xref: /freebsd/sys/sys/tree.h (revision 71625ec9ad2a9bc8c09784fbd23b759830e0ee5f)
1 /*	$NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $	*/
2 /*	$OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $	*/
3 
4 /*-
5  * SPDX-License-Identifier: BSD-2-Clause
6  *
7  * Copyright 2002 Niels Provos <provos@citi.umich.edu>
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #ifndef	_SYS_TREE_H_
32 #define	_SYS_TREE_H_
33 
34 #include <sys/cdefs.h>
35 
36 /*
37  * This file defines data structures for different types of trees:
38  * splay trees and rank-balanced trees.
39  *
40  * A splay tree is a self-organizing data structure.  Every operation
41  * on the tree causes a splay to happen.  The splay moves the requested
42  * node to the root of the tree and partly rebalances it.
43  *
44  * This has the benefit that request locality causes faster lookups as
45  * the requested nodes move to the top of the tree.  On the other hand,
46  * every lookup causes memory writes.
47  *
48  * The Balance Theorem bounds the total access time for m operations
49  * and n inserts on an initially empty tree as O((m + n)lg n).  The
50  * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
51  *
52  * A rank-balanced tree is a binary search tree with an integer
53  * rank-difference as an attribute of each pointer from parent to child.
54  * The sum of the rank-differences on any path from a node down to null is
55  * the same, and defines the rank of that node. The rank of the null node
56  * is -1.
57  *
58  * Different additional conditions define different sorts of balanced trees,
59  * including "red-black" and "AVL" trees.  The set of conditions applied here
60  * are the "weak-AVL" conditions of Haeupler, Sen and Tarjan presented in in
61  * "Rank Balanced Trees", ACM Transactions on Algorithms Volume 11 Issue 4 June
62  * 2015 Article No.: 30pp 1–26 https://doi.org/10.1145/2689412 (the HST paper):
63  *	- every rank-difference is 1 or 2.
64  *	- the rank of any leaf is 1.
65  *
66  * For historical reasons, rank differences that are even are associated
67  * with the color red (Rank-Even-Difference), and the child that a red edge
68  * points to is called a red child.
69  *
70  * Every operation on a rank-balanced tree is bounded as O(lg n).
71  * The maximum height of a rank-balanced tree is 2lg (n+1).
72  */
73 
74 #define SPLAY_HEAD(name, type)						\
75 struct name {								\
76 	struct type *sph_root; /* root of the tree */			\
77 }
78 
79 #define SPLAY_INITIALIZER(root)						\
80 	{ NULL }
81 
82 #define SPLAY_INIT(root) do {						\
83 	(root)->sph_root = NULL;					\
84 } while (/*CONSTCOND*/ 0)
85 
86 #define SPLAY_ENTRY(type)						\
87 struct {								\
88 	struct type *spe_left; /* left element */			\
89 	struct type *spe_right; /* right element */			\
90 }
91 
92 #define SPLAY_LEFT(elm, field)		(elm)->field.spe_left
93 #define SPLAY_RIGHT(elm, field)		(elm)->field.spe_right
94 #define SPLAY_ROOT(head)		(head)->sph_root
95 #define SPLAY_EMPTY(head)		(SPLAY_ROOT(head) == NULL)
96 
97 /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
98 #define SPLAY_ROTATE_RIGHT(head, tmp, field) do {			\
99 	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field);	\
100 	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
101 	(head)->sph_root = tmp;						\
102 } while (/*CONSTCOND*/ 0)
103 
104 #define SPLAY_ROTATE_LEFT(head, tmp, field) do {			\
105 	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field);	\
106 	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
107 	(head)->sph_root = tmp;						\
108 } while (/*CONSTCOND*/ 0)
109 
110 #define SPLAY_LINKLEFT(head, tmp, field) do {				\
111 	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
112 	tmp = (head)->sph_root;						\
113 	(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);		\
114 } while (/*CONSTCOND*/ 0)
115 
116 #define SPLAY_LINKRIGHT(head, tmp, field) do {				\
117 	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
118 	tmp = (head)->sph_root;						\
119 	(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);	\
120 } while (/*CONSTCOND*/ 0)
121 
122 #define SPLAY_ASSEMBLE(head, node, left, right, field) do {		\
123 	SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field);	\
124 	SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
125 	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field);	\
126 	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field);	\
127 } while (/*CONSTCOND*/ 0)
128 
129 /* Generates prototypes and inline functions */
130 
131 #define SPLAY_PROTOTYPE(name, type, field, cmp)				\
132 void name##_SPLAY(struct name *, struct type *);			\
133 void name##_SPLAY_MINMAX(struct name *, int);				\
134 struct type *name##_SPLAY_INSERT(struct name *, struct type *);		\
135 struct type *name##_SPLAY_REMOVE(struct name *, struct type *);		\
136 									\
137 /* Finds the node with the same key as elm */				\
138 static __unused __inline struct type *					\
139 name##_SPLAY_FIND(struct name *head, struct type *elm)			\
140 {									\
141 	if (SPLAY_EMPTY(head))						\
142 		return(NULL);						\
143 	name##_SPLAY(head, elm);					\
144 	if ((cmp)(elm, (head)->sph_root) == 0)				\
145 		return (head->sph_root);				\
146 	return (NULL);							\
147 }									\
148 									\
149 static __unused __inline struct type *					\
150 name##_SPLAY_NEXT(struct name *head, struct type *elm)			\
151 {									\
152 	name##_SPLAY(head, elm);					\
153 	if (SPLAY_RIGHT(elm, field) != NULL) {				\
154 		elm = SPLAY_RIGHT(elm, field);				\
155 		while (SPLAY_LEFT(elm, field) != NULL) {		\
156 			elm = SPLAY_LEFT(elm, field);			\
157 		}							\
158 	} else								\
159 		elm = NULL;						\
160 	return (elm);							\
161 }									\
162 									\
163 static __unused __inline struct type *					\
164 name##_SPLAY_MIN_MAX(struct name *head, int val)			\
165 {									\
166 	name##_SPLAY_MINMAX(head, val);					\
167 	return (SPLAY_ROOT(head));					\
168 }
169 
170 /* Main splay operation.
