xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- RISCVBaseInfo.h - Top level definitions for RISC-V MC ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone enum definitions for the RISC-V target
10 // useful for the compiler back-end and the MC libraries.
11 //
12 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_RISCV_MCTARGETDESC_RISCVBASEINFO_H
14 #define LLVM_LIB_TARGET_RISCV_MCTARGETDESC_RISCVBASEINFO_H
15 
16 #include "MCTargetDesc/RISCVMCTargetDesc.h"
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/MC/MCInstrDesc.h"
22 #include "llvm/TargetParser/RISCVISAInfo.h"
23 #include "llvm/TargetParser/RISCVTargetParser.h"
24 #include "llvm/TargetParser/SubtargetFeature.h"
25 
26 namespace llvm {
27 
28 // RISCVII - This namespace holds all of the target specific flags that
29 // instruction info tracks. All definitions must match RISCVInstrFormats.td.
30 namespace RISCVII {
31 enum {
32   InstFormatPseudo = 0,
33   InstFormatR = 1,
34   InstFormatR4 = 2,
35   InstFormatI = 3,
36   InstFormatS = 4,
37   InstFormatB = 5,
38   InstFormatU = 6,
39   InstFormatJ = 7,
40   InstFormatCR = 8,
41   InstFormatCI = 9,
42   InstFormatCSS = 10,
43   InstFormatCIW = 11,
44   InstFormatCL = 12,
45   InstFormatCS = 13,
46   InstFormatCA = 14,
47   InstFormatCB = 15,
48   InstFormatCJ = 16,
49   InstFormatCU = 17,
50   InstFormatCLB = 18,
51   InstFormatCLH = 19,
52   InstFormatCSB = 20,
53   InstFormatCSH = 21,
54   InstFormatOther = 22,
55 
56   InstFormatMask = 31,
57   InstFormatShift = 0,
58 
59   ConstraintShift = InstFormatShift + 5,
60   VS2Constraint = 0b001 << ConstraintShift,
61   VS1Constraint = 0b010 << ConstraintShift,
62   VMConstraint = 0b100 << ConstraintShift,
63   ConstraintMask = 0b111 << ConstraintShift,
64 
65   VLMulShift = ConstraintShift + 3,
66   VLMulMask = 0b111 << VLMulShift,
67 
68   // Force a tail agnostic policy even this instruction has a tied destination.
69   ForceTailAgnosticShift = VLMulShift + 3,
70   ForceTailAgnosticMask = 1 << ForceTailAgnosticShift,
71 
72   // Is this a _TIED vector pseudo instruction. For these instructions we
73   // shouldn't skip the tied operand when converting to MC instructions.
74   IsTiedPseudoShift = ForceTailAgnosticShift + 1,
75   IsTiedPseudoMask = 1 << IsTiedPseudoShift,
76 
77   // Does this instruction have a SEW operand. It will be the last explicit
78   // operand unless there is a vector policy operand. Used by RVV Pseudos.
79   HasSEWOpShift = IsTiedPseudoShift + 1,
80   HasSEWOpMask = 1 << HasSEWOpShift,
81 
82   // Does this instruction have a VL operand. It will be the second to last
83   // explicit operand unless there is a vector policy operand. Used by RVV
84   // Pseudos.
85   HasVLOpShift = HasSEWOpShift + 1,
86   HasVLOpMask = 1 << HasVLOpShift,
87 
88   // Does this instruction have a vector policy operand. It will be the last
89   // explicit operand. Used by RVV Pseudos.
90   HasVecPolicyOpShift = HasVLOpShift + 1,
91   HasVecPolicyOpMask = 1 << HasVecPolicyOpShift,
92 
93   // Is this instruction a vector widening reduction instruction. Used by RVV
94   // Pseudos.
95   IsRVVWideningReductionShift = HasVecPolicyOpShift + 1,
96   IsRVVWideningReductionMask = 1 << IsRVVWideningReductionShift,
97 
98   // Does this instruction care about mask policy. If it is not, the mask policy
99   // could be either agnostic or undisturbed. For example, unmasked, store, and
100   // reduction operations result would not be affected by mask policy, so
101   // compiler has free to select either one.
