xref: /freebsd/contrib/llvm-project/llvm/lib/MC/XCOFFObjectWriter.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements XCOFF object file writer information.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/BinaryFormat/XCOFF.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCFixup.h"
17 #include "llvm/MC/MCFixupKindInfo.h"
18 #include "llvm/MC/MCObjectWriter.h"
19 #include "llvm/MC/MCSectionXCOFF.h"
20 #include "llvm/MC/MCSymbolXCOFF.h"
21 #include "llvm/MC/MCValue.h"
22 #include "llvm/MC/MCXCOFFObjectWriter.h"
23 #include "llvm/MC/StringTableBuilder.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/EndianStream.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 
29 #include <deque>
30 #include <map>
31 
32 using namespace llvm;
33 
34 // An XCOFF object file has a limited set of predefined sections. The most
35 // important ones for us (right now) are:
36 // .text --> contains program code and read-only data.
37 // .data --> contains initialized data, function descriptors, and the TOC.
38 // .bss  --> contains uninitialized data.
39 // Each of these sections is composed of 'Control Sections'. A Control Section
40 // is more commonly referred to as a csect. A csect is an indivisible unit of
41 // code or data, and acts as a container for symbols. A csect is mapped
42 // into a section based on its storage-mapping class, with the exception of
43 // XMC_RW which gets mapped to either .data or .bss based on whether it's
44 // explicitly initialized or not.
45 //
46 // We don't represent the sections in the MC layer as there is nothing
47 // interesting about them at at that level: they carry information that is
48 // only relevant to the ObjectWriter, so we materialize them in this class.
49 namespace {
50 
51 constexpr unsigned DefaultSectionAlign = 4;
52 constexpr int16_t MaxSectionIndex = INT16_MAX;
53 
54 // Packs the csect's alignment and type into a byte.
55 uint8_t getEncodedType(const MCSectionXCOFF *);
56 
57 struct XCOFFRelocation {
58   uint32_t SymbolTableIndex;
59   uint32_t FixupOffsetInCsect;
60   uint8_t SignAndSize;
61   uint8_t Type;
62 };
63 
64 // Wrapper around an MCSymbolXCOFF.
65 struct Symbol {
66   const MCSymbolXCOFF *const MCSym;
67   uint32_t SymbolTableIndex;
68 
getVisibilityType__anon43032e790111::Symbol69   XCOFF::VisibilityType getVisibilityType() const {
70     return MCSym->getVisibilityType();
71   }
72 
getStorageClass__anon43032e790111::Symbol73   XCOFF::StorageClass getStorageClass() const {
74     return MCSym->getStorageClass();
75   }
getSymbolTableName__anon43032e790111::Symbol76   StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); }
Symbol__anon43032e790111::Symbol77   Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
78 };
79 
80 // Wrapper for an MCSectionXCOFF.
81 // It can be a Csect or debug section or DWARF section and so on.
82 struct XCOFFSection {
83   const MCSectionXCOFF *const MCSec;
84   uint32_t SymbolTableIndex;
85   uint64_t Address;
86   uint64_t Size;
87 
88   SmallVector<Symbol, 1> Syms;
89   SmallVector<XCOFFRelocation, 1> Relocations;
getSymbolTableName__anon43032e790111::XCOFFSection90   StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); }
getVisibilityType__anon43032e790111::XCOFFSection91   XCOFF::VisibilityType getVisibilityType() const {
92     return MCSec->getVisibilityType();
93   }
XCOFFSection__anon43032e790111::XCOFFSection94   XCOFFSection(const MCSectionXCOFF *MCSec)
95       : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
96 };
97 
98 // Type to be used for a container representing a set of csects with
99 // (approximately) the same storage mapping class. For example all the csects
100 // with a storage mapping class of `xmc_pr` will get placed into the same
101 // container.
102 using CsectGroup = std::deque<XCOFFSection>;
103 using CsectGroups = std::deque<CsectGroup *>;
104 
105 // The basic section entry defination. This Section represents a section entry
106 // in XCOFF section header table.
107 struct SectionEntry {
108   char Name[XCOFF::NameSize];
109   // The physical/virtual address of the section. For an object file these
110   // values are equivalent, except for in the overflow section header, where
111   // the physical address specifies the number of relocation entries and the
112   // virtual address specifies the number of line number entries.
113   // TODO: Divide Address into PhysicalAddress and VirtualAddress when line
114   // number entries are supported.
115   uint64_t Address;
116   uint64_t Size;
117   uint64_t FileOffsetToData;
118   uint64_t FileOffsetToRelocations;
119   uint32_t RelocationCount;
120   int32_t Flags;
121 
122   int16_t Index;
123 
advanceFileOffset__anon43032e790111::SectionEntry124   virtual uint64_t advanceFileOffset(const uint64_t MaxRawDataSize,
125                                      const uint64_t RawPointer) {
126     FileOffsetToData = RawPointer;
127     uint64_t NewPointer = RawPointer + Size;
128     if (NewPointer > MaxRawDataSize)
129       report_fatal_error("Section raw data overflowed this object file.");
130     return NewPointer;
131   }
132 
133   // XCOFF has special section numbers for symbols:
134   // -2 Specifies N_DEBUG, a special symbolic debugging symbol.
135   // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not
136   // relocatable.
137   //  0 Specifies N_UNDEF, an undefined external symbol.
138   // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that
139   // hasn't been initialized.
140   static constexpr int16_t UninitializedIndex =
141       XCOFF::ReservedSectionNum::N_DEBUG - 1;
142 
SectionEntry__anon43032e790111::SectionEntry143   SectionEntry(StringRef N, int32_t Flags)
144       : Name(), Address(0), Size(0), FileOffsetToData(0),
145         FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags),
146         Index(UninitializedIndex) {
147     assert(N.size() <= XCOFF::NameSize && "section name too long");
148     memcpy(Name, N.data(), N.size());
149   }
150 
reset__anon43032e790111::SectionEntry151   virtual void reset() {
152     Address = 0;
153     Size = 0;
154     FileOffsetToData = 0;
155     FileOffsetToRelocations = 0;
156     RelocationCount = 0;
157     Index = UninitializedIndex;
158   }
159 
160   virtual ~SectionEntry() = default;
161 };
162 
163 // Represents the data related to a section excluding the csects that make up
164 // the raw data of the section. The csects are stored separately as not all
165 // sections contain csects, and some sections contain csects which are better
166 // stored separately, e.g. the .data section containing read-write, descriptor,
167 // TOCBase and TOC-entry csects.
168 struct CsectSectionEntry : public SectionEntry {
169   // Virtual sections do not need storage allocated in the object file.
170   const bool IsVirtual;
171 
172   // This is a section containing csect groups.
173   CsectGroups Groups;
174 
CsectSectionEntry__anon43032e790111::CsectSectionEntry175   CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual,
176                     CsectGroups Groups)
177       : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) {
178     assert(N.size() <= XCOFF::NameSize && "section name too long");
179     memcpy(Name, N.data(), N.size());
180   }
181 
reset__anon43032e790111::CsectSectionEntry182   void reset() override {
183     SectionEntry::reset();
184     // Clear any csects we have stored.
185     for (auto *Group : Groups)
186       Group->clear();
187   }
188 
189   virtual ~CsectSectionEntry() = default;
190 };
191 
192 struct DwarfSectionEntry : public SectionEntry {
193   // For DWARF section entry.
194   std::unique_ptr<XCOFFSection> DwarfSect;
195 
196   // For DWARF section, we must use real size in the section header. MemorySize
197   // is for the size the DWARF section occupies including paddings.
198   uint32_t MemorySize;
199 
200   // TODO: Remove this override. Loadable sections (e.g., .text, .data) may need
201   // to be aligned. Other sections generally don't need any alignment, but if
202   // they're aligned, the RawPointer should be adjusted before writing the
203   // section. Then a dwarf-specific function wouldn't be needed.
advanceFileOffset__anon43032e790111::DwarfSectionEntry204   uint64_t advanceFileOffset(const uint64_t MaxRawDataSize,
205                              const uint64_t RawPointer) override {
206     FileOffsetToData = RawPointer;
207     uint64_t NewPointer = RawPointer + MemorySize;
208     assert(NewPointer <= MaxRawDataSize &&
209            "Section raw data overflowed this object file.");
210     return NewPointer;
211   }
212 
DwarfSectionEntry__anon43032e790111::DwarfSectionEntry213   DwarfSectionEntry(StringRef N, int32_t Flags,
214                     std::unique_ptr<XCOFFSection> Sect)
215       : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)),
216         MemorySize(0) {
217     assert(DwarfSect->MCSec->isDwarfSect() &&
218            "This should be a DWARF section!");
219     assert(N.size() <= XCOFF::NameSize && "section name too long");
220     memcpy(Name, N.data(), N.size());
221   }
222 
223   DwarfSectionEntry(DwarfSectionEntry &&s) = default;
224 
225   virtual ~DwarfSectionEntry() = default;
226 };
227 
228 struct ExceptionTableEntry {
229   const MCSymbol *Trap;
230   uint64_t TrapAddress = ~0ul;
231   unsigned Lang;
232   unsigned Reason;
233 
ExceptionTableEntry__anon43032e790111::ExceptionTableEntry234   ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason)
235       : Trap(Trap), Lang(Lang), Reason(Reason) {}
236 };
237 
238 struct ExceptionInfo {
239   const MCSymbol *FunctionSymbol;
240   unsigned FunctionSize;
241   std::vector<ExceptionTableEntry> Entries;
242 };
243 
244 struct ExceptionSectionEntry : public SectionEntry {
245   std::map<const StringRef, ExceptionInfo> ExceptionTable;
246   bool isDebugEnabled = false;
247 
ExceptionSectionEntry__anon43032e790111::ExceptionSectionEntry248   ExceptionSectionEntry(StringRef N, int32_t Flags)
249       : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) {
250     assert(N.size() <= XCOFF::NameSize && "Section too long.");
251     memcpy(Name, N.data(), N.size());
252   }
253 
254   virtual ~ExceptionSectionEntry() = default;
255 };
256 
257 struct CInfoSymInfo {
258   // Name of the C_INFO symbol associated with the section
259   std::string Name;
260   std::string Metadata;
261   // Offset into the start of the metadata in the section
262   uint64_t Offset;
263 
CInfoSymInfo__anon43032e790111::CInfoSymInfo264   CInfoSymInfo(std::string Name, std::string Metadata)
265       : Name(Name), Metadata(Metadata) {}
266   // Metadata needs to be padded out to an even word size.