171  * Moves node close to the key of elm to top
172  */
173 #define SPLAY_GENERATE(name, type, field, cmp)				\
174 struct type *								\
175 name##_SPLAY_INSERT(struct name *head, struct type *elm)		\
176 {									\
177     if (SPLAY_EMPTY(head)) {						\
178 	    SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL;	\
179     } else {								\
180 	    __typeof(cmp(NULL, NULL)) __comp;				\
181 	    name##_SPLAY(head, elm);					\
182 	    __comp = (cmp)(elm, (head)->sph_root);			\
183 	    if (__comp < 0) {						\
184 		    SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
185 		    SPLAY_RIGHT(elm, field) = (head)->sph_root;		\
186 		    SPLAY_LEFT((head)->sph_root, field) = NULL;		\
187 	    } else if (__comp > 0) {					\
188 		    SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
189 		    SPLAY_LEFT(elm, field) = (head)->sph_root;		\
190 		    SPLAY_RIGHT((head)->sph_root, field) = NULL;	\
191 	    } else							\
192 		    return ((head)->sph_root);				\
193     }									\
194     (head)->sph_root = (elm);						\
195     return (NULL);							\
196 }									\
197 									\
198 struct type *								\
199 name##_SPLAY_REMOVE(struct name *head, struct type *elm)		\
200 {									\
201 	struct type *__tmp;						\
202 	if (SPLAY_EMPTY(head))						\
203 		return (NULL);						\
204 	name##_SPLAY(head, elm);					\
205 	if ((cmp)(elm, (head)->sph_root) == 0) {			\
206 		if (SPLAY_LEFT((head)->sph_root, field) == NULL) {	\
207 			(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
208 		} else {						\
209 			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
210 			(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
211 			name##_SPLAY(head, elm);			\
212 			SPLAY_RIGHT((head)->sph_root, field) = __tmp;	\
213 		}							\
214 		return (elm);						\
215 	}								\
216 	return (NULL);							\
217 }									\
218 									\
219 void									\
220 name##_SPLAY(struct name *head, struct type *elm)			\
221 {									\
222 	struct type __node, *__left, *__right, *__tmp;			\
223 	__typeof(cmp(NULL, NULL)) __comp;				\
224 \
225 	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
226 	__left = __right = &__node;					\
227 \
228 	while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) {		\
229 		if (__comp < 0) {					\
230 			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
231 			if (__tmp == NULL)				\
232 				break;					\
233 			if ((cmp)(elm, __tmp) < 0){			\
234 				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
235 				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
236 					break;				\
237 			}						\
238 			SPLAY_LINKLEFT(head, __right, field);		\
239 		} else if (__comp > 0) {				\
240 			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
241 			if (__tmp == NULL)				\
242 				break;					\
243 			if ((cmp)(elm, __tmp) > 0){			\
244 				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
245 				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
246 					break;				\
247 			}						\
248 			SPLAY_LINKRIGHT(head, __left, field);		\
249 		}							\
250 	}								\
251 	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
252 }									\
253 									\
254 /* Splay with either the minimum or the maximum element			\
255  * Used to find minimum or maximum element in tree.			\
256  */									\
257 void name##_SPLAY_MINMAX(struct name *head, int __comp) \
258 {									\
259 	struct type __node, *__left, *__right, *__tmp;			\
260 \
261 	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
262 	__left = __right = &__node;					\
263 \
264 	while (1) {							\
265 		if (__comp < 0) {					\
266 			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
267 			if (__tmp == NULL)				\
268 				break;					\
269 			if (__comp < 0){				\
270 				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
271 				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
272 					break;				\
273 			}						\
274 			SPLAY_LINKLEFT(head, __right, field);		\
275 		} else if (__comp > 0) {				\
276 			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
277 			if (__tmp == NULL)				\
278 				break;					\
279 			if (__comp > 0) {				\
280 				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
281 				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
282 					break;				\
283 			}						\
284 			SPLAY_LINKRIGHT(head, __left, field);		\
285 		}							\
286 	}								\
287 	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
288 }
289 
290 #define SPLAY_NEGINF	-1
291 #define SPLAY_INF	1
292 
293 #define SPLAY_INSERT(name, x, y)	name##_SPLAY_INSERT(x, y)
294 #define SPLAY_REMOVE(name, x, y)	name##_SPLAY_REMOVE(x, y)
295 #define SPLAY_FIND(name, x, y)		name##_SPLAY_FIND(x, y)
296 #define SPLAY_NEXT(name, x, y)		name##_SPLAY_NEXT(x, y)
297 #define SPLAY_MIN(name, x)		(SPLAY_EMPTY(x) ? NULL	\
298 					: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
299 #define SPLAY_MAX(name, x)		(SPLAY_EMPTY(x) ? NULL	\
300 					: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
301 
302 #define SPLAY_FOREACH(x, name, head)					\
303 	for ((x) = SPLAY_MIN(name, head);				\
304 	     (x) != NULL;						\
305 	     (x) = SPLAY_NEXT(name, head, x))
306 
307 /* Macros that define a rank-balanced tree */
308 #define RB_HEAD(name, type)						\
309 struct name {								\
310 	struct type *rbh_root; /* root of the tree */			\
311 }
312 
313 #define RB_INITIALIZER(root)						\
314 	{ NULL }
315 
316 #define RB_INIT(root) do {						\
317 	(root)->rbh_root = NULL;					\
318 } while (/*CONSTCOND*/ 0)
319 
320 #define RB_ENTRY(type)							\
321 struct {								\
322 	struct type *rbe_link[3];					\
323 }
324 
325 /*
326  * With the expectation that any object of struct type has an
327  * address that is a multiple of 4, and that therefore the
328  * 2 least significant bits of a pointer to struct type are
329  * always zero, this implementation sets those bits to indicate
330  * that the left or right child of the tree node is "red".
