xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
10 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
11 // is common code shared among the LegalizeTypes*.cpp files.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "LegalizeTypes.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/raw_ostream.h"
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "legalize-types"
24 
25 static cl::opt<bool>
26 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
27 
28 /// Do extensive, expensive, basic correctness checking.
PerformExpensiveChecks()29 void DAGTypeLegalizer::PerformExpensiveChecks() {
30   // If a node is not processed, then none of its values should be mapped by any
31   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
32 
33   // If a node is processed, then each value with an illegal type must be mapped
34   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
35   // Values with a legal type may be mapped by ReplacedValues, but not by any of
36   // the other maps.
37 
38   // Note that these invariants may not hold momentarily when processing a node:
39   // the node being processed may be put in a map before being marked Processed.
40 
41   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
42   // occur in two ways.  Firstly, a node may be created during legalization but
43   // never passed to the legalization core.  This is usually due to the implicit
44   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
45   // node may be passed to the legalization core, but when analyzed may morph
46   // into a different node, leaving the original node as a NewNode in the DAG.
47   // A node may morph if one of its operands changes during analysis.  Whether
48   // it actually morphs or not depends on whether, after updating its operands,
49   // it is equivalent to an existing node: if so, it morphs into that existing
50   // node (CSE).  An operand can change during analysis if the operand is a new
51   // node that morphs, or it is a processed value that was mapped to some other
52   // value (as recorded in ReplacedValues) in which case the operand is turned
53   // into that other value.  If a node morphs then the node it morphed into will
54   // be used instead of it for legalization, however the original node continues
55   // to live on in the DAG.
56   // The conclusion is that though there may be nodes marked NewNode in the DAG,
57   // all uses of such nodes are also marked NewNode: the result is a fungus of
58   // NewNodes growing on top of the useful nodes, and perhaps using them, but
59   // not used by them.
60 
61   // If a value is mapped by ReplacedValues, then it must have no uses, except
62   // by nodes marked NewNode (see above).
63 
64   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
65   // Note that ReplacedValues should be applied iteratively.
66 
67   // Note that the ReplacedValues map may also map deleted nodes (by iterating
68   // over the DAG we never dereference deleted nodes).  This means that it may
69   // also map nodes marked NewNode if the deallocated memory was reallocated as
70   // another node, and that new node was not seen by the LegalizeTypes machinery
71   // (for example because it was created but not used).  In general, we cannot
72   // distinguish between new nodes and deleted nodes.
73   SmallVector<SDNode*, 16> NewNodes;
74   for (SDNode &Node : DAG.allnodes()) {
75     // Remember nodes marked NewNode - they are subject to extra checking below.
76     if (Node.getNodeId() == NewNode)
77       NewNodes.push_back(&Node);
78 
79     for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
80       SDValue Res(&Node, i);
81       bool Failed = false;
82       // Don't create a value in map.
83       auto ResId = ValueToIdMap.lookup(Res);
84 
85       unsigned Mapped = 0;
86       if (ResId) {
87         auto I = ReplacedValues.find(ResId);
88         if (I != ReplacedValues.end()) {
89           Mapped |= 1;
90           // Check that remapped values are only used by nodes marked NewNode.
91           for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
92                UI != UE; ++UI)
93             if (UI.getUse().getResNo() == i)
94               assert(UI->getNodeId() == NewNode &&
95                      "Remapped value has non-trivial use!");
96 
97           // Check that the final result of applying ReplacedValues is not
98           // marked NewNode.
99           auto NewValId = I->second;
100           I = ReplacedValues.find(NewValId);
101           while (I != ReplacedValues.end()) {
102             NewValId = I->second;
103             I = ReplacedValues.find(NewValId);
104           }
105           SDValue NewVal = getSDValue(NewValId);
106           (void)NewVal;
107           assert(NewVal.getNode()->getNodeId() != NewNode &&
108                  "ReplacedValues maps to a new node!");
109         }
110         if (PromotedIntegers.count(ResId))
111           Mapped |= 2;
112         if (SoftenedFloats.count(ResId))
113           Mapped |= 4;
114         if (ScalarizedVectors.count(ResId))
115           Mapped |= 8;
116         if (ExpandedIntegers.count(ResId))
117           Mapped |= 16;
118         if (ExpandedFloats.count(ResId))
119           Mapped |= 32;
120         if (SplitVectors.count(ResId))
121           Mapped |= 64;
122         if (WidenedVectors.count(ResId))
123           Mapped |= 128;
124         if (PromotedFloats.count(ResId))
125           Mapped |= 256;
126         if (SoftPromotedHalfs.count(ResId))
127           Mapped |= 512;
128       }
129 
130       if (Node.getNodeId() != Processed) {
131         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
132         // marked NewNode too, since a deleted node may have been reallocated as
133         // another node that has not been seen by the LegalizeTypes machinery.
