xref: /freebsd/contrib/llvm-project/clang/lib/Parse/ParseExprCXX.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expression parsing implementation for C++.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Basic/TemplateKinds.h"
18 #include "clang/Basic/TokenKinds.h"
19 #include "clang/Lex/LiteralSupport.h"
20 #include "clang/Parse/ParseDiagnostic.h"
21 #include "clang/Parse/Parser.h"
22 #include "clang/Parse/RAIIObjectsForParser.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/EnterExpressionEvaluationContext.h"
25 #include "clang/Sema/ParsedTemplate.h"
26 #include "clang/Sema/Scope.h"
27 #include "clang/Sema/SemaCodeCompletion.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include <numeric>
31 
32 using namespace clang;
33 
SelectDigraphErrorMessage(tok::TokenKind Kind)34 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
35   switch (Kind) {
36     // template name
37     case tok::unknown:             return 0;
38     // casts
39     case tok::kw_addrspace_cast:   return 1;
40     case tok::kw_const_cast:       return 2;
41     case tok::kw_dynamic_cast:     return 3;
42     case tok::kw_reinterpret_cast: return 4;
43     case tok::kw_static_cast:      return 5;
44     default:
45       llvm_unreachable("Unknown type for digraph error message.");
46   }
47 }
48 
49 // Are the two tokens adjacent in the same source file?
areTokensAdjacent(const Token & First,const Token & Second)50 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
51   SourceManager &SM = PP.getSourceManager();
52   SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
53   SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
54   return FirstEnd == SM.getSpellingLoc(Second.getLocation());
55 }
56 
57 // Suggest fixit for "<::" after a cast.
FixDigraph(Parser & P,Preprocessor & PP,Token & DigraphToken,Token & ColonToken,tok::TokenKind Kind,bool AtDigraph)58 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
59                        Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
60   // Pull '<:' and ':' off token stream.
61   if (!AtDigraph)
62     PP.Lex(DigraphToken);
63   PP.Lex(ColonToken);
64 
65   SourceRange Range;
66   Range.setBegin(DigraphToken.getLocation());
67   Range.setEnd(ColonToken.getLocation());
68   P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
69       << SelectDigraphErrorMessage(Kind)
70       << FixItHint::CreateReplacement(Range, "< ::");
71 
72   // Update token information to reflect their change in token type.
73   ColonToken.setKind(tok::coloncolon);
74   ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
75   ColonToken.setLength(2);
76   DigraphToken.setKind(tok::less);
77   DigraphToken.setLength(1);
78 
79   // Push new tokens back to token stream.
80   PP.EnterToken(ColonToken, /*IsReinject*/ true);
81   if (!AtDigraph)
82     PP.EnterToken(DigraphToken, /*IsReinject*/ true);
83 }
84 
85 // Check for '<::' which should be '< ::' instead of '[:' when following
86 // a template name.
CheckForTemplateAndDigraph(Token & Next,ParsedType ObjectType,bool EnteringContext,IdentifierInfo & II,CXXScopeSpec & SS)87 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
88                                         bool EnteringContext,
89                                         IdentifierInfo &II, CXXScopeSpec &SS) {
90   if (!Next.is(tok::l_square) || Next.getLength() != 2)
91     return;
92 
93   Token SecondToken = GetLookAheadToken(2);
94   if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
95     return;
96 
97   TemplateTy Template;
98   UnqualifiedId TemplateName;
99   TemplateName.setIdentifier(&II, Tok.getLocation());
100   bool MemberOfUnknownSpecialization;
101   if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
102                               TemplateName, ObjectType, EnteringContext,
103                               Template, MemberOfUnknownSpecialization))
104     return;
105 
106   FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
107              /*AtDigraph*/false);
108 }
109 
110 /// Parse global scope or nested-name-specifier if present.
111 ///
112 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
113 /// may be preceded by '::'). Note that this routine will not parse ::new or
114 /// ::delete; it will just leave them in the token stream.
115 ///
116 ///       '::'[opt] nested-name-specifier
117 ///       '::'
118 ///
119 ///       nested-name-specifier:
120 ///         type-name '::'
121 ///         namespace-name '::'
122 ///         nested-name-specifier identifier '::'
123 ///         nested-name-specifier 'template'[opt] simple-template-id '::'
124 ///
125 ///
126 /// \param SS the scope specifier that will be set to the parsed
127 /// nested-name-specifier (or empty)
128 ///
129 /// \param ObjectType if this nested-name-specifier is being parsed following
130 /// the "." or "->" of a member access expression, this parameter provides the
131 /// type of the object whose members are being accessed.
132 ///
133 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
134 /// expression, indicates whether the original subexpressions had any errors.
135 /// When true, diagnostics for missing 'template' keyword will be supressed.
136 ///
137 /// \param EnteringContext whether we will be entering into the context of
138 /// the nested-name-specifier after parsing it.
139 ///
140 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
141 /// indicates whether this nested-name-specifier may be part of a
142 /// pseudo-destructor name. In this case, the flag will be set false
143 /// if we don't actually end up parsing a destructor name. Moreover,
144 /// if we do end up determining that we are parsing a destructor name,
145 /// the last component of the nested-name-specifier is not parsed as
146 /// part of the scope specifier.
147 ///
148 /// \param IsTypename If \c true, this nested-name-specifier is known to be
149 /// part of a type name. This is used to improve error recovery.
150 ///
151 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
152 /// filled in with the leading identifier in the last component of the
153 /// nested-name-specifier, if any.
154 ///
155 /// \param OnlyNamespace If true, only considers namespaces in lookup.
156 ///
157 ///
158 /// \returns true if there was an error parsing a scope specifier
ParseOptionalCXXScopeSpecifier(CXXScopeSpec & SS,ParsedType ObjectType,bool ObjectHadErrors,bool EnteringContext,bool * MayBePseudoDestructor,bool IsTypename,const IdentifierInfo ** LastII,bool OnlyNamespace,bool InUsingDeclaration)159 bool Parser::ParseOptionalCXXScopeSpecifier(
160     CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
161     bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
162     const IdentifierInfo **LastII, bool OnlyNamespace,
163     bool InUsingDeclaration) {
164   assert(getLangOpts().CPlusPlus &&
165          "Call sites of this function should be guarded by checking for C++");
166 
167   if (Tok.is(tok::annot_cxxscope)) {
168     assert(!LastII && "want last identifier but have already annotated scope");
169     assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
170     Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
171                                                  Tok.getAnnotationRange(),
172                                                  SS);
173     ConsumeAnnotationToken();
174     return false;
175   }
176 
177   // Has to happen before any "return false"s in this function.
178   bool CheckForDestructor = false;
179   if (MayBePseudoDestructor && *MayBePseudoDestructor) {
180     CheckForDestructor = true;
181     *MayBePseudoDestructor = false;
182   }
183 
184   if (LastII)
185     *LastII = nullptr;
186 
187   bool HasScopeSpecifier = false;
188 
189   if (Tok.is(tok::coloncolon)) {
190     // ::new and ::delete aren't nested-name-specifiers.
191     tok::TokenKind NextKind = NextToken().getKind();
192     if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
193       return false;
194 
195     if (NextKind == tok::l_brace) {
196       // It is invalid to have :: {, consume the scope qualifier and pretend
197       // like we never saw it.
198       Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
199     } else {
200       // '::' - Global scope qualifier.
201       if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
202         return true;
203 
204       HasScopeSpecifier = true;
205     }
206   }
207 
208   if (Tok.is(tok::kw___super)) {
209     SourceLocation SuperLoc = ConsumeToken();
210     if (!Tok.is(tok::coloncolon)) {
211       Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
212       return true;
213     }
214 
215     return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
216   }
217 
218   if (!HasScopeSpecifier &&
219       Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
220     DeclSpec DS(AttrFactory);
221     SourceLocation DeclLoc = Tok.getLocation();
222     SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
223 
224     SourceLocation CCLoc;
225     // Work around a standard defect: 'decltype(auto)::' is not a
226     // nested-name-specifier.
227     if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
228         !TryConsumeToken(tok::coloncolon, CCLoc)) {
229       AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
230       return false;
231     }
232 
233     if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
234       SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
235 
236     HasScopeSpecifier = true;
237   }
238 
239   else if (!HasScopeSpecifier && Tok.is(tok::identifier) &&
240            GetLookAheadToken(1).is(tok::ellipsis) &&
241            GetLookAheadToken(2).is(tok::l_square)) {
242     SourceLocation Start = Tok.getLocation();
243     DeclSpec DS(AttrFactory);
244     SourceLocation CCLoc;
245     SourceLocation EndLoc = ParsePackIndexingType(DS);
246     if (DS.getTypeSpecType() == DeclSpec::TST_error)
247       return false;
248 
249     QualType Type = Actions.ActOnPackIndexingType(
250         DS.getRepAsType().get(), DS.getPackIndexingExpr(), DS.getBeginLoc(),
251         DS.getEllipsisLoc());
252 
253     if (Type.isNull())
254       return false;
255 
256     if (!TryConsumeToken(tok::coloncolon, CCLoc)) {
257       AnnotateExistingIndexedTypeNamePack(ParsedType::make(Type), Start,
258                                           EndLoc);
259       return false;
260     }
261     if (Actions.ActOnCXXNestedNameSpecifierIndexedPack(SS, DS, CCLoc,
262                                                        std::move(Type)))
263       SS.SetInvalid(SourceRange(Start, CCLoc));
264     HasScopeSpecifier = true;
265   }
266 
267   // Preferred type might change when parsing qualifiers, we need the original.
268   auto SavedType = PreferredType;
269   while (true) {
270     if (HasScopeSpecifier) {
271       if (Tok.is(tok::code_completion)) {
272         cutOffParsing();
273         // Code completion for a nested-name-specifier, where the code
274         // completion token follows the '::'.
275         Actions.CodeCompletion().CodeCompleteQualifiedId(
276             getCurScope(), SS, EnteringContext, InUsingDeclaration,
277             ObjectType.get(), SavedType.get(SS.getBeginLoc()));
278         // Include code completion token into the range of the scope otherwise
279         // when we try to annotate the scope tokens the dangling code completion
280         // token will cause assertion in
281         // Preprocessor::AnnotatePreviousCachedTokens.
282         SS.setEndLoc(Tok.getLocation());
283         return true;
284       }
285 
286       // C++ [basic.lookup.classref]p5:
287       //   If the qualified-id has the form
288       //
289       //       ::class-name-or-namespace-name::...
290       //
291       //   the class-name-or-namespace-name is looked up in global scope as a
292       //   class-name or namespace-name.
293       //
294       // To implement this, we clear out the object type as soon as we've
295       // seen a leading '::' or part of a nested-name-specifier.
296       ObjectType = nullptr;
297     }
298 
299     // nested-name-specifier:
300     //   nested-name-specifier 'template'[opt] simple-template-id '::'
301 
302     // Parse the optional 'template' keyword, then make sure we have
303     // 'identifier <' after it.
304     if (Tok.is(tok::kw_template)) {
305       // If we don't have a scope specifier or an object type, this isn't a
306       // nested-name-specifier, since they aren't allowed to start with
307       // 'template'.
308       if (!HasScopeSpecifier && !ObjectType)
309         break;
310 
311       TentativeParsingAction TPA(*this);
312       SourceLocation TemplateKWLoc = ConsumeToken();
313 
314       UnqualifiedId TemplateName;
315       if (Tok.is(tok::identifier)) {
316         // Consume the identifier.
317         TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
318         ConsumeToken();
319       } else if (Tok.is(tok::kw_operator)) {
320         // We don't need to actually parse the unqualified-id in this case,
321         // because a simple-template-id cannot start with 'operator', but
322         // go ahead and parse it anyway for consistency with the case where
323         // we already annotated the template-id.
324         if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
325                                        TemplateName)) {
326           TPA.Commit();
327           break;
328         }
329 
330         if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
331             TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
332           Diag(TemplateName.getSourceRange().getBegin(),
333                diag::err_id_after_template_in_nested_name_spec)
334             << TemplateName.getSourceRange();
335           TPA.Commit();
336           break;
337         }
338       } else {
339         TPA.Revert();
340         break;
341       }
342 
343       // If the next token is not '<', we have a qualified-id that refers
344       // to a template name, such as T::template apply, but is not a
345       // template-id.
346       if (Tok.isNot(tok::less)) {
347         TPA.Revert();
348         break;
349       }
350 
351       // Commit to parsing the template-id.
352       TPA.Commit();
353       TemplateTy Template;
354       TemplateNameKind TNK = Actions.ActOnTemplateName(
355           getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
356           EnteringContext, Template, /*AllowInjectedClassName*/ true);
357       if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
358                                   TemplateName, false))
359         return true;
360 
361       continue;
362     }
363 
364     if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
365       // We have
366       //
367       //   template-id '::'
368       //
369       // So we need to check whether the template-id is a simple-template-id of
370       // the right kind (it should name a type or be dependent), and then
371       // convert it into a type within the nested-name-specifier.
372       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
373       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
374         *MayBePseudoDestructor = true;
375         return false;
376       }
377 
378       if (LastII)
379         *LastII = TemplateId->Name;
380 
381       // Consume the template-id token.
382       ConsumeAnnotationToken();
383 
384       assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
385       SourceLocation CCLoc = ConsumeToken();
386 
387       HasScopeSpecifier = true;
388 
389       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
390                                          TemplateId->NumArgs);
391 
392       if (TemplateId->isInvalid() ||
393           Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
394                                               SS,
395                                               TemplateId->TemplateKWLoc,
396                                               TemplateId->Template,
397                                               TemplateId->TemplateNameLoc,
398                                               TemplateId->LAngleLoc,
399                                               TemplateArgsPtr,
400                                               TemplateId->RAngleLoc,
401                                               CCLoc,
402                                               EnteringContext)) {
403         SourceLocation StartLoc
404           = SS.getBeginLoc().isValid()? SS.getBeginLoc()
405                                       : TemplateId->TemplateNameLoc;
406         SS.SetInvalid(SourceRange(StartLoc, CCLoc));
407       }
408 
409       continue;
410     }
411 
412     switch (Tok.getKind()) {
413 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
414 #include "clang/Basic/TransformTypeTraits.def"
415       if (!NextToken().is(tok::l_paren)) {
416         Tok.setKind(tok::identifier);
417         Diag(Tok, diag::ext_keyword_as_ident)
418             << Tok.getIdentifierInfo()->getName() << 0;
419         continue;
420       }
421       [[fallthrough]];
422     default:
423       break;
424     }
425 
426     // The rest of the nested-name-specifier possibilities start with
427     // tok::identifier.
428     if (Tok.isNot(tok::identifier))
429       break;
430 
431     IdentifierInfo &II = *Tok.getIdentifierInfo();
432 
433     // nested-name-specifier:
434     //   type-name '::'
435     //   namespace-name '::'
436     //   nested-name-specifier identifier '::'
437     Token Next = NextToken();
438     Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
439                                     ObjectType);
440 
441     // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
442     // and emit a fixit hint for it.
443     if (Next.is(tok::colon) && !ColonIsSacred) {
444       if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
445                                             EnteringContext) &&
446           // If the token after the colon isn't an identifier, it's still an
447           // error, but they probably meant something else strange so don't
448           // recover like this.
449           PP.LookAhead(1).is(tok::identifier)) {
450         Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
451           << FixItHint::CreateReplacement(Next.getLocation(), "::");
452         // Recover as if the user wrote '::'.
453         Next.setKind(tok::coloncolon);
454       }
455     }
456 
457     if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
458       // It is invalid to have :: {, consume the scope qualifier and pretend
459       // like we never saw it.
460       Token Identifier = Tok; // Stash away the identifier.
461       ConsumeToken();         // Eat the identifier, current token is now '::'.
462       Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
463           << tok::identifier;
464       UnconsumeToken(Identifier); // Stick the identifier back.
465       Next = NextToken();         // Point Next at the '{' token.
466     }
467 
468     if (Next.is(tok::coloncolon)) {
469       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
470         *MayBePseudoDestructor = true;
471         return false;
472       }
473 
474       if (ColonIsSacred) {
475         const Token &Next2 = GetLookAheadToken(2);
476         if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
477             Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
478           Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
479               << Next2.getName()
480               << FixItHint::CreateReplacement(Next.getLocation(), ":");
481           Token ColonColon;
482           PP.Lex(ColonColon);
483           ColonColon.setKind(tok::colon);
484           PP.EnterToken(ColonColon, /*IsReinject*/ true);
485           break;
486         }
487       }
488 
489       if (LastII)
490         *LastII = &II;
491 
492       // We have an identifier followed by a '::'. Lookup this name
493       // as the name in a nested-name-specifier.
494       Token Identifier = Tok;
495       SourceLocation IdLoc = ConsumeToken();
496       assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
497              "NextToken() not working properly!");
498       Token ColonColon = Tok;
499       SourceLocation CCLoc = ConsumeToken();
500 
501       bool IsCorrectedToColon = false;
502       bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
503       if (Actions.ActOnCXXNestedNameSpecifier(
504               getCurScope(), IdInfo, EnteringContext, SS, CorrectionFlagPtr,
505               OnlyNamespace)) {
506         // Identifier is not recognized as a nested name, but we can have
507         // mistyped '::' instead of ':'.
508         if (CorrectionFlagPtr && IsCorrectedToColon) {
509           ColonColon.setKind(tok::colon);
510           PP.EnterToken(Tok, /*IsReinject*/ true);
511           PP.EnterToken(ColonColon, /*IsReinject*/ true);
512           Tok = Identifier;
513           break;
514         }
515         SS.SetInvalid(SourceRange(IdLoc, CCLoc));
516       }
517       HasScopeSpecifier = true;
518       continue;
519     }
520 
521     CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
522 
523     // nested-name-specifier:
524     //   type-name '<'
525     if (Next.is(tok::less)) {
526 
527       TemplateTy Template;
528       UnqualifiedId TemplateName;
529       TemplateName.setIdentifier(&II, Tok.getLocation());
530       bool MemberOfUnknownSpecialization;
531       if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
532                                               /*hasTemplateKeyword=*/false,
533                                                         TemplateName,
534                                                         ObjectType,
535                                                         EnteringContext,
536                                                         Template,
537                                               MemberOfUnknownSpecialization)) {
538         // If lookup didn't find anything, we treat the name as a template-name
539         // anyway. C++20 requires this, and in prior language modes it improves
540         // error recovery. But before we commit to this, check that we actually
541         // have something that looks like a template-argument-list next.
542         if (!IsTypename && TNK == TNK_Undeclared_template &&
543             isTemplateArgumentList(1) == TPResult::False)
544           break;
545 
546         // We have found a template name, so annotate this token
547         // with a template-id annotation. We do not permit the
548         // template-id to be translated into a type annotation,
549         // because some clients (e.g., the parsing of class template
550         // specializations) still want to see the original template-id
551         // token, and it might not be a type at all (e.g. a concept name in a
552         // type-constraint).
553         ConsumeToken();
554         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
555                                     TemplateName, false))
556           return true;
557         continue;
558       }
559 
560       if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
561           (IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
562         // If we had errors before, ObjectType can be dependent even without any
563         // templates. Do not report missing template keyword in that case.
564         if (!ObjectHadErrors) {
565           // We have something like t::getAs<T>, where getAs is a
566           // member of an unknown specialization. However, this will only
567           // parse correctly as a template, so suggest the keyword 'template'
568           // before 'getAs' and treat this as a dependent template name.