102   UsesMaskPolicyShift = IsRVVWideningReductionShift + 1,
103   UsesMaskPolicyMask = 1 << UsesMaskPolicyShift,
104 
105   // Indicates that the result can be considered sign extended from bit 31. Some
106   // instructions with this flag aren't W instructions, but are either sign
107   // extended from a smaller size, always outputs a small integer, or put zeros
108   // in bits 63:31. Used by the SExtWRemoval pass.
109   IsSignExtendingOpWShift = UsesMaskPolicyShift + 1,
110   IsSignExtendingOpWMask = 1ULL << IsSignExtendingOpWShift,
111 
112   HasRoundModeOpShift = IsSignExtendingOpWShift + 1,
113   HasRoundModeOpMask = 1 << HasRoundModeOpShift,
114 
115   UsesVXRMShift = HasRoundModeOpShift + 1,
116   UsesVXRMMask = 1 << UsesVXRMShift,
117 
118   // Indicates whether these instructions can partially overlap between source
119   // registers and destination registers according to the vector spec.
120   // 0 -> not a vector pseudo
121   // 1 -> default value for vector pseudos. not widening or narrowing.
122   // 2 -> narrowing case
123   // 3 -> widening case
124   TargetOverlapConstraintTypeShift = UsesVXRMShift + 1,
125   TargetOverlapConstraintTypeMask = 3ULL << TargetOverlapConstraintTypeShift,
126 };
127 
128 // Helper functions to read TSFlags.
129 /// \returns the format of the instruction.
getFormat(uint64_t TSFlags)130 static inline unsigned getFormat(uint64_t TSFlags) {
131   return (TSFlags & InstFormatMask) >> InstFormatShift;
132 }
133 /// \returns the LMUL for the instruction.
getLMul(uint64_t TSFlags)134 static inline VLMUL getLMul(uint64_t TSFlags) {
135   return static_cast<VLMUL>((TSFlags & VLMulMask) >> VLMulShift);
136 }
137 /// \returns true if tail agnostic is enforced for the instruction.
doesForceTailAgnostic(uint64_t TSFlags)138 static inline bool doesForceTailAgnostic(uint64_t TSFlags) {
139   return TSFlags & ForceTailAgnosticMask;
140 }
141 /// \returns true if this a _TIED pseudo.
isTiedPseudo(uint64_t TSFlags)142 static inline bool isTiedPseudo(uint64_t TSFlags) {
143   return TSFlags & IsTiedPseudoMask;
144 }
145 /// \returns true if there is a SEW operand for the instruction.
hasSEWOp(uint64_t TSFlags)146 static inline bool hasSEWOp(uint64_t TSFlags) {
147   return TSFlags & HasSEWOpMask;
148 }
149 /// \returns true if there is a VL operand for the instruction.
hasVLOp(uint64_t TSFlags)150 static inline bool hasVLOp(uint64_t TSFlags) {
151   return TSFlags & HasVLOpMask;
152 }
153 /// \returns true if there is a vector policy operand for this instruction.
hasVecPolicyOp(uint64_t TSFlags)154 static inline bool hasVecPolicyOp(uint64_t TSFlags) {
155   return TSFlags & HasVecPolicyOpMask;
156 }
157 /// \returns true if it is a vector widening reduction instruction.
isRVVWideningReduction(uint64_t TSFlags)158 static inline bool isRVVWideningReduction(uint64_t TSFlags) {
159   return TSFlags & IsRVVWideningReductionMask;
160 }
161 /// \returns true if mask policy is valid for the instruction.
usesMaskPolicy(uint64_t TSFlags)162 static inline bool usesMaskPolicy(uint64_t TSFlags) {
163   return TSFlags & UsesMaskPolicyMask;
164 }
165 
166 /// \returns true if there is a rounding mode operand for this instruction
hasRoundModeOp(uint64_t TSFlags)167 static inline bool hasRoundModeOp(uint64_t TSFlags) {
168   return TSFlags & HasRoundModeOpMask;
169 }
170 
171 /// \returns true if this instruction uses vxrm
usesVXRM(uint64_t TSFlags)172 static inline bool usesVXRM(uint64_t TSFlags) { return TSFlags & UsesVXRMMask; }
173 
getVLOpNum(const MCInstrDesc & Desc)174 static inline unsigned getVLOpNum(const MCInstrDesc &Desc) {
175   const uint64_t TSFlags = Desc.TSFlags;
176   // This method is only called if we expect to have a VL operand, and all
177   // instructions with VL also have SEW.
