xref: /freebsd/contrib/llvm-project/clang/lib/Parse/ParseExpr.cpp (revision 36b606ae6aa4b24061096ba18582e0a08ccd5dba)
1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Provides the Expression parsing implementation.
11 ///
12 /// Expressions in C99 basically consist of a bunch of binary operators with
13 /// unary operators and other random stuff at the leaves.
14 ///
15 /// In the C99 grammar, these unary operators bind tightest and are represented
16 /// as the 'cast-expression' production.  Everything else is either a binary
17 /// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
18 /// handled by ParseCastExpression, the higher level pieces are handled by
19 /// ParseBinaryExpression.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/Basic/PrettyStackTrace.h"
26 #include "clang/Lex/LiteralSupport.h"
27 #include "clang/Parse/Parser.h"
28 #include "clang/Parse/RAIIObjectsForParser.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/EnterExpressionEvaluationContext.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/SemaCUDA.h"
34 #include "clang/Sema/SemaCodeCompletion.h"
35 #include "clang/Sema/SemaObjC.h"
36 #include "clang/Sema/SemaOpenACC.h"
37 #include "clang/Sema/SemaOpenMP.h"
38 #include "clang/Sema/SemaSYCL.h"
39 #include "clang/Sema/TypoCorrection.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include <optional>
42 using namespace clang;
43 
44 /// Simple precedence-based parser for binary/ternary operators.
45 ///
46 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
47 /// production.  C99 specifies that the LHS of an assignment operator should be
48 /// parsed as a unary-expression, but consistency dictates that it be a
49 /// conditional-expession.  In practice, the important thing here is that the
50 /// LHS of an assignment has to be an l-value, which productions between
51 /// unary-expression and conditional-expression don't produce.  Because we want
52 /// consistency, we parse the LHS as a conditional-expression, then check for
53 /// l-value-ness in semantic analysis stages.
54 ///
55 /// \verbatim
56 ///       pm-expression: [C++ 5.5]
57 ///         cast-expression
58 ///         pm-expression '.*' cast-expression
59 ///         pm-expression '->*' cast-expression
60 ///
61 ///       multiplicative-expression: [C99 6.5.5]
62 ///     Note: in C++, apply pm-expression instead of cast-expression
63 ///         cast-expression
64 ///         multiplicative-expression '*' cast-expression
65 ///         multiplicative-expression '/' cast-expression
66 ///         multiplicative-expression '%' cast-expression
67 ///
68 ///       additive-expression: [C99 6.5.6]
69 ///         multiplicative-expression
70 ///         additive-expression '+' multiplicative-expression
71 ///         additive-expression '-' multiplicative-expression
72 ///
73 ///       shift-expression: [C99 6.5.7]
74 ///         additive-expression
75 ///         shift-expression '<<' additive-expression
76 ///         shift-expression '>>' additive-expression
77 ///
78 ///       compare-expression: [C++20 expr.spaceship]
79 ///         shift-expression
80 ///         compare-expression '<=>' shift-expression
81 ///
82 ///       relational-expression: [C99 6.5.8]
83 ///         compare-expression
84 ///         relational-expression '<' compare-expression
85 ///         relational-expression '>' compare-expression
86 ///         relational-expression '<=' compare-expression
87 ///         relational-expression '>=' compare-expression
88 ///
89 ///       equality-expression: [C99 6.5.9]
90 ///         relational-expression
91 ///         equality-expression '==' relational-expression
92 ///         equality-expression '!=' relational-expression
93 ///
94 ///       AND-expression: [C99 6.5.10]
95 ///         equality-expression
96 ///         AND-expression '&' equality-expression
97 ///
98 ///       exclusive-OR-expression: [C99 6.5.11]
99 ///         AND-expression
100 ///         exclusive-OR-expression '^' AND-expression
101 ///
102 ///       inclusive-OR-expression: [C99 6.5.12]
103 ///         exclusive-OR-expression
104 ///         inclusive-OR-expression '|' exclusive-OR-expression
105 ///
106 ///       logical-AND-expression: [C99 6.5.13]
107 ///         inclusive-OR-expression
108 ///         logical-AND-expression '&&' inclusive-OR-expression
109 ///
110 ///       logical-OR-expression: [C99 6.5.14]
111 ///         logical-AND-expression
112 ///         logical-OR-expression '||' logical-AND-expression
113 ///
114 ///       conditional-expression: [C99 6.5.15]
115 ///         logical-OR-expression
116 ///         logical-OR-expression '?' expression ':' conditional-expression
117 /// [GNU]   logical-OR-expression '?' ':' conditional-expression
118 /// [C++] the third operand is an assignment-expression
119 ///
120 ///       assignment-expression: [C99 6.5.16]
121 ///         conditional-expression
122 ///         unary-expression assignment-operator assignment-expression
123 /// [C++]   throw-expression [C++ 15]
124 ///
125 ///       assignment-operator: one of
126 ///         = *= /= %= += -= <<= >>= &= ^= |=
127 ///
128 ///       expression: [C99 6.5.17]
129 ///         assignment-expression ...[opt]
130 ///         expression ',' assignment-expression ...[opt]
131 /// \endverbatim
ParseExpression(TypeCastState isTypeCast)132 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
133   ExprResult LHS(ParseAssignmentExpression(isTypeCast));
134   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
135 }
136 
137 /// This routine is called when the '@' is seen and consumed.
138 /// Current token is an Identifier and is not a 'try'. This
139 /// routine is necessary to disambiguate \@try-statement from,
140 /// for example, \@encode-expression.
141 ///
142 ExprResult
ParseExpressionWithLeadingAt(SourceLocation AtLoc)143 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
144   ExprResult LHS(ParseObjCAtExpression(AtLoc));
145   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
146 }
147 
148 /// This routine is called when a leading '__extension__' is seen and
149 /// consumed.  This is necessary because the token gets consumed in the
150 /// process of disambiguating between an expression and a declaration.
151 ExprResult
ParseExpressionWithLeadingExtension(SourceLocation ExtLoc)152 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
153   ExprResult LHS(true);
154   {
155     // Silence extension warnings in the sub-expression
156     ExtensionRAIIObject O(Diags);
157 
158     LHS = ParseCastExpression(AnyCastExpr);
159   }
160 
161   if (!LHS.isInvalid())
162     LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
163                                LHS.get());
164 
165   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
166 }
167 
168 /// Parse an expr that doesn't include (top-level) commas.
ParseAssignmentExpression(TypeCastState isTypeCast)169 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
170   if (Tok.is(tok::code_completion)) {
171     cutOffParsing();
172     Actions.CodeCompletion().CodeCompleteExpression(
173         getCurScope(), PreferredType.get(Tok.getLocation()));
174     return ExprError();
175   }
176 
177   if (Tok.is(tok::kw_throw))
178     return ParseThrowExpression();
179   if (Tok.is(tok::kw_co_yield))
180     return ParseCoyieldExpression();
181 
182   ExprResult LHS = ParseCastExpression(AnyCastExpr,
183                                        /*isAddressOfOperand=*/false,
184                                        isTypeCast);
185   return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
186 }
187 
ParseConditionalExpression()188 ExprResult Parser::ParseConditionalExpression() {
189   if (Tok.is(tok::code_completion)) {
190     cutOffParsing();
191     Actions.CodeCompletion().CodeCompleteExpression(
192         getCurScope(), PreferredType.get(Tok.getLocation()));
193     return ExprError();
194   }
195 
196   ExprResult LHS = ParseCastExpression(
197       AnyCastExpr, /*isAddressOfOperand=*/false, NotTypeCast);
198   return ParseRHSOfBinaryExpression(LHS, prec::Conditional);
199 }
200 
201 /// Parse an assignment expression where part of an Objective-C message
202 /// send has already been parsed.
203 ///
204 /// In this case \p LBracLoc indicates the location of the '[' of the message
205 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
206 /// the receiver of the message.
207 ///
208 /// Since this handles full assignment-expression's, it handles postfix
209 /// expressions and other binary operators for these expressions as well.
210 ExprResult
ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,SourceLocation SuperLoc,ParsedType ReceiverType,Expr * ReceiverExpr)211 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
212                                                     SourceLocation SuperLoc,
213                                                     ParsedType ReceiverType,
214                                                     Expr *ReceiverExpr) {
215   ExprResult R
216     = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
217                                      ReceiverType, ReceiverExpr);
218   R = ParsePostfixExpressionSuffix(R);
219   return ParseRHSOfBinaryExpression(R, prec::Assignment);
220 }
221 
222 ExprResult
ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast)223 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
224   assert(Actions.ExprEvalContexts.back().Context ==
225              Sema::ExpressionEvaluationContext::ConstantEvaluated &&
226          "Call this function only if your ExpressionEvaluationContext is "
227          "already ConstantEvaluated");
228   ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast));
229   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
230   return Actions.ActOnConstantExpression(Res);
231 }
232 
ParseConstantExpression()233 ExprResult Parser::ParseConstantExpression() {
234   // C++03 [basic.def.odr]p2:
235   //   An expression is potentially evaluated unless it appears where an
236   //   integral constant expression is required (see 5.19) [...].
237   // C++98 and C++11 have no such rule, but this is only a defect in C++98.
238   EnterExpressionEvaluationContext ConstantEvaluated(
239       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
240   return ParseConstantExpressionInExprEvalContext(NotTypeCast);
241 }
242 
ParseArrayBoundExpression()243 ExprResult Parser::ParseArrayBoundExpression() {
244   EnterExpressionEvaluationContext ConstantEvaluated(
245       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
246   // If we parse the bound of a VLA... we parse a non-constant
247   // constant-expression!
248   Actions.ExprEvalContexts.back().InConditionallyConstantEvaluateContext = true;
249   return ParseConstantExpressionInExprEvalContext(NotTypeCast);
250 }
251 
ParseCaseExpression(SourceLocation CaseLoc)252 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) {
253   EnterExpressionEvaluationContext ConstantEvaluated(
254       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
255   ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast));
256   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
257   return Actions.ActOnCaseExpr(CaseLoc, Res);
258 }
259 
260 /// Parse a constraint-expression.
261 ///
262 /// \verbatim
263 ///       constraint-expression: C++2a[temp.constr.decl]p1
264 ///         logical-or-expression
265 /// \endverbatim
ParseConstraintExpression()266 ExprResult Parser::ParseConstraintExpression() {
267   EnterExpressionEvaluationContext ConstantEvaluated(
268       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
269   ExprResult LHS(ParseCastExpression(AnyCastExpr));
270   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
271   if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) {
272     Actions.CorrectDelayedTyposInExpr(Res);
273     return ExprError();
274   }
275   return Res;
276 }
277 
278 /// \brief Parse a constraint-logical-and-expression.
279 ///
280 /// \verbatim
281 ///       C++2a[temp.constr.decl]p1
282 ///       constraint-logical-and-expression:
283 ///         primary-expression
284 ///         constraint-logical-and-expression '&&' primary-expression
285 ///
286 /// \endverbatim
287 ExprResult
ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause)288 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) {
289   EnterExpressionEvaluationContext ConstantEvaluated(
290       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
291   bool NotPrimaryExpression = false;
292   auto ParsePrimary = [&] () {
293     ExprResult E = ParseCastExpression(PrimaryExprOnly,
294                                        /*isAddressOfOperand=*/false,
295                                        /*isTypeCast=*/NotTypeCast,
296                                        /*isVectorLiteral=*/false,
297                                        &NotPrimaryExpression);
298     if (E.isInvalid())
299       return ExprError();
300     auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) {
301         E = ParsePostfixExpressionSuffix(E);
302         // Use InclusiveOr, the precedence just after '&&' to not parse the
303         // next arguments to the logical and.
304         E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr);
305         if (!E.isInvalid())
306           Diag(E.get()->getExprLoc(),
307                Note
308                ? diag::note_unparenthesized_non_primary_expr_in_requires_clause
309                : diag::err_unparenthesized_non_primary_expr_in_requires_clause)
310                << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(")
311                << FixItHint::CreateInsertion(
312                    PP.getLocForEndOfToken(E.get()->getEndLoc()), ")")
313                << E.get()->getSourceRange();
314         return E;
315     };
316 
317     if (NotPrimaryExpression ||
318         // Check if the following tokens must be a part of a non-primary
319         // expression
320         getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
321                            /*CPlusPlus11=*/true) > prec::LogicalAnd ||
322         // Postfix operators other than '(' (which will be checked for in
323         // CheckConstraintExpression).
324         Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) ||
325         (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) {
326       E = RecoverFromNonPrimary(E, /*Note=*/false);
327       if (E.isInvalid())
328         return ExprError();
329       NotPrimaryExpression = false;
330     }
331     bool PossibleNonPrimary;
332     bool IsConstraintExpr =
333         Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary,
334                                           IsTrailingRequiresClause);
335     if (!IsConstraintExpr || PossibleNonPrimary) {
336       // Atomic constraint might be an unparenthesized non-primary expression
337       // (such as a binary operator), in which case we might get here (e.g. in
338       // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore
339       // the rest of the addition expression). Try to parse the rest of it here.
340       if (PossibleNonPrimary)
341         E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr);
342       Actions.CorrectDelayedTyposInExpr(E);
343       return ExprError();
344     }
345     return E;
346   };
347   ExprResult LHS = ParsePrimary();
348   if (LHS.isInvalid())
349     return ExprError();
350   while (Tok.is(tok::ampamp)) {
351     SourceLocation LogicalAndLoc = ConsumeToken();
352     ExprResult RHS = ParsePrimary();
353     if (RHS.isInvalid()) {
354       Actions.CorrectDelayedTyposInExpr(LHS);
355       return ExprError();
356     }
357     ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc,
358                                        tok::ampamp, LHS.get(), RHS.get());
359     if (!Op.isUsable()) {
360       Actions.CorrectDelayedTyposInExpr(RHS);
361       Actions.CorrectDelayedTyposInExpr(LHS);
362       return ExprError();
363     }
364     LHS = Op;
365   }
366   return LHS;
367 }
368 
369 /// \brief Parse a constraint-logical-or-expression.
370 ///
371 /// \verbatim
372 ///       C++2a[temp.constr.decl]p1
373 ///       constraint-logical-or-expression:
374 ///         constraint-logical-and-expression
375 ///         constraint-logical-or-expression '||'
376 ///             constraint-logical-and-expression
377 ///
378 /// \endverbatim
379 ExprResult
ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause)380 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) {
381   ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause));
382   if (!LHS.isUsable())
383     return ExprError();
384   while (Tok.is(tok::pipepipe)) {
385     SourceLocation LogicalOrLoc = ConsumeToken();
386     ExprResult RHS =
387         ParseConstraintLogicalAndExpression(IsTrailingRequiresClause);
388     if (!RHS.isUsable()) {
389       Actions.CorrectDelayedTyposInExpr(LHS);
390       return ExprError();
391     }
392     ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc,
393                                        tok::pipepipe, LHS.get(), RHS.get());
394     if (!Op.isUsable()) {
395       Actions.CorrectDelayedTyposInExpr(RHS);
396       Actions.CorrectDelayedTyposInExpr(LHS);
397       return ExprError();
398     }
399     LHS = Op;
400   }
401   return LHS;
402 }
403 
isNotExpressionStart()404 bool Parser::isNotExpressionStart() {
405   tok::TokenKind K = Tok.getKind();
406   if (K == tok::l_brace || K == tok::r_brace  ||
407       K == tok::kw_for  || K == tok::kw_while ||
408       K == tok::kw_if   || K == tok::kw_else  ||
409       K == tok::kw_goto || K == tok::kw_try)
410     return true;
411   // If this is a decl-specifier, we can't be at the start of an expression.
412   return isKnownToBeDeclarationSpecifier();
413 }
414 
isFoldOperator(prec::Level Level) const415 bool Parser::isFoldOperator(prec::Level Level) const {
416   return Level > prec::Unknown && Level != prec::Conditional &&
417          Level != prec::Spaceship;
418 }
419 
isFoldOperator(tok::TokenKind Kind) const420 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
421   return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
422 }
423 
424 /// Parse a binary expression that starts with \p LHS and has a
425 /// precedence of at least \p MinPrec.
426 ExprResult
ParseRHSOfBinaryExpression(ExprResult LHS,prec::Level MinPrec)427 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
428   prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
429                                                GreaterThanIsOperator,
430                                                getLangOpts().CPlusPlus11);
431   SourceLocation ColonLoc;
432 
433   auto SavedType = PreferredType;
434   while (true) {
435     // Every iteration may rely on a preferred type for the whole expression.
436     PreferredType = SavedType;
437     // If this token has a lower precedence than we are allowed to parse (e.g.
438     // because we are called recursively, or because the token is not a binop),
439     // then we are done!
440     if (NextTokPrec < MinPrec)
441       return LHS;
442 
443     // Consume the operator, saving the operator token for error reporting.
444     Token OpToken = Tok;
445     ConsumeToken();
446 
447     if (OpToken.is(tok::caretcaret)) {
448       return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
449     }
450 
451     // If we're potentially in a template-id, we may now be able to determine
452     // whether we're actually in one or not.
453     if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
454                         tok::greatergreatergreater) &&
455         checkPotentialAngleBracketDelimiter(OpToken))
456       return ExprError();
457 
458     // Bail out when encountering a comma followed by a token which can't
459     // possibly be the start of an expression. For instance:
460     //   int f() { return 1, }
461     // We can't do this before consuming the comma, because
462     // isNotExpressionStart() looks at the token stream.
463     if (OpToken.is(tok::comma) && isNotExpressionStart()) {
464       PP.EnterToken(Tok, /*IsReinject*/true);
465       Tok = OpToken;
466       return LHS;
467     }
468 
469     // If the next token is an ellipsis, then this is a fold-expression. Leave
470     // it alone so we can handle it in the paren expression.
471     if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
472       // FIXME: We can't check this via lookahead before we consume the token
473       // because that tickles a lexer bug.
474       PP.EnterToken(Tok, /*IsReinject*/true);
475       Tok = OpToken;
476       return LHS;
477     }
478 
479     // In Objective-C++, alternative operator tokens can be used as keyword args
480     // in message expressions. Unconsume the token so that it can reinterpreted
481     // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
482     //   [foo meth:0 and:0];
483     //   [foo not_eq];
484     if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
485         Tok.isOneOf(tok::colon, tok::r_square) &&
486         OpToken.getIdentifierInfo() != nullptr) {
487       PP.EnterToken(Tok, /*IsReinject*/true);
488       Tok = OpToken;
489       return LHS;
490     }
491 
492     // Special case handling for the ternary operator.
493     ExprResult TernaryMiddle(true);
494     if (NextTokPrec == prec::Conditional) {
495       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
496         // Parse a braced-init-list here for error recovery purposes.
497         SourceLocation BraceLoc = Tok.getLocation();
498         TernaryMiddle = ParseBraceInitializer();
499         if (!TernaryMiddle.isInvalid()) {
500           Diag(BraceLoc, diag::err_init_list_bin_op)
501               << /*RHS*/ 1 << PP.getSpelling(OpToken)
502               << Actions.getExprRange(TernaryMiddle.get());
503           TernaryMiddle = ExprError();
504         }
505       } else if (Tok.isNot(tok::colon)) {
506         // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
507         ColonProtectionRAIIObject X(*this);
508 
509         // Handle this production specially:
510         //   logical-OR-expression '?' expression ':' conditional-expression
511         // In particular, the RHS of the '?' is 'expression', not
512         // 'logical-OR-expression' as we might expect.