569           unsigned DiagID = diag::err_missing_dependent_template_keyword;
570           if (getLangOpts().MicrosoftExt)
571             DiagID = diag::warn_missing_dependent_template_keyword;
572 
573           Diag(Tok.getLocation(), DiagID)
574               << II.getName()
575               << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
576         }
577 
578         SourceLocation TemplateNameLoc = ConsumeToken();
579 
580         TemplateNameKind TNK = Actions.ActOnTemplateName(
581             getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
582             EnteringContext, Template, /*AllowInjectedClassName*/ true);
583         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
584                                     TemplateName, false))
585           return true;
586 
587         continue;
588       }
589     }
590 
591     // We don't have any tokens that form the beginning of a
592     // nested-name-specifier, so we're done.
593     break;
594   }
595 
596   // Even if we didn't see any pieces of a nested-name-specifier, we
597   // still check whether there is a tilde in this position, which
598   // indicates a potential pseudo-destructor.
599   if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
600     *MayBePseudoDestructor = true;
601 
602   return false;
603 }
604 
tryParseCXXIdExpression(CXXScopeSpec & SS,bool isAddressOfOperand,Token & Replacement)605 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
606                                            bool isAddressOfOperand,
607                                            Token &Replacement) {
608   ExprResult E;
609 
610   // We may have already annotated this id-expression.
611   switch (Tok.getKind()) {
612   case tok::annot_non_type: {
613     NamedDecl *ND = getNonTypeAnnotation(Tok);
614     SourceLocation Loc = ConsumeAnnotationToken();
615     E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
616     break;
617   }
618 
619   case tok::annot_non_type_dependent: {
620     IdentifierInfo *II = getIdentifierAnnotation(Tok);
621     SourceLocation Loc = ConsumeAnnotationToken();
622 
623     // This is only the direct operand of an & operator if it is not
624     // followed by a postfix-expression suffix.
625     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
626       isAddressOfOperand = false;
627 
628     E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
629                                                       isAddressOfOperand);
630     break;
631   }
632 
633   case tok::annot_non_type_undeclared: {
634     assert(SS.isEmpty() &&
635            "undeclared non-type annotation should be unqualified");
636     IdentifierInfo *II = getIdentifierAnnotation(Tok);
637     SourceLocation Loc = ConsumeAnnotationToken();
638     E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
639     break;
640   }
641 
642   default:
643     SourceLocation TemplateKWLoc;
644     UnqualifiedId Name;
645     if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
646                            /*ObjectHadErrors=*/false,
647                            /*EnteringContext=*/false,
648                            /*AllowDestructorName=*/false,
649                            /*AllowConstructorName=*/false,
650                            /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
651       return ExprError();
652 
653     // This is only the direct operand of an & operator if it is not
654     // followed by a postfix-expression suffix.
655     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
656       isAddressOfOperand = false;
657 
658     E = Actions.ActOnIdExpression(
659         getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
660         isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
661         &Replacement);
662     break;
663   }
664 
665   // Might be a pack index expression!
666   E = tryParseCXXPackIndexingExpression(E);
667 
668   if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
669     checkPotentialAngleBracket(E);
670   return E;
671 }
672 
ParseCXXPackIndexingExpression(ExprResult PackIdExpression)673 ExprResult Parser::ParseCXXPackIndexingExpression(ExprResult PackIdExpression) {
674   assert(Tok.is(tok::ellipsis) && NextToken().is(tok::l_square) &&
675          "expected ...[");
676   SourceLocation EllipsisLoc = ConsumeToken();
677   BalancedDelimiterTracker T(*this, tok::l_square);
678   T.consumeOpen();
679   ExprResult IndexExpr = ParseConstantExpression();
680   if (T.consumeClose() || IndexExpr.isInvalid())
681     return ExprError();
682   return Actions.ActOnPackIndexingExpr(getCurScope(), PackIdExpression.get(),
683                                        EllipsisLoc, T.getOpenLocation(),
684                                        IndexExpr.get(), T.getCloseLocation());
685 }
686 
687 ExprResult
tryParseCXXPackIndexingExpression(ExprResult PackIdExpression)688 Parser::tryParseCXXPackIndexingExpression(ExprResult PackIdExpression) {
689   ExprResult E = PackIdExpression;
690   if (!PackIdExpression.isInvalid() && !PackIdExpression.isUnset() &&
691       Tok.is(tok::ellipsis) && NextToken().is(tok::l_square)) {
692     E = ParseCXXPackIndexingExpression(E);
693   }
694   return E;
695 }
696 
697 /// ParseCXXIdExpression - Handle id-expression.
698 ///
699 ///       id-expression:
700 ///         unqualified-id
701 ///         qualified-id
702 ///
703 ///       qualified-id:
704 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
705 ///         '::' identifier
706 ///         '::' operator-function-id
707 ///         '::' template-id
708 ///
709 /// NOTE: The standard specifies that, for qualified-id, the parser does not
710 /// expect:
711 ///
712 ///   '::' conversion-function-id
713 ///   '::' '~' class-name
714 ///
715 /// This may cause a slight inconsistency on diagnostics:
716 ///
717 /// class C {};
718 /// namespace A {}
719 /// void f() {
720 ///   :: A :: ~ C(); // Some Sema error about using destructor with a
721 ///                  // namespace.
722 ///   :: ~ C(); // Some Parser error like 'unexpected ~'.
723 /// }
724 ///
725 /// We simplify the parser a bit and make it work like:
726 ///
727 ///       qualified-id:
728 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
729 ///         '::' unqualified-id
730 ///
731 /// That way Sema can handle and report similar errors for namespaces and the
732 /// global scope.
733 ///
734 /// The isAddressOfOperand parameter indicates that this id-expression is a
735 /// direct operand of the address-of operator. This is, besides member contexts,
736 /// the only place where a qualified-id naming a non-static class member may
737 /// appear.
738 ///
ParseCXXIdExpression(bool isAddressOfOperand)739 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
740   // qualified-id:
741   //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
742   //   '::' unqualified-id
743   //
744   CXXScopeSpec SS;
745   ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
746                                  /*ObjectHasErrors=*/false,
747                                  /*EnteringContext=*/false);
748 
749   Token Replacement;
750   ExprResult Result =
751       tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
752   if (Result.isUnset()) {
753     // If the ExprResult is valid but null, then typo correction suggested a
754     // keyword replacement that needs to be reparsed.
755     UnconsumeToken(Replacement);
756     Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
757   }
758   assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
759                               "for a previous keyword suggestion");
760   return Result;
761 }
762 
763 /// ParseLambdaExpression - Parse a C++11 lambda expression.
764 ///
765 ///       lambda-expression:
766 ///         lambda-introducer lambda-declarator compound-statement
767 ///         lambda-introducer '<' template-parameter-list '>'
768 ///             requires-clause[opt] lambda-declarator compound-statement
769 ///
770 ///       lambda-introducer:
771 ///         '[' lambda-capture[opt] ']'
772 ///
773 ///       lambda-capture:
774 ///         capture-default
775 ///         capture-list
776 ///         capture-default ',' capture-list
777 ///
778 ///       capture-default:
779 ///         '&'
780 ///         '='
781 ///
782 ///       capture-list:
783 ///         capture
784 ///         capture-list ',' capture
785 ///
786 ///       capture:
787 ///         simple-capture
788 ///         init-capture     [C++1y]
789 ///
790 ///       simple-capture:
791 ///         identifier
792 ///         '&' identifier
793 ///         'this'
794 ///
795 ///       init-capture:      [C++1y]
796 ///         identifier initializer
797 ///         '&' identifier initializer
798 ///
799 ///       lambda-declarator:
800 ///         lambda-specifiers     [C++23]
801 ///         '(' parameter-declaration-clause ')' lambda-specifiers
802 ///             requires-clause[opt]
803 ///
804 ///       lambda-specifiers:
805 ///         decl-specifier-seq[opt] noexcept-specifier[opt]
806 ///             attribute-specifier-seq[opt] trailing-return-type[opt]
807 ///
ParseLambdaExpression()808 ExprResult Parser::ParseLambdaExpression() {
809   // Parse lambda-introducer.
810   LambdaIntroducer Intro;
811   if (ParseLambdaIntroducer(Intro)) {
812     SkipUntil(tok::r_square, StopAtSemi);
813     SkipUntil(tok::l_brace, StopAtSemi);
814     SkipUntil(tok::r_brace, StopAtSemi);
815     return ExprError();
816   }
817 
818   return ParseLambdaExpressionAfterIntroducer(Intro);
819 }
820 
821 /// Use lookahead and potentially tentative parsing to determine if we are
822 /// looking at a C++11 lambda expression, and parse it if we are.
823 ///
824 /// If we are not looking at a lambda expression, returns ExprError().
TryParseLambdaExpression()825 ExprResult Parser::TryParseLambdaExpression() {
826   assert(getLangOpts().CPlusPlus && Tok.is(tok::l_square) &&
827          "Not at the start of a possible lambda expression.");
828 
829   const Token Next = NextToken();
830   if (Next.is(tok::eof)) // Nothing else to lookup here...
831     return ExprEmpty();
832 
833   const Token After = GetLookAheadToken(2);
834   // If lookahead indicates this is a lambda...
835   if (Next.is(tok::r_square) ||     // []
836       Next.is(tok::equal) ||        // [=
837       (Next.is(tok::amp) &&         // [&] or [&,
838        After.isOneOf(tok::r_square, tok::comma)) ||
839       (Next.is(tok::identifier) &&  // [identifier]
840        After.is(tok::r_square)) ||
841       Next.is(tok::ellipsis)) {     // [...
842     return ParseLambdaExpression();
843   }
844 
845   // If lookahead indicates an ObjC message send...
846   // [identifier identifier
847   if (Next.is(tok::identifier) && After.is(tok::identifier))
848     return ExprEmpty();
849 
850   // Here, we're stuck: lambda introducers and Objective-C message sends are
851   // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
852   // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
853   // writing two routines to parse a lambda introducer, just try to parse
854   // a lambda introducer first, and fall back if that fails.
855   LambdaIntroducer Intro;
856   {
857     TentativeParsingAction TPA(*this);
858     LambdaIntroducerTentativeParse Tentative;
859     if (ParseLambdaIntroducer(Intro, &Tentative)) {
860       TPA.Commit();
861       return ExprError();
862     }
863 
864     switch (Tentative) {
865     case LambdaIntroducerTentativeParse::Success:
866       TPA.Commit();
867       break;
868 
869     case LambdaIntroducerTentativeParse::Incomplete:
870       // Didn't fully parse the lambda-introducer, try again with a
871       // non-tentative parse.
872       TPA.Revert();
873       Intro = LambdaIntroducer();
874       if (ParseLambdaIntroducer(Intro))
875         return ExprError();
876       break;
877 
878     case LambdaIntroducerTentativeParse::MessageSend:
879     case LambdaIntroducerTentativeParse::Invalid:
880       // Not a lambda-introducer, might be a message send.
881       TPA.Revert();
882       return ExprEmpty();
883     }
884   }
885 
886   return ParseLambdaExpressionAfterIntroducer(Intro);
887 }
888 
889 /// Parse a lambda introducer.
890 /// \param Intro A LambdaIntroducer filled in with information about the
891 ///        contents of the lambda-introducer.
892 /// \param Tentative If non-null, we are disambiguating between a
893 ///        lambda-introducer and some other construct. In this mode, we do not
894 ///        produce any diagnostics or take any other irreversible action unless
895 ///        we're sure that this is a lambda-expression.
896 /// \return \c true if parsing (or disambiguation) failed with a diagnostic and
897 ///         the caller should bail out / recover.
ParseLambdaIntroducer(LambdaIntroducer & Intro,LambdaIntroducerTentativeParse * Tentative)898 bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
899                                    LambdaIntroducerTentativeParse *Tentative) {
900   if (Tentative)
901     *Tentative = LambdaIntroducerTentativeParse::Success;
902 
903   assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
904   BalancedDelimiterTracker T(*this, tok::l_square);
905   T.consumeOpen();
906 
907   Intro.Range.setBegin(T.getOpenLocation());
908 
909   bool First = true;
910 
911   // Produce a diagnostic if we're not tentatively parsing; otherwise track
912   // that our parse has failed.
913   auto Invalid = [&](llvm::function_ref<void()> Action) {
914     if (Tentative) {
915       *Tentative = LambdaIntroducerTentativeParse::Invalid;
916       return false;
917     }
918     Action();
919     return true;
920   };
921 
922   // Perform some irreversible action if this is a non-tentative parse;
923   // otherwise note that our actions were incomplete.
924   auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
925     if (Tentative)
926       *Tentative = LambdaIntroducerTentativeParse::Incomplete;
927     else
928       Action();
929   };
930 
931   // Parse capture-default.
932   if (Tok.is(tok::amp) &&
933       (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
934     Intro.Default = LCD_ByRef;
935     Intro.DefaultLoc = ConsumeToken();
936     First = false;
937     if (!Tok.getIdentifierInfo()) {
938       // This can only be a lambda; no need for tentative parsing any more.
939       // '[[and]]' can still be an attribute, though.
940       Tentative = nullptr;
941     }
942   } else if (Tok.is(tok::equal)) {
943     Intro.Default = LCD_ByCopy;
944     Intro.DefaultLoc = ConsumeToken();
945     First = false;
946     Tentative = nullptr;
947   }
948 
949   while (Tok.isNot(tok::r_square)) {
950     if (!First) {
951       if (Tok.isNot(tok::comma)) {
952         // Provide a completion for a lambda introducer here. Except
953         // in Objective-C, where this is Almost Surely meant to be a message
954         // send. In that case, fail here and let the ObjC message
955         // expression parser perform the completion.
956         if (Tok.is(tok::code_completion) &&
957             !(getLangOpts().ObjC && Tentative)) {
958           cutOffParsing();
959           Actions.CodeCompletion().CodeCompleteLambdaIntroducer(
960               getCurScope(), Intro,
961               /*AfterAmpersand=*/false);
962           break;
963         }
964 
965         return Invalid([&] {
966           Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
967         });
968       }
969       ConsumeToken();
970     }
971 
972     if (Tok.is(tok::code_completion)) {
973       cutOffParsing();
974       // If we're in Objective-C++ and we have a bare '[', then this is more
975       // likely to be a message receiver.
976       if (getLangOpts().ObjC && Tentative && First)
977         Actions.CodeCompletion().CodeCompleteObjCMessageReceiver(getCurScope());
978       else
979         Actions.CodeCompletion().CodeCompleteLambdaIntroducer(
980             getCurScope(), Intro,
981             /*AfterAmpersand=*/false);
982       break;
983     }
984 
985     First = false;
986 
987     // Parse capture.
988     LambdaCaptureKind Kind = LCK_ByCopy;
989     LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
990     SourceLocation Loc;
991     IdentifierInfo *Id = nullptr;
992     SourceLocation EllipsisLocs[4];
993     ExprResult Init;
994     SourceLocation LocStart = Tok.getLocation();
995 
996     if (Tok.is(tok::star)) {
997       Loc = ConsumeToken();
998       if (Tok.is(tok::kw_this)) {
999         ConsumeToken();
1000         Kind = LCK_StarThis;
1001       } else {
1002         return Invalid([&] {
1003           Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
1004         });
1005       }
1006     } else if (Tok.is(tok::kw_this)) {
1007       Kind = LCK_This;
1008       Loc = ConsumeToken();
1009     } else if (Tok.isOneOf(tok::amp, tok::equal) &&
1010                NextToken().isOneOf(tok::comma, tok::r_square) &&
1011                Intro.Default == LCD_None) {
1012       // We have a lone "&" or "=" which is either a misplaced capture-default
1013       // or the start of a capture (in the "&" case) with the rest of the
1014       // capture missing. Both are an error but a misplaced capture-default
1015       // is more likely if we don't already have a capture default.
1016       return Invalid(
1017           [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
1018     } else {
1019       TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
1020 
1021       if (Tok.is(tok::amp)) {
1022         Kind = LCK_ByRef;
1023         ConsumeToken();
1024 
1025         if (Tok.is(tok::code_completion)) {
1026           cutOffParsing();
1027           Actions.CodeCompletion().CodeCompleteLambdaIntroducer(
1028               getCurScope(), Intro,
1029               /*AfterAmpersand=*/true);
1030           break;
1031         }
1032       }
1033 
1034       TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
1035 
1036       if (Tok.is(tok::identifier)) {
1037         Id = Tok.getIdentifierInfo();
1038         Loc = ConsumeToken();
1039       } else if (Tok.is(tok::kw_this)) {
1040         return Invalid([&] {
1041           // FIXME: Suggest a fixit here.
1042           Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
1043         });
1044       } else {
1045         return Invalid([&] {
1046           Diag(Tok.getLocation(), diag::err_expected_capture);
1047         });
1048       }
1049 
1050       TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
1051 
1052       if (Tok.is(tok::l_paren)) {
1053         BalancedDelimiterTracker Parens(*this, tok::l_paren);
1054         Parens.consumeOpen();
1055 
1056         InitKind = LambdaCaptureInitKind::DirectInit;
1057 
1058         ExprVector Exprs;
1059         if (Tentative) {
1060           Parens.skipToEnd();
1061           *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1062         } else if (ParseExpressionList(Exprs)) {
1063           Parens.skipToEnd();
1064           Init = ExprError();
1065         } else {
1066           Parens.consumeClose();
1067           Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
1068                                             Parens.getCloseLocation(),
1069                                             Exprs);
1070         }
1071       } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
1072         // Each lambda init-capture forms its own full expression, which clears
1073         // Actions.MaybeODRUseExprs. So create an expression evaluation context
1074         // to save the necessary state, and restore it later.
1075         EnterExpressionEvaluationContext EC(
1076             Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1077 
1078         if (TryConsumeToken(tok::equal))
1079           InitKind = LambdaCaptureInitKind::CopyInit;
1080         else
1081           InitKind = LambdaCaptureInitKind::ListInit;
1082 
1083         if (!Tentative) {
1084           Init = ParseInitializer();
1085         } else if (Tok.is(tok::l_brace)) {
1086           BalancedDelimiterTracker Braces(*this, tok::l_brace);
1087           Braces.consumeOpen();
1088           Braces.skipToEnd();
1089           *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1090         } else {
1091           // We're disambiguating this:
1092           //
1093           //   [..., x = expr
1094           //
1095           // We need to find the end of the following expression in order to
1096           // determine whether this is an Obj-C message send's receiver, a
1097           // C99 designator, or a lambda init-capture.
1098           //
1099           // Parse the expression to find where it ends, and annotate it back
1100           // onto the tokens. We would have parsed this expression the same way
1101           // in either case: both the RHS of an init-capture and the RHS of an
1102           // assignment expression are parsed as an initializer-clause, and in
1103           // neither case can anything be added to the scope between the '[' and
1104           // here.
1105           //
1106           // FIXME: This is horrible. Adding a mechanism to skip an expression
1107           // would be much cleaner.
1108           // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1109           // that instead. (And if we see a ':' with no matching '?', we can
1110           // classify this as an Obj-C message send.)
