 static int iflib_task_fn_rxs;
648 static int iflib_rx_intr_enables;
649 static int iflib_fast_intrs;
650 static int iflib_rx_unavail;
651 static int iflib_rx_ctx_inactive;
652 static int iflib_rx_if_input;
653 static int iflib_rxd_flush;
654
655 static int iflib_verbose_debug;
656
657 SYSCTL_INT(_net_iflib, OID_AUTO, task_fn_rx, CTLFLAG_RD, &iflib_task_fn_rxs, 0,
658 "# task_fn_rx calls");
659 SYSCTL_INT(_net_iflib, OID_AUTO, rx_intr_enables, CTLFLAG_RD,
660 &iflib_rx_intr_enables, 0, "# RX intr enables");
661 SYSCTL_INT(_net_iflib, OID_AUTO, fast_intrs, CTLFLAG_RD, &iflib_fast_intrs, 0,
662 "# fast_intr calls");
663 SYSCTL_INT(_net_iflib, OID_AUTO, rx_unavail, CTLFLAG_RD, &iflib_rx_unavail, 0,
664 "# times rxeof called with no available data");
665 SYSCTL_INT(_net_iflib, OID_AUTO, rx_ctx_inactive, CTLFLAG_RD,
666 &iflib_rx_ctx_inactive, 0, "# times rxeof called with inactive context");
667 SYSCTL_INT(_net_iflib, OID_AUTO, rx_if_input, CTLFLAG_RD, &iflib_rx_if_input,
668 0, "# times rxeof called if_input");
669 SYSCTL_INT(_net_iflib, OID_AUTO, rxd_flush, CTLFLAG_RD, &iflib_rxd_flush, 0,
670 "# times rxd_flush called");
671 SYSCTL_INT(_net_iflib, OID_AUTO, verbose_debug, CTLFLAG_RW,
672 &iflib_verbose_debug, 0, "enable verbose debugging");
673
674 #define DBG_COUNTER_INC(name) atomic_add_int(&(iflib_ ## name), 1)
675 static void
iflib_debug_reset(void)676 iflib_debug_reset(void)
677 {
678 iflib_tx_seen = iflib_tx_sent = iflib_tx_encap = iflib_rx_allocs =
679 iflib_fl_refills = iflib_fl_refills_large = iflib_tx_frees =
680 iflib_txq_drain_flushing = iflib_txq_drain_oactive =
681 iflib_txq_drain_notready =
682 iflib_encap_load_mbuf_fail = iflib_encap_pad_mbuf_fail =
683 iflib_encap_txq_avail_fail = iflib_encap_txd_encap_fail =
684 iflib_task_fn_rxs = iflib_rx_intr_enables = iflib_fast_intrs =
685 iflib_rx_unavail =
686 iflib_rx_ctx_inactive = iflib_rx_if_input =
687 iflib_rxd_flush = 0;
688 }
689
690 #else
691 #define DBG_COUNTER_INC(name)
iflib_debug_reset(void)692 static void iflib_debug_reset(void) {}
693 #endif
694
695 #define IFLIB_DEBUG 0
696
697 static void iflib_tx_structures_free(if_ctx_t ctx);
698 static void iflib_rx_structures_free(if_ctx_t ctx);
699 static int iflib_queues_alloc(if_ctx_t ctx);
700 static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq);
701 static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget);
702 static int iflib_qset_structures_setup(if_ctx_t ctx);
703 static int iflib_msix_init(if_ctx_t ctx);
704 static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filterarg, int *rid, const char *str);
705 static void iflib_txq_check_drain(iflib_txq_t txq, int budget);
706 static uint32_t iflib_txq_can_drain(struct ifmp_ring *);
707 #ifdef ALTQ
708 static void iflib_altq_if_start(if_t ifp);
709 static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m);
710 #endif
711 static int iflib_register(if_ctx_t);
712 static void iflib_deregister(if_ctx_t);
713 static void iflib_unregister_vlan_handlers(if_ctx_t ctx);
714 static uint16_t iflib_get_mbuf_size_for(unsigned int size);
715 static void iflib_init_locked(if_ctx_t ctx);
716 static void iflib_add_device_sysctl_pre(if_ctx_t ctx);
717 static void iflib_add_device_sysctl_post(if_ctx_t ctx);
718 static void iflib_ifmp_purge(iflib_txq_t txq);
719 static void _iflib_pre_assert(if_softc_ctx_t scctx);
720 static void iflib_stop(if_ctx_t ctx);
721 static void iflib_if_init_locked(if_ctx_t ctx);
722 static void iflib_free_intr_mem(if_ctx_t ctx);
723 #ifndef __NO_STRICT_ALIGNMENT
724 static struct mbuf *iflib_fixup_rx(struct mbuf *m);
725 #endif
726
727 static SLIST_HEAD(cpu_offset_list, cpu_offset) cpu_offsets =
728 SLIST_HEAD_INITIALIZER(cpu_offsets);
729 struct cpu_offset {
730 SLIST_ENTRY(cpu_offset) entries;
731 cpuset_t set;
732 unsigned int refcount;
733 uint16_t next_cpuid;
734 };
735 static struct mtx cpu_offset_mtx;
736 MTX_SYSINIT(iflib_cpu_offset, &cpu_offset_mtx, "iflib_cpu_offset lock",
737 MTX_DEF);
738
739 DEBUGNET_DEFINE(iflib);
740
741 static int
iflib_num_rx_descs(if_ctx_t ctx)742 iflib_num_rx_descs(if_ctx_t ctx)
743 {
744 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
745 if_shared_ctx_t sctx = ctx->ifc_sctx;
746 uint16_t first_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0;
747
748 return (scctx->isc_nrxd[first_rxq]);
749 }
750
751 static int
iflib_num_tx_descs(if_ctx_t ctx)752 iflib_num_tx_descs(if_ctx_t ctx)
753 {
754 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
755 if_shared_ctx_t sctx = ctx->ifc_sctx;
756 uint16_t first_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0;
757
758 return (scctx->isc_ntxd[first_txq]);
759 }
760
761 #ifdef DEV_NETMAP
762 #include <sys/selinfo.h>
763 #include <net/netmap.h>
764 #include <dev/netmap/netmap_kern.h>
765
766 MODULE_DEPEND(iflib, netmap, 1, 1, 1);
767
768 static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init);
769 static void iflib_netmap_timer(void *arg);
770
771 /*
772 * device-specific sysctl variables:
773 *
774 * iflib_crcstrip: 0: keep CRC in rx frames (default), 1: strip it.
775 * During regular operations the CRC is stripped, but on some
776 * hardware reception of frames not multiple of 64 is slower,
777 * so using crcstrip=0 helps in benchmarks.
778 *
779 * iflib_rx_miss, iflib_rx_miss_bufs:
780 * count packets that might be missed due to lost interrupts.
781 */
782 SYSCTL_DECL(_dev_netmap);
783 /*
784 * The xl driver by default strips CRCs and we do not override it.
785 */
786
787 int iflib_crcstrip = 1;
788 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_crcstrip,
789 CTLFLAG_RW, &iflib_crcstrip, 1, "strip CRC on RX frames");
790
791 int iflib_rx_miss, iflib_rx_miss_bufs;
792 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss,
793 CTLFLAG_RW, &iflib_rx_miss, 0, "potentially missed RX intr");
794 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss_bufs,
795 CTLFLAG_RW, &iflib_rx_miss_bufs, 0, "potentially missed RX intr bufs");
796
797 /*
798 * Register/unregister. We are already under netmap lock.
799 * Only called on the first register or the last unregister.
800 */
801 static int
iflib_netmap_register(struct netmap_adapter * na,int onoff)802 iflib_netmap_register(struct netmap_adapter *na, int onoff)
803 {
804 if_t ifp = na->ifp;
805 if_ctx_t ctx = if_getsoftc(ifp);
806 int status;
807
808 CTX_LOCK(ctx);
809 if (!CTX_IS_VF(ctx))
810 IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip);
811
812 iflib_stop(ctx);
813
814 /*
815 * Enable (or disable) netmap flags, and intercept (or restore)
816 * ifp->if_transmit. This is done once the device has been stopped
817 * to prevent race conditions. Also, this must be done after
818 * calling netmap_disable_all_rings() and before calling
819 * netmap_enable_all_rings(), so that these two functions see the
820 * updated state of the NAF_NETMAP_ON bit.
821 */
822 if (onoff) {
823 nm_set_native_flags(na);
824 } else {
825 nm_clear_native_flags(na);
826 }
827
828 iflib_init_locked(ctx);
829 IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); // XXX why twice ?
830 status = if_getdrvflags(ifp) & IFF_DRV_RUNNING ? 0 : 1;
831 if (status)
832 nm_clear_native_flags(na);
833 CTX_UNLOCK(ctx);
834 return (status);
835 }
836
837 static int
iflib_netmap_config(struct netmap_adapter * na,struct nm_config_info * info)838 iflib_netmap_config(struct netmap_adapter *na, struct nm_config_info *info)
839 {
840 if_t ifp = na->ifp;
841 if_ctx_t ctx = if_getsoftc(ifp);
842 iflib_rxq_t rxq = &ctx->ifc_rxqs[0];
843 iflib_fl_t fl = &rxq->ifr_fl[0];
844
845 info->num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
846 info->num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
847 info->num_tx_descs = iflib_num_tx_descs(ctx);
848 info->num_rx_descs = iflib_num_rx_descs(ctx);
849 info->rx_buf_maxsize = fl->ifl_buf_size;
850 nm_prinf("txr %u rxr %u txd %u rxd %u rbufsz %u",
851 info->num_tx_rings, info->num_rx_rings, info->num_tx_descs,
852 info->num_rx_descs, info->rx_buf_maxsize);
853
854 return (0);
855 }
856
857 static int
netmap_fl_refill(iflib_rxq_t rxq,struct netmap_kring * kring,bool init)858 netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init)
859 {
860 struct netmap_adapter *na = kring->na;
861 u_int const lim = kring->nkr_num_slots - 1;
862 struct netmap_ring *ring = kring->ring;
863 bus_dmamap_t *map;
864 struct if_rxd_update iru;
865 if_ctx_t ctx = rxq->ifr_ctx;
866 iflib_fl_t fl = &rxq->ifr_fl[0];
867 u_int nic_i_first, nic_i;
868 u_int nm_i;
869 int i, n;
870 #if IFLIB_DEBUG_COUNTERS
871 int rf_count = 0;
872 #endif
873
874 /*
875 * This function is used both at initialization and in rxsync.
876 * At initialization we need to prepare (with isc_rxd_refill())
877 * all the netmap buffers currently owned by the kernel, in
878 * such a way to keep fl->ifl_pidx and kring->nr_hwcur in sync
879 * (except for kring->nkr_hwofs). These may be less than
880 * kring->nkr_num_slots if netmap_reset() was called while
881 * an application using the kring that still owned some
882 * buffers.
883 * At rxsync time, both indexes point to the next buffer to be
884 * refilled.
885 * In any case we publish (with isc_rxd_flush()) up to
886 * (fl->ifl_pidx - 1) % N (included), to avoid the NIC tail/prod
887 * pointer to overrun the head/cons pointer, although this is
888 * not necessary for some NICs (e.g. vmx).
889 */
890 if (__predict_false(init)) {
891 n = kring->nkr_num_slots - nm_kr_rxspace(kring);
892 } else {
893 n = kring->rhead - kring->nr_hwcur;
894 if (n == 0)
895 return (0); /* Nothing to do. */
896 if (n < 0)
897 n += kring->nkr_num_slots;
898 }
899
900 iru_init(&iru, rxq, 0 /* flid */);
901 map = fl->ifl_sds.ifsd_map;
902 nic_i = fl->ifl_pidx;
903 nm_i = netmap_idx_n2k(kring, nic_i);
904 if (__predict_false(init)) {
905 /*
906 * On init/reset, nic_i must be 0, and we must
907 * start to refill from hwtail (see netmap_reset()).
908 */
909 MPASS(nic_i == 0);
910 MPASS(nm_i == kring->nr_hwtail);
911 } else
912 MPASS(nm_i == kring->nr_hwcur);
913 DBG_COUNTER_INC(fl_refills);
914 while (n > 0) {
915 #if IFLIB_DEBUG_COUNTERS
916 if (++rf_count == 9)
917 DBG_COUNTER_INC(fl_refills_large);
918 #endif
919 nic_i_first = nic_i;
920 for (i = 0; n > 0 && i < IFLIB_MAX_RX_REFRESH; n--, i++) {
921 struct netmap_slot *slot = &ring->slot[nm_i];
922 uint64_t paddr;
923 void *addr = PNMB(na, slot, &paddr);
924
925 MPASS(i < IFLIB_MAX_RX_REFRESH);
926
927 if (addr == NETMAP_BUF_BASE(na)) /* bad buf */
928 return (netmap_ring_reinit(kring));
929
930 fl->ifl_bus_addrs[i] = paddr +
931 nm_get_offset(kring, slot);
932 fl->ifl_rxd_idxs[i] = nic_i;
933
934 if (__predict_false(init)) {
935 netmap_load_map(na, fl->ifl_buf_tag,
936 map[nic_i], addr);
937 } else if (slot->flags & NS_BUF_CHANGED) {
938 /* buffer has changed, reload map */
939 netmap_reload_map(na, fl->ifl_buf_tag,
940 map[nic_i], addr);
941 }
942 bus_dmamap_sync(fl->ifl_buf_tag, map[nic_i],
943 BUS_DMASYNC_PREREAD);
944 slot->flags &= ~NS_BUF_CHANGED;
945
946 nm_i = nm_next(nm_i, lim);
947 nic_i = nm_next(nic_i, lim);
948 }
949
950 iru.iru_pidx = nic_i_first;
951 iru.iru_count = i;
952 ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
953 }
954 fl->ifl_pidx = nic_i;
955 /*
956 * At the end of the loop we must have refilled everything
957 * we could possibly refill.
958 */
959 MPASS(nm_i == kring->rhead);
960 kring->nr_hwcur = nm_i;
961
962 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
963 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
964 ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id,
965 nm_prev(nic_i, lim));
966 DBG_COUNTER_INC(rxd_flush);
967
968 return (0);
969 }
970
971 #define NETMAP_TX_TIMER_US 90
972
973 /*
974 * Reconcile kernel and user view of the transmit ring.
975 *
976 * All information is in the kring.
977 * Userspace wants to send packets up to the one before kring->rhead,
978 * kernel knows kring->nr_hwcur is the first unsent packet.
979 *
980 * Here we push packets out (as many as possible), and possibly
981 * reclaim buffers from previously completed transmission.
982 *
983 * The caller (netmap) guarantees that there is only one instance
984 * running at any time. Any interference with other driver
985 * methods should be handled by the individual drivers.
986 */
987 static int
iflib_netmap_txsync(struct netmap_kring * kring,int flags)988 iflib_netmap_txsync(struct netmap_kring *kring, int flags)
989 {
990 struct netmap_adapter *na = kring->na;
991 if_t ifp = na->ifp;
992 struct netmap_ring *ring = kring->ring;
993 u_int nm_i; /* index into the netmap kring */
994 u_int nic_i; /* index into the NIC ring */
995 u_int const lim = kring->nkr_num_slots - 1;
996 u_int const head = kring->rhead;
997 struct if_pkt_info pi;
998 int tx_pkts = 0, tx_bytes = 0;
999
1000 /*
1001 * interrupts on every tx packet are expensive so request
1002 * them every half ring, or where NS_REPORT is set
1003 */
1004 u_int report_frequency = kring->nkr_num_slots >> 1;
1005 /* device-specific */
1006 if_ctx_t ctx = if_getsoftc(ifp);
1007 iflib_txq_t txq = &ctx->ifc_txqs[kring->ring_id];
1008
1009 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1010 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1011
1012 /*
1013 * First part: process new packets to send.
1014 * nm_i is the current index in the netmap kring,
1015 * nic_i is the corresponding index in the NIC ring.
1016 *
1017 * If we have packets to send (nm_i != head)
1018 * iterate over the netmap ring, fetch length and update
1019 * the corresponding slot in the NIC ring. Some drivers also
1020 * need to update the buffer's physical address in the NIC slot
1021 * even NS_BUF_CHANGED is not set (PNMB computes the addresses).
1022 *
1023 * The netmap_reload_map() calls is especially expensive,
1024 * even when (as in this case) the tag is 0, so do only
1025 * when the buffer has actually changed.
1026 *
1027 * If possible do not set the report/intr bit on all slots,
1028 * but only a few times per ring or when NS_REPORT is set.
1029 *
1030 * Finally, on 10G and faster drivers, it might be useful
1031 * to prefetch the next slot and txr entry.
1032 */
1033
1034 nm_i = kring->nr_hwcur;
1035 if (nm_i != head) { /* we have new packets to send */
1036 uint32_t pkt_len = 0, seg_idx = 0;
1037 int nic_i_start = -1, flags = 0;
1038 pkt_info_zero(&pi);
1039 pi.ipi_segs = txq->ift_segs;
1040 pi.ipi_qsidx = kring->ring_id;
1041 nic_i = netmap_idx_k2n(kring, nm_i);
1042
1043 __builtin_prefetch(&ring->slot[nm_i]);
1044 __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i]);
1045 __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i]);
1046
1047 while (nm_i != head) {
1048 struct netmap_slot *slot = &ring->slot[nm_i];
1049 uint64_t offset = nm_get_offset(kring, slot);
1050 u_int len = slot->len;
1051 uint64_t paddr;
1052 void *addr = PNMB(na, slot, &paddr);
1053
1054 flags |= (slot->flags & NS_REPORT ||
1055 nic_i == 0 || nic_i == report_frequency) ?
1056 IPI_TX_INTR : 0;
1057
1058 /*
1059 * If this is the first packet fragment, save the
1060 * index of the first NIC slot for later.
1061 */
1062 if (nic_i_start < 0)
1063 nic_i_start = nic_i;
1064
1065 pi.ipi_segs[seg_idx].ds_addr = paddr + offset;
1066 pi.ipi_segs[seg_idx].ds_len = len;
1067 if (len) {
1068 pkt_len += len;
1069 seg_idx++;
1070 }
1071
1072 if (!(slot->flags & NS_MOREFRAG)) {
1073 pi.ipi_len = pkt_len;
1074 pi.ipi_nsegs = seg_idx;
1075 pi.ipi_pidx = nic_i_start;
1076 pi.ipi_ndescs = 0;
1077 pi.ipi_flags = flags;
1078
1079 /* Prepare the NIC TX ring. */
1080 ctx->isc_txd_encap(ctx->ifc_softc, &pi);
1081 DBG_COUNTER_INC(tx_encap);
1082
1083 /* Update transmit counters */
1084 tx_bytes += pi.ipi_len;
1085 tx_pkts++;
1086
1087 /* Reinit per-packet info for the next one. */
1088 flags = seg_idx = pkt_len = 0;
1089 nic_i_start = -1;
1090 }
1091
1092 /* prefetch for next round */
1093 __builtin_prefetch(&ring->slot[nm_i + 1]);
1094 __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i + 1]);
1095 __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i + 1]);
1096
1097 NM_CHECK_ADDR_LEN_OFF(na, len, offset);
1098
1099 if (slot->flags & NS_BUF_CHANGED) {
1100 /* buffer has changed, reload map */
1101 netmap_reload_map(na, txq->ift_buf_tag,
1102 txq->ift_sds.ifsd_map[nic_i], addr);
1103 }
1104 /* make sure changes to the buffer are synced */
1105 bus_dmamap_sync(txq->ift_buf_tag,
1106 txq->ift_sds.ifsd_map[nic_i],
1107 BUS_DMASYNC_PREWRITE);
1108
1109 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED | NS_MOREFRAG);
1110 nm_i = nm_next(nm_i, lim);
1111 nic_i = nm_next(nic_i, lim);
1112 }
1113 kring->nr_hwcur = nm_i;
1114
1115 /* synchronize the NIC ring */
1116 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1117 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1118
1119 /* (re)start the tx unit up to slot nic_i (excluded) */
1120 ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, nic_i);
1121 }
1122
1123 /*
1124 * Second part: reclaim buffers for completed transmissions.
1125 *
1126 * If there are unclaimed buffers, attempt to reclaim them.
1127 * If we don't manage to reclaim them all, and TX IRQs are not in use,
1128 * trigger a per-tx-queue timer to try again later.
1129 */
1130 if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
1131 if (iflib_tx_credits_update(ctx, txq)) {
1132 /* some tx completed, increment avail */
1133 nic_i = txq->ift_cidx_processed;
1134 kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim);
1135 }
1136 }
1137
1138 if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ))
1139 if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
1140 callout_reset_sbt_on(&txq->ift_netmap_timer,
1141 NETMAP_TX_TIMER_US * SBT_1US, SBT_1US,
1142 iflib_netmap_timer, txq,
1143 txq->ift_netmap_timer.c_cpu, 0);
1144 }
1145
1146 if_inc_counter(ifp, IFCOUNTER_OBYTES, tx_bytes);
1147 if_inc_counter(ifp, IFCOUNTER_OPACKETS, tx_pkts);
1148
1149 return (0);
1150 }
1151
1152 /*
1153 * Reconcile kernel and user view of the receive ring.
1154 * Same as for the txsync, this routine must be efficient.
1155 * The caller guarantees a single invocations, but races against
1156 * the rest of the driver should be handled here.
1157 *
1158 * On call, kring->rhead is the first packet that userspace wants
1159 * to keep, and kring->rcur is the wakeup point.
1160 * The kernel has previously reported packets up to kring->rtail.
1161 *
1162 * If (flags & NAF_FORCE_READ) also check for incoming packets irrespective
1163 * of whether or not we received an interrupt.
1164 */
1165 static int
iflib_netmap_rxsync(struct netmap_kring * kring,int flags)1166 iflib_netmap_rxsync(struct netmap_kring *kring, int flags)
1167 {
1168 struct netmap_adapter *na = kring->na;
1169 struct netmap_ring *ring = kring->ring;
1170 if_t ifp = na->ifp;
1171 uint32_t nm_i; /* index into the netmap ring */
1172 uint32_t nic_i; /* index into the NIC ring */
1173 u_int n;
1174 u_int const lim = kring->nkr_num_slots - 1;
1175 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
1176 int i = 0, rx_bytes = 0, rx_pkts = 0;
1177
1178 if_ctx_t ctx = if_getsoftc(ifp);
1179 if_shared_ctx_t sctx = ctx->ifc_sctx;
1180 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1181 iflib_rxq_t rxq = &ctx->ifc_rxqs[kring->ring_id];
1182 iflib_fl_t fl = &rxq->ifr_fl[0];
1183 struct if_rxd_info ri;
1184 qidx_t *cidxp;
1185
1186 /*
1187 * netmap only uses free list 0, to avoid out of order consumption
1188 * of receive buffers
1189 */
1190
1191 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
1192 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1193
1194 /*
1195 * First part: import newly received packets.
1196 *
1197 * nm_i is the index of the next free slot in the netmap ring,
1198 * nic_i is the index of the next received packet in the NIC ring
1199 * (or in the free list 0 if IFLIB_HAS_RXCQ is set), and they may
1200 * differ in case if_init() has been called while
1201 * in netmap mode. For the receive ring we have
1202 *
1203 * nic_i = fl->ifl_cidx;
1204 * nm_i = kring->nr_hwtail (previous)
1205 * and
1206 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size
1207 *
1208 * fl->ifl_cidx is set to 0 on a ring reinit
1209 */
1210 if (netmap_no_pendintr || force_update) {
1211 uint32_t hwtail_lim = nm_prev(kring->nr_hwcur, lim);
1212 bool have_rxcq = sctx->isc_flags & IFLIB_HAS_RXCQ;
1213 int crclen = iflib_crcstrip ? 0 : 4;
1214 int error, avail;
1215
1216 /*
1217 * For the free list consumer index, we use the same
1218 * logic as in iflib_rxeof().
1219 */
1220 if (have_rxcq)
1221 cidxp = &rxq->ifr_cq_cidx;
1222 else
1223 cidxp = &fl->ifl_cidx;
1224 avail = ctx->isc_rxd_available(ctx->ifc_softc,
1225 rxq->ifr_id, *cidxp, USHRT_MAX);
1226
1227 nic_i = fl->ifl_cidx;
1228 nm_i = netmap_idx_n2k(kring, nic_i);
1229 MPASS(nm_i == kring->nr_hwtail);
1230 for (n = 0; avail > 0 && nm_i != hwtail_lim; n++, avail--) {
1231 rxd_info_zero(&ri);
1232 ri.iri_frags = rxq->ifr_frags;
1233 ri.iri_qsidx = kring->ring_id;
1234 ri.iri_ifp = ctx->ifc_ifp;
1235 ri.iri_cidx = *cidxp;
1236
1237 error = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
1238 for (i = 0; i < ri.iri_nfrags; i++) {
1239 if (error) {
1240 ring->slot[nm_i].len = 0;
1241 ring->slot[nm_i].flags = 0;
1242 } else {
1243 ring->slot[nm_i].len = ri.iri_frags[i].irf_len;
1244 if (i == (ri.iri_nfrags - 1)) {
1245 ring->slot[nm_i].len -= crclen;
1246 ring->slot[nm_i].flags = 0;
1247
1248 /* Update receive counters */
1249 rx_bytes += ri.iri_len;
1250 rx_pkts++;
1251 } else
1252 ring->slot[nm_i].flags = NS_MOREFRAG;
1253 }
1254
1255 bus_dmamap_sync(fl->ifl_buf_tag,
1256 fl->ifl_sds.ifsd_map[nic_i], BUS_DMASYNC_POSTREAD);
1257 nm_i = nm_next(nm_i, lim);
1258 fl->ifl_cidx = nic_i = nm_next(nic_i, lim);
1259 }
1260
1261 if (have_rxcq) {
1262 *cidxp = ri.iri_cidx;
1263 while (*cidxp >= scctx->isc_nrxd[0])
1264 *cidxp -= scctx->isc_nrxd[0];
1265 }
1266
1267 }
1268 if (n) { /* update the state variables */
1269 if (netmap_no_pendintr && !force_update) {
1270 /* diagnostics */
1271 iflib_rx_miss++;
1272 iflib_rx_miss_bufs += n;
1273 }
1274 kring->nr_hwtail = nm_i;
1275 }
1276 kring->nr_kflags &= ~NKR_PENDINTR;
1277 }
1278 /*
1279 * Second part: skip past packets that userspace has released.
1280 * (kring->nr_hwcur to head excluded),
1281 * and make the buffers available for reception.
1282 * As usual nm_i is the index in the netmap ring,
1283 * nic_i is the index in the NIC ring, and
1284 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size
1285 */
1286 netmap_fl_refill(rxq, kring, false);
1287
1288 if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
1289 if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
1290
1291 return (0);
1292 }
1293
1294 static void
iflib_netmap_intr(struct netmap_adapter * na,int onoff)1295 iflib_netmap_intr(struct netmap_adapter *na, int onoff)
1296 {
1297 if_ctx_t ctx = if_getsoftc(na->ifp);
1298
1299 CTX_LOCK(ctx);
1300 if (onoff) {
1301 IFDI_INTR_ENABLE(ctx);
1302 } else {
1303 IFDI_INTR_DISABLE(ctx);
1304 }
1305 CTX_UNLOCK(ctx);
1306 }
1307
1308 static int
iflib_netmap_attach(if_ctx_t ctx)1309 iflib_netmap_attach(if_ctx_t ctx)
1310 {
1311 struct netmap_adapter na;
1312
1313 bzero(&na, sizeof(na));
1314
1315 na.ifp = ctx->ifc_ifp;
1316 na.na_flags = NAF_BDG_MAYSLEEP | NAF_MOREFRAG | NAF_OFFSETS;
1317 MPASS(ctx->ifc_softc_ctx.isc_ntxqsets);
1318 MPASS(ctx->ifc_softc_ctx.isc_nrxqsets);
1319
1320 na.num_tx_desc = iflib_num_tx_descs(ctx);
1321 na.num_rx_desc = iflib_num_rx_descs(ctx);
1322 na.nm_txsync = iflib_netmap_txsync;
1323 na.nm_rxsync = iflib_netmap_rxsync;
1324 na.nm_register = iflib_netmap_register;
1325 na.nm_intr = iflib_netmap_intr;
1326 na.nm_config = iflib_netmap_config;
1327 na.num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
1328 na.num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
1329 return (netmap_attach(&na));
1330 }
1331
1332 static int
iflib_netmap_txq_init(if_ctx_t ctx,iflib_txq_t txq)1333 iflib_netmap_txq_init(if_ctx_t ctx, iflib_txq_t txq)
1334 {
1335 struct netmap_adapter *na = NA(ctx->ifc_ifp);
1336 struct netmap_slot *slot;
1337
1338 slot = netmap_reset(na, NR_TX, txq->ift_id, 0);
1339 if (slot == NULL)
1340 return (0);
1341 for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxd[0]; i++) {
1342 /*
1343 * In netmap mode, set the map for the packet buffer.
1344 * NOTE: Some drivers (not this one) also need to set
1345 * the physical buffer address in the NIC ring.
1346 * netmap_idx_n2k() maps a nic index, i, into the corresponding
1347 * netmap slot index, si
1348 */
1349 int si = netmap_idx_n2k(na->tx_rings[txq->ift_id], i);
1350 netmap_load_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[i],
1351 NMB(na, slot + si));
1352 }
1353 return (1);
1354 }
1355
1356 static int
iflib_netmap_rxq_init(if_ctx_t ctx,iflib_rxq_t rxq)1357 iflib_netmap_rxq_init(if_ctx_t ctx, iflib_rxq_t rxq)
1358 {
1359 struct netmap_adapter *na = NA(ctx->ifc_ifp);
1360 struct netmap_kring *kring;
1361 struct netmap_slot *slot;
1362
1363 slot = netmap_reset(na, NR_RX, rxq->ifr_id, 0);
1364 if (slot == NULL)
1365 return (0);
1366 kring = na->rx_rings[rxq->ifr_id];
1367 netmap_fl_refill(rxq, kring, true);
1368 return (1);
1369 }
1370
1371 static void
iflib_netmap_timer(void * arg)1372 iflib_netmap_timer(void *arg)
1373 {
1374 iflib_txq_t txq = arg;
1375 if_ctx_t ctx = txq->ift_ctx;
1376
1377 /*
1378 * Wake up the netmap application, to give it a chance to
1379 * call txsync and reclaim more completed TX buffers.
