1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2002 Doug Rabson
5 * Copyright (c) 1994-1995 Søren Schmidt
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer
13 * in this position and unchanged.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/fcntl.h>
34 #include <sys/jail.h>
35 #include <sys/imgact.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/msgbuf.h>
39 #include <sys/mqueue.h>
40 #include <sys/mutex.h>
41 #include <sys/poll.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/procctl.h>
45 #include <sys/reboot.h>
46 #include <sys/random.h>
47 #include <sys/resourcevar.h>
48 #include <sys/rtprio.h>
49 #include <sys/sched.h>
50 #include <sys/smp.h>
51 #include <sys/stat.h>
52 #include <sys/syscallsubr.h>
53 #include <sys/sysctl.h>
54 #include <sys/sysent.h>
55 #include <sys/sysproto.h>
56 #include <sys/time.h>
57 #include <sys/vmmeter.h>
58 #include <sys/vnode.h>
59
60 #include <security/audit/audit.h>
61 #include <security/mac/mac_framework.h>
62
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/swap_pager.h>
66
67 #ifdef COMPAT_LINUX32
68 #include <machine/../linux32/linux.h>
69 #include <machine/../linux32/linux32_proto.h>
70 #else
71 #include <machine/../linux/linux.h>
72 #include <machine/../linux/linux_proto.h>
73 #endif
74
75 #include <compat/linux/linux_common.h>
76 #include <compat/linux/linux_dtrace.h>
77 #include <compat/linux/linux_file.h>
78 #include <compat/linux/linux_mib.h>
79 #include <compat/linux/linux_mmap.h>
80 #include <compat/linux/linux_signal.h>
81 #include <compat/linux/linux_time.h>
82 #include <compat/linux/linux_util.h>
83 #include <compat/linux/linux_emul.h>
84 #include <compat/linux/linux_misc.h>
85
86 int stclohz; /* Statistics clock frequency */
87
88 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
89 RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
90 RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
91 RLIMIT_MEMLOCK, RLIMIT_AS
92 };
93
94 struct l_sysinfo {
95 l_long uptime; /* Seconds since boot */
96 l_ulong loads[3]; /* 1, 5, and 15 minute load averages */
97 #define LINUX_SYSINFO_LOADS_SCALE 65536
98 l_ulong totalram; /* Total usable main memory size */
99 l_ulong freeram; /* Available memory size */
100 l_ulong sharedram; /* Amount of shared memory */
101 l_ulong bufferram; /* Memory used by buffers */
102 l_ulong totalswap; /* Total swap space size */
103 l_ulong freeswap; /* swap space still available */
104 l_ushort procs; /* Number of current processes */
105 l_ushort pads;
106 l_ulong totalhigh;
107 l_ulong freehigh;
108 l_uint mem_unit;
109 char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */
110 };
111
112 struct l_pselect6arg {
113 l_uintptr_t ss;
114 l_size_t ss_len;
115 };
116
117 static int linux_utimensat_lts_to_ts(struct l_timespec *,
118 struct timespec *);
119 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
120 static int linux_utimensat_lts64_to_ts(struct l_timespec64 *,
121 struct timespec *);
122 #endif
123 static int linux_common_utimensat(struct thread *, int,
124 const char *, struct timespec *, int);
125 static int linux_common_pselect6(struct thread *, l_int,
126 l_fd_set *, l_fd_set *, l_fd_set *,
127 struct timespec *, l_uintptr_t *);
128 static int linux_common_ppoll(struct thread *, struct pollfd *,
129 uint32_t, struct timespec *, l_sigset_t *,
130 l_size_t);
131 static int linux_pollin(struct thread *, struct pollfd *,
132 struct pollfd *, u_int);
133 static int linux_pollout(struct thread *, struct pollfd *,
134 struct pollfd *, u_int);
135
136 int
linux_sysinfo(struct thread * td,struct linux_sysinfo_args * args)137 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
138 {
139 struct l_sysinfo sysinfo;
140 int i, j;
141 struct timespec ts;
142
143 bzero(&sysinfo, sizeof(sysinfo));
144 getnanouptime(&ts);
145 if (ts.tv_nsec != 0)
146 ts.tv_sec++;
147 sysinfo.uptime = ts.tv_sec;
148
149 /* Use the information from the mib to get our load averages */
150 for (i = 0; i < 3; i++)
151 sysinfo.loads[i] = averunnable.ldavg[i] *
152 LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
153
154 sysinfo.totalram = physmem * PAGE_SIZE;
155 sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE;
156
157 /*
158 * sharedram counts pages allocated to named, swap-backed objects such
159 * as shared memory segments and tmpfs files. There is no cheap way to
160 * compute this, so just leave the field unpopulated. Linux itself only
161 * started setting this field in the 3.x timeframe.
162 */
163 sysinfo.sharedram = 0;
164 sysinfo.bufferram = 0;
165
166 swap_pager_status(&i, &j);
167 sysinfo.totalswap = i * PAGE_SIZE;
168 sysinfo.freeswap = (i - j) * PAGE_SIZE;
169
170 sysinfo.procs = nprocs;
171
172 /*
173 * Platforms supported by the emulation layer do not have a notion of
174 * high memory.
175 */
176 sysinfo.totalhigh = 0;
177 sysinfo.freehigh = 0;
178
179 sysinfo.mem_unit = 1;
180
181 return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
182 }
183
184 #ifdef LINUX_LEGACY_SYSCALLS
185 int
linux_alarm(struct thread * td,struct linux_alarm_args * args)186 linux_alarm(struct thread *td, struct linux_alarm_args *args)
187 {
188 struct itimerval it, old_it;
189 u_int secs;
190 int error __diagused;
191
192 secs = args->secs;
193 /*
194 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2
195 * to match kern_setitimer()'s limit to avoid error from it.
196 *
197 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
198 * platforms.
199 */
200 if (secs > INT32_MAX / 2)
201 secs = INT32_MAX / 2;
202
203 it.it_value.tv_sec = secs;
204 it.it_value.tv_usec = 0;
205 timevalclear(&it.it_interval);
206 error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
207 KASSERT(error == 0, ("kern_setitimer returns %d", error));
208
209 if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
210 old_it.it_value.tv_usec >= 500000)
211 old_it.it_value.tv_sec++;
212 td->td_retval[0] = old_it.it_value.tv_sec;
213 return (0);
214 }
215 #endif
216
217 int
linux_brk(struct thread * td,struct linux_brk_args * args)218 linux_brk(struct thread *td, struct linux_brk_args *args)
219 {
220 struct vmspace *vm = td->td_proc->p_vmspace;
221 uintptr_t new, old;
222
223 old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
224 new = (uintptr_t)args->dsend;
225 if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
226 td->td_retval[0] = (register_t)new;
227 else
228 td->td_retval[0] = (register_t)old;
229
230 return (0);
231 }
232
233 #ifdef LINUX_LEGACY_SYSCALLS
234 int
linux_select(struct thread * td,struct linux_select_args * args)235 linux_select(struct thread *td, struct linux_select_args *args)
236 {
237 l_timeval ltv;
238 struct timeval tv0, tv1, utv, *tvp;
239 int error;
240
241 /*
242 * Store current time for computation of the amount of
243 * time left.
244 */
245 if (args->timeout) {
246 if ((error = copyin(args->timeout, <v, sizeof(ltv))))
247 goto select_out;
248 utv.tv_sec = ltv.tv_sec;
249 utv.tv_usec = ltv.tv_usec;
250
251 if (itimerfix(&utv)) {
252 /*
253 * The timeval was invalid. Convert it to something
254 * valid that will act as it does under Linux.
255 */
256 utv.tv_sec += utv.tv_usec / 1000000;
257 utv.tv_usec %= 1000000;
258 if (utv.tv_usec < 0) {
259 utv.tv_sec -= 1;
260 utv.tv_usec += 1000000;
261 }
262 if (utv.tv_sec < 0)
263 timevalclear(&utv);
264 }
265 microtime(&tv0);
266 tvp = &utv;
267 } else
268 tvp = NULL;
269
270 error = kern_select(td, args->nfds, args->readfds, args->writefds,
271 args->exceptfds, tvp, LINUX_NFDBITS);
272 if (error)
273 goto select_out;
274
275 if (args->timeout) {
276 if (td->td_retval[0]) {
277 /*
278 * Compute how much time was left of the timeout,
279 * by subtracting the current time and the time
280 * before we started the call, and subtracting
281 * that result from the user-supplied value.
282 */
283 microtime(&tv1);
284 timevalsub(&tv1, &tv0);
285 timevalsub(&utv, &tv1);
286 if (utv.tv_sec < 0)
287 timevalclear(&utv);
288 } else
289 timevalclear(&utv);
290 ltv.tv_sec = utv.tv_sec;
291 ltv.tv_usec = utv.tv_usec;
292 if ((error = copyout(<v, args->timeout, sizeof(ltv))))
293 goto select_out;
294 }
295
296 select_out:
297 return (error);
298 }
299 #endif
300
301 int
linux_mremap(struct thread * td,struct linux_mremap_args * args)302 linux_mremap(struct thread *td, struct linux_mremap_args *args)
303 {
304 uintptr_t addr;
305 size_t len;
306 int error = 0;
307
308 if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
309 td->td_retval[0] = 0;
310 return (EINVAL);
311 }
312
313 /*
314 * Check for the page alignment.
315 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
316 */
317 if (args->addr & PAGE_MASK) {
318 td->td_retval[0] = 0;
319 return (EINVAL);
320 }
321
322 args->new_len = round_page(args->new_len);
323 args->old_len = round_page(args->old_len);
324
325 if (args->new_len > args->old_len) {
326 td->td_retval[0] = 0;
327 return (ENOMEM);
328 }
329
330 if (args->new_len < args->old_len) {
331 addr = args->addr + args->new_len;
332 len = args->old_len - args->new_len;
333 error = kern_munmap(td, addr, len);
334 }
335
336 td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
337 return (error);
338 }
339
340 #define LINUX_MS_ASYNC 0x0001
341 #define LINUX_MS_INVALIDATE 0x0002
342 #define LINUX_MS_SYNC 0x0004
343
344 int
linux_msync(struct thread * td,struct linux_msync_args * args)345 linux_msync(struct thread *td, struct linux_msync_args *args)
346 {
347
348 return (kern_msync(td, args->addr, args->len,
349 args->fl & ~LINUX_MS_SYNC));
350 }
351
352 int
linux_mprotect(struct thread * td,struct linux_mprotect_args * uap)353 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
354 {
355
356 return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len,
357 uap->prot));
358 }
359
360 int
linux_madvise(struct thread * td,struct linux_madvise_args * uap)361 linux_madvise(struct thread *td, struct linux_madvise_args *uap)
362 {
363
364 return (linux_madvise_common(td, PTROUT(uap->addr), uap->len,
365 uap->behav));
366 }
367
368 int
linux_mmap2(struct thread * td,struct linux_mmap2_args * uap)369 linux_mmap2(struct thread *td, struct linux_mmap2_args *uap)
370 {
371 #if defined(LINUX_ARCHWANT_MMAP2PGOFF)
372 /*
373 * For architectures with sizeof (off_t) < sizeof (loff_t) mmap is
374 * implemented with mmap2 syscall and the offset is represented in
375 * multiples of page size.
376 */
377 return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
378 uap->flags, uap->fd, (uint64_t)(uint32_t)uap->pgoff * PAGE_SIZE));
379 #else
380 return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
381 uap->flags, uap->fd, uap->pgoff));
382 #endif
383 }
384
385 #ifdef LINUX_LEGACY_SYSCALLS
386 int
linux_time(struct thread * td,struct linux_time_args * args)387 linux_time(struct thread *td, struct linux_time_args *args)
388 {
389 struct timeval tv;
390 l_time_t tm;
391 int error;
392
393 microtime(&tv);
394 tm = tv.tv_sec;
395 if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
396 return (error);
397 td->td_retval[0] = tm;
398 return (0);
399 }
400 #endif
401
402 struct l_times_argv {
403 l_clock_t tms_utime;
404 l_clock_t tms_stime;
405 l_clock_t tms_cutime;
406 l_clock_t tms_cstime;
407 };
408
409 /*
410 * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
411 * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
412 * auxiliary vector entry.
