1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "DXILBitcodeWriter.h"
14 #include "DXILValueEnumerator.h"
15 #include "DirectXIRPasses/PointerTypeAnalysis.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Bitcode/BitcodeCommon.h"
18 #include "llvm/Bitcode/BitcodeReader.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/Bitstream/BitCodes.h"
21 #include "llvm/Bitstream/BitstreamWriter.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Comdat.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/ModuleSummaryIndex.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/UseListOrder.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/IR/ValueSymbolTable.h"
49 #include "llvm/Object/IRSymtab.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/ModRef.h"
52 #include "llvm/Support/SHA1.h"
53 #include "llvm/TargetParser/Triple.h"
54
55 namespace llvm {
56 namespace dxil {
57
58 // Generates an enum to use as an index in the Abbrev array of Metadata record.
59 enum MetadataAbbrev : unsigned {
60 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
61 #include "llvm/IR/Metadata.def"
62 LastPlusOne
63 };
64
65 class DXILBitcodeWriter {
66
67 /// These are manifest constants used by the bitcode writer. They do not need
68 /// to be kept in sync with the reader, but need to be consistent within this
69 /// file.
70 enum {
71 // VALUE_SYMTAB_BLOCK abbrev id's.
72 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
73 VST_ENTRY_7_ABBREV,
74 VST_ENTRY_6_ABBREV,
75 VST_BBENTRY_6_ABBREV,
76
77 // CONSTANTS_BLOCK abbrev id's.
78 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
79 CONSTANTS_INTEGER_ABBREV,
80 CONSTANTS_CE_CAST_Abbrev,
81 CONSTANTS_NULL_Abbrev,
82
83 // FUNCTION_BLOCK abbrev id's.
84 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
85 FUNCTION_INST_BINOP_ABBREV,
86 FUNCTION_INST_BINOP_FLAGS_ABBREV,
87 FUNCTION_INST_CAST_ABBREV,
88 FUNCTION_INST_RET_VOID_ABBREV,
89 FUNCTION_INST_RET_VAL_ABBREV,
90 FUNCTION_INST_UNREACHABLE_ABBREV,
91 FUNCTION_INST_GEP_ABBREV,
92 };
93
94 // Cache some types
95 Type *I8Ty;
96 Type *I8PtrTy;
97
98 /// The stream created and owned by the client.
99 BitstreamWriter &Stream;
100
101 StringTableBuilder &StrtabBuilder;
102
103 /// The Module to write to bitcode.
104 const Module &M;
105
106 /// Enumerates ids for all values in the module.
107 ValueEnumerator VE;
108
109 /// Map that holds the correspondence between GUIDs in the summary index,
110 /// that came from indirect call profiles, and a value id generated by this
111 /// class to use in the VST and summary block records.
112 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
113
114 /// Tracks the last value id recorded in the GUIDToValueMap.
115 unsigned GlobalValueId;
116
117 /// Saves the offset of the VSTOffset record that must eventually be
118 /// backpatched with the offset of the actual VST.
119 uint64_t VSTOffsetPlaceholder = 0;
120
121 /// Pointer to the buffer allocated by caller for bitcode writing.
122 const SmallVectorImpl<char> &Buffer;
123
124 /// The start bit of the identification block.
125 uint64_t BitcodeStartBit;
126
127 /// This maps values to their typed pointers
128 PointerTypeMap PointerMap;
129
130 public:
131 /// Constructs a ModuleBitcodeWriter object for the given Module,
132 /// writing to the provided \p Buffer.
DXILBitcodeWriter(const Module & M,SmallVectorImpl<char> & Buffer,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream)133 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
134 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
135 : I8Ty(Type::getInt8Ty(M.getContext())),
136 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream),
137 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer),
138 BitcodeStartBit(Stream.GetCurrentBitNo()),
139 PointerMap(PointerTypeAnalysis::run(M)) {
140 GlobalValueId = VE.getValues().size();
141 // Enumerate the typed pointers
142 for (auto El : PointerMap)
143 VE.EnumerateType(El.second);
144 }
145
146 /// Emit the current module to the bitstream.
147 void write();
148
149 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
150 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
151 StringRef Str, unsigned AbbrevToUse);
152 static void writeIdentificationBlock(BitstreamWriter &Stream);
153 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
154 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
155
156 static unsigned getEncodedComdatSelectionKind(const Comdat &C);
157 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
158 static unsigned getEncodedLinkage(const GlobalValue &GV);
159 static unsigned getEncodedVisibility(const GlobalValue &GV);
160 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
161 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
162 static unsigned getEncodedCastOpcode(unsigned Opcode);
163 static unsigned getEncodedUnaryOpcode(unsigned Opcode);
164 static unsigned getEncodedBinaryOpcode(unsigned Opcode);
165 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
166 static unsigned getEncodedOrdering(AtomicOrdering Ordering);
167 static uint64_t getOptimizationFlags(const Value *V);
168
169 private:
170 void writeModuleVersion();
171 void writePerModuleGlobalValueSummary();
172
173 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
174 GlobalValueSummary *Summary,
175 unsigned ValueID,
176 unsigned FSCallsAbbrev,
177 unsigned FSCallsProfileAbbrev,
178 const Function &F);
179 void writeModuleLevelReferences(const GlobalVariable &V,
180 SmallVector<uint64_t, 64> &NameVals,
181 unsigned FSModRefsAbbrev,
182 unsigned FSModVTableRefsAbbrev);
183
assignValueId(GlobalValue::GUID ValGUID)184 void assignValueId(GlobalValue::GUID ValGUID) {
185 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
186 }
187
getValueId(GlobalValue::GUID ValGUID)188 unsigned getValueId(GlobalValue::GUID ValGUID) {
189 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
190 // Expect that any GUID value had a value Id assigned by an
191 // earlier call to assignValueId.
192 assert(VMI != GUIDToValueIdMap.end() &&
193 "GUID does not have assigned value Id");
194 return VMI->second;
195 }
196
197 // Helper to get the valueId for the type of value recorded in VI.
getValueId(ValueInfo VI)198 unsigned getValueId(ValueInfo VI) {
199 if (!VI.haveGVs() || !VI.getValue())
200 return getValueId(VI.getGUID());
201 return VE.getValueID(VI.getValue());
202 }
203
valueIds()204 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
205
bitcodeStartBit()206 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
207
208 size_t addToStrtab(StringRef Str);
209
210 unsigned createDILocationAbbrev();
211 unsigned createGenericDINodeAbbrev();
212
213 void writeAttributeGroupTable();
214 void writeAttributeTable();
215 void writeTypeTable();
216 void writeComdats();
217 void writeValueSymbolTableForwardDecl();
218 void writeModuleInfo();
219 void writeValueAsMetadata(const ValueAsMetadata *MD,
220 SmallVectorImpl<uint64_t> &Record);
221 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
222 unsigned Abbrev);
223 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
224 unsigned &Abbrev);
writeGenericDINode(const GenericDINode * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)225 void writeGenericDINode(const GenericDINode *N,
226 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
227 llvm_unreachable("DXIL cannot contain GenericDI Nodes");
228 }
229 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
230 unsigned Abbrev);
writeDIGenericSubrange(const DIGenericSubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)231 void writeDIGenericSubrange(const DIGenericSubrange *N,
232 SmallVectorImpl<uint64_t> &Record,
233 unsigned Abbrev) {
234 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
235 }
236 void writeDIEnumerator(const DIEnumerator *N,
237 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
238 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
239 unsigned Abbrev);
writeDIStringType(const DIStringType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)240 void writeDIStringType(const DIStringType *N,
241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
242 llvm_unreachable("DXIL cannot contain DIStringType Nodes");
243 }
244 void writeDIDerivedType(const DIDerivedType *N,
245 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
246 void writeDICompositeType(const DICompositeType *N,
247 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
248 void writeDISubroutineType(const DISubroutineType *N,
249 SmallVectorImpl<uint64_t> &Record,
250 unsigned Abbrev);
251 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
252 unsigned Abbrev);
253 void writeDICompileUnit(const DICompileUnit *N,
254 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
255 void writeDISubprogram(const DISubprogram *N,
256 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
257 void writeDILexicalBlock(const DILexicalBlock *N,
258 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
259 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
260 SmallVectorImpl<uint64_t> &Record,
261 unsigned Abbrev);
writeDICommonBlock(const DICommonBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)262 void writeDICommonBlock(const DICommonBlock *N,
263 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
264 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
265 }
266 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
267 unsigned Abbrev);
writeDIMacro(const DIMacro * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)268 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
269 unsigned Abbrev) {
270 llvm_unreachable("DXIL cannot contain DIMacro Nodes");
271 }
writeDIMacroFile(const DIMacroFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)272 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
273 unsigned Abbrev) {
274 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
275 }
writeDIArgList(const DIArgList * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)276 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
277 unsigned Abbrev) {
278 llvm_unreachable("DXIL cannot contain DIArgList Nodes");
279 }
writeDIAssignID(const DIAssignID * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)280 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
281 unsigned Abbrev) {
282 // DIAssignID is experimental feature to track variable location in IR..
283 // FIXME: translate DIAssignID to debug info DXIL supports.
284 // See https://github.com/llvm/llvm-project/issues/58989
285 llvm_unreachable("DXIL cannot contain DIAssignID Nodes");
286 }
287 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
288 unsigned Abbrev);
289 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
290 SmallVectorImpl<uint64_t> &Record,
291 unsigned Abbrev);
292 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
293 SmallVectorImpl<uint64_t> &Record,
294 unsigned Abbrev);
295 void writeDIGlobalVariable(const DIGlobalVariable *N,
296 SmallVectorImpl<uint64_t> &Record,
297 unsigned Abbrev);
298 void writeDILocalVariable(const DILocalVariable *N,
299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
writeDILabel(const DILabel * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)300 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
301 unsigned Abbrev) {
302 llvm_unreachable("DXIL cannot contain DILabel Nodes");
303 }
304 void writeDIExpression(const DIExpression *N,
305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
writeDIGlobalVariableExpression(const DIGlobalVariableExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)306 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
307 SmallVectorImpl<uint64_t> &Record,
308 unsigned Abbrev) {
309 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
310 }
311 void writeDIObjCProperty(const DIObjCProperty *N,
312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313 void writeDIImportedEntity(const DIImportedEntity *N,
314 SmallVectorImpl<uint64_t> &Record,
315 unsigned Abbrev);
316 unsigned createNamedMetadataAbbrev();
317 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
318 unsigned createMetadataStringsAbbrev();
319 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
320 SmallVectorImpl<uint64_t> &Record);
321 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
322 SmallVectorImpl<uint64_t> &Record,
323 std::vector<unsigned> *MDAbbrevs = nullptr,
324 std::vector<uint64_t> *IndexPos = nullptr);
325 void writeModuleMetadata();
326 void writeFunctionMetadata(const Function &F);
327 void writeFunctionMetadataAttachment(const Function &F);
328 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
329 const GlobalObject &GO);
330 void writeModuleMetadataKinds();
331 void writeOperandBundleTags();
332 void writeSyncScopeNames();
333 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
334 void writeModuleConstants();
335 bool pushValueAndType(const Value *V, unsigned InstID,
336 SmallVectorImpl<unsigned> &Vals);
337 void writeOperandBundles(const CallBase &CB, unsigned InstID);
338 void pushValue(const Value *V, unsigned InstID,
339 SmallVectorImpl<unsigned> &Vals);
340 void pushValueSigned(const Value *V, unsigned InstID,
341 SmallVectorImpl<uint64_t> &Vals);
342 void writeInstruction(const Instruction &I, unsigned InstID,
343 SmallVectorImpl<unsigned> &Vals);
344 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
345 void writeGlobalValueSymbolTable(
346 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
347 void writeFunction(const Function &F);
348 void writeBlockInfo();
349
getEncodedSyncScopeID(SyncScope::ID SSID)350 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
351
getEncodedAlign(MaybeAlign Alignment)352 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
353
354 unsigned getTypeID(Type *T, const Value *V = nullptr);
355 /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject
356 ///
357 /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the
358 /// GlobalObject, but in the bitcode writer we need the pointer element type.
359 unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G);
360 };
361
362 } // namespace dxil
363 } // namespace llvm
364
365 using namespace llvm;
366 using namespace llvm::dxil;
367
368 ////////////////////////////////////////////////////////////////////////////////
369 /// Begin dxil::BitcodeWriter Implementation
370 ////////////////////////////////////////////////////////////////////////////////
371
BitcodeWriter(SmallVectorImpl<char> & Buffer)372 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
373 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
374 // Emit the file header.