331  */
332 #define _RB_LINK(elm, dir, field)	(elm)->field.rbe_link[dir]
333 #define _RB_UP(elm, field)		_RB_LINK(elm, 0, field)
334 #define _RB_L				((__uintptr_t)1)
335 #define _RB_R				((__uintptr_t)2)
336 #define _RB_LR				((__uintptr_t)3)
337 #define _RB_BITS(elm)			(*(__uintptr_t *)&elm)
338 #define _RB_BITSUP(elm, field)		_RB_BITS(_RB_UP(elm, field))
339 #define _RB_PTR(elm)			(__typeof(elm))			\
340 					((__uintptr_t)elm & ~_RB_LR)
341 
342 #define RB_PARENT(elm, field)		_RB_PTR(_RB_UP(elm, field))
343 #define RB_LEFT(elm, field)		_RB_LINK(elm, _RB_L, field)
344 #define RB_RIGHT(elm, field)		_RB_LINK(elm, _RB_R, field)
345 #define RB_ROOT(head)			(head)->rbh_root
346 #define RB_EMPTY(head)			(RB_ROOT(head) == NULL)
347 
348 #define RB_SET_PARENT(dst, src, field) do {				\
349 	_RB_BITSUP(dst, field) = (__uintptr_t)src |			\
350 	    (_RB_BITSUP(dst, field) & _RB_LR);				\
351 } while (/*CONSTCOND*/ 0)
352 
353 #define RB_SET(elm, parent, field) do {					\
354 	_RB_UP(elm, field) = parent;					\
355 	RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL;		\
356 } while (/*CONSTCOND*/ 0)
357 
358 /*
359  * Either RB_AUGMENT or RB_AUGMENT_CHECK is invoked in a loop at the root of
360  * every modified subtree, from the bottom up to the root, to update augmented
361  * node data.  RB_AUGMENT_CHECK returns true only when the update changes the
362  * node data, so that updating can be stopped short of the root when it returns
363  * false.
364  */
365 #ifndef RB_AUGMENT_CHECK
366 #ifndef RB_AUGMENT
367 #define RB_AUGMENT_CHECK(x) 0
368 #else
369 #define RB_AUGMENT_CHECK(x) (RB_AUGMENT(x), 1)
370 #endif
371 #endif
372 
373 #define RB_UPDATE_AUGMENT(elm, field) do {				\
374 	__typeof(elm) rb_update_tmp = (elm);				\
375 	while (RB_AUGMENT_CHECK(rb_update_tmp) &&			\
376 	    (rb_update_tmp = RB_PARENT(rb_update_tmp, field)) != NULL)	\
377 		;							\
378 } while (0)
379 
380 #define RB_SWAP_CHILD(head, par, out, in, field) do {			\
381 	if (par == NULL)						\
382 		RB_ROOT(head) = (in);					\
383 	else if ((out) == RB_LEFT(par, field))				\
384 		RB_LEFT(par, field) = (in);				\
385 	else								\
386 		RB_RIGHT(par, field) = (in);				\
387 } while (/*CONSTCOND*/ 0)
388 
389 /*
390  * RB_ROTATE macro partially restructures the tree to improve balance. In the
391  * case when dir is _RB_L, tmp is a right child of elm.  After rotation, elm
392  * is a left child of tmp, and the subtree that represented the items between
393  * them, which formerly hung to the left of tmp now hangs to the right of elm.
394  * The parent-child relationship between elm and its former parent is not
395  * changed; where this macro once updated those fields, that is now left to the
396  * caller of RB_ROTATE to clean up, so that a pair of rotations does not twice
397  * update the same pair of pointer fields with distinct values.
398  */
399 #define RB_ROTATE(elm, tmp, dir, field) do {				\
400 	if ((_RB_LINK(elm, dir ^ _RB_LR, field) =			\
401 	    _RB_LINK(tmp, dir, field)) != NULL)				\
402 		RB_SET_PARENT(_RB_LINK(tmp, dir, field), elm, field);	\
403 	_RB_LINK(tmp, dir, field) = (elm);				\
404 	RB_SET_PARENT(elm, tmp, field);					\
405 } while (/*CONSTCOND*/ 0)
406 
407 /* Generates prototypes and inline functions */
408 #define	RB_PROTOTYPE(name, type, field, cmp)				\
409 	RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
410 #define	RB_PROTOTYPE_STATIC(name, type, field, cmp)			\
411 	RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __unused static)
412 #define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr)		\
413 	RB_PROTOTYPE_RANK(name, type, attr)				\
414 	RB_PROTOTYPE_INSERT_COLOR(name, type, attr);			\
415 	RB_PROTOTYPE_REMOVE_COLOR(name, type, attr);			\
416 	RB_PROTOTYPE_INSERT_FINISH(name, type, attr);			\
417 	RB_PROTOTYPE_INSERT(name, type, attr);				\
418 	RB_PROTOTYPE_REMOVE(name, type, attr);				\
419 	RB_PROTOTYPE_FIND(name, type, attr);				\
420 	RB_PROTOTYPE_NFIND(name, type, attr);				\
421 	RB_PROTOTYPE_NEXT(name, type, attr);				\
422 	RB_PROTOTYPE_INSERT_NEXT(name, type, attr);			\
423 	RB_PROTOTYPE_PREV(name, type, attr);				\
424 	RB_PROTOTYPE_INSERT_PREV(name, type, attr);			\
425 	RB_PROTOTYPE_MINMAX(name, type, attr);				\
426 	RB_PROTOTYPE_REINSERT(name, type, attr);
427 #ifdef _RB_DIAGNOSTIC
428 #define RB_PROTOTYPE_RANK(name, type, attr)				\
429 	attr int name##_RB_RANK(struct type *);
430 #else
431 #define RB_PROTOTYPE_RANK(name, type, attr)
432 #endif
433 #define RB_PROTOTYPE_INSERT_COLOR(name, type, attr)			\
434 	attr struct type *name##_RB_INSERT_COLOR(struct name *,		\
435 	    struct type *, struct type *)
436 #define RB_PROTOTYPE_REMOVE_COLOR(name, type, attr)			\
437 	attr struct type *name##_RB_REMOVE_COLOR(struct name *,		\