513         TernaryMiddle = ParseExpression();
514       } else {
515         // Special case handling of "X ? Y : Z" where Y is empty:
516         //   logical-OR-expression '?' ':' conditional-expression   [GNU]
517         TernaryMiddle = nullptr;
518         Diag(Tok, diag::ext_gnu_conditional_expr);
519       }
520 
521       if (TernaryMiddle.isInvalid()) {
522         Actions.CorrectDelayedTyposInExpr(LHS);
523         LHS = ExprError();
524         TernaryMiddle = nullptr;
525       }
526 
527       if (!TryConsumeToken(tok::colon, ColonLoc)) {
528         // Otherwise, we're missing a ':'.  Assume that this was a typo that
529         // the user forgot. If we're not in a macro expansion, we can suggest
530         // a fixit hint. If there were two spaces before the current token,
531         // suggest inserting the colon in between them, otherwise insert ": ".
532         SourceLocation FILoc = Tok.getLocation();
533         const char *FIText = ": ";
534         const SourceManager &SM = PP.getSourceManager();
535         if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
536           assert(FILoc.isFileID());
537           bool IsInvalid = false;
538           const char *SourcePtr =
539             SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
540           if (!IsInvalid && *SourcePtr == ' ') {
541             SourcePtr =
542               SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
543             if (!IsInvalid && *SourcePtr == ' ') {
544               FILoc = FILoc.getLocWithOffset(-1);
545               FIText = ":";
546             }
547           }
548         }
549 
550         Diag(Tok, diag::err_expected)
551             << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
552         Diag(OpToken, diag::note_matching) << tok::question;
553         ColonLoc = Tok.getLocation();
554       }
555     }
556 
557     PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(),
558                               OpToken.getKind());
559     // Parse another leaf here for the RHS of the operator.
560     // ParseCastExpression works here because all RHS expressions in C have it
561     // as a prefix, at least. However, in C++, an assignment-expression could
562     // be a throw-expression, which is not a valid cast-expression.
563     // Therefore we need some special-casing here.
564     // Also note that the third operand of the conditional operator is
565     // an assignment-expression in C++, and in C++11, we can have a
566     // braced-init-list on the RHS of an assignment. For better diagnostics,
567     // parse as if we were allowed braced-init-lists everywhere, and check that
568     // they only appear on the RHS of assignments later.
569     ExprResult RHS;
570     bool RHSIsInitList = false;
571     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
572       RHS = ParseBraceInitializer();
573       RHSIsInitList = true;
574     } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
575       RHS = ParseAssignmentExpression();
576     else
577       RHS = ParseCastExpression(AnyCastExpr);
578 
579     if (RHS.isInvalid()) {
580       // FIXME: Errors generated by the delayed typo correction should be
581       // printed before errors from parsing the RHS, not after.
582       Actions.CorrectDelayedTyposInExpr(LHS);
583       if (TernaryMiddle.isUsable())
584         TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
585       LHS = ExprError();
586     }
587 
588     // Remember the precedence of this operator and get the precedence of the
589     // operator immediately to the right of the RHS.
590     prec::Level ThisPrec = NextTokPrec;
591     NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
592                                      getLangOpts().CPlusPlus11);
593 
594     // Assignment and conditional expressions are right-associative.
595     bool isRightAssoc = ThisPrec == prec::Conditional ||
596                         ThisPrec == prec::Assignment;
597 
598     // Get the precedence of the operator to the right of the RHS.  If it binds
599     // more tightly with RHS than we do, evaluate it completely first.
600     if (ThisPrec < NextTokPrec ||
601         (ThisPrec == NextTokPrec && isRightAssoc)) {
602       if (!RHS.isInvalid() && RHSIsInitList) {
603         Diag(Tok, diag::err_init_list_bin_op)
604           << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
605         RHS = ExprError();
606       }
607       // If this is left-associative, only parse things on the RHS that bind
608       // more tightly than the current operator.  If it is left-associative, it
609       // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
610       // A=(B=(C=D)), where each paren is a level of recursion here.
611       // The function takes ownership of the RHS.
612       RHS = ParseRHSOfBinaryExpression(RHS,
613                             static_cast<prec::Level>(ThisPrec + !isRightAssoc));
614       RHSIsInitList = false;
615 
616       if (RHS.isInvalid()) {
617         // FIXME: Errors generated by the delayed typo correction should be
618         // printed before errors from ParseRHSOfBinaryExpression, not after.
619         Actions.CorrectDelayedTyposInExpr(LHS);
620         if (TernaryMiddle.isUsable())
621           TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
622         LHS = ExprError();
623       }
624 
625       NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
626                                        getLangOpts().CPlusPlus11);
627     }
628 
629     if (!RHS.isInvalid() && RHSIsInitList) {
630       if (ThisPrec == prec::Assignment) {
631         Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
632           << Actions.getExprRange(RHS.get());
633       } else if (ColonLoc.isValid()) {
634         Diag(ColonLoc, diag::err_init_list_bin_op)
635           << /*RHS*/1 << ":"
636           << Actions.getExprRange(RHS.get());
637         LHS = ExprError();
638       } else {
639         Diag(OpToken, diag::err_init_list_bin_op)
640           << /*RHS*/1 << PP.getSpelling(OpToken)
641           << Actions.getExprRange(RHS.get());
642         LHS = ExprError();
643       }
644     }
645 
646     ExprResult OrigLHS = LHS;
647     if (!LHS.isInvalid()) {
648       // Combine the LHS and RHS into the LHS (e.g. build AST).
649       if (TernaryMiddle.isInvalid()) {
650         // If we're using '>>' as an operator within a template
651         // argument list (in C++98), suggest the addition of
652         // parentheses so that the code remains well-formed in C++0x.
653         if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
654           SuggestParentheses(OpToken.getLocation(),
655                              diag::warn_cxx11_right_shift_in_template_arg,
656                          SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
657                                      Actions.getExprRange(RHS.get()).getEnd()));
658 
659         ExprResult BinOp =
660             Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
661                                OpToken.getKind(), LHS.get(), RHS.get());
662         if (BinOp.isInvalid())
663           BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
664                                              RHS.get()->getEndLoc(),
665                                              {LHS.get(), RHS.get()});
666 
667         LHS = BinOp;
668       } else {
669         ExprResult CondOp = Actions.ActOnConditionalOp(
670             OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(),
671             RHS.get());
672         if (CondOp.isInvalid()) {
673           std::vector<clang::Expr *> Args;
674           // TernaryMiddle can be null for the GNU conditional expr extension.
675           if (TernaryMiddle.get())
676             Args = {LHS.get(), TernaryMiddle.get(), RHS.get()};
677           else
678             Args = {LHS.get(), RHS.get()};
679           CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
680                                               RHS.get()->getEndLoc(), Args);
681         }
682 
683         LHS = CondOp;
684       }
685       // In this case, ActOnBinOp or ActOnConditionalOp performed the
686       // CorrectDelayedTyposInExpr check.
687       if (!getLangOpts().CPlusPlus)
688         continue;
689     }
690 
691     // Ensure potential typos aren't left undiagnosed.
692     if (LHS.isInvalid()) {
693       Actions.CorrectDelayedTyposInExpr(OrigLHS);
694       Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
695       Actions.CorrectDelayedTyposInExpr(RHS);
696     }
697   }
698 }
699 
700 /// Parse a cast-expression, unary-expression or primary-expression, based
701 /// on \p ExprType.
702 ///
703 /// \p isAddressOfOperand exists because an id-expression that is the
704 /// operand of address-of gets special treatment due to member pointers.
705 ///
ParseCastExpression(CastParseKind ParseKind,bool isAddressOfOperand,TypeCastState isTypeCast,bool isVectorLiteral,bool * NotPrimaryExpression)706 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
707                                        bool isAddressOfOperand,
708                                        TypeCastState isTypeCast,
709                                        bool isVectorLiteral,
710                                        bool *NotPrimaryExpression) {
711   bool NotCastExpr;
712   ExprResult Res = ParseCastExpression(ParseKind,
713                                        isAddressOfOperand,
714                                        NotCastExpr,
715                                        isTypeCast,
716                                        isVectorLiteral,
717                                        NotPrimaryExpression);
718   if (NotCastExpr)
719     Diag(Tok, diag::err_expected_expression);
720   return Res;
721 }
722 
723 namespace {
724 class CastExpressionIdValidator final : public CorrectionCandidateCallback {
725  public:
CastExpressionIdValidator(Token Next,bool AllowTypes,bool AllowNonTypes)726   CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
727       : NextToken(Next), AllowNonTypes(AllowNonTypes) {
728     WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
729   }
730 
ValidateCandidate(const TypoCorrection & candidate)731   bool ValidateCandidate(const TypoCorrection &candidate) override {
732     NamedDecl *ND = candidate.getCorrectionDecl();
733     if (!ND)
734       return candidate.isKeyword();
735 
736     if (isa<TypeDecl>(ND))
737       return WantTypeSpecifiers;
738 
739     if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
740       return false;
741 
742     if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
743       return true;
744 
745     for (auto *C : candidate) {
746       NamedDecl *ND = C->getUnderlyingDecl();
747       if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
748         return true;
749     }
750     return false;
751   }
752 
clone()753   std::unique_ptr<CorrectionCandidateCallback> clone() override {
754     return std::make_unique<CastExpressionIdValidator>(*this);
755   }
756 
757  private:
758   Token NextToken;
759   bool AllowNonTypes;
760 };
761 }
762 
isRevertibleTypeTrait(const IdentifierInfo * II,tok::TokenKind * Kind)763 bool Parser::isRevertibleTypeTrait(const IdentifierInfo *II,
764                                    tok::TokenKind *Kind) {
765   if (RevertibleTypeTraits.empty()) {
766 // Revertible type trait is a feature for backwards compatibility with older
767 // standard libraries that declare their own structs with the same name as
768 // the builtins listed below. New builtins should NOT be added to this list.
769 #define RTT_JOIN(X, Y) X##Y
770 #define REVERTIBLE_TYPE_TRAIT(Name)                                            \
771   RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] = RTT_JOIN(tok::kw_, Name)
772 
773     REVERTIBLE_TYPE_TRAIT(__is_abstract);
774     REVERTIBLE_TYPE_TRAIT(__is_aggregate);
775     REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
776     REVERTIBLE_TYPE_TRAIT(__is_array);
777     REVERTIBLE_TYPE_TRAIT(__is_assignable);
778     REVERTIBLE_TYPE_TRAIT(__is_base_of);
779     REVERTIBLE_TYPE_TRAIT(__is_bounded_array);
780     REVERTIBLE_TYPE_TRAIT(__is_class);
781     REVERTIBLE_TYPE_TRAIT(__is_complete_type);
782     REVERTIBLE_TYPE_TRAIT(__is_compound);
783     REVERTIBLE_TYPE_TRAIT(__is_const);
784     REVERTIBLE_TYPE_TRAIT(__is_constructible);
785     REVERTIBLE_TYPE_TRAIT(__is_convertible);
786     REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
787     REVERTIBLE_TYPE_TRAIT(__is_destructible);
788     REVERTIBLE_TYPE_TRAIT(__is_empty);
789     REVERTIBLE_TYPE_TRAIT(__is_enum);
790     REVERTIBLE_TYPE_TRAIT(__is_floating_point);
791     REVERTIBLE_TYPE_TRAIT(__is_final);
792     REVERTIBLE_TYPE_TRAIT(__is_function);
793     REVERTIBLE_TYPE_TRAIT(__is_fundamental);
794     REVERTIBLE_TYPE_TRAIT(__is_integral);
795     REVERTIBLE_TYPE_TRAIT(__is_interface_class);
796     REVERTIBLE_TYPE_TRAIT(__is_literal);
797     REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
798     REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
799     REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
800     REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
801     REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
802     REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
803     REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
804     REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
805     REVERTIBLE_TYPE_TRAIT(__is_nullptr);
806     REVERTIBLE_TYPE_TRAIT(__is_object);
807     REVERTIBLE_TYPE_TRAIT(__is_pod);
808     REVERTIBLE_TYPE_TRAIT(__is_pointer);
809     REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
810     REVERTIBLE_TYPE_TRAIT(__is_reference);
811     REVERTIBLE_TYPE_TRAIT(__is_referenceable);
812     REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
813     REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
814     REVERTIBLE_TYPE_TRAIT(__is_same);
815     REVERTIBLE_TYPE_TRAIT(__is_scalar);
816     REVERTIBLE_TYPE_TRAIT(__is_scoped_enum);
817     REVERTIBLE_TYPE_TRAIT(__is_sealed);
818     REVERTIBLE_TYPE_TRAIT(__is_signed);
819     REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
820     REVERTIBLE_TYPE_TRAIT(__is_trivial);
821     REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
822     REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
823     REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
824     REVERTIBLE_TYPE_TRAIT(__is_unbounded_array);
825     REVERTIBLE_TYPE_TRAIT(__is_union);
826     REVERTIBLE_TYPE_TRAIT(__is_unsigned);
827     REVERTIBLE_TYPE_TRAIT(__is_void);
828     REVERTIBLE_TYPE_TRAIT(__is_volatile);
829     REVERTIBLE_TYPE_TRAIT(__reference_binds_to_temporary);
830 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait)                                     \
831   REVERTIBLE_TYPE_TRAIT(RTT_JOIN(__, Trait));
832 #include "clang/Basic/TransformTypeTraits.def"
833 #undef REVERTIBLE_TYPE_TRAIT
834 #undef RTT_JOIN
835   }
836   llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known =
837       RevertibleTypeTraits.find(II);
838   if (Known != RevertibleTypeTraits.end()) {
839     if (Kind)
840       *Kind = Known->second;
841     return true;
842   }
843   return false;
844 }
845 
ParseBuiltinPtrauthTypeDiscriminator()846 ExprResult Parser::ParseBuiltinPtrauthTypeDiscriminator() {
847   SourceLocation Loc = ConsumeToken();
848 
849   BalancedDelimiterTracker T(*this, tok::l_paren);
850   if (T.expectAndConsume())
851     return ExprError();
852 
853   TypeResult Ty = ParseTypeName();
854   if (Ty.isInvalid()) {
855     SkipUntil(tok::r_paren, StopAtSemi);
856     return ExprError();
857   }
858 
859   SourceLocation EndLoc = Tok.getLocation();
860   T.consumeClose();
861   return Actions.ActOnUnaryExprOrTypeTraitExpr(
862       Loc, UETT_PtrAuthTypeDiscriminator,
863       /*isType=*/true, Ty.get().getAsOpaquePtr(), SourceRange(Loc, EndLoc));
864 }
865 
866 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
867 /// a unary-expression.
868 ///
869 /// \p isAddressOfOperand exists because an id-expression that is the operand
870 /// of address-of gets special treatment due to member pointers. NotCastExpr
871 /// is set to true if the token is not the start of a cast-expression, and no
872 /// diagnostic is emitted in this case and no tokens are consumed.
873 ///
874 /// \verbatim
875 ///       cast-expression: [C99 6.5.4]
876 ///         unary-expression
877 ///         '(' type-name ')' cast-expression
878 ///
879 ///       unary-expression:  [C99 6.5.3]
880 ///         postfix-expression
881 ///         '++' unary-expression
882 ///         '--' unary-expression
883 /// [Coro]  'co_await' cast-expression
884 ///         unary-operator cast-expression
885 ///         'sizeof' unary-expression
886 ///         'sizeof' '(' type-name ')'
887 /// [C++11] 'sizeof' '...' '(' identifier ')'
888 /// [GNU]   '__alignof' unary-expression
889 /// [GNU]   '__alignof' '(' type-name ')'
890 /// [C11]   '_Alignof' '(' type-name ')'
891 /// [C++11] 'alignof' '(' type-id ')'
892 /// [GNU]   '&&' identifier
893 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
894 /// [C++]   new-expression
895 /// [C++]   delete-expression
896 ///
897 ///       unary-operator: one of
898 ///         '&'  '*'  '+'  '-'  '~'  '!'