paddingSize__anon43032e790111::CInfoSymInfo267   uint32_t paddingSize() const {
268     return alignTo(Metadata.size(), sizeof(uint32_t)) - Metadata.size();
269   };
270 
271   // Total size of the entry, including the 4 byte length
size__anon43032e790111::CInfoSymInfo272   uint32_t size() const {
273     return Metadata.size() + paddingSize() + sizeof(uint32_t);
274   };
275 };
276 
277 struct CInfoSymSectionEntry : public SectionEntry {
278   std::unique_ptr<CInfoSymInfo> Entry;
279 
CInfoSymSectionEntry__anon43032e790111::CInfoSymSectionEntry280   CInfoSymSectionEntry(StringRef N, int32_t Flags) : SectionEntry(N, Flags) {}
281   virtual ~CInfoSymSectionEntry() = default;
addEntry__anon43032e790111::CInfoSymSectionEntry282   void addEntry(std::unique_ptr<CInfoSymInfo> NewEntry) {
283     Entry = std::move(NewEntry);
284     Entry->Offset = sizeof(uint32_t);
285     Size += Entry->size();
286   }
reset__anon43032e790111::CInfoSymSectionEntry287   void reset() override {
288     SectionEntry::reset();
289     Entry.reset();
290   }
291 };
292 
293 class XCOFFObjectWriter : public MCObjectWriter {
294 
295   uint32_t SymbolTableEntryCount = 0;
296   uint64_t SymbolTableOffset = 0;
297   uint16_t SectionCount = 0;
298   uint32_t PaddingsBeforeDwarf = 0;
299   bool HasVisibility = false;
300 
301   support::endian::Writer W;
302   std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
303   StringTableBuilder Strings;
304 
305   const uint64_t MaxRawDataSize =
306       TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX;
307 
308   // Maps the MCSection representation to its corresponding XCOFFSection
309   // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into
310   // from its containing MCSectionXCOFF.
311   DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap;
312 
313   // Maps the MCSymbol representation to its corrresponding symbol table index.
314   // Needed for relocation.
315   DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap;
316 
317   // CsectGroups. These store the csects which make up different parts of
318   // the sections. Should have one for each set of csects that get mapped into
319   // the same section and get handled in a 'similar' way.
320   CsectGroup UndefinedCsects;
321   CsectGroup ProgramCodeCsects;
322   CsectGroup ReadOnlyCsects;
323   CsectGroup DataCsects;
324   CsectGroup FuncDSCsects;
325   CsectGroup TOCCsects;
326   CsectGroup BSSCsects;
327   CsectGroup TDataCsects;
328   CsectGroup TBSSCsects;
329 
330   // The Predefined sections.
331   CsectSectionEntry Text;
332   CsectSectionEntry Data;
333   CsectSectionEntry BSS;
334   CsectSectionEntry TData;
335   CsectSectionEntry TBSS;
336 
337   // All the XCOFF sections, in the order they will appear in the section header
338   // table.
339   std::array<CsectSectionEntry *const, 5> Sections{
340       {&Text, &Data, &BSS, &TData, &TBSS}};
341 
342   std::vector<DwarfSectionEntry> DwarfSections;
343   std::vector<SectionEntry> OverflowSections;
344 
345   ExceptionSectionEntry ExceptionSection;
346   CInfoSymSectionEntry CInfoSymSection;
347 
348   CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec);
349 
350   void reset() override;
351 
352   void executePostLayoutBinding(MCAssembler &) override;
353 
354   void recordRelocation(MCAssembler &, const MCFragment *, const MCFixup &,
355                         MCValue, uint64_t &) override;
356 
357   uint64_t writeObject(MCAssembler &) override;
358 
is64Bit() const359   bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
360   bool nameShouldBeInStringTable(const StringRef &);
361   void writeSymbolName(const StringRef &);
362   bool auxFileSymNameShouldBeInStringTable(const StringRef &);
363   void writeAuxFileSymName(const StringRef &);
364 
365   void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef,
366                                            const XCOFFSection &CSectionRef,
367                                            int16_t SectionIndex,
368                                            uint64_t SymbolOffset);
369   void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef,
370                                          int16_t SectionIndex,
371                                          XCOFF::StorageClass StorageClass);
372   void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef,
373                                        int16_t SectionIndex);
374   void writeFileHeader();
375   void writeAuxFileHeader();
376   void writeSectionHeader(const SectionEntry *Sec);
377   void writeSectionHeaderTable();
378   void writeSections(const MCAssembler &Asm);
379   void writeSectionForControlSectionEntry(const MCAssembler &Asm,
380                                           const CsectSectionEntry &CsectEntry,
381                                           uint64_t &CurrentAddressLocation);
382   void writeSectionForDwarfSectionEntry(const MCAssembler &Asm,
383                                         const DwarfSectionEntry &DwarfEntry,
384                                         uint64_t &CurrentAddressLocation);
385   void
386   writeSectionForExceptionSectionEntry(const MCAssembler &Asm,
387                                        ExceptionSectionEntry &ExceptionEntry,
388                                        uint64_t &CurrentAddressLocation);
389   void writeSectionForCInfoSymSectionEntry(const MCAssembler &Asm,
390                                            CInfoSymSectionEntry &CInfoSymEntry,
391                                            uint64_t &CurrentAddressLocation);
392   void writeSymbolTable(MCAssembler &Asm);
393   void writeSymbolAuxFileEntry(StringRef &Name, uint8_t ftype);
394   void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,
395                                 uint64_t NumberOfRelocEnt = 0);
396   void writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
397                                 uint8_t SymbolAlignmentAndType,
398                                 uint8_t StorageMappingClass);
399   void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize,
400                                    uint64_t LineNumberPointer,
401                                    uint32_t EndIndex);
402   void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize,
403                                     uint32_t EndIndex);
404   void writeSymbolEntry(StringRef SymbolName, uint64_t Value,
405                         int16_t SectionNumber, uint16_t SymbolType,
406                         uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1);
407   void writeRelocations();
408   void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section);
409 
410   // Called after all the csects and symbols have been processed by
411   // `executePostLayoutBinding`, this function handles building up the majority
412   // of the structures in the object file representation. Namely:
413   // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
414   //    sizes.
415   // *) Assigns symbol table indices.
416   // *) Builds up the section header table by adding any non-empty sections to
417   //    `Sections`.
418   void assignAddressesAndIndices(MCAssembler &Asm);
419   // Called after relocations are recorded.
420   void finalizeSectionInfo();
421   void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount);
422   void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer);
423 
hasExceptionSection()424   bool hasExceptionSection() {
425     return !ExceptionSection.ExceptionTable.empty();
426   }
427   unsigned getExceptionSectionSize();
428   unsigned getExceptionOffset(const MCSymbol *Symbol);
429 
auxiliaryHeaderSize() const430   size_t auxiliaryHeaderSize() const {
431     // 64-bit object files have no auxiliary header.
432     return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0;
433   }
434 
435 public:
436   XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
437                     raw_pwrite_stream &OS);
438 
writeWord(uint64_t Word)439   void writeWord(uint64_t Word) {
440     is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word);
441   }
442 
443   void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap,
444                          unsigned LanguageCode, unsigned ReasonCode,
445                          unsigned FunctionSize, bool hasDebug);
446   void addCInfoSymEntry(StringRef Name, StringRef Metadata);
447 };
448 
XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,raw_pwrite_stream & OS)449 XCOFFObjectWriter::XCOFFObjectWriter(
450     std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
451     : W(OS, llvm::endianness::big), TargetObjectWriter(std::move(MOTW)),
452       Strings(StringTableBuilder::XCOFF),
453       Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false,
454            CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}),
455       Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false,
456            CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}),
457       BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true,
458           CsectGroups{&BSSCsects}),
459       TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false,
460             CsectGroups{&TDataCsects}),
461       TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true,
462            CsectGroups{&TBSSCsects}),
463       ExceptionSection(".except", XCOFF::STYP_EXCEPT),
464       CInfoSymSection(".info", XCOFF::STYP_INFO) {}
465 
reset()466 void XCOFFObjectWriter::reset() {
467   // Clear the mappings we created.
468   SymbolIndexMap.clear();
469   SectionMap.clear();
470 
471   UndefinedCsects.clear();
472   // Reset any sections we have written to, and empty the section header table.
473   for (auto *Sec : Sections)
474     Sec->reset();
475   for (auto &DwarfSec : DwarfSections)
476     DwarfSec.reset();
477   for (auto &OverflowSec : OverflowSections)
478     OverflowSec.reset();
479   ExceptionSection.reset();
480   CInfoSymSection.reset();
481 
482   // Reset states in XCOFFObjectWriter.