134         if ((Node.getNodeId() == NewNode && Mapped > 1) ||
135             (Node.getNodeId() != NewNode && Mapped != 0)) {
136           dbgs() << "Unprocessed value in a map!";
137           Failed = true;
138         }
139       } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(&Node)) {
140         if (Mapped > 1) {
141           dbgs() << "Value with legal type was transformed!";
142           Failed = true;
143         }
144       } else {
145         if (Mapped == 0) {
146           SDValue NodeById = IdToValueMap.lookup(ResId);
147           // It is possible the node has been remapped to another node and had
148           // its Id updated in the Value to Id table. The node it remapped to
149           // may not have been processed yet. Look up the Id in the Id to Value
150           // table and re-check the Processed state. If the node hasn't been
151           // remapped we'll get the same state as we got earlier.
152           if (NodeById->getNodeId() == Processed) {
153             dbgs() << "Processed value not in any map!";
154             Failed = true;
155           }
156         } else if (Mapped & (Mapped - 1)) {
157           dbgs() << "Value in multiple maps!";
158           Failed = true;
159         }
160       }
161 
162       if (Failed) {
163         if (Mapped & 1)
164           dbgs() << " ReplacedValues";
165         if (Mapped & 2)
166           dbgs() << " PromotedIntegers";
167         if (Mapped & 4)
168           dbgs() << " SoftenedFloats";
169         if (Mapped & 8)
170           dbgs() << " ScalarizedVectors";
171         if (Mapped & 16)
172           dbgs() << " ExpandedIntegers";
173         if (Mapped & 32)
174           dbgs() << " ExpandedFloats";
175         if (Mapped & 64)
176           dbgs() << " SplitVectors";
177         if (Mapped & 128)
178           dbgs() << " WidenedVectors";
179         if (Mapped & 256)
180           dbgs() << " PromotedFloats";
181         if (Mapped & 512)
182           dbgs() << " SoftPromoteHalfs";
183         dbgs() << "\n";
184         llvm_unreachable(nullptr);
185       }
186     }
187   }
188 
189 #ifndef NDEBUG
190   // Checked that NewNodes are only used by other NewNodes.
191   for (SDNode *N : NewNodes) {
192     for (SDNode *U : N->uses())
193       assert(U->getNodeId() == NewNode && "NewNode used by non-NewNode!");
194   }
195 #endif
196 }
197 
198 /// This is the main entry point for the type legalizer. This does a top-down
199 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
200 /// any changes.
run()201 bool DAGTypeLegalizer::run() {
202   bool Changed = false;
203 
204   // Create a dummy node (which is not added to allnodes), that adds a reference
205   // to the root node, preventing it from being deleted, and tracking any
206   // changes of the root.
207   HandleSDNode Dummy(DAG.getRoot());
208   Dummy.setNodeId(Unanalyzed);
209 
210   // The root of the dag may dangle to deleted nodes until the type legalizer is
211   // done.  Set it to null to avoid confusion.
212   DAG.setRoot(SDValue());
213 
214   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
215   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
216   // non-leaves.
217   for (SDNode &Node : DAG.allnodes()) {
218     if (Node.getNumOperands() == 0) {
219       Node.setNodeId(ReadyToProcess);
220       Worklist.push_back(&Node);
221     } else {
222       Node.setNodeId(Unanalyzed);
223     }
224   }
225 
226   // Now that we have a set of nodes to process, handle them all.
227   while (!Worklist.empty()) {
228 #ifndef EXPENSIVE_CHECKS
229     if (EnableExpensiveChecks)
230 #endif
231       PerformExpensiveChecks();
232 
233     SDNode *N = Worklist.pop_back_val();
234     assert(N->getNodeId() == ReadyToProcess &&
235            "Node should be ready if on worklist!");
236 
237     LLVM_DEBUG(dbgs() << "\nLegalizing node: "; N->dump(&DAG));
238     if (IgnoreNodeResults(N)) {
239       LLVM_DEBUG(dbgs() << "Ignoring node results\n");
240       goto ScanOperands;
241     }
242 
243     // Scan the values produced by the node, checking to see if any result
244     // types are illegal.
245     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
246       EVT ResultVT = N->getValueType(i);
247       LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT << "\n");
248       switch (getTypeAction(ResultVT)) {
249       case TargetLowering::TypeLegal:
250         LLVM_DEBUG(dbgs() << "Legal result type\n");
251         break;
252       case TargetLowering::TypeScalarizeScalableVector:
253         report_fatal_error(
254             "Scalarization of scalable vectors is not supported.");
255       // The following calls must take care of *all* of the node's results,
256       // not just the illegal result they were passed (this includes results
257       // with a legal type).  Results can be remapped using ReplaceValueWith,
258       // or their promoted/expanded/etc values registered in PromotedIntegers,
259       // ExpandedIntegers etc.