899 /// [GNU]   '__extension__'  '__real'  '__imag'
900 ///
901 ///       primary-expression: [C99 6.5.1]
902 /// [C99]   identifier
903 /// [C++]   id-expression
904 ///         constant
905 ///         string-literal
906 /// [C++]   boolean-literal  [C++ 2.13.5]
907 /// [C++11] 'nullptr'        [C++11 2.14.7]
908 /// [C++11] user-defined-literal
909 ///         '(' expression ')'
910 /// [C11]   generic-selection
911 /// [C++2a] requires-expression
912 ///         '__func__'        [C99 6.4.2.2]
913 /// [GNU]   '__FUNCTION__'
914 /// [MS]    '__FUNCDNAME__'
915 /// [MS]    'L__FUNCTION__'
916 /// [MS]    '__FUNCSIG__'
917 /// [MS]    'L__FUNCSIG__'
918 /// [GNU]   '__PRETTY_FUNCTION__'
919 /// [GNU]   '(' compound-statement ')'
920 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
921 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
922 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
923 ///                                     assign-expr ')'
924 /// [GNU]   '__builtin_FILE' '(' ')'
925 /// [CLANG] '__builtin_FILE_NAME' '(' ')'
926 /// [GNU]   '__builtin_FUNCTION' '(' ')'
927 /// [MS]    '__builtin_FUNCSIG' '(' ')'
928 /// [GNU]   '__builtin_LINE' '(' ')'
929 /// [CLANG] '__builtin_COLUMN' '(' ')'
930 /// [GNU]   '__builtin_source_location' '(' ')'
931 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
932 /// [GNU]   '__null'
933 /// [OBJC]  '[' objc-message-expr ']'
934 /// [OBJC]  '\@selector' '(' objc-selector-arg ')'
935 /// [OBJC]  '\@protocol' '(' identifier ')'
936 /// [OBJC]  '\@encode' '(' type-name ')'
937 /// [OBJC]  objc-string-literal
938 /// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
939 /// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
940 /// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
941 /// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
942 /// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
943 /// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
944 /// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
945 /// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
946 /// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
947 /// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
948 /// [C++]   'this'          [C++ 9.3.2]
949 /// [G++]   unary-type-trait '(' type-id ')'
950 /// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
951 /// [EMBT]  array-type-trait '(' type-id ',' integer ')'
952 /// [clang] '^' block-literal
953 ///
954 ///       constant: [C99 6.4.4]
955 ///         integer-constant
956 ///         floating-constant
957 ///         enumeration-constant -> identifier
958 ///         character-constant
959 ///
960 ///       id-expression: [C++ 5.1]
961 ///                   unqualified-id
962 ///                   qualified-id
963 ///
964 ///       unqualified-id: [C++ 5.1]
965 ///                   identifier
966 ///                   operator-function-id
967 ///                   conversion-function-id
968 ///                   '~' class-name
969 ///                   template-id
970 ///
971 ///       new-expression: [C++ 5.3.4]
972 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
973 ///                                     new-initializer[opt]
974 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
975 ///                                     new-initializer[opt]
976 ///
977 ///       delete-expression: [C++ 5.3.5]
978 ///                   '::'[opt] 'delete' cast-expression
979 ///                   '::'[opt] 'delete' '[' ']' cast-expression
980 ///
981 /// [GNU/Embarcadero] unary-type-trait:
982 ///                   '__is_arithmetic'
983 ///                   '__is_floating_point'
984 ///                   '__is_integral'
985 ///                   '__is_lvalue_expr'
986 ///                   '__is_rvalue_expr'
987 ///                   '__is_complete_type'
988 ///                   '__is_void'
989 ///                   '__is_array'
990 ///                   '__is_function'
991 ///                   '__is_reference'
992 ///                   '__is_lvalue_reference'
993 ///                   '__is_rvalue_reference'
994 ///                   '__is_fundamental'
995 ///                   '__is_object'
996 ///                   '__is_scalar'
997 ///                   '__is_compound'
998 ///                   '__is_pointer'
999 ///                   '__is_member_object_pointer'
1000 ///                   '__is_member_function_pointer'
1001 ///                   '__is_member_pointer'
1002 ///                   '__is_const'
1003 ///                   '__is_volatile'
1004 ///                   '__is_trivial'
1005 ///                   '__is_standard_layout'
1006 ///                   '__is_signed'
1007 ///                   '__is_unsigned'
1008 ///
1009 /// [GNU] unary-type-trait:
1010 ///                   '__has_nothrow_assign'
1011 ///                   '__has_nothrow_copy'
1012 ///                   '__has_nothrow_constructor'
1013 ///                   '__has_trivial_assign'                  [TODO]
1014 ///                   '__has_trivial_copy'                    [TODO]
1015 ///                   '__has_trivial_constructor'
1016 ///                   '__has_trivial_destructor'
1017 ///                   '__has_virtual_destructor'
1018 ///                   '__is_abstract'                         [TODO]
1019 ///                   '__is_class'
1020 ///                   '__is_empty'                            [TODO]
1021 ///                   '__is_enum'
1022 ///                   '__is_final'
1023 ///                   '__is_pod'
1024 ///                   '__is_polymorphic'
1025 ///                   '__is_sealed'                           [MS]
1026 ///                   '__is_trivial'
1027 ///                   '__is_union'
1028 ///                   '__has_unique_object_representations'
1029 ///
1030 /// [Clang] unary-type-trait:
1031 ///                   '__is_aggregate'
1032 ///                   '__trivially_copyable'
1033 ///
1034 ///       binary-type-trait:
1035 /// [GNU]             '__is_base_of'
1036 /// [MS]              '__is_convertible_to'
1037 ///                   '__is_convertible'
1038 ///                   '__is_same'
1039 ///
1040 /// [Embarcadero] array-type-trait:
1041 ///                   '__array_rank'
1042 ///                   '__array_extent'
1043 ///
1044 /// [Embarcadero] expression-trait:
1045 ///                   '__is_lvalue_expr'
1046 ///                   '__is_rvalue_expr'
1047 /// \endverbatim
1048 ///
ParseCastExpression(CastParseKind ParseKind,bool isAddressOfOperand,bool & NotCastExpr,TypeCastState isTypeCast,bool isVectorLiteral,bool * NotPrimaryExpression)1049 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
1050                                        bool isAddressOfOperand,
1051                                        bool &NotCastExpr,
1052                                        TypeCastState isTypeCast,
1053                                        bool isVectorLiteral,
1054                                        bool *NotPrimaryExpression) {
1055   ExprResult Res;
1056   tok::TokenKind SavedKind = Tok.getKind();
1057   auto SavedType = PreferredType;
1058   NotCastExpr = false;
1059 
1060   // Are postfix-expression suffix operators permitted after this
1061   // cast-expression? If not, and we find some, we'll parse them anyway and
1062   // diagnose them.
1063   bool AllowSuffix = true;
1064 
1065   // This handles all of cast-expression, unary-expression, postfix-expression,
1066   // and primary-expression.  We handle them together like this for efficiency
1067   // and to simplify handling of an expression starting with a '(' token: which
1068   // may be one of a parenthesized expression, cast-expression, compound literal
1069   // expression, or statement expression.
1070   //
1071   // If the parsed tokens consist of a primary-expression, the cases below
1072   // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
1073   // to handle the postfix expression suffixes.  Cases that cannot be followed
1074   // by postfix exprs should set AllowSuffix to false.
1075   switch (SavedKind) {
1076   case tok::l_paren: {
1077     // If this expression is limited to being a unary-expression, the paren can
1078     // not start a cast expression.
1079     ParenParseOption ParenExprType;
1080     switch (ParseKind) {
1081       case CastParseKind::UnaryExprOnly:
1082         assert(getLangOpts().CPlusPlus && "not possible to get here in C");
1083         [[fallthrough]];
1084       case CastParseKind::AnyCastExpr:
1085         ParenExprType = ParenParseOption::CastExpr;
1086         break;
1087       case CastParseKind::PrimaryExprOnly:
1088         ParenExprType = FoldExpr;
1089         break;
1090     }
1091     ParsedType CastTy;
1092     SourceLocation RParenLoc;
1093     Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
1094                                isTypeCast == IsTypeCast, CastTy, RParenLoc);
1095 
1096     // FIXME: What should we do if a vector literal is followed by a
1097     // postfix-expression suffix? Usually postfix operators are permitted on
1098     // literals.
1099     if (isVectorLiteral)
1100       return Res;
1101 
1102     switch (ParenExprType) {
1103     case SimpleExpr:   break;    // Nothing else to do.
1104     case CompoundStmt: break;  // Nothing else to do.
1105     case CompoundLiteral:
1106       // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
1107       // postfix-expression exist, parse them now.
1108       break;
1109     case CastExpr:
1110       // We have parsed the cast-expression and no postfix-expr pieces are
1111       // following.
1112       return Res;
1113     case FoldExpr:
1114       // We only parsed a fold-expression. There might be postfix-expr pieces
1115       // afterwards; parse them now.
1116       break;
1117     }
1118 
1119     break;
1120   }
1121 
1122     // primary-expression
1123   case tok::numeric_constant:
1124   case tok::binary_data:
1125     // constant: integer-constant
1126     // constant: floating-constant
1127 
1128     Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
1129     ConsumeToken();
1130     break;
1131 
1132   case tok::kw_true:
1133   case tok::kw_false:
1134     Res = ParseCXXBoolLiteral();
1135     break;
1136 
1137   case tok::kw___objc_yes:
1138   case tok::kw___objc_no:
1139     Res = ParseObjCBoolLiteral();
1140     break;
1141 
1142   case tok::kw_nullptr:
1143     if (getLangOpts().CPlusPlus)
1144       Diag(Tok, diag::warn_cxx98_compat_nullptr);
1145     else
1146       Diag(Tok, getLangOpts().C23 ? diag::warn_c23_compat_keyword
1147                                   : diag::ext_c_nullptr) << Tok.getName();
1148 
1149     Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
1150     break;
1151 
1152   case tok::annot_primary_expr:
1153   case tok::annot_overload_set:
1154     Res = getExprAnnotation(Tok);
1155     if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set)
1156       Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get());
1157     ConsumeAnnotationToken();
1158     if (!Res.isInvalid() && Tok.is(tok::less))
1159       checkPotentialAngleBracket(Res);
1160     break;
1161 
1162   case tok::annot_non_type:
1163   case tok::annot_non_type_dependent:
1164   case tok::annot_non_type_undeclared: {
1165     CXXScopeSpec SS;
1166     Token Replacement;
1167     Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
1168     assert(!Res.isUnset() &&
1169            "should not perform typo correction on annotation token");
1170     break;
1171   }
1172 
1173   case tok::annot_embed: {
1174     injectEmbedTokens();
1175     return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1176                                isVectorLiteral, NotPrimaryExpression);
1177   }
1178 
1179   case tok::kw___super:
1180   case tok::kw_decltype:
1181     // Annotate the token and tail recurse.
1182     if (TryAnnotateTypeOrScopeToken())
1183       return ExprError();
1184     assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
1185     return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1186                                isVectorLiteral, NotPrimaryExpression);
1187 
1188   case tok::identifier:
1189   ParseIdentifier: {    // primary-expression: identifier
1190                         // unqualified-id: identifier
1191                         // constant: enumeration-constant
1192     // Turn a potentially qualified name into a annot_typename or
1193     // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
1194     if (getLangOpts().CPlusPlus) {
1195       // Avoid the unnecessary parse-time lookup in the common case
1196       // where the syntax forbids a type.
1197       Token Next = NextToken();
1198 
1199       if (Next.is(tok::ellipsis) && Tok.is(tok::identifier) &&
1200           GetLookAheadToken(2).is(tok::l_square)) {
1201         // Annotate the token and tail recurse.
1202         // If the token is not annotated, then it might be an expression pack
1203         // indexing
1204         if (!TryAnnotateTypeOrScopeToken() &&
1205             Tok.is(tok::annot_pack_indexing_type))
1206           return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1207                                      isVectorLiteral, NotPrimaryExpression);
1208       }
1209 
1210       // If this identifier was reverted from a token ID, and the next token
1211       // is a parenthesis, this is likely to be a use of a type trait. Check
1212       // those tokens.
1213       else if (Next.is(tok::l_paren) && Tok.is(tok::identifier) &&
1214                Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
1215         IdentifierInfo *II = Tok.getIdentifierInfo();
1216         tok::TokenKind Kind;
1217         if (isRevertibleTypeTrait(II, &Kind)) {
1218           Tok.setKind(Kind);
1219           return ParseCastExpression(ParseKind, isAddressOfOperand,
1220                                      NotCastExpr, isTypeCast,
1221                                      isVectorLiteral, NotPrimaryExpression);
1222         }
1223       }
1224 
1225       else if ((!ColonIsSacred && Next.is(tok::colon)) ||
1226                Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
1227                             tok::l_brace)) {
1228         // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1229         if (TryAnnotateTypeOrScopeToken())
1230           return ExprError();
1231         if (!Tok.is(tok::identifier))
1232           return ParseCastExpression(ParseKind, isAddressOfOperand,
1233                                      NotCastExpr, isTypeCast,
1234                                      isVectorLiteral,
1235                                      NotPrimaryExpression);
1236       }
1237     }
1238 
1239     // Consume the identifier so that we can see if it is followed by a '(' or
1240     // '.'.
1241     IdentifierInfo &II = *Tok.getIdentifierInfo();
1242     SourceLocation ILoc = ConsumeToken();
1243 
1244     // Support 'Class.property' and 'super.property' notation.
1245     if (getLangOpts().ObjC && Tok.is(tok::period) &&
1246         (Actions.getTypeName(II, ILoc, getCurScope()) ||
1247          // Allow the base to be 'super' if in an objc-method.
1248          (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
1249       ConsumeToken();
1250 
1251       if (Tok.is(tok::code_completion) && &II != Ident_super) {
1252         cutOffParsing();
1253         Actions.CodeCompletion().CodeCompleteObjCClassPropertyRefExpr(
1254             getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
1255         return ExprError();
1256       }
1257       // Allow either an identifier or the keyword 'class' (in C++).
1258       if (Tok.isNot(tok::identifier) &&
1259           !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
1260         Diag(Tok, diag::err_expected_property_name);
1261         return ExprError();
1262       }
1263       IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
1264       SourceLocation PropertyLoc = ConsumeToken();
1265 
1266       Res = Actions.ObjC().ActOnClassPropertyRefExpr(II, PropertyName, ILoc,
1267                                                      PropertyLoc);
1268       break;
1269     }
1270 
1271     // In an Objective-C method, if we have "super" followed by an identifier,
1272     // the token sequence is ill-formed. However, if there's a ':' or ']' after
1273     // that identifier, this is probably a message send with a missing open
1274     // bracket. Treat it as such.
1275     if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
1276         getCurScope()->isInObjcMethodScope() &&
1277         ((Tok.is(tok::identifier) &&
1278          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
1279          Tok.is(tok::code_completion))) {
1280       Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
1281                                            nullptr);
1282       break;
1283     }
1284 
1285     // If we have an Objective-C class name followed by an identifier
1286     // and either ':' or ']', this is an Objective-C class message
1287     // send that's missing the opening '['. Recovery
1288     // appropriately. Also take this path if we're performing code
1289     // completion after an Objective-C class name.
1290     if (getLangOpts().ObjC &&
1291         ((Tok.is(tok::identifier) && !InMessageExpression) ||
1292          Tok.is(tok::code_completion))) {
1293       const Token& Next = NextToken();
1294       if (Tok.is(tok::code_completion) ||
1295           Next.is(tok::colon) || Next.is(tok::r_square))
1296         if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1297           if (Typ.get()->isObjCObjectOrInterfaceType()) {
1298             // Fake up a Declarator to use with ActOnTypeName.
1299             DeclSpec DS(AttrFactory);
1300             DS.SetRangeStart(ILoc);
1301             DS.SetRangeEnd(ILoc);
1302             const char *PrevSpec = nullptr;
1303             unsigned DiagID;
1304             DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1305                                Actions.getASTContext().getPrintingPolicy());
1306 
1307             Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1308                                       DeclaratorContext::TypeName);
1309             TypeResult Ty = Actions.ActOnTypeName(DeclaratorInfo);
1310             if (Ty.isInvalid())
1311               break;
1312 
1313             Res = ParseObjCMessageExpressionBody(SourceLocation(),
1314                                                  SourceLocation(),
1315                                                  Ty.get(), nullptr);
1316             break;
1317           }
1318     }
1319 
1320     // Make sure to pass down the right value for isAddressOfOperand.
1321     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1322       isAddressOfOperand = false;
1323 
1324     // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1325     // need to know whether or not this identifier is a function designator or
1326     // not.
1327     UnqualifiedId Name;
1328     CXXScopeSpec ScopeSpec;
1329     SourceLocation TemplateKWLoc;
1330     Token Replacement;
1331     CastExpressionIdValidator Validator(
1332         /*Next=*/Tok,
1333         /*AllowTypes=*/isTypeCast != NotTypeCast,
1334         /*AllowNonTypes=*/isTypeCast != IsTypeCast);
1335     Validator.IsAddressOfOperand = isAddressOfOperand;
1336     if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1337       Validator.WantExpressionKeywords = false;
1338       Validator.WantRemainingKeywords = false;
1339     } else {
1340       Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren);
1341     }
1342     Name.setIdentifier(&II, ILoc);
1343     Res = Actions.ActOnIdExpression(
1344         getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1345         isAddressOfOperand, &Validator,
1346         /*IsInlineAsmIdentifier=*/false,
1347         Tok.is(tok::r_paren) ? nullptr : &Replacement);
1348     if (!Res.isInvalid() && Res.isUnset()) {
1349       UnconsumeToken(Replacement);
1350       return ParseCastExpression(ParseKind, isAddressOfOperand,
1351                                  NotCastExpr, isTypeCast,
1352                                  /*isVectorLiteral=*/false,
1353                                  NotPrimaryExpression);
1354     }
1355     Res = tryParseCXXPackIndexingExpression(Res);
1356     if (!Res.isInvalid() && Tok.is(tok::less))
1357       checkPotentialAngleBracket(Res);
1358     break;
1359   }
1360   case tok::char_constant:     // constant: character-constant
1361   case tok::wide_char_constant:
1362   case tok::utf8_char_constant:
1363   case tok::utf16_char_constant:
1364   case tok::utf32_char_constant:
1365     Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1366     ConsumeToken();
1367     break;
1368   case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
1369   case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
1370   case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
1371   case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
1372   case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
1373   case tok::kw_L__FUNCSIG__:    // primary-expression: L__FUNCSIG__ [MS]
1374   case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
1375     // Function local predefined macros are represented by PredefinedExpr except
1376     // when Microsoft extensions are enabled and one of these macros is adjacent
1377     // to a string literal or another one of these macros.
1378     if (!(getLangOpts().MicrosoftExt &&
1379           tokenIsLikeStringLiteral(Tok, getLangOpts()) &&
1380           tokenIsLikeStringLiteral(NextToken(), getLangOpts()))) {
1381       Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1382       ConsumeToken();
1383       break;
1384     }
1385     [[fallthrough]]; // treat MS function local macros as concatenable strings
1386   case tok::string_literal:    // primary-expression: string-literal
1387   case tok::wide_string_literal:
1388   case tok::utf8_string_literal:
1389   case tok::utf16_string_literal:
1390   case tok::utf32_string_literal:
1391     Res = ParseStringLiteralExpression(true);
1392     break;
1393   case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
1394     Res = ParseGenericSelectionExpression();
1395     break;
1396   case tok::kw___builtin_available:
1397     Res = ParseAvailabilityCheckExpr(Tok.getLocation());
1398     break;
1399   case tok::kw___builtin_va_arg:
1400   case tok::kw___builtin_offsetof:
1401   case tok::kw___builtin_choose_expr:
1402   case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1403   case tok::kw___builtin_convertvector:
1404   case tok::kw___builtin_COLUMN:
1405   case tok::kw___builtin_FILE:
1406   case tok::kw___builtin_FILE_NAME:
1407   case tok::kw___builtin_FUNCTION:
1408   case tok::kw___builtin_FUNCSIG:
1409   case tok::kw___builtin_LINE:
1410   case tok::kw___builtin_source_location:
1411     if (NotPrimaryExpression)
1412       *NotPrimaryExpression = true;
1413     // This parses the complete suffix; we can return early.
1414     return ParseBuiltinPrimaryExpression();
1415   case tok::kw___null:
1416     Res = Actions.ActOnGNUNullExpr(ConsumeToken());
1417     break;
1418 
1419   case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
1420   case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
1421     if (NotPrimaryExpression)
1422       *NotPrimaryExpression = true;
1423     // C++ [expr.unary] has:
1424     //   unary-expression:
1425     //     ++ cast-expression
1426     //     -- cast-expression
1427     Token SavedTok = Tok;
1428     ConsumeToken();
1429 
1430     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(),
1431                              SavedTok.getLocation());
1432     // One special case is implicitly handled here: if the preceding tokens are
1433     // an ambiguous cast expression, such as "(T())++", then we recurse to
1434     // determine whether the '++' is prefix or postfix.
1435     Res = ParseCastExpression(getLangOpts().CPlusPlus ?
1436                                   UnaryExprOnly : AnyCastExpr,
1437                               /*isAddressOfOperand*/false, NotCastExpr,
1438                               NotTypeCast);
1439     if (NotCastExpr) {
1440       // If we return with NotCastExpr = true, we must not consume any tokens,
1441       // so put the token back where we found it.
