1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Provides the Expression parsing implementation.
11 ///
12 /// Expressions in C99 basically consist of a bunch of binary operators with
13 /// unary operators and other random stuff at the leaves.
14 ///
15 /// In the C99 grammar, these unary operators bind tightest and are represented
16 /// as the 'cast-expression' production. Everything else is either a binary
17 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
18 /// handled by ParseCastExpression, the higher level pieces are handled by
19 /// ParseBinaryExpression.
20 ///
21 //===----------------------------------------------------------------------===//
22
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/Basic/PrettyStackTrace.h"
26 #include "clang/Lex/LiteralSupport.h"
27 #include "clang/Parse/Parser.h"
28 #include "clang/Parse/RAIIObjectsForParser.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/EnterExpressionEvaluationContext.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/SemaCUDA.h"
34 #include "clang/Sema/SemaCodeCompletion.h"
35 #include "clang/Sema/SemaObjC.h"
36 #include "clang/Sema/SemaOpenACC.h"
37 #include "clang/Sema/SemaOpenMP.h"
38 #include "clang/Sema/SemaSYCL.h"
39 #include "clang/Sema/TypoCorrection.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include <optional>
42 using namespace clang;
43
44 /// Simple precedence-based parser for binary/ternary operators.
45 ///
46 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
47 /// production. C99 specifies that the LHS of an assignment operator should be
48 /// parsed as a unary-expression, but consistency dictates that it be a
49 /// conditional-expession. In practice, the important thing here is that the
50 /// LHS of an assignment has to be an l-value, which productions between
51 /// unary-expression and conditional-expression don't produce. Because we want
52 /// consistency, we parse the LHS as a conditional-expression, then check for
53 /// l-value-ness in semantic analysis stages.
54 ///
55 /// \verbatim
56 /// pm-expression: [C++ 5.5]
57 /// cast-expression
58 /// pm-expression '.*' cast-expression
59 /// pm-expression '->*' cast-expression
60 ///
61 /// multiplicative-expression: [C99 6.5.5]
62 /// Note: in C++, apply pm-expression instead of cast-expression
63 /// cast-expression
64 /// multiplicative-expression '*' cast-expression
65 /// multiplicative-expression '/' cast-expression
66 /// multiplicative-expression '%' cast-expression
67 ///
68 /// additive-expression: [C99 6.5.6]
69 /// multiplicative-expression
70 /// additive-expression '+' multiplicative-expression
71 /// additive-expression '-' multiplicative-expression
72 ///
73 /// shift-expression: [C99 6.5.7]
74 /// additive-expression
75 /// shift-expression '<<' additive-expression
76 /// shift-expression '>>' additive-expression
77 ///
78 /// compare-expression: [C++20 expr.spaceship]
79 /// shift-expression
80 /// compare-expression '<=>' shift-expression
81 ///
82 /// relational-expression: [C99 6.5.8]
83 /// compare-expression
84 /// relational-expression '<' compare-expression
85 /// relational-expression '>' compare-expression
86 /// relational-expression '<=' compare-expression
87 /// relational-expression '>=' compare-expression
88 ///
89 /// equality-expression: [C99 6.5.9]
90 /// relational-expression
91 /// equality-expression '==' relational-expression
92 /// equality-expression '!=' relational-expression
93 ///
94 /// AND-expression: [C99 6.5.10]
95 /// equality-expression
96 /// AND-expression '&' equality-expression
97 ///
98 /// exclusive-OR-expression: [C99 6.5.11]
99 /// AND-expression
100 /// exclusive-OR-expression '^' AND-expression
101 ///
102 /// inclusive-OR-expression: [C99 6.5.12]
103 /// exclusive-OR-expression
104 /// inclusive-OR-expression '|' exclusive-OR-expression
105 ///
106 /// logical-AND-expression: [C99 6.5.13]
107 /// inclusive-OR-expression
108 /// logical-AND-expression '&&' inclusive-OR-expression
109 ///
110 /// logical-OR-expression: [C99 6.5.14]
111 /// logical-AND-expression
112 /// logical-OR-expression '||' logical-AND-expression
113 ///
114 /// conditional-expression: [C99 6.5.15]
115 /// logical-OR-expression
116 /// logical-OR-expression '?' expression ':' conditional-expression
117 /// [GNU] logical-OR-expression '?' ':' conditional-expression
118 /// [C++] the third operand is an assignment-expression
119 ///
120 /// assignment-expression: [C99 6.5.16]
121 /// conditional-expression
122 /// unary-expression assignment-operator assignment-expression
123 /// [C++] throw-expression [C++ 15]
124 ///
125 /// assignment-operator: one of
126 /// = *= /= %= += -= <<= >>= &= ^= |=
127 ///
128 /// expression: [C99 6.5.17]
129 /// assignment-expression ...[opt]
130 /// expression ',' assignment-expression ...[opt]
131 /// \endverbatim
ParseExpression(TypeCastState isTypeCast)132 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
133 ExprResult LHS(ParseAssignmentExpression(isTypeCast));
134 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
135 }
136
137 /// This routine is called when the '@' is seen and consumed.
138 /// Current token is an Identifier and is not a 'try'. This
139 /// routine is necessary to disambiguate \@try-statement from,
140 /// for example, \@encode-expression.
141 ///
142 ExprResult
ParseExpressionWithLeadingAt(SourceLocation AtLoc)143 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
144 ExprResult LHS(ParseObjCAtExpression(AtLoc));
145 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
146 }
147
148 /// This routine is called when a leading '__extension__' is seen and
149 /// consumed. This is necessary because the token gets consumed in the
150 /// process of disambiguating between an expression and a declaration.