1380 */
1381 netmap_tx_irq(ctx->ifc_ifp, txq->ift_id);
1382 }
1383
1384 #define iflib_netmap_detach(ifp) netmap_detach(ifp)
1385
1386 #else
1387 #define iflib_netmap_txq_init(ctx, txq) (0)
1388 #define iflib_netmap_rxq_init(ctx, rxq) (0)
1389 #define iflib_netmap_detach(ifp)
1390 #define netmap_enable_all_rings(ifp)
1391 #define netmap_disable_all_rings(ifp)
1392
1393 #define iflib_netmap_attach(ctx) (0)
1394 #define netmap_rx_irq(ifp, qid, budget) (0)
1395 #endif
1396
1397 #if defined(__i386__) || defined(__amd64__)
1398 static __inline void
prefetch(void * x)1399 prefetch(void *x)
1400 {
1401 __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
1402 }
1403
1404 static __inline void
prefetch2cachelines(void * x)1405 prefetch2cachelines(void *x)
1406 {
1407 __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
1408 #if (CACHE_LINE_SIZE < 128)
1409 __asm volatile("prefetcht0 %0" :: "m" (*(((unsigned long *)x) + CACHE_LINE_SIZE / (sizeof(unsigned long)))));
1410 #endif
1411 }
1412 #else
1413 static __inline void
prefetch(void * x)1414 prefetch(void *x)
1415 {
1416 }
1417
1418 static __inline void
prefetch2cachelines(void * x)1419 prefetch2cachelines(void *x)
1420 {
1421 }
1422 #endif
1423
1424 static void
iru_init(if_rxd_update_t iru,iflib_rxq_t rxq,uint8_t flid)1425 iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid)
1426 {
1427 iflib_fl_t fl;
1428
1429 fl = &rxq->ifr_fl[flid];
1430 iru->iru_paddrs = fl->ifl_bus_addrs;
1431 iru->iru_idxs = fl->ifl_rxd_idxs;
1432 iru->iru_qsidx = rxq->ifr_id;
1433 iru->iru_buf_size = fl->ifl_buf_size;
1434 iru->iru_flidx = fl->ifl_id;
1435 }
1436
1437 static void
_iflib_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int err)1438 _iflib_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
1439 {
1440 if (err)
1441 return;
1442 *(bus_addr_t *) arg = segs[0].ds_addr;
1443 }
1444
1445 #define DMA_WIDTH_TO_BUS_LOWADDR(width) \
1446 (((width) == 0) || (width) == flsll(BUS_SPACE_MAXADDR) ? \
1447 BUS_SPACE_MAXADDR : (1ULL << (width)) - 1ULL)
1448
1449 int
iflib_dma_alloc_align(if_ctx_t ctx,int size,int align,iflib_dma_info_t dma,int mapflags)1450 iflib_dma_alloc_align(if_ctx_t ctx, int size, int align, iflib_dma_info_t dma, int mapflags)
1451 {
1452 int err;
1453 device_t dev = ctx->ifc_dev;
1454 bus_addr_t lowaddr;
1455
1456 lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(ctx->ifc_softc_ctx.isc_dma_width);
1457
1458 err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1459 align, 0, /* alignment, bounds */
1460 lowaddr, /* lowaddr */
1461 BUS_SPACE_MAXADDR, /* highaddr */
1462 NULL, NULL, /* filter, filterarg */
1463 size, /* maxsize */
1464 1, /* nsegments */
1465 size, /* maxsegsize */
1466 BUS_DMA_ALLOCNOW, /* flags */
1467 NULL, /* lockfunc */
1468 NULL, /* lockarg */
1469 &dma->idi_tag);
1470 if (err) {
1471 device_printf(dev,
1472 "%s: bus_dma_tag_create failed: %d (size=%d, align=%d)\n",
1473 __func__, err, size, align);
1474 goto fail_0;
1475 }
1476
1477 err = bus_dmamem_alloc(dma->idi_tag, (void **)&dma->idi_vaddr,
1478 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->idi_map);
1479 if (err) {
1480 device_printf(dev,
1481 "%s: bus_dmamem_alloc(%ju) failed: %d\n",
1482 __func__, (uintmax_t)size, err);
1483 goto fail_1;
1484 }
1485
1486 dma->idi_paddr = IF_BAD_DMA;
1487 err = bus_dmamap_load(dma->idi_tag, dma->idi_map, dma->idi_vaddr,
1488 size, _iflib_dmamap_cb, &dma->idi_paddr, mapflags | BUS_DMA_NOWAIT);
1489 if (err || dma->idi_paddr == IF_BAD_DMA) {
1490 device_printf(dev,
1491 "%s: bus_dmamap_load failed: %d\n",
1492 __func__, err);
1493 goto fail_2;
1494 }
1495
1496 dma->idi_size = size;
1497 return (0);
1498
1499 fail_2:
1500 bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
1501 fail_1:
1502 bus_dma_tag_destroy(dma->idi_tag);
1503 fail_0:
1504 dma->idi_tag = NULL;
1505
1506 return (err);
1507 }
1508
1509 int
iflib_dma_alloc(if_ctx_t ctx,int size,iflib_dma_info_t dma,int mapflags)1510 iflib_dma_alloc(if_ctx_t ctx, int size, iflib_dma_info_t dma, int mapflags)
1511 {
1512 if_shared_ctx_t sctx = ctx->ifc_sctx;
1513
1514 KASSERT(sctx->isc_q_align != 0, ("alignment value not initialized"));
1515
1516 return (iflib_dma_alloc_align(ctx, size, sctx->isc_q_align, dma, mapflags));
1517 }
1518
1519 int
iflib_dma_alloc_multi(if_ctx_t ctx,int * sizes,iflib_dma_info_t * dmalist,int mapflags,int count)1520 iflib_dma_alloc_multi(if_ctx_t ctx, int *sizes, iflib_dma_info_t *dmalist, int mapflags, int count)
1521 {
1522 int i, err;
1523 iflib_dma_info_t *dmaiter;
1524
1525 dmaiter = dmalist;
1526 for (i = 0; i < count; i++, dmaiter++) {
1527 if ((err = iflib_dma_alloc(ctx, sizes[i], *dmaiter, mapflags)) != 0)
1528 break;
1529 }
1530 if (err)
1531 iflib_dma_free_multi(dmalist, i);
1532 return (err);
1533 }
1534
1535 void
iflib_dma_free(iflib_dma_info_t dma)1536 iflib_dma_free(iflib_dma_info_t dma)
1537 {
1538 if (dma->idi_tag == NULL)
1539 return;
1540 if (dma->idi_paddr != IF_BAD_DMA) {
1541 bus_dmamap_sync(dma->idi_tag, dma->idi_map,
1542 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1543 bus_dmamap_unload(dma->idi_tag, dma->idi_map);
1544 dma->idi_paddr = IF_BAD_DMA;
1545 }
1546 if (dma->idi_vaddr != NULL) {
1547 bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
1548 dma->idi_vaddr = NULL;
1549 }
1550 bus_dma_tag_destroy(dma->idi_tag);
1551 dma->idi_tag = NULL;
1552 }
1553
1554 void
iflib_dma_free_multi(iflib_dma_info_t * dmalist,int count)1555 iflib_dma_free_multi(iflib_dma_info_t *dmalist, int count)
1556 {
1557 int i;
1558 iflib_dma_info_t *dmaiter = dmalist;
1559
1560 for (i = 0; i < count; i++, dmaiter++)
1561 iflib_dma_free(*dmaiter);
1562 }
1563
1564 static int
iflib_fast_intr(void * arg)1565 iflib_fast_intr(void *arg)
1566 {
1567 iflib_filter_info_t info = arg;
1568 struct grouptask *gtask = info->ifi_task;
1569 int result;
1570
1571 DBG_COUNTER_INC(fast_intrs);
1572 if (info->ifi_filter != NULL) {
1573 result = info->ifi_filter(info->ifi_filter_arg);
1574 if ((result & FILTER_SCHEDULE_THREAD) == 0)
1575 return (result);
1576 }
1577
1578 GROUPTASK_ENQUEUE(gtask);
1579 return (FILTER_HANDLED);
1580 }
1581
1582 static int
iflib_fast_intr_rxtx(void * arg)1583 iflib_fast_intr_rxtx(void *arg)
1584 {
1585 iflib_filter_info_t info = arg;
1586 struct grouptask *gtask = info->ifi_task;
1587 if_ctx_t ctx;
1588 iflib_rxq_t rxq = (iflib_rxq_t)info->ifi_ctx;
1589 iflib_txq_t txq;
1590 void *sc;
1591 int i, cidx, result;
1592 qidx_t txqid;
1593 bool intr_enable, intr_legacy;
1594
1595 DBG_COUNTER_INC(fast_intrs);
1596 if (info->ifi_filter != NULL) {
1597 result = info->ifi_filter(info->ifi_filter_arg);
1598 if ((result & FILTER_SCHEDULE_THREAD) == 0)
1599 return (result);
1600 }
1601
1602 ctx = rxq->ifr_ctx;
1603 sc = ctx->ifc_softc;
1604 intr_enable = false;
1605 intr_legacy = !!(ctx->ifc_flags & IFC_LEGACY);
1606 MPASS(rxq->ifr_ntxqirq);
1607 for (i = 0; i < rxq->ifr_ntxqirq; i++) {
1608 txqid = rxq->ifr_txqid[i];
1609 txq = &ctx->ifc_txqs[txqid];
1610 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1611 BUS_DMASYNC_POSTREAD);
1612 if (!ctx->isc_txd_credits_update(sc, txqid, false)) {
1613 if (intr_legacy)
1614 intr_enable = true;
1615 else
1616 IFDI_TX_QUEUE_INTR_ENABLE(ctx, txqid);
1617 continue;
1618 }
1619 GROUPTASK_ENQUEUE(&txq->ift_task);
1620 }
1621 if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_RXCQ)
1622 cidx = rxq->ifr_cq_cidx;
1623 else
1624 cidx = rxq->ifr_fl[0].ifl_cidx;
1625 if (iflib_rxd_avail(ctx, rxq, cidx, 1))
1626 GROUPTASK_ENQUEUE(gtask);
1627 else {
1628 if (intr_legacy)
1629 intr_enable = true;
1630 else
1631 IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
1632 DBG_COUNTER_INC(rx_intr_enables);
1633 }
1634 if (intr_enable)
1635 IFDI_INTR_ENABLE(ctx);
1636 return (FILTER_HANDLED);
1637 }
1638
1639 static int
iflib_fast_intr_ctx(void * arg)1640 iflib_fast_intr_ctx(void *arg)
1641 {
1642 iflib_filter_info_t info = arg;
1643 struct grouptask *gtask = info->ifi_task;
1644 int result;
1645
1646 DBG_COUNTER_INC(fast_intrs);
1647 if (info->ifi_filter != NULL) {
1648 result = info->ifi_filter(info->ifi_filter_arg);
1649 if ((result & FILTER_SCHEDULE_THREAD) == 0)
1650 return (result);
1651 }
1652
1653 if (gtask->gt_taskqueue != NULL)
1654 GROUPTASK_ENQUEUE(gtask);
1655 return (FILTER_HANDLED);
1656 }
1657
1658 static int
_iflib_irq_alloc(if_ctx_t ctx,if_irq_t irq,int rid,driver_filter_t filter,driver_intr_t handler,void * arg,const char * name)1659 _iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
1660 driver_filter_t filter, driver_intr_t handler, void *arg,
1661 const char *name)
1662 {
1663 struct resource *res;
1664 void *tag = NULL;
1665 device_t dev = ctx->ifc_dev;
1666 int flags, i, rc;
1667
1668 flags = RF_ACTIVE;
1669 if (ctx->ifc_flags & IFC_LEGACY)
1670 flags |= RF_SHAREABLE;
1671 MPASS(rid < 512);
1672 i = rid;
1673 res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, flags);
1674 if (res == NULL) {
1675 device_printf(dev,
1676 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
1677 return (ENOMEM);
1678 }
1679 irq->ii_res = res;
1680 KASSERT(filter == NULL || handler == NULL, ("filter and handler can't both be non-NULL"));
1681 rc = bus_setup_intr(dev, res, INTR_MPSAFE | INTR_TYPE_NET,
1682 filter, handler, arg, &tag);
1683 if (rc != 0) {
1684 device_printf(dev,
1685 "failed to setup interrupt for rid %d, name %s: %d\n",
1686 rid, name ? name : "unknown", rc);
1687 return (rc);
1688 } else if (name)
1689 bus_describe_intr(dev, res, tag, "%s", name);
1690
1691 irq->ii_tag = tag;
1692 return (0);
1693 }
1694
1695 /*********************************************************************
1696 *
1697 * Allocate DMA resources for TX buffers as well as memory for the TX
1698 * mbuf map. TX DMA maps (non-TSO/TSO) and TX mbuf map are kept in a
1699 * iflib_sw_tx_desc_array structure, storing all the information that
1700 * is needed to transmit a packet on the wire. This is called only
1701 * once at attach, setup is done every reset.
1702 *
1703 **********************************************************************/
1704 static int
iflib_txsd_alloc(iflib_txq_t txq)1705 iflib_txsd_alloc(iflib_txq_t txq)
1706 {
1707 if_ctx_t ctx = txq->ift_ctx;
1708 if_shared_ctx_t sctx = ctx->ifc_sctx;
1709 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1710 device_t dev = ctx->ifc_dev;
1711 bus_size_t tsomaxsize;
1712 bus_addr_t lowaddr;
1713 int err, nsegments, ntsosegments;
1714 bool tso;
1715
1716 nsegments = scctx->isc_tx_nsegments;
1717 ntsosegments = scctx->isc_tx_tso_segments_max;
1718 tsomaxsize = scctx->isc_tx_tso_size_max;
1719 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_VLAN_MTU)
1720 tsomaxsize += sizeof(struct ether_vlan_header);
1721 MPASS(scctx->isc_ntxd[0] > 0);
1722 MPASS(scctx->isc_ntxd[txq->ift_br_offset] > 0);
1723 MPASS(nsegments > 0);
1724 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) {
1725 MPASS(ntsosegments > 0);
1726 MPASS(sctx->isc_tso_maxsize >= tsomaxsize);
1727 }
1728
1729 lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(scctx->isc_dma_width);
1730
1731 /*
1732 * Set up DMA tags for TX buffers.
1733 */
1734 if ((err = bus_dma_tag_create(bus_get_dma_tag(dev),
1735 1, 0, /* alignment, bounds */
1736 lowaddr, /* lowaddr */
1737 BUS_SPACE_MAXADDR, /* highaddr */
1738 NULL, NULL, /* filter, filterarg */
1739 sctx->isc_tx_maxsize, /* maxsize */
1740 nsegments, /* nsegments */
1741 sctx->isc_tx_maxsegsize, /* maxsegsize */
1742 0, /* flags */
1743 NULL, /* lockfunc */
1744 NULL, /* lockfuncarg */
1745 &txq->ift_buf_tag))) {
1746 device_printf(dev, "Unable to allocate TX DMA tag: %d\n", err);
1747 device_printf(dev, "maxsize: %ju nsegments: %d maxsegsize: %ju\n",
1748 (uintmax_t)sctx->isc_tx_maxsize, nsegments, (uintmax_t)sctx->isc_tx_maxsegsize);
1749 goto fail;
1750 }
1751 tso = (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) != 0;
1752 if (tso && (err = bus_dma_tag_create(bus_get_dma_tag(dev),
1753 1, 0, /* alignment, bounds */
1754 lowaddr, /* lowaddr */
1755 BUS_SPACE_MAXADDR, /* highaddr */
1756 NULL, NULL, /* filter, filterarg */
1757 tsomaxsize, /* maxsize */
1758 ntsosegments, /* nsegments */
1759 sctx->isc_tso_maxsegsize,/* maxsegsize */
1760 0, /* flags */
1761 NULL, /* lockfunc */
1762 NULL, /* lockfuncarg */
1763 &txq->ift_tso_buf_tag))) {
1764 device_printf(dev, "Unable to allocate TSO TX DMA tag: %d\n",
1765 err);
1766 goto fail;
1767 }
1768
1769 /* Allocate memory for the TX mbuf map. */
1770 if (!(txq->ift_sds.ifsd_m =
1771 (struct mbuf **) malloc(sizeof(struct mbuf *) *
1772 scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1773 device_printf(dev, "Unable to allocate TX mbuf map memory\n");
1774 err = ENOMEM;
1775 goto fail;
1776 }
1777
1778 /*
1779 * Create the DMA maps for TX buffers.
1780 */
1781 if ((txq->ift_sds.ifsd_map = (bus_dmamap_t *)malloc(
1782 sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
1783 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
1784 device_printf(dev,
1785 "Unable to allocate TX buffer DMA map memory\n");
1786 err = ENOMEM;
1787 goto fail;
1788 }
1789 if (tso && (txq->ift_sds.ifsd_tso_map = (bus_dmamap_t *)malloc(
1790 sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
1791 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
1792 device_printf(dev,
1793 "Unable to allocate TSO TX buffer map memory\n");
1794 err = ENOMEM;
1795 goto fail;
1796 }
1797 for (int i = 0; i < scctx->isc_ntxd[txq->ift_br_offset]; i++) {
1798 err = bus_dmamap_create(txq->ift_buf_tag, 0,
1799 &txq->ift_sds.ifsd_map[i]);
1800 if (err != 0) {
1801 device_printf(dev, "Unable to create TX DMA map\n");
1802 goto fail;
1803 }
1804 if (!tso)
1805 continue;
1806 err = bus_dmamap_create(txq->ift_tso_buf_tag, 0,
1807 &txq->ift_sds.ifsd_tso_map[i]);
1808 if (err != 0) {
1809 device_printf(dev, "Unable to create TSO TX DMA map\n");
1810 goto fail;
1811 }
1812 }
1813 return (0);
1814 fail:
1815 /* We free all, it handles case where we are in the middle */
1816 iflib_tx_structures_free(ctx);
1817 return (err);
1818 }
1819
1820 static void
iflib_txsd_destroy(if_ctx_t ctx,iflib_txq_t txq,int i)1821 iflib_txsd_destroy(if_ctx_t ctx, iflib_txq_t txq, int i)
1822 {
1823 bus_dmamap_t map;
1824
1825 if (txq->ift_sds.ifsd_map != NULL) {
1826 map = txq->ift_sds.ifsd_map[i];
1827 bus_dmamap_sync(txq->ift_buf_tag, map, BUS_DMASYNC_POSTWRITE);
1828 bus_dmamap_unload(txq->ift_buf_tag, map);
1829 bus_dmamap_destroy(txq->ift_buf_tag, map);
1830 txq->ift_sds.ifsd_map[i] = NULL;
1831 }
1832
1833 if (txq->ift_sds.ifsd_tso_map != NULL) {
1834 map = txq->ift_sds.ifsd_tso_map[i];
1835 bus_dmamap_sync(txq->ift_tso_buf_tag, map,
1836 BUS_DMASYNC_POSTWRITE);
1837 bus_dmamap_unload(txq->ift_tso_buf_tag, map);
1838 bus_dmamap_destroy(txq->ift_tso_buf_tag, map);
1839 txq->ift_sds.ifsd_tso_map[i] = NULL;
1840 }
1841 }
1842
1843 static void
iflib_txq_destroy(iflib_txq_t txq)1844 iflib_txq_destroy(iflib_txq_t txq)
1845 {
1846 if_ctx_t ctx = txq->ift_ctx;
1847
1848 for (int i = 0; i < txq->ift_size; i++)
1849 iflib_txsd_destroy(ctx, txq, i);
1850
1851 if (txq->ift_br != NULL) {
1852 ifmp_ring_free(txq->ift_br);
1853 txq->ift_br = NULL;
1854 }
1855
1856 mtx_destroy(&txq->ift_mtx);
1857
1858 if (txq->ift_sds.ifsd_map != NULL) {
1859 free(txq->ift_sds.ifsd_map, M_IFLIB);
1860 txq->ift_sds.ifsd_map = NULL;
1861 }
1862 if (txq->ift_sds.ifsd_tso_map != NULL) {
1863 free(txq->ift_sds.ifsd_tso_map, M_IFLIB);
1864 txq->ift_sds.ifsd_tso_map = NULL;
1865 }
1866 if (txq->ift_sds.ifsd_m != NULL) {
1867 free(txq->ift_sds.ifsd_m, M_IFLIB);
1868 txq->ift_sds.ifsd_m = NULL;
1869 }
1870 if (txq->ift_buf_tag != NULL) {
1871 bus_dma_tag_destroy(txq->ift_buf_tag);
1872 txq->ift_buf_tag = NULL;
1873 }
1874 if (txq->ift_tso_buf_tag != NULL) {
1875 bus_dma_tag_destroy(txq->ift_tso_buf_tag);
1876 txq->ift_tso_buf_tag = NULL;
1877 }
1878 if (txq->ift_ifdi != NULL) {
1879 free(txq->ift_ifdi, M_IFLIB);
1880 }
1881 }
1882
1883 static void
iflib_txsd_free(if_ctx_t ctx,iflib_txq_t txq,int i)1884 iflib_txsd_free(if_ctx_t ctx, iflib_txq_t txq, int i)
1885 {
1886 struct mbuf **mp;
1887
1888 mp = &txq->ift_sds.ifsd_m[i];
1889 if (*mp == NULL)
1890 return;
1891
1892 if (txq->ift_sds.ifsd_map != NULL) {
1893 bus_dmamap_sync(txq->ift_buf_tag,
1894 txq->ift_sds.ifsd_map[i], BUS_DMASYNC_POSTWRITE);
1895 bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i]);
1896 }
1897 if (txq->ift_sds.ifsd_tso_map != NULL) {
1898 bus_dmamap_sync(txq->ift_tso_buf_tag,
1899 txq->ift_sds.ifsd_tso_map[i], BUS_DMASYNC_POSTWRITE);
1900 bus_dmamap_unload(txq->ift_tso_buf_tag,
1901 txq->ift_sds.ifsd_tso_map[i]);
1902 }
1903 m_freem(*mp);
1904 DBG_COUNTER_INC(tx_frees);
1905 *mp = NULL;
1906 }
1907
1908 static int
iflib_txq_setup(iflib_txq_t txq)1909 iflib_txq_setup(iflib_txq_t txq)
1910 {
1911 if_ctx_t ctx = txq->ift_ctx;
1912 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1913 if_shared_ctx_t sctx = ctx->ifc_sctx;
1914 iflib_dma_info_t di;
1915 int i;
1916
1917 /* Set number of descriptors available */
1918 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
1919 /* XXX make configurable */
1920 txq->ift_update_freq = IFLIB_DEFAULT_TX_UPDATE_FREQ;
1921
1922 /* Reset indices */
1923 txq->ift_cidx_processed = 0;
1924 txq->ift_pidx = txq->ift_cidx = txq->ift_npending = 0;
1925 txq->ift_size = scctx->isc_ntxd[txq->ift_br_offset];
1926
1927 for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
1928 bzero((void *)di->idi_vaddr, di->idi_size);
1929
1930 IFDI_TXQ_SETUP(ctx, txq->ift_id);
1931 for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
1932 bus_dmamap_sync(di->idi_tag, di->idi_map,
1933 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1934 return (0);
1935 }
1936
1937 /*********************************************************************
1938 *
1939 * Allocate DMA resources for RX buffers as well as memory for the RX
1940 * mbuf map, direct RX cluster pointer map and RX cluster bus address
1941 * map. RX DMA map, RX mbuf map, direct RX cluster pointer map and
1942 * RX cluster map are kept in a iflib_sw_rx_desc_array structure.
1943 * Since we use use one entry in iflib_sw_rx_desc_array per received
1944 * packet, the maximum number of entries we'll need is equal to the
1945 * number of hardware receive descriptors that we've allocated.
1946 *
1947 **********************************************************************/
1948 static int
iflib_rxsd_alloc(iflib_rxq_t rxq)1949 iflib_rxsd_alloc(iflib_rxq_t rxq)
1950 {
1951 if_ctx_t ctx = rxq->ifr_ctx;
1952 if_shared_ctx_t sctx = ctx->ifc_sctx;
1953 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1954 device_t dev = ctx->ifc_dev;
1955 iflib_fl_t fl;
1956 bus_addr_t lowaddr;
1957 int err;
1958
1959 MPASS(scctx->isc_nrxd[0] > 0);
1960 MPASS(scctx->isc_nrxd[rxq->ifr_fl_offset] > 0);
1961
1962 lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(scctx->isc_dma_width);
1963
1964 fl = rxq->ifr_fl;
1965 for (int i = 0; i < rxq->ifr_nfl; i++, fl++) {
1966 fl->ifl_size = scctx->isc_nrxd[rxq->ifr_fl_offset]; /* this isn't necessarily the same */
1967 /* Set up DMA tag for RX buffers. */
1968 err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1969 1, 0, /* alignment, bounds */
1970 lowaddr, /* lowaddr */
1971 BUS_SPACE_MAXADDR, /* highaddr */
1972 NULL, NULL, /* filter, filterarg */
1973 sctx->isc_rx_maxsize, /* maxsize */
1974 sctx->isc_rx_nsegments, /* nsegments */
1975 sctx->isc_rx_maxsegsize, /* maxsegsize */
1976 0, /* flags */
1977 NULL, /* lockfunc */
1978 NULL, /* lockarg */
1979 &fl->ifl_buf_tag);
1980 if (err) {
1981 device_printf(dev,
1982 "Unable to allocate RX DMA tag: %d\n", err);
1983 goto fail;
1984 }
1985
1986 /* Allocate memory for the RX mbuf map. */
1987 if (!(fl->ifl_sds.ifsd_m =
1988 (struct mbuf **) malloc(sizeof(struct mbuf *) *
1989 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1990 device_printf(dev,
1991 "Unable to allocate RX mbuf map memory\n");
1992 err = ENOMEM;
1993 goto fail;
1994 }
1995
1996 /* Allocate memory for the direct RX cluster pointer map. */
1997 if (!(fl->ifl_sds.ifsd_cl =
1998 (caddr_t *) malloc(sizeof(caddr_t) *
1999 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2000 device_printf(dev,
2001 "Unable to allocate RX cluster map memory\n");
2002 err = ENOMEM;
2003 goto fail;
2004 }
2005
2006 /* Allocate memory for the RX cluster bus address map. */
2007 if (!(fl->ifl_sds.ifsd_ba =
2008 (bus_addr_t *) malloc(sizeof(bus_addr_t) *
2009 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2010 device_printf(dev,
2011 "Unable to allocate RX bus address map memory\n");
2012 err = ENOMEM;
2013 goto fail;
2014 }
2015
2016 /*
2017 * Create the DMA maps for RX buffers.
2018 */
2019 if (!(fl->ifl_sds.ifsd_map =
2020 (bus_dmamap_t *) malloc(sizeof(bus_dmamap_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2021 device_printf(dev,
2022 "Unable to allocate RX buffer DMA map memory\n");
2023 err = ENOMEM;
2024 goto fail;
2025 }
2026 for (int i = 0; i < scctx->isc_nrxd[rxq->ifr_fl_offset]; i++) {
2027 err = bus_dmamap_create(fl->ifl_buf_tag, 0,
2028 &fl->ifl_sds.ifsd_map[i]);
2029 if (err != 0) {
2030 device_printf(dev, "Unable to create RX buffer DMA map\n");
2031 goto fail;
2032 }
2033 }
2034 }
2035 return (0);
2036
2037 fail:
2038 iflib_rx_structures_free(ctx);
2039 return (err);
2040 }
2041
2042 /*
2043 * Internal service routines
2044 */
2045
2046 struct rxq_refill_cb_arg {
2047 int error;
2048 bus_dma_segment_t seg;
2049 int nseg;
2050 };
2051
2052 static void
_rxq_refill_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)2053 _rxq_refill_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2054 {
2055 struct rxq_refill_cb_arg *cb_arg = arg;
2056
2057 cb_arg->error = error;
2058 cb_arg->seg = segs[0];
2059 cb_arg->nseg = nseg;
2060 }
2061
2062 /**
2063 * iflib_fl_refill - refill an rxq free-buffer list
2064 * @ctx: the iflib context
2065 * @fl: the free list to refill
2066 * @count: the number of new buffers to allocate
2067 *
2068 * (Re)populate an rxq free-buffer list with up to @count new packet buffers.
2069 * The caller must assure that @count does not exceed the queue's capacity
2070 * minus one (since we always leave a descriptor unavailable).
2071 */
2072 static uint8_t
iflib_fl_refill(if_ctx_t ctx,iflib_fl_t fl,int count)2073 iflib_fl_refill(if_ctx_t ctx, iflib_fl_t fl, int count)
2074 {
2075 struct if_rxd_update iru;
2076 struct rxq_refill_cb_arg cb_arg;
2077 struct mbuf *m;
2078 caddr_t cl, *sd_cl;
2079 struct mbuf **sd_m;
2080 bus_dmamap_t *sd_map;
2081 bus_addr_t bus_addr, *sd_ba;
2082 int err, frag_idx, i, idx, n, pidx;
2083 qidx_t credits;
2084
2085 MPASS(count <= fl->ifl_size - fl->ifl_credits - 1);
2086
2087 sd_m = fl->ifl_sds.ifsd_m;
2088 sd_map = fl->ifl_sds.ifsd_map;
2089 sd_cl = fl->ifl_sds.ifsd_cl;
2090 sd_ba = fl->ifl_sds.ifsd_ba;
2091 pidx = fl->ifl_pidx;
2092 idx = pidx;
2093 frag_idx = fl->ifl_fragidx;
2094 credits = fl->ifl_credits;
2095
2096 i = 0;
2097 n = count;
2098 MPASS(n > 0);
2099 MPASS(credits + n <= fl->ifl_size);
2100
2101 if (pidx < fl->ifl_cidx)
2102 MPASS(pidx + n <= fl->ifl_cidx);
2103 if (pidx == fl->ifl_cidx && (credits < fl->ifl_size))
2104 MPASS(fl->ifl_gen == 0);
2105 if (pidx > fl->ifl_cidx)
2106 MPASS(n <= fl->ifl_size - pidx + fl->ifl_cidx);
2107
2108 DBG_COUNTER_INC(fl_refills);
2109 if (n > 8)
2110 DBG_COUNTER_INC(fl_refills_large);
2111 iru_init(&iru, fl->ifl_rxq, fl->ifl_id);
2112 while (n-- > 0) {
2113 /*
2114 * We allocate an uninitialized mbuf + cluster, mbuf is
2115 * initialized after rx.
2116 *
2117 * If the cluster is still set then we know a minimum sized
2118 * packet was received
2119 */
2120 bit_ffc_at(fl->ifl_rx_bitmap, frag_idx, fl->ifl_size,
2121 &frag_idx);
2122 if (frag_idx < 0)
2123 bit_ffc(fl->ifl_rx_bitmap, fl->ifl_size, &frag_idx);
2124 MPASS(frag_idx >= 0);
2125 if ((cl = sd_cl[frag_idx]) == NULL) {
2126 cl = uma_zalloc(fl->ifl_zone, M_NOWAIT);
2127 if (__predict_false(cl == NULL))
2128 break;
2129
2130 cb_arg.error = 0;
2131 MPASS(sd_map != NULL);
2132 err = bus_dmamap_load(fl->ifl_buf_tag, sd_map[frag_idx],
2133 cl, fl->ifl_buf_size, _rxq_refill_cb, &cb_arg,
2134 BUS_DMA_NOWAIT);
2135 if (__predict_false(err != 0 || cb_arg.error)) {
2136 uma_zfree(fl->ifl_zone, cl);
2137 break;
2138 }
2139
2140 sd_ba[frag_idx] = bus_addr = cb_arg.seg.ds_addr;
2141 sd_cl[frag_idx] = cl;
2142 #if MEMORY_LOGGING
2143 fl->ifl_cl_enqueued++;
2144 #endif
2145 } else {
2146 bus_addr = sd_ba[frag_idx];
2147 }
2148 bus_dmamap_sync(fl->ifl_buf_tag, sd_map[frag_idx],
2149 BUS_DMASYNC_PREREAD);
2150
2151 if (sd_m[frag_idx] == NULL) {
2152 m = m_gethdr_raw(M_NOWAIT, 0);
2153 if (__predict_false(m == NULL))
2154 break;
2155 sd_m[frag_idx] = m;
2156 }
2157 bit_set(fl->ifl_rx_bitmap, frag_idx);
2158 #if MEMORY_LOGGING
2159 fl->ifl_m_enqueued++;
2160 #endif
2161
2162 DBG_COUNTER_INC(rx_allocs);
2163 fl->ifl_rxd_idxs[i] = frag_idx;
2164 fl->ifl_bus_addrs[i] = bus_addr;
2165 credits++;
2166 i++;
2167 MPASS(credits <= fl->ifl_size);
2168 if (++idx == fl->ifl_size) {
2169 #ifdef INVARIANTS
2170 fl->ifl_gen = 1;
2171 #endif
2172 idx = 0;
2173 }
2174 if (n == 0 || i == IFLIB_MAX_RX_REFRESH) {
2175 iru.iru_pidx = pidx;
2176 iru.iru_count = i;
2177 ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
2178 fl->ifl_pidx = idx;
2179 fl->ifl_credits = credits;
2180 pidx = idx;
2181 i = 0;
2182 }
2183 }
2184
2185 if (n < count - 1) {
2186 if (i != 0) {
2187 iru.iru_pidx = pidx;
2188 iru.iru_count = i;
2189 ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
2190 fl->ifl_pidx = idx;
2191 fl->ifl_credits = credits;
2192 }
2193 DBG_COUNTER_INC(rxd_flush);
2194 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
2195 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2196 ctx->isc_rxd_flush(ctx->ifc_softc, fl->ifl_rxq->ifr_id,
2197 fl->ifl_id, fl->ifl_pidx);
2198 if (__predict_true(bit_test(fl->ifl_rx_bitmap, frag_idx))) {
2199 fl->ifl_fragidx = frag_idx + 1;
2200 if (fl->ifl_fragidx == fl->ifl_size)
2201 fl->ifl_fragidx = 0;
2202 } else {
2203 fl->ifl_fragidx = frag_idx;
2204 }
2205 }
2206
2207 return (n == -1 ? 0 : IFLIB_RXEOF_EMPTY);
2208 }
2209
2210 static inline uint8_t
iflib_fl_refill_all(if_ctx_t ctx,iflib_fl_t fl)2211 iflib_fl_refill_all(if_ctx_t ctx, iflib_fl_t fl)
2212 {
2213 /*
2214 * We leave an unused descriptor to avoid pidx to catch up with cidx.
2215 * This is important as it confuses most NICs. For instance,
2216 * Intel NICs have (per receive ring) RDH and RDT registers, where
2217 * RDH points to the next receive descriptor to be used by the NIC,
2218 * and RDT for the next receive descriptor to be published by the
2219 * driver to the NIC (RDT - 1 is thus the last valid one).
2220 * The condition RDH == RDT means no descriptors are available to
2221 * the NIC, and thus it would be ambiguous if it also meant that
2222 * all the descriptors are available to the NIC.
2223 */
2224 int32_t reclaimable = fl->ifl_size - fl->ifl_credits - 1;
2225 #ifdef INVARIANTS
2226 int32_t delta = fl->ifl_size - get_inuse(fl->ifl_size, fl->ifl_cidx, fl->ifl_pidx, fl->ifl_gen) - 1;
2227 #endif
2228
2229 MPASS(fl->ifl_credits <= fl->ifl_size);
2230 MPASS(reclaimable == delta);
2231
2232 if (reclaimable > 0)
2233 return (iflib_fl_refill(ctx, fl, reclaimable));
2234 return (0);
2235 }
2236
2237 uint8_t
iflib_in_detach(if_ctx_t ctx)2238 iflib_in_detach(if_ctx_t ctx)
2239 {
2240 bool in_detach;
2241
2242 STATE_LOCK(ctx);
2243 in_detach = !!(ctx->ifc_flags & IFC_IN_DETACH);
2244 STATE_UNLOCK(ctx);
2245 return (in_detach);
2246 }
2247
2248 static void
iflib_fl_bufs_free(iflib_fl_t fl)2249 iflib_fl_bufs_free(iflib_fl_t fl)
2250 {
2251 iflib_dma_info_t idi = fl->ifl_ifdi;
2252 bus_dmamap_t sd_map;
2253 uint32_t i;
2254
2255 for (i = 0; i < fl->ifl_size; i++) {
2256 struct mbuf **sd_m = &fl->ifl_sds.ifsd_m[i];
2257 caddr_t *sd_cl = &fl->ifl_sds.ifsd_cl[i];
2258
2259 if (*sd_cl != NULL) {
2260 sd_map = fl->ifl_sds.ifsd_map[i];
2261 bus_dmamap_sync(fl->ifl_buf_tag, sd_map,
2262 BUS_DMASYNC_POSTREAD);
2263 bus_dmamap_unload(fl->ifl_buf_tag, sd_map);
2264 uma_zfree(fl->ifl_zone, *sd_cl);
2265 *sd_cl = NULL;
2266 if (*sd_m != NULL) {
2267 m_init(*sd_m, M_NOWAIT, MT_DATA, 0);
2268 m_free_raw(*sd_m);
2269 *sd_m = NULL;
2270 }
2271 } else {
2272 MPASS(*sd_m == NULL);
2273 }
2274 #if MEMORY_LOGGING
2275 fl->ifl_m_dequeued++;
2276 fl->ifl_cl_dequeued++;
2277 #endif
2278 }
2279 #ifdef INVARIANTS
2280 for (i = 0; i < fl->ifl_size; i++) {
2281 MPASS(fl->ifl_sds.ifsd_cl[i] == NULL);
2282 MPASS(fl->ifl_sds.ifsd_m[i] == NULL);
2283 }
2284 #endif
2285 /*
2286 * Reset free list values
2287 */
2288 fl->ifl_credits = fl->ifl_cidx = fl->ifl_pidx = fl->ifl_gen = fl->ifl_fragidx = 0;
2289 bzero(idi->idi_vaddr, idi->idi_size);
2290 }
2291
2292 /*********************************************************************
2293 *
2294 * Initialize a free list and its buffers.