1442       assert(Res.isInvalid());
1443       UnconsumeToken(SavedTok);
1444       return ExprError();
1445     }
1446     if (!Res.isInvalid()) {
1447       Expr *Arg = Res.get();
1448       Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1449                                  SavedKind, Arg);
1450       if (Res.isInvalid())
1451         Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(),
1452                                          Arg->getEndLoc(), Arg);
1453     }
1454     return Res;
1455   }
1456   case tok::amp: {         // unary-expression: '&' cast-expression
1457     if (NotPrimaryExpression)
1458       *NotPrimaryExpression = true;
1459     // Special treatment because of member pointers
1460     SourceLocation SavedLoc = ConsumeToken();
1461     PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc);
1462 
1463     Res = ParseCastExpression(AnyCastExpr, /*isAddressOfOperand=*/true);
1464     if (!Res.isInvalid()) {
1465       Expr *Arg = Res.get();
1466       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1467       if (Res.isInvalid())
1468         Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(),
1469                                          Arg);
1470     }
1471     return Res;
1472   }
1473 
1474   case tok::star:          // unary-expression: '*' cast-expression
1475   case tok::plus:          // unary-expression: '+' cast-expression
1476   case tok::minus:         // unary-expression: '-' cast-expression
1477   case tok::tilde:         // unary-expression: '~' cast-expression
1478   case tok::exclaim:       // unary-expression: '!' cast-expression
1479   case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
1480   case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
1481     if (NotPrimaryExpression)
1482       *NotPrimaryExpression = true;
1483     SourceLocation SavedLoc = ConsumeToken();
1484     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc);
1485     Res = ParseCastExpression(AnyCastExpr);
1486     if (!Res.isInvalid()) {
1487       Expr *Arg = Res.get();
1488       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg,
1489                                  isAddressOfOperand);
1490       if (Res.isInvalid())
1491         Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg);
1492     }
1493     return Res;
1494   }
1495 
1496   case tok::kw_co_await: {  // unary-expression: 'co_await' cast-expression
1497     if (NotPrimaryExpression)
1498       *NotPrimaryExpression = true;
1499     SourceLocation CoawaitLoc = ConsumeToken();
1500     Res = ParseCastExpression(AnyCastExpr);
1501     if (!Res.isInvalid())
1502       Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1503     return Res;
1504   }
1505 
1506   case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1507     // __extension__ silences extension warnings in the subexpression.
1508     if (NotPrimaryExpression)
1509       *NotPrimaryExpression = true;
1510     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1511     SourceLocation SavedLoc = ConsumeToken();
1512     Res = ParseCastExpression(AnyCastExpr);
1513     if (!Res.isInvalid())
1514       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1515     return Res;
1516   }
1517   case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
1518     diagnoseUseOfC11Keyword(Tok);
1519     [[fallthrough]];
1520   case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
1521   case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
1522                            // unary-expression: '__alignof' '(' type-name ')'
1523   case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
1524                            // unary-expression: 'sizeof' '(' type-name ')'
1525   // unary-expression: '__datasizeof' unary-expression
1526   // unary-expression: '__datasizeof' '(' type-name ')'
1527   case tok::kw___datasizeof:
1528   case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
1529   // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1530   case tok::kw___builtin_omp_required_simd_align:
1531   case tok::kw___builtin_vectorelements:
1532     if (NotPrimaryExpression)
1533       *NotPrimaryExpression = true;
1534     AllowSuffix = false;
1535     Res = ParseUnaryExprOrTypeTraitExpression();
1536     break;
1537   case tok::ampamp: {      // unary-expression: '&&' identifier
1538     if (NotPrimaryExpression)
1539       *NotPrimaryExpression = true;
1540     SourceLocation AmpAmpLoc = ConsumeToken();
1541     if (Tok.isNot(tok::identifier))
1542       return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1543 
1544     if (getCurScope()->getFnParent() == nullptr)
1545       return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1546 
1547     Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1548     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1549                                                 Tok.getLocation());
1550     Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1551     ConsumeToken();
1552     AllowSuffix = false;
1553     break;
1554   }
1555   case tok::kw_const_cast:
1556   case tok::kw_dynamic_cast:
1557   case tok::kw_reinterpret_cast:
1558   case tok::kw_static_cast:
1559   case tok::kw_addrspace_cast:
1560     if (NotPrimaryExpression)
1561       *NotPrimaryExpression = true;
1562     Res = ParseCXXCasts();
1563     break;
1564   case tok::kw___builtin_bit_cast:
1565     if (NotPrimaryExpression)
1566       *NotPrimaryExpression = true;
1567     Res = ParseBuiltinBitCast();
1568     break;
1569   case tok::kw_typeid:
1570     if (NotPrimaryExpression)
1571       *NotPrimaryExpression = true;
1572     Res = ParseCXXTypeid();
1573     break;
1574   case tok::kw___uuidof:
1575     if (NotPrimaryExpression)
1576       *NotPrimaryExpression = true;
1577     Res = ParseCXXUuidof();
1578     break;
1579   case tok::kw_this:
1580     Res = ParseCXXThis();
1581     break;
1582   case tok::kw___builtin_sycl_unique_stable_name:
1583     Res = ParseSYCLUniqueStableNameExpression();
1584     break;
1585 
1586   case tok::annot_typename:
1587     if (isStartOfObjCClassMessageMissingOpenBracket()) {
1588       TypeResult Type = getTypeAnnotation(Tok);
1589 
1590       // Fake up a Declarator to use with ActOnTypeName.
1591       DeclSpec DS(AttrFactory);
1592       DS.SetRangeStart(Tok.getLocation());
1593       DS.SetRangeEnd(Tok.getLastLoc());
1594 
1595       const char *PrevSpec = nullptr;
1596       unsigned DiagID;
1597       DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1598                          PrevSpec, DiagID, Type,
1599                          Actions.getASTContext().getPrintingPolicy());
1600 
1601       Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1602                                 DeclaratorContext::TypeName);
1603       TypeResult Ty = Actions.ActOnTypeName(DeclaratorInfo);
1604       if (Ty.isInvalid())
1605         break;
1606 
1607       ConsumeAnnotationToken();
1608       Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1609                                            Ty.get(), nullptr);
1610       break;
1611     }
1612     [[fallthrough]];
1613 
1614   case tok::annot_decltype:
1615   case tok::annot_pack_indexing_type:
1616   case tok::kw_char:
1617   case tok::kw_wchar_t:
1618   case tok::kw_char8_t:
1619   case tok::kw_char16_t:
1620   case tok::kw_char32_t:
1621   case tok::kw_bool:
1622   case tok::kw_short:
1623   case tok::kw_int:
1624   case tok::kw_long:
1625   case tok::kw___int64:
1626   case tok::kw___int128:
1627   case tok::kw__ExtInt:
1628   case tok::kw__BitInt:
1629   case tok::kw_signed:
1630   case tok::kw_unsigned:
1631   case tok::kw_half:
1632   case tok::kw_float:
1633   case tok::kw_double:
1634   case tok::kw___bf16:
1635   case tok::kw__Float16:
1636   case tok::kw___float128:
1637   case tok::kw___ibm128:
1638   case tok::kw_void:
1639   case tok::kw_auto:
1640   case tok::kw_typename:
1641   case tok::kw_typeof:
1642   case tok::kw___vector:
1643   case tok::kw__Accum:
1644   case tok::kw__Fract:
1645   case tok::kw__Sat:
1646 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1647 #include "clang/Basic/OpenCLImageTypes.def"
1648   {
1649     if (!getLangOpts().CPlusPlus) {
1650       Diag(Tok, diag::err_expected_expression);
1651       return ExprError();
1652     }
1653 
1654     // Everything henceforth is a postfix-expression.
1655     if (NotPrimaryExpression)
1656       *NotPrimaryExpression = true;
1657 
1658     if (SavedKind == tok::kw_typename) {
1659       // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1660       //                     typename-specifier braced-init-list
1661       if (TryAnnotateTypeOrScopeToken())
1662         return ExprError();
1663 
1664       if (!Tok.isSimpleTypeSpecifier(getLangOpts()))
1665         // We are trying to parse a simple-type-specifier but might not get such
1666         // a token after error recovery.
1667         return ExprError();
1668     }
1669 
1670     // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1671     //                     simple-type-specifier braced-init-list
1672     //
1673     DeclSpec DS(AttrFactory);
1674 
1675     ParseCXXSimpleTypeSpecifier(DS);
1676     if (Tok.isNot(tok::l_paren) &&
1677         (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1678       return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1679                          << DS.getSourceRange());
1680 
1681     if (Tok.is(tok::l_brace))
1682       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1683 
1684     Res = ParseCXXTypeConstructExpression(DS);
1685     break;
1686   }
1687 
1688   case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1689     // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1690     // (We can end up in this situation after tentative parsing.)
1691     if (TryAnnotateTypeOrScopeToken())
1692       return ExprError();
1693     if (!Tok.is(tok::annot_cxxscope))
1694       return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1695                                  isTypeCast, isVectorLiteral,
1696                                  NotPrimaryExpression);
1697 
1698     Token Next = NextToken();
1699     if (Next.is(tok::annot_template_id)) {
1700       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1701       if (TemplateId->Kind == TNK_Type_template) {
1702         // We have a qualified template-id that we know refers to a
1703         // type, translate it into a type and continue parsing as a
1704         // cast expression.
1705         CXXScopeSpec SS;
1706         ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
1707                                        /*ObjectHasErrors=*/false,
1708                                        /*EnteringContext=*/false);
1709         AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1710         return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1711                                    isTypeCast, isVectorLiteral,
1712                                    NotPrimaryExpression);
1713       }
1714     }
1715 
1716     // Parse as an id-expression.
1717     Res = ParseCXXIdExpression(isAddressOfOperand);
1718     break;
1719   }
1720 
1721   case tok::annot_template_id: { // [C++]          template-id
1722     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1723     if (TemplateId->Kind == TNK_Type_template) {
1724       // We have a template-id that we know refers to a type,
1725       // translate it into a type and continue parsing as a cast
1726       // expression.
1727       CXXScopeSpec SS;
1728       AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1729       return ParseCastExpression(ParseKind, isAddressOfOperand,
1730                                  NotCastExpr, isTypeCast, isVectorLiteral,
1731                                  NotPrimaryExpression);
1732     }
1733 
1734     // Fall through to treat the template-id as an id-expression.
1735     [[fallthrough]];
1736   }
1737 
1738   case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1739     Res = ParseCXXIdExpression(isAddressOfOperand);
1740     break;
1741 
1742   case tok::coloncolon: {
1743     // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1744     // annotates the token, tail recurse.
1745     if (TryAnnotateTypeOrScopeToken())
1746       return ExprError();
1747     if (!Tok.is(tok::coloncolon))
1748       return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1749                                  isVectorLiteral, NotPrimaryExpression);
1750 
1751     // ::new -> [C++] new-expression
1752     // ::delete -> [C++] delete-expression
1753     SourceLocation CCLoc = ConsumeToken();
1754     if (Tok.is(tok::kw_new)) {
1755       if (NotPrimaryExpression)
1756         *NotPrimaryExpression = true;
1757       Res = ParseCXXNewExpression(true, CCLoc);
1758       AllowSuffix = false;
1759       break;
1760     }
1761     if (Tok.is(tok::kw_delete)) {
1762       if (NotPrimaryExpression)
1763         *NotPrimaryExpression = true;
1764       Res = ParseCXXDeleteExpression(true, CCLoc);
1765       AllowSuffix = false;
1766       break;
1767     }
1768 
1769     // This is not a type name or scope specifier, it is an invalid expression.
1770     Diag(CCLoc, diag::err_expected_expression);
1771     return ExprError();
1772   }
1773 
1774   case tok::kw_new: // [C++] new-expression
1775     if (NotPrimaryExpression)
1776       *NotPrimaryExpression = true;
1777     Res = ParseCXXNewExpression(false, Tok.getLocation());
1778     AllowSuffix = false;
1779     break;
1780 
1781   case tok::kw_delete: // [C++] delete-expression
1782     if (NotPrimaryExpression)
1783       *NotPrimaryExpression = true;
1784     Res = ParseCXXDeleteExpression(false, Tok.getLocation());
1785     AllowSuffix = false;
1786     break;
1787 
1788   case tok::kw_requires: // [C++2a] requires-expression
1789     Res = ParseRequiresExpression();
1790     AllowSuffix = false;
1791     break;
1792 
1793   case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1794     if (NotPrimaryExpression)
1795       *NotPrimaryExpression = true;
1796     Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1797     SourceLocation KeyLoc = ConsumeToken();
1798     BalancedDelimiterTracker T(*this, tok::l_paren);
1799 
1800     if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1801       return ExprError();
1802     // C++11 [expr.unary.noexcept]p1:
1803     //   The noexcept operator determines whether the evaluation of its operand,
1804     //   which is an unevaluated operand, can throw an exception.
1805     EnterExpressionEvaluationContext Unevaluated(
1806         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1807     Res = ParseExpression();
1808 
1809     T.consumeClose();
1810 
1811     if (!Res.isInvalid())
1812       Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(),
1813                                       T.getCloseLocation());
1814     AllowSuffix = false;
1815     break;
1816   }
1817 
1818 #define TYPE_TRAIT(N,Spelling,K) \
1819   case tok::kw_##Spelling:
1820 #include "clang/Basic/TokenKinds.def"
1821     Res = ParseTypeTrait();
1822     break;
1823 
1824   case tok::kw___array_rank:
1825   case tok::kw___array_extent:
1826     if (NotPrimaryExpression)
1827       *NotPrimaryExpression = true;
1828     Res = ParseArrayTypeTrait();
1829     break;
1830 
1831   case tok::kw___builtin_ptrauth_type_discriminator:
1832     return ParseBuiltinPtrauthTypeDiscriminator();
1833 
1834   case tok::kw___is_lvalue_expr:
1835   case tok::kw___is_rvalue_expr:
1836     if (NotPrimaryExpression)
1837       *NotPrimaryExpression = true;
1838     Res = ParseExpressionTrait();
1839     break;
1840 
1841   case tok::at: {
1842     if (NotPrimaryExpression)
1843       *NotPrimaryExpression = true;
1844     SourceLocation AtLoc = ConsumeToken();
1845     return ParseObjCAtExpression(AtLoc);
1846   }
1847   case tok::caret:
1848     Res = ParseBlockLiteralExpression();
1849     break;
1850   case tok::code_completion: {
1851     cutOffParsing();
1852     Actions.CodeCompletion().CodeCompleteExpression(
1853         getCurScope(), PreferredType.get(Tok.getLocation()));
1854     return ExprError();
1855   }
1856 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
1857 #include "clang/Basic/TransformTypeTraits.def"
1858     // HACK: libstdc++ uses some of the transform-type-traits as alias
1859     // templates, so we need to work around this.
1860     if (!NextToken().is(tok::l_paren)) {
1861       Tok.setKind(tok::identifier);
1862       Diag(Tok, diag::ext_keyword_as_ident)
1863           << Tok.getIdentifierInfo()->getName() << 0;
1864       goto ParseIdentifier;
1865     }
1866     goto ExpectedExpression;
1867   case tok::l_square:
1868     if (getLangOpts().CPlusPlus) {
1869       if (getLangOpts().ObjC) {
1870         // C++11 lambda expressions and Objective-C message sends both start with a
1871         // square bracket.  There are three possibilities here:
1872         // we have a valid lambda expression, we have an invalid lambda
1873         // expression, or we have something that doesn't appear to be a lambda.
1874         // If we're in the last case, we fall back to ParseObjCMessageExpression.
1875         Res = TryParseLambdaExpression();
1876         if (!Res.isInvalid() && !Res.get()) {
1877           // We assume Objective-C++ message expressions are not
1878           // primary-expressions.
1879           if (NotPrimaryExpression)
1880             *NotPrimaryExpression = true;
1881           Res = ParseObjCMessageExpression();
1882         }
1883         break;
1884       }
1885       Res = ParseLambdaExpression();
1886       break;
1887     }
1888     if (getLangOpts().ObjC) {
1889       Res = ParseObjCMessageExpression();
1890       break;
1891     }
1892     [[fallthrough]];
1893   default:
1894   ExpectedExpression:
1895     NotCastExpr = true;
1896     return ExprError();
1897   }
1898 
1899   // Check to see whether Res is a function designator only. If it is and we
1900   // are compiling for OpenCL, we need to return an error as this implies
1901   // that the address of the function is being taken, which is illegal in CL.
1902 
1903   if (ParseKind == PrimaryExprOnly)
1904     // This is strictly a primary-expression - no postfix-expr pieces should be
1905     // parsed.
1906     return Res;
1907 
1908   if (!AllowSuffix) {
1909     // FIXME: Don't parse a primary-expression suffix if we encountered a parse
1910     // error already.
1911     if (Res.isInvalid())
1912       return Res;
1913 
1914     switch (Tok.getKind()) {
1915     case tok::l_square:
1916     case tok::l_paren:
1917     case tok::plusplus:
1918     case tok::minusminus:
1919       // "expected ';'" or similar is probably the right diagnostic here. Let
1920       // the caller decide what to do.
1921       if (Tok.isAtStartOfLine())
1922         return Res;
1923 
1924       [[fallthrough]];
1925     case tok::period:
1926     case tok::arrow:
1927       break;
1928 
1929     default:
1930       return Res;
1931     }
1932 
1933     // This was a unary-expression for which a postfix-expression suffix is
1934     // not permitted by the grammar (eg, a sizeof expression or
1935     // new-expression or similar). Diagnose but parse the suffix anyway.
1936     Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens)
1937         << Tok.getKind() << Res.get()->getSourceRange()
1938         << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(")
1939         << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation),
1940                                       ")");
1941   }
1942 
1943   // These can be followed by postfix-expr pieces.
1944   PreferredType = SavedType;
1945   Res = ParsePostfixExpressionSuffix(Res);
1946   if (getLangOpts().OpenCL &&
1947       !getActions().getOpenCLOptions().isAvailableOption(
1948           "__cl_clang_function_pointers", getLangOpts()))
1949     if (Expr *PostfixExpr = Res.get()) {
1950       QualType Ty = PostfixExpr->getType();
1951       if (!Ty.isNull() && Ty->isFunctionType()) {
1952         Diag(PostfixExpr->getExprLoc(),
1953              diag::err_opencl_taking_function_address_parser);
1954         return ExprError();
1955       }
1956     }
1957 
1958   return Res;
1959 }
1960 
1961 /// Once the leading part of a postfix-expression is parsed, this
1962 /// method parses any suffixes that apply.
1963 ///
1964 /// \verbatim
1965 ///       postfix-expression: [C99 6.5.2]
1966 ///         primary-expression
1967 ///         postfix-expression '[' expression ']'
1968 ///         postfix-expression '[' braced-init-list ']'
1969 ///         postfix-expression '[' expression-list [opt] ']'  [C++23 12.4.5]
1970 ///         postfix-expression '(' argument-expression-list[opt] ')'
1971 ///         postfix-expression '.' identifier
1972 ///         postfix-expression '->' identifier
1973 ///         postfix-expression '++'
1974 ///         postfix-expression '--'
1975 ///         '(' type-name ')' '{' initializer-list '}'
1976 ///         '(' type-name ')' '{' initializer-list ',' '}'
1977 ///
1978 ///       argument-expression-list: [C99 6.5.2]
1979 ///         argument-expression ...[opt]
1980 ///         argument-expression-list ',' assignment-expression ...[opt]
1981 /// \endverbatim
1982 ExprResult
ParsePostfixExpressionSuffix(ExprResult LHS)1983 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1984   // Now that the primary-expression piece of the postfix-expression has been
1985   // parsed, see if there are any postfix-expression pieces here.
1986   SourceLocation Loc;
1987   auto SavedType = PreferredType;
1988   while (true) {
1989     // Each iteration relies on preferred type for the whole expression.
1990     PreferredType = SavedType;
1991     switch (Tok.getKind()) {
1992     case tok::code_completion:
1993       if (InMessageExpression)
1994         return LHS;
1995 
1996       cutOffParsing();
1997       Actions.CodeCompletion().CodeCompletePostfixExpression(
1998           getCurScope(), LHS, PreferredType.get(Tok.getLocation()));
1999       return ExprError();
2000 
2001     case tok::identifier:
2002       // If we see identifier: after an expression, and we're not already in a
2003       // message send, then this is probably a message send with a missing
2004       // opening bracket '['.