151 ExprResult
ParseExpressionWithLeadingExtension(SourceLocation ExtLoc)152 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
153 ExprResult LHS(true);
154 {
155 // Silence extension warnings in the sub-expression
156 ExtensionRAIIObject O(Diags);
157
158 LHS = ParseCastExpression(AnyCastExpr);
159 }
160
161 if (!LHS.isInvalid())
162 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
163 LHS.get());
164
165 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
166 }
167
168 /// Parse an expr that doesn't include (top-level) commas.
ParseAssignmentExpression(TypeCastState isTypeCast)169 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
170 if (Tok.is(tok::code_completion)) {
171 cutOffParsing();
172 Actions.CodeCompletion().CodeCompleteExpression(
173 getCurScope(), PreferredType.get(Tok.getLocation()));
174 return ExprError();
175 }
176
177 if (Tok.is(tok::kw_throw))
178 return ParseThrowExpression();
179 if (Tok.is(tok::kw_co_yield))
180 return ParseCoyieldExpression();
181
182 ExprResult LHS = ParseCastExpression(AnyCastExpr,
183 /*isAddressOfOperand=*/false,
184 isTypeCast);
185 return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
186 }
187
ParseConditionalExpression()188 ExprResult Parser::ParseConditionalExpression() {
189 if (Tok.is(tok::code_completion)) {
190 cutOffParsing();
191 Actions.CodeCompletion().CodeCompleteExpression(
192 getCurScope(), PreferredType.get(Tok.getLocation()));
193 return ExprError();
194 }
195
196 ExprResult LHS = ParseCastExpression(
197 AnyCastExpr, /*isAddressOfOperand=*/false, NotTypeCast);
198 return ParseRHSOfBinaryExpression(LHS, prec::Conditional);
199 }
200
201 /// Parse an assignment expression where part of an Objective-C message
202 /// send has already been parsed.
203 ///
204 /// In this case \p LBracLoc indicates the location of the '[' of the message
205 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
206 /// the receiver of the message.
207 ///
208 /// Since this handles full assignment-expression's, it handles postfix
209 /// expressions and other binary operators for these expressions as well.
210 ExprResult
ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,SourceLocation SuperLoc,ParsedType ReceiverType,Expr * ReceiverExpr)211 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
212 SourceLocation SuperLoc,
213 ParsedType ReceiverType,
214 Expr *ReceiverExpr) {
215 ExprResult R
216 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
217 ReceiverType, ReceiverExpr);
218 R = ParsePostfixExpressionSuffix(R);
219 return ParseRHSOfBinaryExpression(R, prec::Assignment);
220 }
221
222 ExprResult
ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast)223 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
224 assert(Actions.ExprEvalContexts.back().Context ==
225 Sema::ExpressionEvaluationContext::ConstantEvaluated &&
226 "Call this function only if your ExpressionEvaluationContext is "
227 "already ConstantEvaluated");
228 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast));
229 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
230 return Actions.ActOnConstantExpression(Res);
231 }
232
ParseConstantExpression()233 ExprResult Parser::ParseConstantExpression() {
234 // C++03 [basic.def.odr]p2:
235 // An expression is potentially evaluated unless it appears where an
236 // integral constant expression is required (see 5.19) [...].
237 // C++98 and C++11 have no such rule, but this is only a defect in C++98.
238 EnterExpressionEvaluationContext ConstantEvaluated(
239 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
240 return ParseConstantExpressionInExprEvalContext(NotTypeCast);
241 }
242
ParseArrayBoundExpression()243 ExprResult Parser::ParseArrayBoundExpression() {
244 EnterExpressionEvaluationContext ConstantEvaluated(
245 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
246 // If we parse the bound of a VLA... we parse a non-constant
247 // constant-expression!
248 Actions.ExprEvalContexts.back().InConditionallyConstantEvaluateContext = true;
249 return ParseConstantExpressionInExprEvalContext(NotTypeCast);
250 }
251
ParseCaseExpression(SourceLocation CaseLoc)252 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) {
253 EnterExpressionEvaluationContext ConstantEvaluated(
254 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
255 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast));
256 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
257 return Actions.ActOnCaseExpr(CaseLoc, Res);
258 }
259
260 /// Parse a constraint-expression.
261 ///
262 /// \verbatim
263 /// constraint-expression: C++2a[temp.constr.decl]p1
264 /// logical-or-expression
265 /// \endverbatim
ParseConstraintExpression()266 ExprResult Parser::ParseConstraintExpression() {
267 EnterExpressionEvaluationContext ConstantEvaluated(
268 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
269 ExprResult LHS(ParseCastExpression(AnyCastExpr));
270 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
271 if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) {
272 Actions.CorrectDelayedTyposInExpr(Res);
273 return ExprError();
274 }
275 return Res;
276 }
277
278 /// \brief Parse a constraint-logical-and-expression.
279 ///
280 /// \verbatim
281 /// C++2a[temp.constr.decl]p1
282 /// constraint-logical-and-expression:
283 /// primary-expression
284 /// constraint-logical-and-expression '&&' primary-expression
285 ///
286 /// \endverbatim
287 ExprResult
ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause)288 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) {
289 EnterExpressionEvaluationContext ConstantEvaluated(
290 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
291 bool NotPrimaryExpression = false;
292 auto ParsePrimary = [&] () {
293 ExprResult E = ParseCastExpression(PrimaryExprOnly,
294 /*isAddressOfOperand=*/false,
295 /*isTypeCast=*/NotTypeCast,
296 /*isVectorLiteral=*/false,
297 &NotPrimaryExpression);
298 if (E.isInvalid())
299 return ExprError();
300 auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) {
301 E = ParsePostfixExpressionSuffix(E);
302 // Use InclusiveOr, the precedence just after '&&' to not parse the
303 // next arguments to the logical and.