178   assert(hasSEWOp(TSFlags) && hasVLOp(TSFlags));
179   unsigned Offset = 2;
180   if (hasVecPolicyOp(TSFlags))
181     Offset = 3;
182   return Desc.getNumOperands() - Offset;
183 }
184 
getSEWOpNum(const MCInstrDesc & Desc)185 static inline unsigned getSEWOpNum(const MCInstrDesc &Desc) {
186   const uint64_t TSFlags = Desc.TSFlags;
187   assert(hasSEWOp(TSFlags));
188   unsigned Offset = 1;
189   if (hasVecPolicyOp(TSFlags))
190     Offset = 2;
191   return Desc.getNumOperands() - Offset;
192 }
193 
getVecPolicyOpNum(const MCInstrDesc & Desc)194 static inline unsigned getVecPolicyOpNum(const MCInstrDesc &Desc) {
195   assert(hasVecPolicyOp(Desc.TSFlags));
196   return Desc.getNumOperands() - 1;
197 }
198 
199 /// \returns  the index to the rounding mode immediate value if any, otherwise
200 /// returns -1.
getFRMOpNum(const MCInstrDesc & Desc)201 static inline int getFRMOpNum(const MCInstrDesc &Desc) {
202   const uint64_t TSFlags = Desc.TSFlags;
203   if (!hasRoundModeOp(TSFlags) || usesVXRM(TSFlags))
204     return -1;
205 
206   // The operand order
207   // --------------------------------------
208   // | n-1 (if any)   | n-2  | n-3 | n-4 |
209   // | policy         | sew  | vl  | frm |
210   // --------------------------------------
211   return getVLOpNum(Desc) - 1;
212 }
213 
214 /// \returns  the index to the rounding mode immediate value if any, otherwise
215 /// returns -1.
getVXRMOpNum(const MCInstrDesc & Desc)216 static inline int getVXRMOpNum(const MCInstrDesc &Desc) {
217   const uint64_t TSFlags = Desc.TSFlags;
218   if (!hasRoundModeOp(TSFlags) || !usesVXRM(TSFlags))
219     return -1;
220   // The operand order
221   // --------------------------------------
222   // | n-1 (if any)   | n-2  | n-3 | n-4  |
223   // | policy         | sew  | vl  | vxrm |
224   // --------------------------------------
225   return getVLOpNum(Desc) - 1;
226 }
227 
228 // Is the first def operand tied to the first use operand. This is true for
229 // vector pseudo instructions that have a merge operand for tail/mask
230 // undisturbed. It's also true for vector FMA instructions where one of the
231 // operands is also the destination register.
isFirstDefTiedToFirstUse(const MCInstrDesc & Desc)232 static inline bool isFirstDefTiedToFirstUse(const MCInstrDesc &Desc) {
233   return Desc.getNumDefs() < Desc.getNumOperands() &&
234          Desc.getOperandConstraint(Desc.getNumDefs(), MCOI::TIED_TO) == 0;
235 }
236 
237 // RISC-V Specific Machine Operand Flags
238 enum {
239   MO_None = 0,
240   MO_CALL = 1,
241   MO_LO = 3,
242   MO_HI = 4,
243   MO_PCREL_LO = 5,
244   MO_PCREL_HI = 6,
245   MO_GOT_HI = 7,
246   MO_TPREL_LO = 8,
247   MO_TPREL_HI = 9,
248   MO_TPREL_ADD = 10,
249   MO_TLS_GOT_HI = 11,
250   MO_TLS_GD_HI = 12,
251   MO_TLSDESC_HI = 13,
252   MO_TLSDESC_LOAD_LO = 14,
253   MO_TLSDESC_ADD_LO = 15,
254   MO_TLSDESC_CALL = 16,
255 
256   // Used to differentiate between target-specific "direct" flags and "bitmask"
257   // flags. A machine operand can only have one "direct" flag, but can have
258   // multiple "bitmask" flags.