483   SymbolTableEntryCount = 0;
484   SymbolTableOffset = 0;
485   SectionCount = 0;
486   PaddingsBeforeDwarf = 0;
487   Strings.clear();
488 
489   MCObjectWriter::reset();
490 }
491 
getCsectGroup(const MCSectionXCOFF * MCSec)492 CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) {
493   switch (MCSec->getMappingClass()) {
494   case XCOFF::XMC_PR:
495     assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
496            "Only an initialized csect can contain program code.");
497     return ProgramCodeCsects;
498   case XCOFF::XMC_RO:
499     assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
500            "Only an initialized csect can contain read only data.");
501     return ReadOnlyCsects;
502   case XCOFF::XMC_RW:
503     if (XCOFF::XTY_CM == MCSec->getCSectType())
504       return BSSCsects;
505 
506     if (XCOFF::XTY_SD == MCSec->getCSectType())
507       return DataCsects;
508 
509     report_fatal_error("Unhandled mapping of read-write csect to section.");
510   case XCOFF::XMC_DS:
511     return FuncDSCsects;
512   case XCOFF::XMC_BS:
513     assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
514            "Mapping invalid csect. CSECT with bss storage class must be "
515            "common type.");
516     return BSSCsects;
517   case XCOFF::XMC_TL:
518     assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
519            "Mapping invalid csect. CSECT with tdata storage class must be "
520            "an initialized csect.");
521     return TDataCsects;
522   case XCOFF::XMC_UL:
523     assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
524            "Mapping invalid csect. CSECT with tbss storage class must be "
525            "an uninitialized csect.");
526     return TBSSCsects;
527   case XCOFF::XMC_TC0:
528     assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
529            "Only an initialized csect can contain TOC-base.");
530     assert(TOCCsects.empty() &&
531            "We should have only one TOC-base, and it should be the first csect "
532            "in this CsectGroup.");
533     return TOCCsects;
534   case XCOFF::XMC_TC:
535   case XCOFF::XMC_TE:
536     assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
537            "A TOC symbol must be an initialized csect.");
538     assert(!TOCCsects.empty() &&
539            "We should at least have a TOC-base in this CsectGroup.");
540     return TOCCsects;
541   case XCOFF::XMC_TD:
542     assert((XCOFF::XTY_SD == MCSec->getCSectType() ||
543             XCOFF::XTY_CM == MCSec->getCSectType()) &&
544            "Symbol type incompatible with toc-data.");
545     assert(!TOCCsects.empty() &&
546            "We should at least have a TOC-base in this CsectGroup.");
547     return TOCCsects;
548   default:
549     report_fatal_error("Unhandled mapping of csect to section.");
550   }
551 }
552 
getContainingCsect(const MCSymbolXCOFF * XSym)553 static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) {
554   if (XSym->isDefined())
555     return cast<MCSectionXCOFF>(XSym->getFragment()->getParent());
556   return XSym->getRepresentedCsect();
557 }
558 
executePostLayoutBinding(MCAssembler & Asm)559 void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm) {
560   for (const auto &S : Asm) {
561     const auto *MCSec = cast<const MCSectionXCOFF>(&S);
562     assert(!SectionMap.contains(MCSec) && "Cannot add a section twice.");
563 
564     // If the name does not fit in the storage provided in the symbol table
565     // entry, add it to the string table.
566     if (nameShouldBeInStringTable(MCSec->getSymbolTableName()))
567       Strings.add(MCSec->getSymbolTableName());
568     if (MCSec->isCsect()) {
569       // A new control section. Its CsectSectionEntry should already be staticly
570       // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of
571       // the CsectSectionEntry.
572       assert(XCOFF::XTY_ER != MCSec->getCSectType() &&
573              "An undefined csect should not get registered.");
574       CsectGroup &Group = getCsectGroup(MCSec);
575       Group.emplace_back(MCSec);
576       SectionMap[MCSec] = &Group.back();
577     } else if (MCSec->isDwarfSect()) {
578       // A new DwarfSectionEntry.
579       std::unique_ptr<XCOFFSection> DwarfSec =
580           std::make_unique<XCOFFSection>(MCSec);
581       SectionMap[MCSec] = DwarfSec.get();
582 
583       DwarfSectionEntry SecEntry(MCSec->getName(),
584                                  *MCSec->getDwarfSubtypeFlags(),
585                                  std::move(DwarfSec));
586       DwarfSections.push_back(std::move(SecEntry));
587     } else
588       llvm_unreachable("unsupport section type!");
589   }
590 
591   for (const MCSymbol &S : Asm.symbols()) {
592     // Nothing to do for temporary symbols.
593     if (S.isTemporary())
594       continue;
595 
596     const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
597     const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym);
598 
599     if (ContainingCsect->isDwarfSect())
600       continue;
601 
602     if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED)
603       HasVisibility = true;
604 
605     if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) {
606       // Handle undefined symbol.
607       UndefinedCsects.emplace_back(ContainingCsect);
608       SectionMap[ContainingCsect] = &UndefinedCsects.back();
609       if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName()))
610         Strings.add(ContainingCsect->getSymbolTableName());
611       continue;
612     }
613 
614     // If the symbol is the csect itself, we don't need to put the symbol
615     // into csect's Syms.
616     if (XSym == ContainingCsect->getQualNameSymbol())
617       continue;
618 
619     // Only put a label into the symbol table when it is an external label.
620     if (!XSym->isExternal())
621       continue;
622 
623     assert(SectionMap.contains(ContainingCsect) &&
624            "Expected containing csect to exist in map");
625     XCOFFSection *Csect = SectionMap[ContainingCsect];
626     // Lookup the containing csect and add the symbol to it.
627     assert(Csect->MCSec->isCsect() && "only csect is supported now!");
628     Csect->Syms.emplace_back(XSym);
629 
630     // If the name does not fit in the storage provided in the symbol table
631     // entry, add it to the string table.
632     if (nameShouldBeInStringTable(XSym->getSymbolTableName()))
633       Strings.add(XSym->getSymbolTableName());
634   }
635 
636   std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymSection.Entry;
637   if (CISI && nameShouldBeInStringTable(CISI->Name))
638     Strings.add(CISI->Name);
639 
640   // Emit ".file" as the source file name when there is no file name.
641   if (FileNames.empty())
642     FileNames.emplace_back(".file", 0);
643   for (const std::pair<std::string, size_t> &F : FileNames) {
644     if (auxFileSymNameShouldBeInStringTable(F.first))
645       Strings.add(F.first);
646   }
647 
648   // Always add ".file" to the symbol table. The actual file name will be in
649   // the AUX_FILE auxiliary entry.
650   if (nameShouldBeInStringTable(".file"))
651     Strings.add(".file");
652   StringRef Vers = CompilerVersion;
653   if (auxFileSymNameShouldBeInStringTable(Vers))
654     Strings.add(Vers);
655 
656   Strings.finalize();
657   assignAddressesAndIndices(Asm);
658 }
659 
recordRelocation(MCAssembler & Asm,const MCFragment * Fragment,const MCFixup & Fixup,MCValue Target,uint64_t & FixedValue)660 void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm,
661                                          const MCFragment *Fragment,
662                                          const MCFixup &Fixup, MCValue Target,
663                                          uint64_t &FixedValue) {
664   auto getIndex = [this](const MCSymbol *Sym,
665                          const MCSectionXCOFF *ContainingCsect) {
666     // If we could not find the symbol directly in SymbolIndexMap, this symbol
667     // could either be a temporary symbol or an undefined symbol. In this case,
668     // we would need to have the relocation reference its csect instead.
669     return SymbolIndexMap.contains(Sym)
670                ? SymbolIndexMap[Sym]
671                : SymbolIndexMap[ContainingCsect->getQualNameSymbol()];
672   };
673 
674   auto getVirtualAddress =
675       [this, &Asm](const MCSymbol *Sym,
676                    const MCSectionXCOFF *ContainingSect) -> uint64_t {
677     // A DWARF section.
678     if (ContainingSect->isDwarfSect())
679       return Asm.getSymbolOffset(*Sym);
680 
681     // A csect.
682     if (!Sym->isDefined())
683       return SectionMap[ContainingSect]->Address;
684 
685     // A label.
686     assert(Sym->isDefined() && "not a valid object that has address!");
687     return SectionMap[ContainingSect]->Address + Asm.getSymbolOffset(*Sym);
688   };
689 
690   const MCSymbol *const SymA = &Target.getSymA()->getSymbol();
691 
692   MCAsmBackend &Backend = Asm.getBackend();
693   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
694                  MCFixupKindInfo::FKF_IsPCRel;
695 
696   uint8_t Type;
697   uint8_t SignAndSize;
698   std::tie(Type, SignAndSize) =
699       TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel);
700 
701   const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA));
702   assert(SectionMap.contains(SymASec) &&
703          "Expected containing csect to exist in map.");
704 
705   assert((Fixup.getOffset() <=
706           MaxRawDataSize - Asm.getFragmentOffset(*Fragment)) &&
707          "Fragment offset + fixup offset is overflowed.");
708   uint32_t FixupOffsetInCsect =
709       Asm.getFragmentOffset(*Fragment) + Fixup.getOffset();
710 
711   const uint32_t Index = getIndex(SymA, SymASec);
712   if (Type == XCOFF::RelocationType::R_POS ||
713       Type == XCOFF::RelocationType::R_TLS ||
714       Type == XCOFF::RelocationType::R_TLS_LE ||
715       Type == XCOFF::RelocationType::R_TLS_IE ||
716       Type == XCOFF::RelocationType::R_TLS_LD)
717     // The FixedValue should be symbol's virtual address in this object file
718     // plus any constant value that we might get.