304 E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr);
305 if (!E.isInvalid())
306 Diag(E.get()->getExprLoc(),
307 Note
308 ? diag::note_unparenthesized_non_primary_expr_in_requires_clause
309 : diag::err_unparenthesized_non_primary_expr_in_requires_clause)
310 << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(")
311 << FixItHint::CreateInsertion(
312 PP.getLocForEndOfToken(E.get()->getEndLoc()), ")")
313 << E.get()->getSourceRange();
314 return E;
315 };
316
317 if (NotPrimaryExpression ||
318 // Check if the following tokens must be a part of a non-primary
319 // expression
320 getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
321 /*CPlusPlus11=*/true) > prec::LogicalAnd ||
322 // Postfix operators other than '(' (which will be checked for in
323 // CheckConstraintExpression).
324 Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) ||
325 (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) {
326 E = RecoverFromNonPrimary(E, /*Note=*/false);
327 if (E.isInvalid())
328 return ExprError();
329 NotPrimaryExpression = false;
330 }
331 bool PossibleNonPrimary;
332 bool IsConstraintExpr =
333 Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary,
334 IsTrailingRequiresClause);
335 if (!IsConstraintExpr || PossibleNonPrimary) {
336 // Atomic constraint might be an unparenthesized non-primary expression
337 // (such as a binary operator), in which case we might get here (e.g. in
338 // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore
339 // the rest of the addition expression). Try to parse the rest of it here.
340 if (PossibleNonPrimary)
341 E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr);
342 Actions.CorrectDelayedTyposInExpr(E);
343 return ExprError();
344 }
345 return E;
346 };
347 ExprResult LHS = ParsePrimary();
348 if (LHS.isInvalid())
349 return ExprError();
350 while (Tok.is(tok::ampamp)) {
351 SourceLocation LogicalAndLoc = ConsumeToken();
352 ExprResult RHS = ParsePrimary();
353 if (RHS.isInvalid()) {
354 Actions.CorrectDelayedTyposInExpr(LHS);
355 return ExprError();
356 }
357 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc,
358 tok::ampamp, LHS.get(), RHS.get());
359 if (!Op.isUsable()) {
360 Actions.CorrectDelayedTyposInExpr(RHS);
361 Actions.CorrectDelayedTyposInExpr(LHS);
362 return ExprError();
363 }
364 LHS = Op;
365 }
366 return LHS;
367 }
368
369 /// \brief Parse a constraint-logical-or-expression.
370 ///
371 /// \verbatim
372 /// C++2a[temp.constr.decl]p1
373 /// constraint-logical-or-expression:
374 /// constraint-logical-and-expression
375 /// constraint-logical-or-expression '||'
376 /// constraint-logical-and-expression
377 ///
378 /// \endverbatim
379 ExprResult
ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause)380 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) {
381 ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause));
382 if (!LHS.isUsable())
383 return ExprError();
384 while (Tok.is(tok::pipepipe)) {
385 SourceLocation LogicalOrLoc = ConsumeToken();
386 ExprResult RHS =
387 ParseConstraintLogicalAndExpression(IsTrailingRequiresClause);
388 if (!RHS.isUsable()) {
389 Actions.CorrectDelayedTyposInExpr(LHS);
390 return ExprError();
391 }
392 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc,
393 tok::pipepipe, LHS.get(), RHS.get());
394 if (!Op.isUsable()) {
395 Actions.CorrectDelayedTyposInExpr(RHS);
396 Actions.CorrectDelayedTyposInExpr(LHS);
397 return ExprError();
398 }
399 LHS = Op;
400 }
401 return LHS;
402 }
403
isNotExpressionStart()404 bool Parser::isNotExpressionStart() {
405 tok::TokenKind K = Tok.getKind();
406 if (K == tok::l_brace || K == tok::r_brace ||
407 K == tok::kw_for || K == tok::kw_while ||
408 K == tok::kw_if || K == tok::kw_else ||
409 K == tok::kw_goto || K == tok::kw_try)
410 return true;
411 // If this is a decl-specifier, we can't be at the start of an expression.
412 return isKnownToBeDeclarationSpecifier();
413 }
414
isFoldOperator(prec::Level Level) const415 bool Parser::isFoldOperator(prec::Level Level) const {
416 return Level > prec::Unknown && Level != prec::Conditional &&
417 Level != prec::Spaceship;
418 }
419
isFoldOperator(tok::TokenKind Kind) const420 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
421 return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
422 }
423
424 /// Parse a binary expression that starts with \p LHS and has a
425 /// precedence of at least \p MinPrec.
426 ExprResult
ParseRHSOfBinaryExpression(ExprResult LHS,prec::Level MinPrec)427 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
428 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
429 GreaterThanIsOperator,
430 getLangOpts().CPlusPlus11);
431 SourceLocation ColonLoc;
432
433 auto SavedType = PreferredType;
434 while (true) {
435 // Every iteration may rely on a preferred type for the whole expression.
436 PreferredType = SavedType;
437 // If this token has a lower precedence than we are allowed to parse (e.g.
438 // because we are called recursively, or because the token is not a binop),
439 // then we are done!
440 if (NextTokPrec < MinPrec)
441 return LHS;
442
443 // Consume the operator, saving the operator token for error reporting.