259   MO_DIRECT_FLAG_MASK = 31
260 };
261 } // namespace RISCVII
262 
263 namespace RISCVOp {
264 enum OperandType : unsigned {
265   OPERAND_FIRST_RISCV_IMM = MCOI::OPERAND_FIRST_TARGET,
266   OPERAND_UIMM1 = OPERAND_FIRST_RISCV_IMM,
267   OPERAND_UIMM2,
268   OPERAND_UIMM2_LSB0,
269   OPERAND_UIMM3,
270   OPERAND_UIMM4,
271   OPERAND_UIMM5,
272   OPERAND_UIMM5_LSB0,
273   OPERAND_UIMM6,
274   OPERAND_UIMM6_LSB0,
275   OPERAND_UIMM7,
276   OPERAND_UIMM7_LSB00,
277   OPERAND_UIMM8_LSB00,
278   OPERAND_UIMM8,
279   OPERAND_UIMM8_LSB000,
280   OPERAND_UIMM8_GE32,
281   OPERAND_UIMM9_LSB000,
282   OPERAND_UIMM10_LSB00_NONZERO,
283   OPERAND_UIMM12,
284   OPERAND_UIMM16,
285   OPERAND_UIMM32,
286   OPERAND_ZERO,
287   OPERAND_SIMM5,
288   OPERAND_SIMM5_PLUS1,
289   OPERAND_SIMM6,
290   OPERAND_SIMM6_NONZERO,
291   OPERAND_SIMM10_LSB0000_NONZERO,
292   OPERAND_SIMM12,
293   OPERAND_SIMM12_LSB00000,
294   OPERAND_UIMM20,
295   OPERAND_UIMMLOG2XLEN,
296   OPERAND_UIMMLOG2XLEN_NONZERO,
297   OPERAND_CLUI_IMM,
298   OPERAND_VTYPEI10,
299   OPERAND_VTYPEI11,
300   OPERAND_RVKRNUM,
301   OPERAND_RVKRNUM_0_7,
302   OPERAND_RVKRNUM_1_10,
303   OPERAND_RVKRNUM_2_14,
304   OPERAND_SPIMM,
305   OPERAND_LAST_RISCV_IMM = OPERAND_SPIMM,
306   // Operand is either a register or uimm5, this is used by V extension pseudo
307   // instructions to represent a value that be passed as AVL to either vsetvli
308   // or vsetivli.
309   OPERAND_AVL,
310 };
311 } // namespace RISCVOp
312 
313 // Describes the predecessor/successor bits used in the FENCE instruction.
314 namespace RISCVFenceField {
315 enum FenceField {
316   I = 8,
317   O = 4,
318   R = 2,
319   W = 1
320 };
321 }
322 
323 // Describes the supported floating point rounding mode encodings.
324 namespace RISCVFPRndMode {
325 enum RoundingMode {
326   RNE = 0,
327   RTZ = 1,
328   RDN = 2,
329   RUP = 3,
330   RMM = 4,
331   DYN = 7,
332   Invalid
333 };
334 
roundingModeToString(RoundingMode RndMode)335 inline static StringRef roundingModeToString(RoundingMode RndMode) {
336   switch (RndMode) {
337   default:
338     llvm_unreachable("Unknown floating point rounding mode");
339   case RISCVFPRndMode::RNE:
340     return "rne";
341   case RISCVFPRndMode::RTZ:
342     return "rtz";
343   case RISCVFPRndMode::RDN:
344     return "rdn";
345   case RISCVFPRndMode::RUP:
346     return "rup";
347   case RISCVFPRndMode::RMM:
348     return "rmm";
349   case RISCVFPRndMode::DYN:
350     return "dyn";
351   }
352 }
353 
stringToRoundingMode(StringRef Str)354 inline static RoundingMode stringToRoundingMode(StringRef Str) {
355   return StringSwitch<RoundingMode>(Str)
356       .Case("rne", RISCVFPRndMode::RNE)
357       .Case("rtz", RISCVFPRndMode::RTZ)
358       .Case("rdn", RISCVFPRndMode::RDN)
359       .Case("rup", RISCVFPRndMode::RUP)
360       .Case("rmm", RISCVFPRndMode::RMM)
361       .Case("dyn", RISCVFPRndMode::DYN)
362       .Default(RISCVFPRndMode::Invalid);
363 }
364 
isValidRoundingMode(unsigned Mode)365 inline static bool isValidRoundingMode(unsigned Mode) {
366   switch (Mode) {
367   default:
368     return false;
369   case RISCVFPRndMode::RNE:
370   case RISCVFPRndMode::RTZ:
371   case RISCVFPRndMode::RDN:
372   case RISCVFPRndMode::RUP:
373   case RISCVFPRndMode::RMM:
374   case RISCVFPRndMode::DYN:
375     return true;
376   }
377 }
378 } // namespace RISCVFPRndMode
379 
380 namespace RISCVVXRndMode {
381 enum RoundingMode {
382   RNU = 0,
383   RNE = 1,
384   RDN = 2,
385   ROD = 3,
386 };
387 } // namespace RISCVVXRndMode
388 
389 //===----------------------------------------------------------------------===//
390 // Floating-point Immediates
391 //
392 
393 namespace RISCVLoadFPImm {
394 float getFPImm(unsigned Imm);
395 
396 /// getLoadFPImm - Return a 5-bit binary encoding of the floating-point
397 /// immediate value. If the value cannot be represented as a 5-bit binary
398 /// encoding, then return -1.