2295 *
2296 **********************************************************************/
2297 static int
iflib_fl_setup(iflib_fl_t fl)2298 iflib_fl_setup(iflib_fl_t fl)
2299 {
2300 iflib_rxq_t rxq = fl->ifl_rxq;
2301 if_ctx_t ctx = rxq->ifr_ctx;
2302 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2303 int qidx;
2304
2305 bit_nclear(fl->ifl_rx_bitmap, 0, fl->ifl_size - 1);
2306 /*
2307 * Free current RX buffer structs and their mbufs
2308 */
2309 iflib_fl_bufs_free(fl);
2310 /* Now replenish the mbufs */
2311 MPASS(fl->ifl_credits == 0);
2312 qidx = rxq->ifr_fl_offset + fl->ifl_id;
2313 if (scctx->isc_rxd_buf_size[qidx] != 0)
2314 fl->ifl_buf_size = scctx->isc_rxd_buf_size[qidx];
2315 else
2316 fl->ifl_buf_size = ctx->ifc_rx_mbuf_sz;
2317 /*
2318 * ifl_buf_size may be a driver-supplied value, so pull it up
2319 * to the selected mbuf size.
2320 */
2321 fl->ifl_buf_size = iflib_get_mbuf_size_for(fl->ifl_buf_size);
2322 if (fl->ifl_buf_size > ctx->ifc_max_fl_buf_size)
2323 ctx->ifc_max_fl_buf_size = fl->ifl_buf_size;
2324 fl->ifl_cltype = m_gettype(fl->ifl_buf_size);
2325 fl->ifl_zone = m_getzone(fl->ifl_buf_size);
2326
2327 /*
2328 * Avoid pre-allocating zillions of clusters to an idle card
2329 * potentially speeding up attach. In any case make sure
2330 * to leave a descriptor unavailable. See the comment in
2331 * iflib_fl_refill_all().
2332 */
2333 MPASS(fl->ifl_size > 0);
2334 (void)iflib_fl_refill(ctx, fl, min(128, fl->ifl_size - 1));
2335 if (min(128, fl->ifl_size - 1) != fl->ifl_credits)
2336 return (ENOBUFS);
2337 /*
2338 * handle failure
2339 */
2340 MPASS(rxq != NULL);
2341 MPASS(fl->ifl_ifdi != NULL);
2342 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
2343 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2344 return (0);
2345 }
2346
2347 /*********************************************************************
2348 *
2349 * Free receive ring data structures
2350 *
2351 **********************************************************************/
2352 static void
iflib_rx_sds_free(iflib_rxq_t rxq)2353 iflib_rx_sds_free(iflib_rxq_t rxq)
2354 {
2355 iflib_fl_t fl;
2356 int i, j;
2357
2358 if (rxq->ifr_fl != NULL) {
2359 for (i = 0; i < rxq->ifr_nfl; i++) {
2360 fl = &rxq->ifr_fl[i];
2361 if (fl->ifl_buf_tag != NULL) {
2362 if (fl->ifl_sds.ifsd_map != NULL) {
2363 for (j = 0; j < fl->ifl_size; j++) {
2364 bus_dmamap_sync(
2365 fl->ifl_buf_tag,
2366 fl->ifl_sds.ifsd_map[j],
2367 BUS_DMASYNC_POSTREAD);
2368 bus_dmamap_unload(
2369 fl->ifl_buf_tag,
2370 fl->ifl_sds.ifsd_map[j]);
2371 bus_dmamap_destroy(
2372 fl->ifl_buf_tag,
2373 fl->ifl_sds.ifsd_map[j]);
2374 }
2375 }
2376 bus_dma_tag_destroy(fl->ifl_buf_tag);
2377 fl->ifl_buf_tag = NULL;
2378 }
2379 free(fl->ifl_sds.ifsd_m, M_IFLIB);
2380 free(fl->ifl_sds.ifsd_cl, M_IFLIB);
2381 free(fl->ifl_sds.ifsd_ba, M_IFLIB);
2382 free(fl->ifl_sds.ifsd_map, M_IFLIB);
2383 free(fl->ifl_rx_bitmap, M_IFLIB);
2384 fl->ifl_sds.ifsd_m = NULL;
2385 fl->ifl_sds.ifsd_cl = NULL;
2386 fl->ifl_sds.ifsd_ba = NULL;
2387 fl->ifl_sds.ifsd_map = NULL;
2388 fl->ifl_rx_bitmap = NULL;
2389 }
2390 free(rxq->ifr_fl, M_IFLIB);
2391 rxq->ifr_fl = NULL;
2392 free(rxq->ifr_ifdi, M_IFLIB);
2393 rxq->ifr_ifdi = NULL;
2394 rxq->ifr_cq_cidx = 0;
2395 }
2396 }
2397
2398 /*
2399 * Timer routine
2400 */
2401 static void
iflib_timer(void * arg)2402 iflib_timer(void *arg)
2403 {
2404 iflib_txq_t txq = arg;
2405 if_ctx_t ctx = txq->ift_ctx;
2406 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2407 uint64_t this_tick = ticks;
2408
2409 if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))
2410 return;
2411
2412 /*
2413 ** Check on the state of the TX queue(s), this
2414 ** can be done without the lock because its RO
2415 ** and the HUNG state will be static if set.
2416 */
2417 if (this_tick - txq->ift_last_timer_tick >= iflib_timer_default) {
2418 txq->ift_last_timer_tick = this_tick;
2419 IFDI_TIMER(ctx, txq->ift_id);
2420 if ((txq->ift_qstatus == IFLIB_QUEUE_HUNG) &&
2421 ((txq->ift_cleaned_prev == txq->ift_cleaned) ||
2422 (sctx->isc_pause_frames == 0)))
2423 goto hung;
2424
2425 if (txq->ift_qstatus != IFLIB_QUEUE_IDLE &&
2426 ifmp_ring_is_stalled(txq->ift_br)) {
2427 KASSERT(ctx->ifc_link_state == LINK_STATE_UP,
2428 ("queue can't be marked as hung if interface is down"));
2429 txq->ift_qstatus = IFLIB_QUEUE_HUNG;
2430 }
2431 txq->ift_cleaned_prev = txq->ift_cleaned;
2432 }
2433 /* handle any laggards */
2434 if (txq->ift_db_pending)
2435 GROUPTASK_ENQUEUE(&txq->ift_task);
2436
2437 sctx->isc_pause_frames = 0;
2438 if (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)
2439 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer,
2440 txq, txq->ift_timer.c_cpu);
2441 return;
2442
2443 hung:
2444 device_printf(ctx->ifc_dev,
2445 "Watchdog timeout (TX: %d desc avail: %d pidx: %d) -- resetting\n",
2446 txq->ift_id, TXQ_AVAIL(txq), txq->ift_pidx);
2447 STATE_LOCK(ctx);
2448 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2449 ctx->ifc_flags |= (IFC_DO_WATCHDOG | IFC_DO_RESET);
2450 iflib_admin_intr_deferred(ctx);
2451 STATE_UNLOCK(ctx);
2452 }
2453
2454 static uint16_t
iflib_get_mbuf_size_for(unsigned int size)2455 iflib_get_mbuf_size_for(unsigned int size)
2456 {
2457
2458 if (size <= MCLBYTES)
2459 return (MCLBYTES);
2460 else
2461 return (MJUMPAGESIZE);
2462 }
2463
2464 static void
iflib_calc_rx_mbuf_sz(if_ctx_t ctx)2465 iflib_calc_rx_mbuf_sz(if_ctx_t ctx)
2466 {
2467 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2468
2469 /*
2470 * XXX don't set the max_frame_size to larger
2471 * than the hardware can handle
2472 */
2473 ctx->ifc_rx_mbuf_sz =
2474 iflib_get_mbuf_size_for(sctx->isc_max_frame_size);
2475 }
2476
2477 uint32_t
iflib_get_rx_mbuf_sz(if_ctx_t ctx)2478 iflib_get_rx_mbuf_sz(if_ctx_t ctx)
2479 {
2480
2481 return (ctx->ifc_rx_mbuf_sz);
2482 }
2483
2484 static void
iflib_init_locked(if_ctx_t ctx)2485 iflib_init_locked(if_ctx_t ctx)
2486 {
2487 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2488 if_t ifp = ctx->ifc_ifp;
2489 iflib_fl_t fl;
2490 iflib_txq_t txq;
2491 iflib_rxq_t rxq;
2492 int i, j, tx_ip_csum_flags, tx_ip6_csum_flags;
2493
2494 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2495 IFDI_INTR_DISABLE(ctx);
2496
2497 /*
2498 * See iflib_stop(). Useful in case iflib_init_locked() is
2499 * called without first calling iflib_stop().
2500 */
2501 netmap_disable_all_rings(ifp);
2502
2503 tx_ip_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP);
2504 tx_ip6_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_IP6_SCTP);
2505 /* Set hardware offload abilities */
2506 if_clearhwassist(ifp);
2507 if (if_getcapenable(ifp) & IFCAP_TXCSUM)
2508 if_sethwassistbits(ifp, tx_ip_csum_flags, 0);
2509 if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6)
2510 if_sethwassistbits(ifp, tx_ip6_csum_flags, 0);
2511 if (if_getcapenable(ifp) & IFCAP_TSO4)
2512 if_sethwassistbits(ifp, CSUM_IP_TSO, 0);
2513 if (if_getcapenable(ifp) & IFCAP_TSO6)
2514 if_sethwassistbits(ifp, CSUM_IP6_TSO, 0);
2515
2516 for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) {
2517 CALLOUT_LOCK(txq);
2518 callout_stop(&txq->ift_timer);
2519 #ifdef DEV_NETMAP
2520 callout_stop(&txq->ift_netmap_timer);
2521 #endif /* DEV_NETMAP */
2522 CALLOUT_UNLOCK(txq);
2523 (void)iflib_netmap_txq_init(ctx, txq);
2524 }
2525
2526 /*
2527 * Calculate a suitable Rx mbuf size prior to calling IFDI_INIT, so
2528 * that drivers can use the value when setting up the hardware receive
2529 * buffers.
2530 */
2531 iflib_calc_rx_mbuf_sz(ctx);
2532
2533 #ifdef INVARIANTS
2534 i = if_getdrvflags(ifp);
2535 #endif
2536 IFDI_INIT(ctx);
2537 MPASS(if_getdrvflags(ifp) == i);
2538 for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) {
2539 if (iflib_netmap_rxq_init(ctx, rxq) > 0) {
2540 /* This rxq is in netmap mode. Skip normal init. */
2541 continue;
2542 }
2543 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
2544 if (iflib_fl_setup(fl)) {
2545 device_printf(ctx->ifc_dev,
2546 "setting up free list %d failed - "
2547 "check cluster settings\n", j);
2548 goto done;
2549 }
2550 }
2551 }
2552 done:
2553 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2554 IFDI_INTR_ENABLE(ctx);
2555 txq = ctx->ifc_txqs;
2556 for (i = 0; i < scctx->isc_ntxqsets; i++, txq++)
2557 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq,
2558 txq->ift_timer.c_cpu);
2559
2560 /* Re-enable txsync/rxsync. */
2561 netmap_enable_all_rings(ifp);
2562 }
2563
2564 static int
iflib_media_change(if_t ifp)2565 iflib_media_change(if_t ifp)
2566 {
2567 if_ctx_t ctx = if_getsoftc(ifp);
2568 int err;
2569
2570 CTX_LOCK(ctx);
2571 if ((err = IFDI_MEDIA_CHANGE(ctx)) == 0)
2572 iflib_if_init_locked(ctx);
2573 CTX_UNLOCK(ctx);
2574 return (err);
2575 }
2576
2577 static void
iflib_media_status(if_t ifp,struct ifmediareq * ifmr)2578 iflib_media_status(if_t ifp, struct ifmediareq *ifmr)
2579 {
2580 if_ctx_t ctx = if_getsoftc(ifp);
2581
2582 CTX_LOCK(ctx);
2583 IFDI_UPDATE_ADMIN_STATUS(ctx);
2584 IFDI_MEDIA_STATUS(ctx, ifmr);
2585 CTX_UNLOCK(ctx);
2586 }
2587
2588 static void
iflib_stop(if_ctx_t ctx)2589 iflib_stop(if_ctx_t ctx)
2590 {
2591 iflib_txq_t txq = ctx->ifc_txqs;
2592 iflib_rxq_t rxq = ctx->ifc_rxqs;
2593 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2594 if_shared_ctx_t sctx = ctx->ifc_sctx;
2595 iflib_dma_info_t di;
2596 iflib_fl_t fl;
2597 int i, j;
2598
2599 /* Tell the stack that the interface is no longer active */
2600 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2601
2602 IFDI_INTR_DISABLE(ctx);
2603 DELAY(1000);
2604 IFDI_STOP(ctx);
2605 DELAY(1000);
2606
2607 /*
2608 * Stop any pending txsync/rxsync and prevent new ones
2609 * form starting. Processes blocked in poll() will get
2610 * POLLERR.
2611 */
2612 netmap_disable_all_rings(ctx->ifc_ifp);
2613
2614 iflib_debug_reset();
2615 /* Wait for current tx queue users to exit to disarm watchdog timer. */
2616 for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) {
2617 /* make sure all transmitters have completed before proceeding XXX */
2618
2619 CALLOUT_LOCK(txq);
2620 callout_stop(&txq->ift_timer);
2621 #ifdef DEV_NETMAP
2622 callout_stop(&txq->ift_netmap_timer);
2623 #endif /* DEV_NETMAP */
2624 CALLOUT_UNLOCK(txq);
2625
2626 /* clean any enqueued buffers */
2627 iflib_ifmp_purge(txq);
2628 /* Free any existing tx buffers. */
2629 for (j = 0; j < txq->ift_size; j++) {
2630 iflib_txsd_free(ctx, txq, j);
2631 }
2632 txq->ift_processed = txq->ift_cleaned = txq->ift_cidx_processed = 0;
2633 txq->ift_in_use = txq->ift_gen = txq->ift_no_desc_avail = 0;
2634 if (sctx->isc_flags & IFLIB_PRESERVE_TX_INDICES)
2635 txq->ift_cidx = txq->ift_pidx;
2636 else
2637 txq->ift_cidx = txq->ift_pidx = 0;
2638
2639 txq->ift_closed = txq->ift_mbuf_defrag = txq->ift_mbuf_defrag_failed = 0;
2640 txq->ift_no_tx_dma_setup = txq->ift_txd_encap_efbig = txq->ift_map_failed = 0;
2641 txq->ift_pullups = 0;
2642 ifmp_ring_reset_stats(txq->ift_br);
2643 for (j = 0, di = txq->ift_ifdi; j < sctx->isc_ntxqs; j++, di++)
2644 bzero((void *)di->idi_vaddr, di->idi_size);
2645 }
2646 for (i = 0; i < scctx->isc_nrxqsets; i++, rxq++) {
2647 if (rxq->ifr_task.gt_taskqueue != NULL)
2648 gtaskqueue_drain(rxq->ifr_task.gt_taskqueue,
2649 &rxq->ifr_task.gt_task);
2650
2651 rxq->ifr_cq_cidx = 0;
2652 for (j = 0, di = rxq->ifr_ifdi; j < sctx->isc_nrxqs; j++, di++)
2653 bzero((void *)di->idi_vaddr, di->idi_size);
2654 /* also resets the free lists pidx/cidx */
2655 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
2656 iflib_fl_bufs_free(fl);
2657 }
2658 }
2659
2660 static inline caddr_t
calc_next_rxd(iflib_fl_t fl,int cidx)2661 calc_next_rxd(iflib_fl_t fl, int cidx)
2662 {
2663 qidx_t size;
2664 int nrxd;
2665 caddr_t start, end, cur, next;
2666
2667 nrxd = fl->ifl_size;
2668 size = fl->ifl_rxd_size;
2669 start = fl->ifl_ifdi->idi_vaddr;
2670
2671 if (__predict_false(size == 0))
2672 return (start);
2673 cur = start + size * cidx;
2674 end = start + size * nrxd;
2675 next = CACHE_PTR_NEXT(cur);
2676 return (next < end ? next : start);
2677 }
2678
2679 static inline void
prefetch_pkts(iflib_fl_t fl,int cidx)2680 prefetch_pkts(iflib_fl_t fl, int cidx)
2681 {
2682 int nextptr;
2683 int nrxd = fl->ifl_size;
2684 caddr_t next_rxd;
2685
2686 nextptr = (cidx + CACHE_PTR_INCREMENT) & (nrxd - 1);
2687 prefetch(&fl->ifl_sds.ifsd_m[nextptr]);
2688 prefetch(&fl->ifl_sds.ifsd_cl[nextptr]);
2689 next_rxd = calc_next_rxd(fl, cidx);
2690 prefetch(next_rxd);
2691 prefetch(fl->ifl_sds.ifsd_m[(cidx + 1) & (nrxd - 1)]);
2692 prefetch(fl->ifl_sds.ifsd_m[(cidx + 2) & (nrxd - 1)]);
2693 prefetch(fl->ifl_sds.ifsd_m[(cidx + 3) & (nrxd - 1)]);
2694 prefetch(fl->ifl_sds.ifsd_m[(cidx + 4) & (nrxd - 1)]);
2695 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 1) & (nrxd - 1)]);
2696 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 2) & (nrxd - 1)]);
2697 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 3) & (nrxd - 1)]);
2698 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 4) & (nrxd - 1)]);
2699 }
2700
2701 static struct mbuf *
rxd_frag_to_sd(iflib_rxq_t rxq,if_rxd_frag_t irf,bool unload,if_rxsd_t sd,int * pf_rv,if_rxd_info_t ri)2702 rxd_frag_to_sd(iflib_rxq_t rxq, if_rxd_frag_t irf, bool unload, if_rxsd_t sd,
2703 int *pf_rv, if_rxd_info_t ri)
2704 {
2705 bus_dmamap_t map;
2706 iflib_fl_t fl;
2707 caddr_t payload;
2708 struct mbuf *m;
2709 int flid, cidx, len, next;
2710
2711 map = NULL;
2712 flid = irf->irf_flid;
2713 cidx = irf->irf_idx;
2714 fl = &rxq->ifr_fl[flid];
2715 sd->ifsd_fl = fl;
2716 sd->ifsd_cl = &fl->ifl_sds.ifsd_cl[cidx];
2717 fl->ifl_credits--;
2718 #if MEMORY_LOGGING
2719 fl->ifl_m_dequeued++;
2720 #endif
2721 if (rxq->ifr_ctx->ifc_flags & IFC_PREFETCH)
2722 prefetch_pkts(fl, cidx);
2723 next = (cidx + CACHE_PTR_INCREMENT) & (fl->ifl_size - 1);
2724 prefetch(&fl->ifl_sds.ifsd_map[next]);
2725 map = fl->ifl_sds.ifsd_map[cidx];
2726
2727 bus_dmamap_sync(fl->ifl_buf_tag, map, BUS_DMASYNC_POSTREAD);
2728
2729 if (rxq->pfil != NULL && PFIL_HOOKED_IN(rxq->pfil) && pf_rv != NULL &&
2730 irf->irf_len != 0) {
2731 payload = *sd->ifsd_cl;
2732 payload += ri->iri_pad;
2733 len = ri->iri_len - ri->iri_pad;
2734 *pf_rv = pfil_mem_in(rxq->pfil, payload, len, ri->iri_ifp, &m);
2735 switch (*pf_rv) {
2736 case PFIL_DROPPED:
2737 case PFIL_CONSUMED:
2738 /*
2739 * The filter ate it. Everything is recycled.
2740 */
2741 m = NULL;
2742 unload = 0;
2743 break;
2744 case PFIL_REALLOCED:
2745 /*
2746 * The filter copied it. Everything is recycled.
2747 * 'm' points at new mbuf.
2748 */
2749 unload = 0;
2750 break;
2751 case PFIL_PASS:
2752 /*
2753 * Filter said it was OK, so receive like
2754 * normal
2755 */
2756 m = fl->ifl_sds.ifsd_m[cidx];
2757 fl->ifl_sds.ifsd_m[cidx] = NULL;
2758 break;
2759 default:
2760 MPASS(0);
2761 }
2762 } else {
2763 m = fl->ifl_sds.ifsd_m[cidx];
2764 fl->ifl_sds.ifsd_m[cidx] = NULL;
2765 if (pf_rv != NULL)
2766 *pf_rv = PFIL_PASS;
2767 }
2768
2769 if (unload && irf->irf_len != 0)
2770 bus_dmamap_unload(fl->ifl_buf_tag, map);
2771 fl->ifl_cidx = (fl->ifl_cidx + 1) & (fl->ifl_size - 1);
2772 if (__predict_false(fl->ifl_cidx == 0))
2773 fl->ifl_gen = 0;
2774 bit_clear(fl->ifl_rx_bitmap, cidx);
2775 return (m);
2776 }
2777
2778 static struct mbuf *
assemble_segments(iflib_rxq_t rxq,if_rxd_info_t ri,if_rxsd_t sd,int * pf_rv)2779 assemble_segments(iflib_rxq_t rxq, if_rxd_info_t ri, if_rxsd_t sd, int *pf_rv)
2780 {
2781 struct mbuf *m, *mh, *mt;
2782 caddr_t cl;
2783 int *pf_rv_ptr, flags, i, padlen;
2784 bool consumed;
2785
2786 i = 0;
2787 mh = NULL;
2788 consumed = false;
2789 *pf_rv = PFIL_PASS;
2790 pf_rv_ptr = pf_rv;
2791 do {
2792 m = rxd_frag_to_sd(rxq, &ri->iri_frags[i], !consumed, sd,
2793 pf_rv_ptr, ri);
2794
2795 MPASS(*sd->ifsd_cl != NULL);
2796
2797 /*
2798 * Exclude zero-length frags & frags from
2799 * packets the filter has consumed or dropped
2800 */
2801 if (ri->iri_frags[i].irf_len == 0 || consumed ||
2802 *pf_rv == PFIL_CONSUMED || *pf_rv == PFIL_DROPPED) {
2803 if (mh == NULL) {
2804 /* everything saved here */
2805 consumed = true;
2806 pf_rv_ptr = NULL;
2807 continue;
2808 }
2809 /* XXX we can save the cluster here, but not the mbuf */
2810 m_init(m, M_NOWAIT, MT_DATA, 0);
2811 m_free(m);
2812 continue;
2813 }
2814 if (mh == NULL) {
2815 flags = M_PKTHDR | M_EXT;
2816 mh = mt = m;
2817 padlen = ri->iri_pad;
2818 } else {
2819 flags = M_EXT;
2820 mt->m_next = m;
2821 mt = m;
2822 /* assuming padding is only on the first fragment */
2823 padlen = 0;
2824 }
2825 cl = *sd->ifsd_cl;
2826 *sd->ifsd_cl = NULL;
2827
2828 /* Can these two be made one ? */
2829 m_init(m, M_NOWAIT, MT_DATA, flags);
2830 m_cljset(m, cl, sd->ifsd_fl->ifl_cltype);
2831 /*
2832 * These must follow m_init and m_cljset
2833 */
2834 m->m_data += padlen;
2835 ri->iri_len -= padlen;
2836 m->m_len = ri->iri_frags[i].irf_len;
2837 } while (++i < ri->iri_nfrags);
2838
2839 return (mh);
2840 }
2841
2842 /*
2843 * Process one software descriptor
2844 */
2845 static struct mbuf *
iflib_rxd_pkt_get(iflib_rxq_t rxq,if_rxd_info_t ri)2846 iflib_rxd_pkt_get(iflib_rxq_t rxq, if_rxd_info_t ri)
2847 {
2848 struct if_rxsd sd;
2849 struct mbuf *m;
2850 int pf_rv;
2851
2852 /* should I merge this back in now that the two paths are basically duplicated? */
2853 if (ri->iri_nfrags == 1 &&
2854 ri->iri_frags[0].irf_len != 0 &&
2855 ri->iri_frags[0].irf_len <= MIN(IFLIB_RX_COPY_THRESH, MHLEN)) {
2856 m = rxd_frag_to_sd(rxq, &ri->iri_frags[0], false, &sd,
2857 &pf_rv, ri);
2858 if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
2859 return (m);
2860 if (pf_rv == PFIL_PASS) {
2861 m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR);
2862 #ifndef __NO_STRICT_ALIGNMENT
2863 if (!IP_ALIGNED(m) && ri->iri_pad == 0)
2864 m->m_data += 2;
2865 #endif
2866 memcpy(m->m_data, *sd.ifsd_cl, ri->iri_len);
2867 m->m_len = ri->iri_frags[0].irf_len;
2868 m->m_data += ri->iri_pad;
2869 ri->iri_len -= ri->iri_pad;
2870 }
2871 } else {
2872 m = assemble_segments(rxq, ri, &sd, &pf_rv);
2873 if (m == NULL)
2874 return (NULL);
2875 if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
2876 return (m);
2877 }
2878 m->m_pkthdr.len = ri->iri_len;
2879 m->m_pkthdr.rcvif = ri->iri_ifp;
2880 m->m_flags |= ri->iri_flags;
2881 m->m_pkthdr.ether_vtag = ri->iri_vtag;
2882 m->m_pkthdr.flowid = ri->iri_flowid;
2883 #ifdef NUMA
2884 m->m_pkthdr.numa_domain = if_getnumadomain(ri->iri_ifp);
2885 #endif
2886 M_HASHTYPE_SET(m, ri->iri_rsstype);
2887 m->m_pkthdr.csum_flags = ri->iri_csum_flags;
2888 m->m_pkthdr.csum_data = ri->iri_csum_data;
2889 return (m);
2890 }
2891
2892 #if defined(INET6) || defined(INET)
2893 static void
iflib_get_ip_forwarding(struct lro_ctrl * lc,bool * v4,bool * v6)2894 iflib_get_ip_forwarding(struct lro_ctrl *lc, bool *v4, bool *v6)
2895 {
2896 CURVNET_SET(if_getvnet(lc->ifp));
2897 #if defined(INET6)
2898 *v6 = V_ip6_forwarding;
2899 #endif
2900 #if defined(INET)
2901 *v4 = V_ipforwarding;
2902 #endif
2903 CURVNET_RESTORE();
2904 }
2905
2906 /*
2907 * Returns true if it's possible this packet could be LROed.
2908 * if it returns false, it is guaranteed that tcp_lro_rx()
2909 * would not return zero.
2910 */
2911 static bool
iflib_check_lro_possible(struct mbuf * m,bool v4_forwarding,bool v6_forwarding)2912 iflib_check_lro_possible(struct mbuf *m, bool v4_forwarding, bool v6_forwarding)
2913 {
2914 struct ether_header *eh;
2915
2916 eh = mtod(m, struct ether_header *);
2917 switch (eh->ether_type) {
2918 #if defined(INET6)
2919 case htons(ETHERTYPE_IPV6):
2920 return (!v6_forwarding);
2921 #endif
2922 #if defined(INET)
2923 case htons(ETHERTYPE_IP):
2924 return (!v4_forwarding);
2925 #endif
2926 }
2927
2928 return (false);
2929 }
2930 #else
2931 static void
iflib_get_ip_forwarding(struct lro_ctrl * lc __unused,bool * v4 __unused,bool * v6 __unused)2932 iflib_get_ip_forwarding(struct lro_ctrl *lc __unused, bool *v4 __unused, bool *v6 __unused)
2933 {
2934 }
2935 #endif
2936
2937 static void
_task_fn_rx_watchdog(void * context)2938 _task_fn_rx_watchdog(void *context)
2939 {
2940 iflib_rxq_t rxq = context;
2941
2942 GROUPTASK_ENQUEUE(&rxq->ifr_task);
2943 }
2944
2945 static uint8_t
iflib_rxeof(iflib_rxq_t rxq,qidx_t budget)2946 iflib_rxeof(iflib_rxq_t rxq, qidx_t budget)
2947 {
2948 if_t ifp;
2949 if_ctx_t ctx = rxq->ifr_ctx;
2950 if_shared_ctx_t sctx = ctx->ifc_sctx;
2951 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2952 int avail, i;
2953 qidx_t *cidxp;
2954 struct if_rxd_info ri;
2955 int err, budget_left, rx_bytes, rx_pkts;
2956 iflib_fl_t fl;
2957 int lro_enabled;
2958 bool v4_forwarding, v6_forwarding, lro_possible;
2959 uint8_t retval = 0;
2960
2961 /*
2962 * XXX early demux data packets so that if_input processing only handles
2963 * acks in interrupt context
2964 */
2965 struct mbuf *m, *mh, *mt, *mf;
2966
2967 NET_EPOCH_ASSERT();
2968
2969 lro_possible = v4_forwarding = v6_forwarding = false;
2970 ifp = ctx->ifc_ifp;
2971 mh = mt = NULL;
2972 MPASS(budget > 0);
2973 rx_pkts = rx_bytes = 0;
2974 if (sctx->isc_flags & IFLIB_HAS_RXCQ)
2975 cidxp = &rxq->ifr_cq_cidx;
2976 else
2977 cidxp = &rxq->ifr_fl[0].ifl_cidx;
2978 if ((avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget)) == 0) {
2979 for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
2980 retval |= iflib_fl_refill_all(ctx, fl);
2981 DBG_COUNTER_INC(rx_unavail);
2982 return (retval);
2983 }
2984
2985 /* pfil needs the vnet to be set */
2986 CURVNET_SET_QUIET(if_getvnet(ifp));
2987 for (budget_left = budget; budget_left > 0 && avail > 0;) {
2988 if (__predict_false(!CTX_ACTIVE(ctx))) {
2989 DBG_COUNTER_INC(rx_ctx_inactive);
2990 break;
2991 }
2992 /*
2993 * Reset client set fields to their default values
2994 */
2995 rxd_info_zero(&ri);
2996 ri.iri_qsidx = rxq->ifr_id;
2997 ri.iri_cidx = *cidxp;
2998 ri.iri_ifp = ifp;
2999 ri.iri_frags = rxq->ifr_frags;
3000 err = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
3001
3002 if (err)
3003 goto err;
3004 rx_pkts += 1;
3005 rx_bytes += ri.iri_len;
3006 if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
3007 *cidxp = ri.iri_cidx;
3008 /* Update our consumer index */
3009 /* XXX NB: shurd - check if this is still safe */
3010 while (rxq->ifr_cq_cidx >= scctx->isc_nrxd[0])
3011 rxq->ifr_cq_cidx -= scctx->isc_nrxd[0];
3012 /* was this only a completion queue message? */
3013 if (__predict_false(ri.iri_nfrags == 0))
3014 continue;
3015 }
3016 MPASS(ri.iri_nfrags != 0);
3017 MPASS(ri.iri_len != 0);
3018
3019 /* will advance the cidx on the corresponding free lists */
3020 m = iflib_rxd_pkt_get(rxq, &ri);
3021 avail--;
3022 budget_left--;
3023 if (avail == 0 && budget_left)
3024 avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget_left);
3025
3026 if (__predict_false(m == NULL))
3027 continue;
3028
3029 /* imm_pkt: -- cxgb */
3030 if (mh == NULL)
3031 mh = mt = m;
3032 else {
3033 mt->m_nextpkt = m;
3034 mt = m;
3035 }
3036 }
3037 CURVNET_RESTORE();
3038 /* make sure that we can refill faster than drain */
3039 for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
3040 retval |= iflib_fl_refill_all(ctx, fl);
3041
3042 lro_enabled = (if_getcapenable(ifp) & IFCAP_LRO);
3043 if (lro_enabled)
3044 iflib_get_ip_forwarding(&rxq->ifr_lc, &v4_forwarding, &v6_forwarding);
3045 mt = mf = NULL;
3046 while (mh != NULL) {
3047 m = mh;
3048 mh = mh->m_nextpkt;
3049 m->m_nextpkt = NULL;
3050 #ifndef __NO_STRICT_ALIGNMENT
3051 if (!IP_ALIGNED(m) && (m = iflib_fixup_rx(m)) == NULL)
3052 continue;
3053 #endif
3054 #if defined(INET6) || defined(INET)
3055 if (lro_enabled) {
3056 if (!lro_possible) {
3057 lro_possible = iflib_check_lro_possible(m, v4_forwarding, v6_forwarding);
3058 if (lro_possible && mf != NULL) {
3059 if_input(ifp, mf);
3060 DBG_COUNTER_INC(rx_if_input);
3061 mt = mf = NULL;
3062 }
3063 }
3064 if ((m->m_pkthdr.csum_flags & (CSUM_L4_CALC | CSUM_L4_VALID)) ==
3065 (CSUM_L4_CALC | CSUM_L4_VALID)) {
3066 if (lro_possible && tcp_lro_rx(&rxq->ifr_lc, m, 0) == 0)
3067 continue;
3068 }
3069 }
3070 #endif
3071 if (lro_possible) {
3072 if_input(ifp, m);
3073 DBG_COUNTER_INC(rx_if_input);
3074 continue;
3075 }
3076
3077 if (mf == NULL)
3078 mf = m;
3079 if (mt != NULL)
3080 mt->m_nextpkt = m;
3081 mt = m;
3082 }
3083 if (mf != NULL) {
3084 if_input(ifp, mf);
3085 DBG_COUNTER_INC(rx_if_input);
3086 }
3087
3088 if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
3089 if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
3090
3091 /*
3092 * Flush any outstanding LRO work
3093 */
3094 #if defined(INET6) || defined(INET)
3095 tcp_lro_flush_all(&rxq->ifr_lc);
3096 #endif
3097 if (avail != 0 || iflib_rxd_avail(ctx, rxq, *cidxp, 1) != 0)
3098 retval |= IFLIB_RXEOF_MORE;
3099 return (retval);
3100 err:
3101 STATE_LOCK(ctx);
3102 ctx->ifc_flags |= IFC_DO_RESET;
3103 iflib_admin_intr_deferred(ctx);
3104 STATE_UNLOCK(ctx);
3105 return (0);
3106 }
3107
3108 #define TXD_NOTIFY_COUNT(txq) (((txq)->ift_size / (txq)->ift_update_freq) - 1)
3109 static inline qidx_t
txq_max_db_deferred(iflib_txq_t txq,qidx_t in_use)3110 txq_max_db_deferred(iflib_txq_t txq, qidx_t in_use)
3111 {
3112 qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
3113 qidx_t minthresh = txq->ift_size / 8;
3114 if (in_use > 4 * minthresh)
3115 return (notify_count);
3116 if (in_use > 2 * minthresh)
3117 return (notify_count >> 1);
3118 if (in_use > minthresh)
3119 return (notify_count >> 3);
3120 return (0);
3121 }
3122
3123 static inline qidx_t
txq_max_rs_deferred(iflib_txq_t txq)3124 txq_max_rs_deferred(iflib_txq_t txq)
3125 {
3126 qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
3127 qidx_t minthresh = txq->ift_size / 8;
3128 if (txq->ift_in_use > 4 * minthresh)
3129 return (notify_count);
3130 if (txq->ift_in_use > 2 * minthresh)
3131 return (notify_count >> 1);
3132 if (txq->ift_in_use > minthresh)
3133 return (notify_count >> 2);
3134 return (2);
3135 }
3136
3137 #define M_CSUM_FLAGS(m) ((m)->m_pkthdr.csum_flags)
3138 #define M_HAS_VLANTAG(m) (m->m_flags & M_VLANTAG)
3139
3140 #define TXQ_MAX_DB_DEFERRED(txq, in_use) txq_max_db_deferred((txq), (in_use))
3141 #define TXQ_MAX_RS_DEFERRED(txq) txq_max_rs_deferred(txq)
3142 #define TXQ_MAX_DB_CONSUMED(size) (size >> 4)
3143
3144 /* forward compatibility for cxgb */
3145 #define FIRST_QSET(ctx) 0
3146 #define NTXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_ntxqsets)
3147 #define NRXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_nrxqsets)
3148 #define QIDX(ctx, m) ((((m)->m_pkthdr.flowid & ctx->ifc_softc_ctx.isc_rss_table_mask) % NTXQSETS(ctx)) + FIRST_QSET(ctx))
3149 #define DESC_RECLAIMABLE(q) ((int)((q)->ift_processed - (q)->ift_cleaned - (q)->ift_ctx->ifc_softc_ctx.isc_tx_nsegments))
3150
3151 /* XXX we should be setting this to something other than zero */
3152 #define RECLAIM_THRESH(ctx) ((ctx)->ifc_sctx->isc_tx_reclaim_thresh)
3153 #define MAX_TX_DESC(ctx) MAX((ctx)->ifc_softc_ctx.isc_tx_tso_segments_max, \
3154 (ctx)->ifc_softc_ctx.isc_tx_nsegments)
3155
3156 static inline bool
iflib_txd_db_check(iflib_txq_t txq,int ring)3157 iflib_txd_db_check(iflib_txq_t txq, int ring)
3158 {
3159 if_ctx_t ctx = txq->ift_ctx;
3160 qidx_t dbval, max;
3161
3162 max = TXQ_MAX_DB_DEFERRED(txq, txq->ift_in_use);
3163
3164 /* force || threshold exceeded || at the edge of the ring */
3165 if (ring || (txq->ift_db_pending >= max) || (TXQ_AVAIL(txq) <= MAX_TX_DESC(ctx) + 2)) {
3166
3167 /*
3168 * 'npending' is used if the card's doorbell is in terms of the number of descriptors
3169 * pending flush (BRCM). 'pidx' is used in cases where the card's doorbeel uses the
3170 * producer index explicitly (INTC).