444 Token OpToken = Tok;
445 ConsumeToken();
446
447 if (OpToken.is(tok::caretcaret)) {
448 return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
449 }
450
451 // If we're potentially in a template-id, we may now be able to determine
452 // whether we're actually in one or not.
453 if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
454 tok::greatergreatergreater) &&
455 checkPotentialAngleBracketDelimiter(OpToken))
456 return ExprError();
457
458 // Bail out when encountering a comma followed by a token which can't
459 // possibly be the start of an expression. For instance:
460 // int f() { return 1, }
461 // We can't do this before consuming the comma, because
462 // isNotExpressionStart() looks at the token stream.
463 if (OpToken.is(tok::comma) && isNotExpressionStart()) {
464 PP.EnterToken(Tok, /*IsReinject*/true);
465 Tok = OpToken;
466 return LHS;
467 }
468
469 // If the next token is an ellipsis, then this is a fold-expression. Leave
470 // it alone so we can handle it in the paren expression.
471 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
472 // FIXME: We can't check this via lookahead before we consume the token
473 // because that tickles a lexer bug.
474 PP.EnterToken(Tok, /*IsReinject*/true);
475 Tok = OpToken;
476 return LHS;
477 }
478
479 // In Objective-C++, alternative operator tokens can be used as keyword args
480 // in message expressions. Unconsume the token so that it can reinterpreted
481 // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
482 // [foo meth:0 and:0];
483 // [foo not_eq];
484 if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
485 Tok.isOneOf(tok::colon, tok::r_square) &&
486 OpToken.getIdentifierInfo() != nullptr) {
487 PP.EnterToken(Tok, /*IsReinject*/true);
488 Tok = OpToken;
489 return LHS;
490 }
491
492 // Special case handling for the ternary operator.
493 ExprResult TernaryMiddle(true);
494 if (NextTokPrec == prec::Conditional) {
495 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
496 // Parse a braced-init-list here for error recovery purposes.
497 SourceLocation BraceLoc = Tok.getLocation();
498 TernaryMiddle = ParseBraceInitializer();
499 if (!TernaryMiddle.isInvalid()) {
500 Diag(BraceLoc, diag::err_init_list_bin_op)
501 << /*RHS*/ 1 << PP.getSpelling(OpToken)
502 << Actions.getExprRange(TernaryMiddle.get());
503 TernaryMiddle = ExprError();
504 }
505 } else if (Tok.isNot(tok::colon)) {
506 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
507 ColonProtectionRAIIObject X(*this);
508
509 // Handle this production specially:
510 // logical-OR-expression '?' expression ':' conditional-expression
511 // In particular, the RHS of the '?' is 'expression', not
512 // 'logical-OR-expression' as we might expect.
513 TernaryMiddle = ParseExpression();
514 } else {
515 // Special case handling of "X ? Y : Z" where Y is empty:
516 // logical-OR-expression '?' ':' conditional-expression [GNU]
517 TernaryMiddle = nullptr;
518 Diag(Tok, diag::ext_gnu_conditional_expr);
519 }
520
521 if (TernaryMiddle.isInvalid()) {
522 Actions.CorrectDelayedTyposInExpr(LHS);
523 LHS = ExprError();
524 TernaryMiddle = nullptr;
525 }
526
527 if (!TryConsumeToken(tok::colon, ColonLoc)) {
528 // Otherwise, we're missing a ':'. Assume that this was a typo that
529 // the user forgot. If we're not in a macro expansion, we can suggest
530 // a fixit hint. If there were two spaces before the current token,
531 // suggest inserting the colon in between them, otherwise insert ": ".
532 SourceLocation FILoc = Tok.getLocation();
533 const char *FIText = ": ";
534 const SourceManager &SM = PP.getSourceManager();
535 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
536 assert(FILoc.isFileID());
537 bool IsInvalid = false;
538 const char *SourcePtr =
539 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
540 if (!IsInvalid && *SourcePtr == ' ') {
541 SourcePtr =
542 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
543 if (!IsInvalid && *SourcePtr == ' ') {
544 FILoc = FILoc.getLocWithOffset(-1);
545 FIText = ":";
546 }
547 }
548 }
549
550 Diag(Tok, diag::err_expected)
551 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
552 Diag(OpToken, diag::note_matching) << tok::question;
553 ColonLoc = Tok.getLocation();
554 }
555 }
556
557 PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(),
558 OpToken.getKind());
559 // Parse another leaf here for the RHS of the operator.
560 // ParseCastExpression works here because all RHS expressions in C have it
561 // as a prefix, at least. However, in C++, an assignment-expression could
562 // be a throw-expression, which is not a valid cast-expression.
563 // Therefore we need some special-casing here.
564 // Also note that the third operand of the conditional operator is
565 // an assignment-expression in C++, and in C++11, we can have a
566 // braced-init-list on the RHS of an assignment. For better diagnostics,
567 // parse as if we were allowed braced-init-lists everywhere, and check that
568 // they only appear on the RHS of assignments later.
569 ExprResult RHS;
570 bool RHSIsInitList = false;
571 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
572 RHS = ParseBraceInitializer();
573 RHSIsInitList = true;
574 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
575 RHS = ParseAssignmentExpression();
576 else
577 RHS = ParseCastExpression(AnyCastExpr);
578
579 if (RHS.isInvalid()) {
580 // FIXME: Errors generated by the delayed typo correction should be
581 // printed before errors from parsing the RHS, not after.
582 Actions.CorrectDelayedTyposInExpr(LHS);
583 if (TernaryMiddle.isUsable())
584 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
585 LHS = ExprError();
586 }
587
588 // Remember the precedence of this operator and get the precedence of the
589 // operator immediately to the right of the RHS.