399 int getLoadFPImm(APFloat FPImm);
400 } // namespace RISCVLoadFPImm
401 
402 namespace RISCVSysReg {
403 struct SysReg {
404   const char *Name;
405   const char *AltName;
406   const char *DeprecatedName;
407   unsigned Encoding;
408   // FIXME: add these additional fields when needed.
409   // Privilege Access: Read, Write, Read-Only.
410   // unsigned ReadWrite;
411   // Privilege Mode: User, System or Machine.
412   // unsigned Mode;
413   // Check field name.
414   // unsigned Extra;
415   // Register number without the privilege bits.
416   // unsigned Number;
417   FeatureBitset FeaturesRequired;
418   bool isRV32Only;
419 
haveRequiredFeaturesSysReg420   bool haveRequiredFeatures(const FeatureBitset &ActiveFeatures) const {
421     // Not in 32-bit mode.
422     if (isRV32Only && ActiveFeatures[RISCV::Feature64Bit])
423       return false;
424     // No required feature associated with the system register.
425     if (FeaturesRequired.none())
426       return true;
427     return (FeaturesRequired & ActiveFeatures) == FeaturesRequired;
428   }
429 };
430 
431 #define GET_SysRegsList_DECL
432 #include "RISCVGenSearchableTables.inc"
433 } // end namespace RISCVSysReg
434 
435 namespace RISCVInsnOpcode {
436 struct RISCVOpcode {
437   const char *Name;
438   unsigned Value;
439 };
440 
441 #define GET_RISCVOpcodesList_DECL
442 #include "RISCVGenSearchableTables.inc"
443 } // end namespace RISCVInsnOpcode
444 
445 namespace RISCVABI {
446 
447 enum ABI {
448   ABI_ILP32,
449   ABI_ILP32F,
450   ABI_ILP32D,
451   ABI_ILP32E,
452   ABI_LP64,
453   ABI_LP64F,
454   ABI_LP64D,
455   ABI_LP64E,
456   ABI_Unknown
457 };
458 
459 // Returns the target ABI, or else a StringError if the requested ABIName is
460 // not supported for the given TT and FeatureBits combination.
461 ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits,
462                      StringRef ABIName);
463 
464 ABI getTargetABI(StringRef ABIName);
465 
466 // Returns the register used to hold the stack pointer after realignment.
467 MCRegister getBPReg();
468 
469 // Returns the register holding shadow call stack pointer.
470 MCRegister getSCSPReg();
471 
472 } // namespace RISCVABI
473 
474 namespace RISCVFeatures {
475 
476 // Validates if the given combination of features are valid for the target
477 // triple. Exits with report_fatal_error if not.