375 Stream->Emit((unsigned)'B', 8);
376 Stream->Emit((unsigned)'C', 8);
377 Stream->Emit(0x0, 4);
378 Stream->Emit(0xC, 4);
379 Stream->Emit(0xE, 4);
380 Stream->Emit(0xD, 4);
381 }
382
~BitcodeWriter()383 dxil::BitcodeWriter::~BitcodeWriter() { }
384
385 /// Write the specified module to the specified output stream.
WriteDXILToFile(const Module & M,raw_ostream & Out)386 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
387 SmallVector<char, 0> Buffer;
388 Buffer.reserve(256 * 1024);
389
390 // If this is darwin or another generic macho target, reserve space for the
391 // header.
392 Triple TT(M.getTargetTriple());
393 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
394 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
395
396 BitcodeWriter Writer(Buffer);
397 Writer.writeModule(M);
398
399 // Write the generated bitstream to "Out".
400 if (!Buffer.empty())
401 Out.write((char *)&Buffer.front(), Buffer.size());
402 }
403
writeBlob(unsigned Block,unsigned Record,StringRef Blob)404 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
405 Stream->EnterSubblock(Block, 3);
406
407 auto Abbv = std::make_shared<BitCodeAbbrev>();
408 Abbv->Add(BitCodeAbbrevOp(Record));
409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
410 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
411
412 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
413
414 Stream->ExitBlock();
415 }
416
writeModule(const Module & M)417 void BitcodeWriter::writeModule(const Module &M) {
418
419 // The Mods vector is used by irsymtab::build, which requires non-const
420 // Modules in case it needs to materialize metadata. But the bitcode writer
421 // requires that the module is materialized, so we can cast to non-const here,
422 // after checking that it is in fact materialized.
423 assert(M.isMaterialized());
424 Mods.push_back(const_cast<Module *>(&M));
425
426 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
427 ModuleWriter.write();
428 }
429
430 ////////////////////////////////////////////////////////////////////////////////
431 /// Begin dxil::BitcodeWriterBase Implementation
432 ////////////////////////////////////////////////////////////////////////////////
433
getEncodedCastOpcode(unsigned Opcode)434 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
435 switch (Opcode) {
436 default:
437 llvm_unreachable("Unknown cast instruction!");
438 case Instruction::Trunc:
439 return bitc::CAST_TRUNC;
440 case Instruction::ZExt:
441 return bitc::CAST_ZEXT;
442 case Instruction::SExt:
443 return bitc::CAST_SEXT;
444 case Instruction::FPToUI:
445 return bitc::CAST_FPTOUI;
446 case Instruction::FPToSI:
447 return bitc::CAST_FPTOSI;
448 case Instruction::UIToFP:
449 return bitc::CAST_UITOFP;
450 case Instruction::SIToFP:
451 return bitc::CAST_SITOFP;
452 case Instruction::FPTrunc:
453 return bitc::CAST_FPTRUNC;
454 case Instruction::FPExt:
455 return bitc::CAST_FPEXT;
456 case Instruction::PtrToInt:
457 return bitc::CAST_PTRTOINT;
458 case Instruction::IntToPtr:
459 return bitc::CAST_INTTOPTR;
460 case Instruction::BitCast:
461 return bitc::CAST_BITCAST;
462 case Instruction::AddrSpaceCast:
463 return bitc::CAST_ADDRSPACECAST;
464 }
465 }
466
getEncodedUnaryOpcode(unsigned Opcode)467 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
468 switch (Opcode) {
469 default:
470 llvm_unreachable("Unknown binary instruction!");
471 case Instruction::FNeg:
472 return bitc::UNOP_FNEG;
473 }
474 }
475
getEncodedBinaryOpcode(unsigned Opcode)476 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
477 switch (Opcode) {
478 default:
479 llvm_unreachable("Unknown binary instruction!");
480 case Instruction::Add:
481 case Instruction::FAdd:
482 return bitc::BINOP_ADD;
483 case Instruction::Sub:
484 case Instruction::FSub:
485 return bitc::BINOP_SUB;
486 case Instruction::Mul:
487 case Instruction::FMul:
488 return bitc::BINOP_MUL;
489 case Instruction::UDiv:
490 return bitc::BINOP_UDIV;
491 case Instruction::FDiv:
492 case Instruction::SDiv:
493 return bitc::BINOP_SDIV;
494 case Instruction::URem:
495 return bitc::BINOP_UREM;
496 case Instruction::FRem:
497 case Instruction::SRem:
498 return bitc::BINOP_SREM;
499 case Instruction::Shl:
500 return bitc::BINOP_SHL;
501 case Instruction::LShr:
502 return bitc::BINOP_LSHR;
503 case Instruction::AShr:
504 return bitc::BINOP_ASHR;
505 case Instruction::And:
506 return bitc::BINOP_AND;
507 case Instruction::Or:
508 return bitc::BINOP_OR;
509 case Instruction::Xor:
510 return bitc::BINOP_XOR;
511 }
512 }
513
getTypeID(Type * T,const Value * V)514 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) {
515 if (!T->isPointerTy() &&
516 // For Constant, always check PointerMap to make sure OpaquePointer in
517 // things like constant struct/array works.
518 (!V || !isa<Constant>(V)))
519 return VE.getTypeID(T);
520 auto It = PointerMap.find(V);
521 if (It != PointerMap.end())
522 return VE.getTypeID(It->second);
523 // For Constant, return T when cannot find in PointerMap.
524 // FIXME: support ConstantPointerNull which could map to more than one
525 // TypedPointerType.
526 // See https://github.com/llvm/llvm-project/issues/57942.
527 if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V))
528 return VE.getTypeID(T);
529 return VE.getTypeID(I8PtrTy);
530 }
531
getGlobalObjectValueTypeID(Type * T,const GlobalObject * G)532 unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T,
533 const GlobalObject *G) {
534 auto It = PointerMap.find(G);
535 if (It != PointerMap.end()) {
536 TypedPointerType *PtrTy = cast<TypedPointerType>(It->second);
537 return VE.getTypeID(PtrTy->getElementType());
538 }
539 return VE.getTypeID(T);
540 }
541
getEncodedRMWOperation(AtomicRMWInst::BinOp Op)542 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
543 switch (Op) {
544 default:
545 llvm_unreachable("Unknown RMW operation!");
546 case AtomicRMWInst::Xchg:
547 return bitc::RMW_XCHG;
548 case AtomicRMWInst::Add:
549 return bitc::RMW_ADD;
550 case AtomicRMWInst::Sub:
551 return bitc::RMW_SUB;
552 case AtomicRMWInst::And:
553 return bitc::RMW_AND;
554 case AtomicRMWInst::Nand:
555 return bitc::RMW_NAND;
556 case AtomicRMWInst::Or:
557 return bitc::RMW_OR;
558 case AtomicRMWInst::Xor:
559 return bitc::RMW_XOR;
560 case AtomicRMWInst::Max:
561 return bitc::RMW_MAX;
562 case AtomicRMWInst::Min:
563 return bitc::RMW_MIN;
564 case AtomicRMWInst::UMax:
565 return bitc::RMW_UMAX;
566 case AtomicRMWInst::UMin:
567 return bitc::RMW_UMIN;
568 case AtomicRMWInst::FAdd:
569 return bitc::RMW_FADD;
570 case AtomicRMWInst::FSub:
571 return bitc::RMW_FSUB;
572 case AtomicRMWInst::FMax:
573 return bitc::RMW_FMAX;
574 case AtomicRMWInst::FMin:
575 return bitc::RMW_FMIN;
576 }
577 }
578
getEncodedOrdering(AtomicOrdering Ordering)579 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
580 switch (Ordering) {
581 case AtomicOrdering::NotAtomic:
582 return bitc::ORDERING_NOTATOMIC;
583 case AtomicOrdering::Unordered:
584 return bitc::ORDERING_UNORDERED;
585 case AtomicOrdering::Monotonic:
586 return bitc::ORDERING_MONOTONIC;
587 case AtomicOrdering::Acquire:
588 return bitc::ORDERING_ACQUIRE;
589 case AtomicOrdering::Release:
590 return bitc::ORDERING_RELEASE;
591 case AtomicOrdering::AcquireRelease:
592 return bitc::ORDERING_ACQREL;
593 case AtomicOrdering::SequentiallyConsistent:
594 return bitc::ORDERING_SEQCST;
595 }
596 llvm_unreachable("Invalid ordering");
597 }
598
writeStringRecord(BitstreamWriter & Stream,unsigned Code,StringRef Str,unsigned AbbrevToUse)599 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
600 unsigned Code, StringRef Str,
601 unsigned AbbrevToUse) {
602 SmallVector<unsigned, 64> Vals;
603
604 // Code: [strchar x N]
605 for (char C : Str) {
606 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
607 AbbrevToUse = 0;
608 Vals.push_back(C);
609 }
610
611 // Emit the finished record.
612 Stream.EmitRecord(Code, Vals, AbbrevToUse);
613 }
614
getAttrKindEncoding(Attribute::AttrKind Kind)615 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
616 switch (Kind) {
617 case Attribute::Alignment:
618 return bitc::ATTR_KIND_ALIGNMENT;
619 case Attribute::AlwaysInline:
620 return bitc::ATTR_KIND_ALWAYS_INLINE;
621 case Attribute::Builtin:
622 return bitc::ATTR_KIND_BUILTIN;
623 case Attribute::ByVal:
624 return bitc::ATTR_KIND_BY_VAL;
625 case Attribute::Convergent:
626 return bitc::ATTR_KIND_CONVERGENT;
627 case Attribute::InAlloca:
628 return bitc::ATTR_KIND_IN_ALLOCA;
629 case Attribute::Cold:
630 return bitc::ATTR_KIND_COLD;
631 case Attribute::InlineHint:
632 return bitc::ATTR_KIND_INLINE_HINT;
633 case Attribute::InReg:
634 return bitc::ATTR_KIND_IN_REG;
635 case Attribute::JumpTable:
636 return bitc::ATTR_KIND_JUMP_TABLE;
637 case Attribute::MinSize:
638 return bitc::ATTR_KIND_MIN_SIZE;
639 case Attribute::Naked:
640 return bitc::ATTR_KIND_NAKED;
641 case Attribute::Nest:
642 return bitc::ATTR_KIND_NEST;
643 case Attribute::NoAlias:
644 return bitc::ATTR_KIND_NO_ALIAS;
645 case Attribute::NoBuiltin:
646 return bitc::ATTR_KIND_NO_BUILTIN;
647 case Attribute::NoCapture:
648 return bitc::ATTR_KIND_NO_CAPTURE;
649 case Attribute::NoDuplicate:
650 return bitc::ATTR_KIND_NO_DUPLICATE;
651 case Attribute::NoImplicitFloat:
652 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
653 case Attribute::NoInline:
654 return bitc::ATTR_KIND_NO_INLINE;
655 case Attribute::NonLazyBind:
656 return bitc::ATTR_KIND_NON_LAZY_BIND;
657 case Attribute::NonNull:
658 return bitc::ATTR_KIND_NON_NULL;
659 case Attribute::Dereferenceable:
660 return bitc::ATTR_KIND_DEREFERENCEABLE;
661 case Attribute::DereferenceableOrNull:
662 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
663 case Attribute::NoRedZone:
664 return bitc::ATTR_KIND_NO_RED_ZONE;
665 case Attribute::NoReturn:
666 return bitc::ATTR_KIND_NO_RETURN;
667 case Attribute::NoUnwind:
668 return bitc::ATTR_KIND_NO_UNWIND;
669 case Attribute::OptimizeForSize:
670 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
671 case Attribute::OptimizeNone:
672 return bitc::ATTR_KIND_OPTIMIZE_NONE;
673 case Attribute::ReadNone:
674 return bitc::ATTR_KIND_READ_NONE;
675 case Attribute::ReadOnly:
676 return bitc::ATTR_KIND_READ_ONLY;
677 case Attribute::Returned:
678 return bitc::ATTR_KIND_RETURNED;
679 case Attribute::ReturnsTwice:
680 return bitc::ATTR_KIND_RETURNS_TWICE;
681 case Attribute::SExt:
682 return bitc::ATTR_KIND_S_EXT;
683 case Attribute::StackAlignment:
684 return bitc::ATTR_KIND_STACK_ALIGNMENT;
685 case Attribute::StackProtect:
686 return bitc::ATTR_KIND_STACK_PROTECT;
687 case Attribute::StackProtectReq:
688 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
689 case Attribute::StackProtectStrong:
690 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
691 case Attribute::SafeStack:
692 return bitc::ATTR_KIND_SAFESTACK;
693 case Attribute::StructRet:
694 return bitc::ATTR_KIND_STRUCT_RET;
695 case Attribute::SanitizeAddress:
696 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
697 case Attribute::SanitizeThread:
698 return bitc::ATTR_KIND_SANITIZE_THREAD;
699 case Attribute::SanitizeMemory:
700 return bitc::ATTR_KIND_SANITIZE_MEMORY;
701 case Attribute::UWTable:
702 return bitc::ATTR_KIND_UW_TABLE;
703 case Attribute::ZExt:
704 return bitc::ATTR_KIND_Z_EXT;
705 case Attribute::EndAttrKinds:
706 llvm_unreachable("Can not encode end-attribute kinds marker.");
707 case Attribute::None:
708 llvm_unreachable("Can not encode none-attribute.");
709 case Attribute::EmptyKey:
710 case Attribute::TombstoneKey:
711 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
712 default:
713 llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
714 "should be stripped in DXILPrepare");
715 }
716
717 llvm_unreachable("Trying to encode unknown attribute");
718 }
719
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)720 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
721 uint64_t V) {
722 if ((int64_t)V >= 0)
723 Vals.push_back(V << 1);
724 else
725 Vals.push_back((-V << 1) | 1);
726 }
727
emitWideAPInt(SmallVectorImpl<uint64_t> & Vals,const APInt & A)728 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
729 const APInt &A) {
730 // We have an arbitrary precision integer value to write whose
731 // bit width is > 64. However, in canonical unsigned integer
732 // format it is likely that the high bits are going to be zero.