590 prec::Level ThisPrec = NextTokPrec;
591 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
592 getLangOpts().CPlusPlus11);
593
594 // Assignment and conditional expressions are right-associative.
595 bool isRightAssoc = ThisPrec == prec::Conditional ||
596 ThisPrec == prec::Assignment;
597
598 // Get the precedence of the operator to the right of the RHS. If it binds
599 // more tightly with RHS than we do, evaluate it completely first.
600 if (ThisPrec < NextTokPrec ||
601 (ThisPrec == NextTokPrec && isRightAssoc)) {
602 if (!RHS.isInvalid() && RHSIsInitList) {
603 Diag(Tok, diag::err_init_list_bin_op)
604 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
605 RHS = ExprError();
606 }
607 // If this is left-associative, only parse things on the RHS that bind
608 // more tightly than the current operator. If it is left-associative, it
609 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as
610 // A=(B=(C=D)), where each paren is a level of recursion here.
611 // The function takes ownership of the RHS.
612 RHS = ParseRHSOfBinaryExpression(RHS,
613 static_cast<prec::Level>(ThisPrec + !isRightAssoc));
614 RHSIsInitList = false;
615
616 if (RHS.isInvalid()) {
617 // FIXME: Errors generated by the delayed typo correction should be
618 // printed before errors from ParseRHSOfBinaryExpression, not after.
619 Actions.CorrectDelayedTyposInExpr(LHS);
620 if (TernaryMiddle.isUsable())
621 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
622 LHS = ExprError();
623 }
624
625 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
626 getLangOpts().CPlusPlus11);
627 }
628
629 if (!RHS.isInvalid() && RHSIsInitList) {
630 if (ThisPrec == prec::Assignment) {
631 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
632 << Actions.getExprRange(RHS.get());
633 } else if (ColonLoc.isValid()) {
634 Diag(ColonLoc, diag::err_init_list_bin_op)
635 << /*RHS*/1 << ":"
636 << Actions.getExprRange(RHS.get());
637 LHS = ExprError();
638 } else {
639 Diag(OpToken, diag::err_init_list_bin_op)
640 << /*RHS*/1 << PP.getSpelling(OpToken)
641 << Actions.getExprRange(RHS.get());
642 LHS = ExprError();
643 }
644 }
645
646 ExprResult OrigLHS = LHS;
647 if (!LHS.isInvalid()) {
648 // Combine the LHS and RHS into the LHS (e.g. build AST).
649 if (TernaryMiddle.isInvalid()) {
650 // If we're using '>>' as an operator within a template
651 // argument list (in C++98), suggest the addition of
652 // parentheses so that the code remains well-formed in C++0x.
653 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
654 SuggestParentheses(OpToken.getLocation(),
655 diag::warn_cxx11_right_shift_in_template_arg,
656 SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
657 Actions.getExprRange(RHS.get()).getEnd()));
658
659 ExprResult BinOp =
660 Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
661 OpToken.getKind(), LHS.get(), RHS.get());
662 if (BinOp.isInvalid())
663 BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
664 RHS.get()->getEndLoc(),
665 {LHS.get(), RHS.get()});
666
667 LHS = BinOp;
668 } else {
669 ExprResult CondOp = Actions.ActOnConditionalOp(
670 OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(),
671 RHS.get());
672 if (CondOp.isInvalid()) {
673 std::vector<clang::Expr *> Args;
674 // TernaryMiddle can be null for the GNU conditional expr extension.
675 if (TernaryMiddle.get())
676 Args = {LHS.get(), TernaryMiddle.get(), RHS.get()};
677 else
678 Args = {LHS.get(), RHS.get()};
679 CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
680 RHS.get()->getEndLoc(), Args);
681 }
682
683 LHS = CondOp;
684 }
685 // In this case, ActOnBinOp or ActOnConditionalOp performed the
686 // CorrectDelayedTyposInExpr check.
687 if (!getLangOpts().CPlusPlus)
688 continue;
689 }
690
691 // Ensure potential typos aren't left undiagnosed.
692 if (LHS.isInvalid()) {
693 Actions.CorrectDelayedTyposInExpr(OrigLHS);
694 Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
695 Actions.CorrectDelayedTyposInExpr(RHS);
696 }
697 }
698 }
699
700 /// Parse a cast-expression, unary-expression or primary-expression, based
701 /// on \p ExprType.
702 ///
703 /// \p isAddressOfOperand exists because an id-expression that is the
704 /// operand of address-of gets special treatment due to member pointers.