413 */
414 #define CLK_TCK 100
415
416 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
417 #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
418
419 #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER(2,4,0) ? \
420 CONVNTCK(r) : CONVOTCK(r))
421
422 int
linux_times(struct thread * td,struct linux_times_args * args)423 linux_times(struct thread *td, struct linux_times_args *args)
424 {
425 struct timeval tv, utime, stime, cutime, cstime;
426 struct l_times_argv tms;
427 struct proc *p;
428 int error;
429
430 if (args->buf != NULL) {
431 p = td->td_proc;
432 PROC_LOCK(p);
433 PROC_STATLOCK(p);
434 calcru(p, &utime, &stime);
435 PROC_STATUNLOCK(p);
436 calccru(p, &cutime, &cstime);
437 PROC_UNLOCK(p);
438
439 tms.tms_utime = CONVTCK(utime);
440 tms.tms_stime = CONVTCK(stime);
441
442 tms.tms_cutime = CONVTCK(cutime);
443 tms.tms_cstime = CONVTCK(cstime);
444
445 if ((error = copyout(&tms, args->buf, sizeof(tms))))
446 return (error);
447 }
448
449 microuptime(&tv);
450 td->td_retval[0] = (int)CONVTCK(tv);
451 return (0);
452 }
453
454 int
linux_newuname(struct thread * td,struct linux_newuname_args * args)455 linux_newuname(struct thread *td, struct linux_newuname_args *args)
456 {
457 struct l_new_utsname utsname;
458 char osname[LINUX_MAX_UTSNAME];
459 char osrelease[LINUX_MAX_UTSNAME];
460 char *p;
461
462 linux_get_osname(td, osname);
463 linux_get_osrelease(td, osrelease);
464
465 bzero(&utsname, sizeof(utsname));
466 strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
467 getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
468 getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
469 strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
470 strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
471 for (p = utsname.version; *p != '\0'; ++p)
472 if (*p == '\n') {
473 *p = '\0';
474 break;
475 }
476 #if defined(__amd64__)
477 /*
478 * On amd64, Linux uname(2) needs to return "x86_64"
479 * for both 64-bit and 32-bit applications. On 32-bit,
480 * the string returned by getauxval(AT_PLATFORM) needs
481 * to remain "i686", though.
482 */
483 #if defined(COMPAT_LINUX32)
484 if (linux32_emulate_i386)
485 strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
486 else
487 #endif
488 strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
489 #elif defined(__aarch64__)
490 strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME);
491 #elif defined(__i386__)
492 strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
493 #endif
494
495 return (copyout(&utsname, args->buf, sizeof(utsname)));
496 }
497
498 struct l_utimbuf {
499 l_time_t l_actime;
500 l_time_t l_modtime;
501 };
502
503 #ifdef LINUX_LEGACY_SYSCALLS
504 int
linux_utime(struct thread * td,struct linux_utime_args * args)505 linux_utime(struct thread *td, struct linux_utime_args *args)
506 {
507 struct timeval tv[2], *tvp;
508 struct l_utimbuf lut;
509 int error;
510
511 if (args->times) {
512 if ((error = copyin(args->times, &lut, sizeof lut)) != 0)
513 return (error);
514 tv[0].tv_sec = lut.l_actime;
515 tv[0].tv_usec = 0;
516 tv[1].tv_sec = lut.l_modtime;
517 tv[1].tv_usec = 0;
518 tvp = tv;
519 } else
520 tvp = NULL;
521
522 return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
523 tvp, UIO_SYSSPACE));
524 }
525 #endif
526
527 #ifdef LINUX_LEGACY_SYSCALLS
528 int
linux_utimes(struct thread * td,struct linux_utimes_args * args)529 linux_utimes(struct thread *td, struct linux_utimes_args *args)
530 {
531 l_timeval ltv[2];
532 struct timeval tv[2], *tvp = NULL;
533 int error;
534
535 if (args->tptr != NULL) {
536 if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0)
537 return (error);
538 tv[0].tv_sec = ltv[0].tv_sec;
539 tv[0].tv_usec = ltv[0].tv_usec;
540 tv[1].tv_sec = ltv[1].tv_sec;
541 tv[1].tv_usec = ltv[1].tv_usec;
542 tvp = tv;
543 }
544
545 return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
546 tvp, UIO_SYSSPACE));
547 }
548 #endif
549
550 static int
linux_utimensat_lts_to_ts(struct l_timespec * l_times,struct timespec * times)551 linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times)
552 {
553
554 if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
555 l_times->tv_nsec != LINUX_UTIME_NOW &&
556 (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
557 return (EINVAL);
558
559 times->tv_sec = l_times->tv_sec;
560 switch (l_times->tv_nsec)
561 {
562 case LINUX_UTIME_OMIT:
563 times->tv_nsec = UTIME_OMIT;
564 break;
565 case LINUX_UTIME_NOW:
566 times->tv_nsec = UTIME_NOW;
567 break;
568 default:
569 times->tv_nsec = l_times->tv_nsec;
570 }
571
572 return (0);
573 }
574
575 static int
linux_common_utimensat(struct thread * td,int ldfd,const char * pathname,struct timespec * timesp,int lflags)576 linux_common_utimensat(struct thread *td, int ldfd, const char *pathname,
577 struct timespec *timesp, int lflags)
578 {
579 int dfd, flags = 0;
580
581 dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd;
582
583 if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH))
584 return (EINVAL);
585
586 if (timesp != NULL) {
587 /* This breaks POSIX, but is what the Linux kernel does
588 * _on purpose_ (documented in the man page for utimensat(2)),
589 * so we must follow that behaviour. */
590 if (timesp[0].tv_nsec == UTIME_OMIT &&
591 timesp[1].tv_nsec == UTIME_OMIT)
592 return (0);
593 }
594
595 if (lflags & LINUX_AT_SYMLINK_NOFOLLOW)
596 flags |= AT_SYMLINK_NOFOLLOW;
597 if (lflags & LINUX_AT_EMPTY_PATH)
598 flags |= AT_EMPTY_PATH;
599
600 if (pathname != NULL)
601 return (kern_utimensat(td, dfd, pathname,
602 UIO_USERSPACE, timesp, UIO_SYSSPACE, flags));
603
604 if (lflags != 0)
605 return (EINVAL);
606
607 return (kern_futimens(td, dfd, timesp, UIO_SYSSPACE));
608 }
609
610 int
linux_utimensat(struct thread * td,struct linux_utimensat_args * args)611 linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
612 {
613 struct l_timespec l_times[2];
614 struct timespec times[2], *timesp;
615 int error;
616
617 if (args->times != NULL) {
618 error = copyin(args->times, l_times, sizeof(l_times));
619 if (error != 0)
620 return (error);
621
622 error = linux_utimensat_lts_to_ts(&l_times[0], ×[0]);
623 if (error != 0)
624 return (error);
625 error = linux_utimensat_lts_to_ts(&l_times[1], ×[1]);
626 if (error != 0)
627 return (error);
628 timesp = times;
629 } else
630 timesp = NULL;
631
632 return (linux_common_utimensat(td, args->dfd, args->pathname,
633 timesp, args->flags));
634 }
635
636 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
637 static int
linux_utimensat_lts64_to_ts(struct l_timespec64 * l_times,struct timespec * times)638 linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times)
639 {
640
641 /* Zero out the padding in compat mode. */
642 l_times->tv_nsec &= 0xFFFFFFFFUL;
643
644 if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
645 l_times->tv_nsec != LINUX_UTIME_NOW &&
646 (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
647 return (EINVAL);
648
649 times->tv_sec = l_times->tv_sec;
650 switch (l_times->tv_nsec)
651 {
652 case LINUX_UTIME_OMIT:
653 times->tv_nsec = UTIME_OMIT;
654 break;
655 case LINUX_UTIME_NOW:
656 times->tv_nsec = UTIME_NOW;
657 break;
658 default:
659 times->tv_nsec = l_times->tv_nsec;
660 }
661
662 return (0);
663 }
664
665 int
linux_utimensat_time64(struct thread * td,struct linux_utimensat_time64_args * args)666 linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args)
667 {
668 struct l_timespec64 l_times[2];
669 struct timespec times[2], *timesp;
670 int error;
671
672 if (args->times64 != NULL) {
673 error = copyin(args->times64, l_times, sizeof(l_times));
674 if (error != 0)
675 return (error);
676
677 error = linux_utimensat_lts64_to_ts(&l_times[0], ×[0]);
678 if (error != 0)
679 return (error);
680 error = linux_utimensat_lts64_to_ts(&l_times[1], ×[1]);
681 if (error != 0)
682 return (error);
683 timesp = times;
684 } else
685 timesp = NULL;
686
687 return (linux_common_utimensat(td, args->dfd, args->pathname,
688 timesp, args->flags));
689 }
690 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
691
692 #ifdef LINUX_LEGACY_SYSCALLS
693 int
linux_futimesat(struct thread * td,struct linux_futimesat_args * args)694 linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
695 {
696 l_timeval ltv[2];
697 struct timeval tv[2], *tvp = NULL;
698 int error, dfd;
699
700 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
701
702 if (args->utimes != NULL) {
703 if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0)
704 return (error);
705 tv[0].tv_sec = ltv[0].tv_sec;
706 tv[0].tv_usec = ltv[0].tv_usec;
707 tv[1].tv_sec = ltv[1].tv_sec;
708 tv[1].tv_usec = ltv[1].tv_usec;
709 tvp = tv;
710 }
711
712 return (kern_utimesat(td, dfd, args->filename, UIO_USERSPACE,
713 tvp, UIO_SYSSPACE));
714 }
715 #endif
716
717 static int
linux_common_wait(struct thread * td,idtype_t idtype,int id,int * statusp,int options,void * rup,l_siginfo_t * infop)718 linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp,
719 int options, void *rup, l_siginfo_t *infop)
720 {
721 l_siginfo_t lsi;
722 siginfo_t siginfo;
723 struct __wrusage wru;
724 int error, status, tmpstat, sig;
725
726 error = kern_wait6(td, idtype, id, &status, options,
727 rup != NULL ? &wru : NULL, &siginfo);
728
729 if (error == 0 && statusp) {
730 tmpstat = status & 0xffff;
731 if (WIFSIGNALED(tmpstat)) {
732 tmpstat = (tmpstat & 0xffffff80) |
733 bsd_to_linux_signal(WTERMSIG(tmpstat));
734 } else if (WIFSTOPPED(tmpstat)) {
735 tmpstat = (tmpstat & 0xffff00ff) |
736 (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
737 #if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32))
738 if (WSTOPSIG(status) == SIGTRAP) {
739 tmpstat = linux_ptrace_status(td,
740 siginfo.si_pid, tmpstat);
741 }
742 #endif
743 } else if (WIFCONTINUED(tmpstat)) {
744 tmpstat = 0xffff;
745 }
746 error = copyout(&tmpstat, statusp, sizeof(int));
747 }
748 if (error == 0 && rup != NULL)
749 error = linux_copyout_rusage(&wru.wru_self, rup);
750 if (error == 0 && infop != NULL && td->td_retval[0] != 0) {
751 sig = bsd_to_linux_signal(siginfo.si_signo);
752 siginfo_to_lsiginfo(&siginfo, &lsi, sig);
753 error = copyout(&lsi, infop, sizeof(lsi));
754 }
755
756 return (error);
757 }
758
759 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
760 int
linux_waitpid(struct thread * td,struct linux_waitpid_args * args)761 linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
762 {
763 struct linux_wait4_args wait4_args = {
764 .pid = args->pid,
765 .status = args->status,
766 .options = args->options,
767 .rusage = NULL,
768 };
769
770 return (linux_wait4(td, &wait4_args));
771 }
772 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
773
774 int
linux_wait4(struct thread * td,struct linux_wait4_args * args)775 linux_wait4(struct thread *td, struct linux_wait4_args *args)
776 {
777 struct proc *p;
778 int options, id, idtype;
779
780 if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
781 LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
782 return (EINVAL);
783
784 /* -INT_MIN is not defined. */
785 if (args->pid == INT_MIN)
786 return (ESRCH);
787
788 options = 0;
789 linux_to_bsd_waitopts(args->options, &options);
790
791 /*
792 * For backward compatibility we implicitly add flags WEXITED
793 * and WTRAPPED here.