719     FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant();
720   else if (Type == XCOFF::RelocationType::R_TLSM)
721     // The FixedValue should always be zero since the region handle is only
722     // known at load time.
723     FixedValue = 0;
724   else if (Type == XCOFF::RelocationType::R_TOC ||
725            Type == XCOFF::RelocationType::R_TOCL) {
726     // For non toc-data external symbols, R_TOC type relocation will relocate to
727     // data symbols that have XCOFF::XTY_SD type csect. For toc-data external
728     // symbols, R_TOC type relocation will relocate to data symbols that have
729     // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC
730     // entry for them, so the FixedValue should always be 0.
731     if (SymASec->getCSectType() == XCOFF::XTY_ER) {
732       FixedValue = 0;
733     } else {
734       // The FixedValue should be the TOC entry offset from the TOC-base plus
735       // any constant offset value.
736       int64_t TOCEntryOffset = SectionMap[SymASec]->Address -
737                                TOCCsects.front().Address + Target.getConstant();
738       // For small code model, if the TOCEntryOffset overflows the 16-bit value,
739       // we truncate it back down to 16 bits. The linker will be able to insert
740       // fix-up code when needed.
741       // For non toc-data symbols, we already did the truncation in
742       // PPCAsmPrinter.cpp through setting Target.getConstant() in the
743       // expression above by calling getTOCEntryLoadingExprForXCOFF for the
744       // various TOC PseudoOps.
745       // For toc-data symbols, we were not able to calculate the offset from
746       // the TOC in PPCAsmPrinter.cpp since the TOC has not been finalized at
747       // that point, so we are adjusting it here though
748       // llvm::SignExtend64<16>(TOCEntryOffset);
749       // TODO: Since the time that the handling for offsets over 16-bits was
750       // added in PPCAsmPrinter.cpp using getTOCEntryLoadingExprForXCOFF, the
751       // system assembler and linker have been updated to be able to handle the
752       // overflowing offsets, so we no longer need to keep
753       // getTOCEntryLoadingExprForXCOFF.
754       if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset))
755         TOCEntryOffset = llvm::SignExtend64<16>(TOCEntryOffset);
756 
757       FixedValue = TOCEntryOffset;
758     }
759   } else if (Type == XCOFF::RelocationType::R_RBR) {
760     MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent());
761     assert((SymASec->getMappingClass() == XCOFF::XMC_PR &&
762             ParentSec->getMappingClass() == XCOFF::XMC_PR) &&
763            "Only XMC_PR csect may have the R_RBR relocation.");
764 
765     // The address of the branch instruction should be the sum of section
766     // address, fragment offset and Fixup offset.
767     uint64_t BRInstrAddress =
768         SectionMap[ParentSec]->Address + FixupOffsetInCsect;
769     // The FixedValue should be the difference between symbol's virtual address
770     // and BR instr address plus any constant value.
771     FixedValue = getVirtualAddress(SymA, SymASec) - BRInstrAddress +
772                  Target.getConstant();
773   } else if (Type == XCOFF::RelocationType::R_REF) {
774     // The FixedValue and FixupOffsetInCsect should always be 0 since it
775     // specifies a nonrelocating reference.
776     FixedValue = 0;
777     FixupOffsetInCsect = 0;
778   }
779 
780   XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type};
781   MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent());
782   assert(SectionMap.contains(RelocationSec) &&
783          "Expected containing csect to exist in map.");
784   SectionMap[RelocationSec]->Relocations.push_back(Reloc);
785 
786   if (!Target.getSymB())
787     return;
788 
789   const MCSymbol *const SymB = &Target.getSymB()->getSymbol();
790   if (SymA == SymB)
791     report_fatal_error("relocation for opposite term is not yet supported");
792 
793   const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB));
794   assert(SectionMap.contains(SymBSec) &&
795          "Expected containing csect to exist in map.");
796   if (SymASec == SymBSec)
797     report_fatal_error(
798         "relocation for paired relocatable term is not yet supported");
799 
800   assert(Type == XCOFF::RelocationType::R_POS &&
801          "SymA must be R_POS here if it's not opposite term or paired "
802          "relocatable term.");
803   const uint32_t IndexB = getIndex(SymB, SymBSec);
804   // SymB must be R_NEG here, given the general form of Target(MCValue) is
805   // "SymbolA - SymbolB + imm64".
806   const uint8_t TypeB = XCOFF::RelocationType::R_NEG;
807   XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB};
808   SectionMap[RelocationSec]->Relocations.push_back(RelocB);
809   // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA,
810   // now we just need to fold "- SymbolB" here.
811   FixedValue -= getVirtualAddress(SymB, SymBSec);
812 }
813 
writeSections(const MCAssembler & Asm)814 void XCOFFObjectWriter::writeSections(const MCAssembler &Asm) {
815   uint64_t CurrentAddressLocation = 0;
816   for (const auto *Section : Sections)
817     writeSectionForControlSectionEntry(Asm, *Section, CurrentAddressLocation);
818   for (const auto &DwarfSection : DwarfSections)
819     writeSectionForDwarfSectionEntry(Asm, DwarfSection, CurrentAddressLocation);
820   writeSectionForExceptionSectionEntry(Asm, ExceptionSection,
821                                        CurrentAddressLocation);
822   writeSectionForCInfoSymSectionEntry(Asm, CInfoSymSection,
823                                       CurrentAddressLocation);
824 }
825 
writeObject(MCAssembler & Asm)826 uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm) {
827   // We always emit a timestamp of 0 for reproducibility, so ensure incremental
828   // linking is not enabled, in case, like with Windows COFF, such a timestamp
829   // is incompatible with incremental linking of XCOFF.
830 
831   finalizeSectionInfo();
832   uint64_t StartOffset = W.OS.tell();
833 
834   writeFileHeader();
835   writeAuxFileHeader();
836   writeSectionHeaderTable();
837   writeSections(Asm);
838   writeRelocations();
839   writeSymbolTable(Asm);
840   // Write the string table.
841   Strings.write(W.OS);
842 
843   return W.OS.tell() - StartOffset;
844 }
845 
nameShouldBeInStringTable(const StringRef & SymbolName)846 bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
847   return SymbolName.size() > XCOFF::NameSize || is64Bit();
848 }
849 
writeSymbolName(const StringRef & SymbolName)850 void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) {
851   // Magic, Offset or SymbolName.
852   if (nameShouldBeInStringTable(SymbolName)) {
853     W.write<int32_t>(0);
854     W.write<uint32_t>(Strings.getOffset(SymbolName));
855   } else {
856     char Name[XCOFF::NameSize + 1];
857     std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
858     ArrayRef<char> NameRef(Name, XCOFF::NameSize);
859     W.write(NameRef);
860   }
861 }
862 
writeSymbolEntry(StringRef SymbolName,uint64_t Value,int16_t SectionNumber,uint16_t SymbolType,uint8_t StorageClass,uint8_t NumberOfAuxEntries)863 void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value,
864                                          int16_t SectionNumber,
865                                          uint16_t SymbolType,
866                                          uint8_t StorageClass,
867                                          uint8_t NumberOfAuxEntries) {
868   if (is64Bit()) {
869     W.write<uint64_t>(Value);
870     W.write<uint32_t>(Strings.getOffset(SymbolName));
871   } else {
872     writeSymbolName(SymbolName);
873     W.write<uint32_t>(Value);
874   }
875   W.write<int16_t>(SectionNumber);
876   W.write<uint16_t>(SymbolType);
877   W.write<uint8_t>(StorageClass);
878   W.write<uint8_t>(NumberOfAuxEntries);
879 }
880 
writeSymbolAuxCsectEntry(uint64_t SectionOrLength,uint8_t SymbolAlignmentAndType,uint8_t StorageMappingClass)881 void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
882                                                  uint8_t SymbolAlignmentAndType,
883                                                  uint8_t StorageMappingClass) {
884   W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength);
885   W.write<uint32_t>(0); // ParameterHashIndex
886   W.write<uint16_t>(0); // TypeChkSectNum
887   W.write<uint8_t>(SymbolAlignmentAndType);
888   W.write<uint8_t>(StorageMappingClass);
889   if (is64Bit()) {
890     W.write<uint32_t>(Hi_32(SectionOrLength));
891     W.OS.write_zeros(1); // Reserved
892     W.write<uint8_t>(XCOFF::AUX_CSECT);
893   } else {
894     W.write<uint32_t>(0); // StabInfoIndex
895     W.write<uint16_t>(0); // StabSectNum
896   }
897 }
898 
auxFileSymNameShouldBeInStringTable(const StringRef & SymbolName)899 bool XCOFFObjectWriter::auxFileSymNameShouldBeInStringTable(
900     const StringRef &SymbolName) {
901   return SymbolName.size() > XCOFF::AuxFileEntNameSize;
902 }
903 
writeAuxFileSymName(const StringRef & SymbolName)904 void XCOFFObjectWriter::writeAuxFileSymName(const StringRef &SymbolName) {
905   // Magic, Offset or SymbolName.