705 ///
ParseCastExpression(CastParseKind ParseKind,bool isAddressOfOperand,TypeCastState isTypeCast,bool isVectorLiteral,bool * NotPrimaryExpression)706 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
707 bool isAddressOfOperand,
708 TypeCastState isTypeCast,
709 bool isVectorLiteral,
710 bool *NotPrimaryExpression) {
711 bool NotCastExpr;
712 ExprResult Res = ParseCastExpression(ParseKind,
713 isAddressOfOperand,
714 NotCastExpr,
715 isTypeCast,
716 isVectorLiteral,
717 NotPrimaryExpression);
718 if (NotCastExpr)
719 Diag(Tok, diag::err_expected_expression);
720 return Res;
721 }
722
723 namespace {
724 class CastExpressionIdValidator final : public CorrectionCandidateCallback {
725 public:
CastExpressionIdValidator(Token Next,bool AllowTypes,bool AllowNonTypes)726 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
727 : NextToken(Next), AllowNonTypes(AllowNonTypes) {
728 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
729 }
730
ValidateCandidate(const TypoCorrection & candidate)731 bool ValidateCandidate(const TypoCorrection &candidate) override {
732 NamedDecl *ND = candidate.getCorrectionDecl();
733 if (!ND)
734 return candidate.isKeyword();
735
736 if (isa<TypeDecl>(ND))
737 return WantTypeSpecifiers;
738
739 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
740 return false;
741
742 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
743 return true;
744
745 for (auto *C : candidate) {
746 NamedDecl *ND = C->getUnderlyingDecl();
747 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
748 return true;
749 }
750 return false;
751 }
752
clone()753 std::unique_ptr<CorrectionCandidateCallback> clone() override {
754 return std::make_unique<CastExpressionIdValidator>(*this);
755 }
756
757 private:
758 Token NextToken;
759 bool AllowNonTypes;
760 };
761 }
762
isRevertibleTypeTrait(const IdentifierInfo * II,tok::TokenKind * Kind)763 bool Parser::isRevertibleTypeTrait(const IdentifierInfo *II,
764 tok::TokenKind *Kind) {
765 if (RevertibleTypeTraits.empty()) {
766 // Revertible type trait is a feature for backwards compatibility with older
767 // standard libraries that declare their own structs with the same name as
768 // the builtins listed below. New builtins should NOT be added to this list.
769 #define RTT_JOIN(X, Y) X##Y
770 #define REVERTIBLE_TYPE_TRAIT(Name) \
771 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] = RTT_JOIN(tok::kw_, Name)
772
773 REVERTIBLE_TYPE_TRAIT(__is_abstract);
774 REVERTIBLE_TYPE_TRAIT(__is_aggregate);
775 REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
776 REVERTIBLE_TYPE_TRAIT(__is_array);
777 REVERTIBLE_TYPE_TRAIT(__is_assignable);
778 REVERTIBLE_TYPE_TRAIT(__is_base_of);
779 REVERTIBLE_TYPE_TRAIT(__is_bounded_array);
780 REVERTIBLE_TYPE_TRAIT(__is_class);
781 REVERTIBLE_TYPE_TRAIT(__is_complete_type);
782 REVERTIBLE_TYPE_TRAIT(__is_compound);
783 REVERTIBLE_TYPE_TRAIT(__is_const);
784 REVERTIBLE_TYPE_TRAIT(__is_constructible);
785 REVERTIBLE_TYPE_TRAIT(__is_convertible);
786 REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
787 REVERTIBLE_TYPE_TRAIT(__is_destructible);
788 REVERTIBLE_TYPE_TRAIT(__is_empty);
789 REVERTIBLE_TYPE_TRAIT(__is_enum);
790 REVERTIBLE_TYPE_TRAIT(__is_floating_point);
791 REVERTIBLE_TYPE_TRAIT(__is_final);
792 REVERTIBLE_TYPE_TRAIT(__is_function);
793 REVERTIBLE_TYPE_TRAIT(__is_fundamental);
794 REVERTIBLE_TYPE_TRAIT(__is_integral);
795 REVERTIBLE_TYPE_TRAIT(__is_interface_class);
796 REVERTIBLE_TYPE_TRAIT(__is_literal);
797 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
798 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
799 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
800 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
801 REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
802 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
803 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
804 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
805 REVERTIBLE_TYPE_TRAIT(__is_nullptr);
806 REVERTIBLE_TYPE_TRAIT(__is_object);
807 REVERTIBLE_TYPE_TRAIT(__is_pod);
808 REVERTIBLE_TYPE_TRAIT(__is_pointer);
809 REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
810 REVERTIBLE_TYPE_TRAIT(__is_reference);
811 REVERTIBLE_TYPE_TRAIT(__is_referenceable);
812 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
813 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
814 REVERTIBLE_TYPE_TRAIT(__is_same);
815 REVERTIBLE_TYPE_TRAIT(__is_scalar);
816 REVERTIBLE_TYPE_TRAIT(__is_scoped_enum);
817 REVERTIBLE_TYPE_TRAIT(__is_sealed);
818 REVERTIBLE_TYPE_TRAIT(__is_signed);
819 REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
820 REVERTIBLE_TYPE_TRAIT(__is_trivial);
821 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
822 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
823 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
824 REVERTIBLE_TYPE_TRAIT(__is_unbounded_array);
825 REVERTIBLE_TYPE_TRAIT(__is_union);
826 REVERTIBLE_TYPE_TRAIT(__is_unsigned);
827 REVERTIBLE_TYPE_TRAIT(__is_void);
828 REVERTIBLE_TYPE_TRAIT(__is_volatile);
829 REVERTIBLE_TYPE_TRAIT(__reference_binds_to_temporary);
830 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) \
831 REVERTIBLE_TYPE_TRAIT(RTT_JOIN(__, Trait));
832 #include "clang/Basic/TransformTypeTraits.def"
833 #undef REVERTIBLE_TYPE_TRAIT
834 #undef RTT_JOIN
835 }
836 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known =
837 RevertibleTypeTraits.find(II);
838 if (Known != RevertibleTypeTraits.end()) {
839 if (Kind)
840 *Kind = Known->second;
841 return true;
842 }
843 return false;
844 }
845
ParseBuiltinPtrauthTypeDiscriminator()846 ExprResult Parser::ParseBuiltinPtrauthTypeDiscriminator() {
847 SourceLocation Loc = ConsumeToken();
848
849 BalancedDelimiterTracker T(*this, tok::l_paren);
850 if (T.expectAndConsume())
851 return ExprError();
852
853 TypeResult Ty = ParseTypeName();
854 if (Ty.isInvalid()) {
855 SkipUntil(tok::r_paren, StopAtSemi);
856 return ExprError();
857 }
858
859 SourceLocation EndLoc = Tok.getLocation();
860 T.consumeClose();
861 return Actions.ActOnUnaryExprOrTypeTraitExpr(
862 Loc, UETT_PtrAuthTypeDiscriminator,
863 /*isType=*/true, Ty.get().getAsOpaquePtr(), SourceRange(Loc, EndLoc));
864 }
865
866 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
867 /// a unary-expression.