438 	    struct type *, struct type *)
439 #define RB_PROTOTYPE_REMOVE(name, type, attr)				\
440 	attr struct type *name##_RB_REMOVE(struct name *, struct type *)
441 #define RB_PROTOTYPE_INSERT_FINISH(name, type, attr)			\
442 	attr struct type *name##_RB_INSERT_FINISH(struct name *,	\
443 	    struct type *, struct type **, struct type *)
444 #define RB_PROTOTYPE_INSERT(name, type, attr)				\
445 	attr struct type *name##_RB_INSERT(struct name *, struct type *)
446 #define RB_PROTOTYPE_FIND(name, type, attr)				\
447 	attr struct type *name##_RB_FIND(struct name *, struct type *)
448 #define RB_PROTOTYPE_NFIND(name, type, attr)				\
449 	attr struct type *name##_RB_NFIND(struct name *, struct type *)
450 #define RB_PROTOTYPE_NEXT(name, type, attr)				\
451 	attr struct type *name##_RB_NEXT(struct type *)
452 #define RB_PROTOTYPE_INSERT_NEXT(name, type, attr)			\
453 	attr struct type *name##_RB_INSERT_NEXT(struct name *,		\
454 	    struct type *, struct type *)
455 #define RB_PROTOTYPE_PREV(name, type, attr)				\
456 	attr struct type *name##_RB_PREV(struct type *)
457 #define RB_PROTOTYPE_INSERT_PREV(name, type, attr)			\
458 	attr struct type *name##_RB_INSERT_PREV(struct name *,		\
459 	    struct type *, struct type *)
460 #define RB_PROTOTYPE_MINMAX(name, type, attr)				\
461 	attr struct type *name##_RB_MINMAX(struct name *, int)
462 #define RB_PROTOTYPE_REINSERT(name, type, attr)			\
463 	attr struct type *name##_RB_REINSERT(struct name *, struct type *)
464 
465 /* Main rb operation.
466  * Moves node close to the key of elm to top
467  */
468 #define	RB_GENERATE(name, type, field, cmp)				\
469 	RB_GENERATE_INTERNAL(name, type, field, cmp,)
470 #define	RB_GENERATE_STATIC(name, type, field, cmp)			\
471 	RB_GENERATE_INTERNAL(name, type, field, cmp, __unused static)
472 #define RB_GENERATE_INTERNAL(name, type, field, cmp, attr)		\
473 	RB_GENERATE_RANK(name, type, field, attr)			\
474 	RB_GENERATE_INSERT_COLOR(name, type, field, attr)		\
475 	RB_GENERATE_REMOVE_COLOR(name, type, field, attr)		\
476 	RB_GENERATE_INSERT_FINISH(name, type, field, attr)		\
477 	RB_GENERATE_INSERT(name, type, field, cmp, attr)		\
478 	RB_GENERATE_REMOVE(name, type, field, attr)			\
479 	RB_GENERATE_FIND(name, type, field, cmp, attr)			\
480 	RB_GENERATE_NFIND(name, type, field, cmp, attr)			\
481 	RB_GENERATE_NEXT(name, type, field, attr)			\
482 	RB_GENERATE_INSERT_NEXT(name, type, field, cmp, attr)		\
483 	RB_GENERATE_PREV(name, type, field, attr)			\
484 	RB_GENERATE_INSERT_PREV(name, type, field, cmp, attr)		\
485 	RB_GENERATE_MINMAX(name, type, field, attr)			\
486 	RB_GENERATE_REINSERT(name, type, field, cmp, attr)
487 
488 #ifdef _RB_DIAGNOSTIC
489 #ifndef RB_AUGMENT
490 #define _RB_AUGMENT_VERIFY(x) RB_AUGMENT_CHECK(x)
491 #else
492 #define _RB_AUGMENT_VERIFY(x) 0
493 #endif
494 #define RB_GENERATE_RANK(name, type, field, attr)			\
495 /*									\
496  * Return the rank of the subtree rooted at elm, or -1 if the subtree	\
497  * is not rank-balanced, or has inconsistent augmentation data.
498  */									\
499 attr int								\
500 name##_RB_RANK(struct type *elm)					\
501 {									\
502 	struct type *left, *right, *up;					\
503 	int left_rank, right_rank;					\
504 									\
505 	if (elm == NULL)						\
506 		return (0);						\
507 	up = _RB_UP(elm, field);					\
508 	left = RB_LEFT(elm, field);					\
509 	left_rank = ((_RB_BITS(up) & _RB_L) ? 2 : 1) +			\
510 	    name##_RB_RANK(left);					\
511 	right = RB_RIGHT(elm, field);					\
512 	right_rank = ((_RB_BITS(up) & _RB_R) ? 2 : 1) +			\
513 	    name##_RB_RANK(right);					\
514 	if (left_rank != right_rank ||					\
515 	    (left_rank == 2 && left == NULL && right == NULL) ||	\
516 	    _RB_AUGMENT_VERIFY(elm))					\
517 		return (-1);						\
518 	return (left_rank);						\
519 }
520 #else
521 #define RB_GENERATE_RANK(name, type, field, attr)
522 #endif
523 
524 #define RB_GENERATE_INSERT_COLOR(name, type, field, attr)		\
525 attr struct type *							\
526 name##_RB_INSERT_COLOR(struct name *head,				\
527     struct type *parent, struct type *elm)				\
528 {									\
529 	/*								\
530 	 * Initially, elm is a leaf.  Either its parent was previously	\
531 	 * a leaf, with two black null children, or an interior node	\
532 	 * with a black non-null child and a red null child. The        \
533 	 * balance criterion "the rank of any leaf is 1" precludes the  \
534 	 * possibility of two red null children for the initial parent. \
535 	 * So the first loop iteration cannot lead to accessing an      \
536 	 * uninitialized 'child', and a later iteration can only happen \
537 	 * when a value has been assigned to 'child' in the previous    \
538 	 * one.								\
539 	 */								\
540 	struct type *child, *child_up, *gpar;				\