794 */
795 options |= WEXITED | WTRAPPED;
796
797 if (args->pid == WAIT_ANY) {
798 idtype = P_ALL;
799 id = 0;
800 } else if (args->pid < 0) {
801 idtype = P_PGID;
802 id = (id_t)-args->pid;
803 } else if (args->pid == 0) {
804 idtype = P_PGID;
805 p = td->td_proc;
806 PROC_LOCK(p);
807 id = p->p_pgid;
808 PROC_UNLOCK(p);
809 } else {
810 idtype = P_PID;
811 id = (id_t)args->pid;
812 }
813
814 return (linux_common_wait(td, idtype, id, args->status, options,
815 args->rusage, NULL));
816 }
817
818 int
linux_waitid(struct thread * td,struct linux_waitid_args * args)819 linux_waitid(struct thread *td, struct linux_waitid_args *args)
820 {
821 idtype_t idtype;
822 int error, options;
823 struct proc *p;
824 pid_t id;
825
826 if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED |
827 LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
828 return (EINVAL);
829
830 options = 0;
831 linux_to_bsd_waitopts(args->options, &options);
832
833 id = args->id;
834 switch (args->idtype) {
835 case LINUX_P_ALL:
836 idtype = P_ALL;
837 break;
838 case LINUX_P_PID:
839 if (args->id <= 0)
840 return (EINVAL);
841 idtype = P_PID;
842 break;
843 case LINUX_P_PGID:
844 if (linux_kernver(td) >= LINUX_KERNVER(5,4,0) && args->id == 0) {
845 p = td->td_proc;
846 PROC_LOCK(p);
847 id = p->p_pgid;
848 PROC_UNLOCK(p);
849 } else if (args->id <= 0)
850 return (EINVAL);
851 idtype = P_PGID;
852 break;
853 case LINUX_P_PIDFD:
854 LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype");
855 return (ENOSYS);
856 default:
857 return (EINVAL);
858 }
859
860 error = linux_common_wait(td, idtype, id, NULL, options,
861 args->rusage, args->info);
862 td->td_retval[0] = 0;
863
864 return (error);
865 }
866
867 #ifdef LINUX_LEGACY_SYSCALLS
868 int
linux_mknod(struct thread * td,struct linux_mknod_args * args)869 linux_mknod(struct thread *td, struct linux_mknod_args *args)
870 {
871 int error;
872
873 switch (args->mode & S_IFMT) {
874 case S_IFIFO:
875 case S_IFSOCK:
876 error = kern_mkfifoat(td, AT_FDCWD, args->path, UIO_USERSPACE,
877 args->mode);
878 break;
879
880 case S_IFCHR:
881 case S_IFBLK:
882 error = kern_mknodat(td, AT_FDCWD, args->path, UIO_USERSPACE,
883 args->mode, linux_decode_dev(args->dev));
884 break;
885
886 case S_IFDIR:
887 error = EPERM;
888 break;
889
890 case 0:
891 args->mode |= S_IFREG;
892 /* FALLTHROUGH */
893 case S_IFREG:
894 error = kern_openat(td, AT_FDCWD, args->path, UIO_USERSPACE,
895 O_WRONLY | O_CREAT | O_TRUNC, args->mode);
896 if (error == 0)
897 kern_close(td, td->td_retval[0]);
898 break;
899
900 default:
901 error = EINVAL;
902 break;
903 }
904 return (error);
905 }
906 #endif
907
908 int
linux_mknodat(struct thread * td,struct linux_mknodat_args * args)909 linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
910 {
911 int error, dfd;
912
913 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
914
915 switch (args->mode & S_IFMT) {
916 case S_IFIFO:
917 case S_IFSOCK:
918 error = kern_mkfifoat(td, dfd, args->filename, UIO_USERSPACE,
919 args->mode);
920 break;
921
922 case S_IFCHR:
923 case S_IFBLK:
924 error = kern_mknodat(td, dfd, args->filename, UIO_USERSPACE,
925 args->mode, linux_decode_dev(args->dev));
926 break;
927
928 case S_IFDIR:
929 error = EPERM;
930 break;
931
932 case 0:
933 args->mode |= S_IFREG;
934 /* FALLTHROUGH */
935 case S_IFREG:
936 error = kern_openat(td, dfd, args->filename, UIO_USERSPACE,
937 O_WRONLY | O_CREAT | O_TRUNC, args->mode);
938 if (error == 0)
939 kern_close(td, td->td_retval[0]);
940 break;
941
942 default:
943 error = EINVAL;
944 break;
945 }
946 return (error);
947 }
948
949 /*
950 * UGH! This is just about the dumbest idea I've ever heard!!
951 */
952 int
linux_personality(struct thread * td,struct linux_personality_args * args)953 linux_personality(struct thread *td, struct linux_personality_args *args)
954 {
955 struct linux_pemuldata *pem;
956 struct proc *p = td->td_proc;
957 uint32_t old;
958
959 PROC_LOCK(p);
960 pem = pem_find(p);
961 old = pem->persona;
962 if (args->per != 0xffffffff)
963 pem->persona = args->per;
964 PROC_UNLOCK(p);
965
966 td->td_retval[0] = old;
967 return (0);
968 }
969
970 struct l_itimerval {
971 l_timeval it_interval;
972 l_timeval it_value;
973 };
974
975 #define B2L_ITIMERVAL(bip, lip) \
976 (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \
977 (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \
978 (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \
979 (bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
980
981 int
linux_setitimer(struct thread * td,struct linux_setitimer_args * uap)982 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
983 {
984 int error;
985 struct l_itimerval ls;
986 struct itimerval aitv, oitv;
987
988 if (uap->itv == NULL) {
989 uap->itv = uap->oitv;
990 return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
991 }
992
993 error = copyin(uap->itv, &ls, sizeof(ls));
994 if (error != 0)
995 return (error);
996 B2L_ITIMERVAL(&aitv, &ls);
997 error = kern_setitimer(td, uap->which, &aitv, &oitv);
998 if (error != 0 || uap->oitv == NULL)
999 return (error);
1000 B2L_ITIMERVAL(&ls, &oitv);
1001
1002 return (copyout(&ls, uap->oitv, sizeof(ls)));
1003 }
1004
1005 int
linux_getitimer(struct thread * td,struct linux_getitimer_args * uap)1006 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
1007 {
1008 int error;
1009 struct l_itimerval ls;
1010 struct itimerval aitv;
1011
1012 error = kern_getitimer(td, uap->which, &aitv);
1013 if (error != 0)
1014 return (error);
1015 B2L_ITIMERVAL(&ls, &aitv);
1016 return (copyout(&ls, uap->itv, sizeof(ls)));
1017 }
1018
1019 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1020 int
linux_nice(struct thread * td,struct linux_nice_args * args)1021 linux_nice(struct thread *td, struct linux_nice_args *args)
1022 {
1023
1024 return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc));
1025 }
1026 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1027
1028 int
linux_setgroups(struct thread * td,struct linux_setgroups_args * args)1029 linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
1030 {
1031 struct ucred *newcred, *oldcred;
1032 l_gid_t *linux_gidset;
1033 gid_t *bsd_gidset;
1034 int ngrp, error;
1035 struct proc *p;
1036
1037 ngrp = args->gidsetsize;
1038 if (ngrp < 0 || ngrp >= ngroups_max + 1)
1039 return (EINVAL);
1040 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1041 error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
1042 if (error)
1043 goto out;
1044 newcred = crget();
1045 crextend(newcred, ngrp + 1);
1046 p = td->td_proc;
1047 PROC_LOCK(p);
1048 oldcred = p->p_ucred;
1049 crcopy(newcred, oldcred);
1050
1051 /*
1052 * cr_groups[0] holds egid. Setting the whole set from
1053 * the supplied set will cause egid to be changed too.
1054 * Keep cr_groups[0] unchanged to prevent that.
1055 */
1056
1057 if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
1058 PROC_UNLOCK(p);
1059 crfree(newcred);
1060 goto out;
1061 }
1062
1063 if (ngrp > 0) {
1064 newcred->cr_ngroups = ngrp + 1;
1065
1066 bsd_gidset = newcred->cr_groups;
1067 ngrp--;
1068 while (ngrp >= 0) {
1069 bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
1070 ngrp--;
1071 }
1072 } else
1073 newcred->cr_ngroups = 1;
1074
1075 setsugid(p);
1076 proc_set_cred(p, newcred);
1077 PROC_UNLOCK(p);
1078 crfree(oldcred);
1079 error = 0;
1080 out:
1081 free(linux_gidset, M_LINUX);
1082 return (error);
1083 }
1084
1085 int
linux_getgroups(struct thread * td,struct linux_getgroups_args * args)1086 linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
1087 {
1088 struct ucred *cred;
1089 l_gid_t *linux_gidset;
1090 gid_t *bsd_gidset;
1091 int bsd_gidsetsz, ngrp, error;
1092
1093 cred = td->td_ucred;
1094 bsd_gidset = cred->cr_groups;
1095 bsd_gidsetsz = cred->cr_ngroups - 1;
1096
1097 /*
1098 * cr_groups[0] holds egid. Returning the whole set
1099 * here will cause a duplicate. Exclude cr_groups[0]
1100 * to prevent that.
1101 */
1102
1103 if ((ngrp = args->gidsetsize) == 0) {
1104 td->td_retval[0] = bsd_gidsetsz;
1105 return (0);
1106 }
1107
1108 if (ngrp < bsd_gidsetsz)
1109 return (EINVAL);
1110
1111 ngrp = 0;
1112 linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset),
1113 M_LINUX, M_WAITOK);
1114 while (ngrp < bsd_gidsetsz) {
1115 linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
1116 ngrp++;
1117 }
1118
1119 error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
1120 free(linux_gidset, M_LINUX);
1121 if (error)
1122 return (error);
1123
1124 td->td_retval[0] = ngrp;
1125 return (0);
1126 }
1127
1128 static bool
linux_get_dummy_limit(struct thread * td,l_uint resource,struct rlimit * rlim)1129 linux_get_dummy_limit(struct thread *td, l_uint resource, struct rlimit *rlim)
1130 {
1131 ssize_t size;
1132 int res, error;
1133
1134 if (linux_dummy_rlimits == 0)
1135 return (false);
1136
1137 switch (resource) {
1138 case LINUX_RLIMIT_LOCKS:
1139 case LINUX_RLIMIT_RTTIME:
1140 rlim->rlim_cur = LINUX_RLIM_INFINITY;
1141 rlim->rlim_max = LINUX_RLIM_INFINITY;
1142 return (true);
1143 case LINUX_RLIMIT_NICE:
1144 case LINUX_RLIMIT_RTPRIO:
1145 rlim->rlim_cur = 0;
1146 rlim->rlim_max = 0;
1147 return (true);
1148 case LINUX_RLIMIT_SIGPENDING:
1149 error = kernel_sysctlbyname(td,
1150 "kern.sigqueue.max_pending_per_proc",
1151 &res, &size, 0, 0, 0, 0);
1152 if (error != 0)
1153 return (false);
1154 rlim->rlim_cur = res;
1155 rlim->rlim_max = res;
1156 return (true);
1157 case LINUX_RLIMIT_MSGQUEUE:
1158 error = kernel_sysctlbyname(td,
1159 "kern.ipc.msgmnb", &res, &size, 0, 0, 0, 0);
1160 if (error != 0)
1161 return (false);
1162 rlim->rlim_cur = res;
1163 rlim->rlim_max = res;
1164 return (true);
1165 default:
1166 return (false);
1167 }
1168 }
1169
1170 int
linux_setrlimit(struct thread * td,struct linux_setrlimit_args * args)1171 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
1172 {
1173 struct rlimit bsd_rlim;
1174 struct l_rlimit rlim;
1175 u_int which;
1176 int error;
1177
1178 if (args->resource >= LINUX_RLIM_NLIMITS)
1179 return (EINVAL);
1180
1181 which = linux_to_bsd_resource[args->resource];
1182 if (which == -1)
1183 return (EINVAL);
1184
1185 error = copyin(args->rlim, &rlim, sizeof(rlim));
1186 if (error)
1187 return (error);
1188
1189 bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
1190 bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
1191 return (kern_setrlimit(td, which, &bsd_rlim));
1192 }
1193
1194 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1195 int
linux_old_getrlimit(struct thread * td,struct linux_old_getrlimit_args * args)1196 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
1197 {
1198 struct l_rlimit rlim;
1199 struct rlimit bsd_rlim;
1200 u_int which;
1201
1202 if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) {
1203 rlim.rlim_cur = bsd_rlim.rlim_cur;
1204 rlim.rlim_max = bsd_rlim.rlim_max;
1205 return (copyout(&rlim, args->rlim, sizeof(rlim)));
1206 }
1207
1208 if (args->resource >= LINUX_RLIM_NLIMITS)
1209 return (EINVAL);
1210
1211 which = linux_to_bsd_resource[args->resource];
1212 if (which == -1)
1213 return (EINVAL);
1214
1215 lim_rlimit(td, which, &bsd_rlim);
1216
1217 #ifdef COMPAT_LINUX32
1218 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