733 // So, we only write the number of active words.
734 unsigned NumWords = A.getActiveWords();
735 const uint64_t *RawData = A.getRawData();
736 for (unsigned i = 0; i < NumWords; i++)
737 emitSignedInt64(Vals, RawData[i]);
738 }
739
getOptimizationFlags(const Value * V)740 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
741 uint64_t Flags = 0;
742
743 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
744 if (OBO->hasNoSignedWrap())
745 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
746 if (OBO->hasNoUnsignedWrap())
747 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
748 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
749 if (PEO->isExact())
750 Flags |= 1 << bitc::PEO_EXACT;
751 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
752 if (FPMO->hasAllowReassoc())
753 Flags |= bitc::AllowReassoc;
754 if (FPMO->hasNoNaNs())
755 Flags |= bitc::NoNaNs;
756 if (FPMO->hasNoInfs())
757 Flags |= bitc::NoInfs;
758 if (FPMO->hasNoSignedZeros())
759 Flags |= bitc::NoSignedZeros;
760 if (FPMO->hasAllowReciprocal())
761 Flags |= bitc::AllowReciprocal;
762 if (FPMO->hasAllowContract())
763 Flags |= bitc::AllowContract;
764 if (FPMO->hasApproxFunc())
765 Flags |= bitc::ApproxFunc;
766 }
767
768 return Flags;
769 }
770
771 unsigned
getEncodedLinkage(const GlobalValue::LinkageTypes Linkage)772 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
773 switch (Linkage) {
774 case GlobalValue::ExternalLinkage:
775 return 0;
776 case GlobalValue::WeakAnyLinkage:
777 return 16;
778 case GlobalValue::AppendingLinkage:
779 return 2;
780 case GlobalValue::InternalLinkage:
781 return 3;
782 case GlobalValue::LinkOnceAnyLinkage:
783 return 18;
784 case GlobalValue::ExternalWeakLinkage:
785 return 7;
786 case GlobalValue::CommonLinkage:
787 return 8;
788 case GlobalValue::PrivateLinkage:
789 return 9;
790 case GlobalValue::WeakODRLinkage:
791 return 17;
792 case GlobalValue::LinkOnceODRLinkage:
793 return 19;
794 case GlobalValue::AvailableExternallyLinkage:
795 return 12;
796 }
797 llvm_unreachable("Invalid linkage");
798 }
799
getEncodedLinkage(const GlobalValue & GV)800 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
801 return getEncodedLinkage(GV.getLinkage());
802 }
803
getEncodedVisibility(const GlobalValue & GV)804 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
805 switch (GV.getVisibility()) {
806 case GlobalValue::DefaultVisibility:
807 return 0;
808 case GlobalValue::HiddenVisibility:
809 return 1;
810 case GlobalValue::ProtectedVisibility:
811 return 2;
812 }
813 llvm_unreachable("Invalid visibility");
814 }
815
getEncodedDLLStorageClass(const GlobalValue & GV)816 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
817 switch (GV.getDLLStorageClass()) {
818 case GlobalValue::DefaultStorageClass:
819 return 0;
820 case GlobalValue::DLLImportStorageClass:
821 return 1;
822 case GlobalValue::DLLExportStorageClass:
823 return 2;
824 }
825 llvm_unreachable("Invalid DLL storage class");
826 }
827
getEncodedThreadLocalMode(const GlobalValue & GV)828 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
829 switch (GV.getThreadLocalMode()) {
830 case GlobalVariable::NotThreadLocal:
831 return 0;
832 case GlobalVariable::GeneralDynamicTLSModel:
833 return 1;
834 case GlobalVariable::LocalDynamicTLSModel:
835 return 2;
836 case GlobalVariable::InitialExecTLSModel:
837 return 3;
838 case GlobalVariable::LocalExecTLSModel:
839 return 4;
840 }
841 llvm_unreachable("Invalid TLS model");
842 }
843
getEncodedComdatSelectionKind(const Comdat & C)844 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
845 switch (C.getSelectionKind()) {
846 case Comdat::Any:
847 return bitc::COMDAT_SELECTION_KIND_ANY;
848 case Comdat::ExactMatch:
849 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
850 case Comdat::Largest:
851 return bitc::COMDAT_SELECTION_KIND_LARGEST;
852 case Comdat::NoDeduplicate:
853 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
854 case Comdat::SameSize:
855 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
856 }
857 llvm_unreachable("Invalid selection kind");
858 }
859
860 ////////////////////////////////////////////////////////////////////////////////
861 /// Begin DXILBitcodeWriter Implementation
862 ////////////////////////////////////////////////////////////////////////////////
863
writeAttributeGroupTable()864 void DXILBitcodeWriter::writeAttributeGroupTable() {
865 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
866 VE.getAttributeGroups();
867 if (AttrGrps.empty())
868 return;
869
870 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
871
872 SmallVector<uint64_t, 64> Record;
873 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
874 unsigned AttrListIndex = Pair.first;
875 AttributeSet AS = Pair.second;
876 Record.push_back(VE.getAttributeGroupID(Pair));
877 Record.push_back(AttrListIndex);
878
879 for (Attribute Attr : AS) {
880 if (Attr.isEnumAttribute()) {
881 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
882 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
883 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
884 Record.push_back(0);
885 Record.push_back(Val);
886 } else if (Attr.isIntAttribute()) {
887 if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) {
888 MemoryEffects ME = Attr.getMemoryEffects();
889 if (ME.doesNotAccessMemory()) {
890 Record.push_back(0);
891 Record.push_back(bitc::ATTR_KIND_READ_NONE);
892 } else {
893 if (ME.onlyReadsMemory()) {
894 Record.push_back(0);
895 Record.push_back(bitc::ATTR_KIND_READ_ONLY);
896 }
897 if (ME.onlyAccessesArgPointees()) {
898 Record.push_back(0);
899 Record.push_back(bitc::ATTR_KIND_ARGMEMONLY);
900 }
901 }
902 } else {
903 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
904 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
905 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
906 Record.push_back(1);
907 Record.push_back(Val);
908 Record.push_back(Attr.getValueAsInt());
909 }
910 } else {
911 StringRef Kind = Attr.getKindAsString();
912 StringRef Val = Attr.getValueAsString();
913
914 Record.push_back(Val.empty() ? 3 : 4);
915 Record.append(Kind.begin(), Kind.end());
916 Record.push_back(0);
917 if (!Val.empty()) {
918 Record.append(Val.begin(), Val.end());
919 Record.push_back(0);
920 }
921 }
922 }
923
924 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
925 Record.clear();
926 }
927
928 Stream.ExitBlock();
929 }
930
writeAttributeTable()931 void DXILBitcodeWriter::writeAttributeTable() {
932 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
933 if (Attrs.empty())
934 return;
935
936 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
937
938 SmallVector<uint64_t, 64> Record;
939 for (AttributeList AL : Attrs) {
940 for (unsigned i : AL.indexes()) {
941 AttributeSet AS = AL.getAttributes(i);
942 if (AS.hasAttributes())
943 Record.push_back(VE.getAttributeGroupID({i, AS}));
944 }
945
946 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
947 Record.clear();
948 }
949
950 Stream.ExitBlock();
951 }
952
953 /// WriteTypeTable - Write out the type table for a module.
writeTypeTable()954 void DXILBitcodeWriter::writeTypeTable() {
955 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
956
957 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
958 SmallVector<uint64_t, 64> TypeVals;
959
960 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices();
961
962 // Abbrev for TYPE_CODE_POINTER.
963 auto Abbv = std::make_shared<BitCodeAbbrev>();
964 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
966 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
967 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
968
969 // Abbrev for TYPE_CODE_FUNCTION.
970 Abbv = std::make_shared<BitCodeAbbrev>();
971 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
975 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
976
977 // Abbrev for TYPE_CODE_STRUCT_ANON.
978 Abbv = std::make_shared<BitCodeAbbrev>();
979 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
983 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
984
985 // Abbrev for TYPE_CODE_STRUCT_NAME.
986 Abbv = std::make_shared<BitCodeAbbrev>();
987 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
990 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
991
992 // Abbrev for TYPE_CODE_STRUCT_NAMED.
993 Abbv = std::make_shared<BitCodeAbbrev>();
994 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
998 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
999
1000 // Abbrev for TYPE_CODE_ARRAY.
1001 Abbv = std::make_shared<BitCodeAbbrev>();
1002 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
1004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1005 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1006
1007 // Emit an entry count so the reader can reserve space.
1008 TypeVals.push_back(TypeList.size());
1009 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1010 TypeVals.clear();
1011
1012 // Loop over all of the types, emitting each in turn.
1013 for (Type *T : TypeList) {
1014 int AbbrevToUse = 0;
1015 unsigned Code = 0;
1016
1017 switch (T->getTypeID()) {
1018 case Type::BFloatTyID:
1019 case Type::X86_AMXTyID:
1020 case Type::TokenTyID:
1021 case Type::TargetExtTyID:
1022 llvm_unreachable("These should never be used!!!");
1023 break;
1024 case Type::VoidTyID:
1025 Code = bitc::TYPE_CODE_VOID;
1026 break;
1027 case Type::HalfTyID:
1028 Code = bitc::TYPE_CODE_HALF;
1029 break;
1030 case Type::FloatTyID:
1031 Code = bitc::TYPE_CODE_FLOAT;
1032 break;
1033 case Type::DoubleTyID:
1034 Code = bitc::TYPE_CODE_DOUBLE;
1035 break;
1036 case Type::X86_FP80TyID:
1037 Code = bitc::TYPE_CODE_X86_FP80;
1038 break;
1039 case Type::FP128TyID:
1040 Code = bitc::TYPE_CODE_FP128;
1041 break;
1042 case Type::PPC_FP128TyID:
1043 Code = bitc::TYPE_CODE_PPC_FP128;
1044 break;
1045 case Type::LabelTyID:
1046 Code = bitc::TYPE_CODE_LABEL;
1047 break;
1048 case Type::MetadataTyID:
1049 Code = bitc::TYPE_CODE_METADATA;
1050 break;
1051 case Type::X86_MMXTyID:
1052 Code = bitc::TYPE_CODE_X86_MMX;
1053 break;
1054 case Type::IntegerTyID:
1055 // INTEGER: [width]
1056 Code = bitc::TYPE_CODE_INTEGER;
1057 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1058 break;
1059 case Type::TypedPointerTyID: {
1060 TypedPointerType *PTy = cast<TypedPointerType>(T);
1061 // POINTER: [pointee type, address space]
1062 Code = bitc::TYPE_CODE_POINTER;
1063 TypeVals.push_back(getTypeID(PTy->getElementType()));
1064 unsigned AddressSpace = PTy->getAddressSpace();
1065 TypeVals.push_back(AddressSpace);
1066 if (AddressSpace == 0)
1067 AbbrevToUse = PtrAbbrev;
1068 break;
1069 }
1070 case Type::PointerTyID: {
1071 // POINTER: [pointee type, address space]
1072 // Emitting an empty struct type for the pointer's type allows this to be
1073 // order-independent. Non-struct types must be emitted in bitcode before
1074 // they can be referenced.