260       case TargetLowering::TypePromoteInteger:
261         PromoteIntegerResult(N, i);
262         Changed = true;
263         goto NodeDone;
264       case TargetLowering::TypeExpandInteger:
265         ExpandIntegerResult(N, i);
266         Changed = true;
267         goto NodeDone;
268       case TargetLowering::TypeSoftenFloat:
269         SoftenFloatResult(N, i);
270         Changed = true;
271         goto NodeDone;
272       case TargetLowering::TypeExpandFloat:
273         ExpandFloatResult(N, i);
274         Changed = true;
275         goto NodeDone;
276       case TargetLowering::TypeScalarizeVector:
277         ScalarizeVectorResult(N, i);
278         Changed = true;
279         goto NodeDone;
280       case TargetLowering::TypeSplitVector:
281         SplitVectorResult(N, i);
282         Changed = true;
283         goto NodeDone;
284       case TargetLowering::TypeWidenVector:
285         WidenVectorResult(N, i);
286         Changed = true;
287         goto NodeDone;
288       case TargetLowering::TypePromoteFloat:
289         PromoteFloatResult(N, i);
290         Changed = true;
291         goto NodeDone;
292       case TargetLowering::TypeSoftPromoteHalf:
293         SoftPromoteHalfResult(N, i);
294         Changed = true;
295         goto NodeDone;
296       }
297     }
298 
299 ScanOperands:
300     // Scan the operand list for the node, handling any nodes with operands that
301     // are illegal.
302     {
303     unsigned NumOperands = N->getNumOperands();
304     bool NeedsReanalyzing = false;
305     unsigned i;
306     for (i = 0; i != NumOperands; ++i) {
307       if (IgnoreNodeResults(N->getOperand(i).getNode()))
308         continue;
309 
310       const auto &Op = N->getOperand(i);
311       LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op.dump(&DAG));
312       EVT OpVT = Op.getValueType();
313       switch (getTypeAction(OpVT)) {
314       case TargetLowering::TypeLegal:
315         LLVM_DEBUG(dbgs() << "Legal operand\n");
316         continue;
317       case TargetLowering::TypeScalarizeScalableVector:
318         report_fatal_error(
319             "Scalarization of scalable vectors is not supported.");
320       // The following calls must either replace all of the node's results
321       // using ReplaceValueWith, and return "false"; or update the node's
322       // operands in place, and return "true".
323       case TargetLowering::TypePromoteInteger:
324         NeedsReanalyzing = PromoteIntegerOperand(N, i);
325         Changed = true;
326         break;
327       case TargetLowering::TypeExpandInteger:
328         NeedsReanalyzing = ExpandIntegerOperand(N, i);
329         Changed = true;
330         break;
331       case TargetLowering::TypeSoftenFloat:
332         NeedsReanalyzing = SoftenFloatOperand(N, i);
333         Changed = true;
334         break;
335       case TargetLowering::TypeExpandFloat:
336         NeedsReanalyzing = ExpandFloatOperand(N, i);
337         Changed = true;
338         break;
339       case TargetLowering::TypeScalarizeVector:
340         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
341         Changed = true;
342         break;
343       case TargetLowering::TypeSplitVector:
344         NeedsReanalyzing = SplitVectorOperand(N, i);
345         Changed = true;
346         break;
347       case TargetLowering::TypeWidenVector:
348         NeedsReanalyzing = WidenVectorOperand(N, i);
349         Changed = true;
350         break;
351       case TargetLowering::TypePromoteFloat:
352         NeedsReanalyzing = PromoteFloatOperand(N, i);
353         Changed = true;
354         break;
355       case TargetLowering::TypeSoftPromoteHalf:
356         NeedsReanalyzing = SoftPromoteHalfOperand(N, i);
357         Changed = true;
358         break;
359       }
360       break;
361     }
362 
363     // The sub-method updated N in place.  Check to see if any operands are new,
364     // and if so, mark them.  If the node needs revisiting, don't add all users
365     // to the worklist etc.
366     if (NeedsReanalyzing) {
367       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
368 
369       N->setNodeId(NewNode);
370       // Recompute the NodeId and correct processed operands, adding the node to
371       // the worklist if ready.
372       SDNode *M = AnalyzeNewNode(N);
373       if (M == N)
374         // The node didn't morph - nothing special to do, it will be revisited.
375         continue;
376 
377       // The node morphed - this is equivalent to legalizing by replacing every
378       // value of N with the corresponding value of M.  So do that now.
379       assert(N->getNumValues() == M->getNumValues() &&
380              "Node morphing changed the number of results!");
381       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
382         // Replacing the value takes care of remapping the new value.
383         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
384       assert(N->getNodeId() == NewNode && "Unexpected node state!");
385       // The node continues to live on as part of the NewNode fungus that
386       // grows on top of the useful nodes.  Nothing more needs to be done
387       // with it - move on to the next node.
388       continue;
389     }
390 
391     if (i == NumOperands) {
392       LLVM_DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG));
393     }
394     }
395 NodeDone:
396 
397     // If we reach here, the node was processed, potentially creating new nodes.
398     // Mark it as processed and add its users to the worklist as appropriate.
399     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
400     N->setNodeId(Processed);
401 
402     for (SDNode *User : N->uses()) {
403       int NodeId = User->getNodeId();
404 
405       // This node has two options: it can either be a new node or its Node ID
406       // may be a count of the number of operands it has that are not ready.
407       if (NodeId > 0) {
408         User->setNodeId(NodeId-1);
409 
410         // If this was the last use it was waiting on, add it to the ready list.
411         if (NodeId-1 == ReadyToProcess)
412           Worklist.push_back(User);
413         continue;
414       }
415 
416       // If this is an unreachable new node, then ignore it.  If it ever becomes
417       // reachable by being used by a newly created node then it will be handled
418       // by AnalyzeNewNode.