906   if (auxFileSymNameShouldBeInStringTable(SymbolName)) {
907     W.write<int32_t>(0);
908     W.write<uint32_t>(Strings.getOffset(SymbolName));
909     W.OS.write_zeros(XCOFF::FileNamePadSize);
910   } else {
911     char Name[XCOFF::AuxFileEntNameSize + 1];
912     std::strncpy(Name, SymbolName.data(), XCOFF::AuxFileEntNameSize);
913     ArrayRef<char> NameRef(Name, XCOFF::AuxFileEntNameSize);
914     W.write(NameRef);
915   }
916 }
917 
writeSymbolAuxFileEntry(StringRef & Name,uint8_t ftype)918 void XCOFFObjectWriter::writeSymbolAuxFileEntry(StringRef &Name,
919                                                 uint8_t ftype) {
920   writeAuxFileSymName(Name);
921   W.write<uint8_t>(ftype);
922   W.OS.write_zeros(2);
923   if (is64Bit())
924     W.write<uint8_t>(XCOFF::AUX_FILE);
925   else
926     W.OS.write_zeros(1);
927 }
928 
writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,uint64_t NumberOfRelocEnt)929 void XCOFFObjectWriter::writeSymbolAuxDwarfEntry(
930     uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) {
931   writeWord(LengthOfSectionPortion);
932   if (!is64Bit())
933     W.OS.write_zeros(4); // Reserved
934   writeWord(NumberOfRelocEnt);
935   if (is64Bit()) {
936     W.OS.write_zeros(1); // Reserved
937     W.write<uint8_t>(XCOFF::AUX_SECT);
938   } else {
939     W.OS.write_zeros(6); // Reserved
940   }
941 }
942 
writeSymbolEntryForCsectMemberLabel(const Symbol & SymbolRef,const XCOFFSection & CSectionRef,int16_t SectionIndex,uint64_t SymbolOffset)943 void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel(
944     const Symbol &SymbolRef, const XCOFFSection &CSectionRef,
945     int16_t SectionIndex, uint64_t SymbolOffset) {
946   assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address &&
947          "Symbol address overflowed.");
948 
949   auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName());
950   if (Entry != ExceptionSection.ExceptionTable.end()) {
951     writeSymbolEntry(SymbolRef.getSymbolTableName(),
952                      CSectionRef.Address + SymbolOffset, SectionIndex,
953                      // In the old version of the 32-bit XCOFF interpretation,
954                      // symbols may require bit 10 (0x0020) to be set if the
955                      // symbol is a function, otherwise the bit should be 0.
956                      is64Bit() ? SymbolRef.getVisibilityType()
957                                : SymbolRef.getVisibilityType() | 0x0020,
958                      SymbolRef.getStorageClass(),
959                      (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2);
960     if (is64Bit() && ExceptionSection.isDebugEnabled) {
961       // On 64 bit with debugging enabled, we have a csect, exception, and
962       // function auxilliary entries, so we must increment symbol index by 4.
963       writeSymbolAuxExceptionEntry(
964           ExceptionSection.FileOffsetToData +
965               getExceptionOffset(Entry->second.FunctionSymbol),
966           Entry->second.FunctionSize,
967           SymbolIndexMap[Entry->second.FunctionSymbol] + 4);
968     }
969     // For exception section entries, csect and function auxilliary entries
970     // must exist. On 64-bit there is also an exception auxilliary entry.
971     writeSymbolAuxFunctionEntry(
972         ExceptionSection.FileOffsetToData +
973             getExceptionOffset(Entry->second.FunctionSymbol),
974         Entry->second.FunctionSize, 0,
975         (is64Bit() && ExceptionSection.isDebugEnabled)
976             ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4
977             : SymbolIndexMap[Entry->second.FunctionSymbol] + 3);
978   } else {
979     writeSymbolEntry(SymbolRef.getSymbolTableName(),
980                      CSectionRef.Address + SymbolOffset, SectionIndex,
981                      SymbolRef.getVisibilityType(),
982                      SymbolRef.getStorageClass());
983   }
984   writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD,
985                            CSectionRef.MCSec->getMappingClass());
986 }
987 
writeSymbolEntryForDwarfSection(const XCOFFSection & DwarfSectionRef,int16_t SectionIndex)988 void XCOFFObjectWriter::writeSymbolEntryForDwarfSection(
989     const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) {
990   assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!");
991 
992   writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0,
993                    SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF);
994 
995   writeSymbolAuxDwarfEntry(DwarfSectionRef.Size);
996 }
997 
writeSymbolEntryForControlSection(const XCOFFSection & CSectionRef,int16_t SectionIndex,XCOFF::StorageClass StorageClass)998 void XCOFFObjectWriter::writeSymbolEntryForControlSection(
999     const XCOFFSection &CSectionRef, int16_t SectionIndex,
1000     XCOFF::StorageClass StorageClass) {
1001   writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address,
1002                    SectionIndex, CSectionRef.getVisibilityType(), StorageClass);
1003 
1004   writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec),
1005                            CSectionRef.MCSec->getMappingClass());
1006 }
1007 
writeSymbolAuxFunctionEntry(uint32_t EntryOffset,uint32_t FunctionSize,uint64_t LineNumberPointer,uint32_t EndIndex)1008 void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset,
1009                                                     uint32_t FunctionSize,
1010                                                     uint64_t LineNumberPointer,
1011                                                     uint32_t EndIndex) {
1012   if (is64Bit())
1013     writeWord(LineNumberPointer);
1014   else
1015     W.write<uint32_t>(EntryOffset);
1016   W.write<uint32_t>(FunctionSize);
1017   if (!is64Bit())
1018     writeWord(LineNumberPointer);
1019   W.write<uint32_t>(EndIndex);
1020   if (is64Bit()) {
1021     W.OS.write_zeros(1);
1022     W.write<uint8_t>(XCOFF::AUX_FCN);
1023   } else {
1024     W.OS.write_zeros(2);
1025   }
1026 }
1027 
writeSymbolAuxExceptionEntry(uint64_t EntryOffset,uint32_t FunctionSize,uint32_t EndIndex)1028 void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset,
1029                                                      uint32_t FunctionSize,
1030                                                      uint32_t EndIndex) {
1031   assert(is64Bit() && "Exception auxilliary entries are 64-bit only.");
1032   W.write<uint64_t>(EntryOffset);
1033   W.write<uint32_t>(FunctionSize);
1034   W.write<uint32_t>(EndIndex);
1035   W.OS.write_zeros(1); // Pad (unused)
1036   W.write<uint8_t>(XCOFF::AUX_EXCEPT);
1037 }
1038 
writeFileHeader()1039 void XCOFFObjectWriter::writeFileHeader() {
1040   W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32);
1041   W.write<uint16_t>(SectionCount);
1042   W.write<int32_t>(0); // TimeStamp
1043   writeWord(SymbolTableOffset);
1044   if (is64Bit()) {
1045     W.write<uint16_t>(auxiliaryHeaderSize());
1046     W.write<uint16_t>(0); // Flags
1047     W.write<int32_t>(SymbolTableEntryCount);
1048   } else {
1049     W.write<int32_t>(SymbolTableEntryCount);
1050     W.write<uint16_t>(auxiliaryHeaderSize());
1051     W.write<uint16_t>(0); // Flags
1052   }
1053 }
1054 
writeAuxFileHeader()1055 void XCOFFObjectWriter::writeAuxFileHeader() {
1056   if (!auxiliaryHeaderSize())
1057     return;
1058   W.write<uint16_t>(0); // Magic
1059   W.write<uint16_t>(
1060       XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the
1061                                    // n_type field in the symbol table entry is
1062                                    // used in XCOFF32.
1063   W.write<uint32_t>(Sections[0]->Size);    // TextSize
1064   W.write<uint32_t>(Sections[1]->Size);    // InitDataSize
1065   W.write<uint32_t>(Sections[2]->Size);    // BssDataSize
1066   W.write<uint32_t>(0);                    // EntryPointAddr
1067   W.write<uint32_t>(Sections[0]->Address); // TextStartAddr
1068   W.write<uint32_t>(Sections[1]->Address); // DataStartAddr
1069 }
1070 
writeSectionHeader(const SectionEntry * Sec)1071 void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) {
1072   bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0;
1073   bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0;
1074   // Nothing to write for this Section.
1075   if (Sec->Index == SectionEntry::UninitializedIndex)
1076     return;
1077 
1078   // Write Name.
1079   ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
1080   W.write(NameRef);
1081 
1082   // Write the Physical Address and Virtual Address.
1083   // We use 0 for DWARF sections' Physical and Virtual Addresses.
1084   writeWord(IsDwarf ? 0 : Sec->Address);
1085   // Since line number is not supported, we set it to 0 for overflow sections.
1086   writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address);
1087 
1088   writeWord(Sec->Size);
1089   writeWord(Sec->FileOffsetToData);
1090   writeWord(Sec->FileOffsetToRelocations);
1091   writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet.
1092 
1093   if (is64Bit()) {
1094     W.write<uint32_t>(Sec->RelocationCount);
1095     W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet.
1096     W.write<int32_t>(Sec->Flags);
1097     W.OS.write_zeros(4);
1098   } else {
1099     // For the overflow section header, s_nreloc provides a reference to the
1100     // primary section header and s_nlnno must have the same value.
1101     // For common section headers, if either of s_nreloc or s_nlnno are set to
1102     // 65535, the other one must also be set to 65535.
1103     W.write<uint16_t>(Sec->RelocationCount);
1104     W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow)
1105                           ? Sec->RelocationCount
1106                           : 0); // NumberOfLineNumbers. Not supported yet.