1075 TypeVals.push_back(false);
1076 Code = bitc::TYPE_CODE_OPAQUE;
1077 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME,
1078 "dxilOpaquePtrReservedName", StructNameAbbrev);
1079 break;
1080 }
1081 case Type::FunctionTyID: {
1082 FunctionType *FT = cast<FunctionType>(T);
1083 // FUNCTION: [isvararg, retty, paramty x N]
1084 Code = bitc::TYPE_CODE_FUNCTION;
1085 TypeVals.push_back(FT->isVarArg());
1086 TypeVals.push_back(getTypeID(FT->getReturnType()));
1087 for (Type *PTy : FT->params())
1088 TypeVals.push_back(getTypeID(PTy));
1089 AbbrevToUse = FunctionAbbrev;
1090 break;
1091 }
1092 case Type::StructTyID: {
1093 StructType *ST = cast<StructType>(T);
1094 // STRUCT: [ispacked, eltty x N]
1095 TypeVals.push_back(ST->isPacked());
1096 // Output all of the element types.
1097 for (Type *ElTy : ST->elements())
1098 TypeVals.push_back(getTypeID(ElTy));
1099
1100 if (ST->isLiteral()) {
1101 Code = bitc::TYPE_CODE_STRUCT_ANON;
1102 AbbrevToUse = StructAnonAbbrev;
1103 } else {
1104 if (ST->isOpaque()) {
1105 Code = bitc::TYPE_CODE_OPAQUE;
1106 } else {
1107 Code = bitc::TYPE_CODE_STRUCT_NAMED;
1108 AbbrevToUse = StructNamedAbbrev;
1109 }
1110
1111 // Emit the name if it is present.
1112 if (!ST->getName().empty())
1113 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1114 StructNameAbbrev);
1115 }
1116 break;
1117 }
1118 case Type::ArrayTyID: {
1119 ArrayType *AT = cast<ArrayType>(T);
1120 // ARRAY: [numelts, eltty]
1121 Code = bitc::TYPE_CODE_ARRAY;
1122 TypeVals.push_back(AT->getNumElements());
1123 TypeVals.push_back(getTypeID(AT->getElementType()));
1124 AbbrevToUse = ArrayAbbrev;
1125 break;
1126 }
1127 case Type::FixedVectorTyID:
1128 case Type::ScalableVectorTyID: {
1129 VectorType *VT = cast<VectorType>(T);
1130 // VECTOR [numelts, eltty]
1131 Code = bitc::TYPE_CODE_VECTOR;
1132 TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1133 TypeVals.push_back(getTypeID(VT->getElementType()));
1134 break;
1135 }
1136 }
1137
1138 // Emit the finished record.
1139 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1140 TypeVals.clear();
1141 }
1142
1143 Stream.ExitBlock();
1144 }
1145
writeComdats()1146 void DXILBitcodeWriter::writeComdats() {
1147 SmallVector<uint16_t, 64> Vals;
1148 for (const Comdat *C : VE.getComdats()) {
1149 // COMDAT: [selection_kind, name]
1150 Vals.push_back(getEncodedComdatSelectionKind(*C));
1151 size_t Size = C->getName().size();
1152 assert(isUInt<16>(Size));
1153 Vals.push_back(Size);
1154 for (char Chr : C->getName())
1155 Vals.push_back((unsigned char)Chr);
1156 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1157 Vals.clear();
1158 }
1159 }
1160
writeValueSymbolTableForwardDecl()1161 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
1162
1163 /// Emit top-level description of module, including target triple, inline asm,
1164 /// descriptors for global variables, and function prototype info.
1165 /// Returns the bit offset to backpatch with the location of the real VST.
writeModuleInfo()1166 void DXILBitcodeWriter::writeModuleInfo() {
1167 // Emit various pieces of data attached to a module.
1168 if (!M.getTargetTriple().empty())
1169 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1170 0 /*TODO*/);
1171 const std::string &DL = M.getDataLayoutStr();
1172 if (!DL.empty())
1173 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1174 if (!M.getModuleInlineAsm().empty())
1175 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1176 0 /*TODO*/);
1177
1178 // Emit information about sections and GC, computing how many there are. Also
1179 // compute the maximum alignment value.
1180 std::map<std::string, unsigned> SectionMap;
1181 std::map<std::string, unsigned> GCMap;
1182 MaybeAlign MaxAlignment;
1183 unsigned MaxGlobalType = 0;
1184 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1185 if (A)
1186 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1187 };
1188 for (const GlobalVariable &GV : M.globals()) {
1189 UpdateMaxAlignment(GV.getAlign());
1190 // Use getGlobalObjectValueTypeID to look up the enumerated type ID for
1191 // Global Variable types.
1192 MaxGlobalType = std::max(
1193 MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV));
1194 if (GV.hasSection()) {
1195 // Give section names unique ID's.
1196 unsigned &Entry = SectionMap[std::string(GV.getSection())];
1197 if (!Entry) {
1198 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
1199 GV.getSection(), 0 /*TODO*/);
1200 Entry = SectionMap.size();
1201 }
1202 }
1203 }
1204 for (const Function &F : M) {
1205 UpdateMaxAlignment(F.getAlign());
1206 if (F.hasSection()) {
1207 // Give section names unique ID's.
1208 unsigned &Entry = SectionMap[std::string(F.getSection())];
1209 if (!Entry) {
1210 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1211 0 /*TODO*/);
1212 Entry = SectionMap.size();
1213 }
1214 }
1215 if (F.hasGC()) {
1216 // Same for GC names.
1217 unsigned &Entry = GCMap[F.getGC()];
1218 if (!Entry) {
1219 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1220 0 /*TODO*/);
1221 Entry = GCMap.size();
1222 }
1223 }
1224 }
1225
1226 // Emit abbrev for globals, now that we know # sections and max alignment.
1227 unsigned SimpleGVarAbbrev = 0;
1228 if (!M.global_empty()) {
1229 // Add an abbrev for common globals with no visibility or thread
1230 // localness.
1231 auto Abbv = std::make_shared<BitCodeAbbrev>();
1232 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1234 Log2_32_Ceil(MaxGlobalType + 1)));
1235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1236 //| explicitType << 1
1237 //| constant
1238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1240 if (!MaxAlignment) // Alignment.
1241 Abbv->Add(BitCodeAbbrevOp(0));
1242 else {
1243 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1245 Log2_32_Ceil(MaxEncAlignment + 1)));
1246 }
1247 if (SectionMap.empty()) // Section.
1248 Abbv->Add(BitCodeAbbrevOp(0));
1249 else
1250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1251 Log2_32_Ceil(SectionMap.size() + 1)));
1252 // Don't bother emitting vis + thread local.
1253 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1254 }
1255
1256 // Emit the global variable information.
1257 SmallVector<unsigned, 64> Vals;
1258 for (const GlobalVariable &GV : M.globals()) {
1259 unsigned AbbrevToUse = 0;
1260
1261 // GLOBALVAR: [type, isconst, initid,
1262 // linkage, alignment, section, visibility, threadlocal,
1263 // unnamed_addr, externally_initialized, dllstorageclass,
1264 // comdat]
1265 Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV));
1266 Vals.push_back(
1267 GV.getType()->getAddressSpace() << 2 | 2 |
1268 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
1269 // unsigned int and bool
1270 Vals.push_back(
1271 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
1272 Vals.push_back(getEncodedLinkage(GV));
1273 Vals.push_back(getEncodedAlign(GV.getAlign()));
1274 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1275 : 0);
1276 if (GV.isThreadLocal() ||
1277 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1278 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1279 GV.isExternallyInitialized() ||
1280 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1281 GV.hasComdat()) {
1282 Vals.push_back(getEncodedVisibility(GV));
1283 Vals.push_back(getEncodedThreadLocalMode(GV));
1284 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1285 Vals.push_back(GV.isExternallyInitialized());
1286 Vals.push_back(getEncodedDLLStorageClass(GV));
1287 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1288 } else {
1289 AbbrevToUse = SimpleGVarAbbrev;
1290 }
1291
1292 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1293 Vals.clear();
1294 }
1295
1296 // Emit the function proto information.
1297 for (const Function &F : M) {
1298 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
1299 // section, visibility, gc, unnamed_addr, prologuedata,
1300 // dllstorageclass, comdat, prefixdata, personalityfn]
1301 Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F));
1302 Vals.push_back(F.getCallingConv());
1303 Vals.push_back(F.isDeclaration());
1304 Vals.push_back(getEncodedLinkage(F));
1305 Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1306 Vals.push_back(getEncodedAlign(F.getAlign()));
1307 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1308 : 0);
1309 Vals.push_back(getEncodedVisibility(F));
1310 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1311 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1312 Vals.push_back(
1313 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
1314 Vals.push_back(getEncodedDLLStorageClass(F));
1315 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1316 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1317 : 0);
1318 Vals.push_back(
1319 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1320
1321 unsigned AbbrevToUse = 0;
1322 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1323 Vals.clear();
1324 }
1325
1326 // Emit the alias information.
1327 for (const GlobalAlias &A : M.aliases()) {
1328 // ALIAS: [alias type, aliasee val#, linkage, visibility]
1329 Vals.push_back(getTypeID(A.getValueType(), &A));
1330 Vals.push_back(VE.getValueID(A.getAliasee()));
1331 Vals.push_back(getEncodedLinkage(A));
1332 Vals.push_back(getEncodedVisibility(A));
1333 Vals.push_back(getEncodedDLLStorageClass(A));
1334 Vals.push_back(getEncodedThreadLocalMode(A));
1335 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1336 unsigned AbbrevToUse = 0;
1337 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
1338 Vals.clear();
1339 }
1340 }
1341
writeValueAsMetadata(const ValueAsMetadata * MD,SmallVectorImpl<uint64_t> & Record)1342 void DXILBitcodeWriter::writeValueAsMetadata(
1343 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1344 // Mimic an MDNode with a value as one operand.
1345 Value *V = MD->getValue();
1346 Type *Ty = V->getType();
1347 if (Function *F = dyn_cast<Function>(V))
1348 Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace());
1349 else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1350 Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace());
1351 Record.push_back(getTypeID(Ty));
1352 Record.push_back(VE.getValueID(V));
1353 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1354 Record.clear();
1355 }
1356
writeMDTuple(const MDTuple * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1357 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
1358 SmallVectorImpl<uint64_t> &Record,
1359 unsigned Abbrev) {
1360 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1361 Metadata *MD = N->getOperand(i);
1362 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1363 "Unexpected function-local metadata");
1364 Record.push_back(VE.getMetadataOrNullID(MD));
1365 }
1366 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1367 : bitc::METADATA_NODE,
1368 Record, Abbrev);
1369 Record.clear();
1370 }
1371
writeDILocation(const DILocation * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1372 void DXILBitcodeWriter::writeDILocation(const DILocation *N,
1373 SmallVectorImpl<uint64_t> &Record,
1374 unsigned &Abbrev) {
1375 if (!Abbrev)
1376 Abbrev = createDILocationAbbrev();
1377 Record.push_back(N->isDistinct());
1378 Record.push_back(N->getLine());
1379 Record.push_back(N->getColumn());
1380 Record.push_back(VE.getMetadataID(N->getScope()));
1381 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1382
1383 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1384 Record.clear();
1385 }
1386
rotateSign(APInt Val)1387 static uint64_t rotateSign(APInt Val) {
1388 int64_t I = Val.getSExtValue();
1389 uint64_t U = I;
1390 return I < 0 ? ~(U << 1) : U << 1;
1391 }
1392
writeDISubrange(const DISubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1393 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
1394 SmallVectorImpl<uint64_t> &Record,
1395 unsigned Abbrev) {
1396 Record.push_back(N->isDistinct());
1397
1398 // TODO: Do we need to handle DIExpression here? What about cases where Count
1399 // isn't specified but UpperBound and such are?