478 void validate(const Triple &TT, const FeatureBitset &FeatureBits);
479 
480 llvm::Expected<std::unique_ptr<RISCVISAInfo>>
481 parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits);
482 
483 } // namespace RISCVFeatures
484 
485 namespace RISCVRVC {
486 bool compress(MCInst &OutInst, const MCInst &MI, const MCSubtargetInfo &STI);
487 bool uncompress(MCInst &OutInst, const MCInst &MI, const MCSubtargetInfo &STI);
488 } // namespace RISCVRVC
489 
490 namespace RISCVZC {
491 enum RLISTENCODE {
492   RA = 4,
493   RA_S0,
494   RA_S0_S1,
495   RA_S0_S2,
496   RA_S0_S3,
497   RA_S0_S4,
498   RA_S0_S5,
499   RA_S0_S6,
500   RA_S0_S7,
501   RA_S0_S8,
502   RA_S0_S9,
503   // note - to include s10, s11 must also be included
504   RA_S0_S11,
505   INVALID_RLIST,
506 };
507 
508 inline unsigned encodeRlist(MCRegister EndReg, bool IsRV32E = false) {
509   assert((!IsRV32E || EndReg <= RISCV::X9) && "Invalid Rlist for RV32E");
510   switch (EndReg) {
511   case RISCV::X1:
512     return RLISTENCODE::RA;
513   case RISCV::X8:
514     return RLISTENCODE::RA_S0;
515   case RISCV::X9:
516     return RLISTENCODE::RA_S0_S1;
517   case RISCV::X18:
518     return RLISTENCODE::RA_S0_S2;
519   case RISCV::X19:
520     return RLISTENCODE::RA_S0_S3;
521   case RISCV::X20:
522     return RLISTENCODE::RA_S0_S4;
523   case RISCV::X21:
524     return RLISTENCODE::RA_S0_S5;
525   case RISCV::X22:
526     return RLISTENCODE::RA_S0_S6;
527   case RISCV::X23:
528     return RLISTENCODE::RA_S0_S7;
529   case RISCV::X24:
530     return RLISTENCODE::RA_S0_S8;
531   case RISCV::X25:
532     return RLISTENCODE::RA_S0_S9;
533   case RISCV::X26:
534     return RLISTENCODE::INVALID_RLIST;
535   case RISCV::X27:
536     return RLISTENCODE::RA_S0_S11;
537   default:
538     llvm_unreachable("Undefined input.");
539   }
540 }
541 
getStackAdjBase(unsigned RlistVal,bool IsRV64)542 inline static unsigned getStackAdjBase(unsigned RlistVal, bool IsRV64) {
543   assert(RlistVal != RLISTENCODE::INVALID_RLIST &&
544          "{ra, s0-s10} is not supported, s11 must be included.");
545   if (!IsRV64) {
546     switch (RlistVal) {
547     case RLISTENCODE::RA:
548     case RLISTENCODE::RA_S0:
549     case RLISTENCODE::RA_S0_S1:
550     case RLISTENCODE::RA_S0_S2:
551       return 16;
552     case RLISTENCODE::RA_S0_S3:
553     case RLISTENCODE::RA_S0_S4:
554     case RLISTENCODE::RA_S0_S5:
555     case RLISTENCODE::RA_S0_S6:
556       return 32;
557     case RLISTENCODE::RA_S0_S7:
558     case RLISTENCODE::RA_S0_S8:
559     case RLISTENCODE::RA_S0_S9:
560       return 48;
561     case RLISTENCODE::RA_S0_S11:
562       return 64;
563     }
564   } else {
565     switch (RlistVal) {
566     case RLISTENCODE::RA:
567     case RLISTENCODE::RA_S0:
568       return 16;
569     case RLISTENCODE::RA_S0_S1:
570     case RLISTENCODE::RA_S0_S2:
571       return 32;
572     case RLISTENCODE::RA_S0_S3:
573     case RLISTENCODE::RA_S0_S4:
574       return 48;
575     case RLISTENCODE::RA_S0_S5:
576     case RLISTENCODE::RA_S0_S6:
577       return 64;
578     case RLISTENCODE::RA_S0_S7:
579     case RLISTENCODE::RA_S0_S8:
580       return 80;
581     case RLISTENCODE::RA_S0_S9:
582       return 96;
583     case RLISTENCODE::RA_S0_S11:
584       return 112;
585     }
586   }
587   llvm_unreachable("Unexpected RlistVal");
588 }
589 
getSpimm(unsigned RlistVal,unsigned & SpimmVal,int64_t StackAdjustment,bool IsRV64)590 inline static bool getSpimm(unsigned RlistVal, unsigned &SpimmVal,
591                             int64_t StackAdjustment, bool IsRV64) {
592   if (RlistVal == RLISTENCODE::INVALID_RLIST)
593     return false;
594   unsigned StackAdjBase = getStackAdjBase(RlistVal, IsRV64);
595   StackAdjustment -= StackAdjBase;
596   if (StackAdjustment % 16 != 0)
597     return false;
598   SpimmVal = StackAdjustment / 16;
599   if (SpimmVal > 3)
600     return false;
601   return true;
602 }
603 
604 void printRlist(unsigned SlistEncode, raw_ostream &OS);
605 } // namespace RISCVZC
606 
607 } // namespace llvm
608 
609 #endif
610