1107     W.write<int32_t>(Sec->Flags);
1108   }
1109 }
1110 
writeSectionHeaderTable()1111 void XCOFFObjectWriter::writeSectionHeaderTable() {
1112   for (const auto *CsectSec : Sections)
1113     writeSectionHeader(CsectSec);
1114   for (const auto &DwarfSec : DwarfSections)
1115     writeSectionHeader(&DwarfSec);
1116   for (const auto &OverflowSec : OverflowSections)
1117     writeSectionHeader(&OverflowSec);
1118   if (hasExceptionSection())
1119     writeSectionHeader(&ExceptionSection);
1120   if (CInfoSymSection.Entry)
1121     writeSectionHeader(&CInfoSymSection);
1122 }
1123 
writeRelocation(XCOFFRelocation Reloc,const XCOFFSection & Section)1124 void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc,
1125                                         const XCOFFSection &Section) {
1126   if (Section.MCSec->isCsect())
1127     writeWord(Section.Address + Reloc.FixupOffsetInCsect);
1128   else {
1129     // DWARF sections' address is set to 0.
1130     assert(Section.MCSec->isDwarfSect() && "unsupport section type!");
1131     writeWord(Reloc.FixupOffsetInCsect);
1132   }
1133   W.write<uint32_t>(Reloc.SymbolTableIndex);
1134   W.write<uint8_t>(Reloc.SignAndSize);
1135   W.write<uint8_t>(Reloc.Type);
1136 }
1137 
writeRelocations()1138 void XCOFFObjectWriter::writeRelocations() {
1139   for (const auto *Section : Sections) {
1140     if (Section->Index == SectionEntry::UninitializedIndex)
1141       // Nothing to write for this Section.
1142       continue;
1143 
1144     for (const auto *Group : Section->Groups) {
1145       if (Group->empty())
1146         continue;
1147 
1148       for (const auto &Csect : *Group) {
1149         for (const auto Reloc : Csect.Relocations)
1150           writeRelocation(Reloc, Csect);
1151       }
1152     }
1153   }
1154 
1155   for (const auto &DwarfSection : DwarfSections)
1156     for (const auto &Reloc : DwarfSection.DwarfSect->Relocations)
1157       writeRelocation(Reloc, *DwarfSection.DwarfSect);
1158 }
1159 
writeSymbolTable(MCAssembler & Asm)1160 void XCOFFObjectWriter::writeSymbolTable(MCAssembler &Asm) {
1161   // Write C_FILE symbols.
1162   StringRef Vers = CompilerVersion;
1163 
1164   for (const std::pair<std::string, size_t> &F : FileNames) {
1165     // The n_name of a C_FILE symbol is the source file's name when no auxiliary
1166     // entries are present.
1167     StringRef FileName = F.first;
1168 
1169     // For C_FILE symbols, the Source Language ID overlays the high-order byte
1170     // of the SymbolType field, and the CPU Version ID is defined as the
1171     // low-order byte.
1172     // AIX's system assembler determines the source language ID based on the
1173     // source file's name suffix, and the behavior here is consistent with it.
1174     uint8_t LangID;
1175     if (FileName.ends_with(".c"))
1176       LangID = XCOFF::TB_C;
1177     else if (FileName.ends_with_insensitive(".f") ||
1178              FileName.ends_with_insensitive(".f77") ||
1179              FileName.ends_with_insensitive(".f90") ||
1180              FileName.ends_with_insensitive(".f95") ||
1181              FileName.ends_with_insensitive(".f03") ||
1182              FileName.ends_with_insensitive(".f08"))
1183       LangID = XCOFF::TB_Fortran;
1184     else
1185       LangID = XCOFF::TB_CPLUSPLUS;
1186     uint8_t CpuID;
1187     if (is64Bit())
1188       CpuID = XCOFF::TCPU_PPC64;
1189     else
1190       CpuID = XCOFF::TCPU_COM;
1191 
1192     int NumberOfFileAuxEntries = 1;
1193     if (!Vers.empty())
1194       ++NumberOfFileAuxEntries;
1195     writeSymbolEntry(".file", /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG,
1196                      /*SymbolType=*/(LangID << 8) | CpuID, XCOFF::C_FILE,
1197                      NumberOfFileAuxEntries);
1198     writeSymbolAuxFileEntry(FileName, XCOFF::XFT_FN);
1199     if (!Vers.empty())
1200       writeSymbolAuxFileEntry(Vers, XCOFF::XFT_CV);
1201   }
1202 
1203   if (CInfoSymSection.Entry)
1204     writeSymbolEntry(CInfoSymSection.Entry->Name, CInfoSymSection.Entry->Offset,
1205                      CInfoSymSection.Index,
1206                      /*SymbolType=*/0, XCOFF::C_INFO,
1207                      /*NumberOfAuxEntries=*/0);
1208 
1209   for (const auto &Csect : UndefinedCsects) {
1210     writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF,
1211                                       Csect.MCSec->getStorageClass());
1212   }
1213 
1214   for (const auto *Section : Sections) {
1215     if (Section->Index == SectionEntry::UninitializedIndex)
1216       // Nothing to write for this Section.
1217       continue;
1218 
1219     for (const auto *Group : Section->Groups) {
1220       if (Group->empty())
1221         continue;
1222 
1223       const int16_t SectionIndex = Section->Index;
1224       for (const auto &Csect : *Group) {
1225         // Write out the control section first and then each symbol in it.
1226         writeSymbolEntryForControlSection(Csect, SectionIndex,
1227                                           Csect.MCSec->getStorageClass());
1228 
1229         for (const auto &Sym : Csect.Syms)
1230           writeSymbolEntryForCsectMemberLabel(
1231               Sym, Csect, SectionIndex, Asm.getSymbolOffset(*(Sym.MCSym)));
1232       }
1233     }
1234   }
1235 
1236   for (const auto &DwarfSection : DwarfSections)
1237     writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect,
1238                                     DwarfSection.Index);
1239 }
1240 
finalizeRelocationInfo(SectionEntry * Sec,uint64_t RelCount)1241 void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec,
1242                                                uint64_t RelCount) {
1243   // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file
1244   // may not contain an overflow section header.
1245   if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) {
1246     // Generate an overflow section header.
1247     SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO);
1248 
1249     // This field specifies the file section number of the section header that
1250     // overflowed.
1251     SecEntry.RelocationCount = Sec->Index;
1252 
1253     // This field specifies the number of relocation entries actually
1254     // required.
1255     SecEntry.Address = RelCount;
1256     SecEntry.Index = ++SectionCount;
1257     OverflowSections.push_back(std::move(SecEntry));
1258 
1259     // The field in the primary section header is always 65535
1260     // (XCOFF::RelocOverflow).
1261     Sec->RelocationCount = XCOFF::RelocOverflow;
1262   } else {
1263     Sec->RelocationCount = RelCount;
1264   }
1265 }
1266 
calcOffsetToRelocations(SectionEntry * Sec,uint64_t & RawPointer)1267 void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec,
1268                                                 uint64_t &RawPointer) {
1269   if (!Sec->RelocationCount)
1270     return;
1271 
1272   Sec->FileOffsetToRelocations = RawPointer;
1273   uint64_t RelocationSizeInSec = 0;
1274   if (!is64Bit() &&
1275       Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) {
1276     // Find its corresponding overflow section.
1277     for (auto &OverflowSec : OverflowSections) {
1278       if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) {
1279         RelocationSizeInSec =
1280             OverflowSec.Address * XCOFF::RelocationSerializationSize32;
1281 
1282         // This field must have the same values as in the corresponding
1283         // primary section header.
1284         OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations;
1285       }
1286     }
1287     assert(RelocationSizeInSec && "Overflow section header doesn't exist.");
1288   } else {
1289     RelocationSizeInSec = Sec->RelocationCount *
1290                           (is64Bit() ? XCOFF::RelocationSerializationSize64
1291                                      : XCOFF::RelocationSerializationSize32);
1292   }
1293 
1294   RawPointer += RelocationSizeInSec;
1295   if (RawPointer > MaxRawDataSize)
1296     report_fatal_error("Relocation data overflowed this object file.");
1297 }
1298 
finalizeSectionInfo()1299 void XCOFFObjectWriter::finalizeSectionInfo() {
1300   for (auto *Section : Sections) {
1301     if (Section->Index == SectionEntry::UninitializedIndex)
1302       // Nothing to record for this Section.
1303       continue;
1304 
1305     uint64_t RelCount = 0;
1306     for (const auto *Group : Section->Groups) {
1307       if (Group->empty())
1308         continue;
1309 
1310       for (auto &Csect : *Group)
1311         RelCount += Csect.Relocations.size();
1312     }
1313     finalizeRelocationInfo(Section, RelCount);
1314   }
1315 
1316   for (auto &DwarfSection : DwarfSections)
1317     finalizeRelocationInfo(&DwarfSection,
1318                            DwarfSection.DwarfSect->Relocations.size());
1319 
1320   // Calculate the RawPointer value for all headers.
1321   uint64_t RawPointer =
1322       (is64Bit() ? (XCOFF::FileHeaderSize64 +
1323                     SectionCount * XCOFF::SectionHeaderSize64)
1324                  : (XCOFF::FileHeaderSize32 +
1325                     SectionCount * XCOFF::SectionHeaderSize32)) +
1326       auxiliaryHeaderSize();
1327 
1328   // Calculate the file offset to the section data.