1400 ConstantInt *Count = N->getCount().dyn_cast<ConstantInt *>();
1401 assert(Count && "Count is missing or not ConstantInt");
1402 Record.push_back(Count->getValue().getSExtValue());
1403
1404 // TODO: Similarly, DIExpression is allowed here now
1405 DISubrange::BoundType LowerBound = N->getLowerBound();
1406 assert((LowerBound.isNull() || LowerBound.is<ConstantInt *>()) &&
1407 "Lower bound provided but not ConstantInt");
1408 Record.push_back(
1409 LowerBound ? rotateSign(LowerBound.get<ConstantInt *>()->getValue()) : 0);
1410
1411 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1412 Record.clear();
1413 }
1414
writeDIEnumerator(const DIEnumerator * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1415 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1416 SmallVectorImpl<uint64_t> &Record,
1417 unsigned Abbrev) {
1418 Record.push_back(N->isDistinct());
1419 Record.push_back(rotateSign(N->getValue()));
1420 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1421
1422 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1423 Record.clear();
1424 }
1425
writeDIBasicType(const DIBasicType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1426 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1427 SmallVectorImpl<uint64_t> &Record,
1428 unsigned Abbrev) {
1429 Record.push_back(N->isDistinct());
1430 Record.push_back(N->getTag());
1431 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1432 Record.push_back(N->getSizeInBits());
1433 Record.push_back(N->getAlignInBits());
1434 Record.push_back(N->getEncoding());
1435
1436 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1437 Record.clear();
1438 }
1439
writeDIDerivedType(const DIDerivedType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1440 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1441 SmallVectorImpl<uint64_t> &Record,
1442 unsigned Abbrev) {
1443 Record.push_back(N->isDistinct());
1444 Record.push_back(N->getTag());
1445 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1446 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1447 Record.push_back(N->getLine());
1448 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1449 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1450 Record.push_back(N->getSizeInBits());
1451 Record.push_back(N->getAlignInBits());
1452 Record.push_back(N->getOffsetInBits());
1453 Record.push_back(N->getFlags());
1454 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1455
1456 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1457 Record.clear();
1458 }
1459
writeDICompositeType(const DICompositeType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1460 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
1461 SmallVectorImpl<uint64_t> &Record,
1462 unsigned Abbrev) {
1463 Record.push_back(N->isDistinct());
1464 Record.push_back(N->getTag());
1465 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1466 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1467 Record.push_back(N->getLine());
1468 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1469 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1470 Record.push_back(N->getSizeInBits());
1471 Record.push_back(N->getAlignInBits());
1472 Record.push_back(N->getOffsetInBits());
1473 Record.push_back(N->getFlags());
1474 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1475 Record.push_back(N->getRuntimeLang());
1476 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1477 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1478 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1479
1480 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1481 Record.clear();
1482 }
1483
writeDISubroutineType(const DISubroutineType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1484 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
1485 SmallVectorImpl<uint64_t> &Record,
1486 unsigned Abbrev) {
1487 Record.push_back(N->isDistinct());
1488 Record.push_back(N->getFlags());
1489 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1490
1491 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1492 Record.clear();
1493 }
1494
writeDIFile(const DIFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1495 void DXILBitcodeWriter::writeDIFile(const DIFile *N,
1496 SmallVectorImpl<uint64_t> &Record,
1497 unsigned Abbrev) {
1498 Record.push_back(N->isDistinct());
1499 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1500 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1501
1502 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1503 Record.clear();
1504 }
1505
writeDICompileUnit(const DICompileUnit * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1506 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1507 SmallVectorImpl<uint64_t> &Record,
1508 unsigned Abbrev) {
1509 Record.push_back(N->isDistinct());
1510 Record.push_back(N->getSourceLanguage());
1511 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1512 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1513 Record.push_back(N->isOptimized());
1514 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1515 Record.push_back(N->getRuntimeVersion());
1516 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1517 Record.push_back(N->getEmissionKind());
1518 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1519 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1520 Record.push_back(/* subprograms */ 0);
1521 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1522 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1523 Record.push_back(N->getDWOId());
1524
1525 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1526 Record.clear();
1527 }
1528
writeDISubprogram(const DISubprogram * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1529 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1530 SmallVectorImpl<uint64_t> &Record,
1531 unsigned Abbrev) {
1532 Record.push_back(N->isDistinct());
1533 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1534 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1535 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1536 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1537 Record.push_back(N->getLine());
1538 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1539 Record.push_back(N->isLocalToUnit());
1540 Record.push_back(N->isDefinition());
1541 Record.push_back(N->getScopeLine());
1542 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1543 Record.push_back(N->getVirtuality());
1544 Record.push_back(N->getVirtualIndex());
1545 Record.push_back(N->getFlags());
1546 Record.push_back(N->isOptimized());
1547 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1548 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1549 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1550 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1551
1552 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1553 Record.clear();
1554 }
1555
writeDILexicalBlock(const DILexicalBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1556 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1557 SmallVectorImpl<uint64_t> &Record,
1558 unsigned Abbrev) {
1559 Record.push_back(N->isDistinct());
1560 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1561 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1562 Record.push_back(N->getLine());
1563 Record.push_back(N->getColumn());
1564
1565 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1566 Record.clear();
1567 }
1568
writeDILexicalBlockFile(const DILexicalBlockFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1569 void DXILBitcodeWriter::writeDILexicalBlockFile(
1570 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1571 unsigned Abbrev) {
1572 Record.push_back(N->isDistinct());
1573 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1574 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1575 Record.push_back(N->getDiscriminator());
1576
1577 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1578 Record.clear();
1579 }
1580
writeDINamespace(const DINamespace * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1581 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
1582 SmallVectorImpl<uint64_t> &Record,
1583 unsigned Abbrev) {
1584 Record.push_back(N->isDistinct());
1585 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1586 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1587 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1588 Record.push_back(/* line number */ 0);
1589
1590 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1591 Record.clear();
1592 }
1593
writeDIModule(const DIModule * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1594 void DXILBitcodeWriter::writeDIModule(const DIModule *N,
1595 SmallVectorImpl<uint64_t> &Record,
1596 unsigned Abbrev) {
1597 Record.push_back(N->isDistinct());
1598 for (auto &I : N->operands())
1599 Record.push_back(VE.getMetadataOrNullID(I));
1600
1601 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1602 Record.clear();
1603 }
1604
writeDITemplateTypeParameter(const DITemplateTypeParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1605 void DXILBitcodeWriter::writeDITemplateTypeParameter(
1606 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1607 unsigned Abbrev) {
1608 Record.push_back(N->isDistinct());
1609 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1610 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1611
1612 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1613 Record.clear();
1614 }
1615
writeDITemplateValueParameter(const DITemplateValueParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1616 void DXILBitcodeWriter::writeDITemplateValueParameter(
1617 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1618 unsigned Abbrev) {
1619 Record.push_back(N->isDistinct());
1620 Record.push_back(N->getTag());
1621 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1622 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1623 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1624
1625 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1626 Record.clear();
1627 }
1628
writeDIGlobalVariable(const DIGlobalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1629 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
1630 SmallVectorImpl<uint64_t> &Record,
1631 unsigned Abbrev) {
1632 Record.push_back(N->isDistinct());
1633 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1634 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1635 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1636 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1637 Record.push_back(N->getLine());
1638 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1639 Record.push_back(N->isLocalToUnit());
1640 Record.push_back(N->isDefinition());
1641 Record.push_back(/* N->getRawVariable() */ 0);
1642 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1643
1644 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1645 Record.clear();
1646 }
1647
writeDILocalVariable(const DILocalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1648 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
1649 SmallVectorImpl<uint64_t> &Record,
1650 unsigned Abbrev) {
1651 Record.push_back(N->isDistinct());
1652 Record.push_back(N->getTag());
1653 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1654 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1655 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1656 Record.push_back(N->getLine());
1657 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1658 Record.push_back(N->getArg());
1659 Record.push_back(N->getFlags());
1660
1661 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1662 Record.clear();
1663 }
1664
writeDIExpression(const DIExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1665 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
1666 SmallVectorImpl<uint64_t> &Record,
1667 unsigned Abbrev) {
1668 Record.reserve(N->getElements().size() + 1);
1669
1670 Record.push_back(N->isDistinct());
1671 Record.append(N->elements_begin(), N->elements_end());
1672
1673 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1674 Record.clear();
1675 }
1676
writeDIObjCProperty(const DIObjCProperty * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1677 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1678 SmallVectorImpl<uint64_t> &Record,
1679 unsigned Abbrev) {
1680 llvm_unreachable("DXIL does not support objc!!!");
1681 }
1682
writeDIImportedEntity(const DIImportedEntity * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1683 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
1684 SmallVectorImpl<uint64_t> &Record,
1685 unsigned Abbrev) {
1686 Record.push_back(N->isDistinct());
1687 Record.push_back(N->getTag());
1688 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1689 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1690 Record.push_back(N->getLine());
1691 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1692
1693 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1694 Record.clear();
1695 }
1696
createDILocationAbbrev()1697 unsigned DXILBitcodeWriter::createDILocationAbbrev() {
1698 // Abbrev for METADATA_LOCATION.
1699 //
1700 // Assume the column is usually under 128, and always output the inlined-at
1701 // location (it's never more expensive than building an array size 1).
1702 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1703 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1709 return Stream.EmitAbbrev(std::move(Abbv));
1710 }
1711
createGenericDINodeAbbrev()1712 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
1713 // Abbrev for METADATA_GENERIC_DEBUG.
1714 //
1715 // Assume the column is usually under 128, and always output the inlined-at
1716 // location (it's never more expensive than building an array size 1).
1717 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1718 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1725 return Stream.EmitAbbrev(std::move(Abbv));
1726 }
1727
writeMetadataRecords(ArrayRef<const Metadata * > MDs,SmallVectorImpl<uint64_t> & Record,std::vector<unsigned> * MDAbbrevs,std::vector<uint64_t> * IndexPos)1728 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
1729 SmallVectorImpl<uint64_t> &Record,
1730 std::vector<unsigned> *MDAbbrevs,
1731 std::vector<uint64_t> *IndexPos) {
1732 if (MDs.empty())
1733 return;
1734
1735 // Initialize MDNode abbreviations.
1736 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1737 #include "llvm/IR/Metadata.def"
1738
1739 for (const Metadata *MD : MDs) {
1740 if (IndexPos)
1741 IndexPos->push_back(Stream.GetCurrentBitNo());
1742 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1743 assert(N->isResolved() && "Expected forward references to be resolved");
1744
1745 switch (N->getMetadataID()) {
1746 default:
1747 llvm_unreachable("Invalid MDNode subclass");
1748 #define HANDLE_MDNODE_LEAF(CLASS) \
1749 case Metadata::CLASS##Kind: \
1750 if (MDAbbrevs) \
1751 write##CLASS(cast<CLASS>(N), Record, \
1752 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
1753 else \
1754 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
1755 continue;
1756 #include "llvm/IR/Metadata.def"
1757 }
1758 }
1759 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1760 }
1761 }
1762
createMetadataStringsAbbrev()1763 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
1764 auto Abbv = std::make_shared<BitCodeAbbrev>();
1765 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
1766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1768 return Stream.EmitAbbrev(std::move(Abbv));
1769 }
1770
writeMetadataStrings(ArrayRef<const Metadata * > Strings,SmallVectorImpl<uint64_t> & Record)1771 void DXILBitcodeWriter::writeMetadataStrings(
1772 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1773 if (Strings.empty())
1774 return;
1775
1776 unsigned MDSAbbrev = createMetadataStringsAbbrev();
1777
1778 for (const Metadata *MD : Strings) {
1779 const MDString *MDS = cast<MDString>(MD);
1780 // Code: [strchar x N]
1781 Record.append(MDS->bytes_begin(), MDS->bytes_end());
1782
1783 // Emit the finished record.
1784 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev);
1785 Record.clear();
1786 }
1787 }
1788
writeModuleMetadata()1789 void DXILBitcodeWriter::writeModuleMetadata() {
1790 if (!VE.hasMDs() && M.named_metadata_empty())
1791 return;
1792
1793 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
1794
1795 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1796 // block and load any metadata.
1797 std::vector<unsigned> MDAbbrevs;
1798
1799 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1800 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1801 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1802 createGenericDINodeAbbrev();
1803
1804 unsigned NameAbbrev = 0;
1805 if (!M.named_metadata_empty()) {
1806 // Abbrev for METADATA_NAME.
1807 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1808 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1811 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1812 }
1813
1814 SmallVector<uint64_t, 64> Record;
1815 writeMetadataStrings(VE.getMDStrings(), Record);
1816
1817 std::vector<uint64_t> IndexPos;
1818 IndexPos.reserve(VE.getNonMDStrings().size());
1819 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1820
1821 // Write named metadata.