419       if (NodeId == NewNode)
420         continue;
421 
422       // Otherwise, this node is new: this is the first operand of it that
423       // became ready.  Its new NodeId is the number of operands it has minus 1
424       // (as this node is now processed).
425       assert(NodeId == Unanalyzed && "Unknown node ID!");
426       User->setNodeId(User->getNumOperands() - 1);
427 
428       // If the node only has a single operand, it is now ready.
429       if (User->getNumOperands() == 1)
430         Worklist.push_back(User);
431     }
432   }
433 
434 #ifndef EXPENSIVE_CHECKS
435   if (EnableExpensiveChecks)
436 #endif
437     PerformExpensiveChecks();
438 
439   // If the root changed (e.g. it was a dead load) update the root.
440   DAG.setRoot(Dummy.getValue());
441 
442   // Remove dead nodes.  This is important to do for cleanliness but also before
443   // the checking loop below.  Implicit folding by the DAG.getNode operators and
444   // node morphing can cause unreachable nodes to be around with their flags set
445   // to new.
446   DAG.RemoveDeadNodes();
447 
448   // In a debug build, scan all the nodes to make sure we found them all.  This
449   // ensures that there are no cycles and that everything got processed.
450 #ifndef NDEBUG
451   for (SDNode &Node : DAG.allnodes()) {
452     bool Failed = false;
453 
454     // Check that all result types are legal.
455     if (!IgnoreNodeResults(&Node))
456       for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
457         if (!isTypeLegal(Node.getValueType(i))) {
458           dbgs() << "Result type " << i << " illegal: ";
459           Node.dump(&DAG);
460           Failed = true;
461         }
462 
463     // Check that all operand types are legal.
464     for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
465       if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
466           !isTypeLegal(Node.getOperand(i).getValueType())) {
467         dbgs() << "Operand type " << i << " illegal: ";
468         Node.getOperand(i).dump(&DAG);
469         Failed = true;
470       }
471 
472     if (Node.getNodeId() != Processed) {
473        if (Node.getNodeId() == NewNode)
474          dbgs() << "New node not analyzed?\n";
475        else if (Node.getNodeId() == Unanalyzed)
476          dbgs() << "Unanalyzed node not noticed?\n";
477        else if (Node.getNodeId() > 0)
478          dbgs() << "Operand not processed?\n";
479        else if (Node.getNodeId() == ReadyToProcess)
480          dbgs() << "Not added to worklist?\n";
481        Failed = true;
482     }
483 
484     if (Failed) {
485       Node.dump(&DAG); dbgs() << "\n";
486       llvm_unreachable(nullptr);
487     }
488   }
489 #endif
490 
491   return Changed;
492 }
493 
494 /// The specified node is the root of a subtree of potentially new nodes.
495 /// Correct any processed operands (this may change the node) and calculate the
496 /// NodeId. If the node itself changes to a processed node, it is not remapped -
497 /// the caller needs to take care of this. Returns the potentially changed node.
AnalyzeNewNode(SDNode * N)498 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
499   // If this was an existing node that is already done, we're done.
500   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
501     return N;
502 
503   // Okay, we know that this node is new.  Recursively walk all of its operands
504   // to see if they are new also.  The depth of this walk is bounded by the size
505   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
506   // about revisiting of nodes.
507   //
508   // As we walk the operands, keep track of the number of nodes that are
509   // processed.  If non-zero, this will become the new nodeid of this node.
510   // Operands may morph when they are analyzed.  If so, the node will be
511   // updated after all operands have been analyzed.  Since this is rare,
512   // the code tries to minimize overhead in the non-morphing case.
513 
514   std::vector<SDValue> NewOps;
515   unsigned NumProcessed = 0;
516   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
517     SDValue OrigOp = N->getOperand(i);
518     SDValue Op = OrigOp;
519 
520     AnalyzeNewValue(Op); // Op may morph.
521 
522     if (Op.getNode()->getNodeId() == Processed)
523       ++NumProcessed;
524 
525     if (!NewOps.empty()) {
526       // Some previous operand changed.  Add this one to the list.
527       NewOps.push_back(Op);
528     } else if (Op != OrigOp) {
529       // This is the first operand to change - add all operands so far.
530       NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
531       NewOps.push_back(Op);
532     }
533   }
534 
535   // Some operands changed - update the node.
536   if (!NewOps.empty()) {
537     SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
538     if (M != N) {
539       // The node morphed into a different node.  Normally for this to happen
540       // the original node would have to be marked NewNode.  However this can
541       // in theory momentarily not be the case while ReplaceValueWith is doing
542       // its stuff.  Mark the original node NewNode to help basic correctness
543       // checking.
544       N->setNodeId(NewNode);
545       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
546         // It morphed into a previously analyzed node - nothing more to do.
547         return M;
548 
549       // It morphed into a different new node.  Do the equivalent of passing
550       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
551       // to remap the operands, since they are the same as the operands we
552       // remapped above.
553       N = M;
554     }
555   }
556 
557   // Calculate the NodeId.