1111           SourceLocation StartLoc = Tok.getLocation();
1112           InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
1113           Init = ParseInitializer();
1114           if (!Init.isInvalid())
1115             Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1116 
1117           if (Tok.getLocation() != StartLoc) {
1118             // Back out the lexing of the token after the initializer.
1119             PP.RevertCachedTokens(1);
1120 
1121             // Replace the consumed tokens with an appropriate annotation.
1122             Tok.setLocation(StartLoc);
1123             Tok.setKind(tok::annot_primary_expr);
1124             setExprAnnotation(Tok, Init);
1125             Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
1126             PP.AnnotateCachedTokens(Tok);
1127 
1128             // Consume the annotated initializer.
1129             ConsumeAnnotationToken();
1130           }
1131         }
1132       }
1133 
1134       TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
1135     }
1136 
1137     // Check if this is a message send before we act on a possible init-capture.
1138     if (Tentative && Tok.is(tok::identifier) &&
1139         NextToken().isOneOf(tok::colon, tok::r_square)) {
1140       // This can only be a message send. We're done with disambiguation.
1141       *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1142       return false;
1143     }
1144 
1145     // Ensure that any ellipsis was in the right place.
1146     SourceLocation EllipsisLoc;
1147     if (llvm::any_of(EllipsisLocs,
1148                      [](SourceLocation Loc) { return Loc.isValid(); })) {
1149       // The '...' should appear before the identifier in an init-capture, and
1150       // after the identifier otherwise.
1151       bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1152       SourceLocation *ExpectedEllipsisLoc =
1153           !InitCapture      ? &EllipsisLocs[2] :
1154           Kind == LCK_ByRef ? &EllipsisLocs[1] :
1155                               &EllipsisLocs[0];
1156       EllipsisLoc = *ExpectedEllipsisLoc;
1157 
1158       unsigned DiagID = 0;
1159       if (EllipsisLoc.isInvalid()) {
1160         DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1161         for (SourceLocation Loc : EllipsisLocs) {
1162           if (Loc.isValid())
1163             EllipsisLoc = Loc;
1164         }
1165       } else {
1166         unsigned NumEllipses = std::accumulate(
1167             std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
1168             [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1169         if (NumEllipses > 1)
1170           DiagID = diag::err_lambda_capture_multiple_ellipses;
1171       }
1172       if (DiagID) {
1173         NonTentativeAction([&] {
1174           // Point the diagnostic at the first misplaced ellipsis.
1175           SourceLocation DiagLoc;
1176           for (SourceLocation &Loc : EllipsisLocs) {
1177             if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1178               DiagLoc = Loc;
1179               break;
1180             }
1181           }
1182           assert(DiagLoc.isValid() && "no location for diagnostic");
1183 
1184           // Issue the diagnostic and produce fixits showing where the ellipsis
1185           // should have been written.
1186           auto &&D = Diag(DiagLoc, DiagID);
1187           if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1188             SourceLocation ExpectedLoc =
1189                 InitCapture ? Loc
1190                             : Lexer::getLocForEndOfToken(
1191                                   Loc, 0, PP.getSourceManager(), getLangOpts());
1192             D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
1193           }
1194           for (SourceLocation &Loc : EllipsisLocs) {
1195             if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1196               D << FixItHint::CreateRemoval(Loc);
1197           }
1198         });
1199       }
1200     }
1201 
1202     // Process the init-capture initializers now rather than delaying until we
1203     // form the lambda-expression so that they can be handled in the context
1204     // enclosing the lambda-expression, rather than in the context of the
1205     // lambda-expression itself.
1206     ParsedType InitCaptureType;
1207     if (Init.isUsable())
1208       Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1209     if (Init.isUsable()) {
1210       NonTentativeAction([&] {
1211         // Get the pointer and store it in an lvalue, so we can use it as an
1212         // out argument.
1213         Expr *InitExpr = Init.get();
1214         // This performs any lvalue-to-rvalue conversions if necessary, which
1215         // can affect what gets captured in the containing decl-context.
1216         InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1217             Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
1218         Init = InitExpr;
1219       });
1220     }
1221 
1222     SourceLocation LocEnd = PrevTokLocation;
1223 
1224     Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1225                      InitCaptureType, SourceRange(LocStart, LocEnd));
1226   }
1227 
1228   T.consumeClose();
1229   Intro.Range.setEnd(T.getCloseLocation());
1230   return false;
1231 }
1232 
tryConsumeLambdaSpecifierToken(Parser & P,SourceLocation & MutableLoc,SourceLocation & StaticLoc,SourceLocation & ConstexprLoc,SourceLocation & ConstevalLoc,SourceLocation & DeclEndLoc)1233 static void tryConsumeLambdaSpecifierToken(Parser &P,
1234                                            SourceLocation &MutableLoc,
1235                                            SourceLocation &StaticLoc,
1236                                            SourceLocation &ConstexprLoc,
1237                                            SourceLocation &ConstevalLoc,
1238                                            SourceLocation &DeclEndLoc) {
1239   assert(MutableLoc.isInvalid());
1240   assert(StaticLoc.isInvalid());
1241   assert(ConstexprLoc.isInvalid());
1242   assert(ConstevalLoc.isInvalid());
1243   // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1244   // to the final of those locations. Emit an error if we have multiple
1245   // copies of those keywords and recover.
1246 
1247   auto ConsumeLocation = [&P, &DeclEndLoc](SourceLocation &SpecifierLoc,
1248                                            int DiagIndex) {
1249     if (SpecifierLoc.isValid()) {
1250       P.Diag(P.getCurToken().getLocation(),
1251              diag::err_lambda_decl_specifier_repeated)
1252           << DiagIndex
1253           << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1254     }
1255     SpecifierLoc = P.ConsumeToken();
1256     DeclEndLoc = SpecifierLoc;
1257   };
1258 
1259   while (true) {
1260     switch (P.getCurToken().getKind()) {
1261     case tok::kw_mutable:
1262       ConsumeLocation(MutableLoc, 0);
1263       break;
1264     case tok::kw_static:
1265       ConsumeLocation(StaticLoc, 1);
1266       break;
1267     case tok::kw_constexpr:
1268       ConsumeLocation(ConstexprLoc, 2);
1269       break;
1270     case tok::kw_consteval:
1271       ConsumeLocation(ConstevalLoc, 3);
1272       break;
1273     default:
1274       return;
1275     }
1276   }
1277 }
1278 
addStaticToLambdaDeclSpecifier(Parser & P,SourceLocation StaticLoc,DeclSpec & DS)1279 static void addStaticToLambdaDeclSpecifier(Parser &P, SourceLocation StaticLoc,
1280                                            DeclSpec &DS) {
1281   if (StaticLoc.isValid()) {
1282     P.Diag(StaticLoc, !P.getLangOpts().CPlusPlus23
1283                           ? diag::err_static_lambda
1284                           : diag::warn_cxx20_compat_static_lambda);
1285     const char *PrevSpec = nullptr;
1286     unsigned DiagID = 0;
1287     DS.SetStorageClassSpec(P.getActions(), DeclSpec::SCS_static, StaticLoc,
1288                            PrevSpec, DiagID,
1289                            P.getActions().getASTContext().getPrintingPolicy());
1290     assert(PrevSpec == nullptr && DiagID == 0 &&
1291            "Static cannot have been set previously!");
1292   }
1293 }
1294 
1295 static void
addConstexprToLambdaDeclSpecifier(Parser & P,SourceLocation ConstexprLoc,DeclSpec & DS)1296 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1297                                   DeclSpec &DS) {
1298   if (ConstexprLoc.isValid()) {
1299     P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1300                              ? diag::ext_constexpr_on_lambda_cxx17
1301                              : diag::warn_cxx14_compat_constexpr_on_lambda);
1302     const char *PrevSpec = nullptr;
1303     unsigned DiagID = 0;
1304     DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
1305                         DiagID);
1306     assert(PrevSpec == nullptr && DiagID == 0 &&
1307            "Constexpr cannot have been set previously!");
1308   }
1309 }
1310 
addConstevalToLambdaDeclSpecifier(Parser & P,SourceLocation ConstevalLoc,DeclSpec & DS)1311 static void addConstevalToLambdaDeclSpecifier(Parser &P,
1312                                               SourceLocation ConstevalLoc,
1313                                               DeclSpec &DS) {
1314   if (ConstevalLoc.isValid()) {
1315     P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1316     const char *PrevSpec = nullptr;
1317     unsigned DiagID = 0;
1318     DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
1319                         DiagID);
1320     if (DiagID != 0)
1321       P.Diag(ConstevalLoc, DiagID) << PrevSpec;
1322   }
1323 }
1324 
DiagnoseStaticSpecifierRestrictions(Parser & P,SourceLocation StaticLoc,SourceLocation MutableLoc,const LambdaIntroducer & Intro)1325 static void DiagnoseStaticSpecifierRestrictions(Parser &P,
1326                                                 SourceLocation StaticLoc,
1327                                                 SourceLocation MutableLoc,
1328                                                 const LambdaIntroducer &Intro) {
1329   if (StaticLoc.isInvalid())
1330     return;
1331 
1332   // [expr.prim.lambda.general] p4
1333   // The lambda-specifier-seq shall not contain both mutable and static.
1334   // If the lambda-specifier-seq contains static, there shall be no
1335   // lambda-capture.
1336   if (MutableLoc.isValid())
1337     P.Diag(StaticLoc, diag::err_static_mutable_lambda);
1338   if (Intro.hasLambdaCapture()) {
1339     P.Diag(StaticLoc, diag::err_static_lambda_captures);
1340   }
1341 }
1342 
1343 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1344 /// expression.
ParseLambdaExpressionAfterIntroducer(LambdaIntroducer & Intro)1345 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1346                      LambdaIntroducer &Intro) {
1347   SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1348   Diag(LambdaBeginLoc, getLangOpts().CPlusPlus11
1349                            ? diag::warn_cxx98_compat_lambda
1350                            : diag::ext_lambda);
1351 
1352   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1353                                 "lambda expression parsing");
1354 
1355   // Parse lambda-declarator[opt].
1356   DeclSpec DS(AttrFactory);
1357   Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::LambdaExpr);
1358   TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1359 
1360   ParseScope LambdaScope(this, Scope::LambdaScope | Scope::DeclScope |
1361                                    Scope::FunctionDeclarationScope |
1362                                    Scope::FunctionPrototypeScope);
1363 
1364   Actions.PushLambdaScope();
1365   Actions.ActOnLambdaExpressionAfterIntroducer(Intro, getCurScope());
1366 
1367   ParsedAttributes Attributes(AttrFactory);
1368   if (getLangOpts().CUDA) {
1369     // In CUDA code, GNU attributes are allowed to appear immediately after the
1370     // "[...]", even if there is no "(...)" before the lambda body.
1371     //
1372     // Note that we support __noinline__ as a keyword in this mode and thus
1373     // it has to be separately handled.
1374     while (true) {
1375       if (Tok.is(tok::kw___noinline__)) {
1376         IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1377         SourceLocation AttrNameLoc = ConsumeToken();
1378         Attributes.addNew(AttrName, AttrNameLoc, /*ScopeName=*/nullptr,
1379                           AttrNameLoc, /*ArgsUnion=*/nullptr,
1380                           /*numArgs=*/0, tok::kw___noinline__);
1381       } else if (Tok.is(tok::kw___attribute))
1382         ParseGNUAttributes(Attributes, /*LatePArsedAttrList=*/nullptr, &D);
1383       else
1384         break;
1385     }
1386 
1387     D.takeAttributes(Attributes);
1388   }
1389 
1390   MultiParseScope TemplateParamScope(*this);
1391   if (Tok.is(tok::less)) {
1392     Diag(Tok, getLangOpts().CPlusPlus20
1393                   ? diag::warn_cxx17_compat_lambda_template_parameter_list
1394                   : diag::ext_lambda_template_parameter_list);
1395 
1396     SmallVector<NamedDecl*, 4> TemplateParams;
1397     SourceLocation LAngleLoc, RAngleLoc;
1398     if (ParseTemplateParameters(TemplateParamScope,
1399                                 CurTemplateDepthTracker.getDepth(),
1400                                 TemplateParams, LAngleLoc, RAngleLoc)) {
1401       Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1402       return ExprError();
1403     }
1404 
1405     if (TemplateParams.empty()) {
1406       Diag(RAngleLoc,
1407            diag::err_lambda_template_parameter_list_empty);
1408     } else {
1409       // We increase the template depth before recursing into a requires-clause.
1410       //
1411       // This depth is used for setting up a LambdaScopeInfo (in
1412       // Sema::RecordParsingTemplateParameterDepth), which is used later when
1413       // inventing template parameters in InventTemplateParameter.
1414       //
1415       // This way, abbreviated generic lambdas could have different template
1416       // depths, avoiding substitution into the wrong template parameters during
1417       // constraint satisfaction check.
1418       ++CurTemplateDepthTracker;
1419       ExprResult RequiresClause;
1420       if (TryConsumeToken(tok::kw_requires)) {
1421         RequiresClause =
1422             Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
1423                 /*IsTrailingRequiresClause=*/false));
1424         if (RequiresClause.isInvalid())
1425           SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
1426       }
1427 
1428       Actions.ActOnLambdaExplicitTemplateParameterList(
1429           Intro, LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
1430     }
1431   }
1432 
1433   // Implement WG21 P2173, which allows attributes immediately before the
1434   // lambda declarator and applies them to the corresponding function operator
1435   // or operator template declaration. We accept this as a conforming extension
1436   // in all language modes that support lambdas.
1437   if (isCXX11AttributeSpecifier()) {
1438     Diag(Tok, getLangOpts().CPlusPlus23
1439                   ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1440                   : diag::ext_decl_attrs_on_lambda)
1441         << Tok.getIdentifierInfo() << Tok.isRegularKeywordAttribute();
1442     MaybeParseCXX11Attributes(D);
1443   }
1444 
1445   TypeResult TrailingReturnType;
1446   SourceLocation TrailingReturnTypeLoc;
1447   SourceLocation LParenLoc, RParenLoc;
1448   SourceLocation DeclEndLoc;
1449   bool HasParentheses = false;
1450   bool HasSpecifiers = false;
1451   SourceLocation MutableLoc;
1452 
1453   ParseScope Prototype(this, Scope::FunctionPrototypeScope |
1454                                  Scope::FunctionDeclarationScope |
1455                                  Scope::DeclScope);
1456 
1457   // Parse parameter-declaration-clause.
1458   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1459   SourceLocation EllipsisLoc;
1460 
1461   if (Tok.is(tok::l_paren)) {
1462     BalancedDelimiterTracker T(*this, tok::l_paren);
1463     T.consumeOpen();
1464     LParenLoc = T.getOpenLocation();
1465 
1466     if (Tok.isNot(tok::r_paren)) {
1467       Actions.RecordParsingTemplateParameterDepth(
1468           CurTemplateDepthTracker.getOriginalDepth());
1469 
1470       ParseParameterDeclarationClause(D, Attributes, ParamInfo, EllipsisLoc);
1471       // For a generic lambda, each 'auto' within the parameter declaration
1472       // clause creates a template type parameter, so increment the depth.
1473       // If we've parsed any explicit template parameters, then the depth will
1474       // have already been incremented. So we make sure that at most a single
1475       // depth level is added.
1476       if (Actions.getCurGenericLambda())
1477         CurTemplateDepthTracker.setAddedDepth(1);
1478     }
1479 
1480     T.consumeClose();
1481     DeclEndLoc = RParenLoc = T.getCloseLocation();
1482     HasParentheses = true;
1483   }
1484 
1485   HasSpecifiers =
1486       Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1487                   tok::kw_constexpr, tok::kw_consteval, tok::kw_static,
1488                   tok::kw___private, tok::kw___global, tok::kw___local,
1489                   tok::kw___constant, tok::kw___generic, tok::kw_groupshared,
1490                   tok::kw_requires, tok::kw_noexcept) ||
1491       Tok.isRegularKeywordAttribute() ||
1492       (Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1493 
1494   if (HasSpecifiers && !HasParentheses && !getLangOpts().CPlusPlus23) {
1495     // It's common to forget that one needs '()' before 'mutable', an
1496     // attribute specifier, the result type, or the requires clause. Deal with
1497     // this.
1498     Diag(Tok, diag::ext_lambda_missing_parens)
1499         << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1500   }
1501 
1502   if (HasParentheses || HasSpecifiers) {
1503     // GNU-style attributes must be parsed before the mutable specifier to
1504     // be compatible with GCC. MSVC-style attributes must be parsed before
1505     // the mutable specifier to be compatible with MSVC.
1506     MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attributes);
1507     // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
1508     // the DeclEndLoc.
1509     SourceLocation ConstexprLoc;
1510     SourceLocation ConstevalLoc;
1511     SourceLocation StaticLoc;
1512 
1513     tryConsumeLambdaSpecifierToken(*this, MutableLoc, StaticLoc, ConstexprLoc,
1514                                    ConstevalLoc, DeclEndLoc);
1515 
1516     DiagnoseStaticSpecifierRestrictions(*this, StaticLoc, MutableLoc, Intro);
1517 
1518     addStaticToLambdaDeclSpecifier(*this, StaticLoc, DS);
1519     addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1520     addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
1521   }
1522 
1523   Actions.ActOnLambdaClosureParameters(getCurScope(), ParamInfo);
1524 
1525   if (!HasParentheses)
1526     Actions.ActOnLambdaClosureQualifiers(Intro, MutableLoc);
1527 
1528   if (HasSpecifiers || HasParentheses) {
1529     // Parse exception-specification[opt].
1530     ExceptionSpecificationType ESpecType = EST_None;
1531     SourceRange ESpecRange;
1532     SmallVector<ParsedType, 2> DynamicExceptions;
1533     SmallVector<SourceRange, 2> DynamicExceptionRanges;
1534     ExprResult NoexceptExpr;
1535     CachedTokens *ExceptionSpecTokens;
1536 
1537     ESpecType = tryParseExceptionSpecification(
1538         /*Delayed=*/false, ESpecRange, DynamicExceptions,
1539         DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
1540 
1541     if (ESpecType != EST_None)
1542       DeclEndLoc = ESpecRange.getEnd();
1543 
1544     // Parse attribute-specifier[opt].
1545     if (MaybeParseCXX11Attributes(Attributes))
1546       DeclEndLoc = Attributes.Range.getEnd();
1547 
1548     // Parse OpenCL addr space attribute.
1549     if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
1550                     tok::kw___constant, tok::kw___generic)) {
1551       ParseOpenCLQualifiers(DS.getAttributes());
1552       ConsumeToken();
1553     }
1554 
1555     SourceLocation FunLocalRangeEnd = DeclEndLoc;
1556 
1557     // Parse trailing-return-type[opt].
1558     if (Tok.is(tok::arrow)) {
1559       FunLocalRangeEnd = Tok.getLocation();
1560       SourceRange Range;
1561       TrailingReturnType =
1562           ParseTrailingReturnType(Range, /*MayBeFollowedByDirectInit=*/false);
1563       TrailingReturnTypeLoc = Range.getBegin();
1564       if (Range.getEnd().isValid())
1565         DeclEndLoc = Range.getEnd();
1566     }
1567 
1568     SourceLocation NoLoc;
1569     D.AddTypeInfo(DeclaratorChunk::getFunction(
1570                       /*HasProto=*/true,
1571                       /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
1572                       ParamInfo.size(), EllipsisLoc, RParenLoc,
1573                       /*RefQualifierIsLvalueRef=*/true,
1574                       /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType,
1575                       ESpecRange, DynamicExceptions.data(),
1576                       DynamicExceptionRanges.data(), DynamicExceptions.size(),
1577                       NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1578                       /*ExceptionSpecTokens*/ nullptr,
1579                       /*DeclsInPrototype=*/std::nullopt, LParenLoc,
1580                       FunLocalRangeEnd, D, TrailingReturnType,
1581                       TrailingReturnTypeLoc, &DS),
1582                   std::move(Attributes), DeclEndLoc);
1583 
1584     // We have called ActOnLambdaClosureQualifiers for parentheses-less cases
1585     // above.