541 	__uintptr_t elmdir, sibdir;					\
542 									\
543 	do {								\
544 		/* the rank of the tree rooted at elm grew */		\
545 		gpar = _RB_UP(parent, field);				\
546 		elmdir = RB_RIGHT(parent, field) == elm ? _RB_R : _RB_L; \
547 		if (_RB_BITS(gpar) & elmdir) {				\
548 			/* shorten the parent-elm edge to rebalance */	\
549 			_RB_BITSUP(parent, field) ^= elmdir;		\
550 			return (NULL);					\
551 		}							\
552 		sibdir = elmdir ^ _RB_LR;				\
553 		/* the other edge must change length */			\
554 		_RB_BITSUP(parent, field) ^= sibdir;			\
555 		if ((_RB_BITS(gpar) & _RB_LR) == 0) {			\
556 			/* both edges now short, retry from parent */	\
557 			child = elm;					\
558 			elm = parent;					\
559 			continue;					\
560 		}							\
561 		_RB_UP(parent, field) = gpar = _RB_PTR(gpar);		\
562 		if (_RB_BITSUP(elm, field) & elmdir) {			\
563 			/*						\
564 			 * Exactly one of the edges descending from elm \
565 			 * is long. The long one is in the same		\
566 			 * direction as the edge from parent to elm,	\
567 			 * so change that by rotation.  The edge from	\
568 			 * parent to z was shortened above.  Shorten	\
569 			 * the long edge down from elm, and adjust	\
570 			 * other edge lengths based on the downward	\
571 			 * edges from 'child'.				\
572 			 *						\
573 			 *	     par		 par		\
574 			 *	    /	\		/   \		\
575 			 *	  elm	 z	       /     z		\
576 			 *	 /  \		     child		\
577 			 *	/  child	     /	 \		\
578 			 *     /   /  \		   elm	  \		\
579 			 *    w	  /    \	  /   \    y		\
580 			 *	 x      y	 w     \		\
581 			 *				x		\
582 			 */						\
583 			RB_ROTATE(elm, child, elmdir, field);		\
584 			child_up = _RB_UP(child, field);		\
585 			if (_RB_BITS(child_up) & sibdir)		\
586 				_RB_BITSUP(parent, field) ^= elmdir;	\
587 			if (_RB_BITS(child_up) & elmdir)		\
588 				_RB_BITSUP(elm, field) ^= _RB_LR;	\
589 			else						\
590 				_RB_BITSUP(elm, field) ^= elmdir;	\
591 			/* if child is a leaf, don't augment elm,	\
592 			 * since it is restored to be a leaf again. */	\
593 			if ((_RB_BITS(child_up) & _RB_LR) == 0)		\
594 				elm = child;				\
595 		} else							\
596 			child = elm;					\
597 									\
598 		/*							\
599 		 * The long edge descending from 'child' points back	\
600 		 * in the direction of 'parent'. Rotate to make		\
601 		 * 'parent' a child of 'child', then make both edges	\
602 		 * of 'child' short to rebalance.			\
603 		 *							\
604 		 *	     par		 child			\
605 		 *	    /	\		/     \			\
606 		 *	   /	 z	       x       par		\
607 		 *	child			      /	  \		\
608 		 *	 /  \			     /	   z		\
609 		 *	x    \			    y			\
610 		 *	      y						\
611 		 */							\
612 		RB_ROTATE(parent, child, sibdir, field);		\
613 		_RB_UP(child, field) = gpar;				\
614 		RB_SWAP_CHILD(head, gpar, parent, child, field);	\
615 		/*							\
616 		 * Elements rotated down have new, smaller subtrees,	\
617 		 * so update augmentation for them.			\
618 		 */							\
619 		if (elm != child)					\
620 			(void)RB_AUGMENT_CHECK(elm);			\
621 		(void)RB_AUGMENT_CHECK(parent);				\
622 		return (child);						\
623 	} while ((parent = gpar) != NULL);				\
624 	return (NULL);							\
625 }
626 
627 #ifndef RB_STRICT_HST
628 /*
629  * In REMOVE_COLOR, the HST paper, in figure 3, in the single-rotate case, has
630  * 'parent' with one higher rank, and then reduces its rank if 'parent' has
631  * become a leaf.  This implementation always has the parent in its new position
632  * with lower rank, to avoid the leaf check.  Define RB_STRICT_HST to 1 to get
633  * the behavior that HST describes.
634  */
635 #define RB_STRICT_HST 0
636 #endif
637 
638 #define RB_GENERATE_REMOVE_COLOR(name, type, field, attr)		\
639 attr struct type *							\
640 name##_RB_REMOVE_COLOR(struct name *head,				\
641     struct type *parent, struct type *elm)				\
642 {									\
643 	struct type *gpar, *sib, *up;					\
644 	__uintptr_t elmdir, sibdir;					\
645 									\
646 	if (RB_RIGHT(parent, field) == elm &&				\
647 	    RB_LEFT(parent, field) == elm) {				\
648 		/* Deleting a leaf that is an only-child creates a	\
649 		 * rank-2 leaf. Demote that leaf. */			\
650 		_RB_UP(parent, field) = _RB_PTR(_RB_UP(parent, field));	\
651 		elm = parent;						\
652 		if ((parent = _RB_UP(elm, field)) == NULL)		\
653 			return (NULL);					\
654 	}								\
655 	do {								\
656 		/* the rank of the tree rooted at elm shrank */		\
657 		gpar = _RB_UP(parent, field);				\
658 		elmdir = RB_RIGHT(parent, field) == elm ? _RB_R : _RB_L; \
659 		_RB_BITS(gpar) ^= elmdir;				\
660 		if (_RB_BITS(gpar) & elmdir) {				\
661 			/* lengthen the parent-elm edge to rebalance */	\
662 			_RB_UP(parent, field) = gpar;			\
663 			return (NULL);					\
664 		}							\
665 		if (_RB_BITS(gpar) & _RB_LR) {				\