1329   for (auto *Sec : Sections) {
1330     if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual)
1331       continue;
1332 
1333     RawPointer = Sec->advanceFileOffset(MaxRawDataSize, RawPointer);
1334   }
1335 
1336   if (!DwarfSections.empty()) {
1337     RawPointer += PaddingsBeforeDwarf;
1338     for (auto &DwarfSection : DwarfSections) {
1339       RawPointer = DwarfSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1340     }
1341   }
1342 
1343   if (hasExceptionSection())
1344     RawPointer = ExceptionSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1345 
1346   if (CInfoSymSection.Entry)
1347     RawPointer = CInfoSymSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1348 
1349   for (auto *Sec : Sections) {
1350     if (Sec->Index != SectionEntry::UninitializedIndex)
1351       calcOffsetToRelocations(Sec, RawPointer);
1352   }
1353 
1354   for (auto &DwarfSec : DwarfSections)
1355     calcOffsetToRelocations(&DwarfSec, RawPointer);
1356 
1357   // TODO Error check that the number of symbol table entries fits in 32-bits
1358   // signed ...
1359   if (SymbolTableEntryCount)
1360     SymbolTableOffset = RawPointer;
1361 }
1362 
addExceptionEntry(const MCSymbol * Symbol,const MCSymbol * Trap,unsigned LanguageCode,unsigned ReasonCode,unsigned FunctionSize,bool hasDebug)1363 void XCOFFObjectWriter::addExceptionEntry(
1364     const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode,
1365     unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) {
1366   // If a module had debug info, debugging is enabled and XCOFF emits the
1367   // exception auxilliary entry.
1368   if (hasDebug)
1369     ExceptionSection.isDebugEnabled = true;
1370   auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName());
1371   if (Entry != ExceptionSection.ExceptionTable.end()) {
1372     Entry->second.Entries.push_back(
1373         ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
1374     return;
1375   }
1376   ExceptionInfo NewEntry;
1377   NewEntry.FunctionSymbol = Symbol;
1378   NewEntry.FunctionSize = FunctionSize;
1379   NewEntry.Entries.push_back(
1380       ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
1381   ExceptionSection.ExceptionTable.insert(
1382       std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry));
1383 }
1384 
getExceptionSectionSize()1385 unsigned XCOFFObjectWriter::getExceptionSectionSize() {
1386   unsigned EntryNum = 0;
1387 
1388   for (const auto &TableEntry : ExceptionSection.ExceptionTable)
1389     // The size() gets +1 to account for the initial entry containing the
1390     // symbol table index.
1391     EntryNum += TableEntry.second.Entries.size() + 1;
1392 
1393   return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
1394                                : XCOFF::ExceptionSectionEntrySize32);
1395 }
1396 
getExceptionOffset(const MCSymbol * Symbol)1397 unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) {
1398   unsigned EntryNum = 0;
1399   for (const auto &TableEntry : ExceptionSection.ExceptionTable) {
1400     if (Symbol == TableEntry.second.FunctionSymbol)
1401       break;
1402     EntryNum += TableEntry.second.Entries.size() + 1;
1403   }
1404   return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
1405                                : XCOFF::ExceptionSectionEntrySize32);
1406 }
1407 
addCInfoSymEntry(StringRef Name,StringRef Metadata)1408 void XCOFFObjectWriter::addCInfoSymEntry(StringRef Name, StringRef Metadata) {
1409   assert(!CInfoSymSection.Entry && "Multiple entries are not supported");
1410   CInfoSymSection.addEntry(
1411       std::make_unique<CInfoSymInfo>(Name.str(), Metadata.str()));
1412 }
1413 
assignAddressesAndIndices(MCAssembler & Asm)1414 void XCOFFObjectWriter::assignAddressesAndIndices(MCAssembler &Asm) {
1415   // The symbol table starts with all the C_FILE symbols. Each C_FILE symbol
1416   // requires 1 or 2 auxiliary entries.
1417   uint32_t SymbolTableIndex =
1418       (2 + (CompilerVersion.empty() ? 0 : 1)) * FileNames.size();
1419 
1420   if (CInfoSymSection.Entry)
1421     SymbolTableIndex++;
1422 
1423   // Calculate indices for undefined symbols.
1424   for (auto &Csect : UndefinedCsects) {
1425     Csect.Size = 0;
1426     Csect.Address = 0;
1427     Csect.SymbolTableIndex = SymbolTableIndex;
1428     SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
1429     // 1 main and 1 auxiliary symbol table entry for each contained symbol.
1430     SymbolTableIndex += 2;
1431   }
1432 
1433   // The address corrresponds to the address of sections and symbols in the
1434   // object file. We place the shared address 0 immediately after the
1435   // section header table.
1436   uint64_t Address = 0;
1437   // Section indices are 1-based in XCOFF.
1438   int32_t SectionIndex = 1;
1439   bool HasTDataSection = false;
1440 
1441   for (auto *Section : Sections) {
1442     const bool IsEmpty =
1443         llvm::all_of(Section->Groups,
1444                      [](const CsectGroup *Group) { return Group->empty(); });
1445     if (IsEmpty)
1446       continue;
1447 
1448     if (SectionIndex > MaxSectionIndex)
1449       report_fatal_error("Section index overflow!");
1450     Section->Index = SectionIndex++;
1451     SectionCount++;
1452 
1453     bool SectionAddressSet = false;
1454     // Reset the starting address to 0 for TData section.
1455     if (Section->Flags == XCOFF::STYP_TDATA) {
1456       Address = 0;
1457       HasTDataSection = true;
1458     }
1459     // Reset the starting address to 0 for TBSS section if the object file does
1460     // not contain TData Section.
1461     if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection)
1462       Address = 0;
1463 
1464     for (auto *Group : Section->Groups) {
1465       if (Group->empty())
1466         continue;
1467 
1468       for (auto &Csect : *Group) {
1469         const MCSectionXCOFF *MCSec = Csect.MCSec;
1470         Csect.Address = alignTo(Address, MCSec->getAlign());
1471         Csect.Size = Asm.getSectionAddressSize(*MCSec);
1472         Address = Csect.Address + Csect.Size;
1473         Csect.SymbolTableIndex = SymbolTableIndex;
1474         SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
1475         // 1 main and 1 auxiliary symbol table entry for the csect.
1476         SymbolTableIndex += 2;
1477 
1478         for (auto &Sym : Csect.Syms) {
1479           bool hasExceptEntry = false;
1480           auto Entry =
1481               ExceptionSection.ExceptionTable.find(Sym.MCSym->getName());
1482           if (Entry != ExceptionSection.ExceptionTable.end()) {
1483             hasExceptEntry = true;
1484             for (auto &TrapEntry : Entry->second.Entries) {
1485               TrapEntry.TrapAddress = Asm.getSymbolOffset(*(Sym.MCSym)) +
1486                                       TrapEntry.Trap->getOffset();
1487             }
1488           }
1489           Sym.SymbolTableIndex = SymbolTableIndex;
1490           SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex;
1491           // 1 main and 1 auxiliary symbol table entry for each contained
1492           // symbol. For symbols with exception section entries, a function
1493           // auxilliary entry is needed, and on 64-bit XCOFF with debugging
1494           // enabled, an additional exception auxilliary entry is needed.
1495           SymbolTableIndex += 2;
1496           if (hasExceptionSection() && hasExceptEntry) {
1497             if (is64Bit() && ExceptionSection.isDebugEnabled)
1498               SymbolTableIndex += 2;
1499             else
1500               SymbolTableIndex += 1;
1501           }
1502         }
1503       }
1504 
1505       if (!SectionAddressSet) {
1506         Section->Address = Group->front().Address;
1507         SectionAddressSet = true;
1508       }
1509     }
1510 
1511     // Make sure the address of the next section aligned to
1512     // DefaultSectionAlign.
1513     Address = alignTo(Address, DefaultSectionAlign);
1514     Section->Size = Address - Section->Address;
1515   }
1516 
1517   // Start to generate DWARF sections. Sections other than DWARF section use
1518   // DefaultSectionAlign as the default alignment, while DWARF sections have
1519   // their own alignments. If these two alignments are not the same, we need
1520   // some paddings here and record the paddings bytes for FileOffsetToData
1521   // calculation.
1522   if (!DwarfSections.empty())
1523     PaddingsBeforeDwarf =
1524         alignTo(Address,
1525                 (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) -
1526         Address;
1527 
1528   DwarfSectionEntry *LastDwarfSection = nullptr;
1529   for (auto &DwarfSection : DwarfSections) {
1530     assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!");
1531 
1532     XCOFFSection &DwarfSect = *DwarfSection.DwarfSect;
1533     const MCSectionXCOFF *MCSec = DwarfSect.MCSec;
1534 
1535     // Section index.
1536     DwarfSection.Index = SectionIndex++;
1537     SectionCount++;
1538 
1539     // Symbol index.
1540     DwarfSect.SymbolTableIndex = SymbolTableIndex;
1541     SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex;
1542     // 1 main and 1 auxiliary symbol table entry for the csect.
1543     SymbolTableIndex += 2;
1544 
1545     // Section address. Make it align to section alignment.
1546     // We use address 0 for DWARF sections' Physical and Virtual Addresses.
1547     // This address is used to tell where is the section in the final object.
1548     // See writeSectionForDwarfSectionEntry().
1549     DwarfSection.Address = DwarfSect.Address =
1550         alignTo(Address, MCSec->getAlign());
1551 
1552     // Section size.
1553     // For DWARF section, we must use the real size which may be not aligned.
1554     DwarfSection.Size = DwarfSect.Size = Asm.getSectionAddressSize(*MCSec);
1555 
1556     Address = DwarfSection.Address + DwarfSection.Size;
1557 
1558     if (LastDwarfSection)
1559       LastDwarfSection->MemorySize =
1560           DwarfSection.Address - LastDwarfSection->Address;
1561     LastDwarfSection = &DwarfSection;
1562   }
1563   if (LastDwarfSection) {
1564     // Make the final DWARF section address align to the default section
1565     // alignment for follow contents.