3171 */
3172 dbval = txq->ift_npending ? txq->ift_npending : txq->ift_pidx;
3173 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
3174 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3175 ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, dbval);
3176
3177 /*
3178 * Absent bugs there are zero packets pending so reset pending counts to zero.
3179 */
3180 txq->ift_db_pending = txq->ift_npending = 0;
3181 return (true);
3182 }
3183 return (false);
3184 }
3185
3186 #ifdef PKT_DEBUG
3187 static void
print_pkt(if_pkt_info_t pi)3188 print_pkt(if_pkt_info_t pi)
3189 {
3190 printf("pi len: %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n",
3191 pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx);
3192 printf("pi new_pidx: %d csum_flags: %lx tso_segsz: %d mflags: %x vtag: %d\n",
3193 pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_tso_segsz, pi->ipi_mflags, pi->ipi_vtag);
3194 printf("pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n",
3195 pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto);
3196 }
3197 #endif
3198
3199 #define IS_TSO4(pi) ((pi)->ipi_csum_flags & CSUM_IP_TSO)
3200 #define IS_TX_OFFLOAD4(pi) ((pi)->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP_TSO))
3201 #define IS_TSO6(pi) ((pi)->ipi_csum_flags & CSUM_IP6_TSO)
3202 #define IS_TX_OFFLOAD6(pi) ((pi)->ipi_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_TSO))
3203
3204 /**
3205 * Parses out ethernet header information in the given mbuf.
3206 * Returns in pi: ipi_etype (EtherType) and ipi_ehdrlen (Ethernet header length)
3207 *
3208 * This will account for the VLAN header if present.
3209 *
3210 * XXX: This doesn't handle QinQ, which could prevent TX offloads for those
3211 * types of packets.
3212 */
3213 static int
iflib_parse_ether_header(if_pkt_info_t pi,struct mbuf ** mp,uint64_t * pullups)3214 iflib_parse_ether_header(if_pkt_info_t pi, struct mbuf **mp, uint64_t *pullups)
3215 {
3216 struct ether_vlan_header *eh;
3217 struct mbuf *m;
3218
3219 m = *mp;
3220 if (__predict_false(m->m_len < sizeof(*eh))) {
3221 (*pullups)++;
3222 if (__predict_false((m = m_pullup(m, sizeof(*eh))) == NULL))
3223 return (ENOMEM);
3224 }
3225 eh = mtod(m, struct ether_vlan_header *);
3226 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3227 pi->ipi_etype = ntohs(eh->evl_proto);
3228 pi->ipi_ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3229 } else {
3230 pi->ipi_etype = ntohs(eh->evl_encap_proto);
3231 pi->ipi_ehdrlen = ETHER_HDR_LEN;
3232 }
3233 *mp = m;
3234
3235 return (0);
3236 }
3237
3238 /**
3239 * Parse up to the L3 header and extract IPv4/IPv6 header information into pi.
3240 * Currently this information includes: IP ToS value, IP header version/presence
3241 *
3242 * This is missing some checks and doesn't edit the packet content as it goes,
3243 * unlike iflib_parse_header(), in order to keep the amount of code here minimal.
3244 */
3245 static int
iflib_parse_header_partial(if_pkt_info_t pi,struct mbuf ** mp,uint64_t * pullups)3246 iflib_parse_header_partial(if_pkt_info_t pi, struct mbuf **mp, uint64_t *pullups)
3247 {
3248 struct mbuf *m;
3249 int err;
3250
3251 *pullups = 0;
3252 m = *mp;
3253 if (!M_WRITABLE(m)) {
3254 if ((m = m_dup(m, M_NOWAIT)) == NULL) {
3255 return (ENOMEM);
3256 } else {
3257 m_freem(*mp);
3258 DBG_COUNTER_INC(tx_frees);
3259 *mp = m;
3260 }
3261 }
3262
3263 /* Fills out pi->ipi_etype */
3264 err = iflib_parse_ether_header(pi, mp, pullups);
3265 if (err)
3266 return (err);
3267 m = *mp;
3268
3269 switch (pi->ipi_etype) {
3270 #ifdef INET
3271 case ETHERTYPE_IP:
3272 {
3273 struct mbuf *n;
3274 struct ip *ip = NULL;
3275 int miniplen;
3276
3277 miniplen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip));
3278 if (__predict_false(m->m_len < miniplen)) {
3279 /*
3280 * Check for common case where the first mbuf only contains
3281 * the Ethernet header
3282 */
3283 if (m->m_len == pi->ipi_ehdrlen) {
3284 n = m->m_next;
3285 MPASS(n);
3286 /* If next mbuf contains at least the minimal IP header, then stop */
3287 if (n->m_len >= sizeof(*ip)) {
3288 ip = (struct ip *)n->m_data;
3289 } else {
3290 (*pullups)++;
3291 if (__predict_false((m = m_pullup(m, miniplen)) == NULL))
3292 return (ENOMEM);
3293 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3294 }
3295 } else {
3296 (*pullups)++;
3297 if (__predict_false((m = m_pullup(m, miniplen)) == NULL))
3298 return (ENOMEM);
3299 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3300 }
3301 } else {
3302 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3303 }
3304
3305 /* Have the IPv4 header w/ no options here */
3306 pi->ipi_ip_hlen = ip->ip_hl << 2;
3307 pi->ipi_ipproto = ip->ip_p;
3308 pi->ipi_ip_tos = ip->ip_tos;
3309 pi->ipi_flags |= IPI_TX_IPV4;
3310
3311 break;
3312 }
3313 #endif
3314 #ifdef INET6
3315 case ETHERTYPE_IPV6:
3316 {
3317 struct ip6_hdr *ip6;
3318
3319 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) {
3320 (*pullups)++;
3321 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL))
3322 return (ENOMEM);
3323 }
3324 ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen);
3325
3326 /* Have the IPv6 fixed header here */
3327 pi->ipi_ip_hlen = sizeof(struct ip6_hdr);
3328 pi->ipi_ipproto = ip6->ip6_nxt;
3329 pi->ipi_ip_tos = IPV6_TRAFFIC_CLASS(ip6);
3330 pi->ipi_flags |= IPI_TX_IPV6;
3331
3332 break;
3333 }
3334 #endif
3335 default:
3336 pi->ipi_csum_flags &= ~CSUM_OFFLOAD;
3337 pi->ipi_ip_hlen = 0;
3338 break;
3339 }
3340 *mp = m;
3341
3342 return (0);
3343
3344 }
3345
3346 static int
iflib_parse_header(iflib_txq_t txq,if_pkt_info_t pi,struct mbuf ** mp)3347 iflib_parse_header(iflib_txq_t txq, if_pkt_info_t pi, struct mbuf **mp)
3348 {
3349 if_shared_ctx_t sctx = txq->ift_ctx->ifc_sctx;
3350 struct mbuf *m;
3351 int err;
3352
3353 m = *mp;
3354 if ((sctx->isc_flags & IFLIB_NEED_SCRATCH) &&
3355 M_WRITABLE(m) == 0) {
3356 if ((m = m_dup(m, M_NOWAIT)) == NULL) {
3357 return (ENOMEM);
3358 } else {
3359 m_freem(*mp);
3360 DBG_COUNTER_INC(tx_frees);
3361 *mp = m;
3362 }
3363 }
3364
3365 /* Fills out pi->ipi_etype */
3366 err = iflib_parse_ether_header(pi, mp, &txq->ift_pullups);
3367 if (__predict_false(err))
3368 return (err);
3369 m = *mp;
3370
3371 switch (pi->ipi_etype) {
3372 #ifdef INET
3373 case ETHERTYPE_IP:
3374 {
3375 struct mbuf *n;
3376 struct ip *ip = NULL;
3377 struct tcphdr *th = NULL;
3378 int minthlen;
3379
3380 minthlen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip) + sizeof(*th));
3381 if (__predict_false(m->m_len < minthlen)) {
3382 /*
3383 * if this code bloat is causing too much of a hit
3384 * move it to a separate function and mark it noinline
3385 */
3386 if (m->m_len == pi->ipi_ehdrlen) {
3387 n = m->m_next;
3388 MPASS(n);
3389 if (n->m_len >= sizeof(*ip)) {
3390 ip = (struct ip *)n->m_data;
3391 if (n->m_len >= (ip->ip_hl << 2) + sizeof(*th))
3392 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
3393 } else {
3394 txq->ift_pullups++;
3395 if (__predict_false((m = m_pullup(m, minthlen)) == NULL))
3396 return (ENOMEM);
3397 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3398 }
3399 } else {
3400 txq->ift_pullups++;
3401 if (__predict_false((m = m_pullup(m, minthlen)) == NULL))
3402 return (ENOMEM);
3403 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3404 if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th))
3405 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
3406 }
3407 } else {
3408 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3409 if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th))
3410 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
3411 }
3412 pi->ipi_ip_hlen = ip->ip_hl << 2;
3413 pi->ipi_ipproto = ip->ip_p;
3414 pi->ipi_ip_tos = ip->ip_tos;
3415 pi->ipi_flags |= IPI_TX_IPV4;
3416
3417 /* TCP checksum offload may require TCP header length */
3418 if (IS_TX_OFFLOAD4(pi)) {
3419 if (__predict_true(pi->ipi_ipproto == IPPROTO_TCP)) {
3420 if (__predict_false(th == NULL)) {
3421 txq->ift_pullups++;
3422 if (__predict_false((m = m_pullup(m, (ip->ip_hl << 2) + sizeof(*th))) == NULL))
3423 return (ENOMEM);
3424 th = (struct tcphdr *)((caddr_t)ip + pi->ipi_ip_hlen);
3425 }
3426 pi->ipi_tcp_hflags = tcp_get_flags(th);
3427 pi->ipi_tcp_hlen = th->th_off << 2;
3428 pi->ipi_tcp_seq = th->th_seq;
3429 }
3430 if (IS_TSO4(pi)) {
3431 if (__predict_false(ip->ip_p != IPPROTO_TCP))
3432 return (ENXIO);
3433 /*
3434 * TSO always requires hardware checksum offload.
3435 */
3436 pi->ipi_csum_flags |= (CSUM_IP_TCP | CSUM_IP);
3437 th->th_sum = in_pseudo(ip->ip_src.s_addr,
3438 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3439 pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
3440 if (sctx->isc_flags & IFLIB_TSO_INIT_IP) {
3441 ip->ip_sum = 0;
3442 ip->ip_len = htons(pi->ipi_ip_hlen + pi->ipi_tcp_hlen + pi->ipi_tso_segsz);
3443 }
3444 }
3445 }
3446 if ((sctx->isc_flags & IFLIB_NEED_ZERO_CSUM) && (pi->ipi_csum_flags & CSUM_IP))
3447 ip->ip_sum = 0;
3448
3449 break;
3450 }
3451 #endif
3452 #ifdef INET6
3453 case ETHERTYPE_IPV6:
3454 {
3455 struct ip6_hdr *ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen);
3456 struct tcphdr *th;
3457 pi->ipi_ip_hlen = sizeof(struct ip6_hdr);
3458
3459 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) {
3460 txq->ift_pullups++;
3461 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL))
3462 return (ENOMEM);
3463 }
3464 th = (struct tcphdr *)((caddr_t)ip6 + pi->ipi_ip_hlen);
3465
3466 /* XXX-BZ this will go badly in case of ext hdrs. */
3467 pi->ipi_ipproto = ip6->ip6_nxt;
3468 pi->ipi_ip_tos = IPV6_TRAFFIC_CLASS(ip6);
3469 pi->ipi_flags |= IPI_TX_IPV6;
3470
3471 /* TCP checksum offload may require TCP header length */
3472 if (IS_TX_OFFLOAD6(pi)) {
3473 if (pi->ipi_ipproto == IPPROTO_TCP) {
3474 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) {
3475 txq->ift_pullups++;
3476 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) == NULL))
3477 return (ENOMEM);
3478 }
3479 pi->ipi_tcp_hflags = tcp_get_flags(th);
3480 pi->ipi_tcp_hlen = th->th_off << 2;
3481 pi->ipi_tcp_seq = th->th_seq;
3482 }
3483 if (IS_TSO6(pi)) {
3484 if (__predict_false(ip6->ip6_nxt != IPPROTO_TCP))
3485 return (ENXIO);
3486 /*
3487 * TSO always requires hardware checksum offload.
3488 */
3489 pi->ipi_csum_flags |= CSUM_IP6_TCP;
3490 th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
3491 pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
3492 }
3493 }
3494 break;
3495 }
3496 #endif
3497 default:
3498 pi->ipi_csum_flags &= ~CSUM_OFFLOAD;
3499 pi->ipi_ip_hlen = 0;
3500 break;
3501 }
3502 *mp = m;
3503
3504 return (0);
3505 }
3506
3507 /*
3508 * If dodgy hardware rejects the scatter gather chain we've handed it
3509 * we'll need to remove the mbuf chain from ifsg_m[] before we can add the
3510 * m_defrag'd mbufs
3511 */
3512 static __noinline struct mbuf *
iflib_remove_mbuf(iflib_txq_t txq)3513 iflib_remove_mbuf(iflib_txq_t txq)
3514 {
3515 int ntxd, pidx;
3516 struct mbuf *m, **ifsd_m;
3517
3518 ifsd_m = txq->ift_sds.ifsd_m;
3519 ntxd = txq->ift_size;
3520 pidx = txq->ift_pidx & (ntxd - 1);
3521 ifsd_m = txq->ift_sds.ifsd_m;
3522 m = ifsd_m[pidx];
3523 ifsd_m[pidx] = NULL;
3524 bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[pidx]);
3525 if (txq->ift_sds.ifsd_tso_map != NULL)
3526 bus_dmamap_unload(txq->ift_tso_buf_tag,
3527 txq->ift_sds.ifsd_tso_map[pidx]);
3528 #if MEMORY_LOGGING
3529 txq->ift_dequeued++;
3530 #endif
3531 return (m);
3532 }
3533
3534 static inline caddr_t
calc_next_txd(iflib_txq_t txq,int cidx,uint8_t qid)3535 calc_next_txd(iflib_txq_t txq, int cidx, uint8_t qid)
3536 {
3537 qidx_t size;
3538 int ntxd;
3539 caddr_t start, end, cur, next;
3540
3541 ntxd = txq->ift_size;
3542 size = txq->ift_txd_size[qid];
3543 start = txq->ift_ifdi[qid].idi_vaddr;
3544
3545 if (__predict_false(size == 0))
3546 return (start);
3547 cur = start + size * cidx;
3548 end = start + size * ntxd;
3549 next = CACHE_PTR_NEXT(cur);
3550 return (next < end ? next : start);
3551 }
3552
3553 /*
3554 * Pad an mbuf to ensure a minimum ethernet frame size.
3555 * min_frame_size is the frame size (less CRC) to pad the mbuf to
3556 */
3557 static __noinline int
iflib_ether_pad(device_t dev,struct mbuf ** m_head,uint16_t min_frame_size)3558 iflib_ether_pad(device_t dev, struct mbuf **m_head, uint16_t min_frame_size)
3559 {
3560 /*
3561 * 18 is enough bytes to pad an ARP packet to 46 bytes, and
3562 * and ARP message is the smallest common payload I can think of
3563 */
3564 static char pad[18]; /* just zeros */
3565 int n;
3566 struct mbuf *new_head;
3567
3568 if (!M_WRITABLE(*m_head)) {
3569 new_head = m_dup(*m_head, M_NOWAIT);
3570 if (new_head == NULL) {
3571 m_freem(*m_head);
3572 device_printf(dev, "cannot pad short frame, m_dup() failed");
3573 DBG_COUNTER_INC(encap_pad_mbuf_fail);
3574 DBG_COUNTER_INC(tx_frees);
3575 return (ENOMEM);
3576 }
3577 m_freem(*m_head);
3578 *m_head = new_head;
3579 }
3580
3581 for (n = min_frame_size - (*m_head)->m_pkthdr.len;
3582 n > 0; n -= sizeof(pad))
3583 if (!m_append(*m_head, min(n, sizeof(pad)), pad))
3584 break;
3585
3586 if (n > 0) {
3587 m_freem(*m_head);
3588 device_printf(dev, "cannot pad short frame\n");
3589 DBG_COUNTER_INC(encap_pad_mbuf_fail);
3590 DBG_COUNTER_INC(tx_frees);
3591 return (ENOBUFS);
3592 }
3593
3594 return (0);
3595 }
3596
3597 static int
iflib_encap(iflib_txq_t txq,struct mbuf ** m_headp)3598 iflib_encap(iflib_txq_t txq, struct mbuf **m_headp)
3599 {
3600 if_ctx_t ctx;
3601 if_shared_ctx_t sctx;
3602 if_softc_ctx_t scctx;
3603 bus_dma_tag_t buf_tag;
3604 bus_dma_segment_t *segs;
3605 struct mbuf *m_head, **ifsd_m;
3606 void *next_txd;
3607 bus_dmamap_t map;
3608 struct if_pkt_info pi;
3609 int remap = 0;
3610 int err, nsegs, ndesc, max_segs, pidx, cidx, next, ntxd;
3611
3612 ctx = txq->ift_ctx;
3613 sctx = ctx->ifc_sctx;
3614 scctx = &ctx->ifc_softc_ctx;
3615 segs = txq->ift_segs;
3616 ntxd = txq->ift_size;
3617 m_head = *m_headp;
3618 map = NULL;
3619
3620 /*
3621 * If we're doing TSO the next descriptor to clean may be quite far ahead
3622 */
3623 cidx = txq->ift_cidx;
3624 pidx = txq->ift_pidx;
3625 if (ctx->ifc_flags & IFC_PREFETCH) {
3626 next = (cidx + CACHE_PTR_INCREMENT) & (ntxd - 1);
3627 if (!(ctx->ifc_flags & IFLIB_HAS_TXCQ)) {
3628 next_txd = calc_next_txd(txq, cidx, 0);
3629 prefetch(next_txd);
3630 }
3631
3632 /* prefetch the next cache line of mbuf pointers and flags */
3633 prefetch(&txq->ift_sds.ifsd_m[next]);
3634 prefetch(&txq->ift_sds.ifsd_map[next]);
3635 next = (cidx + CACHE_LINE_SIZE) & (ntxd - 1);
3636 }
3637 map = txq->ift_sds.ifsd_map[pidx];
3638 ifsd_m = txq->ift_sds.ifsd_m;
3639
3640 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3641 buf_tag = txq->ift_tso_buf_tag;
3642 max_segs = scctx->isc_tx_tso_segments_max;
3643 map = txq->ift_sds.ifsd_tso_map[pidx];
3644 MPASS(buf_tag != NULL);
3645 MPASS(max_segs > 0);
3646 } else {
3647 buf_tag = txq->ift_buf_tag;
3648 max_segs = scctx->isc_tx_nsegments;
3649 map = txq->ift_sds.ifsd_map[pidx];
3650 }
3651 if ((sctx->isc_flags & IFLIB_NEED_ETHER_PAD) &&
3652 __predict_false(m_head->m_pkthdr.len < scctx->isc_min_frame_size)) {
3653 err = iflib_ether_pad(ctx->ifc_dev, m_headp, scctx->isc_min_frame_size);
3654 if (err) {
3655 DBG_COUNTER_INC(encap_txd_encap_fail);
3656 return (err);
3657 }
3658 }
3659 m_head = *m_headp;
3660
3661 pkt_info_zero(&pi);
3662 pi.ipi_mflags = (m_head->m_flags & (M_VLANTAG | M_BCAST | M_MCAST));
3663 pi.ipi_pidx = pidx;
3664 pi.ipi_qsidx = txq->ift_id;
3665 pi.ipi_len = m_head->m_pkthdr.len;
3666 pi.ipi_csum_flags = m_head->m_pkthdr.csum_flags;
3667 pi.ipi_vtag = M_HAS_VLANTAG(m_head) ? m_head->m_pkthdr.ether_vtag : 0;
3668
3669 /* deliberate bitwise OR to make one condition */
3670 if (__predict_true((pi.ipi_csum_flags | pi.ipi_vtag))) {
3671 if (__predict_false((err = iflib_parse_header(txq, &pi, m_headp)) != 0)) {
3672 DBG_COUNTER_INC(encap_txd_encap_fail);
3673 return (err);
3674 }
3675 m_head = *m_headp;
3676 }
3677
3678 retry:
3679 err = bus_dmamap_load_mbuf_sg(buf_tag, map, m_head, segs, &nsegs,
3680 BUS_DMA_NOWAIT);
3681 defrag:
3682 if (__predict_false(err)) {
3683 switch (err) {
3684 case EFBIG:
3685 /* try collapse once and defrag once */
3686 if (remap == 0) {
3687 m_head = m_collapse(*m_headp, M_NOWAIT, max_segs);
3688 /* try defrag if collapsing fails */
3689 if (m_head == NULL)
3690 remap++;
3691 }
3692 if (remap == 1) {
3693 txq->ift_mbuf_defrag++;
3694 m_head = m_defrag(*m_headp, M_NOWAIT);
3695 }
3696 /*
3697 * remap should never be >1 unless bus_dmamap_load_mbuf_sg
3698 * failed to map an mbuf that was run through m_defrag
3699 */
3700 MPASS(remap <= 1);
3701 if (__predict_false(m_head == NULL || remap > 1))
3702 goto defrag_failed;
3703 remap++;
3704 *m_headp = m_head;
3705 goto retry;
3706 break;
3707 case ENOMEM:
3708 txq->ift_no_tx_dma_setup++;
3709 break;
3710 default:
3711 txq->ift_no_tx_dma_setup++;
3712 m_freem(*m_headp);
3713 DBG_COUNTER_INC(tx_frees);
3714 *m_headp = NULL;
3715 break;
3716 }
3717 txq->ift_map_failed++;
3718 DBG_COUNTER_INC(encap_load_mbuf_fail);
3719 DBG_COUNTER_INC(encap_txd_encap_fail);
3720 return (err);
3721 }
3722 ifsd_m[pidx] = m_head;
3723 /*
3724 * XXX assumes a 1 to 1 relationship between segments and
3725 * descriptors - this does not hold true on all drivers, e.g.
3726 * cxgb
3727 */
3728 if (__predict_false(nsegs + 2 > TXQ_AVAIL(txq))) {
3729 txq->ift_no_desc_avail++;
3730 bus_dmamap_unload(buf_tag, map);
3731 DBG_COUNTER_INC(encap_txq_avail_fail);
3732 DBG_COUNTER_INC(encap_txd_encap_fail);
3733 if ((txq->ift_task.gt_task.ta_flags & TASK_ENQUEUED) == 0)
3734 GROUPTASK_ENQUEUE(&txq->ift_task);
3735 return (ENOBUFS);
3736 }
3737 /*
3738 * On Intel cards we can greatly reduce the number of TX interrupts
3739 * we see by only setting report status on every Nth descriptor.
3740 * However, this also means that the driver will need to keep track
3741 * of the descriptors that RS was set on to check them for the DD bit.
3742 */
3743 txq->ift_rs_pending += nsegs + 1;
3744 if (txq->ift_rs_pending > TXQ_MAX_RS_DEFERRED(txq) ||
3745 iflib_no_tx_batch || (TXQ_AVAIL(txq) - nsegs) <= MAX_TX_DESC(ctx) + 2) {
3746 pi.ipi_flags |= IPI_TX_INTR;
3747 txq->ift_rs_pending = 0;
3748 }
3749
3750 pi.ipi_segs = segs;
3751 pi.ipi_nsegs = nsegs;
3752
3753 MPASS(pidx >= 0 && pidx < txq->ift_size);
3754 #ifdef PKT_DEBUG
3755 print_pkt(&pi);
3756 #endif
3757 if ((err = ctx->isc_txd_encap(ctx->ifc_softc, &pi)) == 0) {
3758 bus_dmamap_sync(buf_tag, map, BUS_DMASYNC_PREWRITE);
3759 DBG_COUNTER_INC(tx_encap);
3760 MPASS(pi.ipi_new_pidx < txq->ift_size);
3761
3762 ndesc = pi.ipi_new_pidx - pi.ipi_pidx;
3763 if (pi.ipi_new_pidx < pi.ipi_pidx) {
3764 ndesc += txq->ift_size;
3765 txq->ift_gen = 1;
3766 }
3767 /*
3768 * drivers can need as many as
3769 * two sentinels
3770 */
3771 MPASS(ndesc <= pi.ipi_nsegs + 2);
3772 MPASS(pi.ipi_new_pidx != pidx);
3773 MPASS(ndesc > 0);
3774 txq->ift_in_use += ndesc;
3775 txq->ift_db_pending += ndesc;
3776
3777 /*
3778 * We update the last software descriptor again here because there may
3779 * be a sentinel and/or there may be more mbufs than segments
3780 */
3781 txq->ift_pidx = pi.ipi_new_pidx;
3782 txq->ift_npending += pi.ipi_ndescs;
3783 } else {
3784 *m_headp = m_head = iflib_remove_mbuf(txq);
3785 if (err == EFBIG) {
3786 txq->ift_txd_encap_efbig++;
3787 if (remap < 2) {
3788 remap = 1;
3789 goto defrag;
3790 }
3791 }
3792 goto defrag_failed;
3793 }
3794 /*
3795 * err can't possibly be non-zero here, so we don't neet to test it
3796 * to see if we need to DBG_COUNTER_INC(encap_txd_encap_fail).