1822 for (const NamedMDNode &NMD : M.named_metadata()) {
1823 // Write name.
1824 StringRef Str = NMD.getName();
1825 Record.append(Str.bytes_begin(), Str.bytes_end());
1826 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1827 Record.clear();
1828
1829 // Write named metadata operands.
1830 for (const MDNode *N : NMD.operands())
1831 Record.push_back(VE.getMetadataID(N));
1832 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1833 Record.clear();
1834 }
1835
1836 Stream.ExitBlock();
1837 }
1838
writeFunctionMetadata(const Function & F)1839 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
1840 if (!VE.hasMDs())
1841 return;
1842
1843 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1844 SmallVector<uint64_t, 64> Record;
1845 writeMetadataStrings(VE.getMDStrings(), Record);
1846 writeMetadataRecords(VE.getNonMDStrings(), Record);
1847 Stream.ExitBlock();
1848 }
1849
writeFunctionMetadataAttachment(const Function & F)1850 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1851 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1852
1853 SmallVector<uint64_t, 64> Record;
1854
1855 // Write metadata attachments
1856 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1857 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1858 F.getAllMetadata(MDs);
1859 if (!MDs.empty()) {
1860 for (const auto &I : MDs) {
1861 Record.push_back(I.first);
1862 Record.push_back(VE.getMetadataID(I.second));
1863 }
1864 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1865 Record.clear();
1866 }
1867
1868 for (const BasicBlock &BB : F)
1869 for (const Instruction &I : BB) {
1870 MDs.clear();
1871 I.getAllMetadataOtherThanDebugLoc(MDs);
1872
1873 // If no metadata, ignore instruction.
1874 if (MDs.empty())
1875 continue;
1876
1877 Record.push_back(VE.getInstructionID(&I));
1878
1879 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1880 Record.push_back(MDs[i].first);
1881 Record.push_back(VE.getMetadataID(MDs[i].second));
1882 }
1883 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1884 Record.clear();
1885 }
1886
1887 Stream.ExitBlock();
1888 }
1889
writeModuleMetadataKinds()1890 void DXILBitcodeWriter::writeModuleMetadataKinds() {
1891 SmallVector<uint64_t, 64> Record;
1892
1893 // Write metadata kinds
1894 // METADATA_KIND - [n x [id, name]]
1895 SmallVector<StringRef, 8> Names;
1896 M.getMDKindNames(Names);
1897
1898 if (Names.empty())
1899 return;
1900
1901 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1902
1903 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1904 Record.push_back(MDKindID);
1905 StringRef KName = Names[MDKindID];
1906 Record.append(KName.begin(), KName.end());
1907
1908 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1909 Record.clear();
1910 }
1911
1912 Stream.ExitBlock();
1913 }
1914
writeConstants(unsigned FirstVal,unsigned LastVal,bool isGlobal)1915 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1916 bool isGlobal) {
1917 if (FirstVal == LastVal)
1918 return;
1919
1920 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1921
1922 unsigned AggregateAbbrev = 0;
1923 unsigned String8Abbrev = 0;
1924 unsigned CString7Abbrev = 0;
1925 unsigned CString6Abbrev = 0;
1926 // If this is a constant pool for the module, emit module-specific abbrevs.
1927 if (isGlobal) {
1928 // Abbrev for CST_CODE_AGGREGATE.
1929 auto Abbv = std::make_shared<BitCodeAbbrev>();
1930 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1932 Abbv->Add(
1933 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
1934 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1935
1936 // Abbrev for CST_CODE_STRING.
1937 Abbv = std::make_shared<BitCodeAbbrev>();
1938 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1941 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1942 // Abbrev for CST_CODE_CSTRING.
1943 Abbv = std::make_shared<BitCodeAbbrev>();
1944 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1947 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1948 // Abbrev for CST_CODE_CSTRING.
1949 Abbv = std::make_shared<BitCodeAbbrev>();
1950 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1953 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1954 }
1955
1956 SmallVector<uint64_t, 64> Record;
1957
1958 const ValueEnumerator::ValueList &Vals = VE.getValues();
1959 Type *LastTy = nullptr;
1960 for (unsigned i = FirstVal; i != LastVal; ++i) {
1961 const Value *V = Vals[i].first;
1962 // If we need to switch types, do so now.
1963 if (V->getType() != LastTy) {
1964 LastTy = V->getType();
1965 Record.push_back(getTypeID(LastTy, V));
1966 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1967 CONSTANTS_SETTYPE_ABBREV);
1968 Record.clear();
1969 }
1970
1971 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1972 Record.push_back(unsigned(IA->hasSideEffects()) |
1973 unsigned(IA->isAlignStack()) << 1 |
1974 unsigned(IA->getDialect() & 1) << 2);
1975
1976 // Add the asm string.
1977 const std::string &AsmStr = IA->getAsmString();
1978 Record.push_back(AsmStr.size());
1979 Record.append(AsmStr.begin(), AsmStr.end());
1980
1981 // Add the constraint string.
1982 const std::string &ConstraintStr = IA->getConstraintString();
1983 Record.push_back(ConstraintStr.size());
1984 Record.append(ConstraintStr.begin(), ConstraintStr.end());
1985 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1986 Record.clear();
1987 continue;
1988 }
1989 const Constant *C = cast<Constant>(V);
1990 unsigned Code = -1U;
1991 unsigned AbbrevToUse = 0;
1992 if (C->isNullValue()) {
1993 Code = bitc::CST_CODE_NULL;
1994 } else if (isa<UndefValue>(C)) {
1995 Code = bitc::CST_CODE_UNDEF;
1996 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1997 if (IV->getBitWidth() <= 64) {
1998 uint64_t V = IV->getSExtValue();
1999 emitSignedInt64(Record, V);
2000 Code = bitc::CST_CODE_INTEGER;
2001 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2002 } else { // Wide integers, > 64 bits in size.
2003 // We have an arbitrary precision integer value to write whose
2004 // bit width is > 64. However, in canonical unsigned integer
2005 // format it is likely that the high bits are going to be zero.
2006 // So, we only write the number of active words.
2007 unsigned NWords = IV->getValue().getActiveWords();
2008 const uint64_t *RawWords = IV->getValue().getRawData();
2009 for (unsigned i = 0; i != NWords; ++i) {
2010 emitSignedInt64(Record, RawWords[i]);
2011 }
2012 Code = bitc::CST_CODE_WIDE_INTEGER;
2013 }
2014 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2015 Code = bitc::CST_CODE_FLOAT;
2016 Type *Ty = CFP->getType();
2017 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2018 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2019 } else if (Ty->isX86_FP80Ty()) {
2020 // api needed to prevent premature destruction
2021 // bits are not in the same order as a normal i80 APInt, compensate.
2022 APInt api = CFP->getValueAPF().bitcastToAPInt();
2023 const uint64_t *p = api.getRawData();
2024 Record.push_back((p[1] << 48) | (p[0] >> 16));
2025 Record.push_back(p[0] & 0xffffLL);
2026 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2027 APInt api = CFP->getValueAPF().bitcastToAPInt();
2028 const uint64_t *p = api.getRawData();
2029 Record.push_back(p[0]);
2030 Record.push_back(p[1]);
2031 } else {
2032 assert(0 && "Unknown FP type!");
2033 }
2034 } else if (isa<ConstantDataSequential>(C) &&
2035 cast<ConstantDataSequential>(C)->isString()) {
2036 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2037 // Emit constant strings specially.
2038 unsigned NumElts = Str->getNumElements();
2039 // If this is a null-terminated string, use the denser CSTRING encoding.
2040 if (Str->isCString()) {
2041 Code = bitc::CST_CODE_CSTRING;
2042 --NumElts; // Don't encode the null, which isn't allowed by char6.
2043 } else {
2044 Code = bitc::CST_CODE_STRING;
2045 AbbrevToUse = String8Abbrev;
2046 }
2047 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2048 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2049 for (unsigned i = 0; i != NumElts; ++i) {
2050 unsigned char V = Str->getElementAsInteger(i);
2051 Record.push_back(V);
2052 isCStr7 &= (V & 128) == 0;
2053 if (isCStrChar6)
2054 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2055 }
2056
2057 if (isCStrChar6)
2058 AbbrevToUse = CString6Abbrev;
2059 else if (isCStr7)
2060 AbbrevToUse = CString7Abbrev;
2061 } else if (const ConstantDataSequential *CDS =
2062 dyn_cast<ConstantDataSequential>(C)) {
2063 Code = bitc::CST_CODE_DATA;
2064 Type *EltTy = CDS->getElementType();
2065 if (isa<IntegerType>(EltTy)) {
2066 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2067 Record.push_back(CDS->getElementAsInteger(i));
2068 } else if (EltTy->isFloatTy()) {
2069 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2070 union {
2071 float F;
2072 uint32_t I;
2073 };
2074 F = CDS->getElementAsFloat(i);
2075 Record.push_back(I);
2076 }
2077 } else {
2078 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
2079 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2080 union {
2081 double F;
2082 uint64_t I;
2083 };
2084 F = CDS->getElementAsDouble(i);
2085 Record.push_back(I);
2086 }
2087 }
2088 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2089 isa<ConstantVector>(C)) {
2090 Code = bitc::CST_CODE_AGGREGATE;
2091 for (const Value *Op : C->operands())
2092 Record.push_back(VE.getValueID(Op));
2093 AbbrevToUse = AggregateAbbrev;
2094 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2095 switch (CE->getOpcode()) {
2096 default:
2097 if (Instruction::isCast(CE->getOpcode())) {
2098 Code = bitc::CST_CODE_CE_CAST;
2099 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2100 Record.push_back(
2101 getTypeID(C->getOperand(0)->getType(), C->getOperand(0)));
2102 Record.push_back(VE.getValueID(C->getOperand(0)));
2103 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2104 } else {
2105 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2106 Code = bitc::CST_CODE_CE_BINOP;
2107 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2108 Record.push_back(VE.getValueID(C->getOperand(0)));
2109 Record.push_back(VE.getValueID(C->getOperand(1)));
2110 uint64_t Flags = getOptimizationFlags(CE);
2111 if (Flags != 0)
2112 Record.push_back(Flags);
2113 }
2114 break;
2115 case Instruction::GetElementPtr: {
2116 Code = bitc::CST_CODE_CE_GEP;
2117 const auto *GO = cast<GEPOperator>(C);
2118 if (GO->isInBounds())
2119 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2120 Record.push_back(getTypeID(GO->getSourceElementType()));
2121 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2122 Record.push_back(
2123 getTypeID(C->getOperand(i)->getType(), C->getOperand(i)));
2124 Record.push_back(VE.getValueID(C->getOperand(i)));
2125 }
2126 break;
2127 }
2128 case Instruction::Select:
2129 Code = bitc::CST_CODE_CE_SELECT;
2130 Record.push_back(VE.getValueID(C->getOperand(0)));
2131 Record.push_back(VE.getValueID(C->getOperand(1)));
2132 Record.push_back(VE.getValueID(C->getOperand(2)));
2133 break;
2134 case Instruction::ExtractElement:
2135 Code = bitc::CST_CODE_CE_EXTRACTELT;
2136 Record.push_back(getTypeID(C->getOperand(0)->getType()));
2137 Record.push_back(VE.getValueID(C->getOperand(0)));
2138 Record.push_back(getTypeID(C->getOperand(1)->getType()));
2139 Record.push_back(VE.getValueID(C->getOperand(1)));
2140 break;
2141 case Instruction::InsertElement:
2142 Code = bitc::CST_CODE_CE_INSERTELT;
2143 Record.push_back(VE.getValueID(C->getOperand(0)));
2144 Record.push_back(VE.getValueID(C->getOperand(1)));
2145 Record.push_back(getTypeID(C->getOperand(2)->getType()));
2146 Record.push_back(VE.getValueID(C->getOperand(2)));
2147 break;
2148 case Instruction::ShuffleVector:
2149 // If the return type and argument types are the same, this is a
2150 // standard shufflevector instruction. If the types are different,
2151 // then the shuffle is widening or truncating the input vectors, and
2152 // the argument type must also be encoded.