1566     Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size,
1567                       DefaultSectionAlign);
1568     LastDwarfSection->MemorySize = Address - LastDwarfSection->Address;
1569   }
1570   if (hasExceptionSection()) {
1571     ExceptionSection.Index = SectionIndex++;
1572     SectionCount++;
1573     ExceptionSection.Address = 0;
1574     ExceptionSection.Size = getExceptionSectionSize();
1575     Address += ExceptionSection.Size;
1576     Address = alignTo(Address, DefaultSectionAlign);
1577   }
1578 
1579   if (CInfoSymSection.Entry) {
1580     CInfoSymSection.Index = SectionIndex++;
1581     SectionCount++;
1582     CInfoSymSection.Address = 0;
1583     Address += CInfoSymSection.Size;
1584     Address = alignTo(Address, DefaultSectionAlign);
1585   }
1586 
1587   SymbolTableEntryCount = SymbolTableIndex;
1588 }
1589 
writeSectionForControlSectionEntry(const MCAssembler & Asm,const CsectSectionEntry & CsectEntry,uint64_t & CurrentAddressLocation)1590 void XCOFFObjectWriter::writeSectionForControlSectionEntry(
1591     const MCAssembler &Asm, const CsectSectionEntry &CsectEntry,
1592     uint64_t &CurrentAddressLocation) {
1593   // Nothing to write for this Section.
1594   if (CsectEntry.Index == SectionEntry::UninitializedIndex)
1595     return;
1596 
1597   // There could be a gap (without corresponding zero padding) between
1598   // sections.
1599   // There could be a gap (without corresponding zero padding) between
1600   // sections.
1601   assert(((CurrentAddressLocation <= CsectEntry.Address) ||
1602           (CsectEntry.Flags == XCOFF::STYP_TDATA) ||
1603           (CsectEntry.Flags == XCOFF::STYP_TBSS)) &&
1604          "CurrentAddressLocation should be less than or equal to section "
1605          "address if the section is not TData or TBSS.");
1606 
1607   CurrentAddressLocation = CsectEntry.Address;
1608 
1609   // For virtual sections, nothing to write. But need to increase
1610   // CurrentAddressLocation for later sections like DWARF section has a correct
1611   // writing location.
1612   if (CsectEntry.IsVirtual) {
1613     CurrentAddressLocation += CsectEntry.Size;
1614     return;
1615   }
1616 
1617   for (const auto &Group : CsectEntry.Groups) {
1618     for (const auto &Csect : *Group) {
1619       if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
1620         W.OS.write_zeros(PaddingSize);
1621       if (Csect.Size)
1622         Asm.writeSectionData(W.OS, Csect.MCSec);
1623       CurrentAddressLocation = Csect.Address + Csect.Size;
1624     }
1625   }
1626 
1627   // The size of the tail padding in a section is the end virtual address of
1628   // the current section minus the end virtual address of the last csect
1629   // in that section.
1630   if (uint64_t PaddingSize =
1631           CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) {
1632     W.OS.write_zeros(PaddingSize);
1633     CurrentAddressLocation += PaddingSize;
1634   }
1635 }
1636 
writeSectionForDwarfSectionEntry(const MCAssembler & Asm,const DwarfSectionEntry & DwarfEntry,uint64_t & CurrentAddressLocation)1637 void XCOFFObjectWriter::writeSectionForDwarfSectionEntry(
1638     const MCAssembler &Asm, const DwarfSectionEntry &DwarfEntry,
1639     uint64_t &CurrentAddressLocation) {
1640   // There could be a gap (without corresponding zero padding) between
1641   // sections. For example DWARF section alignment is bigger than
1642   // DefaultSectionAlign.
1643   assert(CurrentAddressLocation <= DwarfEntry.Address &&
1644          "CurrentAddressLocation should be less than or equal to section "
1645          "address.");
1646 
1647   if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation)
1648     W.OS.write_zeros(PaddingSize);
1649 
1650   if (DwarfEntry.Size)
1651     Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec);
1652 
1653   CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size;
1654 
1655   // DWARF section size is not aligned to DefaultSectionAlign.
1656   // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign.
1657   uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign;
1658   uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0;
1659   if (TailPaddingSize)
1660     W.OS.write_zeros(TailPaddingSize);
1661 
1662   CurrentAddressLocation += TailPaddingSize;
1663 }
1664 
writeSectionForExceptionSectionEntry(const MCAssembler & Asm,ExceptionSectionEntry & ExceptionEntry,uint64_t & CurrentAddressLocation)1665 void XCOFFObjectWriter::writeSectionForExceptionSectionEntry(
1666     const MCAssembler &Asm, ExceptionSectionEntry &ExceptionEntry,
1667     uint64_t &CurrentAddressLocation) {
1668   for (const auto &TableEntry : ExceptionEntry.ExceptionTable) {
1669     // For every symbol that has exception entries, you must start the entries
1670     // with an initial symbol table index entry
1671     W.write<uint32_t>(SymbolIndexMap[TableEntry.second.FunctionSymbol]);
1672     if (is64Bit()) {
1673       // 4-byte padding on 64-bit.
1674       W.OS.write_zeros(4);
1675     }
1676     W.OS.write_zeros(2);
1677     for (auto &TrapEntry : TableEntry.second.Entries) {
1678       writeWord(TrapEntry.TrapAddress);
1679       W.write<uint8_t>(TrapEntry.Lang);
1680       W.write<uint8_t>(TrapEntry.Reason);
1681     }
1682   }
1683 
1684   CurrentAddressLocation += getExceptionSectionSize();
1685 }
1686 
writeSectionForCInfoSymSectionEntry(const MCAssembler & Asm,CInfoSymSectionEntry & CInfoSymEntry,uint64_t & CurrentAddressLocation)1687 void XCOFFObjectWriter::writeSectionForCInfoSymSectionEntry(
1688     const MCAssembler &Asm, CInfoSymSectionEntry &CInfoSymEntry,
1689     uint64_t &CurrentAddressLocation) {
1690   if (!CInfoSymSection.Entry)
1691     return;
1692 
1693   constexpr int WordSize = sizeof(uint32_t);
1694   std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymEntry.Entry;
1695   const std::string &Metadata = CISI->Metadata;
1696 
1697   // Emit the 4-byte length of the metadata.
1698   W.write<uint32_t>(Metadata.size());
1699 
1700   if (Metadata.size() == 0)
1701     return;
1702 
1703   // Write out the payload one word at a time.
1704   size_t Index = 0;
1705   while (Index + WordSize <= Metadata.size()) {
1706     uint32_t NextWord =
1707         llvm::support::endian::read32be(Metadata.data() + Index);
1708     W.write<uint32_t>(NextWord);
1709     Index += WordSize;
1710   }
1711 
1712   // If there is padding, we have at least one byte of payload left to emit.
1713   if (CISI->paddingSize()) {
1714     std::array<uint8_t, WordSize> LastWord = {0};
1715     ::memcpy(LastWord.data(), Metadata.data() + Index, Metadata.size() - Index);
1716     W.write<uint32_t>(llvm::support::endian::read32be(LastWord.data()));
1717   }
1718 
1719   CurrentAddressLocation += CISI->size();
1720 }
1721 
1722 // Takes the log base 2 of the alignment and shifts the result into the 5 most
1723 // significant bits of a byte, then or's in the csect type into the least
1724 // significant 3 bits.
getEncodedType(const MCSectionXCOFF * Sec)1725 uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
1726   unsigned Log2Align = Log2(Sec->getAlign());
1727   // Result is a number in the range [0, 31] which fits in the 5 least
1728   // significant bits. Shift this value into the 5 most significant bits, and
1729   // bitwise-or in the csect type.
1730   uint8_t EncodedAlign = Log2Align << 3;
1731   return EncodedAlign | Sec->getCSectType();
1732 }
1733 
1734 } // end anonymous namespace
1735 
1736 std::unique_ptr<MCObjectWriter>
createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,raw_pwrite_stream & OS)1737 llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
1738                               raw_pwrite_stream &OS) {
1739   return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);
1740 }
1741 
1742 // TODO: Export XCOFFObjectWriter to llvm/MC/MCXCOFFObjectWriter.h and remove
1743 // the forwarders.
addExceptionEntry(MCObjectWriter & Writer,const MCSymbol * Symbol,const MCSymbol * Trap,unsigned LanguageCode,unsigned ReasonCode,unsigned FunctionSize,bool hasDebug)1744 void XCOFF::addExceptionEntry(MCObjectWriter &Writer, const MCSymbol *Symbol,
1745                               const MCSymbol *Trap, unsigned LanguageCode,
1746                               unsigned ReasonCode, unsigned FunctionSize,
1747                               bool hasDebug) {
1748   static_cast<XCOFFObjectWriter &>(Writer).addExceptionEntry(
1749       Symbol, Trap, LanguageCode, ReasonCode, FunctionSize, hasDebug);
1750 }
1751 
addCInfoSymEntry(MCObjectWriter & Writer,StringRef Name,StringRef Metadata)1752 void XCOFF::addCInfoSymEntry(MCObjectWriter &Writer, StringRef Name,
1753                              StringRef Metadata) {
1754   static_cast<XCOFFObjectWriter &>(Writer).addCInfoSymEntry(Name, Metadata);
1755 }
1756