558   N->setNodeId(N->getNumOperands() - NumProcessed);
559   if (N->getNodeId() == ReadyToProcess)
560     Worklist.push_back(N);
561 
562   return N;
563 }
564 
565 /// Call AnalyzeNewNode, updating the node in Val if needed.
566 /// If the node changes to a processed node, then remap it.
AnalyzeNewValue(SDValue & Val)567 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
568   Val.setNode(AnalyzeNewNode(Val.getNode()));
569   if (Val.getNode()->getNodeId() == Processed)
570     // We were passed a processed node, or it morphed into one - remap it.
571     RemapValue(Val);
572 }
573 
574 /// If the specified value was already legalized to another value,
575 /// replace it by that value.
RemapValue(SDValue & V)576 void DAGTypeLegalizer::RemapValue(SDValue &V) {
577   auto Id = getTableId(V);
578   V = getSDValue(Id);
579 }
580 
RemapId(TableId & Id)581 void DAGTypeLegalizer::RemapId(TableId &Id) {
582   auto I = ReplacedValues.find(Id);
583   if (I != ReplacedValues.end()) {
584     assert(Id != I->second && "Id is mapped to itself.");
585     // Use path compression to speed up future lookups if values get multiply
586     // replaced with other values.
587     RemapId(I->second);
588     Id = I->second;
589 
590     // Note that N = IdToValueMap[Id] it is possible to have
591     // N.getNode()->getNodeId() == NewNode at this point because it is possible
592     // for a node to be put in the map before being processed.
593   }
594 }
595 
596 namespace {
597   /// This class is a DAGUpdateListener that listens for updates to nodes and
598   /// recomputes their ready state.
599   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
600     DAGTypeLegalizer &DTL;
601     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
602   public:
NodeUpdateListener(DAGTypeLegalizer & dtl,SmallSetVector<SDNode *,16> & nta)603     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
604                                 SmallSetVector<SDNode*, 16> &nta)
605       : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
606         DTL(dtl), NodesToAnalyze(nta) {}
607 
NodeDeleted(SDNode * N,SDNode * E)608     void NodeDeleted(SDNode *N, SDNode *E) override {
609       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
610              N->getNodeId() != DAGTypeLegalizer::Processed &&
611              "Invalid node ID for RAUW deletion!");
612       // It is possible, though rare, for the deleted node N to occur as a
613       // target in a map, so note the replacement N -> E in ReplacedValues.
614       assert(E && "Node not replaced?");
615       DTL.NoteDeletion(N, E);
616 
617       // In theory the deleted node could also have been scheduled for analysis.
618       // So remove it from the set of nodes which will be analyzed.
619       NodesToAnalyze.remove(N);
620 
621       // In general nothing needs to be done for E, since it didn't change but
622       // only gained new uses.  However N -> E was just added to ReplacedValues,
623       // and the result of a ReplacedValues mapping is not allowed to be marked
624       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
625       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
626         NodesToAnalyze.insert(E);
627     }
628 
NodeUpdated(SDNode * N)629     void NodeUpdated(SDNode *N) override {
630       // Node updates can mean pretty much anything.  It is possible that an
631       // operand was set to something already processed (f.e.) in which case
632       // this node could become ready.  Recompute its flags.
633       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
634              N->getNodeId() != DAGTypeLegalizer::Processed &&
635              "Invalid node ID for RAUW deletion!");
636       N->setNodeId(DAGTypeLegalizer::NewNode);
637       NodesToAnalyze.insert(N);
638     }
639   };
640 }
641 
642 
643 /// The specified value was legalized to the specified other value.
644 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
ReplaceValueWith(SDValue From,SDValue To)645 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
646   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
647 
648   // If expansion produced new nodes, make sure they are properly marked.
649   AnalyzeNewValue(To);
650 
651   // Anything that used the old node should now use the new one.  Note that this
652   // can potentially cause recursive merging.
653   SmallSetVector<SDNode*, 16> NodesToAnalyze;
654   NodeUpdateListener NUL(*this, NodesToAnalyze);
655   do {
656 
657     // The old node may be present in a map like ExpandedIntegers or
658     // PromotedIntegers. Inform maps about the replacement.
659     auto FromId = getTableId(From);
660     auto ToId = getTableId(To);
661 
662     if (FromId != ToId)
663       ReplacedValues[FromId] = ToId;
664     DAG.ReplaceAllUsesOfValueWith(From, To);
665 
666     // Process the list of nodes that need to be reanalyzed.
667     while (!NodesToAnalyze.empty()) {
668       SDNode *N = NodesToAnalyze.pop_back_val();
669       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
670         // The node was analyzed while reanalyzing an earlier node - it is safe
671         // to skip.  Note that this is not a morphing node - otherwise it would
672         // still be marked NewNode.
673         continue;
674 
675       // Analyze the node's operands and recalculate the node ID.
676       SDNode *M = AnalyzeNewNode(N);
677       if (M != N) {
678         // The node morphed into a different node.  Make everyone use the new
679         // node instead.