1586     if (HasParentheses)
1587       Actions.ActOnLambdaClosureQualifiers(Intro, MutableLoc);
1588 
1589     if (HasParentheses && Tok.is(tok::kw_requires))
1590       ParseTrailingRequiresClause(D);
1591   }
1592 
1593   // Emit a warning if we see a CUDA host/device/global attribute
1594   // after '(...)'. nvcc doesn't accept this.
1595   if (getLangOpts().CUDA) {
1596     for (const ParsedAttr &A : Attributes)
1597       if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1598           A.getKind() == ParsedAttr::AT_CUDAHost ||
1599           A.getKind() == ParsedAttr::AT_CUDAGlobal)
1600         Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1601             << A.getAttrName()->getName();
1602   }
1603 
1604   Prototype.Exit();
1605 
1606   // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1607   // it.
1608   unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1609                         Scope::CompoundStmtScope;
1610   ParseScope BodyScope(this, ScopeFlags);
1611 
1612   Actions.ActOnStartOfLambdaDefinition(Intro, D, DS);
1613 
1614   // Parse compound-statement.
1615   if (!Tok.is(tok::l_brace)) {
1616     Diag(Tok, diag::err_expected_lambda_body);
1617     Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1618     return ExprError();
1619   }
1620 
1621   StmtResult Stmt(ParseCompoundStatementBody());
1622   BodyScope.Exit();
1623   TemplateParamScope.Exit();
1624   LambdaScope.Exit();
1625 
1626   if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid() &&
1627       !D.isInvalidType())
1628     return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get());
1629 
1630   Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1631   return ExprError();
1632 }
1633 
1634 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1635 /// type.
1636 ///
1637 ///       postfix-expression: [C++ 5.2p1]
1638 ///         'dynamic_cast' '<' type-name '>' '(' expression ')'
1639 ///         'static_cast' '<' type-name '>' '(' expression ')'
1640 ///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
1641 ///         'const_cast' '<' type-name '>' '(' expression ')'
1642 ///
1643 /// C++ for OpenCL s2.3.1 adds:
1644 ///         'addrspace_cast' '<' type-name '>' '(' expression ')'
ParseCXXCasts()1645 ExprResult Parser::ParseCXXCasts() {
1646   tok::TokenKind Kind = Tok.getKind();
1647   const char *CastName = nullptr; // For error messages
1648 
1649   switch (Kind) {
1650   default: llvm_unreachable("Unknown C++ cast!");
1651   case tok::kw_addrspace_cast:   CastName = "addrspace_cast";   break;
1652   case tok::kw_const_cast:       CastName = "const_cast";       break;
1653   case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
1654   case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1655   case tok::kw_static_cast:      CastName = "static_cast";      break;
1656   }
1657 
1658   SourceLocation OpLoc = ConsumeToken();
1659   SourceLocation LAngleBracketLoc = Tok.getLocation();
1660 
1661   // Check for "<::" which is parsed as "[:".  If found, fix token stream,
1662   // diagnose error, suggest fix, and recover parsing.
1663   if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1664     Token Next = NextToken();
1665     if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1666       FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1667   }
1668 
1669   if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1670     return ExprError();
1671 
1672   // Parse the common declaration-specifiers piece.
1673   DeclSpec DS(AttrFactory);
1674   ParseSpecifierQualifierList(DS, /*AccessSpecifier=*/AS_none,
1675                               DeclSpecContext::DSC_type_specifier);
1676 
1677   // Parse the abstract-declarator, if present.
1678   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1679                             DeclaratorContext::TypeName);
1680   ParseDeclarator(DeclaratorInfo);
1681 
1682   SourceLocation RAngleBracketLoc = Tok.getLocation();
1683 
1684   if (ExpectAndConsume(tok::greater))
1685     return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1686 
1687   BalancedDelimiterTracker T(*this, tok::l_paren);
1688 
1689   if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1690     return ExprError();
1691 
1692   ExprResult Result = ParseExpression();
1693 
1694   // Match the ')'.
1695   T.consumeClose();
1696 
1697   if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1698     Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1699                                        LAngleBracketLoc, DeclaratorInfo,
1700                                        RAngleBracketLoc,
1701                                        T.getOpenLocation(), Result.get(),
1702                                        T.getCloseLocation());
1703 
1704   return Result;
1705 }
1706 
1707 /// ParseCXXTypeid - This handles the C++ typeid expression.
1708 ///
1709 ///       postfix-expression: [C++ 5.2p1]
1710 ///         'typeid' '(' expression ')'
1711 ///         'typeid' '(' type-id ')'
1712 ///
ParseCXXTypeid()1713 ExprResult Parser::ParseCXXTypeid() {
1714   assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1715 
1716   SourceLocation OpLoc = ConsumeToken();
1717   SourceLocation LParenLoc, RParenLoc;
1718   BalancedDelimiterTracker T(*this, tok::l_paren);
1719 
1720   // typeid expressions are always parenthesized.
1721   if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1722     return ExprError();
1723   LParenLoc = T.getOpenLocation();
1724 
1725   ExprResult Result;
1726 
1727   // C++0x [expr.typeid]p3:
1728   //   When typeid is applied to an expression other than an lvalue of a
1729   //   polymorphic class type [...] The expression is an unevaluated
1730   //   operand (Clause 5).
1731   //
1732   // Note that we can't tell whether the expression is an lvalue of a
1733   // polymorphic class type until after we've parsed the expression; we
1734   // speculatively assume the subexpression is unevaluated, and fix it up
1735   // later.
1736   //
1737   // We enter the unevaluated context before trying to determine whether we
1738   // have a type-id, because the tentative parse logic will try to resolve
1739   // names, and must treat them as unevaluated.
1740   EnterExpressionEvaluationContext Unevaluated(
1741       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
1742       Sema::ReuseLambdaContextDecl);
1743 
1744   if (isTypeIdInParens()) {
1745     TypeResult Ty = ParseTypeName();
1746 
1747     // Match the ')'.
1748     T.consumeClose();
1749     RParenLoc = T.getCloseLocation();
1750     if (Ty.isInvalid() || RParenLoc.isInvalid())
1751       return ExprError();
1752 
1753     Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1754                                     Ty.get().getAsOpaquePtr(), RParenLoc);
1755   } else {
1756     Result = ParseExpression();
1757 
1758     // Match the ')'.
1759     if (Result.isInvalid())
1760       SkipUntil(tok::r_paren, StopAtSemi);
1761     else {
1762       T.consumeClose();
1763       RParenLoc = T.getCloseLocation();
1764       if (RParenLoc.isInvalid())
1765         return ExprError();
1766 
1767       Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1768                                       Result.get(), RParenLoc);
1769     }
1770   }
1771 
1772   return Result;
1773 }
1774 
1775 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1776 ///
1777 ///         '__uuidof' '(' expression ')'
1778 ///         '__uuidof' '(' type-id ')'
1779 ///
ParseCXXUuidof()1780 ExprResult Parser::ParseCXXUuidof() {
1781   assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1782 
1783   SourceLocation OpLoc = ConsumeToken();
1784   BalancedDelimiterTracker T(*this, tok::l_paren);
1785 
1786   // __uuidof expressions are always parenthesized.
1787   if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1788     return ExprError();
1789 
1790   ExprResult Result;
1791 
1792   if (isTypeIdInParens()) {
1793     TypeResult Ty = ParseTypeName();
1794 
1795     // Match the ')'.
1796     T.consumeClose();
1797 
1798     if (Ty.isInvalid())
1799       return ExprError();
1800 
1801     Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1802                                     Ty.get().getAsOpaquePtr(),
1803                                     T.getCloseLocation());
1804   } else {
1805     EnterExpressionEvaluationContext Unevaluated(
1806         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1807     Result = ParseExpression();
1808 
1809     // Match the ')'.
1810     if (Result.isInvalid())
1811       SkipUntil(tok::r_paren, StopAtSemi);
1812     else {
1813       T.consumeClose();
1814 
1815       Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1816                                       /*isType=*/false,
1817                                       Result.get(), T.getCloseLocation());
1818     }
1819   }
1820 
1821   return Result;
1822 }
1823 
1824 /// Parse a C++ pseudo-destructor expression after the base,
1825 /// . or -> operator, and nested-name-specifier have already been
1826 /// parsed. We're handling this fragment of the grammar:
1827 ///
1828 ///       postfix-expression: [C++2a expr.post]
1829 ///         postfix-expression . template[opt] id-expression
1830 ///         postfix-expression -> template[opt] id-expression
1831 ///
1832 ///       id-expression:
1833 ///         qualified-id
1834 ///         unqualified-id
1835 ///
1836 ///       qualified-id:
1837 ///         nested-name-specifier template[opt] unqualified-id
1838 ///
1839 ///       nested-name-specifier:
1840 ///         type-name ::
1841 ///         decltype-specifier ::    FIXME: not implemented, but probably only
1842 ///                                         allowed in C++ grammar by accident
1843 ///         nested-name-specifier identifier ::
1844 ///         nested-name-specifier template[opt] simple-template-id ::
1845 ///         [...]
1846 ///
1847 ///       unqualified-id:
1848 ///         ~ type-name
1849 ///         ~ decltype-specifier
1850 ///         [...]
1851 ///
1852 /// ... where the all but the last component of the nested-name-specifier
1853 /// has already been parsed, and the base expression is not of a non-dependent
1854 /// class type.
1855 ExprResult
ParseCXXPseudoDestructor(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,ParsedType ObjectType)1856 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1857                                  tok::TokenKind OpKind,
1858                                  CXXScopeSpec &SS,
1859                                  ParsedType ObjectType) {
1860   // If the last component of the (optional) nested-name-specifier is
1861   // template[opt] simple-template-id, it has already been annotated.
1862   UnqualifiedId FirstTypeName;
1863   SourceLocation CCLoc;
1864   if (Tok.is(tok::identifier)) {
1865     FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1866     ConsumeToken();
1867     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1868     CCLoc = ConsumeToken();
1869   } else if (Tok.is(tok::annot_template_id)) {
1870     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1871     // FIXME: Carry on and build an AST representation for tooling.
1872     if (TemplateId->isInvalid())
1873       return ExprError();
1874     FirstTypeName.setTemplateId(TemplateId);
1875     ConsumeAnnotationToken();
1876     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1877     CCLoc = ConsumeToken();
1878   } else {
1879     assert(SS.isEmpty() && "missing last component of nested name specifier");
1880     FirstTypeName.setIdentifier(nullptr, SourceLocation());
1881   }
1882 
1883   // Parse the tilde.
1884   assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1885   SourceLocation TildeLoc = ConsumeToken();
1886 
1887   if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
1888     DeclSpec DS(AttrFactory);
1889     ParseDecltypeSpecifier(DS);
1890     if (DS.getTypeSpecType() == TST_error)
1891       return ExprError();
1892     return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1893                                              TildeLoc, DS);
1894   }
1895 
1896   if (!Tok.is(tok::identifier)) {
1897     Diag(Tok, diag::err_destructor_tilde_identifier);
1898     return ExprError();
1899   }
1900 
1901   // pack-index-specifier
1902   if (GetLookAheadToken(1).is(tok::ellipsis) &&
1903       GetLookAheadToken(2).is(tok::l_square)) {
1904     DeclSpec DS(AttrFactory);
1905     ParsePackIndexingType(DS);
1906     return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1907                                              TildeLoc, DS);
1908   }
1909 
1910   // Parse the second type.
1911   UnqualifiedId SecondTypeName;
1912   IdentifierInfo *Name = Tok.getIdentifierInfo();
1913   SourceLocation NameLoc = ConsumeToken();
1914   SecondTypeName.setIdentifier(Name, NameLoc);
1915 
1916   // If there is a '<', the second type name is a template-id. Parse
1917   // it as such.
1918   //
1919   // FIXME: This is not a context in which a '<' is assumed to start a template
1920   // argument list. This affects examples such as
1921   //   void f(auto *p) { p->~X<int>(); }
1922   // ... but there's no ambiguity, and nowhere to write 'template' in such an
1923   // example, so we accept it anyway.
1924   if (Tok.is(tok::less) &&
1925       ParseUnqualifiedIdTemplateId(
1926           SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
1927           Name, NameLoc, false, SecondTypeName,
1928           /*AssumeTemplateId=*/true))
1929     return ExprError();
1930 
1931   return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1932                                            SS, FirstTypeName, CCLoc, TildeLoc,
1933                                            SecondTypeName);
1934 }
1935 
1936 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1937 ///
1938 ///       boolean-literal: [C++ 2.13.5]
1939 ///         'true'
1940 ///         'false'
ParseCXXBoolLiteral()1941 ExprResult Parser::ParseCXXBoolLiteral() {
1942   tok::TokenKind Kind = Tok.getKind();
1943   return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1944 }
1945 
1946 /// ParseThrowExpression - This handles the C++ throw expression.
1947 ///
1948 ///       throw-expression: [C++ 15]
1949 ///         'throw' assignment-expression[opt]
ParseThrowExpression()1950 ExprResult Parser::ParseThrowExpression() {
1951   assert(Tok.is(tok::kw_throw) && "Not throw!");
1952   SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1953 
1954   // If the current token isn't the start of an assignment-expression,
1955   // then the expression is not present.  This handles things like:
1956   //   "C ? throw : (void)42", which is crazy but legal.
1957   switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1958   case tok::semi:
1959   case tok::r_paren:
1960   case tok::r_square:
1961   case tok::r_brace:
1962   case tok::colon:
1963   case tok::comma:
1964     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1965 
1966   default:
1967     ExprResult Expr(ParseAssignmentExpression());
1968     if (Expr.isInvalid()) return Expr;
1969     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1970   }
1971 }
1972 
1973 /// Parse the C++ Coroutines co_yield expression.
1974 ///
1975 ///       co_yield-expression:
1976 ///         'co_yield' assignment-expression[opt]
ParseCoyieldExpression()1977 ExprResult Parser::ParseCoyieldExpression() {
1978   assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1979 
1980   SourceLocation Loc = ConsumeToken();
1981   ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1982                                          : ParseAssignmentExpression();
1983   if (!Expr.isInvalid())
1984     Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1985   return Expr;
1986 }
1987 
1988 /// ParseCXXThis - This handles the C++ 'this' pointer.
1989 ///
1990 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1991 /// a non-lvalue expression whose value is the address of the object for which
1992 /// the function is called.
ParseCXXThis()1993 ExprResult Parser::ParseCXXThis() {
1994   assert(Tok.is(tok::kw_this) && "Not 'this'!");
1995   SourceLocation ThisLoc = ConsumeToken();
1996   return Actions.ActOnCXXThis(ThisLoc);
1997 }
1998 
1999 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
2000 /// Can be interpreted either as function-style casting ("int(x)")
2001 /// or class type construction ("ClassType(x,y,z)")
2002 /// or creation of a value-initialized type ("int()").
2003 /// See [C++ 5.2.3].
2004 ///
2005 ///       postfix-expression: [C++ 5.2p1]
2006 ///         simple-type-specifier '(' expression-list[opt] ')'
2007 /// [C++0x] simple-type-specifier braced-init-list
2008 ///         typename-specifier '(' expression-list[opt] ')'
2009 /// [C++0x] typename-specifier braced-init-list
2010 ///
2011 /// In C++1z onwards, the type specifier can also be a template-name.
2012 ExprResult
ParseCXXTypeConstructExpression(const DeclSpec & DS)2013 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
2014   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
2015                             DeclaratorContext::FunctionalCast);
2016   ParsedType TypeRep = Actions.ActOnTypeName(DeclaratorInfo).get();
2017 
2018   assert((Tok.is(tok::l_paren) ||
2019           (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
2020          && "Expected '(' or '{'!");
2021 
2022   if (Tok.is(tok::l_brace)) {
2023     PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
2024     ExprResult Init = ParseBraceInitializer();
2025     if (Init.isInvalid())
2026       return Init;
2027     Expr *InitList = Init.get();
2028     return Actions.ActOnCXXTypeConstructExpr(
2029         TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
2030         InitList->getEndLoc(), /*ListInitialization=*/true);
2031   } else {
2032     BalancedDelimiterTracker T(*this, tok::l_paren);
2033     T.consumeOpen();
2034 
2035     PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
2036 
2037     ExprVector Exprs;
2038 
2039     auto RunSignatureHelp = [&]() {
2040       QualType PreferredType;
2041       if (TypeRep)
2042         PreferredType =
2043             Actions.CodeCompletion().ProduceConstructorSignatureHelp(
2044                 TypeRep.get()->getCanonicalTypeInternal(), DS.getEndLoc(),
2045                 Exprs, T.getOpenLocation(), /*Braced=*/false);
2046       CalledSignatureHelp = true;
2047       return PreferredType;
2048     };
2049 
2050     if (Tok.isNot(tok::r_paren)) {
2051       if (ParseExpressionList(Exprs, [&] {
2052             PreferredType.enterFunctionArgument(Tok.getLocation(),
2053                                                 RunSignatureHelp);
2054           })) {
2055         if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
2056           RunSignatureHelp();
2057         SkipUntil(tok::r_paren, StopAtSemi);
2058         return ExprError();
2059       }
2060     }
2061 
2062     // Match the ')'.
2063     T.consumeClose();
2064 
2065     // TypeRep could be null, if it references an invalid typedef.
2066     if (!TypeRep)
2067       return ExprError();
2068 
2069     return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
2070                                              Exprs, T.getCloseLocation(),
2071                                              /*ListInitialization=*/false);
2072   }
2073 }
2074 
2075 Parser::DeclGroupPtrTy
ParseAliasDeclarationInInitStatement(DeclaratorContext Context,ParsedAttributes & Attrs)2076 Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context,
2077                                              ParsedAttributes &Attrs) {
2078   assert(Tok.is(tok::kw_using) && "Expected using");
2079   assert((Context == DeclaratorContext::ForInit ||
2080           Context == DeclaratorContext::SelectionInit) &&
2081          "Unexpected Declarator Context");
2082   DeclGroupPtrTy DG;
2083   SourceLocation DeclStart = ConsumeToken(), DeclEnd;
2084 
2085   DG = ParseUsingDeclaration(Context, {}, DeclStart, DeclEnd, Attrs, AS_none);
2086   if (!DG)
2087     return DG;
2088 
2089   Diag(DeclStart, !getLangOpts().CPlusPlus23
2090                       ? diag::ext_alias_in_init_statement
2091                       : diag::warn_cxx20_alias_in_init_statement)
2092       << SourceRange(DeclStart, DeclEnd);
2093 
2094   return DG;
2095 }
2096 
2097 /// ParseCXXCondition - if/switch/while condition expression.