868 ///
869 /// \p isAddressOfOperand exists because an id-expression that is the operand
870 /// of address-of gets special treatment due to member pointers. NotCastExpr
871 /// is set to true if the token is not the start of a cast-expression, and no
872 /// diagnostic is emitted in this case and no tokens are consumed.
873 ///
874 /// \verbatim
875 /// cast-expression: [C99 6.5.4]
876 /// unary-expression
877 /// '(' type-name ')' cast-expression
878 ///
879 /// unary-expression: [C99 6.5.3]
880 /// postfix-expression
881 /// '++' unary-expression
882 /// '--' unary-expression
883 /// [Coro] 'co_await' cast-expression
884 /// unary-operator cast-expression
885 /// 'sizeof' unary-expression
886 /// 'sizeof' '(' type-name ')'
887 /// [C++11] 'sizeof' '...' '(' identifier ')'
888 /// [GNU] '__alignof' unary-expression
889 /// [GNU] '__alignof' '(' type-name ')'
890 /// [C11] '_Alignof' '(' type-name ')'
891 /// [C++11] 'alignof' '(' type-id ')'
892 /// [GNU] '&&' identifier
893 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
894 /// [C++] new-expression
895 /// [C++] delete-expression
896 ///
897 /// unary-operator: one of
898 /// '&' '*' '+' '-' '~' '!'
899 /// [GNU] '__extension__' '__real' '__imag'
900 ///
901 /// primary-expression: [C99 6.5.1]
902 /// [C99] identifier
903 /// [C++] id-expression
904 /// constant
905 /// string-literal
906 /// [C++] boolean-literal [C++ 2.13.5]
907 /// [C++11] 'nullptr' [C++11 2.14.7]
908 /// [C++11] user-defined-literal
909 /// '(' expression ')'
910 /// [C11] generic-selection
911 /// [C++2a] requires-expression
912 /// '__func__' [C99 6.4.2.2]
913 /// [GNU] '__FUNCTION__'
914 /// [MS] '__FUNCDNAME__'
915 /// [MS] 'L__FUNCTION__'
916 /// [MS] '__FUNCSIG__'
917 /// [MS] 'L__FUNCSIG__'
918 /// [GNU] '__PRETTY_FUNCTION__'
919 /// [GNU] '(' compound-statement ')'
920 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
921 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
922 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
923 /// assign-expr ')'
924 /// [GNU] '__builtin_FILE' '(' ')'
925 /// [CLANG] '__builtin_FILE_NAME' '(' ')'
926 /// [GNU] '__builtin_FUNCTION' '(' ')'
927 /// [MS] '__builtin_FUNCSIG' '(' ')'
928 /// [GNU] '__builtin_LINE' '(' ')'
929 /// [CLANG] '__builtin_COLUMN' '(' ')'
930 /// [GNU] '__builtin_source_location' '(' ')'
931 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
932 /// [GNU] '__null'
933 /// [OBJC] '[' objc-message-expr ']'
934 /// [OBJC] '\@selector' '(' objc-selector-arg ')'
935 /// [OBJC] '\@protocol' '(' identifier ')'
936 /// [OBJC] '\@encode' '(' type-name ')'
937 /// [OBJC] objc-string-literal
938 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
939 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
940 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
941 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
942 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
943 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
944 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
945 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
946 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
947 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
948 /// [C++] 'this' [C++ 9.3.2]
949 /// [G++] unary-type-trait '(' type-id ')'
950 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
951 /// [EMBT] array-type-trait '(' type-id ',' integer ')'
952 /// [clang] '^' block-literal
953 ///
954 /// constant: [C99 6.4.4]
955 /// integer-constant
956 /// floating-constant
957 /// enumeration-constant -> identifier
958 /// character-constant
959 ///
960 /// id-expression: [C++ 5.1]
961 /// unqualified-id
962 /// qualified-id
963 ///
964 /// unqualified-id: [C++ 5.1]
965 /// identifier
966 /// operator-function-id
967 /// conversion-function-id
968 /// '~' class-name
969 /// template-id
970 ///
971 /// new-expression: [C++ 5.3.4]
972 /// '::'[opt] 'new' new-placement[opt] new-type-id
973 /// new-initializer[opt]
974 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
975 /// new-initializer[opt]
976 ///
977 /// delete-expression: [C++ 5.3.5]
978 /// '::'[opt] 'delete' cast-expression
979 /// '::'[opt] 'delete' '[' ']' cast-expression
980 ///
981 /// [GNU/Embarcadero] unary-type-trait:
982 /// '__is_arithmetic'
983 /// '__is_floating_point'
984 /// '__is_integral'
985 /// '__is_lvalue_expr'
986 /// '__is_rvalue_expr'
987 /// '__is_complete_type'
988 /// '__is_void'
989 /// '__is_array'
990 /// '__is_function'
991 /// '__is_reference'
992 /// '__is_lvalue_reference'
993 /// '__is_rvalue_reference'
994 /// '__is_fundamental'
995 /// '__is_object'
996 /// '__is_scalar'
997 /// '__is_compound'
998 /// '__is_pointer'