1219 if (rlim.rlim_cur == UINT_MAX)
1220 rlim.rlim_cur = INT_MAX;
1221 rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
1222 if (rlim.rlim_max == UINT_MAX)
1223 rlim.rlim_max = INT_MAX;
1224 #else
1225 rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
1226 if (rlim.rlim_cur == ULONG_MAX)
1227 rlim.rlim_cur = LONG_MAX;
1228 rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
1229 if (rlim.rlim_max == ULONG_MAX)
1230 rlim.rlim_max = LONG_MAX;
1231 #endif
1232 return (copyout(&rlim, args->rlim, sizeof(rlim)));
1233 }
1234 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1235
1236 int
linux_getrlimit(struct thread * td,struct linux_getrlimit_args * args)1237 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
1238 {
1239 struct l_rlimit rlim;
1240 struct rlimit bsd_rlim;
1241 u_int which;
1242
1243 if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) {
1244 rlim.rlim_cur = bsd_rlim.rlim_cur;
1245 rlim.rlim_max = bsd_rlim.rlim_max;
1246 return (copyout(&rlim, args->rlim, sizeof(rlim)));
1247 }
1248
1249 if (args->resource >= LINUX_RLIM_NLIMITS)
1250 return (EINVAL);
1251
1252 which = linux_to_bsd_resource[args->resource];
1253 if (which == -1)
1254 return (EINVAL);
1255
1256 lim_rlimit(td, which, &bsd_rlim);
1257
1258 rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
1259 rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
1260 return (copyout(&rlim, args->rlim, sizeof(rlim)));
1261 }
1262
1263 int
linux_sched_setscheduler(struct thread * td,struct linux_sched_setscheduler_args * args)1264 linux_sched_setscheduler(struct thread *td,
1265 struct linux_sched_setscheduler_args *args)
1266 {
1267 struct sched_param sched_param;
1268 struct thread *tdt;
1269 int error, policy;
1270
1271 switch (args->policy) {
1272 case LINUX_SCHED_OTHER:
1273 policy = SCHED_OTHER;
1274 break;
1275 case LINUX_SCHED_FIFO:
1276 policy = SCHED_FIFO;
1277 break;
1278 case LINUX_SCHED_RR:
1279 policy = SCHED_RR;
1280 break;
1281 default:
1282 return (EINVAL);
1283 }
1284
1285 error = copyin(args->param, &sched_param, sizeof(sched_param));
1286 if (error)
1287 return (error);
1288
1289 if (linux_map_sched_prio) {
1290 switch (policy) {
1291 case SCHED_OTHER:
1292 if (sched_param.sched_priority != 0)
1293 return (EINVAL);
1294
1295 sched_param.sched_priority =
1296 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1297 break;
1298 case SCHED_FIFO:
1299 case SCHED_RR:
1300 if (sched_param.sched_priority < 1 ||
1301 sched_param.sched_priority >= LINUX_MAX_RT_PRIO)
1302 return (EINVAL);
1303
1304 /*
1305 * Map [1, LINUX_MAX_RT_PRIO - 1] to
1306 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1307 */
1308 sched_param.sched_priority =
1309 (sched_param.sched_priority - 1) *
1310 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1311 (LINUX_MAX_RT_PRIO - 1);
1312 break;
1313 }
1314 }
1315
1316 tdt = linux_tdfind(td, args->pid, -1);
1317 if (tdt == NULL)
1318 return (ESRCH);
1319
1320 error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
1321 PROC_UNLOCK(tdt->td_proc);
1322 return (error);
1323 }
1324
1325 int
linux_sched_getscheduler(struct thread * td,struct linux_sched_getscheduler_args * args)1326 linux_sched_getscheduler(struct thread *td,
1327 struct linux_sched_getscheduler_args *args)
1328 {
1329 struct thread *tdt;
1330 int error, policy;
1331
1332 tdt = linux_tdfind(td, args->pid, -1);
1333 if (tdt == NULL)
1334 return (ESRCH);
1335
1336 error = kern_sched_getscheduler(td, tdt, &policy);
1337 PROC_UNLOCK(tdt->td_proc);
1338
1339 switch (policy) {
1340 case SCHED_OTHER:
1341 td->td_retval[0] = LINUX_SCHED_OTHER;
1342 break;
1343 case SCHED_FIFO:
1344 td->td_retval[0] = LINUX_SCHED_FIFO;
1345 break;
1346 case SCHED_RR:
1347 td->td_retval[0] = LINUX_SCHED_RR;
1348 break;
1349 }
1350 return (error);
1351 }
1352
1353 int
linux_sched_get_priority_max(struct thread * td,struct linux_sched_get_priority_max_args * args)1354 linux_sched_get_priority_max(struct thread *td,
1355 struct linux_sched_get_priority_max_args *args)
1356 {
1357 struct sched_get_priority_max_args bsd;
1358
1359 if (linux_map_sched_prio) {
1360 switch (args->policy) {
1361 case LINUX_SCHED_OTHER:
1362 td->td_retval[0] = 0;
1363 return (0);
1364 case LINUX_SCHED_FIFO:
1365 case LINUX_SCHED_RR:
1366 td->td_retval[0] = LINUX_MAX_RT_PRIO - 1;
1367 return (0);
1368 default:
1369 return (EINVAL);
1370 }
1371 }
1372
1373 switch (args->policy) {
1374 case LINUX_SCHED_OTHER:
1375 bsd.policy = SCHED_OTHER;
1376 break;
1377 case LINUX_SCHED_FIFO:
1378 bsd.policy = SCHED_FIFO;
1379 break;
1380 case LINUX_SCHED_RR:
1381 bsd.policy = SCHED_RR;
1382 break;
1383 default:
1384 return (EINVAL);
1385 }
1386 return (sys_sched_get_priority_max(td, &bsd));
1387 }
1388
1389 int
linux_sched_get_priority_min(struct thread * td,struct linux_sched_get_priority_min_args * args)1390 linux_sched_get_priority_min(struct thread *td,
1391 struct linux_sched_get_priority_min_args *args)
1392 {
1393 struct sched_get_priority_min_args bsd;
1394
1395 if (linux_map_sched_prio) {
1396 switch (args->policy) {
1397 case LINUX_SCHED_OTHER:
1398 td->td_retval[0] = 0;
1399 return (0);
1400 case LINUX_SCHED_FIFO:
1401 case LINUX_SCHED_RR:
1402 td->td_retval[0] = 1;
1403 return (0);
1404 default:
1405 return (EINVAL);
1406 }
1407 }
1408
1409 switch (args->policy) {
1410 case LINUX_SCHED_OTHER:
1411 bsd.policy = SCHED_OTHER;
1412 break;
1413 case LINUX_SCHED_FIFO:
1414 bsd.policy = SCHED_FIFO;
1415 break;
1416 case LINUX_SCHED_RR:
1417 bsd.policy = SCHED_RR;
1418 break;
1419 default:
1420 return (EINVAL);
1421 }
1422 return (sys_sched_get_priority_min(td, &bsd));
1423 }
1424
1425 #define REBOOT_CAD_ON 0x89abcdef
1426 #define REBOOT_CAD_OFF 0
1427 #define REBOOT_HALT 0xcdef0123
1428 #define REBOOT_RESTART 0x01234567
1429 #define REBOOT_RESTART2 0xA1B2C3D4
1430 #define REBOOT_POWEROFF 0x4321FEDC
1431 #define REBOOT_MAGIC1 0xfee1dead
1432 #define REBOOT_MAGIC2 0x28121969
1433 #define REBOOT_MAGIC2A 0x05121996
1434 #define REBOOT_MAGIC2B 0x16041998
1435
1436 int
linux_reboot(struct thread * td,struct linux_reboot_args * args)1437 linux_reboot(struct thread *td, struct linux_reboot_args *args)
1438 {
1439 struct reboot_args bsd_args;
1440
1441 if (args->magic1 != REBOOT_MAGIC1)
1442 return (EINVAL);
1443
1444 switch (args->magic2) {
1445 case REBOOT_MAGIC2:
1446 case REBOOT_MAGIC2A:
1447 case REBOOT_MAGIC2B:
1448 break;
1449 default:
1450 return (EINVAL);
1451 }
1452
1453 switch (args->cmd) {
1454 case REBOOT_CAD_ON:
1455 case REBOOT_CAD_OFF:
1456 return (priv_check(td, PRIV_REBOOT));
1457 case REBOOT_HALT:
1458 bsd_args.opt = RB_HALT;
1459 break;
1460 case REBOOT_RESTART:
1461 case REBOOT_RESTART2:
1462 bsd_args.opt = 0;
1463 break;
1464 case REBOOT_POWEROFF:
1465 bsd_args.opt = RB_POWEROFF;
1466 break;
1467 default:
1468 return (EINVAL);
1469 }
1470 return (sys_reboot(td, &bsd_args));
1471 }
1472
1473 int
linux_getpid(struct thread * td,struct linux_getpid_args * args)1474 linux_getpid(struct thread *td, struct linux_getpid_args *args)
1475 {
1476
1477 td->td_retval[0] = td->td_proc->p_pid;
1478
1479 return (0);
1480 }
1481
1482 int
linux_gettid(struct thread * td,struct linux_gettid_args * args)1483 linux_gettid(struct thread *td, struct linux_gettid_args *args)
1484 {
1485 struct linux_emuldata *em;
1486
1487 em = em_find(td);
1488 KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
1489
1490 td->td_retval[0] = em->em_tid;
1491
1492 return (0);
1493 }
1494
1495 int
linux_getppid(struct thread * td,struct linux_getppid_args * args)1496 linux_getppid(struct thread *td, struct linux_getppid_args *args)
1497 {
1498
1499 td->td_retval[0] = kern_getppid(td);
1500 return (0);
1501 }
1502
1503 int
linux_getgid(struct thread * td,struct linux_getgid_args * args)1504 linux_getgid(struct thread *td, struct linux_getgid_args *args)
1505 {
1506
1507 td->td_retval[0] = td->td_ucred->cr_rgid;
1508 return (0);
1509 }
1510
1511 int
linux_getuid(struct thread * td,struct linux_getuid_args * args)1512 linux_getuid(struct thread *td, struct linux_getuid_args *args)
1513 {
1514
1515 td->td_retval[0] = td->td_ucred->cr_ruid;
1516 return (0);
1517 }
1518
1519 int
linux_getsid(struct thread * td,struct linux_getsid_args * args)1520 linux_getsid(struct thread *td, struct linux_getsid_args *args)
1521 {
1522
1523 return (kern_getsid(td, args->pid));
1524 }
1525
1526 int
linux_getpriority(struct thread * td,struct linux_getpriority_args * args)1527 linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
1528 {
1529 int error;
1530
1531 error = kern_getpriority(td, args->which, args->who);
1532 td->td_retval[0] = 20 - td->td_retval[0];
1533 return (error);
1534 }
1535
1536 int
linux_sethostname(struct thread * td,struct linux_sethostname_args * args)1537 linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
1538 {
1539 int name[2];
1540
1541 name[0] = CTL_KERN;
1542 name[1] = KERN_HOSTNAME;
1543 return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
1544 args->len, 0, 0));
1545 }
1546
1547 int
linux_setdomainname(struct thread * td,struct linux_setdomainname_args * args)1548 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
1549 {
1550 int name[2];
1551
1552 name[0] = CTL_KERN;
1553 name[1] = KERN_NISDOMAINNAME;
1554 return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
1555 args->len, 0, 0));
1556 }
1557
1558 int
linux_exit_group(struct thread * td,struct linux_exit_group_args * args)1559 linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
1560 {
1561
1562 LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
1563 args->error_code);
1564
1565 /*
1566 * XXX: we should send a signal to the parent if
1567 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
1568 * as it doesnt occur often.
1569 */
1570 exit1(td, args->error_code, 0);
1571 /* NOTREACHED */
1572 }
1573
1574 #define _LINUX_CAPABILITY_VERSION_1 0x19980330
1575 #define _LINUX_CAPABILITY_VERSION_2 0x20071026
1576 #define _LINUX_CAPABILITY_VERSION_3 0x20080522
1577
1578 struct l_user_cap_header {
1579 l_int version;
1580 l_int pid;
1581 };
1582
1583 struct l_user_cap_data {
1584 l_int effective;
1585 l_int permitted;
1586 l_int inheritable;
1587 };
1588
1589 int
linux_capget(struct thread * td,struct linux_capget_args * uap)1590 linux_capget(struct thread *td, struct linux_capget_args *uap)
1591 {
1592 struct l_user_cap_header luch;
1593 struct l_user_cap_data lucd[2];
1594 int error, u32s;
1595
1596 if (uap->hdrp == NULL)
1597 return (EFAULT);
1598
1599 error = copyin(uap->hdrp, &luch, sizeof(luch));
1600 if (error != 0)
1601 return (error);
1602
1603 switch (luch.version) {
1604 case _LINUX_CAPABILITY_VERSION_1:
1605 u32s = 1;
1606 break;
1607 case _LINUX_CAPABILITY_VERSION_2:
1608 case _LINUX_CAPABILITY_VERSION_3:
1609 u32s = 2;
1610 break;
1611 default:
1612 luch.version = _LINUX_CAPABILITY_VERSION_1;
1613 error = copyout(&luch, uap->hdrp, sizeof(luch));
1614 if (error)
1615 return (error);
1616 return (EINVAL);
1617 }
1618
1619 if (luch.pid)
1620 return (EPERM);
1621
1622 if (uap->datap) {
1623 /*
1624 * The current implementation doesn't support setting
1625 * a capability (it's essentially a stub) so indicate
1626 * that no capabilities are currently set or available
1627 * to request.