680         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
681         assert(N->getNumValues() == M->getNumValues() &&
682                "Node morphing changed the number of results!");
683         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
684           SDValue OldVal(N, i);
685           SDValue NewVal(M, i);
686           if (M->getNodeId() == Processed)
687             RemapValue(NewVal);
688           // OldVal may be a target of the ReplacedValues map which was marked
689           // NewNode to force reanalysis because it was updated.  Ensure that
690           // anything that ReplacedValues mapped to OldVal will now be mapped
691           // all the way to NewVal.
692           auto OldValId = getTableId(OldVal);
693           auto NewValId = getTableId(NewVal);
694           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
695           if (OldValId != NewValId)
696             ReplacedValues[OldValId] = NewValId;
697         }
698         // The original node continues to exist in the DAG, marked NewNode.
699       }
700     }
701     // When recursively update nodes with new nodes, it is possible to have
702     // new uses of From due to CSE. If this happens, replace the new uses of
703     // From with To.
704   } while (!From.use_empty());
705 }
706 
SetPromotedInteger(SDValue Op,SDValue Result)707 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
708   assert(Result.getValueType() ==
709          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
710          "Invalid type for promoted integer");
711   AnalyzeNewValue(Result);
712 
713   auto &OpIdEntry = PromotedIntegers[getTableId(Op)];
714   assert((OpIdEntry == 0) && "Node is already promoted!");
715   OpIdEntry = getTableId(Result);
716 
717   DAG.transferDbgValues(Op, Result);
718 }
719 
SetSoftenedFloat(SDValue Op,SDValue Result)720 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
721 #ifndef NDEBUG
722   EVT VT = Result.getValueType();
723   LLVMContext &Ctx = *DAG.getContext();
724   assert((VT == EVT::getIntegerVT(Ctx, 80) ||
725           VT == TLI.getTypeToTransformTo(Ctx, Op.getValueType())) &&
726          "Invalid type for softened float");
727 #endif
728   AnalyzeNewValue(Result);
729 
730   auto &OpIdEntry = SoftenedFloats[getTableId(Op)];
731   assert((OpIdEntry == 0) && "Node is already converted to integer!");
732   OpIdEntry = getTableId(Result);
733 }
734 
SetPromotedFloat(SDValue Op,SDValue Result)735 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
736   assert(Result.getValueType() ==
737          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
738          "Invalid type for promoted float");
739   AnalyzeNewValue(Result);
740 
741   auto &OpIdEntry = PromotedFloats[getTableId(Op)];
742   assert((OpIdEntry == 0) && "Node is already promoted!");
743   OpIdEntry = getTableId(Result);
744 }
745 
SetSoftPromotedHalf(SDValue Op,SDValue Result)746 void DAGTypeLegalizer::SetSoftPromotedHalf(SDValue Op, SDValue Result) {
747   assert(Result.getValueType() == MVT::i16 &&
748          "Invalid type for soft-promoted half");
749   AnalyzeNewValue(Result);
750 
751   auto &OpIdEntry = SoftPromotedHalfs[getTableId(Op)];
752   assert((OpIdEntry == 0) && "Node is already promoted!");
753   OpIdEntry = getTableId(Result);
754 }
755 
SetScalarizedVector(SDValue Op,SDValue Result)756 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
757   // Note that in some cases vector operation operands may be greater than
758   // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
759   // a constant i8 operand.
760 
761   // We don't currently support the scalarization of scalable vector types.
762   assert(Result.getValueSizeInBits().getFixedValue() >=
763              Op.getScalarValueSizeInBits() &&
764          "Invalid type for scalarized vector");
765   AnalyzeNewValue(Result);
766 
767   auto &OpIdEntry = ScalarizedVectors[getTableId(Op)];
768   assert((OpIdEntry == 0) && "Node is already scalarized!");
769   OpIdEntry = getTableId(Result);
770 }
771 
GetExpandedInteger(SDValue Op,SDValue & Lo,SDValue & Hi)772 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
773                                           SDValue &Hi) {
774   std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
775   assert((Entry.first != 0) && "Operand isn't expanded");
776   Lo = getSDValue(Entry.first);
777   Hi = getSDValue(Entry.second);
778 }
779 
SetExpandedInteger(SDValue Op,SDValue Lo,SDValue Hi)780 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
781                                           SDValue Hi) {
782   assert(Lo.getValueType() ==
783          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
784          Hi.getValueType() == Lo.getValueType() &&
785          "Invalid type for expanded integer");
786   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
787   AnalyzeNewValue(Lo);
788   AnalyzeNewValue(Hi);
789 
790   // Transfer debug values. Don't invalidate the source debug value until it's
791   // been transferred to the high and low bits.
792   if (DAG.getDataLayout().isBigEndian()) {
793     DAG.transferDbgValues(Op, Hi, 0, Hi.getValueSizeInBits(), false);
794     DAG.transferDbgValues(Op, Lo, Hi.getValueSizeInBits(),
795                           Lo.getValueSizeInBits());
796   } else {
797     DAG.transferDbgValues(Op, Lo, 0, Lo.getValueSizeInBits(), false);
798     DAG.transferDbgValues(Op, Hi, Lo.getValueSizeInBits(),
799                           Hi.getValueSizeInBits());
800   }
801 
802   // Remember that this is the result of the node.