666 			/* shorten other edge, retry from parent */	\
667 			_RB_BITS(gpar) ^= _RB_LR;			\
668 			_RB_UP(parent, field) = gpar;			\
669 			gpar = _RB_PTR(gpar);				\
670 			continue;					\
671 		}							\
672 		sibdir = elmdir ^ _RB_LR;				\
673 		sib = _RB_LINK(parent, sibdir, field);			\
674 		up = _RB_UP(sib, field);				\
675 		_RB_BITS(up) ^= _RB_LR;					\
676 		if ((_RB_BITS(up) & _RB_LR) == 0) {			\
677 			/* shorten edges descending from sib, retry */	\
678 			_RB_UP(sib, field) = up;			\
679 			continue;					\
680 		}							\
681 		if ((_RB_BITS(up) & sibdir) == 0) {			\
682 			/*						\
683 			 * The edge descending from 'sib' away from	\
684 			 * 'parent' is long.  The short edge descending	\
685 			 * from 'sib' toward 'parent' points to 'elm*'	\
686 			 * Rotate to make 'sib' a child of 'elm*'	\
687 			 * then adjust the lengths of the edges		\
688 			 * descending from 'sib' and 'elm*'.		\
689 			 *						\
690 			 *	     par		 par		\
691 			 *	    /	\		/   \		\
692 			 *	   /	sib	      elm    \		\
693 			 *	  /	/ \	            elm*	\
694 			 *	elm   elm* \	            /  \	\
695 			 *	      /	\   \		   /    \	\
696 			 *	     /   \   z		  /      \	\
697 			 *	    x	  y		 x      sib	\
698 			 *				        /  \	\
699 			 *				       /    z	\
700 			 *				      y		\
701 			 */						\
702 			elm = _RB_LINK(sib, elmdir, field);		\
703 			/* elm is a 1-child.  First rotate at elm. */	\
704 			RB_ROTATE(sib, elm, sibdir, field);		\
705 			up = _RB_UP(elm, field);			\
706 			_RB_BITSUP(parent, field) ^=			\
707 			    (_RB_BITS(up) & elmdir) ? _RB_LR : elmdir;	\
708 			_RB_BITSUP(sib, field) ^=			\
709 			    (_RB_BITS(up) & sibdir) ? _RB_LR : sibdir;	\
710 			_RB_BITSUP(elm, field) |= _RB_LR;		\
711 		} else {						\
712 			if ((_RB_BITS(up) & elmdir) == 0 &&		\
713 			    RB_STRICT_HST && elm != NULL) {		\
714 				/* if parent does not become a leaf,	\
715 				   do not demote parent yet. */		\
716 				_RB_BITSUP(parent, field) ^= sibdir;	\
717 				_RB_BITSUP(sib, field) ^= _RB_LR;	\
718 			} else if ((_RB_BITS(up) & elmdir) == 0) {	\
719 				/* demote parent. */			\
720 				_RB_BITSUP(parent, field) ^= elmdir;	\
721 				_RB_BITSUP(sib, field) ^= sibdir;	\
722 			} else						\
723 				_RB_BITSUP(sib, field) ^= sibdir;	\
724 			elm = sib;					\
725 		}							\
726 									\
727 		/*							\
728 		 * The edge descending from 'elm' away from 'parent'	\
729 		 * is short.  Rotate to make 'parent' a child of 'elm', \
730 		 * then lengthen the short edges descending from	\
731 		 * 'parent' and 'elm' to rebalance.			\
732 		 *							\
733 		 *	     par		 elm			\
734 		 *	    /	\		/   \			\
735 		 *	   e	 \	       /     \			\
736 		 *		 elm	      /	      \			\
737 		 *		/  \	    par	       s		\
738 		 *	       /    \	   /   \			\
739 		 *	      /	     \	  e	\			\
740 		 *	     x	      s		 x			\
741 		 */							\
742 		RB_ROTATE(parent, elm, elmdir, field);			\
743 		RB_SET_PARENT(elm, gpar, field);			\
744 		RB_SWAP_CHILD(head, gpar, parent, elm, field);		\
745 		/*							\
746 		 * An element rotated down, but not into the search	\
747 		 * path has a new, smaller subtree, so update		\
748 		 * augmentation for it.					\
749 		 */							\
750 		if (sib != elm)						\
751 			(void)RB_AUGMENT_CHECK(sib);			\
752 		return (parent);					\
753 	} while (elm = parent, (parent = gpar) != NULL);		\
754 	return (NULL);							\
755 }
756 
757 #define _RB_AUGMENT_WALK(elm, match, field)				\
758 do {									\
759 	if (match == elm)						\
760 		match = NULL;						\
761 } while (RB_AUGMENT_CHECK(elm) &&					\
762     (elm = RB_PARENT(elm, field)) != NULL)
763 
764 #define RB_GENERATE_REMOVE(name, type, field, attr)			\
765 attr struct type *							\
766 name##_RB_REMOVE(struct name *head, struct type *out)			\
767 {									\
768 	struct type *child, *in, *opar, *parent;			\
769 									\
770 	child = RB_LEFT(out, field);					\
771 	in = RB_RIGHT(out, field);					\
772 	opar = _RB_UP(out, field);					\
773 	if (in == NULL || child == NULL) {				\
774 		in = child = (in == NULL ? child : in);			\
775 		parent = opar = _RB_PTR(opar);				\
776 	} else {							\
777 		parent = in;						\
778 		while (RB_LEFT(in, field))				\
779 			in = RB_LEFT(in, field);			\
780 		RB_SET_PARENT(child, in, field);			\
781 		RB_LEFT(in, field) = child;				\
782 		child = RB_RIGHT(in, field);				\
783 		if (parent != in) {					\
784 			RB_SET_PARENT(parent, in, field);		\
785 			RB_RIGHT(in, field) = parent;			\
786 			parent = RB_PARENT(in, field);			\
787 			RB_LEFT(parent, field) = child;			\
788 		}							\
789 		_RB_UP(in, field) = opar;				\
790 		opar = _RB_PTR(opar);					\
791 	}								\
792 	RB_SWAP_CHILD(head, opar, out, in, field);			\
793 	if (child != NULL)						\
794 		_RB_UP(child, field) = parent;				\