1628 */
1629 memset(&lucd, 0, u32s * sizeof(lucd[0]));
1630 error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
1631 }
1632
1633 return (error);
1634 }
1635
1636 int
linux_capset(struct thread * td,struct linux_capset_args * uap)1637 linux_capset(struct thread *td, struct linux_capset_args *uap)
1638 {
1639 struct l_user_cap_header luch;
1640 struct l_user_cap_data lucd[2];
1641 int error, i, u32s;
1642
1643 if (uap->hdrp == NULL || uap->datap == NULL)
1644 return (EFAULT);
1645
1646 error = copyin(uap->hdrp, &luch, sizeof(luch));
1647 if (error != 0)
1648 return (error);
1649
1650 switch (luch.version) {
1651 case _LINUX_CAPABILITY_VERSION_1:
1652 u32s = 1;
1653 break;
1654 case _LINUX_CAPABILITY_VERSION_2:
1655 case _LINUX_CAPABILITY_VERSION_3:
1656 u32s = 2;
1657 break;
1658 default:
1659 luch.version = _LINUX_CAPABILITY_VERSION_1;
1660 error = copyout(&luch, uap->hdrp, sizeof(luch));
1661 if (error)
1662 return (error);
1663 return (EINVAL);
1664 }
1665
1666 if (luch.pid)
1667 return (EPERM);
1668
1669 error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
1670 if (error != 0)
1671 return (error);
1672
1673 /* We currently don't support setting any capabilities. */
1674 for (i = 0; i < u32s; i++) {
1675 if (lucd[i].effective || lucd[i].permitted ||
1676 lucd[i].inheritable) {
1677 linux_msg(td,
1678 "capset[%d] effective=0x%x, permitted=0x%x, "
1679 "inheritable=0x%x is not implemented", i,
1680 (int)lucd[i].effective, (int)lucd[i].permitted,
1681 (int)lucd[i].inheritable);
1682 return (EPERM);
1683 }
1684 }
1685
1686 return (0);
1687 }
1688
1689 int
linux_prctl(struct thread * td,struct linux_prctl_args * args)1690 linux_prctl(struct thread *td, struct linux_prctl_args *args)
1691 {
1692 int error = 0, max_size, arg;
1693 struct proc *p = td->td_proc;
1694 char comm[LINUX_MAX_COMM_LEN];
1695 int pdeath_signal, trace_state;
1696
1697 switch (args->option) {
1698 case LINUX_PR_SET_PDEATHSIG:
1699 if (!LINUX_SIG_VALID(args->arg2))
1700 return (EINVAL);
1701 pdeath_signal = linux_to_bsd_signal(args->arg2);
1702 return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
1703 &pdeath_signal));
1704 case LINUX_PR_GET_PDEATHSIG:
1705 error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
1706 &pdeath_signal);
1707 if (error != 0)
1708 return (error);
1709 pdeath_signal = bsd_to_linux_signal(pdeath_signal);
1710 return (copyout(&pdeath_signal,
1711 (void *)(register_t)args->arg2,
1712 sizeof(pdeath_signal)));
1713 /*
1714 * In Linux, this flag controls if set[gu]id processes can coredump.
1715 * There are additional semantics imposed on processes that cannot
1716 * coredump:
1717 * - Such processes can not be ptraced.
1718 * - There are some semantics around ownership of process-related files
1719 * in the /proc namespace.
1720 *
1721 * In FreeBSD, we can (and by default, do) disable setuid coredump
1722 * system-wide with 'sugid_coredump.' We control tracability on a
1723 * per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag).
1724 * By happy coincidence, P2_NOTRACE also prevents coredumping. So the
1725 * procctl is roughly analogous to Linux's DUMPABLE.
1726 *
1727 * So, proxy these knobs to the corresponding PROC_TRACE setting.
1728 */
1729 case LINUX_PR_GET_DUMPABLE:
1730 error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS,
1731 &trace_state);
1732 if (error != 0)
1733 return (error);
1734 td->td_retval[0] = (trace_state != -1);
1735 return (0);
1736 case LINUX_PR_SET_DUMPABLE:
1737 /*
1738 * It is only valid for userspace to set one of these two
1739 * flags, and only one at a time.
1740 */
1741 switch (args->arg2) {
1742 case LINUX_SUID_DUMP_DISABLE:
1743 trace_state = PROC_TRACE_CTL_DISABLE_EXEC;
1744 break;
1745 case LINUX_SUID_DUMP_USER:
1746 trace_state = PROC_TRACE_CTL_ENABLE;
1747 break;
1748 default:
1749 return (EINVAL);
1750 }
1751 return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL,
1752 &trace_state));
1753 case LINUX_PR_GET_KEEPCAPS:
1754 /*
1755 * Indicate that we always clear the effective and
1756 * permitted capability sets when the user id becomes
1757 * non-zero (actually the capability sets are simply
1758 * always zero in the current implementation).
1759 */
1760 td->td_retval[0] = 0;
1761 break;
1762 case LINUX_PR_SET_KEEPCAPS:
1763 /*
1764 * Ignore requests to keep the effective and permitted
1765 * capability sets when the user id becomes non-zero.
1766 */
1767 break;
1768 case LINUX_PR_SET_NAME:
1769 /*
1770 * To be on the safe side we need to make sure to not
1771 * overflow the size a Linux program expects. We already
1772 * do this here in the copyin, so that we don't need to
1773 * check on copyout.
1774 */
1775 max_size = MIN(sizeof(comm), sizeof(p->p_comm));
1776 error = copyinstr((void *)(register_t)args->arg2, comm,
1777 max_size, NULL);
1778
1779 /* Linux silently truncates the name if it is too long. */
1780 if (error == ENAMETOOLONG) {
1781 /*
1782 * XXX: copyinstr() isn't documented to populate the
1783 * array completely, so do a copyin() to be on the
1784 * safe side. This should be changed in case
1785 * copyinstr() is changed to guarantee this.
1786 */
1787 error = copyin((void *)(register_t)args->arg2, comm,
1788 max_size - 1);
1789 comm[max_size - 1] = '\0';
1790 }
1791 if (error)
1792 return (error);
1793
1794 PROC_LOCK(p);
1795 strlcpy(p->p_comm, comm, sizeof(p->p_comm));
1796 PROC_UNLOCK(p);
1797 break;
1798 case LINUX_PR_GET_NAME:
1799 PROC_LOCK(p);
1800 strlcpy(comm, p->p_comm, sizeof(comm));
1801 PROC_UNLOCK(p);
1802 error = copyout(comm, (void *)(register_t)args->arg2,
1803 strlen(comm) + 1);
1804 break;
1805 case LINUX_PR_GET_SECCOMP:
1806 case LINUX_PR_SET_SECCOMP:
1807 /*
1808 * Same as returned by Linux without CONFIG_SECCOMP enabled.
1809 */
1810 error = EINVAL;
1811 break;
1812 case LINUX_PR_CAPBSET_READ:
1813 #if 0
1814 /*
1815 * This makes too much noise with Ubuntu Focal.
1816 */
1817 linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d",
1818 (int)args->arg2);
1819 #endif
1820 error = EINVAL;
1821 break;
1822 case LINUX_PR_SET_CHILD_SUBREAPER:
1823 if (args->arg2 == 0) {
1824 return (kern_procctl(td, P_PID, 0, PROC_REAP_RELEASE,
1825 NULL));
1826 }
1827
1828 return (kern_procctl(td, P_PID, 0, PROC_REAP_ACQUIRE,
1829 NULL));
1830 case LINUX_PR_SET_NO_NEW_PRIVS:
1831 arg = args->arg2 == 1 ?
1832 PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
1833 error = kern_procctl(td, P_PID, p->p_pid,
1834 PROC_NO_NEW_PRIVS_CTL, &arg);
1835 break;
1836 case LINUX_PR_SET_PTRACER:
1837 linux_msg(td, "unsupported prctl PR_SET_PTRACER");
1838 error = EINVAL;
1839 break;
1840 default:
1841 linux_msg(td, "unsupported prctl option %d", args->option);
1842 error = EINVAL;
1843 break;
1844 }
1845
1846 return (error);
1847 }
1848
1849 int
linux_sched_setparam(struct thread * td,struct linux_sched_setparam_args * uap)1850 linux_sched_setparam(struct thread *td,
1851 struct linux_sched_setparam_args *uap)
1852 {
1853 struct sched_param sched_param;
1854 struct thread *tdt;
1855 int error, policy;
1856
1857 error = copyin(uap->param, &sched_param, sizeof(sched_param));
1858 if (error)
1859 return (error);
1860
1861 tdt = linux_tdfind(td, uap->pid, -1);
1862 if (tdt == NULL)
1863 return (ESRCH);
1864
1865 if (linux_map_sched_prio) {
1866 error = kern_sched_getscheduler(td, tdt, &policy);
1867 if (error)
1868 goto out;
1869
1870 switch (policy) {
1871 case SCHED_OTHER:
1872 if (sched_param.sched_priority != 0) {
1873 error = EINVAL;
1874 goto out;
1875 }
1876 sched_param.sched_priority =
1877 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1878 break;
1879 case SCHED_FIFO:
1880 case SCHED_RR:
1881 if (sched_param.sched_priority < 1 ||
1882 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) {
1883 error = EINVAL;
1884 goto out;
1885 }
1886 /*
1887 * Map [1, LINUX_MAX_RT_PRIO - 1] to
1888 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1889 */
1890 sched_param.sched_priority =
1891 (sched_param.sched_priority - 1) *
1892 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1893 (LINUX_MAX_RT_PRIO - 1);
1894 break;
1895 }
1896 }
1897
1898 error = kern_sched_setparam(td, tdt, &sched_param);
1899 out: PROC_UNLOCK(tdt->td_proc);
1900 return (error);
1901 }
1902
1903 int
linux_sched_getparam(struct thread * td,struct linux_sched_getparam_args * uap)1904 linux_sched_getparam(struct thread *td,
1905 struct linux_sched_getparam_args *uap)
1906 {
1907 struct sched_param sched_param;
1908 struct thread *tdt;
1909 int error, policy;
1910
1911 tdt = linux_tdfind(td, uap->pid, -1);
1912 if (tdt == NULL)
1913 return (ESRCH);
1914
1915 error = kern_sched_getparam(td, tdt, &sched_param);
1916 if (error) {
1917 PROC_UNLOCK(tdt->td_proc);
1918 return (error);
1919 }
1920
1921 if (linux_map_sched_prio) {
1922 error = kern_sched_getscheduler(td, tdt, &policy);
1923 PROC_UNLOCK(tdt->td_proc);
1924 if (error)
1925 return (error);
1926
1927 switch (policy) {
1928 case SCHED_OTHER:
1929 sched_param.sched_priority = 0;
1930 break;
1931 case SCHED_FIFO:
1932 case SCHED_RR:
1933 /*
1934 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to
1935 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up).
1936 */
1937 sched_param.sched_priority =
1938 (sched_param.sched_priority *
1939 (LINUX_MAX_RT_PRIO - 1) +
1940 (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) /
1941 (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1;
1942 break;
1943 }
1944 } else
1945 PROC_UNLOCK(tdt->td_proc);
1946
1947 error = copyout(&sched_param, uap->param, sizeof(sched_param));
1948 return (error);
1949 }
1950
1951 /*
1952 * Get affinity of a process.
1953 */
1954 int
linux_sched_getaffinity(struct thread * td,struct linux_sched_getaffinity_args * args)1955 linux_sched_getaffinity(struct thread *td,
1956 struct linux_sched_getaffinity_args *args)
1957 {
1958 struct thread *tdt;
1959 cpuset_t *mask;
1960 size_t size;
1961 int error;
1962 id_t tid;
1963
1964 tdt = linux_tdfind(td, args->pid, -1);
1965 if (tdt == NULL)
1966 return (ESRCH);
1967 tid = tdt->td_tid;
1968 PROC_UNLOCK(tdt->td_proc);
1969
1970 mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO);
1971 size = min(args->len, sizeof(cpuset_t));
1972 error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1973 tid, size, mask);
1974 if (error == ERANGE)
1975 error = EINVAL;
1976 if (error == 0)
1977 error = copyout(mask, args->user_mask_ptr, size);
1978 if (error == 0)
1979 td->td_retval[0] = size;
1980 free(mask, M_LINUX);
1981 return (error);
1982 }
1983
1984 /*
1985 * Set affinity of a process.