2005       if (getLangOpts().ObjC && !InMessageExpression &&
2006           (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2007         LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
2008                                              nullptr, LHS.get());
2009         break;
2010       }
2011       // Fall through; this isn't a message send.
2012       [[fallthrough]];
2013 
2014     default:  // Not a postfix-expression suffix.
2015       return LHS;
2016     case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
2017       // If we have a array postfix expression that starts on a new line and
2018       // Objective-C is enabled, it is highly likely that the user forgot a
2019       // semicolon after the base expression and that the array postfix-expr is
2020       // actually another message send.  In this case, do some look-ahead to see
2021       // if the contents of the square brackets are obviously not a valid
2022       // expression and recover by pretending there is no suffix.
2023       if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
2024           isSimpleObjCMessageExpression())
2025         return LHS;
2026 
2027       // Reject array indices starting with a lambda-expression. '[[' is
2028       // reserved for attributes.
2029       if (CheckProhibitedCXX11Attribute()) {
2030         (void)Actions.CorrectDelayedTyposInExpr(LHS);
2031         return ExprError();
2032       }
2033       BalancedDelimiterTracker T(*this, tok::l_square);
2034       T.consumeOpen();
2035       Loc = T.getOpenLocation();
2036       ExprResult Length, Stride;
2037       SourceLocation ColonLocFirst, ColonLocSecond;
2038       ExprVector ArgExprs;
2039       bool HasError = false;
2040       PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get());
2041 
2042       // We try to parse a list of indexes in all language mode first
2043       // and, in we find 0 or one index, we try to parse an OpenMP/OpenACC array
2044       // section. This allow us to support C++23 multi dimensional subscript and
2045       // OpenMP/OpenACC sections in the same language mode.
2046       if ((!getLangOpts().OpenMP && !AllowOpenACCArraySections) ||
2047           Tok.isNot(tok::colon)) {
2048         if (!getLangOpts().CPlusPlus23) {
2049           ExprResult Idx;
2050           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2051             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2052             Idx = ParseBraceInitializer();
2053           } else {
2054             Idx = ParseExpression(); // May be a comma expression
2055           }
2056           LHS = Actions.CorrectDelayedTyposInExpr(LHS);
2057           Idx = Actions.CorrectDelayedTyposInExpr(Idx);
2058           if (Idx.isInvalid()) {
2059             HasError = true;
2060           } else {
2061             ArgExprs.push_back(Idx.get());
2062           }
2063         } else if (Tok.isNot(tok::r_square)) {
2064           if (ParseExpressionList(ArgExprs)) {
2065             LHS = Actions.CorrectDelayedTyposInExpr(LHS);
2066             HasError = true;
2067           }
2068         }
2069       }
2070 
2071       // Handle OpenACC first, since 'AllowOpenACCArraySections' is only enabled
2072       // when actively parsing a 'var' in a 'var-list' during clause/'cache'
2073       // parsing, so it is the most specific, and best allows us to handle
2074       // OpenACC and OpenMP at the same time.
2075       if (ArgExprs.size() <= 1 && AllowOpenACCArraySections) {
2076         ColonProtectionRAIIObject RAII(*this);
2077         if (Tok.is(tok::colon)) {
2078           // Consume ':'
2079           ColonLocFirst = ConsumeToken();
2080           if (Tok.isNot(tok::r_square))
2081             Length = Actions.CorrectDelayedTyposInExpr(ParseExpression());
2082         }
2083       } else if (ArgExprs.size() <= 1 && getLangOpts().OpenMP) {
2084         ColonProtectionRAIIObject RAII(*this);
2085         if (Tok.is(tok::colon)) {
2086           // Consume ':'
2087           ColonLocFirst = ConsumeToken();
2088           if (Tok.isNot(tok::r_square) &&
2089               (getLangOpts().OpenMP < 50 ||
2090                ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) {
2091             Length = ParseExpression();
2092             Length = Actions.CorrectDelayedTyposInExpr(Length);
2093           }
2094         }
2095         if (getLangOpts().OpenMP >= 50 &&
2096             (OMPClauseKind == llvm::omp::Clause::OMPC_to ||
2097              OMPClauseKind == llvm::omp::Clause::OMPC_from) &&
2098             Tok.is(tok::colon)) {
2099           // Consume ':'
2100           ColonLocSecond = ConsumeToken();
2101           if (Tok.isNot(tok::r_square)) {
2102             Stride = ParseExpression();
2103           }
2104         }
2105       }
2106 
2107       SourceLocation RLoc = Tok.getLocation();
2108       LHS = Actions.CorrectDelayedTyposInExpr(LHS);
2109 
2110       if (!LHS.isInvalid() && !HasError && !Length.isInvalid() &&
2111           !Stride.isInvalid() && Tok.is(tok::r_square)) {
2112         if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) {
2113           // Like above, AllowOpenACCArraySections is 'more specific' and only
2114           // enabled when actively parsing a 'var' in a 'var-list' during
2115           // clause/'cache' construct parsing, so it is more specific. So we
2116           // should do it first, so that the correct node gets created.
2117           if (AllowOpenACCArraySections) {
2118             assert(!Stride.isUsable() && !ColonLocSecond.isValid() &&
2119                    "Stride/second colon not allowed for OpenACC");
2120             LHS = Actions.OpenACC().ActOnArraySectionExpr(
2121                 LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0],
2122                 ColonLocFirst, Length.get(), RLoc);
2123           } else {
2124             LHS = Actions.OpenMP().ActOnOMPArraySectionExpr(
2125                 LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0],
2126                 ColonLocFirst, ColonLocSecond, Length.get(), Stride.get(),
2127                 RLoc);
2128           }
2129         } else {
2130           LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
2131                                                 ArgExprs, RLoc);
2132         }
2133       } else {
2134         LHS = ExprError();
2135       }
2136 
2137       // Match the ']'.
2138       T.consumeClose();
2139       break;
2140     }
2141 
2142     case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
2143     case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
2144                                //   '(' argument-expression-list[opt] ')'
2145       tok::TokenKind OpKind = Tok.getKind();
2146       InMessageExpressionRAIIObject InMessage(*this, false);
2147 
2148       Expr *ExecConfig = nullptr;
2149 
2150       BalancedDelimiterTracker PT(*this, tok::l_paren);
2151 
2152       if (OpKind == tok::lesslessless) {
2153         ExprVector ExecConfigExprs;
2154         SourceLocation OpenLoc = ConsumeToken();
2155 
2156         if (ParseSimpleExpressionList(ExecConfigExprs)) {
2157           (void)Actions.CorrectDelayedTyposInExpr(LHS);
2158           LHS = ExprError();
2159         }
2160 
2161         SourceLocation CloseLoc;
2162         if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
2163         } else if (LHS.isInvalid()) {
2164           SkipUntil(tok::greatergreatergreater, StopAtSemi);
2165         } else {
2166           // There was an error closing the brackets
2167           Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
2168           Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
2169           SkipUntil(tok::greatergreatergreater, StopAtSemi);
2170           LHS = ExprError();
2171         }
2172 
2173         if (!LHS.isInvalid()) {
2174           if (ExpectAndConsume(tok::l_paren))
2175             LHS = ExprError();
2176           else
2177             Loc = PrevTokLocation;
2178         }
2179 
2180         if (!LHS.isInvalid()) {
2181           ExprResult ECResult = Actions.CUDA().ActOnExecConfigExpr(
2182               getCurScope(), OpenLoc, ExecConfigExprs, CloseLoc);
2183           if (ECResult.isInvalid())
2184             LHS = ExprError();
2185           else
2186             ExecConfig = ECResult.get();
2187         }
2188       } else {
2189         PT.consumeOpen();
2190         Loc = PT.getOpenLocation();
2191       }
2192 
2193       ExprVector ArgExprs;
2194       auto RunSignatureHelp = [&]() -> QualType {
2195         QualType PreferredType =
2196             Actions.CodeCompletion().ProduceCallSignatureHelp(
2197                 LHS.get(), ArgExprs, PT.getOpenLocation());
2198         CalledSignatureHelp = true;
2199         return PreferredType;
2200       };
2201       if (OpKind == tok::l_paren || !LHS.isInvalid()) {
2202         if (Tok.isNot(tok::r_paren)) {
2203           if (ParseExpressionList(ArgExprs, [&] {
2204                 PreferredType.enterFunctionArgument(Tok.getLocation(),
2205                                                     RunSignatureHelp);
2206               })) {
2207             (void)Actions.CorrectDelayedTyposInExpr(LHS);
2208             // If we got an error when parsing expression list, we don't call
2209             // the CodeCompleteCall handler inside the parser. So call it here
2210             // to make sure we get overload suggestions even when we are in the
2211             // middle of a parameter.
2212             if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
2213               RunSignatureHelp();
2214             LHS = ExprError();
2215           } else if (LHS.isInvalid()) {
2216             for (auto &E : ArgExprs)
2217               Actions.CorrectDelayedTyposInExpr(E);
2218           }
2219         }
2220       }
2221 
2222       // Match the ')'.
2223       if (LHS.isInvalid()) {
2224         SkipUntil(tok::r_paren, StopAtSemi);
2225       } else if (Tok.isNot(tok::r_paren)) {
2226         bool HadDelayedTypo = false;
2227         if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
2228           HadDelayedTypo = true;
2229         for (auto &E : ArgExprs)
2230           if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
2231             HadDelayedTypo = true;
2232         // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
2233         // instead of PT.consumeClose() to avoid emitting extra diagnostics for
2234         // the unmatched l_paren.
2235         if (HadDelayedTypo)
2236           SkipUntil(tok::r_paren, StopAtSemi);
2237         else
2238           PT.consumeClose();
2239         LHS = ExprError();
2240       } else {
2241         Expr *Fn = LHS.get();
2242         SourceLocation RParLoc = Tok.getLocation();
2243         LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc,
2244                                     ExecConfig);
2245         if (LHS.isInvalid()) {
2246           ArgExprs.insert(ArgExprs.begin(), Fn);
2247           LHS =
2248               Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs);
2249         }
2250         PT.consumeClose();
2251       }
2252 
2253       break;
2254     }
2255     case tok::arrow:
2256     case tok::period: {
2257       // postfix-expression: p-e '->' template[opt] id-expression
2258       // postfix-expression: p-e '.' template[opt] id-expression
2259       tok::TokenKind OpKind = Tok.getKind();
2260       SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
2261 
2262       CXXScopeSpec SS;
2263       ParsedType ObjectType;
2264       bool MayBePseudoDestructor = false;
2265       Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
2266 
2267       PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS);
2268 
2269       if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
2270         Expr *Base = OrigLHS;
2271         const Type* BaseType = Base->getType().getTypePtrOrNull();
2272         if (BaseType && Tok.is(tok::l_paren) &&
2273             (BaseType->isFunctionType() ||
2274              BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
2275           Diag(OpLoc, diag::err_function_is_not_record)
2276               << OpKind << Base->getSourceRange()
2277               << FixItHint::CreateRemoval(OpLoc);
2278           return ParsePostfixExpressionSuffix(Base);
2279         }
2280 
2281         LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc,
2282                                                    OpKind, ObjectType,
2283                                                    MayBePseudoDestructor);
2284         if (LHS.isInvalid()) {
2285           // Clang will try to perform expression based completion as a
2286           // fallback, which is confusing in case of member references. So we
2287           // stop here without any completions.
2288           if (Tok.is(tok::code_completion)) {
2289             cutOffParsing();
2290             return ExprError();
2291           }
2292           break;
2293         }
2294         ParseOptionalCXXScopeSpecifier(
2295             SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2296             /*EnteringContext=*/false, &MayBePseudoDestructor);
2297         if (SS.isNotEmpty())
2298           ObjectType = nullptr;
2299       }
2300 
2301       if (Tok.is(tok::code_completion)) {
2302         tok::TokenKind CorrectedOpKind =
2303             OpKind == tok::arrow ? tok::period : tok::arrow;
2304         ExprResult CorrectedLHS(/*Invalid=*/true);
2305         if (getLangOpts().CPlusPlus && OrigLHS) {
2306           // FIXME: Creating a TentativeAnalysisScope from outside Sema is a
2307           // hack.
2308           Sema::TentativeAnalysisScope Trap(Actions);
2309           CorrectedLHS = Actions.ActOnStartCXXMemberReference(
2310               getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
2311               MayBePseudoDestructor);
2312         }
2313 
2314         Expr *Base = LHS.get();
2315         Expr *CorrectedBase = CorrectedLHS.get();
2316         if (!CorrectedBase && !getLangOpts().CPlusPlus)
2317           CorrectedBase = Base;
2318 
2319         // Code completion for a member access expression.
2320         cutOffParsing();
2321         Actions.CodeCompletion().CodeCompleteMemberReferenceExpr(
2322             getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
2323             Base && ExprStatementTokLoc == Base->getBeginLoc(),
2324             PreferredType.get(Tok.getLocation()));
2325 
2326         return ExprError();
2327       }
2328 
2329       if (MayBePseudoDestructor && !LHS.isInvalid()) {
2330         LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
2331                                        ObjectType);
2332         break;
2333       }
2334 
2335       // Either the action has told us that this cannot be a
2336       // pseudo-destructor expression (based on the type of base
2337       // expression), or we didn't see a '~' in the right place. We
2338       // can still parse a destructor name here, but in that case it
2339       // names a real destructor.
2340       // Allow explicit constructor calls in Microsoft mode.
2341       // FIXME: Add support for explicit call of template constructor.
2342       SourceLocation TemplateKWLoc;
2343       UnqualifiedId Name;
2344       if (getLangOpts().ObjC && OpKind == tok::period &&
2345           Tok.is(tok::kw_class)) {
2346         // Objective-C++:
2347         //   After a '.' in a member access expression, treat the keyword
2348         //   'class' as if it were an identifier.
2349         //
2350         // This hack allows property access to the 'class' method because it is
2351         // such a common method name. For other C++ keywords that are
2352         // Objective-C method names, one must use the message send syntax.
2353         IdentifierInfo *Id = Tok.getIdentifierInfo();
2354         SourceLocation Loc = ConsumeToken();
2355         Name.setIdentifier(Id, Loc);
2356       } else if (ParseUnqualifiedId(
2357                      SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2358                      /*EnteringContext=*/false,
2359                      /*AllowDestructorName=*/true,
2360                      /*AllowConstructorName=*/
2361                      getLangOpts().MicrosoftExt && SS.isNotEmpty(),
2362                      /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) {
2363         (void)Actions.CorrectDelayedTyposInExpr(LHS);
2364         LHS = ExprError();
2365       }
2366 
2367       if (!LHS.isInvalid())
2368         LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
2369                                             OpKind, SS, TemplateKWLoc, Name,
2370                                  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
2371                                                    : nullptr);
2372       if (!LHS.isInvalid()) {
2373         if (Tok.is(tok::less))
2374           checkPotentialAngleBracket(LHS);
2375       } else if (OrigLHS && Name.isValid()) {
2376         // Preserve the LHS if the RHS is an invalid member.
2377         LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(),
2378                                          Name.getEndLoc(), {OrigLHS});
2379       }
2380       break;
2381     }
2382     case tok::plusplus:    // postfix-expression: postfix-expression '++'
2383     case tok::minusminus:  // postfix-expression: postfix-expression '--'
2384       if (!LHS.isInvalid()) {
2385         Expr *Arg = LHS.get();
2386         LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
2387                                           Tok.getKind(), Arg);
2388         if (LHS.isInvalid())
2389           LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(),
2390                                            Tok.getLocation(), Arg);
2391       }
2392       ConsumeToken();
2393       break;
2394     }
2395   }
2396 }
2397 
2398 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
2399 /// vec_step and we are at the start of an expression or a parenthesized
2400 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
2401 /// expression (isCastExpr == false) or the type (isCastExpr == true).
2402 ///
2403 /// \verbatim
2404 ///       unary-expression:  [C99 6.5.3]
2405 ///         'sizeof' unary-expression
2406 ///         'sizeof' '(' type-name ')'
2407 /// [Clang] '__datasizeof' unary-expression
2408 /// [Clang] '__datasizeof' '(' type-name ')'
2409 /// [GNU]   '__alignof' unary-expression
2410 /// [GNU]   '__alignof' '(' type-name ')'
2411 /// [C11]   '_Alignof' '(' type-name ')'
2412 /// [C++0x] 'alignof' '(' type-id ')'
2413 ///
2414 /// [GNU]   typeof-specifier:
2415 ///           typeof ( expressions )
2416 ///           typeof ( type-name )
2417 /// [GNU/C++] typeof unary-expression
2418 /// [C23]   typeof-specifier:
2419 ///           typeof '(' typeof-specifier-argument ')'
2420 ///           typeof_unqual '(' typeof-specifier-argument ')'
2421 ///
2422 ///         typeof-specifier-argument:
2423 ///           expression
2424 ///           type-name
2425 ///
2426 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
2427 ///           vec_step ( expressions )
2428 ///           vec_step ( type-name )
2429 /// \endverbatim
2430 ExprResult
ParseExprAfterUnaryExprOrTypeTrait(const Token & OpTok,bool & isCastExpr,ParsedType & CastTy,SourceRange & CastRange)2431 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
2432                                            bool &isCastExpr,
2433                                            ParsedType &CastTy,
2434                                            SourceRange &CastRange) {
2435 
2436   assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual, tok::kw_sizeof,
2437                        tok::kw___datasizeof, tok::kw___alignof, tok::kw_alignof,
2438                        tok::kw__Alignof, tok::kw_vec_step,
2439                        tok::kw___builtin_omp_required_simd_align,
2440                        tok::kw___builtin_vectorelements) &&
2441          "Not a typeof/sizeof/alignof/vec_step expression!");
2442 
2443   ExprResult Operand;
2444 
2445   // If the operand doesn't start with an '(', it must be an expression.
2446   if (Tok.isNot(tok::l_paren)) {
2447     // If construct allows a form without parenthesis, user may forget to put
2448     // pathenthesis around type name.
2449     if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof,
2450                       tok::kw_alignof, tok::kw__Alignof)) {
2451       if (isTypeIdUnambiguously()) {
2452         DeclSpec DS(AttrFactory);
2453         ParseSpecifierQualifierList(DS);
2454         Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
2455                                   DeclaratorContext::TypeName);
2456         ParseDeclarator(DeclaratorInfo);
2457 
2458         SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
2459         SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
2460         if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) {
2461           Diag(OpTok.getLocation(),
2462                diag::err_expected_parentheses_around_typename)
2463               << OpTok.getName();
2464         } else {
2465           Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
2466               << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(")
2467               << FixItHint::CreateInsertion(RParenLoc, ")");
2468         }
2469         isCastExpr = true;
2470         return ExprEmpty();
2471       }
2472     }
2473 
2474     isCastExpr = false;
2475     if (OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) &&
2476         !getLangOpts().CPlusPlus) {
2477       Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
2478                                           << tok::l_paren;
2479       return ExprError();
2480     }
2481 
2482     Operand = ParseCastExpression(UnaryExprOnly);
2483   } else {
2484     // If it starts with a '(', we know that it is either a parenthesized
2485     // type-name, or it is a unary-expression that starts with a compound
2486     // literal, or starts with a primary-expression that is a parenthesized
2487     // expression.