3797 */
3798 return (err);
3799
3800 defrag_failed:
3801 txq->ift_mbuf_defrag_failed++;
3802 txq->ift_map_failed++;
3803 m_freem(*m_headp);
3804 DBG_COUNTER_INC(tx_frees);
3805 *m_headp = NULL;
3806 DBG_COUNTER_INC(encap_txd_encap_fail);
3807 return (ENOMEM);
3808 }
3809
3810 static void
iflib_tx_desc_free(iflib_txq_t txq,int n)3811 iflib_tx_desc_free(iflib_txq_t txq, int n)
3812 {
3813 uint32_t qsize, cidx, mask, gen;
3814 struct mbuf *m, **ifsd_m;
3815 bool do_prefetch;
3816
3817 cidx = txq->ift_cidx;
3818 gen = txq->ift_gen;
3819 qsize = txq->ift_size;
3820 mask = qsize - 1;
3821 ifsd_m = txq->ift_sds.ifsd_m;
3822 do_prefetch = (txq->ift_ctx->ifc_flags & IFC_PREFETCH);
3823
3824 while (n-- > 0) {
3825 if (do_prefetch) {
3826 prefetch(ifsd_m[(cidx + 3) & mask]);
3827 prefetch(ifsd_m[(cidx + 4) & mask]);
3828 }
3829 if ((m = ifsd_m[cidx]) != NULL) {
3830 prefetch(&ifsd_m[(cidx + CACHE_PTR_INCREMENT) & mask]);
3831 if (m->m_pkthdr.csum_flags & CSUM_TSO) {
3832 bus_dmamap_sync(txq->ift_tso_buf_tag,
3833 txq->ift_sds.ifsd_tso_map[cidx],
3834 BUS_DMASYNC_POSTWRITE);
3835 bus_dmamap_unload(txq->ift_tso_buf_tag,
3836 txq->ift_sds.ifsd_tso_map[cidx]);
3837 } else {
3838 bus_dmamap_sync(txq->ift_buf_tag,
3839 txq->ift_sds.ifsd_map[cidx],
3840 BUS_DMASYNC_POSTWRITE);
3841 bus_dmamap_unload(txq->ift_buf_tag,
3842 txq->ift_sds.ifsd_map[cidx]);
3843 }
3844 /* XXX we don't support any drivers that batch packets yet */
3845 MPASS(m->m_nextpkt == NULL);
3846 m_freem(m);
3847 ifsd_m[cidx] = NULL;
3848 #if MEMORY_LOGGING
3849 txq->ift_dequeued++;
3850 #endif
3851 DBG_COUNTER_INC(tx_frees);
3852 }
3853 if (__predict_false(++cidx == qsize)) {
3854 cidx = 0;
3855 gen = 0;
3856 }
3857 }
3858 txq->ift_cidx = cidx;
3859 txq->ift_gen = gen;
3860 }
3861
3862 static __inline int
iflib_completed_tx_reclaim(iflib_txq_t txq,int thresh)3863 iflib_completed_tx_reclaim(iflib_txq_t txq, int thresh)
3864 {
3865 int reclaim;
3866 if_ctx_t ctx = txq->ift_ctx;
3867
3868 KASSERT(thresh >= 0, ("invalid threshold to reclaim"));
3869 MPASS(thresh /*+ MAX_TX_DESC(txq->ift_ctx) */ < txq->ift_size);
3870
3871 /*
3872 * Need a rate-limiting check so that this isn't called every time
3873 */
3874 iflib_tx_credits_update(ctx, txq);
3875 reclaim = DESC_RECLAIMABLE(txq);
3876
3877 if (reclaim <= thresh /* + MAX_TX_DESC(txq->ift_ctx) */) {
3878 #ifdef INVARIANTS
3879 if (iflib_verbose_debug) {
3880 printf("%s processed=%ju cleaned=%ju tx_nsegments=%d reclaim=%d thresh=%d\n", __func__,
3881 txq->ift_processed, txq->ift_cleaned, txq->ift_ctx->ifc_softc_ctx.isc_tx_nsegments,
3882 reclaim, thresh);
3883 }
3884 #endif
3885 return (0);
3886 }
3887 iflib_tx_desc_free(txq, reclaim);
3888 txq->ift_cleaned += reclaim;
3889 txq->ift_in_use -= reclaim;
3890
3891 return (reclaim);
3892 }
3893
3894 static struct mbuf **
_ring_peek_one(struct ifmp_ring * r,int cidx,int offset,int remaining)3895 _ring_peek_one(struct ifmp_ring *r, int cidx, int offset, int remaining)
3896 {
3897 int next, size;
3898 struct mbuf **items;
3899
3900 size = r->size;
3901 next = (cidx + CACHE_PTR_INCREMENT) & (size - 1);
3902 items = __DEVOLATILE(struct mbuf **, &r->items[0]);
3903
3904 prefetch(items[(cidx + offset) & (size - 1)]);
3905 if (remaining > 1) {
3906 prefetch2cachelines(&items[next]);
3907 prefetch2cachelines(items[(cidx + offset + 1) & (size - 1)]);
3908 prefetch2cachelines(items[(cidx + offset + 2) & (size - 1)]);
3909 prefetch2cachelines(items[(cidx + offset + 3) & (size - 1)]);
3910 }
3911 return (__DEVOLATILE(struct mbuf **, &r->items[(cidx + offset) & (size - 1)]));
3912 }
3913
3914 static void
iflib_txq_check_drain(iflib_txq_t txq,int budget)3915 iflib_txq_check_drain(iflib_txq_t txq, int budget)
3916 {
3917
3918 ifmp_ring_check_drainage(txq->ift_br, budget);
3919 }
3920
3921 static uint32_t
iflib_txq_can_drain(struct ifmp_ring * r)3922 iflib_txq_can_drain(struct ifmp_ring *r)
3923 {
3924 iflib_txq_t txq = r->cookie;
3925 if_ctx_t ctx = txq->ift_ctx;
3926
3927 if (TXQ_AVAIL(txq) > MAX_TX_DESC(ctx) + 2)
3928 return (1);
3929 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
3930 BUS_DMASYNC_POSTREAD);
3931 return (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id,
3932 false));
3933 }
3934
3935 static uint32_t
iflib_txq_drain(struct ifmp_ring * r,uint32_t cidx,uint32_t pidx)3936 iflib_txq_drain(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
3937 {
3938 iflib_txq_t txq = r->cookie;
3939 if_ctx_t ctx = txq->ift_ctx;
3940 if_t ifp = ctx->ifc_ifp;
3941 struct mbuf *m, **mp;
3942 int avail, bytes_sent, skipped, count, err, i;
3943 int mcast_sent, pkt_sent, reclaimed;
3944 bool do_prefetch, rang, ring;
3945
3946 if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING) ||
3947 !LINK_ACTIVE(ctx))) {
3948 DBG_COUNTER_INC(txq_drain_notready);
3949 return (0);
3950 }
3951 reclaimed = iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
3952 rang = iflib_txd_db_check(txq, reclaimed && txq->ift_db_pending);
3953 avail = IDXDIFF(pidx, cidx, r->size);
3954
3955 if (__predict_false(ctx->ifc_flags & IFC_QFLUSH)) {
3956 /*
3957 * The driver is unloading so we need to free all pending packets.
3958 */
3959 DBG_COUNTER_INC(txq_drain_flushing);
3960 for (i = 0; i < avail; i++) {
3961 if (__predict_true(r->items[(cidx + i) & (r->size - 1)] != (void *)txq))
3962 m_freem(r->items[(cidx + i) & (r->size - 1)]);
3963 r->items[(cidx + i) & (r->size - 1)] = NULL;
3964 }
3965 return (avail);
3966 }
3967
3968 if (__predict_false(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE)) {
3969 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3970 CALLOUT_LOCK(txq);
3971 callout_stop(&txq->ift_timer);
3972 CALLOUT_UNLOCK(txq);
3973 DBG_COUNTER_INC(txq_drain_oactive);
3974 return (0);
3975 }
3976
3977 /*
3978 * If we've reclaimed any packets this queue cannot be hung.
3979 */
3980 if (reclaimed)
3981 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3982 skipped = mcast_sent = bytes_sent = pkt_sent = 0;
3983 count = MIN(avail, TX_BATCH_SIZE);
3984 #ifdef INVARIANTS
3985 if (iflib_verbose_debug)
3986 printf("%s avail=%d ifc_flags=%x txq_avail=%d ", __func__,
3987 avail, ctx->ifc_flags, TXQ_AVAIL(txq));
3988 #endif
3989 do_prefetch = (ctx->ifc_flags & IFC_PREFETCH);
3990 err = 0;
3991 for (i = 0; i < count && TXQ_AVAIL(txq) >= MAX_TX_DESC(ctx) + 2; i++) {
3992 int rem = do_prefetch ? count - i : 0;
3993
3994 mp = _ring_peek_one(r, cidx, i, rem);
3995 MPASS(mp != NULL && *mp != NULL);
3996
3997 /*
3998 * Completion interrupts will use the address of the txq
3999 * as a sentinel to enqueue _something_ in order to acquire
4000 * the lock on the mp_ring (there's no direct lock call).
4001 * We obviously whave to check for these sentinel cases
4002 * and skip them.
4003 */
4004 if (__predict_false(*mp == (struct mbuf *)txq)) {
4005 skipped++;
4006 continue;
4007 }
4008 err = iflib_encap(txq, mp);
4009 if (__predict_false(err)) {
4010 /* no room - bail out */
4011 if (err == ENOBUFS)
4012 break;
4013 skipped++;
4014 /* we can't send this packet - skip it */
4015 continue;
4016 }
4017 pkt_sent++;
4018 m = *mp;
4019 DBG_COUNTER_INC(tx_sent);
4020 bytes_sent += m->m_pkthdr.len;
4021 mcast_sent += !!(m->m_flags & M_MCAST);
4022
4023 if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)))
4024 break;
4025 ETHER_BPF_MTAP(ifp, m);
4026 rang = iflib_txd_db_check(txq, false);
4027 }
4028
4029 /* deliberate use of bitwise or to avoid gratuitous short-circuit */
4030 ring = rang ? false : (iflib_min_tx_latency | err);
4031 iflib_txd_db_check(txq, ring);
4032 if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent);
4033 if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent);
4034 if (mcast_sent)
4035 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent);
4036 #ifdef INVARIANTS
4037 if (iflib_verbose_debug)
4038 printf("consumed=%d\n", skipped + pkt_sent);
4039 #endif
4040 return (skipped + pkt_sent);
4041 }
4042
4043 static uint32_t
iflib_txq_drain_always(struct ifmp_ring * r)4044 iflib_txq_drain_always(struct ifmp_ring *r)
4045 {
4046 return (1);
4047 }
4048
4049 static uint32_t
iflib_txq_drain_free(struct ifmp_ring * r,uint32_t cidx,uint32_t pidx)4050 iflib_txq_drain_free(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
4051 {
4052 int i, avail;
4053 struct mbuf **mp;
4054 iflib_txq_t txq;
4055
4056 txq = r->cookie;
4057
4058 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
4059 CALLOUT_LOCK(txq);
4060 callout_stop(&txq->ift_timer);
4061 CALLOUT_UNLOCK(txq);
4062
4063 avail = IDXDIFF(pidx, cidx, r->size);
4064 for (i = 0; i < avail; i++) {
4065 mp = _ring_peek_one(r, cidx, i, avail - i);
4066 if (__predict_false(*mp == (struct mbuf *)txq))
4067 continue;
4068 m_freem(*mp);
4069 DBG_COUNTER_INC(tx_frees);
4070 }
4071 MPASS(ifmp_ring_is_stalled(r) == 0);
4072 return (avail);
4073 }
4074
4075 static void
iflib_ifmp_purge(iflib_txq_t txq)4076 iflib_ifmp_purge(iflib_txq_t txq)
4077 {
4078 struct ifmp_ring *r;
4079
4080 r = txq->ift_br;
4081 r->drain = iflib_txq_drain_free;
4082 r->can_drain = iflib_txq_drain_always;
4083
4084 ifmp_ring_check_drainage(r, r->size);
4085
4086 r->drain = iflib_txq_drain;
4087 r->can_drain = iflib_txq_can_drain;
4088 }
4089
4090 static void
_task_fn_tx(void * context)4091 _task_fn_tx(void *context)
4092 {
4093 iflib_txq_t txq = context;
4094 if_ctx_t ctx = txq->ift_ctx;
4095 if_t ifp = ctx->ifc_ifp;
4096 int abdicate = ctx->ifc_sysctl_tx_abdicate;
4097
4098 #ifdef IFLIB_DIAGNOSTICS
4099 txq->ift_cpu_exec_count[curcpu]++;
4100 #endif
4101 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4102 return;
4103 #ifdef DEV_NETMAP
4104 if ((if_getcapenable(ifp) & IFCAP_NETMAP) &&
4105 netmap_tx_irq(ifp, txq->ift_id))
4106 goto skip_ifmp;
4107 #endif
4108 #ifdef ALTQ
4109 if (if_altq_is_enabled(ifp))
4110 iflib_altq_if_start(ifp);
4111 #endif
4112 if (txq->ift_db_pending)
4113 ifmp_ring_enqueue(txq->ift_br, (void **)&txq, 1, TX_BATCH_SIZE, abdicate);
4114 else if (!abdicate)
4115 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4116 /*
4117 * When abdicating, we always need to check drainage, not just when we don't enqueue
4118 */
4119 if (abdicate)
4120 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4121 #ifdef DEV_NETMAP
4122 skip_ifmp:
4123 #endif
4124 if (ctx->ifc_flags & IFC_LEGACY)
4125 IFDI_INTR_ENABLE(ctx);
4126 else
4127 IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id);
4128 }
4129
4130 static void
_task_fn_rx(void * context)4131 _task_fn_rx(void *context)
4132 {
4133 iflib_rxq_t rxq = context;
4134 if_ctx_t ctx = rxq->ifr_ctx;
4135 uint8_t more;
4136 uint16_t budget;
4137 #ifdef DEV_NETMAP
4138 u_int work = 0;
4139 int nmirq;
4140 #endif
4141
4142 #ifdef IFLIB_DIAGNOSTICS
4143 rxq->ifr_cpu_exec_count[curcpu]++;
4144 #endif
4145 DBG_COUNTER_INC(task_fn_rxs);
4146 if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
4147 return;
4148 #ifdef DEV_NETMAP
4149 nmirq = netmap_rx_irq(ctx->ifc_ifp, rxq->ifr_id, &work);
4150 if (nmirq != NM_IRQ_PASS) {
4151 more = (nmirq == NM_IRQ_RESCHED) ? IFLIB_RXEOF_MORE : 0;
4152 goto skip_rxeof;
4153 }
4154 #endif
4155 budget = ctx->ifc_sysctl_rx_budget;
4156 if (budget == 0)
4157 budget = 16; /* XXX */
4158 more = iflib_rxeof(rxq, budget);
4159 #ifdef DEV_NETMAP
4160 skip_rxeof:
4161 #endif
4162 if ((more & IFLIB_RXEOF_MORE) == 0) {
4163 if (ctx->ifc_flags & IFC_LEGACY)
4164 IFDI_INTR_ENABLE(ctx);
4165 else
4166 IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
4167 DBG_COUNTER_INC(rx_intr_enables);
4168 }
4169 if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
4170 return;
4171
4172 if (more & IFLIB_RXEOF_MORE)
4173 GROUPTASK_ENQUEUE(&rxq->ifr_task);
4174 else if (more & IFLIB_RXEOF_EMPTY)
4175 callout_reset_curcpu(&rxq->ifr_watchdog, 1, &_task_fn_rx_watchdog, rxq);
4176 }
4177
4178 static void
_task_fn_admin(void * context)4179 _task_fn_admin(void *context)
4180 {
4181 if_ctx_t ctx = context;
4182 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
4183 iflib_txq_t txq;
4184 int i;
4185 bool oactive, running, do_reset, do_watchdog, in_detach;
4186
4187 STATE_LOCK(ctx);
4188 running = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING);
4189 oactive = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE);
4190 do_reset = (ctx->ifc_flags & IFC_DO_RESET);
4191 do_watchdog = (ctx->ifc_flags & IFC_DO_WATCHDOG);
4192 in_detach = (ctx->ifc_flags & IFC_IN_DETACH);
4193 ctx->ifc_flags &= ~(IFC_DO_RESET | IFC_DO_WATCHDOG);
4194 STATE_UNLOCK(ctx);
4195
4196 if ((!running && !oactive) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
4197 return;
4198 if (in_detach)
4199 return;
4200
4201 CTX_LOCK(ctx);
4202 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
4203 CALLOUT_LOCK(txq);
4204 callout_stop(&txq->ift_timer);
4205 CALLOUT_UNLOCK(txq);
4206 }
4207 if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_ADMINCQ)
4208 IFDI_ADMIN_COMPLETION_HANDLE(ctx);
4209 if (do_watchdog) {
4210 ctx->ifc_watchdog_events++;
4211 IFDI_WATCHDOG_RESET(ctx);
4212 }
4213 IFDI_UPDATE_ADMIN_STATUS(ctx);
4214 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
4215 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq,
4216 txq->ift_timer.c_cpu);
4217 }
4218 IFDI_LINK_INTR_ENABLE(ctx);
4219 if (do_reset)
4220 iflib_if_init_locked(ctx);
4221 CTX_UNLOCK(ctx);
4222
4223 if (LINK_ACTIVE(ctx) == 0)
4224 return;
4225 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++)
4226 iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
4227 }
4228
4229 static void
_task_fn_iov(void * context)4230 _task_fn_iov(void *context)
4231 {
4232 if_ctx_t ctx = context;
4233
4234 if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) &&
4235 !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
4236 return;
4237
4238 CTX_LOCK(ctx);
4239 IFDI_VFLR_HANDLE(ctx);
4240 CTX_UNLOCK(ctx);
4241 }
4242
4243 static int
iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)4244 iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4245 {
4246 int err;
4247 if_int_delay_info_t info;
4248 if_ctx_t ctx;
4249
4250 info = (if_int_delay_info_t)arg1;
4251 ctx = info->iidi_ctx;
4252 info->iidi_req = req;
4253 info->iidi_oidp = oidp;
4254 CTX_LOCK(ctx);
4255 err = IFDI_SYSCTL_INT_DELAY(ctx, info);
4256 CTX_UNLOCK(ctx);
4257 return (err);
4258 }
4259
4260 /*********************************************************************
4261 *
4262 * IFNET FUNCTIONS
4263 *
4264 **********************************************************************/
4265
4266 static void
iflib_if_init_locked(if_ctx_t ctx)4267 iflib_if_init_locked(if_ctx_t ctx)
4268 {
4269 iflib_stop(ctx);
4270 iflib_init_locked(ctx);
4271 }
4272
4273 static void
iflib_if_init(void * arg)4274 iflib_if_init(void *arg)
4275 {
4276 if_ctx_t ctx = arg;
4277
4278 CTX_LOCK(ctx);
4279 iflib_if_init_locked(ctx);
4280 CTX_UNLOCK(ctx);
4281 }
4282
4283 static int
iflib_if_transmit(if_t ifp,struct mbuf * m)4284 iflib_if_transmit(if_t ifp, struct mbuf *m)
4285 {
4286 if_ctx_t ctx = if_getsoftc(ifp);
4287 iflib_txq_t txq;
4288 int err, qidx;
4289 int abdicate;
4290
4291 if (__predict_false((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || !LINK_ACTIVE(ctx))) {
4292 DBG_COUNTER_INC(tx_frees);
4293 m_freem(m);
4294 return (ENETDOWN);
4295 }
4296
4297 MPASS(m->m_nextpkt == NULL);
4298 /* ALTQ-enabled interfaces always use queue 0. */
4299 qidx = 0;
4300 /* Use driver-supplied queue selection method if it exists */
4301 if (ctx->isc_txq_select_v2) {
4302 struct if_pkt_info pi;
4303 uint64_t early_pullups = 0;
4304 pkt_info_zero(&pi);
4305
4306 err = iflib_parse_header_partial(&pi, &m, &early_pullups);
4307 if (__predict_false(err != 0)) {
4308 /* Assign pullups for bad pkts to default queue */
4309 ctx->ifc_txqs[0].ift_pullups += early_pullups;
4310 DBG_COUNTER_INC(encap_txd_encap_fail);
4311 return (err);
4312 }
4313 /* Let driver make queueing decision */
4314 qidx = ctx->isc_txq_select_v2(ctx->ifc_softc, m, &pi);
4315 ctx->ifc_txqs[qidx].ift_pullups += early_pullups;
4316 }
4317 /* Backwards compatibility w/ simpler queue select */
4318 else if (ctx->isc_txq_select)
4319 qidx = ctx->isc_txq_select(ctx->ifc_softc, m);
4320 /* If not, use iflib's standard method */
4321 else if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m) && !if_altq_is_enabled(ifp))
4322 qidx = QIDX(ctx, m);
4323
4324 /* Set TX queue */
4325 txq = &ctx->ifc_txqs[qidx];
4326
4327 #ifdef DRIVER_BACKPRESSURE
4328 if (txq->ift_closed) {
4329 while (m != NULL) {
4330 next = m->m_nextpkt;
4331 m->m_nextpkt = NULL;
4332 m_freem(m);
4333 DBG_COUNTER_INC(tx_frees);
4334 m = next;
4335 }
4336 return (ENOBUFS);
4337 }
4338 #endif
4339 #ifdef notyet
4340 qidx = count = 0;
4341 mp = marr;
4342 next = m;
4343 do {
4344 count++;
4345 next = next->m_nextpkt;
4346 } while (next != NULL);
4347
4348 if (count > nitems(marr))
4349 if ((mp = malloc(count * sizeof(struct mbuf *), M_IFLIB, M_NOWAIT)) == NULL) {
4350 /* XXX check nextpkt */
4351 m_freem(m);
4352 /* XXX simplify for now */
4353 DBG_COUNTER_INC(tx_frees);
4354 return (ENOBUFS);
4355 }
4356 for (next = m, i = 0; next != NULL; i++) {
4357 mp[i] = next;
4358 next = next->m_nextpkt;
4359 mp[i]->m_nextpkt = NULL;
4360 }
4361 #endif
4362 DBG_COUNTER_INC(tx_seen);
4363 abdicate = ctx->ifc_sysctl_tx_abdicate;
4364
4365 err = ifmp_ring_enqueue(txq->ift_br, (void **)&m, 1, TX_BATCH_SIZE, abdicate);
4366
4367 if (abdicate)
4368 GROUPTASK_ENQUEUE(&txq->ift_task);
4369 if (err) {
4370 if (!abdicate)
4371 GROUPTASK_ENQUEUE(&txq->ift_task);
4372 /* support forthcoming later */
4373 #ifdef DRIVER_BACKPRESSURE
4374 txq->ift_closed = TRUE;
4375 #endif
4376 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4377 m_freem(m);
4378 DBG_COUNTER_INC(tx_frees);
4379 }
4380
4381 return (err);
4382 }
4383
4384 #ifdef ALTQ
4385 /*
4386 * The overall approach to integrating iflib with ALTQ is to continue to use
4387 * the iflib mp_ring machinery between the ALTQ queue(s) and the hardware
4388 * ring. Technically, when using ALTQ, queueing to an intermediate mp_ring
4389 * is redundant/unnecessary, but doing so minimizes the amount of
4390 * ALTQ-specific code required in iflib. It is assumed that the overhead of
4391 * redundantly queueing to an intermediate mp_ring is swamped by the
4392 * performance limitations inherent in using ALTQ.
4393 *
4394 * When ALTQ support is compiled in, all iflib drivers will use a transmit
4395 * routine, iflib_altq_if_transmit(), that checks if ALTQ is enabled for the
4396 * given interface. If ALTQ is enabled for an interface, then all
4397 * transmitted packets for that interface will be submitted to the ALTQ
4398 * subsystem via IFQ_ENQUEUE(). We don't use the legacy if_transmit()
4399 * implementation because it uses IFQ_HANDOFF(), which will duplicatively
4400 * update stats that the iflib machinery handles, and which is sensitve to
4401 * the disused IFF_DRV_OACTIVE flag. Additionally, iflib_altq_if_start()
4402 * will be installed as the start routine for use by ALTQ facilities that
4403 * need to trigger queue drains on a scheduled basis.
4404 *
4405 */
4406 static void
iflib_altq_if_start(if_t ifp)4407 iflib_altq_if_start(if_t ifp)
4408 {
4409 struct ifaltq *ifq = &ifp->if_snd; /* XXX - DRVAPI */
4410 struct mbuf *m;
4411
4412 IFQ_LOCK(ifq);
4413 IFQ_DEQUEUE_NOLOCK(ifq, m);
4414 while (m != NULL) {
4415 iflib_if_transmit(ifp, m);
4416 IFQ_DEQUEUE_NOLOCK(ifq, m);
4417 }
4418 IFQ_UNLOCK(ifq);
4419 }
4420
4421 static int
iflib_altq_if_transmit(if_t ifp,struct mbuf * m)4422 iflib_altq_if_transmit(if_t ifp, struct mbuf *m)
4423 {
4424 int err;
4425
4426 if (if_altq_is_enabled(ifp)) {
4427 IFQ_ENQUEUE(&ifp->if_snd, m, err); /* XXX - DRVAPI */
4428 if (err == 0)
4429 iflib_altq_if_start(ifp);
4430 } else
4431 err = iflib_if_transmit(ifp, m);
4432
4433 return (err);
4434 }
4435 #endif /* ALTQ */
4436
4437 static void
iflib_if_qflush(if_t ifp)4438 iflib_if_qflush(if_t ifp)
4439 {
4440 if_ctx_t ctx = if_getsoftc(ifp);
4441 iflib_txq_t txq = ctx->ifc_txqs;
4442 int i;
4443
4444 STATE_LOCK(ctx);
4445 ctx->ifc_flags |= IFC_QFLUSH;
4446 STATE_UNLOCK(ctx);
4447 for (i = 0; i < NTXQSETS(ctx); i++, txq++)
4448 while (!(ifmp_ring_is_idle(txq->ift_br) || ifmp_ring_is_stalled(txq->ift_br)))
4449 iflib_txq_check_drain(txq, 0);
4450 STATE_LOCK(ctx);
4451 ctx->ifc_flags &= ~IFC_QFLUSH;
4452 STATE_UNLOCK(ctx);
4453
4454 /*
4455 * When ALTQ is enabled, this will also take care of purging the
4456 * ALTQ queue(s).
4457 */
4458 if_qflush(ifp);
4459 }
4460
4461 #define IFCAP_FLAGS (IFCAP_HWCSUM_IPV6 | IFCAP_HWCSUM | IFCAP_LRO | \
4462 IFCAP_TSO | IFCAP_VLAN_HWTAGGING | IFCAP_HWSTATS | \
4463 IFCAP_VLAN_MTU | IFCAP_VLAN_HWFILTER | \
4464 IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM | IFCAP_MEXTPG)
4465
4466 static int
iflib_if_ioctl(if_t ifp,u_long command,caddr_t data)4467 iflib_if_ioctl(if_t ifp, u_long command, caddr_t data)
4468 {
4469 if_ctx_t ctx = if_getsoftc(ifp);
4470 struct ifreq *ifr = (struct ifreq *)data;
4471 #if defined(INET) || defined(INET6)
4472 struct ifaddr *ifa = (struct ifaddr *)data;
4473 #endif
4474 bool avoid_reset = false;
4475 int err = 0, reinit = 0, bits;
4476
4477 switch (command) {
4478 case SIOCSIFADDR:
4479 #ifdef INET
4480 if (ifa->ifa_addr->sa_family == AF_INET)
4481 avoid_reset = true;
4482 #endif
4483 #ifdef INET6
4484 if (ifa->ifa_addr->sa_family == AF_INET6)
4485 avoid_reset = true;
4486 #endif
4487 /*
4488 * Calling init results in link renegotiation,
4489 * so we avoid doing it when possible.
4490 */
4491 if (avoid_reset) {
4492 if_setflagbits(ifp, IFF_UP, 0);
4493 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4494 reinit = 1;
4495 #ifdef INET
4496 if (!(if_getflags(ifp) & IFF_NOARP))
4497 arp_ifinit(ifp, ifa);
4498 #endif
4499 } else
4500 err = ether_ioctl(ifp, command, data);
4501 break;
4502 case SIOCSIFMTU:
4503 CTX_LOCK(ctx);
4504 if (ifr->ifr_mtu == if_getmtu(ifp)) {
4505 CTX_UNLOCK(ctx);
4506 break;
4507 }
4508 bits = if_getdrvflags(ifp);
4509 /* stop the driver and free any clusters before proceeding */
4510 iflib_stop(ctx);
4511
4512 if ((err = IFDI_MTU_SET(ctx, ifr->ifr_mtu)) == 0) {
4513 STATE_LOCK(ctx);
4514 if (ifr->ifr_mtu > ctx->ifc_max_fl_buf_size)
4515 ctx->ifc_flags |= IFC_MULTISEG;
4516 else
4517 ctx->ifc_flags &= ~IFC_MULTISEG;
4518 STATE_UNLOCK(ctx);
4519 err = if_setmtu(ifp, ifr->ifr_mtu);
4520 }
4521 iflib_init_locked(ctx);
4522 STATE_LOCK(ctx);
4523 if_setdrvflags(ifp, bits);
4524 STATE_UNLOCK(ctx);
4525 CTX_UNLOCK(ctx);
4526 break;
4527 case SIOCSIFFLAGS:
4528 CTX_LOCK(ctx);
4529 if (if_getflags(ifp) & IFF_UP) {
4530 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4531 if ((if_getflags(ifp) ^ ctx->ifc_if_flags) &
4532 (IFF_PROMISC | IFF_ALLMULTI)) {
4533 CTX_UNLOCK(ctx);
4534 err = IFDI_PROMISC_SET(ctx, if_getflags(ifp));
4535 CTX_LOCK(ctx);
4536 }
4537 } else
4538 reinit = 1;
4539 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4540 iflib_stop(ctx);
4541 }
4542 ctx->ifc_if_flags = if_getflags(ifp);
4543 CTX_UNLOCK(ctx);
4544 break;
4545 case SIOCADDMULTI:
4546 case SIOCDELMULTI:
4547 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4548 CTX_LOCK(ctx);
4549 IFDI_INTR_DISABLE(ctx);
4550 IFDI_MULTI_SET(ctx);
4551 IFDI_INTR_ENABLE(ctx);
4552 CTX_UNLOCK(ctx);
4553 }
4554 break;
4555 case SIOCSIFMEDIA:
4556 CTX_LOCK(ctx);
4557 IFDI_MEDIA_SET(ctx);
4558 CTX_UNLOCK(ctx);
4559 /* FALLTHROUGH */
4560 case SIOCGIFMEDIA:
4561 case SIOCGIFXMEDIA:
4562 err = ifmedia_ioctl(ifp, ifr, ctx->ifc_mediap, command);
4563 break;
4564 case SIOCGI2C:
4565 {
4566 struct ifi2creq i2c;
4567
4568 err = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
4569 if (err != 0)
4570 break;
4571 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
4572 err = EINVAL;
4573 break;
4574 }
4575 if (i2c.len > sizeof(i2c.data)) {
4576 err = EINVAL;
4577 break;
4578 }
4579
4580 if ((err = IFDI_I2C_REQ(ctx, &i2c)) == 0)
4581 err = copyout(&i2c, ifr_data_get_ptr(ifr),
4582 sizeof(i2c));
4583 break;
4584 }
4585 case SIOCSIFCAP:
4586 {
4587 int mask, setmask, oldmask;
4588
4589 oldmask = if_getcapenable(ifp);
4590 mask = ifr->ifr_reqcap ^ oldmask;
4591 mask &= ctx->ifc_softc_ctx.isc_capabilities | IFCAP_MEXTPG;
4592 setmask = 0;
4593 #ifdef TCP_OFFLOAD
4594 setmask |= mask & (IFCAP_TOE4 | IFCAP_TOE6);
4595 #endif
4596 setmask |= (mask & IFCAP_FLAGS);
4597 setmask |= (mask & IFCAP_WOL);
4598
4599 /*
4600 * If any RX csum has changed, change all the ones that
4601 * are supported by the driver.