1986 */
1987 int
linux_sched_setaffinity(struct thread * td,struct linux_sched_setaffinity_args * args)1988 linux_sched_setaffinity(struct thread *td,
1989 struct linux_sched_setaffinity_args *args)
1990 {
1991 struct thread *tdt;
1992 cpuset_t *mask;
1993 int cpu, error;
1994 size_t len;
1995 id_t tid;
1996
1997 tdt = linux_tdfind(td, args->pid, -1);
1998 if (tdt == NULL)
1999 return (ESRCH);
2000 tid = tdt->td_tid;
2001 PROC_UNLOCK(tdt->td_proc);
2002
2003 len = min(args->len, sizeof(cpuset_t));
2004 mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO);
2005 error = copyin(args->user_mask_ptr, mask, len);
2006 if (error != 0)
2007 goto out;
2008 /* Linux ignore high bits */
2009 CPU_FOREACH_ISSET(cpu, mask)
2010 if (cpu > mp_maxid)
2011 CPU_CLR(cpu, mask);
2012
2013 error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
2014 tid, mask);
2015 if (error == EDEADLK)
2016 error = EINVAL;
2017 out:
2018 free(mask, M_TEMP);
2019 return (error);
2020 }
2021
2022 struct linux_rlimit64 {
2023 uint64_t rlim_cur;
2024 uint64_t rlim_max;
2025 };
2026
2027 int
linux_prlimit64(struct thread * td,struct linux_prlimit64_args * args)2028 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
2029 {
2030 struct rlimit rlim, nrlim;
2031 struct linux_rlimit64 lrlim;
2032 struct proc *p;
2033 u_int which;
2034 int flags;
2035 int error;
2036
2037 if (args->new == NULL && args->old != NULL) {
2038 if (linux_get_dummy_limit(td, args->resource, &rlim)) {
2039 lrlim.rlim_cur = rlim.rlim_cur;
2040 lrlim.rlim_max = rlim.rlim_max;
2041 return (copyout(&lrlim, args->old, sizeof(lrlim)));
2042 }
2043 }
2044
2045 if (args->resource >= LINUX_RLIM_NLIMITS)
2046 return (EINVAL);
2047
2048 which = linux_to_bsd_resource[args->resource];
2049 if (which == -1)
2050 return (EINVAL);
2051
2052 if (args->new != NULL) {
2053 /*
2054 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux
2055 * rlim is unsigned 64-bit. FreeBSD treats negative limits
2056 * as INFINITY so we do not need a conversion even.
2057 */
2058 error = copyin(args->new, &nrlim, sizeof(nrlim));
2059 if (error != 0)
2060 return (error);
2061 }
2062
2063 flags = PGET_HOLD | PGET_NOTWEXIT;
2064 if (args->new != NULL)
2065 flags |= PGET_CANDEBUG;
2066 else
2067 flags |= PGET_CANSEE;
2068 if (args->pid == 0) {
2069 p = td->td_proc;
2070 PHOLD(p);
2071 } else {
2072 error = pget(args->pid, flags, &p);
2073 if (error != 0)
2074 return (error);
2075 }
2076 if (args->old != NULL) {
2077 PROC_LOCK(p);
2078 lim_rlimit_proc(p, which, &rlim);
2079 PROC_UNLOCK(p);
2080 if (rlim.rlim_cur == RLIM_INFINITY)
2081 lrlim.rlim_cur = LINUX_RLIM_INFINITY;
2082 else
2083 lrlim.rlim_cur = rlim.rlim_cur;
2084 if (rlim.rlim_max == RLIM_INFINITY)
2085 lrlim.rlim_max = LINUX_RLIM_INFINITY;
2086 else
2087 lrlim.rlim_max = rlim.rlim_max;
2088 error = copyout(&lrlim, args->old, sizeof(lrlim));
2089 if (error != 0)
2090 goto out;
2091 }
2092
2093 if (args->new != NULL)
2094 error = kern_proc_setrlimit(td, p, which, &nrlim);
2095
2096 out:
2097 PRELE(p);
2098 return (error);
2099 }
2100
2101 int
linux_pselect6(struct thread * td,struct linux_pselect6_args * args)2102 linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
2103 {
2104 struct timespec ts, *tsp;
2105 int error;
2106
2107 if (args->tsp != NULL) {
2108 error = linux_get_timespec(&ts, args->tsp);
2109 if (error != 0)
2110 return (error);
2111 tsp = &ts;
2112 } else
2113 tsp = NULL;
2114
2115 error = linux_common_pselect6(td, args->nfds, args->readfds,
2116 args->writefds, args->exceptfds, tsp, args->sig);
2117
2118 if (args->tsp != NULL)
2119 linux_put_timespec(&ts, args->tsp);
2120 return (error);
2121 }
2122
2123 static int
linux_common_pselect6(struct thread * td,l_int nfds,l_fd_set * readfds,l_fd_set * writefds,l_fd_set * exceptfds,struct timespec * tsp,l_uintptr_t * sig)2124 linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds,
2125 l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp,
2126 l_uintptr_t *sig)
2127 {
2128 struct timeval utv, tv0, tv1, *tvp;
2129 struct l_pselect6arg lpse6;
2130 sigset_t *ssp;
2131 sigset_t ss;
2132 int error;
2133
2134 ssp = NULL;
2135 if (sig != NULL) {
2136 error = copyin(sig, &lpse6, sizeof(lpse6));
2137 if (error != 0)
2138 return (error);
2139 error = linux_copyin_sigset(td, PTRIN(lpse6.ss),
2140 lpse6.ss_len, &ss, &ssp);
2141 if (error != 0)
2142 return (error);
2143 } else
2144 ssp = NULL;
2145
2146 /*
2147 * Currently glibc changes nanosecond number to microsecond.
2148 * This mean losing precision but for now it is hardly seen.
2149 */
2150 if (tsp != NULL) {
2151 TIMESPEC_TO_TIMEVAL(&utv, tsp);
2152 if (itimerfix(&utv))
2153 return (EINVAL);
2154
2155 microtime(&tv0);
2156 tvp = &utv;
2157 } else
2158 tvp = NULL;
2159
2160 error = kern_pselect(td, nfds, readfds, writefds,
2161 exceptfds, tvp, ssp, LINUX_NFDBITS);
2162
2163 if (tsp != NULL) {
2164 /*
2165 * Compute how much time was left of the timeout,
2166 * by subtracting the current time and the time
2167 * before we started the call, and subtracting
2168 * that result from the user-supplied value.
2169 */
2170 microtime(&tv1);
2171 timevalsub(&tv1, &tv0);
2172 timevalsub(&utv, &tv1);
2173 if (utv.tv_sec < 0)
2174 timevalclear(&utv);
2175 TIMEVAL_TO_TIMESPEC(&utv, tsp);
2176 }
2177 return (error);
2178 }
2179
2180 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2181 int
linux_pselect6_time64(struct thread * td,struct linux_pselect6_time64_args * args)2182 linux_pselect6_time64(struct thread *td,
2183 struct linux_pselect6_time64_args *args)
2184 {
2185 struct timespec ts, *tsp;
2186 int error;
2187
2188 if (args->tsp != NULL) {
2189 error = linux_get_timespec64(&ts, args->tsp);
2190 if (error != 0)
2191 return (error);
2192 tsp = &ts;
2193 } else
2194 tsp = NULL;
2195
2196 error = linux_common_pselect6(td, args->nfds, args->readfds,
2197 args->writefds, args->exceptfds, tsp, args->sig);
2198
2199 if (args->tsp != NULL)
2200 linux_put_timespec64(&ts, args->tsp);
2201 return (error);
2202 }
2203 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2204
2205 int
linux_ppoll(struct thread * td,struct linux_ppoll_args * args)2206 linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
2207 {
2208 struct timespec uts, *tsp;
2209 int error;
2210
2211 if (args->tsp != NULL) {
2212 error = linux_get_timespec(&uts, args->tsp);
2213 if (error != 0)
2214 return (error);
2215 tsp = &uts;
2216 } else
2217 tsp = NULL;
2218
2219 error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2220 args->sset, args->ssize);
2221 if (error == 0 && args->tsp != NULL)
2222 error = linux_put_timespec(&uts, args->tsp);
2223 return (error);
2224 }
2225
2226 static int
linux_common_ppoll(struct thread * td,struct pollfd * fds,uint32_t nfds,struct timespec * tsp,l_sigset_t * sset,l_size_t ssize)2227 linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds,
2228 struct timespec *tsp, l_sigset_t *sset, l_size_t ssize)
2229 {
2230 struct timespec ts0, ts1;
2231 struct pollfd stackfds[32];
2232 struct pollfd *kfds;
2233 sigset_t *ssp;
2234 sigset_t ss;
2235 int error;
2236
2237 if (kern_poll_maxfds(nfds))
2238 return (EINVAL);
2239 if (sset != NULL) {
2240 error = linux_copyin_sigset(td, sset, ssize, &ss, &ssp);
2241 if (error != 0)
2242 return (error);
2243 } else
2244 ssp = NULL;
2245 if (tsp != NULL)
2246 nanotime(&ts0);
2247
2248 if (nfds > nitems(stackfds))
2249 kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
2250 else
2251 kfds = stackfds;
2252 error = linux_pollin(td, kfds, fds, nfds);
2253 if (error != 0)
2254 goto out;
2255
2256 error = kern_poll_kfds(td, kfds, nfds, tsp, ssp);
2257 if (error == 0)
2258 error = linux_pollout(td, kfds, fds, nfds);
2259
2260 if (error == 0 && tsp != NULL) {
2261 if (td->td_retval[0]) {
2262 nanotime(&ts1);
2263 timespecsub(&ts1, &ts0, &ts1);
2264 timespecsub(tsp, &ts1, tsp);
2265 if (tsp->tv_sec < 0)
2266 timespecclear(tsp);
2267 } else
2268 timespecclear(tsp);
2269 }
2270
2271 out:
2272 if (nfds > nitems(stackfds))
2273 free(kfds, M_TEMP);
2274 return (error);
2275 }
2276
2277 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2278 int
linux_ppoll_time64(struct thread * td,struct linux_ppoll_time64_args * args)2279 linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args)
2280 {
2281 struct timespec uts, *tsp;
2282 int error;
2283
2284 if (args->tsp != NULL) {
2285 error = linux_get_timespec64(&uts, args->tsp);
2286 if (error != 0)
2287 return (error);
2288 tsp = &uts;
2289 } else
2290 tsp = NULL;
2291 error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2292 args->sset, args->ssize);
2293 if (error == 0 && args->tsp != NULL)
2294 error = linux_put_timespec64(&uts, args->tsp);
2295 return (error);
2296 }
2297 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2298
2299 static int
linux_pollin(struct thread * td,struct pollfd * fds,struct pollfd * ufds,u_int nfd)2300 linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2301 {
2302 int error;
2303 u_int i;
2304
2305 error = copyin(ufds, fds, nfd * sizeof(*fds));
2306 if (error != 0)
2307 return (error);
2308
2309 for (i = 0; i < nfd; i++) {
2310 if (fds->events != 0)
2311 linux_to_bsd_poll_events(td, fds->fd,
2312 fds->events, &fds->events);
2313 fds++;
2314 }
2315 return (0);
2316 }
2317
2318 static int
linux_pollout(struct thread * td,struct pollfd * fds,struct pollfd * ufds,u_int nfd)2319 linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2320 {
2321 int error = 0;
2322 u_int i, n = 0;
2323
2324 for (i = 0; i < nfd; i++) {
2325 if (fds->revents != 0) {
2326 bsd_to_linux_poll_events(fds->revents,
2327 &fds->revents);
2328 n++;
2329 }
2330 error = copyout(&fds->revents, &ufds->revents,
2331 sizeof(ufds->revents));
2332 if (error)
2333 return (error);
2334 fds++;
2335 ufds++;
2336 }
2337 td->td_retval[0] = n;
2338 return (0);
2339 }
2340
2341 static int
linux_sched_rr_get_interval_common(struct thread * td,pid_t pid,struct timespec * ts)2342 linux_sched_rr_get_interval_common(struct thread *td, pid_t pid,
2343 struct timespec *ts)
2344 {
2345 struct thread *tdt;
2346 int error;
2347
2348 /*
2349 * According to man in case the invalid pid specified
2350 * EINVAL should be returned.