2488     ParenParseOption ExprType = CastExpr;
2489     SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
2490 
2491     Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
2492                                    false, CastTy, RParenLoc);
2493     CastRange = SourceRange(LParenLoc, RParenLoc);
2494 
2495     // If ParseParenExpression parsed a '(typename)' sequence only, then this is
2496     // a type.
2497     if (ExprType == CastExpr) {
2498       isCastExpr = true;
2499       return ExprEmpty();
2500     }
2501 
2502     if (getLangOpts().CPlusPlus ||
2503         !OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual)) {
2504       // GNU typeof in C requires the expression to be parenthesized. Not so for
2505       // sizeof/alignof or in C++. Therefore, the parenthesized expression is
2506       // the start of a unary-expression, but doesn't include any postfix
2507       // pieces. Parse these now if present.
2508       if (!Operand.isInvalid())
2509         Operand = ParsePostfixExpressionSuffix(Operand.get());
2510     }
2511   }
2512 
2513   // If we get here, the operand to the typeof/sizeof/alignof was an expression.
2514   isCastExpr = false;
2515   return Operand;
2516 }
2517 
2518 /// Parse a __builtin_sycl_unique_stable_name expression.  Accepts a type-id as
2519 /// a parameter.
ParseSYCLUniqueStableNameExpression()2520 ExprResult Parser::ParseSYCLUniqueStableNameExpression() {
2521   assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) &&
2522          "Not __builtin_sycl_unique_stable_name");
2523 
2524   SourceLocation OpLoc = ConsumeToken();
2525   BalancedDelimiterTracker T(*this, tok::l_paren);
2526 
2527   // __builtin_sycl_unique_stable_name expressions are always parenthesized.
2528   if (T.expectAndConsume(diag::err_expected_lparen_after,
2529                          "__builtin_sycl_unique_stable_name"))
2530     return ExprError();
2531 
2532   TypeResult Ty = ParseTypeName();
2533 
2534   if (Ty.isInvalid()) {
2535     T.skipToEnd();
2536     return ExprError();
2537   }
2538 
2539   if (T.consumeClose())
2540     return ExprError();
2541 
2542   return Actions.SYCL().ActOnUniqueStableNameExpr(
2543       OpLoc, T.getOpenLocation(), T.getCloseLocation(), Ty.get());
2544 }
2545 
2546 /// Parse a sizeof or alignof expression.
2547 ///
2548 /// \verbatim
2549 ///       unary-expression:  [C99 6.5.3]
2550 ///         'sizeof' unary-expression
2551 ///         'sizeof' '(' type-name ')'
2552 /// [C++11] 'sizeof' '...' '(' identifier ')'
2553 /// [Clang] '__datasizeof' unary-expression
2554 /// [Clang] '__datasizeof' '(' type-name ')'
2555 /// [GNU]   '__alignof' unary-expression
2556 /// [GNU]   '__alignof' '(' type-name ')'
2557 /// [C11]   '_Alignof' '(' type-name ')'
2558 /// [C++11] 'alignof' '(' type-id ')'
2559 /// \endverbatim
ParseUnaryExprOrTypeTraitExpression()2560 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
2561   assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof,
2562                      tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
2563                      tok::kw___builtin_omp_required_simd_align,
2564                      tok::kw___builtin_vectorelements) &&
2565          "Not a sizeof/alignof/vec_step expression!");
2566   Token OpTok = Tok;
2567   ConsumeToken();
2568 
2569   // [C++11] 'sizeof' '...' '(' identifier ')'
2570   if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
2571     SourceLocation EllipsisLoc = ConsumeToken();
2572     SourceLocation LParenLoc, RParenLoc;
2573     IdentifierInfo *Name = nullptr;
2574     SourceLocation NameLoc;
2575     if (Tok.is(tok::l_paren)) {
2576       BalancedDelimiterTracker T(*this, tok::l_paren);
2577       T.consumeOpen();
2578       LParenLoc = T.getOpenLocation();
2579       if (Tok.is(tok::identifier)) {
2580         Name = Tok.getIdentifierInfo();
2581         NameLoc = ConsumeToken();
2582         T.consumeClose();
2583         RParenLoc = T.getCloseLocation();
2584         if (RParenLoc.isInvalid())
2585           RParenLoc = PP.getLocForEndOfToken(NameLoc);
2586       } else {
2587         Diag(Tok, diag::err_expected_parameter_pack);
2588         SkipUntil(tok::r_paren, StopAtSemi);
2589       }
2590     } else if (Tok.is(tok::identifier)) {
2591       Name = Tok.getIdentifierInfo();
2592       NameLoc = ConsumeToken();
2593       LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
2594       RParenLoc = PP.getLocForEndOfToken(NameLoc);
2595       Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
2596         << Name
2597         << FixItHint::CreateInsertion(LParenLoc, "(")
2598         << FixItHint::CreateInsertion(RParenLoc, ")");
2599     } else {
2600       Diag(Tok, diag::err_sizeof_parameter_pack);
2601     }
2602 
2603     if (!Name)
2604       return ExprError();
2605 
2606     EnterExpressionEvaluationContext Unevaluated(
2607         Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2608         Sema::ReuseLambdaContextDecl);
2609 
2610     return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2611                                                 OpTok.getLocation(),
2612                                                 *Name, NameLoc,
2613                                                 RParenLoc);
2614   }
2615 
2616   if (getLangOpts().CPlusPlus &&
2617       OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2618     Diag(OpTok, diag::warn_cxx98_compat_alignof);
2619   else if (getLangOpts().C23 && OpTok.is(tok::kw_alignof))
2620     Diag(OpTok, diag::warn_c23_compat_keyword) << OpTok.getName();
2621 
2622   EnterExpressionEvaluationContext Unevaluated(
2623       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2624       Sema::ReuseLambdaContextDecl);
2625 
2626   bool isCastExpr;
2627   ParsedType CastTy;
2628   SourceRange CastRange;
2629   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2630                                                           isCastExpr,
2631                                                           CastTy,
2632                                                           CastRange);
2633 
2634   UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2635   switch (OpTok.getKind()) {
2636   case tok::kw_alignof:
2637   case tok::kw__Alignof:
2638     ExprKind = UETT_AlignOf;
2639     break;
2640   case tok::kw___alignof:
2641     ExprKind = UETT_PreferredAlignOf;
2642     break;
2643   case tok::kw_vec_step:
2644     ExprKind = UETT_VecStep;
2645     break;
2646   case tok::kw___builtin_omp_required_simd_align:
2647     ExprKind = UETT_OpenMPRequiredSimdAlign;
2648     break;
2649   case tok::kw___datasizeof:
2650     ExprKind = UETT_DataSizeOf;
2651     break;
2652   case tok::kw___builtin_vectorelements:
2653     ExprKind = UETT_VectorElements;
2654     break;
2655   default:
2656     break;
2657   }
2658 
2659   if (isCastExpr)
2660     return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2661                                                  ExprKind,
2662                                                  /*IsType=*/true,
2663                                                  CastTy.getAsOpaquePtr(),
2664                                                  CastRange);
2665 
2666   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2667     Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2668 
2669   // If we get here, the operand to the sizeof/alignof was an expression.
2670   if (!Operand.isInvalid())
2671     Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2672                                                     ExprKind,
2673                                                     /*IsType=*/false,
2674                                                     Operand.get(),
2675                                                     CastRange);
2676   return Operand;
2677 }
2678 
2679 /// ParseBuiltinPrimaryExpression
2680 ///
2681 /// \verbatim
2682 ///       primary-expression: [C99 6.5.1]
2683 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2684 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2685 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2686 ///                                     assign-expr ')'
2687 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2688 /// [GNU]   '__builtin_FILE' '(' ')'
2689 /// [CLANG] '__builtin_FILE_NAME' '(' ')'
2690 /// [GNU]   '__builtin_FUNCTION' '(' ')'
2691 /// [MS]    '__builtin_FUNCSIG' '(' ')'
2692 /// [GNU]   '__builtin_LINE' '(' ')'
2693 /// [CLANG] '__builtin_COLUMN' '(' ')'
2694 /// [GNU]   '__builtin_source_location' '(' ')'
2695 /// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
2696 ///
2697 /// [GNU] offsetof-member-designator:
2698 /// [GNU]   identifier
2699 /// [GNU]   offsetof-member-designator '.' identifier
2700 /// [GNU]   offsetof-member-designator '[' expression ']'
2701 /// \endverbatim
ParseBuiltinPrimaryExpression()2702 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2703   ExprResult Res;
2704   const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2705 
2706   tok::TokenKind T = Tok.getKind();
2707   SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
2708 
2709   // All of these start with an open paren.
2710   if (Tok.isNot(tok::l_paren))
2711     return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2712                                                          << tok::l_paren);
2713 
2714   BalancedDelimiterTracker PT(*this, tok::l_paren);
2715   PT.consumeOpen();
2716 
2717   // TODO: Build AST.
2718 
2719   switch (T) {
2720   default: llvm_unreachable("Not a builtin primary expression!");
2721   case tok::kw___builtin_va_arg: {
2722     ExprResult Expr(ParseAssignmentExpression());
2723 
2724     if (ExpectAndConsume(tok::comma)) {
2725       SkipUntil(tok::r_paren, StopAtSemi);
2726       Expr = ExprError();
2727     }
2728 
2729     TypeResult Ty = ParseTypeName();
2730 
2731     if (Tok.isNot(tok::r_paren)) {
2732       Diag(Tok, diag::err_expected) << tok::r_paren;
2733       Expr = ExprError();
2734     }
2735 
2736     if (Expr.isInvalid() || Ty.isInvalid())
2737       Res = ExprError();
2738     else
2739       Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2740     break;
2741   }
2742   case tok::kw___builtin_offsetof: {
2743     SourceLocation TypeLoc = Tok.getLocation();
2744     auto OOK = Sema::OffsetOfKind::OOK_Builtin;
2745     if (Tok.getLocation().isMacroID()) {
2746       StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
2747           Tok.getLocation(), PP.getSourceManager(), getLangOpts());
2748       if (MacroName == "offsetof")
2749         OOK = Sema::OffsetOfKind::OOK_Macro;
2750     }
2751     TypeResult Ty;
2752     {
2753       OffsetOfStateRAIIObject InOffsetof(*this, OOK);
2754       Ty = ParseTypeName();
2755       if (Ty.isInvalid()) {
2756         SkipUntil(tok::r_paren, StopAtSemi);
2757         return ExprError();
2758       }
2759     }
2760 
2761     if (ExpectAndConsume(tok::comma)) {
2762       SkipUntil(tok::r_paren, StopAtSemi);
2763       return ExprError();
2764     }
2765 
2766     // We must have at least one identifier here.
2767     if (Tok.isNot(tok::identifier)) {
2768       Diag(Tok, diag::err_expected) << tok::identifier;
2769       SkipUntil(tok::r_paren, StopAtSemi);
2770       return ExprError();
2771     }
2772 
2773     // Keep track of the various subcomponents we see.
2774     SmallVector<Sema::OffsetOfComponent, 4> Comps;
2775 
2776     Comps.push_back(Sema::OffsetOfComponent());
2777     Comps.back().isBrackets = false;
2778     Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2779     Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2780 
2781     // FIXME: This loop leaks the index expressions on error.
2782     while (true) {
2783       if (Tok.is(tok::period)) {
2784         // offsetof-member-designator: offsetof-member-designator '.' identifier
2785         Comps.push_back(Sema::OffsetOfComponent());
2786         Comps.back().isBrackets = false;
2787         Comps.back().LocStart = ConsumeToken();
2788 
2789         if (Tok.isNot(tok::identifier)) {
2790           Diag(Tok, diag::err_expected) << tok::identifier;
2791           SkipUntil(tok::r_paren, StopAtSemi);
2792           return ExprError();
2793         }
2794         Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2795         Comps.back().LocEnd = ConsumeToken();
2796       } else if (Tok.is(tok::l_square)) {
2797         if (CheckProhibitedCXX11Attribute())
2798           return ExprError();
2799 
2800         // offsetof-member-designator: offsetof-member-design '[' expression ']'
2801         Comps.push_back(Sema::OffsetOfComponent());
2802         Comps.back().isBrackets = true;
2803         BalancedDelimiterTracker ST(*this, tok::l_square);
2804         ST.consumeOpen();
2805         Comps.back().LocStart = ST.getOpenLocation();
2806         Res = ParseExpression();
2807         if (Res.isInvalid()) {
2808           SkipUntil(tok::r_paren, StopAtSemi);
2809           return Res;
2810         }
2811         Comps.back().U.E = Res.get();
2812 
2813         ST.consumeClose();
2814         Comps.back().LocEnd = ST.getCloseLocation();
2815       } else {
2816         if (Tok.isNot(tok::r_paren)) {
2817           PT.consumeClose();
2818           Res = ExprError();
2819         } else if (Ty.isInvalid()) {
2820           Res = ExprError();
2821         } else {
2822           PT.consumeClose();
2823           Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2824                                              Ty.get(), Comps,
2825                                              PT.getCloseLocation());
2826         }
2827         break;
2828       }
2829     }
2830     break;
2831   }
2832   case tok::kw___builtin_choose_expr: {
2833     ExprResult Cond(ParseAssignmentExpression());
2834     if (Cond.isInvalid()) {
2835       SkipUntil(tok::r_paren, StopAtSemi);
2836       return Cond;
2837     }
2838     if (ExpectAndConsume(tok::comma)) {
2839       SkipUntil(tok::r_paren, StopAtSemi);
2840       return ExprError();
2841     }
2842 
2843     ExprResult Expr1(ParseAssignmentExpression());
2844     if (Expr1.isInvalid()) {
2845       SkipUntil(tok::r_paren, StopAtSemi);
2846       return Expr1;
2847     }
2848     if (ExpectAndConsume(tok::comma)) {
2849       SkipUntil(tok::r_paren, StopAtSemi);
2850       return ExprError();
2851     }
2852 
2853     ExprResult Expr2(ParseAssignmentExpression());
2854     if (Expr2.isInvalid()) {
2855       SkipUntil(tok::r_paren, StopAtSemi);
2856       return Expr2;
2857     }
2858     if (Tok.isNot(tok::r_paren)) {
2859       Diag(Tok, diag::err_expected) << tok::r_paren;
2860       return ExprError();
2861     }
2862     Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2863                                   Expr2.get(), ConsumeParen());
2864     break;
2865   }
2866   case tok::kw___builtin_astype: {
2867     // The first argument is an expression to be converted, followed by a comma.
2868     ExprResult Expr(ParseAssignmentExpression());
2869     if (Expr.isInvalid()) {
2870       SkipUntil(tok::r_paren, StopAtSemi);
2871       return ExprError();
2872     }
2873 
2874     if (ExpectAndConsume(tok::comma)) {
2875       SkipUntil(tok::r_paren, StopAtSemi);
2876       return ExprError();
2877     }
2878 
2879     // Second argument is the type to bitcast to.
2880     TypeResult DestTy = ParseTypeName();
2881     if (DestTy.isInvalid())
2882       return ExprError();
2883 
2884     // Attempt to consume the r-paren.
2885     if (Tok.isNot(tok::r_paren)) {
2886       Diag(Tok, diag::err_expected) << tok::r_paren;
2887       SkipUntil(tok::r_paren, StopAtSemi);
2888       return ExprError();
2889     }
2890 
2891     Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2892                                   ConsumeParen());
2893     break;
2894   }
2895   case tok::kw___builtin_convertvector: {
2896     // The first argument is an expression to be converted, followed by a comma.
2897     ExprResult Expr(ParseAssignmentExpression());
2898     if (Expr.isInvalid()) {
2899       SkipUntil(tok::r_paren, StopAtSemi);
2900       return ExprError();
2901     }
2902 
2903     if (ExpectAndConsume(tok::comma)) {
2904       SkipUntil(tok::r_paren, StopAtSemi);
2905       return ExprError();
2906     }
2907 
2908     // Second argument is the type to bitcast to.
2909     TypeResult DestTy = ParseTypeName();
2910     if (DestTy.isInvalid())
2911       return ExprError();
2912 
2913     // Attempt to consume the r-paren.
2914     if (Tok.isNot(tok::r_paren)) {
2915       Diag(Tok, diag::err_expected) << tok::r_paren;
2916       SkipUntil(tok::r_paren, StopAtSemi);
2917       return ExprError();
2918     }
2919 
2920     Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2921                                          ConsumeParen());
2922     break;
2923   }
2924   case tok::kw___builtin_COLUMN:
2925   case tok::kw___builtin_FILE:
2926   case tok::kw___builtin_FILE_NAME:
2927   case tok::kw___builtin_FUNCTION:
2928   case tok::kw___builtin_FUNCSIG:
2929   case tok::kw___builtin_LINE:
2930   case tok::kw___builtin_source_location: {
2931     // Attempt to consume the r-paren.
2932     if (Tok.isNot(tok::r_paren)) {
2933       Diag(Tok, diag::err_expected) << tok::r_paren;
2934       SkipUntil(tok::r_paren, StopAtSemi);
2935       return ExprError();
2936     }
2937     SourceLocIdentKind Kind = [&] {
2938       switch (T) {
2939       case tok::kw___builtin_FILE:
2940         return SourceLocIdentKind::File;
2941       case tok::kw___builtin_FILE_NAME:
2942         return SourceLocIdentKind::FileName;
2943       case tok::kw___builtin_FUNCTION:
2944         return SourceLocIdentKind::Function;
2945       case tok::kw___builtin_FUNCSIG:
2946         return SourceLocIdentKind::FuncSig;
2947       case tok::kw___builtin_LINE:
2948         return SourceLocIdentKind::Line;
2949       case tok::kw___builtin_COLUMN:
2950         return SourceLocIdentKind::Column;
2951       case tok::kw___builtin_source_location:
2952         return SourceLocIdentKind::SourceLocStruct;
2953       default:
2954         llvm_unreachable("invalid keyword");
2955       }
2956     }();
2957     Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen());
2958     break;
2959   }
2960   }
2961 
2962   if (Res.isInvalid())
2963     return ExprError();
2964 
2965   // These can be followed by postfix-expr pieces because they are
2966   // primary-expressions.
2967   return ParsePostfixExpressionSuffix(Res.get());
2968 }
2969 
tryParseOpenMPArrayShapingCastPart()2970 bool Parser::tryParseOpenMPArrayShapingCastPart() {
2971   assert(Tok.is(tok::l_square) && "Expected open bracket");
2972   bool ErrorFound = true;
2973   TentativeParsingAction TPA(*this);
2974   do {
2975     if (Tok.isNot(tok::l_square))
2976       break;
2977     // Consume '['
2978     ConsumeBracket();
2979     // Skip inner expression.
2980     while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end,
2981                       StopAtSemi | StopBeforeMatch))
2982       ;
2983     if (Tok.isNot(tok::r_square))
2984       break;
2985     // Consume ']'
2986     ConsumeBracket();
2987     // Found ')' - done.
2988     if (Tok.is(tok::r_paren)) {
2989       ErrorFound = false;
2990       break;
2991     }
2992   } while (Tok.isNot(tok::annot_pragma_openmp_end));
2993   TPA.Revert();
2994   return !ErrorFound;
2995 }
2996 
2997 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2998 /// based on what is allowed by ExprType.  The actual thing parsed is returned
2999 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
3000 /// not the parsed cast-expression.