2098 ///
2099 ///       condition:
2100 ///         expression
2101 ///         type-specifier-seq declarator '=' assignment-expression
2102 /// [C++11] type-specifier-seq declarator '=' initializer-clause
2103 /// [C++11] type-specifier-seq declarator braced-init-list
2104 /// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
2105 ///             brace-or-equal-initializer
2106 /// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
2107 ///             '=' assignment-expression
2108 ///
2109 /// In C++1z, a condition may in some contexts be preceded by an
2110 /// optional init-statement. This function will parse that too.
2111 ///
2112 /// \param InitStmt If non-null, an init-statement is permitted, and if present
2113 /// will be parsed and stored here.
2114 ///
2115 /// \param Loc The location of the start of the statement that requires this
2116 /// condition, e.g., the "for" in a for loop.
2117 ///
2118 /// \param MissingOK Whether an empty condition is acceptable here. Otherwise
2119 /// it is considered an error to be recovered from.
2120 ///
2121 /// \param FRI If non-null, a for range declaration is permitted, and if
2122 /// present will be parsed and stored here, and a null result will be returned.
2123 ///
2124 /// \param EnterForConditionScope If true, enter a continue/break scope at the
2125 /// appropriate moment for a 'for' loop.
2126 ///
2127 /// \returns The parsed condition.
2128 Sema::ConditionResult
ParseCXXCondition(StmtResult * InitStmt,SourceLocation Loc,Sema::ConditionKind CK,bool MissingOK,ForRangeInfo * FRI,bool EnterForConditionScope)2129 Parser::ParseCXXCondition(StmtResult *InitStmt, SourceLocation Loc,
2130                           Sema::ConditionKind CK, bool MissingOK,
2131                           ForRangeInfo *FRI, bool EnterForConditionScope) {
2132   // Helper to ensure we always enter a continue/break scope if requested.
2133   struct ForConditionScopeRAII {
2134     Scope *S;
2135     void enter(bool IsConditionVariable) {
2136       if (S) {
2137         S->AddFlags(Scope::BreakScope | Scope::ContinueScope);
2138         S->setIsConditionVarScope(IsConditionVariable);
2139       }
2140     }
2141     ~ForConditionScopeRAII() {
2142       if (S)
2143         S->setIsConditionVarScope(false);
2144     }
2145   } ForConditionScope{EnterForConditionScope ? getCurScope() : nullptr};
2146 
2147   ParenBraceBracketBalancer BalancerRAIIObj(*this);
2148   PreferredType.enterCondition(Actions, Tok.getLocation());
2149 
2150   if (Tok.is(tok::code_completion)) {
2151     cutOffParsing();
2152     Actions.CodeCompletion().CodeCompleteOrdinaryName(
2153         getCurScope(), SemaCodeCompletion::PCC_Condition);
2154     return Sema::ConditionError();
2155   }
2156 
2157   ParsedAttributes attrs(AttrFactory);
2158   MaybeParseCXX11Attributes(attrs);
2159 
2160   const auto WarnOnInit = [this, &CK] {
2161     Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
2162                                 ? diag::warn_cxx14_compat_init_statement
2163                                 : diag::ext_init_statement)
2164         << (CK == Sema::ConditionKind::Switch);
2165   };
2166 
2167   // Determine what kind of thing we have.
2168   switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
2169   case ConditionOrInitStatement::Expression: {
2170     // If this is a for loop, we're entering its condition.
2171     ForConditionScope.enter(/*IsConditionVariable=*/false);
2172 
2173     ProhibitAttributes(attrs);
2174 
2175     // We can have an empty expression here.
2176     //   if (; true);
2177     if (InitStmt && Tok.is(tok::semi)) {
2178       WarnOnInit();
2179       SourceLocation SemiLoc = Tok.getLocation();
2180       if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
2181         Diag(SemiLoc, diag::warn_empty_init_statement)
2182             << (CK == Sema::ConditionKind::Switch)
2183             << FixItHint::CreateRemoval(SemiLoc);
2184       }
2185       ConsumeToken();
2186       *InitStmt = Actions.ActOnNullStmt(SemiLoc);
2187       return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2188     }
2189 
2190     // Parse the expression.
2191     ExprResult Expr = ParseExpression(); // expression
2192     if (Expr.isInvalid())
2193       return Sema::ConditionError();
2194 
2195     if (InitStmt && Tok.is(tok::semi)) {
2196       WarnOnInit();
2197       *InitStmt = Actions.ActOnExprStmt(Expr.get());
2198       ConsumeToken();
2199       return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2200     }
2201 
2202     return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK,
2203                                   MissingOK);
2204   }
2205 
2206   case ConditionOrInitStatement::InitStmtDecl: {
2207     WarnOnInit();
2208     DeclGroupPtrTy DG;
2209     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2210     if (Tok.is(tok::kw_using))
2211       DG = ParseAliasDeclarationInInitStatement(
2212           DeclaratorContext::SelectionInit, attrs);
2213     else {
2214       ParsedAttributes DeclSpecAttrs(AttrFactory);
2215       DG = ParseSimpleDeclaration(DeclaratorContext::SelectionInit, DeclEnd,
2216                                   attrs, DeclSpecAttrs, /*RequireSemi=*/true);
2217     }
2218     *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
2219     return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2220   }
2221 
2222   case ConditionOrInitStatement::ForRangeDecl: {
2223     // This is 'for (init-stmt; for-range-decl : range-expr)'.
2224     // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2225     // permitted here.
2226     assert(FRI && "should not parse a for range declaration here");
2227     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2228     ParsedAttributes DeclSpecAttrs(AttrFactory);
2229     DeclGroupPtrTy DG = ParseSimpleDeclaration(
2230         DeclaratorContext::ForInit, DeclEnd, attrs, DeclSpecAttrs, false, FRI);
2231     FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
2232     return Sema::ConditionResult();
2233   }
2234 
2235   case ConditionOrInitStatement::ConditionDecl:
2236   case ConditionOrInitStatement::Error:
2237     break;
2238   }
2239 
2240   // If this is a for loop, we're entering its condition.
2241   ForConditionScope.enter(/*IsConditionVariable=*/true);
2242 
2243   // type-specifier-seq
2244   DeclSpec DS(AttrFactory);
2245   ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
2246 
2247   // declarator
2248   Declarator DeclaratorInfo(DS, attrs, DeclaratorContext::Condition);
2249   ParseDeclarator(DeclaratorInfo);
2250 
2251   // simple-asm-expr[opt]
2252   if (Tok.is(tok::kw_asm)) {
2253     SourceLocation Loc;
2254     ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2255     if (AsmLabel.isInvalid()) {
2256       SkipUntil(tok::semi, StopAtSemi);
2257       return Sema::ConditionError();
2258     }
2259     DeclaratorInfo.setAsmLabel(AsmLabel.get());
2260     DeclaratorInfo.SetRangeEnd(Loc);
2261   }
2262 
2263   // If attributes are present, parse them.
2264   MaybeParseGNUAttributes(DeclaratorInfo);
2265 
2266   // Type-check the declaration itself.
2267   DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
2268                                                         DeclaratorInfo);
2269   if (Dcl.isInvalid())
2270     return Sema::ConditionError();
2271   Decl *DeclOut = Dcl.get();
2272 
2273   // '=' assignment-expression
2274   // If a '==' or '+=' is found, suggest a fixit to '='.
2275   bool CopyInitialization = isTokenEqualOrEqualTypo();
2276   if (CopyInitialization)
2277     ConsumeToken();
2278 
2279   ExprResult InitExpr = ExprError();
2280   if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2281     Diag(Tok.getLocation(),
2282          diag::warn_cxx98_compat_generalized_initializer_lists);
2283     InitExpr = ParseBraceInitializer();
2284   } else if (CopyInitialization) {
2285     PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2286     InitExpr = ParseAssignmentExpression();
2287   } else if (Tok.is(tok::l_paren)) {
2288     // This was probably an attempt to initialize the variable.
2289     SourceLocation LParen = ConsumeParen(), RParen = LParen;
2290     if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
2291       RParen = ConsumeParen();
2292     Diag(DeclOut->getLocation(),
2293          diag::err_expected_init_in_condition_lparen)
2294       << SourceRange(LParen, RParen);
2295   } else {
2296     Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2297   }
2298 
2299   if (!InitExpr.isInvalid())
2300     Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
2301   else
2302     Actions.ActOnInitializerError(DeclOut);
2303 
2304   Actions.FinalizeDeclaration(DeclOut);
2305   return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
2306 }
2307 
2308 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2309 /// This should only be called when the current token is known to be part of
2310 /// simple-type-specifier.
2311 ///
2312 ///       simple-type-specifier:
2313 ///         '::'[opt] nested-name-specifier[opt] type-name
2314 ///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2315 ///         char
2316 ///         wchar_t
2317 ///         bool
2318 ///         short
2319 ///         int
2320 ///         long
2321 ///         signed
2322 ///         unsigned
2323 ///         float
2324 ///         double
2325 ///         void
2326 /// [GNU]   typeof-specifier
2327 /// [C++0x] auto               [TODO]
2328 ///
2329 ///       type-name:
2330 ///         class-name
2331 ///         enum-name
2332 ///         typedef-name
2333 ///
ParseCXXSimpleTypeSpecifier(DeclSpec & DS)2334 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2335   DS.SetRangeStart(Tok.getLocation());
2336   const char *PrevSpec;
2337   unsigned DiagID;
2338   SourceLocation Loc = Tok.getLocation();
2339   const clang::PrintingPolicy &Policy =
2340       Actions.getASTContext().getPrintingPolicy();
2341 
2342   switch (Tok.getKind()) {
2343   case tok::identifier:   // foo::bar
2344   case tok::coloncolon:   // ::foo::bar
2345     llvm_unreachable("Annotation token should already be formed!");
2346   default:
2347     llvm_unreachable("Not a simple-type-specifier token!");
2348 
2349   // type-name
2350   case tok::annot_typename: {
2351     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2352                        getTypeAnnotation(Tok), Policy);
2353     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2354     ConsumeAnnotationToken();
2355     DS.Finish(Actions, Policy);
2356     return;
2357   }
2358 
2359   case tok::kw__ExtInt:
2360   case tok::kw__BitInt: {
2361     DiagnoseBitIntUse(Tok);
2362     ExprResult ER = ParseExtIntegerArgument();
2363     if (ER.isInvalid())
2364       DS.SetTypeSpecError();
2365     else
2366       DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
2367 
2368     // Do this here because we have already consumed the close paren.
2369     DS.SetRangeEnd(PrevTokLocation);
2370     DS.Finish(Actions, Policy);
2371     return;
2372   }
2373 
2374   // builtin types
2375   case tok::kw_short:
2376     DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
2377                         Policy);
2378     break;
2379   case tok::kw_long:
2380     DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
2381                         Policy);
2382     break;
2383   case tok::kw___int64:
2384     DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
2385                         Policy);
2386     break;
2387   case tok::kw_signed:
2388     DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
2389     break;
2390   case tok::kw_unsigned:
2391     DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
2392     break;
2393   case tok::kw_void:
2394     DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2395     break;
2396   case tok::kw_auto:
2397     DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID, Policy);
2398     break;
2399   case tok::kw_char:
2400     DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2401     break;
2402   case tok::kw_int:
2403     DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2404     break;
2405   case tok::kw___int128:
2406     DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2407     break;
2408   case tok::kw___bf16:
2409     DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
2410     break;
2411   case tok::kw_half:
2412     DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2413     break;
2414   case tok::kw_float:
2415     DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2416     break;
2417   case tok::kw_double:
2418     DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2419     break;
2420   case tok::kw__Float16:
2421     DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2422     break;
2423   case tok::kw___float128:
2424     DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2425     break;
2426   case tok::kw___ibm128:
2427     DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy);
2428     break;
2429   case tok::kw_wchar_t:
2430     DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2431     break;
2432   case tok::kw_char8_t:
2433     DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2434     break;
2435   case tok::kw_char16_t:
2436     DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2437     break;
2438   case tok::kw_char32_t:
2439     DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2440     break;
2441   case tok::kw_bool:
2442     DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2443     break;
2444   case tok::kw__Accum:
2445     DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec, DiagID, Policy);
2446     break;
2447   case tok::kw__Fract:
2448     DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec, DiagID, Policy);
2449     break;
2450   case tok::kw__Sat:
2451     DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
2452     break;
2453 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
2454   case tok::kw_##ImgType##_t:                                                  \
2455     DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID,     \
2456                        Policy);                                                \
2457     break;
2458 #include "clang/Basic/OpenCLImageTypes.def"
2459 
2460   case tok::annot_decltype:
2461   case tok::kw_decltype:
2462     DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2463     return DS.Finish(Actions, Policy);
2464 
2465   case tok::annot_pack_indexing_type:
2466     DS.SetRangeEnd(ParsePackIndexingType(DS));
2467     return DS.Finish(Actions, Policy);
2468 
2469   // GNU typeof support.
2470   case tok::kw_typeof:
2471     ParseTypeofSpecifier(DS);
2472     DS.Finish(Actions, Policy);
2473     return;
2474   }
2475   ConsumeAnyToken();
2476   DS.SetRangeEnd(PrevTokLocation);
2477   DS.Finish(Actions, Policy);
2478 }
2479 
2480 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2481 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
2482 /// e.g., "const short int". Note that the DeclSpec is *not* finished
2483 /// by parsing the type-specifier-seq, because these sequences are
2484 /// typically followed by some form of declarator. Returns true and
2485 /// emits diagnostics if this is not a type-specifier-seq, false
2486 /// otherwise.
2487 ///
2488 ///   type-specifier-seq: [C++ 8.1]
2489 ///     type-specifier type-specifier-seq[opt]
2490 ///
ParseCXXTypeSpecifierSeq(DeclSpec & DS,DeclaratorContext Context)2491 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS, DeclaratorContext Context) {
2492   ParseSpecifierQualifierList(DS, AS_none,
2493                               getDeclSpecContextFromDeclaratorContext(Context));
2494   DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
2495   return false;
2496 }
2497 
2498 /// Finish parsing a C++ unqualified-id that is a template-id of
2499 /// some form.
2500 ///
2501 /// This routine is invoked when a '<' is encountered after an identifier or
2502 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2503 /// whether the unqualified-id is actually a template-id. This routine will
2504 /// then parse the template arguments and form the appropriate template-id to
2505 /// return to the caller.
2506 ///
2507 /// \param SS the nested-name-specifier that precedes this template-id, if
2508 /// we're actually parsing a qualified-id.
2509 ///
2510 /// \param ObjectType if this unqualified-id occurs within a member access
2511 /// expression, the type of the base object whose member is being accessed.
2512 ///
2513 /// \param ObjectHadErrors this unqualified-id occurs within a member access
2514 /// expression, indicates whether the original subexpressions had any errors.
2515 ///
2516 /// \param Name for constructor and destructor names, this is the actual
2517 /// identifier that may be a template-name.
2518 ///
2519 /// \param NameLoc the location of the class-name in a constructor or
2520 /// destructor.
2521 ///
2522 /// \param EnteringContext whether we're entering the scope of the
2523 /// nested-name-specifier.
2524 ///
2525 /// \param Id as input, describes the template-name or operator-function-id
2526 /// that precedes the '<'. If template arguments were parsed successfully,
2527 /// will be updated with the template-id.
2528 ///
2529 /// \param AssumeTemplateId When true, this routine will assume that the name
2530 /// refers to a template without performing name lookup to verify.
2531 ///
2532 /// \returns true if a parse error occurred, false otherwise.
ParseUnqualifiedIdTemplateId(CXXScopeSpec & SS,ParsedType ObjectType,bool ObjectHadErrors,SourceLocation TemplateKWLoc,IdentifierInfo * Name,SourceLocation NameLoc,bool EnteringContext,UnqualifiedId & Id,bool AssumeTemplateId)2533 bool Parser::ParseUnqualifiedIdTemplateId(
2534     CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
2535     SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
2536     bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
2537   assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
2538 
2539   TemplateTy Template;
2540   TemplateNameKind TNK = TNK_Non_template;
2541   switch (Id.getKind()) {
2542   case UnqualifiedIdKind::IK_Identifier:
2543   case UnqualifiedIdKind::IK_OperatorFunctionId:
2544   case UnqualifiedIdKind::IK_LiteralOperatorId:
2545     if (AssumeTemplateId) {
2546       // We defer the injected-class-name checks until we've found whether
2547       // this template-id is used to form a nested-name-specifier or not.
2548       TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
2549                                       ObjectType, EnteringContext, Template,
2550                                       /*AllowInjectedClassName*/ true);
2551     } else {
2552       bool MemberOfUnknownSpecialization;
2553       TNK = Actions.isTemplateName(getCurScope(), SS,
2554                                    TemplateKWLoc.isValid(), Id,
2555                                    ObjectType, EnteringContext, Template,
2556                                    MemberOfUnknownSpecialization);
2557       // If lookup found nothing but we're assuming that this is a template
2558       // name, double-check that makes sense syntactically before committing
2559       // to it.
2560       if (TNK == TNK_Undeclared_template &&
2561           isTemplateArgumentList(0) == TPResult::False)
2562         return false;
2563 
2564       if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2565           ObjectType && isTemplateArgumentList(0) == TPResult::True) {
2566         // If we had errors before, ObjectType can be dependent even without any
2567         // templates, do not report missing template keyword in that case.
2568         if (!ObjectHadErrors) {
2569           // We have something like t->getAs<T>(), where getAs is a
2570           // member of an unknown specialization. However, this will only
2571           // parse correctly as a template, so suggest the keyword 'template'
2572           // before 'getAs' and treat this as a dependent template name.
2573           std::string Name;
2574           if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
2575             Name = std::string(Id.Identifier->getName());
2576           else {
2577             Name = "operator ";
2578             if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
2579               Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2580             else
2581               Name += Id.Identifier->getName();
2582           }
2583           Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2584               << Name
2585               << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2586         }
2587         TNK = Actions.ActOnTemplateName(
2588             getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2589             Template, /*AllowInjectedClassName*/ true);
2590       } else if (TNK == TNK_Non_template) {
2591         return false;
2592       }
2593     }
2594     break;
2595 
2596   case UnqualifiedIdKind::IK_ConstructorName: {
2597     UnqualifiedId TemplateName;
2598     bool MemberOfUnknownSpecialization;
2599     TemplateName.setIdentifier(Name, NameLoc);
2600     TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2601                                  TemplateName, ObjectType,
2602                                  EnteringContext, Template,
2603                                  MemberOfUnknownSpecialization);
2604     if (TNK == TNK_Non_template)
2605       return false;
2606     break;
2607   }
2608 
2609   case UnqualifiedIdKind::IK_DestructorName: {
2610     UnqualifiedId TemplateName;
2611     bool MemberOfUnknownSpecialization;
2612     TemplateName.setIdentifier(Name, NameLoc);
2613     if (ObjectType) {
2614       TNK = Actions.ActOnTemplateName(
2615           getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
2616           EnteringContext, Template, /*AllowInjectedClassName*/ true);
2617     } else {
2618       TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2619                                    TemplateName, ObjectType,
2620                                    EnteringContext, Template,
2621                                    MemberOfUnknownSpecialization);
2622 
2623       if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2624         Diag(NameLoc, diag::err_destructor_template_id)
2625           << Name << SS.getRange();
2626         // Carry on to parse the template arguments before bailing out.