2351 */
2352 if (pid < 0)
2353 return (EINVAL);
2354
2355 tdt = linux_tdfind(td, pid, -1);
2356 if (tdt == NULL)
2357 return (ESRCH);
2358
2359 error = kern_sched_rr_get_interval_td(td, tdt, ts);
2360 PROC_UNLOCK(tdt->td_proc);
2361 return (error);
2362 }
2363
2364 int
linux_sched_rr_get_interval(struct thread * td,struct linux_sched_rr_get_interval_args * uap)2365 linux_sched_rr_get_interval(struct thread *td,
2366 struct linux_sched_rr_get_interval_args *uap)
2367 {
2368 struct timespec ts;
2369 int error;
2370
2371 error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2372 if (error != 0)
2373 return (error);
2374 return (linux_put_timespec(&ts, uap->interval));
2375 }
2376
2377 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2378 int
linux_sched_rr_get_interval_time64(struct thread * td,struct linux_sched_rr_get_interval_time64_args * uap)2379 linux_sched_rr_get_interval_time64(struct thread *td,
2380 struct linux_sched_rr_get_interval_time64_args *uap)
2381 {
2382 struct timespec ts;
2383 int error;
2384
2385 error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2386 if (error != 0)
2387 return (error);
2388 return (linux_put_timespec64(&ts, uap->interval));
2389 }
2390 #endif
2391
2392 /*
2393 * In case when the Linux thread is the initial thread in
2394 * the thread group thread id is equal to the process id.
2395 * Glibc depends on this magic (assert in pthread_getattr_np.c).
2396 */
2397 struct thread *
linux_tdfind(struct thread * td,lwpid_t tid,pid_t pid)2398 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
2399 {
2400 struct linux_emuldata *em;
2401 struct thread *tdt;
2402 struct proc *p;
2403
2404 tdt = NULL;
2405 if (tid == 0 || tid == td->td_tid) {
2406 if (pid != -1 && td->td_proc->p_pid != pid)
2407 return (NULL);
2408 PROC_LOCK(td->td_proc);
2409 return (td);
2410 } else if (tid > PID_MAX)
2411 return (tdfind(tid, pid));
2412
2413 /*
2414 * Initial thread where the tid equal to the pid.
2415 */
2416 p = pfind(tid);
2417 if (p != NULL) {
2418 if (SV_PROC_ABI(p) != SV_ABI_LINUX ||
2419 (pid != -1 && tid != pid)) {
2420 /*
2421 * p is not a Linuxulator process.
2422 */
2423 PROC_UNLOCK(p);
2424 return (NULL);
2425 }
2426 FOREACH_THREAD_IN_PROC(p, tdt) {
2427 em = em_find(tdt);
2428 if (tid == em->em_tid)
2429 return (tdt);
2430 }
2431 PROC_UNLOCK(p);
2432 }
2433 return (NULL);
2434 }
2435
2436 void
linux_to_bsd_waitopts(int options,int * bsdopts)2437 linux_to_bsd_waitopts(int options, int *bsdopts)
2438 {
2439
2440 if (options & LINUX_WNOHANG)
2441 *bsdopts |= WNOHANG;
2442 if (options & LINUX_WUNTRACED)
2443 *bsdopts |= WUNTRACED;
2444 if (options & LINUX_WEXITED)
2445 *bsdopts |= WEXITED;
2446 if (options & LINUX_WCONTINUED)
2447 *bsdopts |= WCONTINUED;
2448 if (options & LINUX_WNOWAIT)
2449 *bsdopts |= WNOWAIT;
2450
2451 if (options & __WCLONE)
2452 *bsdopts |= WLINUXCLONE;
2453 }
2454
2455 int
linux_getrandom(struct thread * td,struct linux_getrandom_args * args)2456 linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
2457 {
2458 struct uio uio;
2459 struct iovec iov;
2460 int error;
2461
2462 if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
2463 return (EINVAL);
2464 if (args->count > INT_MAX)
2465 args->count = INT_MAX;
2466
2467 iov.iov_base = args->buf;
2468 iov.iov_len = args->count;
2469
2470 uio.uio_iov = &iov;
2471 uio.uio_iovcnt = 1;
2472 uio.uio_resid = iov.iov_len;
2473 uio.uio_segflg = UIO_USERSPACE;
2474 uio.uio_rw = UIO_READ;
2475 uio.uio_td = td;
2476
2477 error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
2478 if (error == 0)
2479 td->td_retval[0] = args->count - uio.uio_resid;
2480 return (error);
2481 }
2482
2483 int
linux_mincore(struct thread * td,struct linux_mincore_args * args)2484 linux_mincore(struct thread *td, struct linux_mincore_args *args)
2485 {
2486
2487 /* Needs to be page-aligned */
2488 if (args->start & PAGE_MASK)
2489 return (EINVAL);
2490 return (kern_mincore(td, args->start, args->len, args->vec));
2491 }
2492
2493 #define SYSLOG_TAG "<6>"
2494
2495 int
linux_syslog(struct thread * td,struct linux_syslog_args * args)2496 linux_syslog(struct thread *td, struct linux_syslog_args *args)
2497 {
2498 char buf[128], *src, *dst;
2499 u_int seq;
2500 int buflen, error;
2501
2502 if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) {
2503 linux_msg(td, "syslog unsupported type 0x%x", args->type);
2504 return (EINVAL);
2505 }
2506
2507 if (args->len < 6) {
2508 td->td_retval[0] = 0;
2509 return (0);
2510 }
2511
2512 error = priv_check(td, PRIV_MSGBUF);
2513 if (error)
2514 return (error);
2515
2516 mtx_lock(&msgbuf_lock);
2517 msgbuf_peekbytes(msgbufp, NULL, 0, &seq);
2518 mtx_unlock(&msgbuf_lock);
2519
2520 dst = args->buf;
2521 error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG));
2522 /* The -1 is to skip the trailing '\0'. */
2523 dst += sizeof(SYSLOG_TAG) - 1;
2524
2525 while (error == 0) {
2526 mtx_lock(&msgbuf_lock);
2527 buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq);
2528 mtx_unlock(&msgbuf_lock);
2529
2530 if (buflen == 0)
2531 break;
2532
2533 for (src = buf; src < buf + buflen && error == 0; src++) {
2534 if (*src == '\0')
2535 continue;
2536
2537 if (dst >= args->buf + args->len)
2538 goto out;
2539
2540 error = copyout(src, dst, 1);
2541 dst++;
2542
2543 if (*src == '\n' && *(src + 1) != '<' &&
2544 dst + sizeof(SYSLOG_TAG) < args->buf + args->len) {
2545 error = copyout(&SYSLOG_TAG,
2546 dst, sizeof(SYSLOG_TAG));
2547 dst += sizeof(SYSLOG_TAG) - 1;
2548 }
2549 }
2550 }
2551 out:
2552 td->td_retval[0] = dst - args->buf;
2553 return (error);
2554 }
2555
2556 int
linux_getcpu(struct thread * td,struct linux_getcpu_args * args)2557 linux_getcpu(struct thread *td, struct linux_getcpu_args *args)
2558 {
2559 int cpu, error, node;
2560
2561 cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */
2562 error = 0;
2563 node = cpuid_to_pcpu[cpu]->pc_domain;
2564
2565 if (args->cpu != NULL)
2566 error = copyout(&cpu, args->cpu, sizeof(l_int));
2567 if (args->node != NULL)
2568 error = copyout(&node, args->node, sizeof(l_int));
2569 return (error);
2570 }
2571
2572 #if defined(__i386__) || defined(__amd64__)
2573 int
linux_poll(struct thread * td,struct linux_poll_args * args)2574 linux_poll(struct thread *td, struct linux_poll_args *args)
2575 {
2576 struct timespec ts, *tsp;
2577
2578 if (args->timeout != INFTIM) {
2579 if (args->timeout < 0)
2580 return (EINVAL);
2581 ts.tv_sec = args->timeout / 1000;
2582 ts.tv_nsec = (args->timeout % 1000) * 1000000;
2583 tsp = &ts;
2584 } else
2585 tsp = NULL;
2586
2587 return (linux_common_ppoll(td, args->fds, args->nfds,
2588 tsp, NULL, 0));
2589 }
2590 #endif /* __i386__ || __amd64__ */
2591
2592 int
linux_seccomp(struct thread * td,struct linux_seccomp_args * args)2593 linux_seccomp(struct thread *td, struct linux_seccomp_args *args)
2594 {
2595
2596 switch (args->op) {
2597 case LINUX_SECCOMP_GET_ACTION_AVAIL:
2598 return (EOPNOTSUPP);
2599 default:
2600 /*
2601 * Ignore unknown operations, just like Linux kernel built
2602 * without CONFIG_SECCOMP.
2603 */
2604 return (EINVAL);
2605 }
2606 }
2607
2608 /*
2609 * Custom version of exec_copyin_args(), to copy out argument and environment
2610 * strings from the old process address space into the temporary string buffer.
2611 * Based on freebsd32_exec_copyin_args.
2612 */
2613 static int
linux_exec_copyin_args(struct image_args * args,const char * fname,enum uio_seg segflg,l_uintptr_t * argv,l_uintptr_t * envv)2614 linux_exec_copyin_args(struct image_args *args, const char *fname,
2615 enum uio_seg segflg, l_uintptr_t *argv, l_uintptr_t *envv)
2616 {
2617 char *argp, *envp;
2618 l_uintptr_t *ptr, arg;
2619 int error;
2620
2621 bzero(args, sizeof(*args));
2622 if (argv == NULL)
2623 return (EFAULT);
2624
2625 /*
2626 * Allocate demand-paged memory for the file name, argument, and
2627 * environment strings.
2628 */
2629 error = exec_alloc_args(args);
2630 if (error != 0)
2631 return (error);
2632
2633 /*
2634 * Copy the file name.
2635 */
2636 error = exec_args_add_fname(args, fname, segflg);
2637 if (error != 0)
2638 goto err_exit;
2639
2640 /*
2641 * extract arguments first
2642 */
2643 ptr = argv;
2644 for (;;) {
2645 error = copyin(ptr++, &arg, sizeof(arg));
2646 if (error)
2647 goto err_exit;
2648 if (arg == 0)
2649 break;
2650 argp = PTRIN(arg);
2651 error = exec_args_add_arg(args, argp, UIO_USERSPACE);
2652 if (error != 0)
2653 goto err_exit;
2654 }
2655
2656 /*
2657 * This comment is from Linux do_execveat_common:
2658 * When argv is empty, add an empty string ("") as argv[0] to
2659 * ensure confused userspace programs that start processing
2660 * from argv[1] won't end up walking envp.