3001 ///
3002 /// \verbatim
3003 ///       primary-expression: [C99 6.5.1]
3004 ///         '(' expression ')'
3005 /// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
3006 ///       postfix-expression: [C99 6.5.2]
3007 ///         '(' type-name ')' '{' initializer-list '}'
3008 ///         '(' type-name ')' '{' initializer-list ',' '}'
3009 ///       cast-expression: [C99 6.5.4]
3010 ///         '(' type-name ')' cast-expression
3011 /// [ARC]   bridged-cast-expression
3012 /// [ARC] bridged-cast-expression:
3013 ///         (__bridge type-name) cast-expression
3014 ///         (__bridge_transfer type-name) cast-expression
3015 ///         (__bridge_retained type-name) cast-expression
3016 ///       fold-expression: [C++1z]
3017 ///         '(' cast-expression fold-operator '...' ')'
3018 ///         '(' '...' fold-operator cast-expression ')'
3019 ///         '(' cast-expression fold-operator '...'
3020 ///                 fold-operator cast-expression ')'
3021 /// [OPENMP] Array shaping operation
3022 ///       '(' '[' expression ']' { '[' expression ']' } cast-expression
3023 /// \endverbatim
3024 ExprResult
ParseParenExpression(ParenParseOption & ExprType,bool stopIfCastExpr,bool isTypeCast,ParsedType & CastTy,SourceLocation & RParenLoc)3025 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
3026                              bool isTypeCast, ParsedType &CastTy,
3027                              SourceLocation &RParenLoc) {
3028   assert(Tok.is(tok::l_paren) && "Not a paren expr!");
3029   ColonProtectionRAIIObject ColonProtection(*this, false);
3030   BalancedDelimiterTracker T(*this, tok::l_paren);
3031   if (T.consumeOpen())
3032     return ExprError();
3033   SourceLocation OpenLoc = T.getOpenLocation();
3034 
3035   PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc);
3036 
3037   ExprResult Result(true);
3038   bool isAmbiguousTypeId;
3039   CastTy = nullptr;
3040 
3041   if (Tok.is(tok::code_completion)) {
3042     cutOffParsing();
3043     Actions.CodeCompletion().CodeCompleteExpression(
3044         getCurScope(), PreferredType.get(Tok.getLocation()),
3045         /*IsParenthesized=*/ExprType >= CompoundLiteral);
3046     return ExprError();
3047   }
3048 
3049   // Diagnose use of bridge casts in non-arc mode.
3050   bool BridgeCast = (getLangOpts().ObjC &&
3051                      Tok.isOneOf(tok::kw___bridge,
3052                                  tok::kw___bridge_transfer,
3053                                  tok::kw___bridge_retained,
3054                                  tok::kw___bridge_retain));
3055   if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
3056     if (!TryConsumeToken(tok::kw___bridge)) {
3057       StringRef BridgeCastName = Tok.getName();
3058       SourceLocation BridgeKeywordLoc = ConsumeToken();
3059       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
3060         Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
3061           << BridgeCastName
3062           << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
3063     }
3064     BridgeCast = false;
3065   }
3066 
3067   // None of these cases should fall through with an invalid Result
3068   // unless they've already reported an error.
3069   if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
3070     Diag(Tok, OpenLoc.isMacroID() ? diag::ext_gnu_statement_expr_macro
3071                                   : diag::ext_gnu_statement_expr);
3072 
3073     checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin);
3074 
3075     if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
3076       Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
3077     } else {
3078       // Find the nearest non-record decl context. Variables declared in a
3079       // statement expression behave as if they were declared in the enclosing
3080       // function, block, or other code construct.
3081       DeclContext *CodeDC = Actions.CurContext;
3082       while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
3083         CodeDC = CodeDC->getParent();
3084         assert(CodeDC && !CodeDC->isFileContext() &&
3085                "statement expr not in code context");
3086       }
3087       Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
3088 
3089       Actions.ActOnStartStmtExpr();
3090 
3091       StmtResult Stmt(ParseCompoundStatement(true));
3092       ExprType = CompoundStmt;
3093 
3094       // If the substmt parsed correctly, build the AST node.
3095       if (!Stmt.isInvalid()) {
3096         Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(),
3097                                        Tok.getLocation());
3098       } else {
3099         Actions.ActOnStmtExprError();
3100       }
3101     }
3102   } else if (ExprType >= CompoundLiteral && BridgeCast) {
3103     tok::TokenKind tokenKind = Tok.getKind();
3104     SourceLocation BridgeKeywordLoc = ConsumeToken();
3105 
3106     // Parse an Objective-C ARC ownership cast expression.
3107     ObjCBridgeCastKind Kind;
3108     if (tokenKind == tok::kw___bridge)
3109       Kind = OBC_Bridge;
3110     else if (tokenKind == tok::kw___bridge_transfer)
3111       Kind = OBC_BridgeTransfer;
3112     else if (tokenKind == tok::kw___bridge_retained)
3113       Kind = OBC_BridgeRetained;
3114     else {
3115       // As a hopefully temporary workaround, allow __bridge_retain as
3116       // a synonym for __bridge_retained, but only in system headers.
3117       assert(tokenKind == tok::kw___bridge_retain);
3118       Kind = OBC_BridgeRetained;
3119       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
3120         Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
3121           << FixItHint::CreateReplacement(BridgeKeywordLoc,
3122                                           "__bridge_retained");
3123     }
3124 
3125     TypeResult Ty = ParseTypeName();
3126     T.consumeClose();
3127     ColonProtection.restore();
3128     RParenLoc = T.getCloseLocation();
3129 
3130     PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get());
3131     ExprResult SubExpr = ParseCastExpression(AnyCastExpr);
3132 
3133     if (Ty.isInvalid() || SubExpr.isInvalid())
3134       return ExprError();
3135 
3136     return Actions.ObjC().ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
3137                                                BridgeKeywordLoc, Ty.get(),
3138                                                RParenLoc, SubExpr.get());
3139   } else if (ExprType >= CompoundLiteral &&
3140              isTypeIdInParens(isAmbiguousTypeId)) {
3141 
3142     // Otherwise, this is a compound literal expression or cast expression.
3143 
3144     // In C++, if the type-id is ambiguous we disambiguate based on context.
3145     // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
3146     // in which case we should treat it as type-id.
3147     // if stopIfCastExpr is false, we need to determine the context past the
3148     // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
3149     if (isAmbiguousTypeId && !stopIfCastExpr) {
3150       ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
3151                                                         ColonProtection);
3152       RParenLoc = T.getCloseLocation();
3153       return res;
3154     }
3155 
3156     // Parse the type declarator.
3157     DeclSpec DS(AttrFactory);
3158     ParseSpecifierQualifierList(DS);
3159     Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3160                               DeclaratorContext::TypeName);
3161     ParseDeclarator(DeclaratorInfo);
3162 
3163     // If our type is followed by an identifier and either ':' or ']', then
3164     // this is probably an Objective-C message send where the leading '[' is
3165     // missing. Recover as if that were the case.
3166     if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
3167         !InMessageExpression && getLangOpts().ObjC &&
3168         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
3169       TypeResult Ty;
3170       {
3171         InMessageExpressionRAIIObject InMessage(*this, false);
3172         Ty = Actions.ActOnTypeName(DeclaratorInfo);
3173       }
3174       Result = ParseObjCMessageExpressionBody(SourceLocation(),
3175                                               SourceLocation(),
3176                                               Ty.get(), nullptr);
3177     } else {
3178       // Match the ')'.
3179       T.consumeClose();
3180       ColonProtection.restore();
3181       RParenLoc = T.getCloseLocation();
3182       if (Tok.is(tok::l_brace)) {
3183         ExprType = CompoundLiteral;
3184         TypeResult Ty;
3185         {
3186           InMessageExpressionRAIIObject InMessage(*this, false);
3187           Ty = Actions.ActOnTypeName(DeclaratorInfo);
3188         }
3189         return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
3190       }
3191 
3192       if (Tok.is(tok::l_paren)) {
3193         // This could be OpenCL vector Literals
3194         if (getLangOpts().OpenCL)
3195         {
3196           TypeResult Ty;
3197           {
3198             InMessageExpressionRAIIObject InMessage(*this, false);
3199             Ty = Actions.ActOnTypeName(DeclaratorInfo);
3200           }
3201           if(Ty.isInvalid())
3202           {
3203              return ExprError();
3204           }
3205           QualType QT = Ty.get().get().getCanonicalType();
3206           if (QT->isVectorType())
3207           {
3208             // We parsed '(' vector-type-name ')' followed by '('
3209 
3210             // Parse the cast-expression that follows it next.
3211             // isVectorLiteral = true will make sure we don't parse any
3212             // Postfix expression yet
3213             Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3214                                          /*isAddressOfOperand=*/false,
3215                                          /*isTypeCast=*/IsTypeCast,
3216                                          /*isVectorLiteral=*/true);
3217 
3218             if (!Result.isInvalid()) {
3219               Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3220                                              DeclaratorInfo, CastTy,
3221                                              RParenLoc, Result.get());
3222             }
3223 
3224             // After we performed the cast we can check for postfix-expr pieces.
3225             if (!Result.isInvalid()) {
3226               Result = ParsePostfixExpressionSuffix(Result);
3227             }
3228 
3229             return Result;
3230           }
3231         }
3232       }
3233 
3234       if (ExprType == CastExpr) {
3235         // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
3236 
3237         if (DeclaratorInfo.isInvalidType())
3238           return ExprError();
3239 
3240         // Note that this doesn't parse the subsequent cast-expression, it just
3241         // returns the parsed type to the callee.
3242         if (stopIfCastExpr) {
3243           TypeResult Ty;
3244           {
3245             InMessageExpressionRAIIObject InMessage(*this, false);
3246             Ty = Actions.ActOnTypeName(DeclaratorInfo);
3247           }
3248           CastTy = Ty.get();
3249           return ExprResult();
3250         }
3251 
3252         // Reject the cast of super idiom in ObjC.
3253         if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
3254             Tok.getIdentifierInfo() == Ident_super &&
3255             getCurScope()->isInObjcMethodScope() &&
3256             GetLookAheadToken(1).isNot(tok::period)) {
3257           Diag(Tok.getLocation(), diag::err_illegal_super_cast)
3258             << SourceRange(OpenLoc, RParenLoc);
3259           return ExprError();
3260         }
3261 
3262         PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get());
3263         // Parse the cast-expression that follows it next.
3264         // TODO: For cast expression with CastTy.
3265         Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3266                                      /*isAddressOfOperand=*/false,
3267                                      /*isTypeCast=*/IsTypeCast);
3268         if (!Result.isInvalid()) {
3269           Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3270                                          DeclaratorInfo, CastTy,
3271                                          RParenLoc, Result.get());
3272         }
3273         return Result;
3274       }
3275 
3276       Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
3277       return ExprError();
3278     }
3279   } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
3280              isFoldOperator(NextToken().getKind())) {
3281     ExprType = FoldExpr;
3282     return ParseFoldExpression(ExprResult(), T);
3283   } else if (isTypeCast) {
3284     // Parse the expression-list.
3285     InMessageExpressionRAIIObject InMessage(*this, false);
3286     ExprVector ArgExprs;
3287 
3288     if (!ParseSimpleExpressionList(ArgExprs)) {
3289       // FIXME: If we ever support comma expressions as operands to
3290       // fold-expressions, we'll need to allow multiple ArgExprs here.
3291       if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
3292           isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
3293         ExprType = FoldExpr;
3294         return ParseFoldExpression(ArgExprs[0], T);
3295       }
3296 
3297       ExprType = SimpleExpr;
3298       Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
3299                                           ArgExprs);
3300     }
3301   } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing &&
3302              ExprType == CastExpr && Tok.is(tok::l_square) &&
3303              tryParseOpenMPArrayShapingCastPart()) {
3304     bool ErrorFound = false;
3305     SmallVector<Expr *, 4> OMPDimensions;
3306     SmallVector<SourceRange, 4> OMPBracketsRanges;
3307     do {
3308       BalancedDelimiterTracker TS(*this, tok::l_square);
3309       TS.consumeOpen();
3310       ExprResult NumElements =
3311           Actions.CorrectDelayedTyposInExpr(ParseExpression());
3312       if (!NumElements.isUsable()) {
3313         ErrorFound = true;
3314         while (!SkipUntil(tok::r_square, tok::r_paren,
3315                           StopAtSemi | StopBeforeMatch))
3316           ;
3317       }
3318       TS.consumeClose();
3319       OMPDimensions.push_back(NumElements.get());
3320       OMPBracketsRanges.push_back(TS.getRange());
3321     } while (Tok.isNot(tok::r_paren));
3322     // Match the ')'.
3323     T.consumeClose();
3324     RParenLoc = T.getCloseLocation();
3325     Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3326     if (ErrorFound) {
3327       Result = ExprError();
3328     } else if (!Result.isInvalid()) {
3329       Result = Actions.OpenMP().ActOnOMPArrayShapingExpr(
3330           Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges);
3331     }
3332     return Result;
3333   } else {
3334     InMessageExpressionRAIIObject InMessage(*this, false);
3335 
3336     Result = ParseExpression(MaybeTypeCast);
3337     if (!getLangOpts().CPlusPlus && Result.isUsable()) {
3338       // Correct typos in non-C++ code earlier so that implicit-cast-like
3339       // expressions are parsed correctly.
3340       Result = Actions.CorrectDelayedTyposInExpr(Result);
3341     }
3342 
3343     if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
3344         NextToken().is(tok::ellipsis)) {
3345       ExprType = FoldExpr;
3346       return ParseFoldExpression(Result, T);
3347     }
3348     ExprType = SimpleExpr;
3349 
3350     // Don't build a paren expression unless we actually match a ')'.
3351     if (!Result.isInvalid() && Tok.is(tok::r_paren))
3352       Result =
3353           Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
3354   }
3355 
3356   // Match the ')'.
3357   if (Result.isInvalid()) {
3358     SkipUntil(tok::r_paren, StopAtSemi);
3359     return ExprError();
3360   }
3361 
3362   T.consumeClose();
3363   RParenLoc = T.getCloseLocation();
3364   return Result;
3365 }
3366 
3367 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
3368 /// and we are at the left brace.
3369 ///
3370 /// \verbatim
3371 ///       postfix-expression: [C99 6.5.2]
3372 ///         '(' type-name ')' '{' initializer-list '}'
3373 ///         '(' type-name ')' '{' initializer-list ',' '}'
3374 /// \endverbatim
3375 ExprResult
ParseCompoundLiteralExpression(ParsedType Ty,SourceLocation LParenLoc,SourceLocation RParenLoc)3376 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
3377                                        SourceLocation LParenLoc,
3378                                        SourceLocation RParenLoc) {
3379   assert(Tok.is(tok::l_brace) && "Not a compound literal!");
3380   if (!getLangOpts().C99)   // Compound literals don't exist in C90.
3381     Diag(LParenLoc, diag::ext_c99_compound_literal);
3382   PreferredType.enterTypeCast(Tok.getLocation(), Ty.get());
3383   ExprResult Result = ParseInitializer();
3384   if (!Result.isInvalid() && Ty)
3385     return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
3386   return Result;
3387 }
3388 
3389 /// ParseStringLiteralExpression - This handles the various token types that
3390 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
3391 /// translation phase #6].
3392 ///
3393 /// \verbatim
3394 ///       primary-expression: [C99 6.5.1]
3395 ///         string-literal
3396 /// \verbatim
ParseStringLiteralExpression(bool AllowUserDefinedLiteral)3397 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
3398   return ParseStringLiteralExpression(AllowUserDefinedLiteral,
3399                                       /*Unevaluated=*/false);
3400 }
3401 
ParseUnevaluatedStringLiteralExpression()3402 ExprResult Parser::ParseUnevaluatedStringLiteralExpression() {
3403   return ParseStringLiteralExpression(/*AllowUserDefinedLiteral=*/false,
3404                                       /*Unevaluated=*/true);
3405 }
3406 
ParseStringLiteralExpression(bool AllowUserDefinedLiteral,bool Unevaluated)3407 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral,
3408                                                 bool Unevaluated) {
3409   assert(tokenIsLikeStringLiteral(Tok, getLangOpts()) &&
3410          "Not a string-literal-like token!");
3411 
3412   // String concatenation.
3413   // Note: some keywords like __FUNCTION__ are not considered to be strings
3414   // for concatenation purposes, unless Microsoft extensions are enabled.
3415   SmallVector<Token, 4> StringToks;
3416 
3417   do {
3418     StringToks.push_back(Tok);
3419     ConsumeAnyToken();
3420   } while (tokenIsLikeStringLiteral(Tok, getLangOpts()));
3421 
3422   if (Unevaluated) {
3423     assert(!AllowUserDefinedLiteral && "UDL are always evaluated");
3424     return Actions.ActOnUnevaluatedStringLiteral(StringToks);
3425   }
3426 
3427   // Pass the set of string tokens, ready for concatenation, to the actions.
3428   return Actions.ActOnStringLiteral(StringToks,
3429                                     AllowUserDefinedLiteral ? getCurScope()
3430                                                             : nullptr);
3431 }
3432 
3433 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
3434 /// [C11 6.5.1.1].
3435 ///
3436 /// \verbatim
3437 ///    generic-selection:
3438 ///           _Generic ( assignment-expression , generic-assoc-list )
3439 ///    generic-assoc-list:
3440 ///           generic-association
3441 ///           generic-assoc-list , generic-association
3442 ///    generic-association:
3443 ///           type-name : assignment-expression
3444 ///           default : assignment-expression
3445 /// \endverbatim
3446 ///
3447 /// As an extension, Clang also accepts:
3448 /// \verbatim
3449 ///   generic-selection:
3450 ///          _Generic ( type-name, generic-assoc-list )
3451 /// \endverbatim
ParseGenericSelectionExpression()3452 ExprResult Parser::ParseGenericSelectionExpression() {
3453   assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
3454 
3455   diagnoseUseOfC11Keyword(Tok);
3456 
3457   SourceLocation KeyLoc = ConsumeToken();
3458   BalancedDelimiterTracker T(*this, tok::l_paren);
3459   if (T.expectAndConsume())
3460     return ExprError();
3461 
3462   // We either have a controlling expression or we have a controlling type, and
3463   // we need to figure out which it is.
3464   TypeResult ControllingType;
3465   ExprResult ControllingExpr;
3466   if (isTypeIdForGenericSelection()) {
3467     ControllingType = ParseTypeName();
3468     if (ControllingType.isInvalid()) {
3469       SkipUntil(tok::r_paren, StopAtSemi);
3470       return ExprError();
3471     }
3472     const auto *LIT = cast<LocInfoType>(ControllingType.get().get());
3473     SourceLocation Loc = LIT->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
3474     Diag(Loc, getLangOpts().C2y ? diag::warn_c2y_compat_generic_with_type_arg
3475                                 : diag::ext_c2y_generic_with_type_arg);
3476   } else {
3477     // C11 6.5.1.1p3 "The controlling expression of a generic selection is
3478     // not evaluated."
3479     EnterExpressionEvaluationContext Unevaluated(
3480         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3481     ControllingExpr =
3482         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3483     if (ControllingExpr.isInvalid()) {
3484       SkipUntil(tok::r_paren, StopAtSemi);
3485       return ExprError();
3486     }
3487   }
3488 
3489   if (ExpectAndConsume(tok::comma)) {
3490     SkipUntil(tok::r_paren, StopAtSemi);
3491     return ExprError();
3492   }
3493 
3494   SourceLocation DefaultLoc;
3495   SmallVector<ParsedType, 12> Types;
3496   ExprVector Exprs;
3497   do {
3498     ParsedType Ty;
3499     if (Tok.is(tok::kw_default)) {
3500       // C11 6.5.1.1p2 "A generic selection shall have no more than one default
3501       // generic association."