4602 */
4603 if (setmask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) {
4604 setmask |= ctx->ifc_softc_ctx.isc_capabilities &
4605 (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6);
4606 }
4607
4608 /*
4609 * want to ensure that traffic has stopped before we change any of the flags
4610 */
4611 if (setmask) {
4612 CTX_LOCK(ctx);
4613 bits = if_getdrvflags(ifp);
4614 if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
4615 iflib_stop(ctx);
4616 STATE_LOCK(ctx);
4617 if_togglecapenable(ifp, setmask);
4618 ctx->ifc_softc_ctx.isc_capenable ^= setmask;
4619 STATE_UNLOCK(ctx);
4620 if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
4621 iflib_init_locked(ctx);
4622 STATE_LOCK(ctx);
4623 if_setdrvflags(ifp, bits);
4624 STATE_UNLOCK(ctx);
4625 CTX_UNLOCK(ctx);
4626 }
4627 if_vlancap(ifp);
4628 break;
4629 }
4630 case SIOCGPRIVATE_0:
4631 case SIOCSDRVSPEC:
4632 case SIOCGDRVSPEC:
4633 CTX_LOCK(ctx);
4634 err = IFDI_PRIV_IOCTL(ctx, command, data);
4635 CTX_UNLOCK(ctx);
4636 break;
4637 default:
4638 err = ether_ioctl(ifp, command, data);
4639 break;
4640 }
4641 if (reinit)
4642 iflib_if_init(ctx);
4643 return (err);
4644 }
4645
4646 static uint64_t
iflib_if_get_counter(if_t ifp,ift_counter cnt)4647 iflib_if_get_counter(if_t ifp, ift_counter cnt)
4648 {
4649 if_ctx_t ctx = if_getsoftc(ifp);
4650
4651 return (IFDI_GET_COUNTER(ctx, cnt));
4652 }
4653
4654 /*********************************************************************
4655 *
4656 * OTHER FUNCTIONS EXPORTED TO THE STACK
4657 *
4658 **********************************************************************/
4659
4660 static void
iflib_vlan_register(void * arg,if_t ifp,uint16_t vtag)4661 iflib_vlan_register(void *arg, if_t ifp, uint16_t vtag)
4662 {
4663 if_ctx_t ctx = if_getsoftc(ifp);
4664
4665 if ((void *)ctx != arg)
4666 return;
4667
4668 if ((vtag == 0) || (vtag > 4095))
4669 return;
4670
4671 if (iflib_in_detach(ctx))
4672 return;
4673
4674 CTX_LOCK(ctx);
4675 /* Driver may need all untagged packets to be flushed */
4676 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4677 iflib_stop(ctx);
4678 IFDI_VLAN_REGISTER(ctx, vtag);
4679 /* Re-init to load the changes, if required */
4680 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4681 iflib_init_locked(ctx);
4682 CTX_UNLOCK(ctx);
4683 }
4684
4685 static void
iflib_vlan_unregister(void * arg,if_t ifp,uint16_t vtag)4686 iflib_vlan_unregister(void *arg, if_t ifp, uint16_t vtag)
4687 {
4688 if_ctx_t ctx = if_getsoftc(ifp);
4689
4690 if ((void *)ctx != arg)
4691 return;
4692
4693 if ((vtag == 0) || (vtag > 4095))
4694 return;
4695
4696 CTX_LOCK(ctx);
4697 /* Driver may need all tagged packets to be flushed */
4698 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4699 iflib_stop(ctx);
4700 IFDI_VLAN_UNREGISTER(ctx, vtag);
4701 /* Re-init to load the changes, if required */
4702 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4703 iflib_init_locked(ctx);
4704 CTX_UNLOCK(ctx);
4705 }
4706
4707 static void
iflib_led_func(void * arg,int onoff)4708 iflib_led_func(void *arg, int onoff)
4709 {
4710 if_ctx_t ctx = arg;
4711
4712 CTX_LOCK(ctx);
4713 IFDI_LED_FUNC(ctx, onoff);
4714 CTX_UNLOCK(ctx);
4715 }
4716
4717 /*********************************************************************
4718 *
4719 * BUS FUNCTION DEFINITIONS
4720 *
4721 **********************************************************************/
4722
4723 int
iflib_device_probe(device_t dev)4724 iflib_device_probe(device_t dev)
4725 {
4726 const pci_vendor_info_t *ent;
4727 if_shared_ctx_t sctx;
4728 uint16_t pci_device_id, pci_rev_id, pci_subdevice_id, pci_subvendor_id;
4729 uint16_t pci_vendor_id;
4730
4731 if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
4732 return (ENOTSUP);
4733
4734 pci_vendor_id = pci_get_vendor(dev);
4735 pci_device_id = pci_get_device(dev);
4736 pci_subvendor_id = pci_get_subvendor(dev);
4737 pci_subdevice_id = pci_get_subdevice(dev);
4738 pci_rev_id = pci_get_revid(dev);
4739 if (sctx->isc_parse_devinfo != NULL)
4740 sctx->isc_parse_devinfo(&pci_device_id, &pci_subvendor_id, &pci_subdevice_id, &pci_rev_id);
4741
4742 ent = sctx->isc_vendor_info;
4743 while (ent->pvi_vendor_id != 0) {
4744 if (pci_vendor_id != ent->pvi_vendor_id) {
4745 ent++;
4746 continue;
4747 }
4748 if ((pci_device_id == ent->pvi_device_id) &&
4749 ((pci_subvendor_id == ent->pvi_subvendor_id) ||
4750 (ent->pvi_subvendor_id == 0)) &&
4751 ((pci_subdevice_id == ent->pvi_subdevice_id) ||
4752 (ent->pvi_subdevice_id == 0)) &&
4753 ((pci_rev_id == ent->pvi_rev_id) ||
4754 (ent->pvi_rev_id == 0))) {
4755 device_set_desc_copy(dev, ent->pvi_name);
4756 /* this needs to be changed to zero if the bus probing code
4757 * ever stops re-probing on best match because the sctx
4758 * may have its values over written by register calls
4759 * in subsequent probes
4760 */
4761 return (BUS_PROBE_DEFAULT);
4762 }
4763 ent++;
4764 }
4765 return (ENXIO);
4766 }
4767
4768 int
iflib_device_probe_vendor(device_t dev)4769 iflib_device_probe_vendor(device_t dev)
4770 {
4771 int probe;
4772
4773 probe = iflib_device_probe(dev);
4774 if (probe == BUS_PROBE_DEFAULT)
4775 return (BUS_PROBE_VENDOR);
4776 else
4777 return (probe);
4778 }
4779
4780 static void
iflib_reset_qvalues(if_ctx_t ctx)4781 iflib_reset_qvalues(if_ctx_t ctx)
4782 {
4783 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4784 if_shared_ctx_t sctx = ctx->ifc_sctx;
4785 device_t dev = ctx->ifc_dev;
4786 int i;
4787
4788 if (ctx->ifc_sysctl_ntxqs != 0)
4789 scctx->isc_ntxqsets = ctx->ifc_sysctl_ntxqs;
4790 if (ctx->ifc_sysctl_nrxqs != 0)
4791 scctx->isc_nrxqsets = ctx->ifc_sysctl_nrxqs;
4792
4793 for (i = 0; i < sctx->isc_ntxqs; i++) {
4794 if (ctx->ifc_sysctl_ntxds[i] != 0)
4795 scctx->isc_ntxd[i] = ctx->ifc_sysctl_ntxds[i];
4796 else
4797 scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
4798 }
4799
4800 for (i = 0; i < sctx->isc_nrxqs; i++) {
4801 if (ctx->ifc_sysctl_nrxds[i] != 0)
4802 scctx->isc_nrxd[i] = ctx->ifc_sysctl_nrxds[i];
4803 else
4804 scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
4805 }
4806
4807 for (i = 0; i < sctx->isc_nrxqs; i++) {
4808 if (scctx->isc_nrxd[i] < sctx->isc_nrxd_min[i]) {
4809 device_printf(dev, "nrxd%d: %d less than nrxd_min %d - resetting to min\n",
4810 i, scctx->isc_nrxd[i], sctx->isc_nrxd_min[i]);
4811 scctx->isc_nrxd[i] = sctx->isc_nrxd_min[i];
4812 }
4813 if (scctx->isc_nrxd[i] > sctx->isc_nrxd_max[i]) {
4814 device_printf(dev, "nrxd%d: %d greater than nrxd_max %d - resetting to max\n",
4815 i, scctx->isc_nrxd[i], sctx->isc_nrxd_max[i]);
4816 scctx->isc_nrxd[i] = sctx->isc_nrxd_max[i];
4817 }
4818 if (!powerof2(scctx->isc_nrxd[i])) {
4819 device_printf(dev, "nrxd%d: %d is not a power of 2 - using default value of %d\n",
4820 i, scctx->isc_nrxd[i], sctx->isc_nrxd_default[i]);
4821 scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
4822 }
4823 }
4824
4825 for (i = 0; i < sctx->isc_ntxqs; i++) {
4826 if (scctx->isc_ntxd[i] < sctx->isc_ntxd_min[i]) {
4827 device_printf(dev, "ntxd%d: %d less than ntxd_min %d - resetting to min\n",
4828 i, scctx->isc_ntxd[i], sctx->isc_ntxd_min[i]);
4829 scctx->isc_ntxd[i] = sctx->isc_ntxd_min[i];
4830 }
4831 if (scctx->isc_ntxd[i] > sctx->isc_ntxd_max[i]) {
4832 device_printf(dev, "ntxd%d: %d greater than ntxd_max %d - resetting to max\n",
4833 i, scctx->isc_ntxd[i], sctx->isc_ntxd_max[i]);
4834 scctx->isc_ntxd[i] = sctx->isc_ntxd_max[i];
4835 }
4836 if (!powerof2(scctx->isc_ntxd[i])) {
4837 device_printf(dev, "ntxd%d: %d is not a power of 2 - using default value of %d\n",
4838 i, scctx->isc_ntxd[i], sctx->isc_ntxd_default[i]);
4839 scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
4840 }
4841 }
4842 }
4843
4844 static void
iflib_add_pfil(if_ctx_t ctx)4845 iflib_add_pfil(if_ctx_t ctx)
4846 {
4847 struct pfil_head *pfil;
4848 struct pfil_head_args pa;
4849 iflib_rxq_t rxq;
4850 int i;
4851
4852 pa.pa_version = PFIL_VERSION;
4853 pa.pa_flags = PFIL_IN;
4854 pa.pa_type = PFIL_TYPE_ETHERNET;
4855 pa.pa_headname = if_name(ctx->ifc_ifp);
4856 pfil = pfil_head_register(&pa);
4857
4858 for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
4859 rxq->pfil = pfil;
4860 }
4861 }
4862
4863 static void
iflib_rem_pfil(if_ctx_t ctx)4864 iflib_rem_pfil(if_ctx_t ctx)
4865 {
4866 struct pfil_head *pfil;
4867 iflib_rxq_t rxq;
4868 int i;
4869
4870 rxq = ctx->ifc_rxqs;
4871 pfil = rxq->pfil;
4872 for (i = 0; i < NRXQSETS(ctx); i++, rxq++) {
4873 rxq->pfil = NULL;
4874 }
4875 pfil_head_unregister(pfil);
4876 }
4877
4878
4879 /*
4880 * Advance forward by n members of the cpuset ctx->ifc_cpus starting from
4881 * cpuid and wrapping as necessary.
4882 */
4883 static unsigned int
cpuid_advance(if_ctx_t ctx,unsigned int cpuid,unsigned int n)4884 cpuid_advance(if_ctx_t ctx, unsigned int cpuid, unsigned int n)
4885 {
4886 unsigned int first_valid;
4887 unsigned int last_valid;
4888
4889 /* cpuid should always be in the valid set */
4890 MPASS(CPU_ISSET(cpuid, &ctx->ifc_cpus));
4891
4892 /* valid set should never be empty */
4893 MPASS(!CPU_EMPTY(&ctx->ifc_cpus));
4894
4895 first_valid = CPU_FFS(&ctx->ifc_cpus) - 1;
4896 last_valid = CPU_FLS(&ctx->ifc_cpus) - 1;
4897 n = n % CPU_COUNT(&ctx->ifc_cpus);
4898 while (n > 0) {
4899 do {
4900 cpuid++;
4901 if (cpuid > last_valid)
4902 cpuid = first_valid;
4903 } while (!CPU_ISSET(cpuid, &ctx->ifc_cpus));
4904 n--;
4905 }
4906
4907 return (cpuid);
4908 }
4909
4910 #if defined(SMP) && defined(SCHED_ULE)
4911 extern struct cpu_group *cpu_top; /* CPU topology */
4912
4913 static int
find_child_with_core(int cpu,struct cpu_group * grp)4914 find_child_with_core(int cpu, struct cpu_group *grp)
4915 {
4916 int i;
4917
4918 if (grp->cg_children == 0)
4919 return (-1);
4920
4921 MPASS(grp->cg_child);
4922 for (i = 0; i < grp->cg_children; i++) {
4923 if (CPU_ISSET(cpu, &grp->cg_child[i].cg_mask))
4924 return (i);
4925 }
4926
4927 return (-1);
4928 }
4929
4930
4931 /*
4932 * Find an L2 neighbor of the given CPU or return -1 if none found. This
4933 * does not distinguish among multiple L2 neighbors if the given CPU has
4934 * more than one (it will always return the same result in that case).
4935 */
4936 static int
find_l2_neighbor(int cpu)4937 find_l2_neighbor(int cpu)
4938 {
4939 struct cpu_group *grp;
4940 int i;
4941
4942 grp = cpu_top;
4943 if (grp == NULL)
4944 return (-1);
4945
4946 /*
4947 * Find the smallest CPU group that contains the given core.
4948 */
4949 i = 0;
4950 while ((i = find_child_with_core(cpu, grp)) != -1) {
4951 /*
4952 * If the smallest group containing the given CPU has less
4953 * than two members, we conclude the given CPU has no
4954 * L2 neighbor.
4955 */
4956 if (grp->cg_child[i].cg_count <= 1)
4957 return (-1);
4958 grp = &grp->cg_child[i];
4959 }
4960
4961 /* Must share L2. */
4962 if (grp->cg_level > CG_SHARE_L2 || grp->cg_level == CG_SHARE_NONE)
4963 return (-1);
4964
4965 /*
4966 * Select the first member of the set that isn't the reference
4967 * CPU, which at this point is guaranteed to exist.
4968 */
4969 for (i = 0; i < CPU_SETSIZE; i++) {
4970 if (CPU_ISSET(i, &grp->cg_mask) && i != cpu)
4971 return (i);
4972 }
4973
4974 /* Should never be reached */
4975 return (-1);
4976 }
4977
4978 #else
4979 static int
find_l2_neighbor(int cpu)4980 find_l2_neighbor(int cpu)
4981 {
4982
4983 return (-1);
4984 }
4985 #endif
4986
4987 /*
4988 * CPU mapping behaviors
4989 * ---------------------
4990 * 'separate txrx' refers to the separate_txrx sysctl
4991 * 'use logical' refers to the use_logical_cores sysctl
4992 * 'INTR CPUS' indicates whether bus_get_cpus(INTR_CPUS) succeeded
4993 *
4994 * separate use INTR
4995 * txrx logical CPUS result
4996 * ---------- --------- ------ ------------------------------------------------
4997 * - - X RX and TX queues mapped to consecutive physical
4998 * cores with RX/TX pairs on same core and excess
4999 * of either following
5000 * - X X RX and TX queues mapped to consecutive cores
5001 * of any type with RX/TX pairs on same core and
5002 * excess of either following
5003 * X - X RX and TX queues mapped to consecutive physical
5004 * cores; all RX then all TX
5005 * X X X RX queues mapped to consecutive physical cores
5006 * first, then TX queues mapped to L2 neighbor of
5007 * the corresponding RX queue if one exists,
5008 * otherwise to consecutive physical cores
5009 * - n/a - RX and TX queues mapped to consecutive cores of
5010 * any type with RX/TX pairs on same core and excess
5011 * of either following
5012 * X n/a - RX and TX queues mapped to consecutive cores of
5013 * any type; all RX then all TX
5014 */
5015 static unsigned int
get_cpuid_for_queue(if_ctx_t ctx,unsigned int base_cpuid,unsigned int qid,bool is_tx)5016 get_cpuid_for_queue(if_ctx_t ctx, unsigned int base_cpuid, unsigned int qid,
5017 bool is_tx)
5018 {
5019 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
5020 unsigned int core_index;
5021
5022 if (ctx->ifc_sysctl_separate_txrx) {
5023 /*
5024 * When using separate CPUs for TX and RX, the assignment
5025 * will always be of a consecutive CPU out of the set of
5026 * context CPUs, except for the specific case where the
5027 * context CPUs are phsyical cores, the use of logical cores
5028 * has been enabled, the assignment is for TX, the TX qid
5029 * corresponds to an RX qid, and the CPU assigned to the
5030 * corresponding RX queue has an L2 neighbor.
5031 */
5032 if (ctx->ifc_sysctl_use_logical_cores &&
5033 ctx->ifc_cpus_are_physical_cores &&
5034 is_tx && qid < scctx->isc_nrxqsets) {
5035 int l2_neighbor;
5036 unsigned int rx_cpuid;
5037
5038 rx_cpuid = cpuid_advance(ctx, base_cpuid, qid);
5039 l2_neighbor = find_l2_neighbor(rx_cpuid);
5040 if (l2_neighbor != -1) {
5041 return (l2_neighbor);
5042 }
5043 /*
5044 * ... else fall through to the normal
5045 * consecutive-after-RX assignment scheme.
5046 *
5047 * Note that we are assuming that all RX queue CPUs
5048 * have an L2 neighbor, or all do not. If a mixed
5049 * scenario is possible, we will have to keep track
5050 * separately of how many queues prior to this one
5051 * were not able to be assigned to an L2 neighbor.
5052 */
5053 }
5054 if (is_tx)
5055 core_index = scctx->isc_nrxqsets + qid;
5056 else
5057 core_index = qid;
5058 } else {
5059 core_index = qid;
5060 }
5061
5062 return (cpuid_advance(ctx, base_cpuid, core_index));
5063 }
5064
5065 static uint16_t
get_ctx_core_offset(if_ctx_t ctx)5066 get_ctx_core_offset(if_ctx_t ctx)
5067 {
5068 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
5069 struct cpu_offset *op;
5070 cpuset_t assigned_cpus;
5071 unsigned int cores_consumed;
5072 unsigned int base_cpuid = ctx->ifc_sysctl_core_offset;
5073 unsigned int first_valid;
5074 unsigned int last_valid;
5075 unsigned int i;
5076
5077 first_valid = CPU_FFS(&ctx->ifc_cpus) - 1;
5078 last_valid = CPU_FLS(&ctx->ifc_cpus) - 1;
5079
5080 if (base_cpuid != CORE_OFFSET_UNSPECIFIED) {
5081 /*
5082 * Align the user-chosen base CPU ID to the next valid CPU
5083 * for this device. If the chosen base CPU ID is smaller
5084 * than the first valid CPU or larger than the last valid
5085 * CPU, we assume the user does not know what the valid
5086 * range is for this device and is thinking in terms of a
5087 * zero-based reference frame, and so we shift the given
5088 * value into the valid range (and wrap accordingly) so the
5089 * intent is translated to the proper frame of reference.
5090 * If the base CPU ID is within the valid first/last, but
5091 * does not correspond to a valid CPU, it is advanced to the
5092 * next valid CPU (wrapping if necessary).
5093 */
5094 if (base_cpuid < first_valid || base_cpuid > last_valid) {
5095 /* shift from zero-based to first_valid-based */
5096 base_cpuid += first_valid;
5097 /* wrap to range [first_valid, last_valid] */
5098 base_cpuid = (base_cpuid - first_valid) %
5099 (last_valid - first_valid + 1);
5100 }
5101 if (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus)) {
5102 /*
5103 * base_cpuid is in [first_valid, last_valid], but
5104 * not a member of the valid set. In this case,
5105 * there will always be a member of the valid set
5106 * with a CPU ID that is greater than base_cpuid,
5107 * and we simply advance to it.
5108 */
5109 while (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus))
5110 base_cpuid++;
5111 }
5112 return (base_cpuid);
5113 }
5114
5115 /*
5116 * Determine how many cores will be consumed by performing the CPU
5117 * assignments and counting how many of the assigned CPUs correspond
5118 * to CPUs in the set of context CPUs. This is done using the CPU
5119 * ID first_valid as the base CPU ID, as the base CPU must be within
5120 * the set of context CPUs.
5121 *
5122 * Note not all assigned CPUs will be in the set of context CPUs
5123 * when separate CPUs are being allocated to TX and RX queues,
5124 * assignment to logical cores has been enabled, the set of context
5125 * CPUs contains only physical CPUs, and TX queues are mapped to L2
5126 * neighbors of CPUs that RX queues have been mapped to - in this
5127 * case we do only want to count how many CPUs in the set of context
5128 * CPUs have been consumed, as that determines the next CPU in that
5129 * set to start allocating at for the next device for which
5130 * core_offset is not set.
5131 */
5132 CPU_ZERO(&assigned_cpus);
5133 for (i = 0; i < scctx->isc_ntxqsets; i++)
5134 CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, true),
5135 &assigned_cpus);
5136 for (i = 0; i < scctx->isc_nrxqsets; i++)
5137 CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, false),
5138 &assigned_cpus);
5139 CPU_AND(&assigned_cpus, &assigned_cpus, &ctx->ifc_cpus);
5140 cores_consumed = CPU_COUNT(&assigned_cpus);
5141
5142 mtx_lock(&cpu_offset_mtx);
5143 SLIST_FOREACH(op, &cpu_offsets, entries) {
5144 if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
5145 base_cpuid = op->next_cpuid;
5146 op->next_cpuid = cpuid_advance(ctx, op->next_cpuid,
5147 cores_consumed);
5148 MPASS(op->refcount < UINT_MAX);
5149 op->refcount++;
5150 break;
5151 }
5152 }
5153 if (base_cpuid == CORE_OFFSET_UNSPECIFIED) {
5154 base_cpuid = first_valid;
5155 op = malloc(sizeof(struct cpu_offset), M_IFLIB,
5156 M_NOWAIT | M_ZERO);
5157 if (op == NULL) {
5158 device_printf(ctx->ifc_dev,
5159 "allocation for cpu offset failed.\n");
5160 } else {
5161 op->next_cpuid = cpuid_advance(ctx, base_cpuid,
5162 cores_consumed);
5163 op->refcount = 1;
5164 CPU_COPY(&ctx->ifc_cpus, &op->set);
5165 SLIST_INSERT_HEAD(&cpu_offsets, op, entries);
5166 }
5167 }
5168 mtx_unlock(&cpu_offset_mtx);
5169
5170 return (base_cpuid);
5171 }
5172
5173 static void
unref_ctx_core_offset(if_ctx_t ctx)5174 unref_ctx_core_offset(if_ctx_t ctx)
5175 {
5176 struct cpu_offset *op, *top;
5177
5178 mtx_lock(&cpu_offset_mtx);
5179 SLIST_FOREACH_SAFE(op, &cpu_offsets, entries, top) {
5180 if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
5181 MPASS(op->refcount > 0);
5182 op->refcount--;
5183 if (op->refcount == 0) {
5184 SLIST_REMOVE(&cpu_offsets, op, cpu_offset, entries);
5185 free(op, M_IFLIB);
5186 }
5187 break;
5188 }
5189 }
5190 mtx_unlock(&cpu_offset_mtx);
5191 }
5192
5193 int
iflib_device_register(device_t dev,void * sc,if_shared_ctx_t sctx,if_ctx_t * ctxp)5194 iflib_device_register(device_t dev, void *sc, if_shared_ctx_t sctx, if_ctx_t *ctxp)
5195 {
5196 if_ctx_t ctx;
5197 if_t ifp;
5198 if_softc_ctx_t scctx;
5199 kobjop_desc_t kobj_desc;
5200 kobj_method_t *kobj_method;
5201 int err, msix, rid;
5202 int num_txd, num_rxd;
5203
5204 ctx = malloc(sizeof(*ctx), M_IFLIB, M_WAITOK | M_ZERO);
5205
5206 if (sc == NULL) {
5207 sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK | M_ZERO);
5208 device_set_softc(dev, ctx);
5209 ctx->ifc_flags |= IFC_SC_ALLOCATED;
5210 }
5211
5212 ctx->ifc_sctx = sctx;
5213 ctx->ifc_dev = dev;
5214 ctx->ifc_softc = sc;
5215
5216 if ((err = iflib_register(ctx)) != 0) {
5217 device_printf(dev, "iflib_register failed %d\n", err);
5218 goto fail_ctx_free;
5219 }
5220 iflib_add_device_sysctl_pre(ctx);
5221
5222 scctx = &ctx->ifc_softc_ctx;
5223 ifp = ctx->ifc_ifp;
5224
5225 iflib_reset_qvalues(ctx);
5226 IFNET_WLOCK();
5227 CTX_LOCK(ctx);
5228 if ((err = IFDI_ATTACH_PRE(ctx)) != 0) {
5229 device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err);
5230 goto fail_unlock;
5231 }
5232 _iflib_pre_assert(scctx);
5233 ctx->ifc_txrx = *scctx->isc_txrx;
5234
5235 MPASS(scctx->isc_dma_width <= flsll(BUS_SPACE_MAXADDR));
5236
5237 if (sctx->isc_flags & IFLIB_DRIVER_MEDIA)
5238 ctx->ifc_mediap = scctx->isc_media;
5239
5240 #ifdef INVARIANTS
5241 if (scctx->isc_capabilities & IFCAP_TXCSUM)
5242 MPASS(scctx->isc_tx_csum_flags);
5243 #endif
5244
5245 if_setcapabilities(ifp,
5246 scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_MEXTPG);
5247 if_setcapenable(ifp,
5248 scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_MEXTPG);
5249
5250 if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets))
5251 scctx->isc_ntxqsets = scctx->isc_ntxqsets_max;
5252 if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets))
5253 scctx->isc_nrxqsets = scctx->isc_nrxqsets_max;
5254
5255 num_txd = iflib_num_tx_descs(ctx);
5256 num_rxd = iflib_num_rx_descs(ctx);
5257
5258 /* XXX change for per-queue sizes */
5259 device_printf(dev, "Using %d TX descriptors and %d RX descriptors\n",
5260 num_txd, num_rxd);
5261
5262 if (scctx->isc_tx_nsegments > num_txd / MAX_SINGLE_PACKET_FRACTION)
5263 scctx->isc_tx_nsegments = max(1, num_txd /
5264 MAX_SINGLE_PACKET_FRACTION);
5265 if (scctx->isc_tx_tso_segments_max > num_txd /
5266 MAX_SINGLE_PACKET_FRACTION)
5267 scctx->isc_tx_tso_segments_max = max(1,
5268 num_txd / MAX_SINGLE_PACKET_FRACTION);
5269
5270 /* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */
5271 if (if_getcapabilities(ifp) & IFCAP_TSO) {
5272 /*
5273 * The stack can't handle a TSO size larger than IP_MAXPACKET,
5274 * but some MACs do.
5275 */
5276 if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max,
5277 IP_MAXPACKET));
5278 /*
5279 * Take maximum number of m_pullup(9)'s in iflib_parse_header()
5280 * into account. In the worst case, each of these calls will
5281 * add another mbuf and, thus, the requirement for another DMA
5282 * segment. So for best performance, it doesn't make sense to
5283 * advertize a maximum of TSO segments that typically will
5284 * require defragmentation in iflib_encap().
5285 */
5286 if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3);
5287 if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max);
5288 }
5289 if (scctx->isc_rss_table_size == 0)
5290 scctx->isc_rss_table_size = 64;
5291 scctx->isc_rss_table_mask = scctx->isc_rss_table_size - 1;
5292
5293 GROUPTASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx);
5294 /* XXX format name */
5295 taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx,
5296 NULL, NULL, "admin");
5297
5298 /* Set up cpu set. If it fails, use the set of all CPUs. */
5299 if (bus_get_cpus(dev, INTR_CPUS, sizeof(ctx->ifc_cpus), &ctx->ifc_cpus) != 0) {
5300 device_printf(dev, "Unable to fetch CPU list\n");
5301 CPU_COPY(&all_cpus, &ctx->ifc_cpus);
5302 ctx->ifc_cpus_are_physical_cores = false;
5303 } else
5304 ctx->ifc_cpus_are_physical_cores = true;
5305 MPASS(CPU_COUNT(&ctx->ifc_cpus) > 0);
5306
5307 /*
5308 * Now set up MSI or MSI-X, should return us the number of supported
5309 * vectors (will be 1 for a legacy interrupt and MSI).
5310 */
5311 if (sctx->isc_flags & IFLIB_SKIP_MSIX) {
5312 msix = scctx->isc_vectors;
5313 } else if (scctx->isc_msix_bar != 0)
5314 /*
5315 * The simple fact that isc_msix_bar is not 0 does not mean we
5316 * we have a good value there that is known to work.
5317 */
5318 msix = iflib_msix_init(ctx);
5319 else {
5320 scctx->isc_vectors = 1;
5321 scctx->isc_ntxqsets = 1;
5322 scctx->isc_nrxqsets = 1;
5323 scctx->isc_intr = IFLIB_INTR_LEGACY;
5324 msix = 0;
5325 }
5326 /* Get memory for the station queues */
5327 if ((err = iflib_queues_alloc(ctx))) {
5328 device_printf(dev, "Unable to allocate queue memory\n");
5329 goto fail_intr_free;
5330 }
5331
5332 if ((err = iflib_qset_structures_setup(ctx)))
5333 goto fail_queues;
5334
5335 /*
5336 * Now that we know how many queues there are, get the core offset.
5337 */
5338 ctx->ifc_sysctl_core_offset = get_ctx_core_offset(ctx);
5339
5340 if (msix > 1) {
5341 /*
5342 * When using MSI-X, ensure that ifdi_{r,t}x_queue_intr_enable
5343 * aren't the default NULL implementation.
5344 */
5345 kobj_desc = &ifdi_rx_queue_intr_enable_desc;
5346 kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
5347 kobj_desc);
5348 if (kobj_method == &kobj_desc->deflt) {
5349 device_printf(dev,
5350 "MSI-X requires ifdi_rx_queue_intr_enable method");
5351 err = EOPNOTSUPP;
5352 goto fail_queues;
5353 }
5354 kobj_desc = &ifdi_tx_queue_intr_enable_desc;
5355 kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
5356 kobj_desc);
5357 if (kobj_method == &kobj_desc->deflt) {
5358 device_printf(dev,
5359 "MSI-X requires ifdi_tx_queue_intr_enable method");
5360 err = EOPNOTSUPP;
5361 goto fail_queues;
5362 }
5363
5364 /*
5365 * Assign the MSI-X vectors.
5366 * Note that the default NULL ifdi_msix_intr_assign method will
5367 * fail here, too.
5368 */
5369 err = IFDI_MSIX_INTR_ASSIGN(ctx, msix);
5370 if (err != 0) {
5371 device_printf(dev, "IFDI_MSIX_INTR_ASSIGN failed %d\n",
5372 err);
5373 goto fail_queues;
5374 }
5375 } else if (scctx->isc_intr != IFLIB_INTR_MSIX) {
5376 rid = 0;
5377 if (scctx->isc_intr == IFLIB_INTR_MSI) {
5378 MPASS(msix == 1);
5379 rid = 1;
5380 }
5381 if ((err = iflib_legacy_setup(ctx, ctx->isc_legacy_intr, ctx->ifc_softc, &rid, "irq0")) != 0) {
5382 device_printf(dev, "iflib_legacy_setup failed %d\n", err);
5383 goto fail_queues;
5384 }
5385 } else {
5386 device_printf(dev,
5387 "Cannot use iflib with only 1 MSI-X interrupt!\n");
5388 err = ENODEV;
5389 goto fail_queues;
5390 }
5391
5392 /*
5393 * It prevents a double-locking panic with iflib_media_status when
5394 * the driver loads.
5395 */
5396 CTX_UNLOCK(ctx);
5397 ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
5398 CTX_LOCK(ctx);
5399
5400 if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
5401 device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
5402 goto fail_detach;
5403 }
5404
5405 /*
5406 * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
5407 * This must appear after the call to ether_ifattach() because
5408 * ether_ifattach() sets if_hdrlen to the default value.