803   std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
804   assert((Entry.first == 0) && "Node already expanded");
805   Entry.first = getTableId(Lo);
806   Entry.second = getTableId(Hi);
807 }
808 
GetExpandedFloat(SDValue Op,SDValue & Lo,SDValue & Hi)809 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
810                                         SDValue &Hi) {
811   std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
812   assert((Entry.first != 0) && "Operand isn't expanded");
813   Lo = getSDValue(Entry.first);
814   Hi = getSDValue(Entry.second);
815 }
816 
SetExpandedFloat(SDValue Op,SDValue Lo,SDValue Hi)817 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
818                                         SDValue Hi) {
819   assert(Lo.getValueType() ==
820          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
821          Hi.getValueType() == Lo.getValueType() &&
822          "Invalid type for expanded float");
823   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
824   AnalyzeNewValue(Lo);
825   AnalyzeNewValue(Hi);
826 
827   std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
828   assert((Entry.first == 0) && "Node already expanded");
829   Entry.first = getTableId(Lo);
830   Entry.second = getTableId(Hi);
831 }
832 
GetSplitVector(SDValue Op,SDValue & Lo,SDValue & Hi)833 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
834                                       SDValue &Hi) {
835   std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
836   Lo = getSDValue(Entry.first);
837   Hi = getSDValue(Entry.second);
838   assert(Lo.getNode() && "Operand isn't split");
839   ;
840 }
841 
SetSplitVector(SDValue Op,SDValue Lo,SDValue Hi)842 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
843                                       SDValue Hi) {
844   assert(Lo.getValueType().getVectorElementType() ==
845              Op.getValueType().getVectorElementType() &&
846          Lo.getValueType().getVectorElementCount() * 2 ==
847              Op.getValueType().getVectorElementCount() &&
848          Hi.getValueType() == Lo.getValueType() &&
849          "Invalid type for split vector");
850   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
851   AnalyzeNewValue(Lo);
852   AnalyzeNewValue(Hi);
853 
854   // Remember that this is the result of the node.
855   std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
856   assert((Entry.first == 0) && "Node already split");
857   Entry.first = getTableId(Lo);
858   Entry.second = getTableId(Hi);
859 }
860 
SetWidenedVector(SDValue Op,SDValue Result)861 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
862   assert(Result.getValueType() ==
863          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
864          "Invalid type for widened vector");
865   AnalyzeNewValue(Result);
866 
867   auto &OpIdEntry = WidenedVectors[getTableId(Op)];
868   assert((OpIdEntry == 0) && "Node already widened!");
869   OpIdEntry = getTableId(Result);
870 }
871 
872 
873 //===----------------------------------------------------------------------===//
874 // Utilities.
875 //===----------------------------------------------------------------------===//
876 
877 /// Convert to an integer of the same size.
BitConvertToInteger(SDValue Op)878 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
879   unsigned BitWidth = Op.getValueSizeInBits();
880   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
881                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
882 }
883 
884 /// Convert to a vector of integers of the same size.
BitConvertVectorToIntegerVector(SDValue Op)885 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
886   assert(Op.getValueType().isVector() && "Only applies to vectors!");
887   unsigned EltWidth = Op.getScalarValueSizeInBits();
888   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
889   auto EltCnt = Op.getValueType().getVectorElementCount();
890   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
891                      EVT::getVectorVT(*DAG.getContext(), EltNVT, EltCnt), Op);
892 }
893 
CreateStackStoreLoad(SDValue Op,EVT DestVT)894 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
895                                                EVT DestVT) {
896   SDLoc dl(Op);
897   // Create the stack frame object.  Make sure it is aligned for both
898   // the source and destination types.
899 
900   // In cases where the vector is illegal it will be broken down into parts
901   // and stored in parts - we should use the alignment for the smallest part.
902   Align DestAlign = DAG.getReducedAlign(DestVT, /*UseABI=*/false);
903   Align OpAlign = DAG.getReducedAlign(Op.getValueType(), /*UseABI=*/false);
904   Align Align = std::max(DestAlign, OpAlign);
905   SDValue StackPtr =
906       DAG.CreateStackTemporary(Op.getValueType().getStoreSize(), Align);
907   // Emit a store to the stack slot.
908   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
909                                MachinePointerInfo(), Align);
910   // Result is a load from the stack slot.
911   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(), Align);
912 }
913 
914 /// Replace the node's results with custom code provided by the target and
915 /// return "true", or do nothing and return "false".
916 /// The last parameter is FALSE if we are dealing with a node with legal
917 /// result types and illegal operand. The second parameter denotes the type of
918 /// illegal OperandNo in that case.
919 /// The last parameter being TRUE means we are dealing with a
920 /// node with illegal result types. The second parameter denotes the type of
921 /// illegal ResNo in that case.
CustomLowerNode(SDNode * N,EVT VT,bool LegalizeResult)922 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
923   // See if the target wants to custom lower this node.