2627       }
2628     }
2629     break;
2630   }
2631 
2632   default:
2633     return false;
2634   }
2635 
2636   // Parse the enclosed template argument list.
2637   SourceLocation LAngleLoc, RAngleLoc;
2638   TemplateArgList TemplateArgs;
2639   if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs, RAngleLoc,
2640                                        Template))
2641     return true;
2642 
2643   // If this is a non-template, we already issued a diagnostic.
2644   if (TNK == TNK_Non_template)
2645     return true;
2646 
2647   if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
2648       Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2649       Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
2650     // Form a parsed representation of the template-id to be stored in the
2651     // UnqualifiedId.
2652 
2653     // FIXME: Store name for literal operator too.
2654     const IdentifierInfo *TemplateII =
2655         Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
2656                                                          : nullptr;
2657     OverloadedOperatorKind OpKind =
2658         Id.getKind() == UnqualifiedIdKind::IK_Identifier
2659             ? OO_None
2660             : Id.OperatorFunctionId.Operator;
2661 
2662     TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
2663         TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
2664         LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
2665 
2666     Id.setTemplateId(TemplateId);
2667     return false;
2668   }
2669 
2670   // Bundle the template arguments together.
2671   ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2672 
2673   // Constructor and destructor names.
2674   TypeResult Type = Actions.ActOnTemplateIdType(
2675       getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
2676       TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2677   if (Type.isInvalid())
2678     return true;
2679 
2680   if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
2681     Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2682   else
2683     Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2684 
2685   return false;
2686 }
2687 
2688 /// Parse an operator-function-id or conversion-function-id as part
2689 /// of a C++ unqualified-id.
2690 ///
2691 /// This routine is responsible only for parsing the operator-function-id or
2692 /// conversion-function-id; it does not handle template arguments in any way.
2693 ///
2694 /// \code
2695 ///       operator-function-id: [C++ 13.5]
2696 ///         'operator' operator
2697 ///
2698 ///       operator: one of
2699 ///            new   delete  new[]   delete[]
2700 ///            +     -    *  /    %  ^    &   |   ~
2701 ///            !     =    <  >    += -=   *=  /=  %=
2702 ///            ^=    &=   |= <<   >> >>= <<=  ==  !=
2703 ///            <=    >=   && ||   ++ --   ,   ->* ->
2704 ///            ()    []   <=>
2705 ///
2706 ///       conversion-function-id: [C++ 12.3.2]
2707 ///         operator conversion-type-id
2708 ///
2709 ///       conversion-type-id:
2710 ///         type-specifier-seq conversion-declarator[opt]
2711 ///
2712 ///       conversion-declarator:
2713 ///         ptr-operator conversion-declarator[opt]
2714 /// \endcode
2715 ///
2716 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2717 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2718 ///
2719 /// \param EnteringContext whether we are entering the scope of the
2720 /// nested-name-specifier.
2721 ///
2722 /// \param ObjectType if this unqualified-id occurs within a member access
2723 /// expression, the type of the base object whose member is being accessed.
2724 ///
2725 /// \param Result on a successful parse, contains the parsed unqualified-id.
2726 ///
2727 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedIdOperator(CXXScopeSpec & SS,bool EnteringContext,ParsedType ObjectType,UnqualifiedId & Result)2728 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2729                                         ParsedType ObjectType,
2730                                         UnqualifiedId &Result) {
2731   assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2732 
2733   // Consume the 'operator' keyword.
2734   SourceLocation KeywordLoc = ConsumeToken();
2735 
2736   // Determine what kind of operator name we have.
2737   unsigned SymbolIdx = 0;
2738   SourceLocation SymbolLocations[3];
2739   OverloadedOperatorKind Op = OO_None;
2740   switch (Tok.getKind()) {
2741     case tok::kw_new:
2742     case tok::kw_delete: {
2743       bool isNew = Tok.getKind() == tok::kw_new;
2744       // Consume the 'new' or 'delete'.
2745       SymbolLocations[SymbolIdx++] = ConsumeToken();
2746       // Check for array new/delete.
2747       if (Tok.is(tok::l_square) &&
2748           (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2749         // Consume the '[' and ']'.
2750         BalancedDelimiterTracker T(*this, tok::l_square);
2751         T.consumeOpen();
2752         T.consumeClose();
2753         if (T.getCloseLocation().isInvalid())
2754           return true;
2755 
2756         SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2757         SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2758         Op = isNew? OO_Array_New : OO_Array_Delete;
2759       } else {
2760         Op = isNew? OO_New : OO_Delete;
2761       }
2762       break;
2763     }
2764 
2765 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2766     case tok::Token:                                                     \
2767       SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
2768       Op = OO_##Name;                                                    \
2769       break;
2770 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2771 #include "clang/Basic/OperatorKinds.def"
2772 
2773     case tok::l_paren: {
2774       // Consume the '(' and ')'.
2775       BalancedDelimiterTracker T(*this, tok::l_paren);
2776       T.consumeOpen();
2777       T.consumeClose();
2778       if (T.getCloseLocation().isInvalid())
2779         return true;
2780 
2781       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2782       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2783       Op = OO_Call;
2784       break;
2785     }
2786 
2787     case tok::l_square: {
2788       // Consume the '[' and ']'.
2789       BalancedDelimiterTracker T(*this, tok::l_square);
2790       T.consumeOpen();
2791       T.consumeClose();
2792       if (T.getCloseLocation().isInvalid())
2793         return true;
2794 
2795       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2796       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2797       Op = OO_Subscript;
2798       break;
2799     }
2800 
2801     case tok::code_completion: {
2802       // Don't try to parse any further.
2803       cutOffParsing();
2804       // Code completion for the operator name.
2805       Actions.CodeCompletion().CodeCompleteOperatorName(getCurScope());
2806       return true;
2807     }
2808 
2809     default:
2810       break;
2811   }
2812 
2813   if (Op != OO_None) {
2814     // We have parsed an operator-function-id.
2815     Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2816     return false;
2817   }
2818 
2819   // Parse a literal-operator-id.
2820   //
2821   //   literal-operator-id: C++11 [over.literal]
2822   //     operator string-literal identifier
2823   //     operator user-defined-string-literal
2824 
2825   if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2826     Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2827 
2828     SourceLocation DiagLoc;
2829     unsigned DiagId = 0;
2830 
2831     // We're past translation phase 6, so perform string literal concatenation
2832     // before checking for "".
2833     SmallVector<Token, 4> Toks;
2834     SmallVector<SourceLocation, 4> TokLocs;
2835     while (isTokenStringLiteral()) {
2836       if (!Tok.is(tok::string_literal) && !DiagId) {
2837         // C++11 [over.literal]p1:
2838         //   The string-literal or user-defined-string-literal in a
2839         //   literal-operator-id shall have no encoding-prefix [...].
2840         DiagLoc = Tok.getLocation();
2841         DiagId = diag::err_literal_operator_string_prefix;
2842       }
2843       Toks.push_back(Tok);
2844       TokLocs.push_back(ConsumeStringToken());
2845     }
2846 
2847     StringLiteralParser Literal(Toks, PP);
2848     if (Literal.hadError)
2849       return true;
2850 
2851     // Grab the literal operator's suffix, which will be either the next token
2852     // or a ud-suffix from the string literal.
2853     bool IsUDSuffix = !Literal.getUDSuffix().empty();
2854     IdentifierInfo *II = nullptr;
2855     SourceLocation SuffixLoc;
2856     if (IsUDSuffix) {
2857       II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2858       SuffixLoc =
2859         Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2860                                        Literal.getUDSuffixOffset(),
2861                                        PP.getSourceManager(), getLangOpts());
2862     } else if (Tok.is(tok::identifier)) {
2863       II = Tok.getIdentifierInfo();
2864       SuffixLoc = ConsumeToken();
2865       TokLocs.push_back(SuffixLoc);
2866     } else {
2867       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2868       return true;
2869     }
2870 
2871     // The string literal must be empty.
2872     if (!Literal.GetString().empty() || Literal.Pascal) {
2873       // C++11 [over.literal]p1:
2874       //   The string-literal or user-defined-string-literal in a
2875       //   literal-operator-id shall [...] contain no characters
2876       //   other than the implicit terminating '\0'.
2877       DiagLoc = TokLocs.front();
2878       DiagId = diag::err_literal_operator_string_not_empty;
2879     }
2880 
2881     if (DiagId) {
2882       // This isn't a valid literal-operator-id, but we think we know
2883       // what the user meant. Tell them what they should have written.
2884       SmallString<32> Str;
2885       Str += "\"\"";
2886       Str += II->getName();
2887       Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2888           SourceRange(TokLocs.front(), TokLocs.back()), Str);
2889     }
2890 
2891     Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2892 
2893     return Actions.checkLiteralOperatorId(SS, Result, IsUDSuffix);
2894   }
2895 
2896   // Parse a conversion-function-id.
2897   //
2898   //   conversion-function-id: [C++ 12.3.2]
2899   //     operator conversion-type-id
2900   //
2901   //   conversion-type-id:
2902   //     type-specifier-seq conversion-declarator[opt]
2903   //
2904   //   conversion-declarator:
2905   //     ptr-operator conversion-declarator[opt]
2906 
2907   // Parse the type-specifier-seq.
2908   DeclSpec DS(AttrFactory);
2909   if (ParseCXXTypeSpecifierSeq(
2910           DS, DeclaratorContext::ConversionId)) // FIXME: ObjectType?
2911     return true;
2912 
2913   // Parse the conversion-declarator, which is merely a sequence of
2914   // ptr-operators.
2915   Declarator D(DS, ParsedAttributesView::none(),
2916                DeclaratorContext::ConversionId);
2917   ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2918 
2919   // Finish up the type.
2920   TypeResult Ty = Actions.ActOnTypeName(D);
2921   if (Ty.isInvalid())
2922     return true;
2923 
2924   // Note that this is a conversion-function-id.
2925   Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2926                                  D.getSourceRange().getEnd());
2927   return false;
2928 }
2929 
2930 /// Parse a C++ unqualified-id (or a C identifier), which describes the
2931 /// name of an entity.
2932 ///
2933 /// \code
2934 ///       unqualified-id: [C++ expr.prim.general]
2935 ///         identifier
2936 ///         operator-function-id
2937 ///         conversion-function-id
2938 /// [C++0x] literal-operator-id [TODO]
2939 ///         ~ class-name
2940 ///         template-id
2941 ///
2942 /// \endcode
2943 ///
2944 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2945 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2946 ///
2947 /// \param ObjectType if this unqualified-id occurs within a member access
2948 /// expression, the type of the base object whose member is being accessed.
2949 ///
2950 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
2951 /// expression, indicates whether the original subexpressions had any errors.
2952 /// When true, diagnostics for missing 'template' keyword will be supressed.
2953 ///
2954 /// \param EnteringContext whether we are entering the scope of the
2955 /// nested-name-specifier.
2956 ///
2957 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2958 ///
2959 /// \param AllowConstructorName whether we allow parsing a constructor name.
2960 ///
2961 /// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2962 ///
2963 /// \param Result on a successful parse, contains the parsed unqualified-id.
2964 ///
2965 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedId(CXXScopeSpec & SS,ParsedType ObjectType,bool ObjectHadErrors,bool EnteringContext,bool AllowDestructorName,bool AllowConstructorName,bool AllowDeductionGuide,SourceLocation * TemplateKWLoc,UnqualifiedId & Result)2966 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
2967                                 bool ObjectHadErrors, bool EnteringContext,
2968                                 bool AllowDestructorName,
2969                                 bool AllowConstructorName,
2970                                 bool AllowDeductionGuide,
2971                                 SourceLocation *TemplateKWLoc,
2972                                 UnqualifiedId &Result) {
2973   if (TemplateKWLoc)
2974     *TemplateKWLoc = SourceLocation();
2975 
2976   // Handle 'A::template B'. This is for template-ids which have not
2977   // already been annotated by ParseOptionalCXXScopeSpecifier().
2978   bool TemplateSpecified = false;
2979   if (Tok.is(tok::kw_template)) {
2980     if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2981       TemplateSpecified = true;
2982       *TemplateKWLoc = ConsumeToken();
2983     } else {
2984       SourceLocation TemplateLoc = ConsumeToken();
2985       Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2986         << FixItHint::CreateRemoval(TemplateLoc);
2987     }
2988   }
2989 
2990   // unqualified-id:
2991   //   identifier
2992   //   template-id (when it hasn't already been annotated)
2993   if (Tok.is(tok::identifier)) {
2994   ParseIdentifier:
2995     // Consume the identifier.
2996     IdentifierInfo *Id = Tok.getIdentifierInfo();
2997     SourceLocation IdLoc = ConsumeToken();
2998 
2999     if (!getLangOpts().CPlusPlus) {
3000       // If we're not in C++, only identifiers matter. Record the
3001       // identifier and return.
3002       Result.setIdentifier(Id, IdLoc);
3003       return false;
3004     }
3005 
3006     ParsedTemplateTy TemplateName;
3007     if (AllowConstructorName &&
3008         Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
3009       // We have parsed a constructor name.
3010       ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
3011                                                  EnteringContext);
3012       if (!Ty)
3013         return true;
3014       Result.setConstructorName(Ty, IdLoc, IdLoc);
3015     } else if (getLangOpts().CPlusPlus17 && AllowDeductionGuide &&
3016                SS.isEmpty() &&
3017                Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc, SS,
3018                                             &TemplateName)) {
3019       // We have parsed a template-name naming a deduction guide.
3020       Result.setDeductionGuideName(TemplateName, IdLoc);
3021     } else {
3022       // We have parsed an identifier.
3023       Result.setIdentifier(Id, IdLoc);
3024     }
3025 
3026     // If the next token is a '<', we may have a template.
3027     TemplateTy Template;
3028     if (Tok.is(tok::less))
3029       return ParseUnqualifiedIdTemplateId(
3030           SS, ObjectType, ObjectHadErrors,
3031           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
3032           EnteringContext, Result, TemplateSpecified);
3033 
3034     if (TemplateSpecified) {
3035       TemplateNameKind TNK =
3036           Actions.ActOnTemplateName(getCurScope(), SS, *TemplateKWLoc, Result,
3037                                     ObjectType, EnteringContext, Template,
3038                                     /*AllowInjectedClassName=*/true);
3039       if (TNK == TNK_Non_template)
3040         return true;
3041 
3042       // C++2c [tem.names]p6
3043       // A name prefixed by the keyword template shall be followed by a template
3044       // argument list or refer to a class template or an alias template.
3045       if ((TNK == TNK_Function_template || TNK == TNK_Dependent_template_name ||
3046            TNK == TNK_Var_template) &&
3047           !Tok.is(tok::less))
3048         Diag(IdLoc, diag::missing_template_arg_list_after_template_kw);
3049     }
3050     return false;
3051   }
3052 
3053   // unqualified-id:
3054   //   template-id (already parsed and annotated)
3055   if (Tok.is(tok::annot_template_id)) {
3056     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
3057 
3058     // FIXME: Consider passing invalid template-ids on to callers; they may
3059     // be able to recover better than we can.
3060     if (TemplateId->isInvalid()) {
3061       ConsumeAnnotationToken();
3062       return true;
3063     }
3064 
3065     // If the template-name names the current class, then this is a constructor
3066     if (AllowConstructorName && TemplateId->Name &&
3067         Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
3068       if (SS.isSet()) {
3069         // C++ [class.qual]p2 specifies that a qualified template-name
3070         // is taken as the constructor name where a constructor can be
3071         // declared. Thus, the template arguments are extraneous, so
3072         // complain about them and remove them entirely.
3073         Diag(TemplateId->TemplateNameLoc,
3074              diag::err_out_of_line_constructor_template_id)
3075           << TemplateId->Name
3076           << FixItHint::CreateRemoval(
3077                     SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
3078         ParsedType Ty = Actions.getConstructorName(
3079             *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
3080             EnteringContext);
3081         if (!Ty)
3082           return true;
3083         Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
3084                                   TemplateId->RAngleLoc);
3085         ConsumeAnnotationToken();
3086         return false;
3087       }
3088 
3089       Result.setConstructorTemplateId(TemplateId);
3090       ConsumeAnnotationToken();
3091       return false;
3092     }
3093 
3094     // We have already parsed a template-id; consume the annotation token as
3095     // our unqualified-id.
3096     Result.setTemplateId(TemplateId);
3097     SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
3098     if (TemplateLoc.isValid()) {
3099       if (TemplateKWLoc && (ObjectType || SS.isSet()))
3100         *TemplateKWLoc = TemplateLoc;
3101       else
3102         Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
3103             << FixItHint::CreateRemoval(TemplateLoc);
3104     }
3105     ConsumeAnnotationToken();
3106     return false;
3107   }
3108 
3109   // unqualified-id:
3110   //   operator-function-id
3111   //   conversion-function-id
3112   if (Tok.is(tok::kw_operator)) {
3113     if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
3114       return true;
3115 
3116     // If we have an operator-function-id or a literal-operator-id and the next
3117     // token is a '<', we may have a
3118     //
3119     //   template-id:
3120     //     operator-function-id < template-argument-list[opt] >
3121     TemplateTy Template;
3122     if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
3123          Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
3124         Tok.is(tok::less))
3125       return ParseUnqualifiedIdTemplateId(
3126           SS, ObjectType, ObjectHadErrors,
3127           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
3128           SourceLocation(), EnteringContext, Result, TemplateSpecified);
3129     else if (TemplateSpecified &&
3130              Actions.ActOnTemplateName(
3131                  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
3132                  EnteringContext, Template,
3133                  /*AllowInjectedClassName*/ true) == TNK_Non_template)
3134       return true;
3135 
3136     return false;
3137   }
3138 
3139   if (getLangOpts().CPlusPlus &&
3140       (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
3141     // C++ [expr.unary.op]p10:
3142     //   There is an ambiguity in the unary-expression ~X(), where X is a
3143     //   class-name. The ambiguity is resolved in favor of treating ~ as a
3144     //    unary complement rather than treating ~X as referring to a destructor.
3145 
3146     // Parse the '~'.
3147     SourceLocation TildeLoc = ConsumeToken();
3148 
3149     if (TemplateSpecified) {
3150       // C++ [temp.names]p3:
3151       //   A name prefixed by the keyword template shall be a template-id [...]
3152       //
3153       // A template-id cannot begin with a '~' token. This would never work
3154       // anyway: x.~A<int>() would specify that the destructor is a template,
3155       // not that 'A' is a template.
3156       //
3157       // FIXME: Suggest replacing the attempted destructor name with a correct
3158       // destructor name and recover. (This is not trivial if this would become
3159       // a pseudo-destructor name).
3160       Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
3161         << Tok.getLocation();
3162       return true;
3163     }
3164 
3165     if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
3166       DeclSpec DS(AttrFactory);
3167       SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
3168       if (ParsedType Type =
3169               Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
3170         Result.setDestructorName(TildeLoc, Type, EndLoc);
3171         return false;
3172       }
3173       return true;
3174     }
3175 
3176     // Parse the class-name.
3177     if (Tok.isNot(tok::identifier)) {
3178       Diag(Tok, diag::err_destructor_tilde_identifier);
3179       return true;
3180     }
3181 
3182     // If the user wrote ~T::T, correct it to T::~T.