5409 */
5410 if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
5411 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
5412
5413 if ((err = iflib_netmap_attach(ctx))) {
5414 device_printf(ctx->ifc_dev, "netmap attach failed: %d\n", err);
5415 goto fail_detach;
5416 }
5417 *ctxp = ctx;
5418
5419 DEBUGNET_SET(ctx->ifc_ifp, iflib);
5420
5421 if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter);
5422 iflib_add_device_sysctl_post(ctx);
5423 iflib_add_pfil(ctx);
5424 ctx->ifc_flags |= IFC_INIT_DONE;
5425 CTX_UNLOCK(ctx);
5426 IFNET_WUNLOCK();
5427
5428 return (0);
5429
5430 fail_detach:
5431 ether_ifdetach(ctx->ifc_ifp);
5432 fail_queues:
5433 iflib_tqg_detach(ctx);
5434 iflib_tx_structures_free(ctx);
5435 iflib_rx_structures_free(ctx);
5436 IFDI_DETACH(ctx);
5437 IFDI_QUEUES_FREE(ctx);
5438 fail_intr_free:
5439 iflib_free_intr_mem(ctx);
5440 fail_unlock:
5441 CTX_UNLOCK(ctx);
5442 IFNET_WUNLOCK();
5443 iflib_deregister(ctx);
5444 fail_ctx_free:
5445 device_set_softc(ctx->ifc_dev, NULL);
5446 if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5447 free(ctx->ifc_softc, M_IFLIB);
5448 free(ctx, M_IFLIB);
5449 return (err);
5450 }
5451
5452 int
iflib_device_attach(device_t dev)5453 iflib_device_attach(device_t dev)
5454 {
5455 if_ctx_t ctx;
5456 if_shared_ctx_t sctx;
5457
5458 if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
5459 return (ENOTSUP);
5460
5461 pci_enable_busmaster(dev);
5462
5463 return (iflib_device_register(dev, NULL, sctx, &ctx));
5464 }
5465
5466 int
iflib_device_deregister(if_ctx_t ctx)5467 iflib_device_deregister(if_ctx_t ctx)
5468 {
5469 if_t ifp = ctx->ifc_ifp;
5470 device_t dev = ctx->ifc_dev;
5471
5472 /* Make sure VLANS are not using driver */
5473 if (if_vlantrunkinuse(ifp)) {
5474 device_printf(dev, "Vlan in use, detach first\n");
5475 return (EBUSY);
5476 }
5477 #ifdef PCI_IOV
5478 if (!CTX_IS_VF(ctx) && pci_iov_detach(dev) != 0) {
5479 device_printf(dev, "SR-IOV in use; detach first.\n");
5480 return (EBUSY);
5481 }
5482 #endif
5483
5484 STATE_LOCK(ctx);
5485 ctx->ifc_flags |= IFC_IN_DETACH;
5486 STATE_UNLOCK(ctx);
5487
5488 /* Unregister VLAN handlers before calling iflib_stop() */
5489 iflib_unregister_vlan_handlers(ctx);
5490
5491 iflib_netmap_detach(ifp);
5492 ether_ifdetach(ifp);
5493
5494 CTX_LOCK(ctx);
5495 iflib_stop(ctx);
5496 CTX_UNLOCK(ctx);
5497
5498 iflib_rem_pfil(ctx);
5499 if (ctx->ifc_led_dev != NULL)
5500 led_destroy(ctx->ifc_led_dev);
5501
5502 iflib_tqg_detach(ctx);
5503 iflib_tx_structures_free(ctx);
5504 iflib_rx_structures_free(ctx);
5505
5506 CTX_LOCK(ctx);
5507 IFDI_DETACH(ctx);
5508 IFDI_QUEUES_FREE(ctx);
5509 CTX_UNLOCK(ctx);
5510
5511 /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
5512 iflib_free_intr_mem(ctx);
5513
5514 bus_generic_detach(dev);
5515
5516 iflib_deregister(ctx);
5517
5518 device_set_softc(ctx->ifc_dev, NULL);
5519 if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5520 free(ctx->ifc_softc, M_IFLIB);
5521 unref_ctx_core_offset(ctx);
5522 free(ctx, M_IFLIB);
5523 return (0);
5524 }
5525
5526 static void
iflib_tqg_detach(if_ctx_t ctx)5527 iflib_tqg_detach(if_ctx_t ctx)
5528 {
5529 iflib_txq_t txq;
5530 iflib_rxq_t rxq;
5531 int i;
5532 struct taskqgroup *tqg;
5533
5534 /* XXX drain any dependent tasks */
5535 tqg = qgroup_if_io_tqg;
5536 for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) {
5537 callout_drain(&txq->ift_timer);
5538 #ifdef DEV_NETMAP
5539 callout_drain(&txq->ift_netmap_timer);
5540 #endif /* DEV_NETMAP */
5541 if (txq->ift_task.gt_uniq != NULL)
5542 taskqgroup_detach(tqg, &txq->ift_task);
5543 }
5544 for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
5545 if (rxq->ifr_task.gt_uniq != NULL)
5546 taskqgroup_detach(tqg, &rxq->ifr_task);
5547 }
5548 tqg = qgroup_if_config_tqg;
5549 if (ctx->ifc_admin_task.gt_uniq != NULL)
5550 taskqgroup_detach(tqg, &ctx->ifc_admin_task);
5551 if (ctx->ifc_vflr_task.gt_uniq != NULL)
5552 taskqgroup_detach(tqg, &ctx->ifc_vflr_task);
5553 }
5554
5555 static void
iflib_free_intr_mem(if_ctx_t ctx)5556 iflib_free_intr_mem(if_ctx_t ctx)
5557 {
5558
5559 if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_MSIX) {
5560 iflib_irq_free(ctx, &ctx->ifc_legacy_irq);
5561 }
5562 if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_LEGACY) {
5563 pci_release_msi(ctx->ifc_dev);
5564 }
5565 if (ctx->ifc_msix_mem != NULL) {
5566 bus_release_resource(ctx->ifc_dev, SYS_RES_MEMORY,
5567 rman_get_rid(ctx->ifc_msix_mem), ctx->ifc_msix_mem);
5568 ctx->ifc_msix_mem = NULL;
5569 }
5570 }
5571
5572 int
iflib_device_detach(device_t dev)5573 iflib_device_detach(device_t dev)
5574 {
5575 if_ctx_t ctx = device_get_softc(dev);
5576
5577 return (iflib_device_deregister(ctx));
5578 }
5579
5580 int
iflib_device_suspend(device_t dev)5581 iflib_device_suspend(device_t dev)
5582 {
5583 if_ctx_t ctx = device_get_softc(dev);
5584
5585 CTX_LOCK(ctx);
5586 IFDI_SUSPEND(ctx);
5587 CTX_UNLOCK(ctx);
5588
5589 return (bus_generic_suspend(dev));
5590 }
5591 int
iflib_device_shutdown(device_t dev)5592 iflib_device_shutdown(device_t dev)
5593 {
5594 if_ctx_t ctx = device_get_softc(dev);
5595
5596 CTX_LOCK(ctx);
5597 IFDI_SHUTDOWN(ctx);
5598 CTX_UNLOCK(ctx);
5599
5600 return (bus_generic_suspend(dev));
5601 }
5602
5603 int
iflib_device_resume(device_t dev)5604 iflib_device_resume(device_t dev)
5605 {
5606 if_ctx_t ctx = device_get_softc(dev);
5607 iflib_txq_t txq = ctx->ifc_txqs;
5608
5609 CTX_LOCK(ctx);
5610 IFDI_RESUME(ctx);
5611 iflib_if_init_locked(ctx);
5612 CTX_UNLOCK(ctx);
5613 for (int i = 0; i < NTXQSETS(ctx); i++, txq++)
5614 iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
5615
5616 return (bus_generic_resume(dev));
5617 }
5618
5619 int
iflib_device_iov_init(device_t dev,uint16_t num_vfs,const nvlist_t * params)5620 iflib_device_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params)
5621 {
5622 int error;
5623 if_ctx_t ctx = device_get_softc(dev);
5624
5625 CTX_LOCK(ctx);
5626 error = IFDI_IOV_INIT(ctx, num_vfs, params);
5627 CTX_UNLOCK(ctx);
5628
5629 return (error);
5630 }
5631
5632 void
iflib_device_iov_uninit(device_t dev)5633 iflib_device_iov_uninit(device_t dev)
5634 {
5635 if_ctx_t ctx = device_get_softc(dev);
5636
5637 CTX_LOCK(ctx);
5638 IFDI_IOV_UNINIT(ctx);
5639 CTX_UNLOCK(ctx);
5640 }
5641
5642 int
iflib_device_iov_add_vf(device_t dev,uint16_t vfnum,const nvlist_t * params)5643 iflib_device_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params)
5644 {
5645 int error;
5646 if_ctx_t ctx = device_get_softc(dev);
5647
5648 CTX_LOCK(ctx);
5649 error = IFDI_IOV_VF_ADD(ctx, vfnum, params);
5650 CTX_UNLOCK(ctx);
5651
5652 return (error);
5653 }
5654
5655 /*********************************************************************
5656 *
5657 * MODULE FUNCTION DEFINITIONS
5658 *
5659 **********************************************************************/
5660
5661 /*
5662 * - Start a fast taskqueue thread for each core
5663 * - Start a taskqueue for control operations
5664 */
5665 static int
iflib_module_init(void)5666 iflib_module_init(void)
5667 {
5668 iflib_timer_default = hz / 2;
5669 return (0);
5670 }
5671
5672 static int
iflib_module_event_handler(module_t mod,int what,void * arg)5673 iflib_module_event_handler(module_t mod, int what, void *arg)
5674 {
5675 int err;
5676
5677 switch (what) {
5678 case MOD_LOAD:
5679 if ((err = iflib_module_init()) != 0)
5680 return (err);
5681 break;
5682 case MOD_UNLOAD:
5683 return (EBUSY);
5684 default:
5685 return (EOPNOTSUPP);
5686 }
5687
5688 return (0);
5689 }
5690
5691 /*********************************************************************
5692 *
5693 * PUBLIC FUNCTION DEFINITIONS
5694 * ordered as in iflib.h
5695 *
5696 **********************************************************************/
5697
5698 static void
_iflib_assert(if_shared_ctx_t sctx)5699 _iflib_assert(if_shared_ctx_t sctx)
5700 {
5701 int i;
5702
5703 MPASS(sctx->isc_tx_maxsize);
5704 MPASS(sctx->isc_tx_maxsegsize);
5705
5706 MPASS(sctx->isc_rx_maxsize);
5707 MPASS(sctx->isc_rx_nsegments);
5708 MPASS(sctx->isc_rx_maxsegsize);
5709
5710 MPASS(sctx->isc_nrxqs >= 1 && sctx->isc_nrxqs <= 8);
5711 for (i = 0; i < sctx->isc_nrxqs; i++) {
5712 MPASS(sctx->isc_nrxd_min[i]);
5713 MPASS(powerof2(sctx->isc_nrxd_min[i]));
5714 MPASS(sctx->isc_nrxd_max[i]);
5715 MPASS(powerof2(sctx->isc_nrxd_max[i]));
5716 MPASS(sctx->isc_nrxd_default[i]);
5717 MPASS(powerof2(sctx->isc_nrxd_default[i]));
5718 }
5719
5720 MPASS(sctx->isc_ntxqs >= 1 && sctx->isc_ntxqs <= 8);
5721 for (i = 0; i < sctx->isc_ntxqs; i++) {
5722 MPASS(sctx->isc_ntxd_min[i]);
5723 MPASS(powerof2(sctx->isc_ntxd_min[i]));
5724 MPASS(sctx->isc_ntxd_max[i]);
5725 MPASS(powerof2(sctx->isc_ntxd_max[i]));
5726 MPASS(sctx->isc_ntxd_default[i]);
5727 MPASS(powerof2(sctx->isc_ntxd_default[i]));
5728 }
5729 }
5730
5731 static void
_iflib_pre_assert(if_softc_ctx_t scctx)5732 _iflib_pre_assert(if_softc_ctx_t scctx)
5733 {
5734
5735 MPASS(scctx->isc_txrx->ift_txd_encap);
5736 MPASS(scctx->isc_txrx->ift_txd_flush);
5737 MPASS(scctx->isc_txrx->ift_txd_credits_update);
5738 MPASS(scctx->isc_txrx->ift_rxd_available);
5739 MPASS(scctx->isc_txrx->ift_rxd_pkt_get);
5740 MPASS(scctx->isc_txrx->ift_rxd_refill);
5741 MPASS(scctx->isc_txrx->ift_rxd_flush);
5742 }
5743
5744 static int
iflib_register(if_ctx_t ctx)5745 iflib_register(if_ctx_t ctx)
5746 {
5747 if_shared_ctx_t sctx = ctx->ifc_sctx;
5748 driver_t *driver = sctx->isc_driver;
5749 device_t dev = ctx->ifc_dev;
5750 if_t ifp;
5751
5752 _iflib_assert(sctx);
5753
5754 CTX_LOCK_INIT(ctx);
5755 STATE_LOCK_INIT(ctx, device_get_nameunit(ctx->ifc_dev));
5756 ifp = ctx->ifc_ifp = if_alloc_dev(IFT_ETHER, dev);
5757
5758 /*
5759 * Initialize our context's device specific methods
5760 */
5761 kobj_init((kobj_t) ctx, (kobj_class_t) driver);
5762 kobj_class_compile((kobj_class_t) driver);
5763
5764 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
5765 if_setsoftc(ifp, ctx);
5766 if_setdev(ifp, dev);
5767 if_setinitfn(ifp, iflib_if_init);
5768 if_setioctlfn(ifp, iflib_if_ioctl);
5769 #ifdef ALTQ
5770 if_setstartfn(ifp, iflib_altq_if_start);
5771 if_settransmitfn(ifp, iflib_altq_if_transmit);
5772 if_setsendqready(ifp);
5773 #else
5774 if_settransmitfn(ifp, iflib_if_transmit);
5775 #endif
5776 if_setqflushfn(ifp, iflib_if_qflush);
5777 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
5778 ctx->ifc_vlan_attach_event =
5779 EVENTHANDLER_REGISTER(vlan_config, iflib_vlan_register, ctx,
5780 EVENTHANDLER_PRI_FIRST);
5781 ctx->ifc_vlan_detach_event =
5782 EVENTHANDLER_REGISTER(vlan_unconfig, iflib_vlan_unregister, ctx,
5783 EVENTHANDLER_PRI_FIRST);
5784
5785 if ((sctx->isc_flags & IFLIB_DRIVER_MEDIA) == 0) {
5786 ctx->ifc_mediap = &ctx->ifc_media;
5787 ifmedia_init(ctx->ifc_mediap, IFM_IMASK,
5788 iflib_media_change, iflib_media_status);
5789 }
5790 return (0);
5791 }
5792
5793 static void
iflib_unregister_vlan_handlers(if_ctx_t ctx)5794 iflib_unregister_vlan_handlers(if_ctx_t ctx)
5795 {
5796 /* Unregister VLAN events */
5797 if (ctx->ifc_vlan_attach_event != NULL) {
5798 EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event);
5799 ctx->ifc_vlan_attach_event = NULL;
5800 }
5801 if (ctx->ifc_vlan_detach_event != NULL) {
5802 EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event);
5803 ctx->ifc_vlan_detach_event = NULL;
5804 }
5805
5806 }
5807
5808 static void
iflib_deregister(if_ctx_t ctx)5809 iflib_deregister(if_ctx_t ctx)
5810 {
5811 if_t ifp = ctx->ifc_ifp;
5812
5813 /* Remove all media */
5814 ifmedia_removeall(&ctx->ifc_media);
5815
5816 /* Ensure that VLAN event handlers are unregistered */
5817 iflib_unregister_vlan_handlers(ctx);
5818
5819 /* Release kobject reference */
5820 kobj_delete((kobj_t) ctx, NULL);
5821
5822 /* Free the ifnet structure */
5823 if_free(ifp);
5824
5825 STATE_LOCK_DESTROY(ctx);
5826
5827 /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
5828 CTX_LOCK_DESTROY(ctx);
5829 }
5830
5831 static int
iflib_queues_alloc(if_ctx_t ctx)5832 iflib_queues_alloc(if_ctx_t ctx)
5833 {
5834 if_shared_ctx_t sctx = ctx->ifc_sctx;
5835 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
5836 device_t dev = ctx->ifc_dev;
5837 int nrxqsets = scctx->isc_nrxqsets;
5838 int ntxqsets = scctx->isc_ntxqsets;
5839 iflib_txq_t txq;
5840 iflib_rxq_t rxq;
5841 iflib_fl_t fl = NULL;
5842 int i, j, cpu, err, txconf, rxconf;
5843 iflib_dma_info_t ifdip;
5844 uint32_t *rxqsizes = scctx->isc_rxqsizes;
5845 uint32_t *txqsizes = scctx->isc_txqsizes;
5846 uint8_t nrxqs = sctx->isc_nrxqs;
5847 uint8_t ntxqs = sctx->isc_ntxqs;
5848 int nfree_lists = sctx->isc_nfl ? sctx->isc_nfl : 1;
5849 int fl_offset = (sctx->isc_flags & IFLIB_HAS_RXCQ ? 1 : 0);
5850 caddr_t *vaddrs;
5851 uint64_t *paddrs;
5852
5853 KASSERT(ntxqs > 0, ("number of queues per qset must be at least 1"));
5854 KASSERT(nrxqs > 0, ("number of queues per qset must be at least 1"));
5855 KASSERT(nrxqs >= fl_offset + nfree_lists,
5856 ("there must be at least a rxq for each free list"));
5857
5858 /* Allocate the TX ring struct memory */
5859 if (!(ctx->ifc_txqs =
5860 (iflib_txq_t) malloc(sizeof(struct iflib_txq) *
5861 ntxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
5862 device_printf(dev, "Unable to allocate TX ring memory\n");
5863 err = ENOMEM;
5864 goto fail;
5865 }
5866
5867 /* Now allocate the RX */
5868 if (!(ctx->ifc_rxqs =
5869 (iflib_rxq_t) malloc(sizeof(struct iflib_rxq) *
5870 nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
5871 device_printf(dev, "Unable to allocate RX ring memory\n");
5872 err = ENOMEM;
5873 goto rx_fail;
5874 }
5875
5876 txq = ctx->ifc_txqs;
5877 rxq = ctx->ifc_rxqs;
5878
5879 /*
5880 * XXX handle allocation failure
5881 */
5882 for (txconf = i = 0, cpu = CPU_FIRST(); i < ntxqsets; i++, txconf++, txq++, cpu = CPU_NEXT(cpu)) {
5883 /* Set up some basics */
5884
5885 if ((ifdip = malloc(sizeof(struct iflib_dma_info) * ntxqs,
5886 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
5887 device_printf(dev,
5888 "Unable to allocate TX DMA info memory\n");
5889 err = ENOMEM;
5890 goto err_tx_desc;
5891 }
5892 txq->ift_ifdi = ifdip;
5893 for (j = 0; j < ntxqs; j++, ifdip++) {
5894 if (iflib_dma_alloc(ctx, txqsizes[j], ifdip, 0)) {
5895 device_printf(dev,
5896 "Unable to allocate TX descriptors\n");
5897 err = ENOMEM;
5898 goto err_tx_desc;
5899 }
5900 txq->ift_txd_size[j] = scctx->isc_txd_size[j];
5901 bzero((void *)ifdip->idi_vaddr, txqsizes[j]);
5902 }
5903 txq->ift_ctx = ctx;
5904 txq->ift_id = i;
5905 if (sctx->isc_flags & IFLIB_HAS_TXCQ) {
5906 txq->ift_br_offset = 1;
5907 } else {
5908 txq->ift_br_offset = 0;
5909 }
5910
5911 if (iflib_txsd_alloc(txq)) {
5912 device_printf(dev, "Critical Failure setting up TX buffers\n");
5913 err = ENOMEM;
5914 goto err_tx_desc;
5915 }
5916
5917 /* Initialize the TX lock */
5918 snprintf(txq->ift_mtx_name, MTX_NAME_LEN, "%s:TX(%d):callout",
5919 device_get_nameunit(dev), txq->ift_id);
5920 mtx_init(&txq->ift_mtx, txq->ift_mtx_name, NULL, MTX_DEF);
5921 callout_init_mtx(&txq->ift_timer, &txq->ift_mtx, 0);
5922 txq->ift_timer.c_cpu = cpu;
5923 #ifdef DEV_NETMAP
5924 callout_init_mtx(&txq->ift_netmap_timer, &txq->ift_mtx, 0);
5925 txq->ift_netmap_timer.c_cpu = cpu;
5926 #endif /* DEV_NETMAP */
5927
5928 err = ifmp_ring_alloc(&txq->ift_br, 2048, txq, iflib_txq_drain,
5929 iflib_txq_can_drain, M_IFLIB, M_WAITOK);
5930 if (err) {
5931 /* XXX free any allocated rings */
5932 device_printf(dev, "Unable to allocate buf_ring\n");
5933 goto err_tx_desc;
5934 }
5935 }
5936
5937 for (rxconf = i = 0; i < nrxqsets; i++, rxconf++, rxq++) {
5938 /* Set up some basics */
5939 callout_init(&rxq->ifr_watchdog, 1);
5940
5941 if ((ifdip = malloc(sizeof(struct iflib_dma_info) * nrxqs,
5942 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
5943 device_printf(dev,
5944 "Unable to allocate RX DMA info memory\n");
5945 err = ENOMEM;
5946 goto err_tx_desc;
5947 }
5948
5949 rxq->ifr_ifdi = ifdip;
5950 /* XXX this needs to be changed if #rx queues != #tx queues */
5951 rxq->ifr_ntxqirq = 1;
5952 rxq->ifr_txqid[0] = i;
5953 for (j = 0; j < nrxqs; j++, ifdip++) {
5954 if (iflib_dma_alloc(ctx, rxqsizes[j], ifdip, 0)) {
5955 device_printf(dev,
5956 "Unable to allocate RX descriptors\n");
5957 err = ENOMEM;
5958 goto err_tx_desc;
5959 }
5960 bzero((void *)ifdip->idi_vaddr, rxqsizes[j]);
5961 }
5962 rxq->ifr_ctx = ctx;
5963 rxq->ifr_id = i;
5964 rxq->ifr_fl_offset = fl_offset;
5965 rxq->ifr_nfl = nfree_lists;
5966 if (!(fl =
5967 (iflib_fl_t) malloc(sizeof(struct iflib_fl) * nfree_lists, M_IFLIB, M_NOWAIT | M_ZERO))) {
5968 device_printf(dev, "Unable to allocate free list memory\n");
5969 err = ENOMEM;
5970 goto err_tx_desc;
5971 }
5972 rxq->ifr_fl = fl;
5973 for (j = 0; j < nfree_lists; j++) {
5974 fl[j].ifl_rxq = rxq;
5975 fl[j].ifl_id = j;
5976 fl[j].ifl_ifdi = &rxq->ifr_ifdi[j + rxq->ifr_fl_offset];
5977 fl[j].ifl_rxd_size = scctx->isc_rxd_size[j];
5978 }
5979 /* Allocate receive buffers for the ring */
5980 if (iflib_rxsd_alloc(rxq)) {
5981 device_printf(dev,
5982 "Critical Failure setting up receive buffers\n");
5983 err = ENOMEM;
5984 goto err_rx_desc;
5985 }
5986
5987 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
5988 fl->ifl_rx_bitmap = bit_alloc(fl->ifl_size, M_IFLIB,
5989 M_WAITOK);
5990 }
5991
5992 /* TXQs */
5993 vaddrs = malloc(sizeof(caddr_t) * ntxqsets * ntxqs, M_IFLIB, M_WAITOK);
5994 paddrs = malloc(sizeof(uint64_t) * ntxqsets * ntxqs, M_IFLIB, M_WAITOK);
5995 for (i = 0; i < ntxqsets; i++) {
5996 iflib_dma_info_t di = ctx->ifc_txqs[i].ift_ifdi;
5997
5998 for (j = 0; j < ntxqs; j++, di++) {
5999 vaddrs[i * ntxqs + j] = di->idi_vaddr;
6000 paddrs[i * ntxqs + j] = di->idi_paddr;
6001 }
6002 }
6003 if ((err = IFDI_TX_QUEUES_ALLOC(ctx, vaddrs, paddrs, ntxqs, ntxqsets)) != 0) {
6004 device_printf(ctx->ifc_dev,
6005 "Unable to allocate device TX queue\n");
6006 iflib_tx_structures_free(ctx);
6007 free(vaddrs, M_IFLIB);
6008 free(paddrs, M_IFLIB);
6009 goto err_rx_desc;
6010 }
6011 free(vaddrs, M_IFLIB);
6012 free(paddrs, M_IFLIB);
6013
6014 /* RXQs */
6015 vaddrs = malloc(sizeof(caddr_t) * nrxqsets * nrxqs, M_IFLIB, M_WAITOK);
6016 paddrs = malloc(sizeof(uint64_t) * nrxqsets * nrxqs, M_IFLIB, M_WAITOK);
6017 for (i = 0; i < nrxqsets; i++) {
6018 iflib_dma_info_t di = ctx->ifc_rxqs[i].ifr_ifdi;
6019
6020 for (j = 0; j < nrxqs; j++, di++) {
6021 vaddrs[i * nrxqs + j] = di->idi_vaddr;
6022 paddrs[i * nrxqs + j] = di->idi_paddr;
6023 }
6024 }
6025 if ((err = IFDI_RX_QUEUES_ALLOC(ctx, vaddrs, paddrs, nrxqs, nrxqsets)) != 0) {
6026 device_printf(ctx->ifc_dev,
6027 "Unable to allocate device RX queue\n");
6028 iflib_tx_structures_free(ctx);
6029 free(vaddrs, M_IFLIB);
6030 free(paddrs, M_IFLIB);
6031 goto err_rx_desc;
6032 }
6033 free(vaddrs, M_IFLIB);
6034 free(paddrs, M_IFLIB);
6035
6036 return (0);
6037
6038 /* XXX handle allocation failure changes */
6039 err_rx_desc:
6040 err_tx_desc:
6041 rx_fail:
6042 if (ctx->ifc_rxqs != NULL)
6043 free(ctx->ifc_rxqs, M_IFLIB);
6044 ctx->ifc_rxqs = NULL;
6045 if (ctx->ifc_txqs != NULL)
6046 free(ctx->ifc_txqs, M_IFLIB);
6047 ctx->ifc_txqs = NULL;
6048 fail:
6049 return (err);
6050 }
6051
6052 static int
iflib_tx_structures_setup(if_ctx_t ctx)6053 iflib_tx_structures_setup(if_ctx_t ctx)
6054 {
6055 iflib_txq_t txq = ctx->ifc_txqs;
6056 int i;
6057
6058 for (i = 0; i < NTXQSETS(ctx); i++, txq++)
6059 iflib_txq_setup(txq);
6060
6061 return (0);
6062 }
6063
6064 static void
iflib_tx_structures_free(if_ctx_t ctx)6065 iflib_tx_structures_free(if_ctx_t ctx)
6066 {
6067 iflib_txq_t txq = ctx->ifc_txqs;
6068 if_shared_ctx_t sctx = ctx->ifc_sctx;
6069 int i, j;
6070
6071 for (i = 0; i < NTXQSETS(ctx); i++, txq++) {
6072 for (j = 0; j < sctx->isc_ntxqs; j++)
6073 iflib_dma_free(&txq->ift_ifdi[j]);
6074 iflib_txq_destroy(txq);
6075 }
6076 free(ctx->ifc_txqs, M_IFLIB);
6077 ctx->ifc_txqs = NULL;
6078 }
6079
6080 /*********************************************************************
6081 *
6082 * Initialize all receive rings.
6083 *
6084 **********************************************************************/
6085 static int
iflib_rx_structures_setup(if_ctx_t ctx)6086 iflib_rx_structures_setup(if_ctx_t ctx)
6087 {
6088 iflib_rxq_t rxq = ctx->ifc_rxqs;
6089 int q;
6090 #if defined(INET6) || defined(INET)
6091 int err, i;
6092 #endif
6093
6094 for (q = 0; q < ctx->ifc_softc_ctx.isc_nrxqsets; q++, rxq++) {
6095 #if defined(INET6) || defined(INET)
6096 err = tcp_lro_init_args(&rxq->ifr_lc, ctx->ifc_ifp,
6097 TCP_LRO_ENTRIES, min(1024,
6098 ctx->ifc_softc_ctx.isc_nrxd[rxq->ifr_fl_offset]));
6099 if (err != 0) {
6100 device_printf(ctx->ifc_dev,
6101 "LRO Initialization failed!\n");
6102 goto fail;
6103 }
6104 #endif
6105 IFDI_RXQ_SETUP(ctx, rxq->ifr_id);
6106 }
6107 return (0);
6108 #if defined(INET6) || defined(INET)
6109 fail:
6110 /*
6111 * Free LRO resources allocated so far, we will only handle
6112 * the rings that completed, the failing case will have
6113 * cleaned up for itself. 'q' failed, so its the terminus.
6114 */
6115 rxq = ctx->ifc_rxqs;
6116 for (i = 0; i < q; ++i, rxq++) {
6117 tcp_lro_free(&rxq->ifr_lc);
6118 }
6119 return (err);
6120 #endif
6121 }
6122
6123 /*********************************************************************
6124 *
6125 * Free all receive rings.
6126 *
6127 **********************************************************************/
6128 static void
iflib_rx_structures_free(if_ctx_t ctx)6129 iflib_rx_structures_free(if_ctx_t ctx)
6130 {
6131 iflib_rxq_t rxq = ctx->ifc_rxqs;
6132 if_shared_ctx_t sctx = ctx->ifc_sctx;
6133 int i, j;
6134
6135 for (i = 0; i < ctx->ifc_softc_ctx.isc_nrxqsets; i++, rxq++) {
6136 for (j = 0; j < sctx->isc_nrxqs; j++)
6137 iflib_dma_free(&rxq->ifr_ifdi[j]);
6138 iflib_rx_sds_free(rxq);
6139 #if defined(INET6) || defined(INET)
6140 tcp_lro_free(&rxq->ifr_lc);
6141 #endif
6142 }
6143 free(ctx->ifc_rxqs, M_IFLIB);
6144 ctx->ifc_rxqs = NULL;
6145 }
6146
6147 static int
iflib_qset_structures_setup(if_ctx_t ctx)6148 iflib_qset_structures_setup(if_ctx_t ctx)
6149 {
6150 int err;
6151
6152 /*
6153 * It is expected that the caller takes care of freeing queues if this
6154 * fails.
6155 */
6156 if ((err = iflib_tx_structures_setup(ctx)) != 0) {
6157 device_printf(ctx->ifc_dev, "iflib_tx_structures_setup failed: %d\n", err);
6158 return (err);
6159 }
6160
6161 if ((err = iflib_rx_structures_setup(ctx)) != 0)
6162 device_printf(ctx->ifc_dev, "iflib_rx_structures_setup failed: %d\n", err);
6163
6164 return (err);
6165 }
6166
6167 int
iflib_irq_alloc(if_ctx_t ctx,if_irq_t irq,int rid,driver_filter_t filter,void * filter_arg,driver_intr_t handler,void * arg,const char * name)6168 iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
6169 driver_filter_t filter, void *filter_arg, driver_intr_t handler, void *arg, const char *name)
6170 {
6171
6172 return (_iflib_irq_alloc(ctx, irq, rid, filter, handler, arg, name));
6173 }
6174
6175 /* Just to avoid copy/paste */
6176 static inline int
iflib_irq_set_affinity(if_ctx_t ctx,if_irq_t irq,iflib_intr_type_t type,int qid,struct grouptask * gtask,struct taskqgroup * tqg,void * uniq,const char * name)6177 iflib_irq_set_affinity(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type,
6178 int qid, struct grouptask *gtask, struct taskqgroup *tqg, void *uniq,
6179 const char *name)
6180 {
6181 device_t dev;
6182 unsigned int base_cpuid, cpuid;
6183 int err;
6184
6185 dev = ctx->ifc_dev;
6186 base_cpuid = ctx->ifc_sysctl_core_offset;
6187 cpuid = get_cpuid_for_queue(ctx, base_cpuid, qid, type == IFLIB_INTR_TX);
6188 err = taskqgroup_attach_cpu(tqg, gtask, uniq, cpuid, dev,
6189 irq ? irq->ii_res : NULL, name);
6190 if (err) {
6191 device_printf(dev, "taskqgroup_attach_cpu failed %d\n", err);
6192 return (err);
6193 }
6194 #ifdef notyet
6195 if (cpuid > ctx->ifc_cpuid_highest)
6196 ctx->ifc_cpuid_highest = cpuid;
6197 #endif
6198 return (0);
6199 }
6200
6201 /*
6202 * Allocate a hardware interrupt for subctx using the parent (ctx)'s hardware
6203 * resources.
6204 *
6205 * Similar to iflib_irq_alloc_generic(), but for interrupt type IFLIB_INTR_RXTX
6206 * only.
6207 *
6208 * XXX: Could be removed if subctx's dev has its intr resource allocation
6209 * methods replaced with custom ones?