924   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
925     return false;
926 
927   SmallVector<SDValue, 8> Results;
928   if (LegalizeResult)
929     TLI.ReplaceNodeResults(N, Results, DAG);
930   else
931     TLI.LowerOperationWrapper(N, Results, DAG);
932 
933   if (Results.empty())
934     // The target didn't want to custom lower it after all.
935     return false;
936 
937   // Make everything that once used N's values now use those in Results instead.
938   assert(Results.size() == N->getNumValues() &&
939          "Custom lowering returned the wrong number of results!");
940   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
941     ReplaceValueWith(SDValue(N, i), Results[i]);
942   }
943   return true;
944 }
945 
946 
947 /// Widen the node's results with custom code provided by the target and return
948 /// "true", or do nothing and return "false".
CustomWidenLowerNode(SDNode * N,EVT VT)949 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
950   // See if the target wants to custom lower this node.
951   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
952     return false;
953 
954   SmallVector<SDValue, 8> Results;
955   TLI.ReplaceNodeResults(N, Results, DAG);
956 
957   if (Results.empty())
958     // The target didn't want to custom widen lower its result after all.
959     return false;
960 
961   // Update the widening map.
962   assert(Results.size() == N->getNumValues() &&
963          "Custom lowering returned the wrong number of results!");
964   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
965     // If this is a chain output or already widened just replace it.
966     bool WasWidened = SDValue(N, i).getValueType() != Results[i].getValueType();
967     if (WasWidened)
968       SetWidenedVector(SDValue(N, i), Results[i]);
969     else
970       ReplaceValueWith(SDValue(N, i), Results[i]);
971   }
972   return true;
973 }
974 
DisintegrateMERGE_VALUES(SDNode * N,unsigned ResNo)975 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
976   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
977     if (i != ResNo)
978       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
979   return SDValue(N->getOperand(ResNo));
980 }
981 
982 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
983 /// given value.
GetPairElements(SDValue Pair,SDValue & Lo,SDValue & Hi)984 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
985                                        SDValue &Lo, SDValue &Hi) {
986   SDLoc dl(Pair);
987   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
988   std::tie(Lo, Hi) = DAG.SplitScalar(Pair, dl, NVT, NVT);
989 }
990 
991 /// Build an integer with low bits Lo and high bits Hi.
JoinIntegers(SDValue Lo,SDValue Hi)992 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
993   // Arbitrarily use dlHi for result SDLoc
994   SDLoc dlHi(Hi);
995   SDLoc dlLo(Lo);
996   EVT LVT = Lo.getValueType();
997   EVT HVT = Hi.getValueType();
998   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
999                               LVT.getSizeInBits() + HVT.getSizeInBits());
1000 
1001   EVT ShiftAmtVT = TLI.getShiftAmountTy(NVT, DAG.getDataLayout());
1002   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
1003   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
1004   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
1005                    DAG.getConstant(LVT.getSizeInBits(), dlHi, ShiftAmtVT));
1006   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1007 }
1008 
1009 /// Promote the given target boolean to a target boolean of the given type.
1010 /// A target boolean is an integer value, not necessarily of type i1, the bits
1011 /// of which conform to getBooleanContents.
1012 ///
1013 /// ValVT is the type of values that produced the boolean.
PromoteTargetBoolean(SDValue Bool,EVT ValVT)1014 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
1015   return TLI.promoteTargetBoolean(DAG, Bool, ValVT);
1016 }
1017 
1018 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
SplitInteger(SDValue Op,EVT LoVT,EVT HiVT,SDValue & Lo,SDValue & Hi)1019 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1020                                     EVT LoVT, EVT HiVT,
1021                                     SDValue &Lo, SDValue &Hi) {
1022   SDLoc dl(Op);
1023   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1024          Op.getValueSizeInBits() && "Invalid integer splitting!");
1025   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1026   unsigned ReqShiftAmountInBits =
1027       Log2_32_Ceil(Op.getValueType().getSizeInBits());
1028   MVT ShiftAmountTy =
1029       TLI.getScalarShiftAmountTy(DAG.getDataLayout(), Op.getValueType());
1030   if (ReqShiftAmountInBits > ShiftAmountTy.getSizeInBits())
1031     ShiftAmountTy = MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits));
1032   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1033                    DAG.getConstant(LoVT.getSizeInBits(), dl, ShiftAmountTy));
1034   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1035 }
1036 
1037 /// Return the lower and upper halves of Op's bits in a value type half the
1038 /// size of Op's.
SplitInteger(SDValue Op,SDValue & Lo,SDValue & Hi)1039 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1040                                     SDValue &Lo, SDValue &Hi) {
1041   EVT HalfVT =
1042       EVT::getIntegerVT(*DAG.getContext(), Op.getValueSizeInBits() / 2);
1043   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1044 }
1045 
1046 
1047 //===----------------------------------------------------------------------===//
1048 //  Entry Point
1049 //===----------------------------------------------------------------------===//
1050 
1051 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
1052 /// natively supported by the target. Returns "true" if it made any changes.
1053 ///
1054 /// Note that this is an involved process that may invalidate pointers into
1055 /// the graph.
LegalizeTypes()1056 bool SelectionDAG::LegalizeTypes() {
1057   return DAGTypeLegalizer(*this).run();
1058 }
1059