3183     DeclaratorScopeObj DeclScopeObj(*this, SS);
3184     if (NextToken().is(tok::coloncolon)) {
3185       // Don't let ParseOptionalCXXScopeSpecifier() "correct"
3186       // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
3187       // it will confuse this recovery logic.
3188       ColonProtectionRAIIObject ColonRAII(*this, false);
3189 
3190       if (SS.isSet()) {
3191         AnnotateScopeToken(SS, /*NewAnnotation*/true);
3192         SS.clear();
3193       }
3194       if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
3195                                          EnteringContext))
3196         return true;
3197       if (SS.isNotEmpty())
3198         ObjectType = nullptr;
3199       if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
3200           !SS.isSet()) {
3201         Diag(TildeLoc, diag::err_destructor_tilde_scope);
3202         return true;
3203       }
3204 
3205       // Recover as if the tilde had been written before the identifier.
3206       Diag(TildeLoc, diag::err_destructor_tilde_scope)
3207         << FixItHint::CreateRemoval(TildeLoc)
3208         << FixItHint::CreateInsertion(Tok.getLocation(), "~");
3209 
3210       // Temporarily enter the scope for the rest of this function.
3211       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3212         DeclScopeObj.EnterDeclaratorScope();
3213     }
3214 
3215     // Parse the class-name (or template-name in a simple-template-id).
3216     IdentifierInfo *ClassName = Tok.getIdentifierInfo();
3217     SourceLocation ClassNameLoc = ConsumeToken();
3218 
3219     if (Tok.is(tok::less)) {
3220       Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
3221       return ParseUnqualifiedIdTemplateId(
3222           SS, ObjectType, ObjectHadErrors,
3223           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
3224           ClassNameLoc, EnteringContext, Result, TemplateSpecified);
3225     }
3226 
3227     // Note that this is a destructor name.
3228     ParsedType Ty =
3229         Actions.getDestructorName(*ClassName, ClassNameLoc, getCurScope(), SS,
3230                                   ObjectType, EnteringContext);
3231     if (!Ty)
3232       return true;
3233 
3234     Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
3235     return false;
3236   }
3237 
3238   switch (Tok.getKind()) {
3239 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
3240 #include "clang/Basic/TransformTypeTraits.def"
3241     if (!NextToken().is(tok::l_paren)) {
3242       Tok.setKind(tok::identifier);
3243       Diag(Tok, diag::ext_keyword_as_ident)
3244           << Tok.getIdentifierInfo()->getName() << 0;
3245       goto ParseIdentifier;
3246     }
3247     [[fallthrough]];
3248   default:
3249     Diag(Tok, diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus;
3250     return true;
3251   }
3252 }
3253 
3254 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3255 /// memory in a typesafe manner and call constructors.
3256 ///
3257 /// This method is called to parse the new expression after the optional :: has
3258 /// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
3259 /// is its location.  Otherwise, "Start" is the location of the 'new' token.
3260 ///
3261 ///        new-expression:
3262 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
3263 ///                                     new-initializer[opt]
3264 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3265 ///                                     new-initializer[opt]
3266 ///
3267 ///        new-placement:
3268 ///                   '(' expression-list ')'
3269 ///
3270 ///        new-type-id:
3271 ///                   type-specifier-seq new-declarator[opt]
3272 /// [GNU]             attributes type-specifier-seq new-declarator[opt]
3273 ///
3274 ///        new-declarator:
3275 ///                   ptr-operator new-declarator[opt]
3276 ///                   direct-new-declarator
3277 ///
3278 ///        new-initializer:
3279 ///                   '(' expression-list[opt] ')'
3280 /// [C++0x]           braced-init-list
3281 ///
3282 ExprResult
ParseCXXNewExpression(bool UseGlobal,SourceLocation Start)3283 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
3284   assert(Tok.is(tok::kw_new) && "expected 'new' token");
3285   ConsumeToken();   // Consume 'new'
3286 
3287   // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3288   // second form of new-expression. It can't be a new-type-id.
3289 
3290   ExprVector PlacementArgs;
3291   SourceLocation PlacementLParen, PlacementRParen;
3292 
3293   SourceRange TypeIdParens;
3294   DeclSpec DS(AttrFactory);
3295   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3296                             DeclaratorContext::CXXNew);
3297   if (Tok.is(tok::l_paren)) {
3298     // If it turns out to be a placement, we change the type location.
3299     BalancedDelimiterTracker T(*this, tok::l_paren);
3300     T.consumeOpen();
3301     PlacementLParen = T.getOpenLocation();
3302     if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
3303       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3304       return ExprError();
3305     }
3306 
3307     T.consumeClose();
3308     PlacementRParen = T.getCloseLocation();
3309     if (PlacementRParen.isInvalid()) {
3310       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3311       return ExprError();
3312     }
3313 
3314     if (PlacementArgs.empty()) {
3315       // Reset the placement locations. There was no placement.
3316       TypeIdParens = T.getRange();
3317       PlacementLParen = PlacementRParen = SourceLocation();
3318     } else {
3319       // We still need the type.
3320       if (Tok.is(tok::l_paren)) {
3321         BalancedDelimiterTracker T(*this, tok::l_paren);
3322         T.consumeOpen();
3323         MaybeParseGNUAttributes(DeclaratorInfo);
3324         ParseSpecifierQualifierList(DS);
3325         DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3326         ParseDeclarator(DeclaratorInfo);
3327         T.consumeClose();
3328         TypeIdParens = T.getRange();
3329       } else {
3330         MaybeParseGNUAttributes(DeclaratorInfo);
3331         if (ParseCXXTypeSpecifierSeq(DS))
3332           DeclaratorInfo.setInvalidType(true);
3333         else {
3334           DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3335           ParseDeclaratorInternal(DeclaratorInfo,
3336                                   &Parser::ParseDirectNewDeclarator);
3337         }
3338       }
3339     }
3340   } else {
3341     // A new-type-id is a simplified type-id, where essentially the
3342     // direct-declarator is replaced by a direct-new-declarator.
3343     MaybeParseGNUAttributes(DeclaratorInfo);
3344     if (ParseCXXTypeSpecifierSeq(DS, DeclaratorContext::CXXNew))
3345       DeclaratorInfo.setInvalidType(true);
3346     else {
3347       DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3348       ParseDeclaratorInternal(DeclaratorInfo,
3349                               &Parser::ParseDirectNewDeclarator);
3350     }
3351   }
3352   if (DeclaratorInfo.isInvalidType()) {
3353     SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3354     return ExprError();
3355   }
3356 
3357   ExprResult Initializer;
3358 
3359   if (Tok.is(tok::l_paren)) {
3360     SourceLocation ConstructorLParen, ConstructorRParen;
3361     ExprVector ConstructorArgs;
3362     BalancedDelimiterTracker T(*this, tok::l_paren);
3363     T.consumeOpen();
3364     ConstructorLParen = T.getOpenLocation();
3365     if (Tok.isNot(tok::r_paren)) {
3366       auto RunSignatureHelp = [&]() {
3367         ParsedType TypeRep = Actions.ActOnTypeName(DeclaratorInfo).get();
3368         QualType PreferredType;
3369         // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3370         // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3371         // `new decltype(invalid) (^)`.
3372         if (TypeRep)
3373           PreferredType =
3374               Actions.CodeCompletion().ProduceConstructorSignatureHelp(
3375                   TypeRep.get()->getCanonicalTypeInternal(),
3376                   DeclaratorInfo.getEndLoc(), ConstructorArgs,
3377                   ConstructorLParen,
3378                   /*Braced=*/false);
3379         CalledSignatureHelp = true;
3380         return PreferredType;
3381       };
3382       if (ParseExpressionList(ConstructorArgs, [&] {
3383             PreferredType.enterFunctionArgument(Tok.getLocation(),
3384                                                 RunSignatureHelp);
3385           })) {
3386         if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3387           RunSignatureHelp();
3388         SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3389         return ExprError();
3390       }
3391     }
3392     T.consumeClose();
3393     ConstructorRParen = T.getCloseLocation();
3394     if (ConstructorRParen.isInvalid()) {
3395       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3396       return ExprError();
3397     }
3398     Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
3399                                              ConstructorRParen,
3400                                              ConstructorArgs);
3401   } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
3402     Diag(Tok.getLocation(),
3403          diag::warn_cxx98_compat_generalized_initializer_lists);
3404     Initializer = ParseBraceInitializer();
3405   }
3406   if (Initializer.isInvalid())
3407     return Initializer;
3408 
3409   return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
3410                              PlacementArgs, PlacementRParen,
3411                              TypeIdParens, DeclaratorInfo, Initializer.get());
3412 }
3413 
3414 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3415 /// passed to ParseDeclaratorInternal.
3416 ///
3417 ///        direct-new-declarator:
3418 ///                   '[' expression[opt] ']'
3419 ///                   direct-new-declarator '[' constant-expression ']'
3420 ///
ParseDirectNewDeclarator(Declarator & D)3421 void Parser::ParseDirectNewDeclarator(Declarator &D) {
3422   // Parse the array dimensions.
3423   bool First = true;
3424   while (Tok.is(tok::l_square)) {
3425     // An array-size expression can't start with a lambda.
3426     if (CheckProhibitedCXX11Attribute())
3427       continue;
3428 
3429     BalancedDelimiterTracker T(*this, tok::l_square);
3430     T.consumeOpen();
3431 
3432     ExprResult Size =
3433         First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
3434               : ParseConstantExpression();
3435     if (Size.isInvalid()) {
3436       // Recover
3437       SkipUntil(tok::r_square, StopAtSemi);
3438       return;
3439     }
3440     First = false;
3441 
3442     T.consumeClose();
3443 
3444     // Attributes here appertain to the array type. C++11 [expr.new]p5.
3445     ParsedAttributes Attrs(AttrFactory);
3446     MaybeParseCXX11Attributes(Attrs);
3447 
3448     D.AddTypeInfo(DeclaratorChunk::getArray(0,
3449                                             /*isStatic=*/false, /*isStar=*/false,
3450                                             Size.get(), T.getOpenLocation(),
3451                                             T.getCloseLocation()),
3452                   std::move(Attrs), T.getCloseLocation());
3453 
3454     if (T.getCloseLocation().isInvalid())
3455       return;
3456   }
3457 }
3458 
3459 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3460 /// This ambiguity appears in the syntax of the C++ new operator.
3461 ///
3462 ///        new-expression:
3463 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3464 ///                                     new-initializer[opt]
3465 ///
3466 ///        new-placement:
3467 ///                   '(' expression-list ')'
3468 ///
ParseExpressionListOrTypeId(SmallVectorImpl<Expr * > & PlacementArgs,Declarator & D)3469 bool Parser::ParseExpressionListOrTypeId(
3470                                    SmallVectorImpl<Expr*> &PlacementArgs,
3471                                          Declarator &D) {
3472   // The '(' was already consumed.
3473   if (isTypeIdInParens()) {
3474     ParseSpecifierQualifierList(D.getMutableDeclSpec());
3475     D.SetSourceRange(D.getDeclSpec().getSourceRange());
3476     ParseDeclarator(D);
3477     return D.isInvalidType();
3478   }
3479 
3480   // It's not a type, it has to be an expression list.
3481   return ParseExpressionList(PlacementArgs);
3482 }
3483 
3484 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3485 /// to free memory allocated by new.
3486 ///
3487 /// This method is called to parse the 'delete' expression after the optional
3488 /// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
3489 /// and "Start" is its location.  Otherwise, "Start" is the location of the
3490 /// 'delete' token.
3491 ///
3492 ///        delete-expression:
3493 ///                   '::'[opt] 'delete' cast-expression
3494 ///                   '::'[opt] 'delete' '[' ']' cast-expression
3495 ExprResult
ParseCXXDeleteExpression(bool UseGlobal,SourceLocation Start)3496 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3497   assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
3498   ConsumeToken(); // Consume 'delete'
3499 
3500   // Array delete?
3501   bool ArrayDelete = false;
3502   if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
3503     // C++11 [expr.delete]p1:
3504     //   Whenever the delete keyword is followed by empty square brackets, it
3505     //   shall be interpreted as [array delete].
3506     //   [Footnote: A lambda expression with a lambda-introducer that consists
3507     //              of empty square brackets can follow the delete keyword if
3508     //              the lambda expression is enclosed in parentheses.]
3509 
3510     const Token Next = GetLookAheadToken(2);
3511 
3512     // Basic lookahead to check if we have a lambda expression.
3513     if (Next.isOneOf(tok::l_brace, tok::less) ||
3514         (Next.is(tok::l_paren) &&
3515          (GetLookAheadToken(3).is(tok::r_paren) ||
3516           (GetLookAheadToken(3).is(tok::identifier) &&
3517            GetLookAheadToken(4).is(tok::identifier))))) {
3518       TentativeParsingAction TPA(*this);
3519       SourceLocation LSquareLoc = Tok.getLocation();
3520       SourceLocation RSquareLoc = NextToken().getLocation();
3521 
3522       // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3523       // case.
3524       SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
3525       SourceLocation RBraceLoc;
3526       bool EmitFixIt = false;
3527       if (Tok.is(tok::l_brace)) {
3528         ConsumeBrace();
3529         SkipUntil(tok::r_brace, StopBeforeMatch);
3530         RBraceLoc = Tok.getLocation();
3531         EmitFixIt = true;
3532       }
3533 
3534       TPA.Revert();
3535 
3536       if (EmitFixIt)
3537         Diag(Start, diag::err_lambda_after_delete)
3538             << SourceRange(Start, RSquareLoc)
3539             << FixItHint::CreateInsertion(LSquareLoc, "(")
3540             << FixItHint::CreateInsertion(
3541                    Lexer::getLocForEndOfToken(
3542                        RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3543                    ")");
3544       else
3545         Diag(Start, diag::err_lambda_after_delete)
3546             << SourceRange(Start, RSquareLoc);
3547 
3548       // Warn that the non-capturing lambda isn't surrounded by parentheses
3549       // to disambiguate it from 'delete[]'.
3550       ExprResult Lambda = ParseLambdaExpression();
3551       if (Lambda.isInvalid())
3552         return ExprError();
3553 
3554       // Evaluate any postfix expressions used on the lambda.
3555       Lambda = ParsePostfixExpressionSuffix(Lambda);
3556       if (Lambda.isInvalid())
3557         return ExprError();
3558       return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
3559                                     Lambda.get());
3560     }
3561 
3562     ArrayDelete = true;
3563     BalancedDelimiterTracker T(*this, tok::l_square);
3564 
3565     T.consumeOpen();
3566     T.consumeClose();
3567     if (T.getCloseLocation().isInvalid())
3568       return ExprError();
3569   }
3570 
3571   ExprResult Operand(ParseCastExpression(AnyCastExpr));
3572   if (Operand.isInvalid())
3573     return Operand;
3574 
3575   return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
3576 }
3577 
3578 /// ParseRequiresExpression - Parse a C++2a requires-expression.
3579 /// C++2a [expr.prim.req]p1
3580 ///     A requires-expression provides a concise way to express requirements on
3581 ///     template arguments. A requirement is one that can be checked by name
3582 ///     lookup (6.4) or by checking properties of types and expressions.
3583 ///
3584 ///     requires-expression:
3585 ///         'requires' requirement-parameter-list[opt] requirement-body
3586 ///
3587 ///     requirement-parameter-list:
3588 ///         '(' parameter-declaration-clause[opt] ')'
3589 ///
3590 ///     requirement-body:
3591 ///         '{' requirement-seq '}'
3592 ///
3593 ///     requirement-seq:
3594 ///         requirement
3595 ///         requirement-seq requirement
3596 ///
3597 ///     requirement:
3598 ///         simple-requirement
3599 ///         type-requirement
3600 ///         compound-requirement
3601 ///         nested-requirement
ParseRequiresExpression()3602 ExprResult Parser::ParseRequiresExpression() {
3603   assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword");
3604   SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
3605 
3606   llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
3607   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3608   if (Tok.is(tok::l_paren)) {
3609     // requirement parameter list is present.
3610     ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
3611                                     Scope::DeclScope);
3612     Parens.consumeOpen();
3613     if (!Tok.is(tok::r_paren)) {
3614       ParsedAttributes FirstArgAttrs(getAttrFactory());
3615       SourceLocation EllipsisLoc;
3616       llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
3617       ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
3618                                       FirstArgAttrs, LocalParameters,
3619                                       EllipsisLoc);
3620       if (EllipsisLoc.isValid())
3621         Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
3622       for (auto &ParamInfo : LocalParameters)
3623         LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
3624     }
3625     Parens.consumeClose();
3626   }
3627 
3628   BalancedDelimiterTracker Braces(*this, tok::l_brace);
3629   if (Braces.expectAndConsume())
3630     return ExprError();
3631 
3632   // Start of requirement list
3633   llvm::SmallVector<concepts::Requirement *, 2> Requirements;
3634 
3635   // C++2a [expr.prim.req]p2
3636   //   Expressions appearing within a requirement-body are unevaluated operands.
3637   EnterExpressionEvaluationContext Ctx(
3638       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3639 
3640   ParseScope BodyScope(this, Scope::DeclScope);
3641   // Create a separate diagnostic pool for RequiresExprBodyDecl.
3642   // Dependent diagnostics are attached to this Decl and non-depenedent
3643   // diagnostics are surfaced after this parse.
3644   ParsingDeclRAIIObject ParsingBodyDecl(*this, ParsingDeclRAIIObject::NoParent);
3645   RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
3646       RequiresKWLoc, LocalParameterDecls, getCurScope());
3647 
3648   if (Tok.is(tok::r_brace)) {
3649     // Grammar does not allow an empty body.
3650     // requirement-body:
3651     //   { requirement-seq }
3652     // requirement-seq:
3653     //   requirement
3654     //   requirement-seq requirement
3655     Diag(Tok, diag::err_empty_requires_expr);
3656     // Continue anyway and produce a requires expr with no requirements.
3657   } else {
3658     while (!Tok.is(tok::r_brace)) {
3659       switch (Tok.getKind()) {
3660       case tok::l_brace: {
3661         // Compound requirement
3662         // C++ [expr.prim.req.compound]
3663         //     compound-requirement:
3664         //         '{' expression '}' 'noexcept'[opt]
3665         //             return-type-requirement[opt] ';'
3666         //     return-type-requirement:
3667         //         trailing-return-type
3668         //         '->' cv-qualifier-seq[opt] constrained-parameter
3669         //             cv-qualifier-seq[opt] abstract-declarator[opt]
3670         BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
3671         ExprBraces.consumeOpen();
3672         ExprResult Expression =
3673             Actions.CorrectDelayedTyposInExpr(ParseExpression());
3674         if (!Expression.isUsable()) {
3675           ExprBraces.skipToEnd();
3676           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3677           break;
3678         }
3679         if (ExprBraces.consumeClose())
3680           ExprBraces.skipToEnd();
3681 
3682         concepts::Requirement *Req = nullptr;
3683         SourceLocation NoexceptLoc;
3684         TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
3685         if (Tok.is(tok::semi)) {
3686           Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
3687           if (Req)
3688             Requirements.push_back(Req);
3689           break;
3690         }
3691         if (!TryConsumeToken(tok::arrow))
3692           // User probably forgot the arrow, remind them and try to continue.