6210 */
6211 int
iflib_irq_alloc_generic_subctx(if_ctx_t ctx,if_ctx_t subctx,if_irq_t irq,int rid,iflib_intr_type_t type,driver_filter_t * filter,void * filter_arg,int qid,const char * name)6212 iflib_irq_alloc_generic_subctx(if_ctx_t ctx, if_ctx_t subctx, if_irq_t irq,
6213 int rid, iflib_intr_type_t type,
6214 driver_filter_t *filter, void *filter_arg,
6215 int qid, const char *name)
6216 {
6217 device_t dev, subdev;
6218 struct grouptask *gtask;
6219 struct taskqgroup *tqg;
6220 iflib_filter_info_t info;
6221 gtask_fn_t *fn;
6222 int tqrid, err;
6223 driver_filter_t *intr_fast;
6224 void *q;
6225
6226 MPASS(ctx != NULL);
6227 MPASS(subctx != NULL);
6228
6229 tqrid = rid;
6230 dev = ctx->ifc_dev;
6231 subdev = subctx->ifc_dev;
6232
6233 switch (type) {
6234 case IFLIB_INTR_RXTX:
6235 q = &subctx->ifc_rxqs[qid];
6236 info = &subctx->ifc_rxqs[qid].ifr_filter_info;
6237 gtask = &subctx->ifc_rxqs[qid].ifr_task;
6238 tqg = qgroup_if_io_tqg;
6239 fn = _task_fn_rx;
6240 intr_fast = iflib_fast_intr_rxtx;
6241 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6242 break;
6243 default:
6244 device_printf(dev, "%s: unknown net intr type for subctx %s (%d)\n",
6245 __func__, device_get_nameunit(subdev), type);
6246 return (EINVAL);
6247 }
6248
6249 info->ifi_filter = filter;
6250 info->ifi_filter_arg = filter_arg;
6251 info->ifi_task = gtask;
6252 info->ifi_ctx = q;
6253
6254 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6255
6256 /* Allocate interrupts from hardware using parent context */
6257 err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name);
6258 if (err != 0) {
6259 device_printf(dev, "_iflib_irq_alloc failed for subctx %s: %d\n",
6260 device_get_nameunit(subdev), err);
6261 return (err);
6262 }
6263
6264 if (tqrid != -1) {
6265 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q,
6266 name);
6267 if (err)
6268 return (err);
6269 } else {
6270 taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name);
6271 }
6272
6273 return (0);
6274 }
6275
6276 int
iflib_irq_alloc_generic(if_ctx_t ctx,if_irq_t irq,int rid,iflib_intr_type_t type,driver_filter_t * filter,void * filter_arg,int qid,const char * name)6277 iflib_irq_alloc_generic(if_ctx_t ctx, if_irq_t irq, int rid,
6278 iflib_intr_type_t type, driver_filter_t *filter,
6279 void *filter_arg, int qid, const char *name)
6280 {
6281 device_t dev;
6282 struct grouptask *gtask;
6283 struct taskqgroup *tqg;
6284 iflib_filter_info_t info;
6285 gtask_fn_t *fn;
6286 int tqrid, err;
6287 driver_filter_t *intr_fast;
6288 void *q;
6289
6290 info = &ctx->ifc_filter_info;
6291 tqrid = rid;
6292
6293 switch (type) {
6294 /* XXX merge tx/rx for netmap? */
6295 case IFLIB_INTR_TX:
6296 q = &ctx->ifc_txqs[qid];
6297 info = &ctx->ifc_txqs[qid].ift_filter_info;
6298 gtask = &ctx->ifc_txqs[qid].ift_task;
6299 tqg = qgroup_if_io_tqg;
6300 fn = _task_fn_tx;
6301 intr_fast = iflib_fast_intr;
6302 GROUPTASK_INIT(gtask, 0, fn, q);
6303 ctx->ifc_flags |= IFC_NETMAP_TX_IRQ;
6304 break;
6305 case IFLIB_INTR_RX:
6306 q = &ctx->ifc_rxqs[qid];
6307 info = &ctx->ifc_rxqs[qid].ifr_filter_info;
6308 gtask = &ctx->ifc_rxqs[qid].ifr_task;
6309 tqg = qgroup_if_io_tqg;
6310 fn = _task_fn_rx;
6311 intr_fast = iflib_fast_intr;
6312 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6313 break;
6314 case IFLIB_INTR_RXTX:
6315 q = &ctx->ifc_rxqs[qid];
6316 info = &ctx->ifc_rxqs[qid].ifr_filter_info;
6317 gtask = &ctx->ifc_rxqs[qid].ifr_task;
6318 tqg = qgroup_if_io_tqg;
6319 fn = _task_fn_rx;
6320 intr_fast = iflib_fast_intr_rxtx;
6321 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6322 break;
6323 case IFLIB_INTR_ADMIN:
6324 q = ctx;
6325 tqrid = -1;
6326 info = &ctx->ifc_filter_info;
6327 gtask = &ctx->ifc_admin_task;
6328 tqg = qgroup_if_config_tqg;
6329 fn = _task_fn_admin;
6330 intr_fast = iflib_fast_intr_ctx;
6331 break;
6332 default:
6333 device_printf(ctx->ifc_dev, "%s: unknown net intr type\n",
6334 __func__);
6335 return (EINVAL);
6336 }
6337
6338 info->ifi_filter = filter;
6339 info->ifi_filter_arg = filter_arg;
6340 info->ifi_task = gtask;
6341 info->ifi_ctx = q;
6342
6343 dev = ctx->ifc_dev;
6344 err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name);
6345 if (err != 0) {
6346 device_printf(dev, "_iflib_irq_alloc failed %d\n", err);
6347 return (err);
6348 }
6349 if (type == IFLIB_INTR_ADMIN)
6350 return (0);
6351
6352 if (tqrid != -1) {
6353 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q,
6354 name);
6355 if (err)
6356 return (err);
6357 } else {
6358 taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name);
6359 }
6360
6361 return (0);
6362 }
6363
6364 void
iflib_softirq_alloc_generic(if_ctx_t ctx,if_irq_t irq,iflib_intr_type_t type,void * arg,int qid,const char * name)6365 iflib_softirq_alloc_generic(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type,
6366 void *arg, int qid, const char *name)
6367 {
6368 device_t dev;
6369 struct grouptask *gtask;
6370 struct taskqgroup *tqg;
6371 gtask_fn_t *fn;
6372 void *q;
6373 int err;
6374
6375 switch (type) {
6376 case IFLIB_INTR_TX:
6377 q = &ctx->ifc_txqs[qid];
6378 gtask = &ctx->ifc_txqs[qid].ift_task;
6379 tqg = qgroup_if_io_tqg;
6380 fn = _task_fn_tx;
6381 GROUPTASK_INIT(gtask, 0, fn, q);
6382 break;
6383 case IFLIB_INTR_RX:
6384 q = &ctx->ifc_rxqs[qid];
6385 gtask = &ctx->ifc_rxqs[qid].ifr_task;
6386 tqg = qgroup_if_io_tqg;
6387 fn = _task_fn_rx;
6388 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6389 break;
6390 case IFLIB_INTR_IOV:
6391 q = ctx;
6392 gtask = &ctx->ifc_vflr_task;
6393 tqg = qgroup_if_config_tqg;
6394 fn = _task_fn_iov;
6395 GROUPTASK_INIT(gtask, 0, fn, q);
6396 break;
6397 default:
6398 panic("unknown net intr type");
6399 }
6400 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q, name);
6401 if (err) {
6402 dev = ctx->ifc_dev;
6403 taskqgroup_attach(tqg, gtask, q, dev, irq ? irq->ii_res : NULL,
6404 name);
6405 }
6406 }
6407
6408 void
iflib_irq_free(if_ctx_t ctx,if_irq_t irq)6409 iflib_irq_free(if_ctx_t ctx, if_irq_t irq)
6410 {
6411
6412 if (irq->ii_tag)
6413 bus_teardown_intr(ctx->ifc_dev, irq->ii_res, irq->ii_tag);
6414
6415 if (irq->ii_res)
6416 bus_release_resource(ctx->ifc_dev, SYS_RES_IRQ,
6417 rman_get_rid(irq->ii_res), irq->ii_res);
6418 }
6419
6420 static int
iflib_legacy_setup(if_ctx_t ctx,driver_filter_t filter,void * filter_arg,int * rid,const char * name)6421 iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filter_arg, int *rid, const char *name)
6422 {
6423 iflib_txq_t txq = ctx->ifc_txqs;
6424 iflib_rxq_t rxq = ctx->ifc_rxqs;
6425 if_irq_t irq = &ctx->ifc_legacy_irq;
6426 iflib_filter_info_t info;
6427 device_t dev;
6428 struct grouptask *gtask;
6429 struct resource *res;
6430 int err, tqrid;
6431 bool rx_only;
6432
6433 info = &rxq->ifr_filter_info;
6434 gtask = &rxq->ifr_task;
6435 tqrid = *rid;
6436 rx_only = (ctx->ifc_sctx->isc_flags & IFLIB_SINGLE_IRQ_RX_ONLY) != 0;
6437
6438 ctx->ifc_flags |= IFC_LEGACY;
6439 info->ifi_filter = filter;
6440 info->ifi_filter_arg = filter_arg;
6441 info->ifi_task = gtask;
6442 info->ifi_ctx = rxq;
6443
6444 dev = ctx->ifc_dev;
6445 /* We allocate a single interrupt resource */
6446 err = _iflib_irq_alloc(ctx, irq, tqrid, rx_only ? iflib_fast_intr :
6447 iflib_fast_intr_rxtx, NULL, info, name);
6448 if (err != 0)
6449 return (err);
6450 NET_GROUPTASK_INIT(gtask, 0, _task_fn_rx, rxq);
6451 res = irq->ii_res;
6452 taskqgroup_attach(qgroup_if_io_tqg, gtask, rxq, dev, res, name);
6453
6454 GROUPTASK_INIT(&txq->ift_task, 0, _task_fn_tx, txq);
6455 taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, dev, res,
6456 "tx");
6457 return (0);
6458 }
6459
6460 void
iflib_led_create(if_ctx_t ctx)6461 iflib_led_create(if_ctx_t ctx)
6462 {
6463
6464 ctx->ifc_led_dev = led_create(iflib_led_func, ctx,
6465 device_get_nameunit(ctx->ifc_dev));
6466 }
6467
6468 void
iflib_tx_intr_deferred(if_ctx_t ctx,int txqid)6469 iflib_tx_intr_deferred(if_ctx_t ctx, int txqid)
6470 {
6471
6472 GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task);
6473 }
6474
6475 void
iflib_rx_intr_deferred(if_ctx_t ctx,int rxqid)6476 iflib_rx_intr_deferred(if_ctx_t ctx, int rxqid)
6477 {
6478
6479 GROUPTASK_ENQUEUE(&ctx->ifc_rxqs[rxqid].ifr_task);
6480 }
6481
6482 void
iflib_admin_intr_deferred(if_ctx_t ctx)6483 iflib_admin_intr_deferred(if_ctx_t ctx)
6484 {
6485
6486 MPASS(ctx->ifc_admin_task.gt_taskqueue != NULL);
6487 GROUPTASK_ENQUEUE(&ctx->ifc_admin_task);
6488 }
6489
6490 void
iflib_iov_intr_deferred(if_ctx_t ctx)6491 iflib_iov_intr_deferred(if_ctx_t ctx)
6492 {
6493
6494 GROUPTASK_ENQUEUE(&ctx->ifc_vflr_task);
6495 }
6496
6497 void
iflib_io_tqg_attach(struct grouptask * gt,void * uniq,int cpu,const char * name)6498 iflib_io_tqg_attach(struct grouptask *gt, void *uniq, int cpu, const char *name)
6499 {
6500
6501 taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, NULL, NULL,
6502 name);
6503 }
6504
6505 void
iflib_config_gtask_init(void * ctx,struct grouptask * gtask,gtask_fn_t * fn,const char * name)6506 iflib_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
6507 const char *name)
6508 {
6509
6510 GROUPTASK_INIT(gtask, 0, fn, ctx);
6511 taskqgroup_attach(qgroup_if_config_tqg, gtask, gtask, NULL, NULL,
6512 name);
6513 }
6514
6515 void
iflib_config_gtask_deinit(struct grouptask * gtask)6516 iflib_config_gtask_deinit(struct grouptask *gtask)
6517 {
6518
6519 taskqgroup_detach(qgroup_if_config_tqg, gtask);
6520 }
6521
6522 void
iflib_link_state_change(if_ctx_t ctx,int link_state,uint64_t baudrate)6523 iflib_link_state_change(if_ctx_t ctx, int link_state, uint64_t baudrate)
6524 {
6525 if_t ifp = ctx->ifc_ifp;
6526 iflib_txq_t txq = ctx->ifc_txqs;
6527
6528 if_setbaudrate(ifp, baudrate);
6529 if (baudrate >= IF_Gbps(10)) {
6530 STATE_LOCK(ctx);
6531 ctx->ifc_flags |= IFC_PREFETCH;
6532 STATE_UNLOCK(ctx);
6533 }
6534 /* If link down, disable watchdog */
6535 if ((ctx->ifc_link_state == LINK_STATE_UP) && (link_state == LINK_STATE_DOWN)) {
6536 for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, txq++)
6537 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
6538 }
6539 ctx->ifc_link_state = link_state;
6540 if_link_state_change(ifp, link_state);
6541 }
6542
6543 static int
iflib_tx_credits_update(if_ctx_t ctx,iflib_txq_t txq)6544 iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq)
6545 {
6546 int credits;
6547 #ifdef INVARIANTS
6548 int credits_pre = txq->ift_cidx_processed;
6549 #endif
6550
6551 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
6552 BUS_DMASYNC_POSTREAD);
6553 if ((credits = ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, true)) == 0)
6554 return (0);
6555
6556 txq->ift_processed += credits;
6557 txq->ift_cidx_processed += credits;
6558
6559 MPASS(credits_pre + credits == txq->ift_cidx_processed);
6560 if (txq->ift_cidx_processed >= txq->ift_size)
6561 txq->ift_cidx_processed -= txq->ift_size;
6562 return (credits);
6563 }
6564
6565 static int
iflib_rxd_avail(if_ctx_t ctx,iflib_rxq_t rxq,qidx_t cidx,qidx_t budget)6566 iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget)
6567 {
6568 iflib_fl_t fl;
6569 u_int i;
6570
6571 for (i = 0, fl = &rxq->ifr_fl[0]; i < rxq->ifr_nfl; i++, fl++)
6572 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
6573 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6574 return (ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, cidx,
6575 budget));
6576 }
6577
6578 void
iflib_add_int_delay_sysctl(if_ctx_t ctx,const char * name,const char * description,if_int_delay_info_t info,int offset,int value)6579 iflib_add_int_delay_sysctl(if_ctx_t ctx, const char *name,
6580 const char *description, if_int_delay_info_t info,
6581 int offset, int value)
6582 {
6583 info->iidi_ctx = ctx;
6584 info->iidi_offset = offset;
6585 info->iidi_value = value;
6586 SYSCTL_ADD_PROC(device_get_sysctl_ctx(ctx->ifc_dev),
6587 SYSCTL_CHILDREN(device_get_sysctl_tree(ctx->ifc_dev)),
6588 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
6589 info, 0, iflib_sysctl_int_delay, "I", description);
6590 }
6591
6592 struct sx *
iflib_ctx_lock_get(if_ctx_t ctx)6593 iflib_ctx_lock_get(if_ctx_t ctx)
6594 {
6595
6596 return (&ctx->ifc_ctx_sx);
6597 }
6598
6599 static int
iflib_msix_init(if_ctx_t ctx)6600 iflib_msix_init(if_ctx_t ctx)
6601 {
6602 device_t dev = ctx->ifc_dev;
6603 if_shared_ctx_t sctx = ctx->ifc_sctx;
6604 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
6605 int admincnt, bar, err, iflib_num_rx_queues, iflib_num_tx_queues;
6606 int msgs, queuemsgs, queues, rx_queues, tx_queues, vectors;
6607
6608 iflib_num_tx_queues = ctx->ifc_sysctl_ntxqs;
6609 iflib_num_rx_queues = ctx->ifc_sysctl_nrxqs;
6610
6611 if (bootverbose)
6612 device_printf(dev, "msix_init qsets capped at %d\n",
6613 imax(scctx->isc_ntxqsets, scctx->isc_nrxqsets));
6614
6615 /* Override by tuneable */
6616 if (scctx->isc_disable_msix)
6617 goto msi;
6618
6619 /* First try MSI-X */
6620 if ((msgs = pci_msix_count(dev)) == 0) {
6621 if (bootverbose)
6622 device_printf(dev, "MSI-X not supported or disabled\n");
6623 goto msi;
6624 }
6625
6626 bar = ctx->ifc_softc_ctx.isc_msix_bar;
6627 /*
6628 * bar == -1 => "trust me I know what I'm doing"
6629 * Some drivers are for hardware that is so shoddily
6630 * documented that no one knows which bars are which
6631 * so the developer has to map all bars. This hack
6632 * allows shoddy garbage to use MSI-X in this framework.
6633 */
6634 if (bar != -1) {
6635 ctx->ifc_msix_mem = bus_alloc_resource_any(dev,
6636 SYS_RES_MEMORY, &bar, RF_ACTIVE);
6637 if (ctx->ifc_msix_mem == NULL) {
6638 device_printf(dev, "Unable to map MSI-X table\n");
6639 goto msi;
6640 }
6641 }
6642
6643 admincnt = sctx->isc_admin_intrcnt;
6644 #if IFLIB_DEBUG
6645 /* use only 1 qset in debug mode */
6646 queuemsgs = min(msgs - admincnt, 1);
6647 #else
6648 queuemsgs = msgs - admincnt;
6649 #endif
6650 #ifdef RSS
6651 queues = imin(queuemsgs, rss_getnumbuckets());
6652 #else
6653 queues = queuemsgs;
6654 #endif
6655 queues = imin(CPU_COUNT(&ctx->ifc_cpus), queues);
6656 if (bootverbose)
6657 device_printf(dev,
6658 "intr CPUs: %d queue msgs: %d admincnt: %d\n",
6659 CPU_COUNT(&ctx->ifc_cpus), queuemsgs, admincnt);
6660 #ifdef RSS
6661 /* If we're doing RSS, clamp at the number of RSS buckets */
6662 if (queues > rss_getnumbuckets())
6663 queues = rss_getnumbuckets();
6664 #endif
6665 if (iflib_num_rx_queues > 0 && iflib_num_rx_queues < queuemsgs - admincnt)
6666 rx_queues = iflib_num_rx_queues;
6667 else
6668 rx_queues = queues;
6669
6670 if (rx_queues > scctx->isc_nrxqsets)
6671 rx_queues = scctx->isc_nrxqsets;
6672
6673 /*
6674 * We want this to be all logical CPUs by default
6675 */
6676 if (iflib_num_tx_queues > 0 && iflib_num_tx_queues < queues)
6677 tx_queues = iflib_num_tx_queues;
6678 else
6679 tx_queues = mp_ncpus;
6680
6681 if (tx_queues > scctx->isc_ntxqsets)
6682 tx_queues = scctx->isc_ntxqsets;
6683
6684 if (ctx->ifc_sysctl_qs_eq_override == 0) {
6685 #ifdef INVARIANTS
6686 if (tx_queues != rx_queues)
6687 device_printf(dev,
6688 "queue equality override not set, capping rx_queues at %d and tx_queues at %d\n",
6689 min(rx_queues, tx_queues), min(rx_queues, tx_queues));
6690 #endif
6691 tx_queues = min(rx_queues, tx_queues);
6692 rx_queues = min(rx_queues, tx_queues);
6693 }
6694
6695 vectors = rx_queues + admincnt;
6696 if (msgs < vectors) {
6697 device_printf(dev,
6698 "insufficient number of MSI-X vectors "
6699 "(supported %d, need %d)\n", msgs, vectors);
6700 goto msi;
6701 }
6702
6703 device_printf(dev, "Using %d RX queues %d TX queues\n", rx_queues,
6704 tx_queues);
6705 msgs = vectors;
6706 if ((err = pci_alloc_msix(dev, &vectors)) == 0) {
6707 if (vectors != msgs) {
6708 device_printf(dev,
6709 "Unable to allocate sufficient MSI-X vectors "
6710 "(got %d, need %d)\n", vectors, msgs);
6711 pci_release_msi(dev);
6712 if (bar != -1) {
6713 bus_release_resource(dev, SYS_RES_MEMORY, bar,
6714 ctx->ifc_msix_mem);
6715 ctx->ifc_msix_mem = NULL;
6716 }
6717 goto msi;
6718 }
6719 device_printf(dev, "Using MSI-X interrupts with %d vectors\n",
6720 vectors);
6721 scctx->isc_vectors = vectors;
6722 scctx->isc_nrxqsets = rx_queues;
6723 scctx->isc_ntxqsets = tx_queues;
6724 scctx->isc_intr = IFLIB_INTR_MSIX;
6725
6726 return (vectors);
6727 } else {
6728 device_printf(dev,
6729 "failed to allocate %d MSI-X vectors, err: %d\n", vectors,
6730 err);
6731 if (bar != -1) {
6732 bus_release_resource(dev, SYS_RES_MEMORY, bar,
6733 ctx->ifc_msix_mem);
6734 ctx->ifc_msix_mem = NULL;
6735 }
6736 }
6737
6738 msi:
6739 vectors = pci_msi_count(dev);
6740 scctx->isc_nrxqsets = 1;
6741 scctx->isc_ntxqsets = 1;
6742 scctx->isc_vectors = vectors;
6743 if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0) {
6744 device_printf(dev, "Using an MSI interrupt\n");
6745 scctx->isc_intr = IFLIB_INTR_MSI;
6746 } else {
6747 scctx->isc_vectors = 1;
6748 device_printf(dev, "Using a Legacy interrupt\n");
6749 scctx->isc_intr = IFLIB_INTR_LEGACY;
6750 }
6751
6752 return (vectors);
6753 }
6754
6755 static const char *ring_states[] = { "IDLE", "BUSY", "STALLED", "ABDICATED" };
6756
6757 static int
mp_ring_state_handler(SYSCTL_HANDLER_ARGS)6758 mp_ring_state_handler(SYSCTL_HANDLER_ARGS)
6759 {
6760 int rc;
6761 uint16_t *state = ((uint16_t *)oidp->oid_arg1);
6762 struct sbuf *sb;
6763 const char *ring_state = "UNKNOWN";
6764
6765 /* XXX needed ? */
6766 rc = sysctl_wire_old_buffer(req, 0);
6767 MPASS(rc == 0);
6768 if (rc != 0)
6769 return (rc);
6770 sb = sbuf_new_for_sysctl(NULL, NULL, 80, req);
6771 MPASS(sb != NULL);
6772 if (sb == NULL)
6773 return (ENOMEM);
6774 if (state[3] <= 3)
6775 ring_state = ring_states[state[3]];
6776
6777 sbuf_printf(sb, "pidx_head: %04hd pidx_tail: %04hd cidx: %04hd state: %s",
6778 state[0], state[1], state[2], ring_state);
6779 rc = sbuf_finish(sb);
6780 sbuf_delete(sb);
6781 return (rc);
6782 }
6783
6784 enum iflib_ndesc_handler {
6785 IFLIB_NTXD_HANDLER,
6786 IFLIB_NRXD_HANDLER,
6787 };
6788
6789 static int
mp_ndesc_handler(SYSCTL_HANDLER_ARGS)6790 mp_ndesc_handler(SYSCTL_HANDLER_ARGS)
6791 {
6792 if_ctx_t ctx = (void *)arg1;
6793 enum iflib_ndesc_handler type = arg2;
6794 char buf[256] = {0};
6795 qidx_t *ndesc;
6796 char *p, *next;
6797 int nqs, rc, i;
6798
6799 nqs = 8;
6800 switch (type) {
6801 case IFLIB_NTXD_HANDLER:
6802 ndesc = ctx->ifc_sysctl_ntxds;
6803 if (ctx->ifc_sctx)
6804 nqs = ctx->ifc_sctx->isc_ntxqs;
6805 break;
6806 case IFLIB_NRXD_HANDLER:
6807 ndesc = ctx->ifc_sysctl_nrxds;
6808 if (ctx->ifc_sctx)
6809 nqs = ctx->ifc_sctx->isc_nrxqs;
6810 break;
6811 default:
6812 printf("%s: unhandled type\n", __func__);
6813 return (EINVAL);
6814 }
6815 if (nqs == 0)
6816 nqs = 8;
6817
6818 for (i = 0; i < 8; i++) {
6819 if (i >= nqs)
6820 break;
6821 if (i)
6822 strcat(buf, ",");
6823 sprintf(strchr(buf, 0), "%d", ndesc[i]);
6824 }
6825
6826 rc = sysctl_handle_string(oidp, buf, sizeof(buf), req);
6827 if (rc || req->newptr == NULL)
6828 return (rc);
6829
6830 for (i = 0, next = buf, p = strsep(&next, " ,"); i < 8 && p;
6831 i++, p = strsep(&next, " ,")) {
6832 ndesc[i] = strtoul(p, NULL, 10);
6833 }
6834
6835 return (rc);
6836 }
6837
6838 #define NAME_BUFLEN 32
6839 static void
iflib_add_device_sysctl_pre(if_ctx_t ctx)6840 iflib_add_device_sysctl_pre(if_ctx_t ctx)
6841 {
6842 device_t dev = iflib_get_dev(ctx);
6843 struct sysctl_oid_list *child, *oid_list;
6844 struct sysctl_ctx_list *ctx_list;
6845 struct sysctl_oid *node;
6846
6847 ctx_list = device_get_sysctl_ctx(dev);
6848 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
6849 ctx->ifc_sysctl_node = node = SYSCTL_ADD_NODE(ctx_list, child,
6850 OID_AUTO, "iflib", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
6851 "IFLIB fields");
6852 oid_list = SYSCTL_CHILDREN(node);
6853
6854 SYSCTL_ADD_CONST_STRING(ctx_list, oid_list, OID_AUTO, "driver_version",
6855 CTLFLAG_RD, ctx->ifc_sctx->isc_driver_version, "driver version");
6856
6857 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxqs",
6858 CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0,
6859 "# of txqs to use, 0 => use default #");
6860 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxqs",
6861 CTLFLAG_RWTUN, &ctx->ifc_sysctl_nrxqs, 0,
6862 "# of rxqs to use, 0 => use default #");
6863 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_qs_enable",
6864 CTLFLAG_RWTUN, &ctx->ifc_sysctl_qs_eq_override, 0,
6865 "permit #txq != #rxq");
6866 SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "disable_msix",
6867 CTLFLAG_RWTUN, &ctx->ifc_softc_ctx.isc_disable_msix, 0,
6868 "disable MSI-X (default 0)");
6869 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "rx_budget",
6870 CTLFLAG_RWTUN, &ctx->ifc_sysctl_rx_budget, 0, "set the RX budget");
6871 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "tx_abdicate",
6872 CTLFLAG_RWTUN, &ctx->ifc_sysctl_tx_abdicate, 0,
6873 "cause TX to abdicate instead of running to completion");
6874 ctx->ifc_sysctl_core_offset = CORE_OFFSET_UNSPECIFIED;
6875 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "core_offset",
6876 CTLFLAG_RDTUN, &ctx->ifc_sysctl_core_offset, 0,
6877 "offset to start using cores at");
6878 SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "separate_txrx",
6879 CTLFLAG_RDTUN, &ctx->ifc_sysctl_separate_txrx, 0,
6880 "use separate cores for TX and RX");
6881 SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "use_logical_cores",
6882 CTLFLAG_RDTUN, &ctx->ifc_sysctl_use_logical_cores, 0,
6883 "try to make use of logical cores for TX and RX");
6884 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "use_extra_msix_vectors",
6885 CTLFLAG_RDTUN, &ctx->ifc_sysctl_extra_msix_vectors, 0,
6886 "attempt to reserve the given number of extra MSI-X vectors during driver load for the creation of additional interfaces later");
6887 SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "allocated_msix_vectors",
6888 CTLFLAG_RDTUN, &ctx->ifc_softc_ctx.isc_vectors, 0,
6889 "total # of MSI-X vectors allocated by driver");
6890
6891 /* XXX change for per-queue sizes */
6892 SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_ntxds",
6893 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx,
6894 IFLIB_NTXD_HANDLER, mp_ndesc_handler, "A",
6895 "list of # of TX descriptors to use, 0 = use default #");
6896 SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_nrxds",
6897 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx,
6898 IFLIB_NRXD_HANDLER, mp_ndesc_handler, "A",
6899 "list of # of RX descriptors to use, 0 = use default #");
6900 }
6901
6902 static void
iflib_add_device_sysctl_post(if_ctx_t ctx)6903 iflib_add_device_sysctl_post(if_ctx_t ctx)
6904 {
6905 if_shared_ctx_t sctx = ctx->ifc_sctx;
6906 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
6907 device_t dev = iflib_get_dev(ctx);
6908 struct sysctl_oid_list *child;
6909 struct sysctl_ctx_list *ctx_list;
6910 iflib_fl_t fl;
6911 iflib_txq_t txq;
6912 iflib_rxq_t rxq;
6913 int i, j;
6914 char namebuf[NAME_BUFLEN];
6915 char *qfmt;
6916 struct sysctl_oid *queue_node, *fl_node, *node;
6917 struct sysctl_oid_list *queue_list, *fl_list;
6918 ctx_list = device_get_sysctl_ctx(dev);
6919
6920 node = ctx->ifc_sysctl_node;
6921 child = SYSCTL_CHILDREN(node);
6922
6923 if (scctx->isc_ntxqsets > 100)
6924 qfmt = "txq%03d";
6925 else if (scctx->isc_ntxqsets > 10)
6926 qfmt = "txq%02d";
6927 else
6928 qfmt = "txq%d";
6929 for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) {
6930 snprintf(namebuf, NAME_BUFLEN, qfmt, i);
6931 queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
6932 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name");
6933 queue_list = SYSCTL_CHILDREN(queue_node);
6934 SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu",
6935 CTLFLAG_RD, &txq->ift_task.gt_cpu, 0,
6936 "cpu this queue is bound to");
6937 #if MEMORY_LOGGING
6938 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_dequeued",
6939 CTLFLAG_RD, &txq->ift_dequeued, "total mbufs freed");
6940 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_enqueued",
6941 CTLFLAG_RD, &txq->ift_enqueued, "total mbufs enqueued");
6942 #endif
6943 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag",
6944 CTLFLAG_RD, &txq->ift_mbuf_defrag,
6945 "# of times m_defrag was called");
6946 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "m_pullups",
6947 CTLFLAG_RD, &txq->ift_pullups,
6948 "# of times m_pullup was called");
6949 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6950 "mbuf_defrag_failed", CTLFLAG_RD,
6951 &txq->ift_mbuf_defrag_failed, "# of times m_defrag failed");
6952 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6953 "no_desc_avail", CTLFLAG_RD, &txq->ift_no_desc_avail,
6954 "# of times no descriptors were available");
6955 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6956 "tx_map_failed", CTLFLAG_RD, &txq->ift_map_failed,
6957 "# of times DMA map failed");
6958 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6959 "txd_encap_efbig", CTLFLAG_RD, &txq->ift_txd_encap_efbig,
6960 "# of times txd_encap returned EFBIG");
6961 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6962 "no_tx_dma_setup", CTLFLAG_RD, &txq->ift_no_tx_dma_setup,
6963 "# of times map failed for other than EFBIG");
6964 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_pidx",
6965 CTLFLAG_RD, &txq->ift_pidx, 1, "Producer Index");
6966 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx",
6967 CTLFLAG_RD, &txq->ift_cidx, 1, "Consumer Index");
6968 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO,
6969 "txq_cidx_processed", CTLFLAG_RD, &txq->ift_cidx_processed,
6970 1, "Consumer Index seen by credit update");
6971 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_in_use",
6972 CTLFLAG_RD, &txq->ift_in_use, 1, "descriptors in use");
6973 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6974 "txq_processed", CTLFLAG_RD, &txq->ift_processed,
6975 "descriptors procesed for clean");
6976 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_cleaned",
6977 CTLFLAG_RD, &txq->ift_cleaned, "total cleaned");
6978 SYSCTL_ADD_PROC(ctx_list, queue_list, OID_AUTO, "ring_state",
6979 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
6980 __DEVOLATILE(uint64_t *, &txq->ift_br->state), 0,
6981 mp_ring_state_handler, "A", "soft ring state");
6982 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6983 "r_enqueues", CTLFLAG_RD, &txq->ift_br->enqueues,
6984 "# of enqueues to the mp_ring for this queue");
6985 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6986 "r_drops", CTLFLAG_RD, &txq->ift_br->drops,
6987 "# of drops in the mp_ring for this queue");
6988 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6989 "r_starts", CTLFLAG_RD, &txq->ift_br->starts,
6990 "# of normal consumer starts in mp_ring for this queue");
6991 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6992 "r_stalls", CTLFLAG_RD, &txq->ift_br->stalls,
6993 "# of consumer stalls in the mp_ring for this queue");
6994 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6995 "r_restarts", CTLFLAG_RD, &txq->ift_br->restarts,
6996 "# of consumer restarts in the mp_ring for this queue");
6997 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6998 "r_abdications", CTLFLAG_RD, &txq->ift_br->abdications,
6999 "# of consumer abdications in the mp_ring for this queue");
7000 }
7001
7002 if (scctx->isc_nrxqsets > 100)
7003 qfmt = "rxq%03d";
7004 else if (scctx->isc_nrxqsets > 10)
7005 qfmt = "rxq%02d";
7006 else
7007 qfmt = "rxq%d";
7008 for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) {
7009 snprintf(namebuf, NAME_BUFLEN, qfmt, i);
7010 queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
7011 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name");
7012 queue_list = SYSCTL_CHILDREN(queue_node);
7013 SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu",
7014 CTLFLAG_RD, &rxq->ifr_task.gt_cpu, 0,
7015 "cpu this queue is bound to");
7016 if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
7017 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO,
7018 "rxq_cq_cidx", CTLFLAG_RD, &rxq->ifr_cq_cidx, 1,
7019 "Consumer Index");
7020 }
7021
7022 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
7023 snprintf(namebuf, NAME_BUFLEN, "rxq_fl%d", j);
7024 fl_node = SYSCTL_ADD_NODE(ctx_list, queue_list,
7025 OID_AUTO, namebuf, CTLFLAG_RD | CTLFLAG_MPSAFE,
7026 NULL, "freelist Name");
7027 fl_list = SYSCTL_CHILDREN(fl_node);
7028 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "pidx",
7029 CTLFLAG_RD, &fl->ifl_pidx, 1, "Producer Index");
7030 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "cidx",
7031 CTLFLAG_RD, &fl->ifl_cidx, 1, "Consumer Index");
7032 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "credits",
7033 CTLFLAG_RD, &fl->ifl_credits, 1,
7034 "credits available");
7035 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "buf_size",
7036 CTLFLAG_RD, &fl->ifl_buf_size, 1, "buffer size");
7037 #if MEMORY_LOGGING
7038 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
7039 "fl_m_enqueued", CTLFLAG_RD, &fl->ifl_m_enqueued,
7040 "mbufs allocated");
7041 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
7042 "fl_m_dequeued", CTLFLAG_RD, &fl->ifl_m_dequeued,
7043 "mbufs freed");
7044 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
7045 "fl_cl_enqueued", CTLFLAG_RD, &fl->ifl_cl_enqueued,
7046 "clusters allocated");
7047 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
7048 "fl_cl_dequeued", CTLFLAG_RD, &fl->ifl_cl_dequeued,
7049 "clusters freed");
7050 #endif
7051 }
7052 }
7053
7054 }
7055
7056 void
iflib_request_reset(if_ctx_t ctx)7057 iflib_request_reset(if_ctx_t ctx)
7058 {
7059
7060 STATE_LOCK(ctx);
7061 ctx->ifc_flags |= IFC_DO_RESET;
7062 STATE_UNLOCK(ctx);
7063 }
7064
7065 #ifndef __NO_STRICT_ALIGNMENT
7066 static struct mbuf *
iflib_fixup_rx(struct mbuf * m)7067 iflib_fixup_rx(struct mbuf *m)
7068 {
7069 struct mbuf *n;
7070
7071 if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
7072 bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
7073 m->m_data += ETHER_HDR_LEN;
7074 n = m;
7075 } else {
7076 MGETHDR(n, M_NOWAIT, MT_DATA);
7077 if (n == NULL) {
7078 m_freem(m);
7079 return (NULL);
7080 }
7081 bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
7082 m->m_data += ETHER_HDR_LEN;
7083 m->m_len -= ETHER_HDR_LEN;
7084 n->m_len = ETHER_HDR_LEN;
7085 M_MOVE_PKTHDR(n, m);
7086 n->m_next = m;
7087 }
7088 return (n);
7089 }
7090 #endif
7091
7092 #ifdef DEBUGNET
7093 static void
iflib_debugnet_init(if_t ifp,int * nrxr,int * ncl,int * clsize)7094 iflib_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
7095 {
7096 if_ctx_t ctx;
7097
7098 ctx = if_getsoftc(ifp);
7099 CTX_LOCK(ctx);
7100 *nrxr = NRXQSETS(ctx);
7101 *ncl = ctx->ifc_rxqs[0].ifr_fl->ifl_size;
7102 *clsize = ctx->ifc_rxqs[0].ifr_fl->ifl_buf_size;
7103 CTX_UNLOCK(ctx);
7104 }
7105
7106 static void
iflib_debugnet_event(if_t ifp,enum debugnet_ev event)7107 iflib_debugnet_event(if_t ifp, enum debugnet_ev event)
7108 {
7109 if_ctx_t ctx;
7110 if_softc_ctx_t scctx;
7111 iflib_fl_t fl;
7112 iflib_rxq_t rxq;
7113 int i, j;
7114
7115 ctx = if_getsoftc(ifp);
7116 scctx = &ctx->ifc_softc_ctx;
7117
7118 switch (event) {
7119 case DEBUGNET_START:
7120 for (i = 0; i < scctx->isc_nrxqsets; i++) {
7121 rxq = &ctx->ifc_rxqs[i];
7122 for (j = 0; j < rxq->ifr_nfl; j++) {
7123 fl = rxq->ifr_fl;
7124 fl->ifl_zone = m_getzone(fl->ifl_buf_size);
7125 }
7126 }
7127 iflib_no_tx_batch = 1;
7128 break;
7129 default:
7130 break;
7131 }
7132 }
7133
7134 static int
iflib_debugnet_transmit(if_t ifp,struct mbuf * m)7135 iflib_debugnet_transmit(if_t ifp, struct mbuf *m)
7136 {
7137 if_ctx_t ctx;
7138 iflib_txq_t txq;
7139 int error;
7140
7141 ctx = if_getsoftc(ifp);
7142 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7143 IFF_DRV_RUNNING)
7144 return (EBUSY);
7145
7146 txq = &ctx->ifc_txqs[0];
7147 error = iflib_encap(txq, &m);
7148 if (error == 0)
7149 (void)iflib_txd_db_check(txq, true);
7150 return (error);
7151 }
7152
7153 static int
iflib_debugnet_poll(if_t ifp,int count)7154 iflib_debugnet_poll(if_t ifp, int count)
7155 {
7156 struct epoch_tracker et;
7157 if_ctx_t ctx;
7158 if_softc_ctx_t scctx;
7159 iflib_txq_t txq;
7160 int i;
7161
7162 ctx = if_getsoftc(ifp);
7163 scctx = &ctx->ifc_softc_ctx;
7164
7165 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7166 IFF_DRV_RUNNING)
7167 return (EBUSY);
7168
7169 txq = &ctx->ifc_txqs[0];
7170 (void)iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
7171
7172 NET_EPOCH_ENTER(et);
7173 for (i = 0; i < scctx->isc_nrxqsets; i++)
7174 (void)iflib_rxeof(&ctx->ifc_rxqs[i], 16 /* XXX */);
7175 NET_EPOCH_EXIT(et);
7176 return (0);
7177 }
7178 #endif /* DEBUGNET */
7179