2153 if (C->getType() == C->getOperand(0)->getType()) {
2154 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2155 } else {
2156 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2157 Record.push_back(getTypeID(C->getOperand(0)->getType()));
2158 }
2159 Record.push_back(VE.getValueID(C->getOperand(0)));
2160 Record.push_back(VE.getValueID(C->getOperand(1)));
2161 Record.push_back(VE.getValueID(C->getOperand(2)));
2162 break;
2163 }
2164 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2165 Code = bitc::CST_CODE_BLOCKADDRESS;
2166 Record.push_back(getTypeID(BA->getFunction()->getType()));
2167 Record.push_back(VE.getValueID(BA->getFunction()));
2168 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2169 } else {
2170 #ifndef NDEBUG
2171 C->dump();
2172 #endif
2173 llvm_unreachable("Unknown constant!");
2174 }
2175 Stream.EmitRecord(Code, Record, AbbrevToUse);
2176 Record.clear();
2177 }
2178
2179 Stream.ExitBlock();
2180 }
2181
writeModuleConstants()2182 void DXILBitcodeWriter::writeModuleConstants() {
2183 const ValueEnumerator::ValueList &Vals = VE.getValues();
2184
2185 // Find the first constant to emit, which is the first non-globalvalue value.
2186 // We know globalvalues have been emitted by WriteModuleInfo.
2187 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2188 if (!isa<GlobalValue>(Vals[i].first)) {
2189 writeConstants(i, Vals.size(), true);
2190 return;
2191 }
2192 }
2193 }
2194
2195 /// pushValueAndType - The file has to encode both the value and type id for
2196 /// many values, because we need to know what type to create for forward
2197 /// references. However, most operands are not forward references, so this type
2198 /// field is not needed.
2199 ///
2200 /// This function adds V's value ID to Vals. If the value ID is higher than the
2201 /// instruction ID, then it is a forward reference, and it also includes the
2202 /// type ID. The value ID that is written is encoded relative to the InstID.
pushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2203 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2204 SmallVectorImpl<unsigned> &Vals) {
2205 unsigned ValID = VE.getValueID(V);
2206 // Make encoding relative to the InstID.
2207 Vals.push_back(InstID - ValID);
2208 if (ValID >= InstID) {
2209 Vals.push_back(getTypeID(V->getType(), V));
2210 return true;
2211 }
2212 return false;
2213 }
2214
2215 /// pushValue - Like pushValueAndType, but where the type of the value is
2216 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2217 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2218 SmallVectorImpl<unsigned> &Vals) {
2219 unsigned ValID = VE.getValueID(V);
2220 Vals.push_back(InstID - ValID);
2221 }
2222
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals)2223 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2224 SmallVectorImpl<uint64_t> &Vals) {
2225 unsigned ValID = VE.getValueID(V);
2226 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2227 emitSignedInt64(Vals, diff);
2228 }
2229
2230 /// WriteInstruction - Emit an instruction
writeInstruction(const Instruction & I,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2231 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
2232 SmallVectorImpl<unsigned> &Vals) {
2233 unsigned Code = 0;
2234 unsigned AbbrevToUse = 0;
2235 VE.setInstructionID(&I);
2236 switch (I.getOpcode()) {
2237 default:
2238 if (Instruction::isCast(I.getOpcode())) {
2239 Code = bitc::FUNC_CODE_INST_CAST;
2240 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2241 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
2242 Vals.push_back(getTypeID(I.getType(), &I));
2243 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2244 } else {
2245 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2246 Code = bitc::FUNC_CODE_INST_BINOP;
2247 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2248 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
2249 pushValue(I.getOperand(1), InstID, Vals);
2250 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2251 uint64_t Flags = getOptimizationFlags(&I);
2252 if (Flags != 0) {
2253 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
2254 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
2255 Vals.push_back(Flags);
2256 }
2257 }
2258 break;
2259
2260 case Instruction::GetElementPtr: {
2261 Code = bitc::FUNC_CODE_INST_GEP;
2262 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
2263 auto &GEPInst = cast<GetElementPtrInst>(I);
2264 Vals.push_back(GEPInst.isInBounds());
2265 Vals.push_back(getTypeID(GEPInst.getSourceElementType()));
2266 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2267 pushValueAndType(I.getOperand(i), InstID, Vals);
2268 break;
2269 }
2270 case Instruction::ExtractValue: {
2271 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2272 pushValueAndType(I.getOperand(0), InstID, Vals);
2273 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2274 Vals.append(EVI->idx_begin(), EVI->idx_end());
2275 break;
2276 }
2277 case Instruction::InsertValue: {
2278 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2279 pushValueAndType(I.getOperand(0), InstID, Vals);
2280 pushValueAndType(I.getOperand(1), InstID, Vals);
2281 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2282 Vals.append(IVI->idx_begin(), IVI->idx_end());
2283 break;
2284 }
2285 case Instruction::Select:
2286 Code = bitc::FUNC_CODE_INST_VSELECT;
2287 pushValueAndType(I.getOperand(1), InstID, Vals);
2288 pushValue(I.getOperand(2), InstID, Vals);
2289 pushValueAndType(I.getOperand(0), InstID, Vals);
2290 break;
2291 case Instruction::ExtractElement:
2292 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2293 pushValueAndType(I.getOperand(0), InstID, Vals);
2294 pushValueAndType(I.getOperand(1), InstID, Vals);
2295 break;
2296 case Instruction::InsertElement:
2297 Code = bitc::FUNC_CODE_INST_INSERTELT;
2298 pushValueAndType(I.getOperand(0), InstID, Vals);
2299 pushValue(I.getOperand(1), InstID, Vals);
2300 pushValueAndType(I.getOperand(2), InstID, Vals);
2301 break;
2302 case Instruction::ShuffleVector:
2303 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2304 pushValueAndType(I.getOperand(0), InstID, Vals);
2305 pushValue(I.getOperand(1), InstID, Vals);
2306 pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID,
2307 Vals);
2308 break;
2309 case Instruction::ICmp:
2310 case Instruction::FCmp: {
2311 // compare returning Int1Ty or vector of Int1Ty
2312 Code = bitc::FUNC_CODE_INST_CMP2;
2313 pushValueAndType(I.getOperand(0), InstID, Vals);
2314 pushValue(I.getOperand(1), InstID, Vals);
2315 Vals.push_back(cast<CmpInst>(I).getPredicate());
2316 uint64_t Flags = getOptimizationFlags(&I);
2317 if (Flags != 0)
2318 Vals.push_back(Flags);
2319 break;
2320 }
2321
2322 case Instruction::Ret: {
2323 Code = bitc::FUNC_CODE_INST_RET;
2324 unsigned NumOperands = I.getNumOperands();
2325 if (NumOperands == 0)
2326 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
2327 else if (NumOperands == 1) {
2328 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2329 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
2330 } else {
2331 for (unsigned i = 0, e = NumOperands; i != e; ++i)
2332 pushValueAndType(I.getOperand(i), InstID, Vals);
2333 }
2334 } break;
2335 case Instruction::Br: {
2336 Code = bitc::FUNC_CODE_INST_BR;
2337 const BranchInst &II = cast<BranchInst>(I);
2338 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2339 if (II.isConditional()) {
2340 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2341 pushValue(II.getCondition(), InstID, Vals);
2342 }
2343 } break;
2344 case Instruction::Switch: {
2345 Code = bitc::FUNC_CODE_INST_SWITCH;
2346 const SwitchInst &SI = cast<SwitchInst>(I);
2347 Vals.push_back(getTypeID(SI.getCondition()->getType()));
2348 pushValue(SI.getCondition(), InstID, Vals);
2349 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2350 for (auto Case : SI.cases()) {
2351 Vals.push_back(VE.getValueID(Case.getCaseValue()));
2352 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2353 }
2354 } break;
2355 case Instruction::IndirectBr:
2356 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2357 Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2358 // Encode the address operand as relative, but not the basic blocks.
2359 pushValue(I.getOperand(0), InstID, Vals);
2360 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2361 Vals.push_back(VE.getValueID(I.getOperand(i)));
2362 break;
2363
2364 case Instruction::Invoke: {
2365 const InvokeInst *II = cast<InvokeInst>(&I);
2366 const Value *Callee = II->getCalledOperand();
2367 FunctionType *FTy = II->getFunctionType();
2368 Code = bitc::FUNC_CODE_INST_INVOKE;
2369
2370 Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2371 Vals.push_back(II->getCallingConv() | 1 << 13);
2372 Vals.push_back(VE.getValueID(II->getNormalDest()));
2373 Vals.push_back(VE.getValueID(II->getUnwindDest()));
2374 Vals.push_back(getTypeID(FTy));
2375 pushValueAndType(Callee, InstID, Vals);
2376
2377 // Emit value #'s for the fixed parameters.
2378 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2379 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2380
2381 // Emit type/value pairs for varargs params.
2382 if (FTy->isVarArg()) {
2383 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
2384 ++i)
2385 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2386 }
2387 break;
2388 }
2389 case Instruction::Resume:
2390 Code = bitc::FUNC_CODE_INST_RESUME;
2391 pushValueAndType(I.getOperand(0), InstID, Vals);
2392 break;
2393 case Instruction::Unreachable:
2394 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2395 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
2396 break;
2397
2398 case Instruction::PHI: {
2399 const PHINode &PN = cast<PHINode>(I);
2400 Code = bitc::FUNC_CODE_INST_PHI;
2401 // With the newer instruction encoding, forward references could give
2402 // negative valued IDs. This is most common for PHIs, so we use
2403 // signed VBRs.
2404 SmallVector<uint64_t, 128> Vals64;
2405 Vals64.push_back(getTypeID(PN.getType()));
2406 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2407 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2408 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2409 }
2410 // Emit a Vals64 vector and exit.
2411 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2412 Vals64.clear();
2413 return;
2414 }
2415
2416 case Instruction::LandingPad: {
2417 const LandingPadInst &LP = cast<LandingPadInst>(I);
2418 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2419 Vals.push_back(getTypeID(LP.getType()));
2420 Vals.push_back(LP.isCleanup());
2421 Vals.push_back(LP.getNumClauses());
2422 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2423 if (LP.isCatch(I))
2424 Vals.push_back(LandingPadInst::Catch);
2425 else
2426 Vals.push_back(LandingPadInst::Filter);
2427 pushValueAndType(LP.getClause(I), InstID, Vals);
2428 }
2429 break;
2430 }
2431
2432 case Instruction::Alloca: {
2433 Code = bitc::FUNC_CODE_INST_ALLOCA;
2434 const AllocaInst &AI = cast<AllocaInst>(I);
2435 Vals.push_back(getTypeID(AI.getAllocatedType()));
2436 Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2437 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2438 unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1;
2439 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2440 AlignRecord |= AI.isUsedWithInAlloca() << 5;
2441 AlignRecord |= 1 << 6;
2442 Vals.push_back(AlignRecord);
2443 break;
2444 }
2445
2446 case Instruction::Load:
2447 if (cast<LoadInst>(I).isAtomic()) {
2448 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2449 pushValueAndType(I.getOperand(0), InstID, Vals);
2450 } else {
2451 Code = bitc::FUNC_CODE_INST_LOAD;
2452 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2453 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
2454 }
2455 Vals.push_back(getTypeID(I.getType()));
2456 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1);
2457 Vals.push_back(cast<LoadInst>(I).isVolatile());
2458 if (cast<LoadInst>(I).isAtomic()) {
2459 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2460 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2461 }
2462 break;
2463 case Instruction::Store:
2464 if (cast<StoreInst>(I).isAtomic())
2465 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2466 else
2467 Code = bitc::FUNC_CODE_INST_STORE;
2468 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2469 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2470 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1);
2471 Vals.push_back(cast<StoreInst>(I).isVolatile());
2472 if (cast<StoreInst>(I).isAtomic()) {
2473 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2474 Vals.push_back(
2475 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2476 }
2477 break;
2478 case Instruction::AtomicCmpXchg:
2479 Code = bitc::FUNC_CODE_INST_CMPXCHG;
2480 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2481 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2482 pushValue(I.getOperand(2), InstID, Vals); // newval.
2483 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2484 Vals.push_back(
2485 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2486 Vals.push_back(
2487 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2488 Vals.push_back(
2489 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2490 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2491 break;
2492 case Instruction::AtomicRMW:
2493 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2494 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2495 pushValue(I.getOperand(1), InstID, Vals); // val.
2496 Vals.push_back(
2497 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2498 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2499 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2500 Vals.push_back(
2501 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2502 break;
2503 case Instruction::Fence:
2504 Code = bitc::FUNC_CODE_INST_FENCE;
2505 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2506 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2507 break;
2508 case Instruction::Call: {
2509 const CallInst &CI = cast<CallInst>(I);
2510 FunctionType *FTy = CI.getFunctionType();
2511
2512 Code = bitc::FUNC_CODE_INST_CALL;
2513
2514 Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2515 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2516 unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2517 Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction()));
2518 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
2519
2520 // Emit value #'s for the fixed parameters.