2661 */
2662 if (args->argc == 0 &&
2663 (error = exec_args_add_arg(args, "", UIO_SYSSPACE) != 0))
2664 goto err_exit;
2665
2666 /*
2667 * extract environment strings
2668 */
2669 if (envv) {
2670 ptr = envv;
2671 for (;;) {
2672 error = copyin(ptr++, &arg, sizeof(arg));
2673 if (error)
2674 goto err_exit;
2675 if (arg == 0)
2676 break;
2677 envp = PTRIN(arg);
2678 error = exec_args_add_env(args, envp, UIO_USERSPACE);
2679 if (error != 0)
2680 goto err_exit;
2681 }
2682 }
2683
2684 return (0);
2685
2686 err_exit:
2687 exec_free_args(args);
2688 return (error);
2689 }
2690
2691 int
linux_execve(struct thread * td,struct linux_execve_args * args)2692 linux_execve(struct thread *td, struct linux_execve_args *args)
2693 {
2694 struct image_args eargs;
2695 int error;
2696
2697 LINUX_CTR(execve);
2698
2699 error = linux_exec_copyin_args(&eargs, args->path, UIO_USERSPACE,
2700 args->argp, args->envp);
2701 if (error == 0)
2702 error = linux_common_execve(td, &eargs);
2703 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
2704 return (error);
2705 }
2706
2707 static void
linux_up_rtprio_if(struct thread * td1,struct rtprio * rtp)2708 linux_up_rtprio_if(struct thread *td1, struct rtprio *rtp)
2709 {
2710 struct rtprio rtp2;
2711
2712 pri_to_rtp(td1, &rtp2);
2713 if (rtp2.type < rtp->type ||
2714 (rtp2.type == rtp->type &&
2715 rtp2.prio < rtp->prio)) {
2716 rtp->type = rtp2.type;
2717 rtp->prio = rtp2.prio;
2718 }
2719 }
2720
2721 #define LINUX_PRIO_DIVIDER RTP_PRIO_MAX / LINUX_IOPRIO_MAX
2722
2723 static int
linux_rtprio2ioprio(struct rtprio * rtp)2724 linux_rtprio2ioprio(struct rtprio *rtp)
2725 {
2726 int ioprio, prio;
2727
2728 switch (rtp->type) {
2729 case RTP_PRIO_IDLE:
2730 prio = RTP_PRIO_MIN;
2731 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_IDLE, prio);
2732 break;
2733 case RTP_PRIO_NORMAL:
2734 prio = rtp->prio / LINUX_PRIO_DIVIDER;
2735 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_BE, prio);
2736 break;
2737 case RTP_PRIO_REALTIME:
2738 prio = rtp->prio / LINUX_PRIO_DIVIDER;
2739 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_RT, prio);
2740 break;
2741 default:
2742 prio = RTP_PRIO_MIN;
2743 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_NONE, prio);
2744 break;
2745 }
2746 return (ioprio);
2747 }
2748
2749 static int
linux_ioprio2rtprio(int ioprio,struct rtprio * rtp)2750 linux_ioprio2rtprio(int ioprio, struct rtprio *rtp)
2751 {
2752
2753 switch (LINUX_IOPRIO_PRIO_CLASS(ioprio)) {
2754 case LINUX_IOPRIO_CLASS_IDLE:
2755 rtp->prio = RTP_PRIO_MIN;
2756 rtp->type = RTP_PRIO_IDLE;
2757 break;
2758 case LINUX_IOPRIO_CLASS_BE:
2759 rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
2760 rtp->type = RTP_PRIO_NORMAL;
2761 break;
2762 case LINUX_IOPRIO_CLASS_RT:
2763 rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
2764 rtp->type = RTP_PRIO_REALTIME;
2765 break;
2766 default:
2767 return (EINVAL);
2768 }
2769 return (0);
2770 }
2771 #undef LINUX_PRIO_DIVIDER
2772
2773 int
linux_ioprio_get(struct thread * td,struct linux_ioprio_get_args * args)2774 linux_ioprio_get(struct thread *td, struct linux_ioprio_get_args *args)
2775 {
2776 struct thread *td1;
2777 struct rtprio rtp;
2778 struct pgrp *pg;
2779 struct proc *p;
2780 int error, found;
2781
2782 p = NULL;
2783 td1 = NULL;
2784 error = 0;
2785 found = 0;
2786 rtp.type = RTP_PRIO_IDLE;
2787 rtp.prio = RTP_PRIO_MAX;
2788 switch (args->which) {
2789 case LINUX_IOPRIO_WHO_PROCESS:
2790 if (args->who == 0) {
2791 td1 = td;
2792 p = td1->td_proc;
2793 PROC_LOCK(p);
2794 } else if (args->who > PID_MAX) {
2795 td1 = linux_tdfind(td, args->who, -1);
2796 if (td1 != NULL)
2797 p = td1->td_proc;
2798 } else
2799 p = pfind(args->who);
2800 if (p == NULL)
2801 return (ESRCH);
2802 if ((error = p_cansee(td, p))) {
2803 PROC_UNLOCK(p);
2804 break;
2805 }
2806 if (td1 != NULL) {
2807 pri_to_rtp(td1, &rtp);
2808 } else {
2809 FOREACH_THREAD_IN_PROC(p, td1) {
2810 linux_up_rtprio_if(td1, &rtp);
2811 }
2812 }
2813 found++;
2814 PROC_UNLOCK(p);
2815 break;
2816 case LINUX_IOPRIO_WHO_PGRP:
2817 sx_slock(&proctree_lock);
2818 if (args->who == 0) {
2819 pg = td->td_proc->p_pgrp;
2820 PGRP_LOCK(pg);
2821 } else {
2822 pg = pgfind(args->who);
2823 if (pg == NULL) {
2824 sx_sunlock(&proctree_lock);
2825 error = ESRCH;
2826 break;
2827 }
2828 }
2829 sx_sunlock(&proctree_lock);
2830 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2831 PROC_LOCK(p);
2832 if (p->p_state == PRS_NORMAL &&
2833 p_cansee(td, p) == 0) {
2834 FOREACH_THREAD_IN_PROC(p, td1) {
2835 linux_up_rtprio_if(td1, &rtp);
2836 found++;
2837 }
2838 }
2839 PROC_UNLOCK(p);
2840 }
2841 PGRP_UNLOCK(pg);
2842 break;
2843 case LINUX_IOPRIO_WHO_USER:
2844 if (args->who == 0)
2845 args->who = td->td_ucred->cr_uid;
2846 sx_slock(&allproc_lock);
2847 FOREACH_PROC_IN_SYSTEM(p) {
2848 PROC_LOCK(p);
2849 if (p->p_state == PRS_NORMAL &&
2850 p->p_ucred->cr_uid == args->who &&
2851 p_cansee(td, p) == 0) {
2852 FOREACH_THREAD_IN_PROC(p, td1) {
2853 linux_up_rtprio_if(td1, &rtp);
2854 found++;
2855 }
2856 }
2857 PROC_UNLOCK(p);
2858 }
2859 sx_sunlock(&allproc_lock);
2860 break;
2861 default:
2862 error = EINVAL;
2863 break;
2864 }
2865 if (error == 0) {
2866 if (found != 0)
2867 td->td_retval[0] = linux_rtprio2ioprio(&rtp);
2868 else
2869 error = ESRCH;
2870 }
2871 return (error);
2872 }
2873
2874 int
linux_ioprio_set(struct thread * td,struct linux_ioprio_set_args * args)2875 linux_ioprio_set(struct thread *td, struct linux_ioprio_set_args *args)
2876 {
2877 struct thread *td1;
2878 struct rtprio rtp;
2879 struct pgrp *pg;
2880 struct proc *p;
2881 int error;
2882
2883 if ((error = linux_ioprio2rtprio(args->ioprio, &rtp)) != 0)
2884 return (error);
2885 /* Attempts to set high priorities (REALTIME) require su privileges. */
2886 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME &&
2887 (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0)
2888 return (error);
2889
2890 p = NULL;
2891 td1 = NULL;
2892 switch (args->which) {
2893 case LINUX_IOPRIO_WHO_PROCESS:
2894 if (args->who == 0) {
2895 td1 = td;
2896 p = td1->td_proc;
2897 PROC_LOCK(p);
2898 } else if (args->who > PID_MAX) {
2899 td1 = linux_tdfind(td, args->who, -1);
2900 if (td1 != NULL)
2901 p = td1->td_proc;
2902 } else
2903 p = pfind(args->who);
2904 if (p == NULL)
2905 return (ESRCH);
2906 if ((error = p_cansched(td, p))) {
2907 PROC_UNLOCK(p);
2908 break;
2909 }
2910 if (td1 != NULL) {
2911 error = rtp_to_pri(&rtp, td1);
2912 } else {
2913 FOREACH_THREAD_IN_PROC(p, td1) {
2914 if ((error = rtp_to_pri(&rtp, td1)) != 0)
2915 break;
2916 }
2917 }
2918 PROC_UNLOCK(p);
2919 break;
2920 case LINUX_IOPRIO_WHO_PGRP:
2921 sx_slock(&proctree_lock);
2922 if (args->who == 0) {
2923 pg = td->td_proc->p_pgrp;
2924 PGRP_LOCK(pg);
2925 } else {
2926 pg = pgfind(args->who);
2927 if (pg == NULL) {
2928 sx_sunlock(&proctree_lock);
2929 error = ESRCH;
2930 break;
2931 }
2932 }
2933 sx_sunlock(&proctree_lock);
2934 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2935 PROC_LOCK(p);
2936 if (p->p_state == PRS_NORMAL &&
2937 p_cansched(td, p) == 0) {
2938 FOREACH_THREAD_IN_PROC(p, td1) {
2939 if ((error = rtp_to_pri(&rtp, td1)) != 0)
2940 break;
2941 }
2942 }
2943 PROC_UNLOCK(p);
2944 if (error != 0)
2945 break;
2946 }
2947 PGRP_UNLOCK(pg);
2948 break;
2949 case LINUX_IOPRIO_WHO_USER:
2950 if (args->who == 0)
2951 args->who = td->td_ucred->cr_uid;
2952 sx_slock(&allproc_lock);
2953 FOREACH_PROC_IN_SYSTEM(p) {
2954 PROC_LOCK(p);
2955 if (p->p_state == PRS_NORMAL &&
2956 p->p_ucred->cr_uid == args->who &&
2957 p_cansched(td, p) == 0) {
2958 FOREACH_THREAD_IN_PROC(p, td1) {
2959 if ((error = rtp_to_pri(&rtp, td1)) != 0)
2960 break;
2961 }
2962 }
2963 PROC_UNLOCK(p);
2964 if (error != 0)
2965 break;
2966 }
2967 sx_sunlock(&allproc_lock);
2968 break;
2969 default:
2970 error = EINVAL;
2971 break;
2972 }
2973 return (error);
2974 }
2975
2976 /* The only flag is O_NONBLOCK */
2977 #define B2L_MQ_FLAGS(bflags) ((bflags) != 0 ? LINUX_O_NONBLOCK : 0)
2978 #define L2B_MQ_FLAGS(lflags) ((lflags) != 0 ? O_NONBLOCK : 0)
2979
2980 int
linux_mq_open(struct thread * td,struct linux_mq_open_args * args)2981 linux_mq_open(struct thread *td, struct linux_mq_open_args *args)
2982 {
2983 struct mq_attr attr;
2984 int error, flags;
2985
2986 flags = linux_common_openflags(args->oflag);
2987 if ((flags & O_ACCMODE) == O_ACCMODE || (flags & O_EXEC) != 0)
2988 return (EINVAL);
2989 flags = FFLAGS(flags);
2990 if ((flags & O_CREAT) != 0 && args->attr != NULL) {
2991 error = copyin(args->attr, &attr, sizeof(attr));
2992 if (error != 0)
2993 return (error);
2994 attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags);
2995 }
2996
2997 return (kern_kmq_open(td, args->name, flags, args->mode,
2998 args->attr != NULL ? &attr : NULL));
2999 }
3000
3001 int
linux_mq_unlink(struct thread * td,struct linux_mq_unlink_args * args)3002 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args)
3003 {
3004 struct kmq_unlink_args bsd_args = {
3005 .path = PTRIN(args->name)
3006 };
3007
3008 return (sys_kmq_unlink(td, &bsd_args));
3009 }
3010
3011 int
linux_mq_timedsend(struct thread * td,struct linux_mq_timedsend_args * args)3012 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args)
3013 {
3014 struct timespec ts, *abs_timeout;
3015 int error;
3016
3017 if (args->abs_timeout == NULL)
3018 abs_timeout = NULL;
3019 else {
3020 error = linux_get_timespec(&ts, args->abs_timeout);
3021 if (error != 0)
3022 return (error);
3023 abs_timeout = &ts;
3024 }
3025
3026 return (kern_kmq_timedsend(td, args->mqd, PTRIN(args->msg_ptr),
3027 args->msg_len, args->msg_prio, abs_timeout));
3028 }
3029
3030 int
linux_mq_timedreceive(struct thread * td,struct linux_mq_timedreceive_args * args)3031 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args)
3032 {
3033 struct timespec ts, *abs_timeout;
3034 int error;
3035
3036 if (args->abs_timeout == NULL)
3037 abs_timeout = NULL;
3038 else {
3039 error = linux_get_timespec(&ts, args->abs_timeout);
3040 if (error != 0)
3041 return (error);
3042 abs_timeout = &ts;
3043 }
3044
3045 return (kern_kmq_timedreceive(td, args->mqd, PTRIN(args->msg_ptr),
3046 args->msg_len, args->msg_prio, abs_timeout));
3047 }
3048
3049 int
linux_mq_notify(struct thread * td,struct linux_mq_notify_args * args)3050 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args)
3051 {
3052 struct sigevent ev, *evp;
3053 struct l_sigevent l_ev;
3054 int error;
3055
3056 if (args->sevp == NULL)
3057 evp = NULL;
3058 else {
3059 error = copyin(args->sevp, &l_ev, sizeof(l_ev));
3060 if (error != 0)
3061 return (error);
3062 error = linux_convert_l_sigevent(&l_ev, &ev);
3063 if (error != 0)
3064 return (error);
3065 evp = &ev;
3066 }
3067
3068 return (kern_kmq_notify(td, args->mqd, evp));
3069 }
3070
3071 int
linux_mq_getsetattr(struct thread * td,struct linux_mq_getsetattr_args * args)3072 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args)
3073 {
3074 struct mq_attr attr, oattr;
3075 int error;
3076
3077 if (args->attr != NULL) {
3078 error = copyin(args->attr, &attr, sizeof(attr));
3079 if (error != 0)
3080 return (error);
3081 attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags);
3082 }
3083
3084 error = kern_kmq_setattr(td, args->mqd, args->attr != NULL ? &attr : NULL,
3085 &oattr);
3086 if (error == 0 && args->oattr != NULL) {
3087 oattr.mq_flags = B2L_MQ_FLAGS(oattr.mq_flags);
3088 bzero(oattr.__reserved, sizeof(oattr.__reserved));
3089 error = copyout(&oattr, args->oattr, sizeof(oattr));
3090 }
3091
3092 return (error);
3093 }
3094
3095 MODULE_DEPEND(linux, mqueuefs, 1, 1, 1);
3096