795 	if (parent != NULL) {						\
796 		opar = name##_RB_REMOVE_COLOR(head, parent, child);	\
797 		/* if rotation has made 'parent' the root of the same	\
798 		 * subtree as before, don't re-augment it. */		\
799 		if (parent == in && RB_LEFT(parent, field) == NULL) {	\
800 			opar = NULL;					\
801 			parent = RB_PARENT(parent, field);		\
802 		}							\
803 		_RB_AUGMENT_WALK(parent, opar, field);			\
804 		if (opar != NULL) {					\
805 			/*						\
806 			 * Elements rotated into the search path have	\
807 			 * changed subtrees, so update augmentation for	\
808 			 * them if AUGMENT_WALK didn't.			\
809 			 */						\
810 			(void)RB_AUGMENT_CHECK(opar);			\
811 			(void)RB_AUGMENT_CHECK(RB_PARENT(opar, field));	\
812 		}							\
813 	}								\
814 	return (out);							\
815 }
816 
817 #define RB_GENERATE_INSERT_FINISH(name, type, field, attr)		\
818 /* Inserts a node into the RB tree */					\
819 attr struct type *							\
820 name##_RB_INSERT_FINISH(struct name *head, struct type *parent,		\
821     struct type **pptr, struct type *elm)				\
822 {									\
823 	struct type *tmp = NULL;					\
824 									\
825 	RB_SET(elm, parent, field);					\
826 	*pptr = elm;							\
827 	if (parent != NULL)						\
828 		tmp = name##_RB_INSERT_COLOR(head, parent, elm);	\
829 	_RB_AUGMENT_WALK(elm, tmp, field);				\
830 	if (tmp != NULL)						\
831 		/*							\
832 		 * An element rotated into the search path has a	\
833 		 * changed subtree, so update augmentation for it if	\
834 		 * AUGMENT_WALK didn't.					\
835 		 */							\
836 		(void)RB_AUGMENT_CHECK(tmp);				\
837 	return (NULL);							\
838 }
839 
840 #define RB_GENERATE_INSERT(name, type, field, cmp, attr)		\
841 /* Inserts a node into the RB tree */					\
842 attr struct type *							\
843 name##_RB_INSERT(struct name *head, struct type *elm)			\
844 {									\
845 	struct type *tmp;						\
846 	struct type **tmpp = &RB_ROOT(head);				\
847 	struct type *parent = NULL;					\
848 									\
849 	while ((tmp = *tmpp) != NULL) {					\
850 		parent = tmp;						\
851 		__typeof(cmp(NULL, NULL)) comp = (cmp)(elm, parent);	\
852 		if (comp < 0)						\
853 			tmpp = &RB_LEFT(parent, field);			\
854 		else if (comp > 0)					\
855 			tmpp = &RB_RIGHT(parent, field);		\
856 		else							\
857 			return (parent);				\
858 	}								\
859 	return (name##_RB_INSERT_FINISH(head, parent, tmpp, elm));	\
860 }
861 
862 #define RB_GENERATE_FIND(name, type, field, cmp, attr)			\
863 /* Finds the node with the same key as elm */				\
864 attr struct type *							\
865 name##_RB_FIND(struct name *head, struct type *elm)			\
866 {									\
867 	struct type *tmp = RB_ROOT(head);				\
868 	__typeof(cmp(NULL, NULL)) comp;					\
869 	while (tmp) {							\
870 		comp = cmp(elm, tmp);					\
871 		if (comp < 0)						\
872 			tmp = RB_LEFT(tmp, field);			\
873 		else if (comp > 0)					\
874 			tmp = RB_RIGHT(tmp, field);			\
875 		else							\
876 			return (tmp);					\
877 	}								\
878 	return (NULL);							\
879 }
880 
881 #define RB_GENERATE_NFIND(name, type, field, cmp, attr)			\
882 /* Finds the first node greater than or equal to the search key */	\
883 attr struct type *							\
884 name##_RB_NFIND(struct name *head, struct type *elm)			\
885 {									\
886 	struct type *tmp = RB_ROOT(head);				\
887 	struct type *res = NULL;					\
888 	__typeof(cmp(NULL, NULL)) comp;					\
889 	while (tmp) {							\
890 		comp = cmp(elm, tmp);					\
891 		if (comp < 0) {						\
892 			res = tmp;					\
893 			tmp = RB_LEFT(tmp, field);			\
894 		}							\
895 		else if (comp > 0)					\
896 			tmp = RB_RIGHT(tmp, field);			\
897 		else							\
898 			return (tmp);					\
899 	}								\
900 	return (res);							\
901 }
902 
903 #define RB_GENERATE_NEXT(name, type, field, attr)			\
904 /* ARGSUSED */								\
905 attr struct type *							\
906 name##_RB_NEXT(struct type *elm)					\
907 {									\
908 	if (RB_RIGHT(elm, field)) {					\
909 		elm = RB_RIGHT(elm, field);				\
910 		while (RB_LEFT(elm, field))				\
911 			elm = RB_LEFT(elm, field);			\
912 	} else {							\
913 		while (RB_PARENT(elm, field) &&				\
914 		    (elm == RB_RIGHT(RB_PARENT(elm, field), field)))	\
915 			elm = RB_PARENT(elm, field);			\
916 		elm = RB_PARENT(elm, field);				\
917 	}								\
918 	return (elm);							\
919 }
920 
921 #if defined(_KERNEL) && defined(DIAGNOSTIC)
922 #define _RB_ORDER_CHECK(cmp, lo, hi) do {				\
923 	KASSERT((cmp)(lo, hi) < 0, ("out of order insertion"));		\
924 } while (0)
925 #else
926 #define _RB_ORDER_CHECK(cmp, lo, hi) do {} while (0)
927 #endif
928 
929 #define RB_GENERATE_INSERT_NEXT(name, type, field, cmp, attr)		\
930 /* Inserts a node into the next position in the RB tree */		\
931 attr struct type *							\
932 name##_RB_INSERT_NEXT(struct name *head,				\