3693           Diag(Tok, diag::err_requires_expr_missing_arrow)
3694               << FixItHint::CreateInsertion(Tok.getLocation(), "->");
3695         // Try to parse a 'type-constraint'
3696         if (TryAnnotateTypeConstraint()) {
3697           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3698           break;
3699         }
3700         if (!isTypeConstraintAnnotation()) {
3701           Diag(Tok, diag::err_requires_expr_expected_type_constraint);
3702           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3703           break;
3704         }
3705         CXXScopeSpec SS;
3706         if (Tok.is(tok::annot_cxxscope)) {
3707           Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3708                                                        Tok.getAnnotationRange(),
3709                                                        SS);
3710           ConsumeAnnotationToken();
3711         }
3712 
3713         Req = Actions.ActOnCompoundRequirement(
3714             Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
3715             TemplateParameterDepth);
3716         ConsumeAnnotationToken();
3717         if (Req)
3718           Requirements.push_back(Req);
3719         break;
3720       }
3721       default: {
3722         bool PossibleRequiresExprInSimpleRequirement = false;
3723         if (Tok.is(tok::kw_requires)) {
3724           auto IsNestedRequirement = [&] {
3725             RevertingTentativeParsingAction TPA(*this);
3726             ConsumeToken(); // 'requires'
3727             if (Tok.is(tok::l_brace))
3728               // This is a requires expression
3729               // requires (T t) {
3730               //   requires { t++; };
3731               //   ...      ^
3732               // }
3733               return false;
3734             if (Tok.is(tok::l_paren)) {
3735               // This might be the parameter list of a requires expression
3736               ConsumeParen();
3737               auto Res = TryParseParameterDeclarationClause();
3738               if (Res != TPResult::False) {
3739                 // Skip to the closing parenthesis
3740                 unsigned Depth = 1;
3741                 while (Depth != 0) {
3742                   bool FoundParen = SkipUntil(tok::l_paren, tok::r_paren,
3743                                               SkipUntilFlags::StopBeforeMatch);
3744                   if (!FoundParen)
3745                     break;
3746                   if (Tok.is(tok::l_paren))
3747                     Depth++;
3748                   else if (Tok.is(tok::r_paren))
3749                     Depth--;
3750                   ConsumeAnyToken();
3751                 }
3752                 // requires (T t) {
3753                 //   requires () ?
3754                 //   ...         ^
3755                 //   - OR -
3756                 //   requires (int x) ?
3757                 //   ...              ^
3758                 // }
3759                 if (Tok.is(tok::l_brace))
3760                   // requires (...) {
3761                   //                ^ - a requires expression as a
3762                   //                    simple-requirement.
3763                   return false;
3764               }
3765             }
3766             return true;
3767           };
3768           if (IsNestedRequirement()) {
3769             ConsumeToken();
3770             // Nested requirement
3771             // C++ [expr.prim.req.nested]
3772             //     nested-requirement:
3773             //         'requires' constraint-expression ';'
3774             ExprResult ConstraintExpr =
3775                 Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
3776             if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
3777               SkipUntil(tok::semi, tok::r_brace,
3778                         SkipUntilFlags::StopBeforeMatch);
3779               break;
3780             }
3781             if (auto *Req =
3782                     Actions.ActOnNestedRequirement(ConstraintExpr.get()))
3783               Requirements.push_back(Req);
3784             else {
3785               SkipUntil(tok::semi, tok::r_brace,
3786                         SkipUntilFlags::StopBeforeMatch);
3787               break;
3788             }
3789             break;
3790           } else
3791             PossibleRequiresExprInSimpleRequirement = true;
3792         } else if (Tok.is(tok::kw_typename)) {
3793           // This might be 'typename T::value_type;' (a type requirement) or
3794           // 'typename T::value_type{};' (a simple requirement).
3795           TentativeParsingAction TPA(*this);
3796 
3797           // We need to consume the typename to allow 'requires { typename a; }'
3798           SourceLocation TypenameKWLoc = ConsumeToken();
3799           if (TryAnnotateOptionalCXXScopeToken()) {
3800             TPA.Commit();
3801             SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3802             break;
3803           }
3804           CXXScopeSpec SS;
3805           if (Tok.is(tok::annot_cxxscope)) {
3806             Actions.RestoreNestedNameSpecifierAnnotation(
3807                 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3808             ConsumeAnnotationToken();
3809           }
3810 
3811           if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
3812               !NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
3813             TPA.Commit();
3814             SourceLocation NameLoc = Tok.getLocation();
3815             IdentifierInfo *II = nullptr;
3816             TemplateIdAnnotation *TemplateId = nullptr;
3817             if (Tok.is(tok::identifier)) {
3818               II = Tok.getIdentifierInfo();
3819               ConsumeToken();
3820             } else {
3821               TemplateId = takeTemplateIdAnnotation(Tok);
3822               ConsumeAnnotationToken();
3823               if (TemplateId->isInvalid())
3824                 break;
3825             }
3826 
3827             if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
3828                                                          NameLoc, II,
3829                                                          TemplateId)) {
3830               Requirements.push_back(Req);
3831             }
3832             break;
3833           }
3834           TPA.Revert();
3835         }
3836         // Simple requirement
3837         // C++ [expr.prim.req.simple]
3838         //     simple-requirement:
3839         //         expression ';'
3840         SourceLocation StartLoc = Tok.getLocation();
3841         ExprResult Expression =
3842             Actions.CorrectDelayedTyposInExpr(ParseExpression());
3843         if (!Expression.isUsable()) {
3844           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3845           break;
3846         }
3847         if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
3848           Diag(StartLoc, diag::err_requires_expr_in_simple_requirement)
3849               << FixItHint::CreateInsertion(StartLoc, "requires");
3850         if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
3851           Requirements.push_back(Req);
3852         else {
3853           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3854           break;
3855         }
3856         // User may have tried to put some compound requirement stuff here
3857         if (Tok.is(tok::kw_noexcept)) {
3858           Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
3859               << FixItHint::CreateInsertion(StartLoc, "{")
3860               << FixItHint::CreateInsertion(Tok.getLocation(), "}");
3861           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3862           break;
3863         }
3864         break;
3865       }
3866       }
3867       if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
3868         SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3869         TryConsumeToken(tok::semi);
3870         break;
3871       }
3872     }
3873     if (Requirements.empty()) {
3874       // Don't emit an empty requires expr here to avoid confusing the user with
3875       // other diagnostics quoting an empty requires expression they never
3876       // wrote.
3877       Braces.consumeClose();
3878       Actions.ActOnFinishRequiresExpr();
3879       return ExprError();
3880     }
3881   }
3882   Braces.consumeClose();
3883   Actions.ActOnFinishRequiresExpr();
3884   ParsingBodyDecl.complete(Body);
3885   return Actions.ActOnRequiresExpr(
3886       RequiresKWLoc, Body, Parens.getOpenLocation(), LocalParameterDecls,
3887       Parens.getCloseLocation(), Requirements, Braces.getCloseLocation());
3888 }
3889 
TypeTraitFromTokKind(tok::TokenKind kind)3890 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
3891   switch (kind) {
3892   default: llvm_unreachable("Not a known type trait");
3893 #define TYPE_TRAIT_1(Spelling, Name, Key) \
3894 case tok::kw_ ## Spelling: return UTT_ ## Name;
3895 #define TYPE_TRAIT_2(Spelling, Name, Key) \
3896 case tok::kw_ ## Spelling: return BTT_ ## Name;
3897 #include "clang/Basic/TokenKinds.def"
3898 #define TYPE_TRAIT_N(Spelling, Name, Key) \
3899   case tok::kw_ ## Spelling: return TT_ ## Name;
3900 #include "clang/Basic/TokenKinds.def"
3901   }
3902 }
3903 
ArrayTypeTraitFromTokKind(tok::TokenKind kind)3904 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
3905   switch (kind) {
3906   default:
3907     llvm_unreachable("Not a known array type trait");
3908 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key)                                  \
3909   case tok::kw_##Spelling:                                                     \
3910     return ATT_##Name;
3911 #include "clang/Basic/TokenKinds.def"
3912   }
3913 }
3914 
ExpressionTraitFromTokKind(tok::TokenKind kind)3915 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
3916   switch (kind) {
3917   default:
3918     llvm_unreachable("Not a known unary expression trait.");
3919 #define EXPRESSION_TRAIT(Spelling, Name, Key)                                  \
3920   case tok::kw_##Spelling:                                                     \
3921     return ET_##Name;
3922 #include "clang/Basic/TokenKinds.def"
3923   }
3924 }
3925 
3926 /// Parse the built-in type-trait pseudo-functions that allow
3927 /// implementation of the TR1/C++11 type traits templates.
3928 ///
3929 ///       primary-expression:
3930 ///          unary-type-trait '(' type-id ')'
3931 ///          binary-type-trait '(' type-id ',' type-id ')'
3932 ///          type-trait '(' type-id-seq ')'
3933 ///
3934 ///       type-id-seq:
3935 ///          type-id ...[opt] type-id-seq[opt]
3936 ///
ParseTypeTrait()3937 ExprResult Parser::ParseTypeTrait() {
3938   tok::TokenKind Kind = Tok.getKind();
3939 
3940   SourceLocation Loc = ConsumeToken();
3941 
3942   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3943   if (Parens.expectAndConsume())
3944     return ExprError();
3945 
3946   SmallVector<ParsedType, 2> Args;
3947   do {
3948     // Parse the next type.
3949     TypeResult Ty = ParseTypeName(/*SourceRange=*/nullptr,
3950                                   getLangOpts().CPlusPlus
3951                                       ? DeclaratorContext::TemplateTypeArg
3952                                       : DeclaratorContext::TypeName);
3953     if (Ty.isInvalid()) {
3954       Parens.skipToEnd();
3955       return ExprError();
3956     }
3957 
3958     // Parse the ellipsis, if present.
3959     if (Tok.is(tok::ellipsis)) {
3960       Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
3961       if (Ty.isInvalid()) {
3962         Parens.skipToEnd();
3963         return ExprError();
3964       }
3965     }
3966 
3967     // Add this type to the list of arguments.
3968     Args.push_back(Ty.get());
3969   } while (TryConsumeToken(tok::comma));
3970 
3971   if (Parens.consumeClose())
3972     return ExprError();
3973 
3974   SourceLocation EndLoc = Parens.getCloseLocation();
3975 
3976   return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3977 }
3978 
3979 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3980 /// pseudo-functions.
3981 ///
3982 ///       primary-expression:
3983 /// [Embarcadero]     '__array_rank' '(' type-id ')'
3984 /// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
3985 ///
ParseArrayTypeTrait()3986 ExprResult Parser::ParseArrayTypeTrait() {
3987   ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3988   SourceLocation Loc = ConsumeToken();
3989 
3990   BalancedDelimiterTracker T(*this, tok::l_paren);
3991   if (T.expectAndConsume())
3992     return ExprError();
3993 
3994   TypeResult Ty = ParseTypeName(/*SourceRange=*/nullptr,
3995                                 DeclaratorContext::TemplateTypeArg);
3996   if (Ty.isInvalid()) {
3997     SkipUntil(tok::comma, StopAtSemi);
3998     SkipUntil(tok::r_paren, StopAtSemi);
3999     return ExprError();
4000   }
4001 
4002   switch (ATT) {
4003   case ATT_ArrayRank: {
4004     T.consumeClose();
4005     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
4006                                        T.getCloseLocation());
4007   }
4008   case ATT_ArrayExtent: {
4009     if (ExpectAndConsume(tok::comma)) {
4010       SkipUntil(tok::r_paren, StopAtSemi);
4011       return ExprError();
4012     }
4013 
4014     ExprResult DimExpr = ParseExpression();
4015     T.consumeClose();
4016 
4017     if (DimExpr.isInvalid())
4018       return ExprError();
4019 
4020     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
4021                                        T.getCloseLocation());
4022   }
4023   }
4024   llvm_unreachable("Invalid ArrayTypeTrait!");
4025 }
4026 
4027 /// ParseExpressionTrait - Parse built-in expression-trait
4028 /// pseudo-functions like __is_lvalue_expr( xxx ).
4029 ///
4030 ///       primary-expression:
4031 /// [Embarcadero]     expression-trait '(' expression ')'
4032 ///
ParseExpressionTrait()4033 ExprResult Parser::ParseExpressionTrait() {
4034   ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
4035   SourceLocation Loc = ConsumeToken();
4036 
4037   BalancedDelimiterTracker T(*this, tok::l_paren);
4038   if (T.expectAndConsume())
4039     return ExprError();
4040 
4041   ExprResult Expr = ParseExpression();
4042 
4043   T.consumeClose();
4044 
4045   return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
4046                                       T.getCloseLocation());
4047 }
4048 
4049 
4050 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
4051 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
4052 /// based on the context past the parens.
4053 ExprResult
ParseCXXAmbiguousParenExpression(ParenParseOption & ExprType,ParsedType & CastTy,BalancedDelimiterTracker & Tracker,ColonProtectionRAIIObject & ColonProt)4054 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
4055                                          ParsedType &CastTy,
4056                                          BalancedDelimiterTracker &Tracker,
4057                                          ColonProtectionRAIIObject &ColonProt) {
4058   assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
4059   assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
4060   assert(isTypeIdInParens() && "Not a type-id!");
4061 
4062   ExprResult Result(true);
4063   CastTy = nullptr;
4064 
4065   // We need to disambiguate a very ugly part of the C++ syntax:
4066   //
4067   // (T())x;  - type-id
4068   // (T())*x; - type-id
4069   // (T())/x; - expression
4070   // (T());   - expression
4071   //
4072   // The bad news is that we cannot use the specialized tentative parser, since
4073   // it can only verify that the thing inside the parens can be parsed as
4074   // type-id, it is not useful for determining the context past the parens.
4075   //
4076   // The good news is that the parser can disambiguate this part without
4077   // making any unnecessary Action calls.
4078   //
4079   // It uses a scheme similar to parsing inline methods. The parenthesized
4080   // tokens are cached, the context that follows is determined (possibly by
4081   // parsing a cast-expression), and then we re-introduce the cached tokens
4082   // into the token stream and parse them appropriately.
4083 
4084   ParenParseOption ParseAs;
4085   CachedTokens Toks;
4086 
4087   // Store the tokens of the parentheses. We will parse them after we determine
4088   // the context that follows them.
4089   if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
4090     // We didn't find the ')' we expected.
4091     Tracker.consumeClose();
4092     return ExprError();
4093   }
4094 
4095   if (Tok.is(tok::l_brace)) {
4096     ParseAs = CompoundLiteral;
4097   } else {
4098     bool NotCastExpr;
4099     if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
4100       NotCastExpr = true;
4101     } else {
4102       // Try parsing the cast-expression that may follow.
4103       // If it is not a cast-expression, NotCastExpr will be true and no token
4104       // will be consumed.
4105       ColonProt.restore();
4106       Result = ParseCastExpression(AnyCastExpr,
4107                                    false/*isAddressofOperand*/,
4108                                    NotCastExpr,
4109                                    // type-id has priority.
4110                                    IsTypeCast);
4111     }
4112 
4113     // If we parsed a cast-expression, it's really a type-id, otherwise it's
4114     // an expression.
4115     ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
4116   }
4117 
4118   // Create a fake EOF to mark end of Toks buffer.
4119   Token AttrEnd;
4120   AttrEnd.startToken();
4121   AttrEnd.setKind(tok::eof);
4122   AttrEnd.setLocation(Tok.getLocation());
4123   AttrEnd.setEofData(Toks.data());
4124   Toks.push_back(AttrEnd);
4125 
4126   // The current token should go after the cached tokens.
4127   Toks.push_back(Tok);
4128   // Re-enter the stored parenthesized tokens into the token stream, so we may
4129   // parse them now.
4130   PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
4131                       /*IsReinject*/ true);
4132   // Drop the current token and bring the first cached one. It's the same token
4133   // as when we entered this function.
4134   ConsumeAnyToken();
4135 
4136   if (ParseAs >= CompoundLiteral) {
4137     // Parse the type declarator.
4138     DeclSpec DS(AttrFactory);
4139     Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4140                               DeclaratorContext::TypeName);
4141     {
4142       ColonProtectionRAIIObject InnerColonProtection(*this);
4143       ParseSpecifierQualifierList(DS);
4144       ParseDeclarator(DeclaratorInfo);
4145     }
4146 
4147     // Match the ')'.
4148     Tracker.consumeClose();
4149     ColonProt.restore();
4150 
4151     // Consume EOF marker for Toks buffer.
4152     assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4153     ConsumeAnyToken();
4154 
4155     if (ParseAs == CompoundLiteral) {
4156       ExprType = CompoundLiteral;
4157       if (DeclaratorInfo.isInvalidType())
4158         return ExprError();
4159 
4160       TypeResult Ty = Actions.ActOnTypeName(DeclaratorInfo);
4161       return ParseCompoundLiteralExpression(Ty.get(),
4162                                             Tracker.getOpenLocation(),
4163                                             Tracker.getCloseLocation());
4164     }
4165 
4166     // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
4167     assert(ParseAs == CastExpr);
4168 
4169     if (DeclaratorInfo.isInvalidType())
4170       return ExprError();
4171 
4172     // Result is what ParseCastExpression returned earlier.
4173     if (!Result.isInvalid())
4174       Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
4175                                     DeclaratorInfo, CastTy,
4176                                     Tracker.getCloseLocation(), Result.get());
4177     return Result;
4178   }
4179 
4180   // Not a compound literal, and not followed by a cast-expression.
4181   assert(ParseAs == SimpleExpr);
4182 
4183   ExprType = SimpleExpr;
4184   Result = ParseExpression();
4185   if (!Result.isInvalid() && Tok.is(tok::r_paren))
4186     Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
4187                                     Tok.getLocation(), Result.get());
4188 
4189   // Match the ')'.
4190   if (Result.isInvalid()) {
4191     while (Tok.isNot(tok::eof))
4192       ConsumeAnyToken();
4193     assert(Tok.getEofData() == AttrEnd.getEofData());
4194     ConsumeAnyToken();
4195     return ExprError();
4196   }
4197 
4198   Tracker.consumeClose();
4199   // Consume EOF marker for Toks buffer.
4200   assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4201   ConsumeAnyToken();
4202   return Result;
4203 }
4204 
4205 /// Parse a __builtin_bit_cast(T, E).
ParseBuiltinBitCast()4206 ExprResult Parser::ParseBuiltinBitCast() {
4207   SourceLocation KWLoc = ConsumeToken();
4208 
4209   BalancedDelimiterTracker T(*this, tok::l_paren);
4210   if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
4211     return ExprError();
4212 
4213   // Parse the common declaration-specifiers piece.
4214   DeclSpec DS(AttrFactory);
4215   ParseSpecifierQualifierList(DS);
4216 
4217   // Parse the abstract-declarator, if present.
4218   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4219                             DeclaratorContext::TypeName);
4220   ParseDeclarator(DeclaratorInfo);
4221 
4222   if (ExpectAndConsume(tok::comma)) {
4223     Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
4224     SkipUntil(tok::r_paren, StopAtSemi);
4225     return ExprError();
4226   }
4227 
4228   ExprResult Operand = ParseExpression();
4229 
4230   if (T.consumeClose())
4231     return ExprError();
4232 
4233   if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
4234     return ExprError();
4235 
4236   return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
4237                                          T.getCloseLocation());
4238 }
4239