3502       if (!DefaultLoc.isInvalid()) {
3503         Diag(Tok, diag::err_duplicate_default_assoc);
3504         Diag(DefaultLoc, diag::note_previous_default_assoc);
3505         SkipUntil(tok::r_paren, StopAtSemi);
3506         return ExprError();
3507       }
3508       DefaultLoc = ConsumeToken();
3509       Ty = nullptr;
3510     } else {
3511       ColonProtectionRAIIObject X(*this);
3512       TypeResult TR = ParseTypeName(nullptr, DeclaratorContext::Association);
3513       if (TR.isInvalid()) {
3514         SkipUntil(tok::r_paren, StopAtSemi);
3515         return ExprError();
3516       }
3517       Ty = TR.get();
3518     }
3519     Types.push_back(Ty);
3520 
3521     if (ExpectAndConsume(tok::colon)) {
3522       SkipUntil(tok::r_paren, StopAtSemi);
3523       return ExprError();
3524     }
3525 
3526     // FIXME: These expressions should be parsed in a potentially potentially
3527     // evaluated context.
3528     ExprResult ER(
3529         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
3530     if (ER.isInvalid()) {
3531       SkipUntil(tok::r_paren, StopAtSemi);
3532       return ExprError();
3533     }
3534     Exprs.push_back(ER.get());
3535   } while (TryConsumeToken(tok::comma));
3536 
3537   T.consumeClose();
3538   if (T.getCloseLocation().isInvalid())
3539     return ExprError();
3540 
3541   void *ExprOrTy = ControllingExpr.isUsable()
3542                        ? ControllingExpr.get()
3543                        : ControllingType.get().getAsOpaquePtr();
3544 
3545   return Actions.ActOnGenericSelectionExpr(
3546       KeyLoc, DefaultLoc, T.getCloseLocation(), ControllingExpr.isUsable(),
3547       ExprOrTy, Types, Exprs);
3548 }
3549 
3550 /// Parse A C++1z fold-expression after the opening paren and optional
3551 /// left-hand-side expression.
3552 ///
3553 /// \verbatim
3554 ///   fold-expression:
3555 ///       ( cast-expression fold-operator ... )
3556 ///       ( ... fold-operator cast-expression )
3557 ///       ( cast-expression fold-operator ... fold-operator cast-expression )
ParseFoldExpression(ExprResult LHS,BalancedDelimiterTracker & T)3558 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
3559                                        BalancedDelimiterTracker &T) {
3560   if (LHS.isInvalid()) {
3561     T.skipToEnd();
3562     return true;
3563   }
3564 
3565   tok::TokenKind Kind = tok::unknown;
3566   SourceLocation FirstOpLoc;
3567   if (LHS.isUsable()) {
3568     Kind = Tok.getKind();
3569     assert(isFoldOperator(Kind) && "missing fold-operator");
3570     FirstOpLoc = ConsumeToken();
3571   }
3572 
3573   assert(Tok.is(tok::ellipsis) && "not a fold-expression");
3574   SourceLocation EllipsisLoc = ConsumeToken();
3575 
3576   ExprResult RHS;
3577   if (Tok.isNot(tok::r_paren)) {
3578     if (!isFoldOperator(Tok.getKind()))
3579       return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
3580 
3581     if (Kind != tok::unknown && Tok.getKind() != Kind)
3582       Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
3583         << SourceRange(FirstOpLoc);
3584     Kind = Tok.getKind();
3585     ConsumeToken();
3586 
3587     RHS = ParseExpression();
3588     if (RHS.isInvalid()) {
3589       T.skipToEnd();
3590       return true;
3591     }
3592   }
3593 
3594   Diag(EllipsisLoc, getLangOpts().CPlusPlus17
3595                         ? diag::warn_cxx14_compat_fold_expression
3596                         : diag::ext_fold_expression);
3597 
3598   T.consumeClose();
3599   return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(),
3600                                   Kind, EllipsisLoc, RHS.get(),
3601                                   T.getCloseLocation());
3602 }
3603 
injectEmbedTokens()3604 void Parser::injectEmbedTokens() {
3605   EmbedAnnotationData *Data =
3606       reinterpret_cast<EmbedAnnotationData *>(Tok.getAnnotationValue());
3607   MutableArrayRef<Token> Toks(PP.getPreprocessorAllocator().Allocate<Token>(
3608                                   Data->BinaryData.size() * 2 - 1),
3609                               Data->BinaryData.size() * 2 - 1);
3610   unsigned I = 0;
3611   for (auto &Byte : Data->BinaryData) {
3612     Toks[I].startToken();
3613     Toks[I].setKind(tok::binary_data);
3614     Toks[I].setLocation(Tok.getLocation());
3615     Toks[I].setLength(1);
3616     Toks[I].setLiteralData(&Byte);
3617     if (I != ((Data->BinaryData.size() - 1) * 2)) {
3618       Toks[I + 1].startToken();
3619       Toks[I + 1].setKind(tok::comma);
3620       Toks[I + 1].setLocation(Tok.getLocation());
3621     }
3622     I += 2;
3623   }
3624   PP.EnterTokenStream(std::move(Toks), /*DisableMacroExpansion=*/true,
3625                       /*IsReinject=*/true);
3626   ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
3627 }
3628 
3629 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
3630 ///
3631 /// \verbatim
3632 ///       argument-expression-list:
3633 ///         assignment-expression
3634 ///         argument-expression-list , assignment-expression
3635 ///
3636 /// [C++] expression-list:
3637 /// [C++]   assignment-expression
3638 /// [C++]   expression-list , assignment-expression
3639 ///
3640 /// [C++0x] expression-list:
3641 /// [C++0x]   initializer-list
3642 ///
3643 /// [C++0x] initializer-list
3644 /// [C++0x]   initializer-clause ...[opt]
3645 /// [C++0x]   initializer-list , initializer-clause ...[opt]
3646 ///
3647 /// [C++0x] initializer-clause:
3648 /// [C++0x]   assignment-expression
3649 /// [C++0x]   braced-init-list
3650 /// \endverbatim
ParseExpressionList(SmallVectorImpl<Expr * > & Exprs,llvm::function_ref<void ()> ExpressionStarts,bool FailImmediatelyOnInvalidExpr,bool EarlyTypoCorrection)3651 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
3652                                  llvm::function_ref<void()> ExpressionStarts,
3653                                  bool FailImmediatelyOnInvalidExpr,
3654                                  bool EarlyTypoCorrection) {
3655   bool SawError = false;
3656   while (true) {
3657     if (ExpressionStarts)
3658       ExpressionStarts();
3659 
3660     ExprResult Expr;
3661     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
3662       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
3663       Expr = ParseBraceInitializer();
3664     } else
3665       Expr = ParseAssignmentExpression();
3666 
3667     if (EarlyTypoCorrection)
3668       Expr = Actions.CorrectDelayedTyposInExpr(Expr);
3669 
3670     if (Tok.is(tok::ellipsis))
3671       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
3672     else if (Tok.is(tok::code_completion)) {
3673       // There's nothing to suggest in here as we parsed a full expression.
3674       // Instead fail and propagate the error since caller might have something
3675       // the suggest, e.g. signature help in function call. Note that this is
3676       // performed before pushing the \p Expr, so that signature help can report
3677       // current argument correctly.
3678       SawError = true;
3679       cutOffParsing();
3680       break;
3681     }
3682     if (Expr.isInvalid()) {
3683       SawError = true;
3684       if (FailImmediatelyOnInvalidExpr)
3685         break;
3686       SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
3687     } else {
3688       Exprs.push_back(Expr.get());
3689     }
3690 
3691     if (Tok.isNot(tok::comma))
3692       break;
3693     // Move to the next argument, remember where the comma was.
3694     Token Comma = Tok;
3695     ConsumeToken();
3696     checkPotentialAngleBracketDelimiter(Comma);
3697   }
3698   if (SawError) {
3699     // Ensure typos get diagnosed when errors were encountered while parsing the
3700     // expression list.
3701     for (auto &E : Exprs) {
3702       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
3703       if (Expr.isUsable()) E = Expr.get();
3704     }
3705   }
3706   return SawError;
3707 }
3708 
3709 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
3710 /// used for misc language extensions.
3711 ///
3712 /// \verbatim
3713 ///       simple-expression-list:
3714 ///         assignment-expression
3715 ///         simple-expression-list , assignment-expression
3716 /// \endverbatim
ParseSimpleExpressionList(SmallVectorImpl<Expr * > & Exprs)3717 bool Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr *> &Exprs) {
3718   while (true) {
3719     ExprResult Expr = ParseAssignmentExpression();
3720     if (Expr.isInvalid())
3721       return true;
3722 
3723     Exprs.push_back(Expr.get());
3724 
3725     // We might be parsing the LHS of a fold-expression. If we reached the fold
3726     // operator, stop.
3727     if (Tok.isNot(tok::comma) || NextToken().is(tok::ellipsis))
3728       return false;
3729 
3730     // Move to the next argument, remember where the comma was.
3731     Token Comma = Tok;
3732     ConsumeToken();
3733     checkPotentialAngleBracketDelimiter(Comma);
3734   }
3735 }
3736 
3737 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
3738 ///
3739 /// \verbatim
3740 /// [clang] block-id:
3741 /// [clang]   specifier-qualifier-list block-declarator
3742 /// \endverbatim
ParseBlockId(SourceLocation CaretLoc)3743 void Parser::ParseBlockId(SourceLocation CaretLoc) {
3744   if (Tok.is(tok::code_completion)) {
3745     cutOffParsing();
3746     Actions.CodeCompletion().CodeCompleteOrdinaryName(
3747         getCurScope(), SemaCodeCompletion::PCC_Type);
3748     return;
3749   }
3750 
3751   // Parse the specifier-qualifier-list piece.
3752   DeclSpec DS(AttrFactory);
3753   ParseSpecifierQualifierList(DS);
3754 
3755   // Parse the block-declarator.
3756   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3757                             DeclaratorContext::BlockLiteral);
3758   DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3759   ParseDeclarator(DeclaratorInfo);
3760 
3761   MaybeParseGNUAttributes(DeclaratorInfo);
3762 
3763   // Inform sema that we are starting a block.
3764   Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
3765 }
3766 
3767 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
3768 /// like ^(int x){ return x+1; }
3769 ///
3770 /// \verbatim
3771 ///         block-literal:
3772 /// [clang]   '^' block-args[opt] compound-statement
3773 /// [clang]   '^' block-id compound-statement
3774 /// [clang] block-args:
3775 /// [clang]   '(' parameter-list ')'
3776 /// \endverbatim
ParseBlockLiteralExpression()3777 ExprResult Parser::ParseBlockLiteralExpression() {
3778   assert(Tok.is(tok::caret) && "block literal starts with ^");
3779   SourceLocation CaretLoc = ConsumeToken();
3780 
3781   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
3782                                 "block literal parsing");
3783 
3784   // Enter a scope to hold everything within the block.  This includes the
3785   // argument decls, decls within the compound expression, etc.  This also
3786   // allows determining whether a variable reference inside the block is
3787   // within or outside of the block.
3788   ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
3789                                   Scope::CompoundStmtScope | Scope::DeclScope);
3790 
3791   // Inform sema that we are starting a block.
3792   Actions.ActOnBlockStart(CaretLoc, getCurScope());
3793 
3794   // Parse the return type if present.
3795   DeclSpec DS(AttrFactory);
3796   Declarator ParamInfo(DS, ParsedAttributesView::none(),
3797                        DeclaratorContext::BlockLiteral);
3798   ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3799   // FIXME: Since the return type isn't actually parsed, it can't be used to
3800   // fill ParamInfo with an initial valid range, so do it manually.
3801   ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
3802 
3803   // If this block has arguments, parse them.  There is no ambiguity here with
3804   // the expression case, because the expression case requires a parameter list.
3805   if (Tok.is(tok::l_paren)) {
3806     ParseParenDeclarator(ParamInfo);
3807     // Parse the pieces after the identifier as if we had "int(...)".
3808     // SetIdentifier sets the source range end, but in this case we're past
3809     // that location.
3810     SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
3811     ParamInfo.SetIdentifier(nullptr, CaretLoc);
3812     ParamInfo.SetRangeEnd(Tmp);
3813     if (ParamInfo.isInvalidType()) {
3814       // If there was an error parsing the arguments, they may have
3815       // tried to use ^(x+y) which requires an argument list.  Just
3816       // skip the whole block literal.
3817       Actions.ActOnBlockError(CaretLoc, getCurScope());
3818       return ExprError();
3819     }
3820 
3821     MaybeParseGNUAttributes(ParamInfo);
3822 
3823     // Inform sema that we are starting a block.
3824     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3825   } else if (!Tok.is(tok::l_brace)) {
3826     ParseBlockId(CaretLoc);
3827   } else {
3828     // Otherwise, pretend we saw (void).
3829     SourceLocation NoLoc;
3830     ParamInfo.AddTypeInfo(
3831         DeclaratorChunk::getFunction(/*HasProto=*/true,
3832                                      /*IsAmbiguous=*/false,
3833                                      /*RParenLoc=*/NoLoc,
3834                                      /*ArgInfo=*/nullptr,
3835                                      /*NumParams=*/0,
3836                                      /*EllipsisLoc=*/NoLoc,
3837                                      /*RParenLoc=*/NoLoc,
3838                                      /*RefQualifierIsLvalueRef=*/true,
3839                                      /*RefQualifierLoc=*/NoLoc,
3840                                      /*MutableLoc=*/NoLoc, EST_None,
3841                                      /*ESpecRange=*/SourceRange(),
3842                                      /*Exceptions=*/nullptr,
3843                                      /*ExceptionRanges=*/nullptr,
3844                                      /*NumExceptions=*/0,
3845                                      /*NoexceptExpr=*/nullptr,
3846                                      /*ExceptionSpecTokens=*/nullptr,
3847                                      /*DeclsInPrototype=*/std::nullopt,
3848                                      CaretLoc, CaretLoc, ParamInfo),
3849         CaretLoc);
3850 
3851     MaybeParseGNUAttributes(ParamInfo);
3852 
3853     // Inform sema that we are starting a block.
3854     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3855   }
3856 
3857 
3858   ExprResult Result(true);
3859   if (!Tok.is(tok::l_brace)) {
3860     // Saw something like: ^expr
3861     Diag(Tok, diag::err_expected_expression);
3862     Actions.ActOnBlockError(CaretLoc, getCurScope());
3863     return ExprError();
3864   }
3865 
3866   StmtResult Stmt(ParseCompoundStatementBody());
3867   BlockScope.Exit();
3868   if (!Stmt.isInvalid())
3869     Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3870   else
3871     Actions.ActOnBlockError(CaretLoc, getCurScope());
3872   return Result;
3873 }
3874 
3875 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3876 ///
3877 ///         '__objc_yes'
3878 ///         '__objc_no'
ParseObjCBoolLiteral()3879 ExprResult Parser::ParseObjCBoolLiteral() {
3880   tok::TokenKind Kind = Tok.getKind();
3881   return Actions.ObjC().ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3882 }
3883 
3884 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3885 /// true if invalid.
CheckAvailabilitySpecList(Parser & P,ArrayRef<AvailabilitySpec> AvailSpecs)3886 static bool CheckAvailabilitySpecList(Parser &P,
3887                                       ArrayRef<AvailabilitySpec> AvailSpecs) {
3888   llvm::SmallSet<StringRef, 4> Platforms;
3889   bool HasOtherPlatformSpec = false;
3890   bool Valid = true;
3891   for (const auto &Spec : AvailSpecs) {
3892     if (Spec.isOtherPlatformSpec()) {
3893       if (HasOtherPlatformSpec) {
3894         P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3895         Valid = false;
3896       }
3897 
3898       HasOtherPlatformSpec = true;
3899       continue;
3900     }
3901 
3902     bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3903     if (!Inserted) {
3904       // Rule out multiple version specs referring to the same platform.
3905       // For example, we emit an error for:
3906       // @available(macos 10.10, macos 10.11, *)
3907       StringRef Platform = Spec.getPlatform();
3908       P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3909           << Spec.getEndLoc() << Platform;
3910       Valid = false;
3911     }
3912   }
3913 
3914   if (!HasOtherPlatformSpec) {
3915     SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3916     P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3917         << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3918     return true;
3919   }
3920 
3921   return !Valid;
3922 }
3923 
3924 /// Parse availability query specification.
3925 ///
3926 ///  availability-spec:
3927 ///     '*'
3928 ///     identifier version-tuple
ParseAvailabilitySpec()3929 std::optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3930   if (Tok.is(tok::star)) {
3931     return AvailabilitySpec(ConsumeToken());
3932   } else {
3933     // Parse the platform name.
3934     if (Tok.is(tok::code_completion)) {
3935       cutOffParsing();
3936       Actions.CodeCompletion().CodeCompleteAvailabilityPlatformName();
3937       return std::nullopt;
3938     }
3939     if (Tok.isNot(tok::identifier)) {
3940       Diag(Tok, diag::err_avail_query_expected_platform_name);
3941       return std::nullopt;
3942     }
3943 
3944     IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3945     SourceRange VersionRange;
3946     VersionTuple Version = ParseVersionTuple(VersionRange);
3947 
3948     if (Version.empty())
3949       return std::nullopt;
3950 
3951     StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3952     StringRef Platform =
3953         AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3954 
3955     if (AvailabilityAttr::getPrettyPlatformName(Platform).empty() ||
3956         (GivenPlatform.contains("xros") || GivenPlatform.contains("xrOS"))) {
3957       Diag(PlatformIdentifier->Loc,
3958            diag::err_avail_query_unrecognized_platform_name)
3959           << GivenPlatform;
3960       return std::nullopt;
3961     }
3962 
3963     return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3964                             VersionRange.getEnd());
3965   }
3966 }
3967 
ParseAvailabilityCheckExpr(SourceLocation BeginLoc)3968 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3969   assert(Tok.is(tok::kw___builtin_available) ||
3970          Tok.isObjCAtKeyword(tok::objc_available));
3971 
3972   // Eat the available or __builtin_available.
3973   ConsumeToken();
3974 
3975   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3976   if (Parens.expectAndConsume())
3977     return ExprError();
3978 
3979   SmallVector<AvailabilitySpec, 4> AvailSpecs;
3980   bool HasError = false;
3981   while (true) {
3982     std::optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3983     if (!Spec)
3984       HasError = true;
3985     else
3986       AvailSpecs.push_back(*Spec);
3987 
3988     if (!TryConsumeToken(tok::comma))
3989       break;
3990   }
3991 
3992   if (HasError) {
3993     SkipUntil(tok::r_paren, StopAtSemi);
3994     return ExprError();
3995   }
3996 
3997   CheckAvailabilitySpecList(*this, AvailSpecs);
3998 
3999   if (Parens.consumeClose())
4000     return ExprError();
4001 
4002   return Actions.ObjC().ActOnObjCAvailabilityCheckExpr(
4003       AvailSpecs, BeginLoc, Parens.getCloseLocation());
4004 }
4005