933     struct type *elm, struct type *next)				\
934 {									\
935 	struct type *tmp;						\
936 	struct type **tmpp = &RB_RIGHT(elm, field);			\
937 									\
938 	_RB_ORDER_CHECK(cmp, elm, next);				\
939 	if (name##_RB_NEXT(elm) != NULL)				\
940 		_RB_ORDER_CHECK(cmp, next, name##_RB_NEXT(elm));	\
941 	while ((tmp = *tmpp) != NULL) {					\
942 		elm = tmp;						\
943 		tmpp = &RB_LEFT(elm, field);				\
944 	}								\
945 	return (name##_RB_INSERT_FINISH(head, elm, tmpp, next));	\
946 }
947 
948 #define RB_GENERATE_PREV(name, type, field, attr)			\
949 /* ARGSUSED */								\
950 attr struct type *							\
951 name##_RB_PREV(struct type *elm)					\
952 {									\
953 	if (RB_LEFT(elm, field)) {					\
954 		elm = RB_LEFT(elm, field);				\
955 		while (RB_RIGHT(elm, field))				\
956 			elm = RB_RIGHT(elm, field);			\
957 	} else {							\
958 		while (RB_PARENT(elm, field) &&				\
959 		    (elm == RB_LEFT(RB_PARENT(elm, field), field)))	\
960 			elm = RB_PARENT(elm, field);			\
961 		elm = RB_PARENT(elm, field);				\
962 	}								\
963 	return (elm);							\
964 }
965 
966 #define RB_GENERATE_INSERT_PREV(name, type, field, cmp, attr)		\
967 /* Inserts a node into the prev position in the RB tree */		\
968 attr struct type *							\
969 name##_RB_INSERT_PREV(struct name *head,				\
970     struct type *elm, struct type *prev)				\
971 {									\
972 	struct type *tmp;						\
973 	struct type **tmpp = &RB_LEFT(elm, field);			\
974 									\
975 	_RB_ORDER_CHECK(cmp, prev, elm);				\
976 	if (name##_RB_PREV(elm) != NULL)				\
977 		_RB_ORDER_CHECK(cmp, name##_RB_PREV(elm), prev);	\
978 	while ((tmp = *tmpp) != NULL) {					\
979 		elm = tmp;						\
980 		tmpp = &RB_RIGHT(elm, field);				\
981 	}								\
982 	return (name##_RB_INSERT_FINISH(head, elm, tmpp, prev));	\
983 }
984 
985 #define RB_GENERATE_MINMAX(name, type, field, attr)			\
986 attr struct type *							\
987 name##_RB_MINMAX(struct name *head, int val)				\
988 {									\
989 	struct type *tmp = RB_ROOT(head);				\
990 	struct type *parent = NULL;					\
991 	while (tmp) {							\
992 		parent = tmp;						\
993 		if (val < 0)						\
994 			tmp = RB_LEFT(tmp, field);			\
995 		else							\
996 			tmp = RB_RIGHT(tmp, field);			\
997 	}								\
998 	return (parent);						\
999 }
1000 
1001 #define	RB_GENERATE_REINSERT(name, type, field, cmp, attr)		\
1002 attr struct type *							\
1003 name##_RB_REINSERT(struct name *head, struct type *elm)			\
1004 {									\
1005 	struct type *cmpelm;						\
1006 	if (((cmpelm = RB_PREV(name, head, elm)) != NULL &&		\
1007 	    cmp(cmpelm, elm) >= 0) ||					\
1008 	    ((cmpelm = RB_NEXT(name, head, elm)) != NULL &&		\
1009 	    cmp(elm, cmpelm) >= 0)) {					\
1010 		/* XXXLAS: Remove/insert is heavy handed. */		\
1011 		RB_REMOVE(name, head, elm);				\
1012 		return (RB_INSERT(name, head, elm));			\
1013 	}								\
1014 	return (NULL);							\
1015 }									\
1016 
1017 #define RB_NEGINF	-1
1018 #define RB_INF	1
1019 
1020 #define RB_INSERT(name, x, y)	name##_RB_INSERT(x, y)
1021 #define RB_INSERT_NEXT(name, x, y, z)	name##_RB_INSERT_NEXT(x, y, z)
1022 #define RB_INSERT_PREV(name, x, y, z)	name##_RB_INSERT_PREV(x, y, z)
1023 #define RB_REMOVE(name, x, y)	name##_RB_REMOVE(x, y)
1024 #define RB_FIND(name, x, y)	name##_RB_FIND(x, y)
1025 #define RB_NFIND(name, x, y)	name##_RB_NFIND(x, y)
1026 #define RB_NEXT(name, x, y)	name##_RB_NEXT(y)
1027 #define RB_PREV(name, x, y)	name##_RB_PREV(y)
1028 #define RB_MIN(name, x)		name##_RB_MINMAX(x, RB_NEGINF)
1029 #define RB_MAX(name, x)		name##_RB_MINMAX(x, RB_INF)
1030 #define RB_REINSERT(name, x, y)	name##_RB_REINSERT(x, y)
1031 
1032 #define RB_FOREACH(x, name, head)					\
1033 	for ((x) = RB_MIN(name, head);					\
1034 	     (x) != NULL;						\
1035 	     (x) = name##_RB_NEXT(x))
1036 
1037 #define RB_FOREACH_FROM(x, name, y)					\
1038 	for ((x) = (y);							\
1039 	    ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL);	\
1040 	     (x) = (y))
1041 
1042 #define RB_FOREACH_SAFE(x, name, head, y)				\
1043 	for ((x) = RB_MIN(name, head);					\
1044 	    ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL);	\
1045 	     (x) = (y))
1046 
1047 #define RB_FOREACH_REVERSE(x, name, head)				\
1048 	for ((x) = RB_MAX(name, head);					\
1049 	     (x) != NULL;						\
1050 	     (x) = name##_RB_PREV(x))
1051 
1052 #define RB_FOREACH_REVERSE_FROM(x, name, y)				\
1053 	for ((x) = (y);							\
1054 	    ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL);	\
1055 	     (x) = (y))
1056 
1057 #define RB_FOREACH_REVERSE_SAFE(x, name, head, y)			\
1058 	for ((x) = RB_MAX(name, head);					\
1059 	    ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL);	\
1060 	     (x) = (y))
1061 
1062 #endif	/* _SYS_TREE_H_ */
1063