2521 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2522 // Check for labels (can happen with asm labels).
2523 if (FTy->getParamType(i)->isLabelTy())
2524 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2525 else
2526 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2527 }
2528
2529 // Emit type/value pairs for varargs params.
2530 if (FTy->isVarArg()) {
2531 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
2532 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2533 }
2534 break;
2535 }
2536 case Instruction::VAArg:
2537 Code = bitc::FUNC_CODE_INST_VAARG;
2538 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty
2539 pushValue(I.getOperand(0), InstID, Vals); // valist.
2540 Vals.push_back(getTypeID(I.getType())); // restype.
2541 break;
2542 }
2543
2544 Stream.EmitRecord(Code, Vals, AbbrevToUse);
2545 Vals.clear();
2546 }
2547
2548 // Emit names for globals/functions etc.
writeFunctionLevelValueSymbolTable(const ValueSymbolTable & VST)2549 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
2550 const ValueSymbolTable &VST) {
2551 if (VST.empty())
2552 return;
2553 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2554
2555 SmallVector<unsigned, 64> NameVals;
2556
2557 // HLSL Change
2558 // Read the named values from a sorted list instead of the original list
2559 // to ensure the binary is the same no matter what values ever existed.
2560 SmallVector<const ValueName *, 16> SortedTable;
2561
2562 for (auto &VI : VST) {
2563 SortedTable.push_back(VI.second->getValueName());
2564 }
2565 // The keys are unique, so there shouldn't be stability issues.
2566 llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) {
2567 return A->first() < B->first();
2568 });
2569
2570 for (const ValueName *SI : SortedTable) {
2571 auto &Name = *SI;
2572
2573 // Figure out the encoding to use for the name.
2574 bool is7Bit = true;
2575 bool isChar6 = true;
2576 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
2577 C != E; ++C) {
2578 if (isChar6)
2579 isChar6 = BitCodeAbbrevOp::isChar6(*C);
2580 if ((unsigned char)*C & 128) {
2581 is7Bit = false;
2582 break; // don't bother scanning the rest.
2583 }
2584 }
2585
2586 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2587
2588 // VST_ENTRY: [valueid, namechar x N]
2589 // VST_BBENTRY: [bbid, namechar x N]
2590 unsigned Code;
2591 if (isa<BasicBlock>(SI->getValue())) {
2592 Code = bitc::VST_CODE_BBENTRY;
2593 if (isChar6)
2594 AbbrevToUse = VST_BBENTRY_6_ABBREV;
2595 } else {
2596 Code = bitc::VST_CODE_ENTRY;
2597 if (isChar6)
2598 AbbrevToUse = VST_ENTRY_6_ABBREV;
2599 else if (is7Bit)
2600 AbbrevToUse = VST_ENTRY_7_ABBREV;
2601 }
2602
2603 NameVals.push_back(VE.getValueID(SI->getValue()));
2604 for (const char *P = Name.getKeyData(),
2605 *E = Name.getKeyData() + Name.getKeyLength();
2606 P != E; ++P)
2607 NameVals.push_back((unsigned char)*P);
2608
2609 // Emit the finished record.
2610 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2611 NameVals.clear();
2612 }
2613 Stream.ExitBlock();
2614 }
2615
2616 /// Emit a function body to the module stream.
writeFunction(const Function & F)2617 void DXILBitcodeWriter::writeFunction(const Function &F) {
2618 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2619 VE.incorporateFunction(F);
2620
2621 SmallVector<unsigned, 64> Vals;
2622
2623 // Emit the number of basic blocks, so the reader can create them ahead of
2624 // time.
2625 Vals.push_back(VE.getBasicBlocks().size());
2626 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2627 Vals.clear();
2628
2629 // If there are function-local constants, emit them now.
2630 unsigned CstStart, CstEnd;
2631 VE.getFunctionConstantRange(CstStart, CstEnd);
2632 writeConstants(CstStart, CstEnd, false);
2633
2634 // If there is function-local metadata, emit it now.
2635 writeFunctionMetadata(F);
2636
2637 // Keep a running idea of what the instruction ID is.
2638 unsigned InstID = CstEnd;
2639
2640 bool NeedsMetadataAttachment = F.hasMetadata();
2641
2642 DILocation *LastDL = nullptr;
2643
2644 // Finally, emit all the instructions, in order.
2645 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2646 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
2647 ++I) {
2648 writeInstruction(*I, InstID, Vals);
2649
2650 if (!I->getType()->isVoidTy())
2651 ++InstID;
2652
2653 // If the instruction has metadata, write a metadata attachment later.
2654 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2655
2656 // If the instruction has a debug location, emit it.
2657 DILocation *DL = I->getDebugLoc();
2658 if (!DL)
2659 continue;
2660
2661 if (DL == LastDL) {
2662 // Just repeat the same debug loc as last time.
2663 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2664 continue;
2665 }
2666
2667 Vals.push_back(DL->getLine());
2668 Vals.push_back(DL->getColumn());
2669 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2670 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2671 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2672 Vals.clear();
2673
2674 LastDL = DL;
2675 }
2676
2677 // Emit names for all the instructions etc.
2678 if (auto *Symtab = F.getValueSymbolTable())
2679 writeFunctionLevelValueSymbolTable(*Symtab);
2680
2681 if (NeedsMetadataAttachment)
2682 writeFunctionMetadataAttachment(F);
2683
2684 VE.purgeFunction();
2685 Stream.ExitBlock();
2686 }
2687
2688 // Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo()2689 void DXILBitcodeWriter::writeBlockInfo() {
2690 // We only want to emit block info records for blocks that have multiple
2691 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2692 // Other blocks can define their abbrevs inline.
2693 Stream.EnterBlockInfoBlock();
2694
2695 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2696 auto Abbv = std::make_shared<BitCodeAbbrev>();
2697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2701 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2702 std::move(Abbv)) != VST_ENTRY_8_ABBREV)
2703 assert(false && "Unexpected abbrev ordering!");
2704 }
2705
2706 { // 7-bit fixed width VST_ENTRY strings.
2707 auto Abbv = std::make_shared<BitCodeAbbrev>();
2708 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2712 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2713 std::move(Abbv)) != VST_ENTRY_7_ABBREV)
2714 assert(false && "Unexpected abbrev ordering!");
2715 }
2716 { // 6-bit char6 VST_ENTRY strings.
2717 auto Abbv = std::make_shared<BitCodeAbbrev>();
2718 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2722 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2723 std::move(Abbv)) != VST_ENTRY_6_ABBREV)
2724 assert(false && "Unexpected abbrev ordering!");
2725 }
2726 { // 6-bit char6 VST_BBENTRY strings.
2727 auto Abbv = std::make_shared<BitCodeAbbrev>();
2728 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2732 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2733 std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
2734 assert(false && "Unexpected abbrev ordering!");
2735 }
2736
2737 { // SETTYPE abbrev for CONSTANTS_BLOCK.
2738 auto Abbv = std::make_shared<BitCodeAbbrev>();
2739 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2741 VE.computeBitsRequiredForTypeIndices()));
2742 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2743 CONSTANTS_SETTYPE_ABBREV)
2744 assert(false && "Unexpected abbrev ordering!");
2745 }
2746
2747 { // INTEGER abbrev for CONSTANTS_BLOCK.
2748 auto Abbv = std::make_shared<BitCodeAbbrev>();
2749 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2751 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2752 CONSTANTS_INTEGER_ABBREV)
2753 assert(false && "Unexpected abbrev ordering!");
2754 }
2755
2756 { // CE_CAST abbrev for CONSTANTS_BLOCK.
2757 auto Abbv = std::make_shared<BitCodeAbbrev>();
2758 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
2761 VE.computeBitsRequiredForTypeIndices()));
2762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2763
2764 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2765 CONSTANTS_CE_CAST_Abbrev)
2766 assert(false && "Unexpected abbrev ordering!");
2767 }
2768 { // NULL abbrev for CONSTANTS_BLOCK.
2769 auto Abbv = std::make_shared<BitCodeAbbrev>();
2770 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2771 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2772 CONSTANTS_NULL_Abbrev)
2773 assert(false && "Unexpected abbrev ordering!");
2774 }
2775
2776 // FIXME: This should only use space for first class types!
2777
2778 { // INST_LOAD abbrev for FUNCTION_BLOCK.
2779 auto Abbv = std::make_shared<BitCodeAbbrev>();
2780 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2783 VE.computeBitsRequiredForTypeIndices()));
2784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2786 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2787 (unsigned)FUNCTION_INST_LOAD_ABBREV)
2788 assert(false && "Unexpected abbrev ordering!");
2789 }
2790 { // INST_BINOP abbrev for FUNCTION_BLOCK.
2791 auto Abbv = std::make_shared<BitCodeAbbrev>();
2792 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2796 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2797 (unsigned)FUNCTION_INST_BINOP_ABBREV)
2798 assert(false && "Unexpected abbrev ordering!");
2799 }
2800 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2801 auto Abbv = std::make_shared<BitCodeAbbrev>();
2802 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2807 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2808 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
2809 assert(false && "Unexpected abbrev ordering!");
2810 }
2811 { // INST_CAST abbrev for FUNCTION_BLOCK.
2812 auto Abbv = std::make_shared<BitCodeAbbrev>();
2813 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2816 VE.computeBitsRequiredForTypeIndices()));
2817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2818 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2819 (unsigned)FUNCTION_INST_CAST_ABBREV)
2820 assert(false && "Unexpected abbrev ordering!");
2821 }
2822
2823 { // INST_RET abbrev for FUNCTION_BLOCK.
2824 auto Abbv = std::make_shared<BitCodeAbbrev>();
2825 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2826 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2827 (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
2828 assert(false && "Unexpected abbrev ordering!");
2829 }
2830 { // INST_RET abbrev for FUNCTION_BLOCK.
2831 auto Abbv = std::make_shared<BitCodeAbbrev>();
2832 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2834 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2835 (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
2836 assert(false && "Unexpected abbrev ordering!");
2837 }
2838 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2839 auto Abbv = std::make_shared<BitCodeAbbrev>();
2840 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2841 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2842 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
2843 assert(false && "Unexpected abbrev ordering!");
2844 }
2845 {
2846 auto Abbv = std::make_shared<BitCodeAbbrev>();
2847 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2850 Log2_32_Ceil(VE.getTypes().size() + 1)));
2851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2853 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2854 (unsigned)FUNCTION_INST_GEP_ABBREV)
2855 assert(false && "Unexpected abbrev ordering!");
2856 }
2857
2858 Stream.ExitBlock();
2859 }
2860
writeModuleVersion()2861 void DXILBitcodeWriter::writeModuleVersion() {
2862 // VERSION: [version#]
2863 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
2864 }
2865
2866 /// WriteModule - Emit the specified module to the bitstream.
write()2867 void DXILBitcodeWriter::write() {
2868 // The identification block is new since llvm-3.7, but the old bitcode reader
2869 // will skip it.
2870 // writeIdentificationBlock(Stream);
2871
2872 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2873
2874 // It is redundant to fully-specify this here, but nice to make it explicit
2875 // so that it is clear the DXIL module version is different.
2876 DXILBitcodeWriter::writeModuleVersion();
2877
2878 // Emit blockinfo, which defines the standard abbreviations etc.
2879 writeBlockInfo();
2880
2881 // Emit information about attribute groups.
2882 writeAttributeGroupTable();
2883
2884 // Emit information about parameter attributes.
2885 writeAttributeTable();
2886
2887 // Emit information describing all of the types in the module.
2888 writeTypeTable();
2889
2890 writeComdats();
2891
2892 // Emit top-level description of module, including target triple, inline asm,
2893 // descriptors for global variables, and function prototype info.
2894 writeModuleInfo();
2895
2896 // Emit constants.
2897 writeModuleConstants();
2898
2899 // Emit metadata.
2900 writeModuleMetadataKinds();
2901
2902 // Emit metadata.
2903 writeModuleMetadata();
2904
2905 // Emit names for globals/functions etc.
2906 // DXIL uses the same format for module-level value symbol table as for the
2907 // function level table.
2908 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
2909
2910 // Emit function bodies.
2911 for (const Function &F : M)
2912 if (!F.isDeclaration())
2913 writeFunction(F);
2914
2915 Stream.ExitBlock();
2916 }
2917