999 /// '__is_member_object_pointer'
1000 /// '__is_member_function_pointer'
1001 /// '__is_member_pointer'
1002 /// '__is_const'
1003 /// '__is_volatile'
1004 /// '__is_trivial'
1005 /// '__is_standard_layout'
1006 /// '__is_signed'
1007 /// '__is_unsigned'
1008 ///
1009 /// [GNU] unary-type-trait:
1010 /// '__has_nothrow_assign'
1011 /// '__has_nothrow_copy'
1012 /// '__has_nothrow_constructor'
1013 /// '__has_trivial_assign' [TODO]
1014 /// '__has_trivial_copy' [TODO]
1015 /// '__has_trivial_constructor'
1016 /// '__has_trivial_destructor'
1017 /// '__has_virtual_destructor'
1018 /// '__is_abstract' [TODO]
1019 /// '__is_class'
1020 /// '__is_empty' [TODO]
1021 /// '__is_enum'
1022 /// '__is_final'
1023 /// '__is_pod'
1024 /// '__is_polymorphic'
1025 /// '__is_sealed' [MS]
1026 /// '__is_trivial'
1027 /// '__is_union'
1028 /// '__has_unique_object_representations'
1029 ///
1030 /// [Clang] unary-type-trait:
1031 /// '__is_aggregate'
1032 /// '__trivially_copyable'
1033 ///
1034 /// binary-type-trait:
1035 /// [GNU] '__is_base_of'
1036 /// [MS] '__is_convertible_to'
1037 /// '__is_convertible'
1038 /// '__is_same'
1039 ///
1040 /// [Embarcadero] array-type-trait:
1041 /// '__array_rank'
1042 /// '__array_extent'
1043 ///
1044 /// [Embarcadero] expression-trait:
1045 /// '__is_lvalue_expr'
1046 /// '__is_rvalue_expr'
1047 /// \endverbatim
1048 ///
ParseCastExpression(CastParseKind ParseKind,bool isAddressOfOperand,bool & NotCastExpr,TypeCastState isTypeCast,bool isVectorLiteral,bool * NotPrimaryExpression)1049 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
1050 bool isAddressOfOperand,
1051 bool &NotCastExpr,
1052 TypeCastState isTypeCast,
1053 bool isVectorLiteral,
1054 bool *NotPrimaryExpression) {
1055 ExprResult Res;
1056 tok::TokenKind SavedKind = Tok.getKind();
1057 auto SavedType = PreferredType;
1058 NotCastExpr = false;
1059
1060 // Are postfix-expression suffix operators permitted after this
1061 // cast-expression? If not, and we find some, we'll parse them anyway and
1062 // diagnose them.
1063 bool AllowSuffix = true;
1064
1065 // This handles all of cast-expression, unary-expression, postfix-expression,
1066 // and primary-expression. We handle them together like this for efficiency
1067 // and to simplify handling of an expression starting with a '(' token: which
1068 // may be one of a parenthesized expression, cast-expression, compound literal
1069 // expression, or statement expression.
1070 //
1071 // If the parsed tokens consist of a primary-expression, the cases below
1072 // break out of the switch; at the end we call ParsePostfixExpressionSuffix
1073 // to handle the postfix expression suffixes. Cases that cannot be followed
1074 // by postfix exprs should set AllowSuffix to false.
1075 switch (SavedKind) {
1076 case tok::l_paren: {
1077 // If this expression is limited to being a unary-expression, the paren can
1078 // not start a cast expression.
1079 ParenParseOption ParenExprType;
1080 switch (ParseKind) {
1081 case CastParseKind::UnaryExprOnly:
1082 assert(getLangOpts().CPlusPlus && "not possible to get here in C");
1083 [[fallthrough]];
1084 case CastParseKind::AnyCastExpr:
1085 ParenExprType = ParenParseOption::CastExpr;
1086 break;
1087 case CastParseKind::PrimaryExprOnly:
1088 ParenExprType = FoldExpr;
1089 break;
1090 }
1091 ParsedType CastTy;
1092 SourceLocation RParenLoc;
1093 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
1094 isTypeCast == IsTypeCast, CastTy, RParenLoc);
1095
1096 // FIXME: What should we do if a vector literal is followed by a
1097 // postfix-expression suffix? Usually postfix operators are permitted on
1098 // literals.
1099 if (isVectorLiteral)
1100 return Res;
1101
1102 switch (ParenExprType) {
1103 case SimpleExpr: break; // Nothing else to do.
1104 case CompoundStmt: break; // Nothing else to do.
1105 case CompoundLiteral:
1106 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
1107 // postfix-expression exist, parse them now.
1108 break;
1109 case CastExpr:
1110 // We have parsed the cast-expression and no postfix-expr pieces are
1111 // following.
1112 return Res;
1113 case FoldExpr:
1114 // We only parsed a fold-expression. There might be postfix-expr pieces
1115 // afterwards; parse them now.
1116 break;
1117 }
1118
1119 break;
1120 }
1121
1122 // primary-expression
1123 case tok::numeric_constant:
1124 case tok::binary_data:
1125 // constant: integer-constant
1126 // constant: floating-constant
1127
1128 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
1129 ConsumeToken();
1130 break;
1131
1132 case tok::kw_true:
1133 case tok::kw_false:
1134 Res = ParseCXXBoolLiteral();
1135 break;
1136
1137 case tok::kw___objc_yes:
1138 case tok::kw___objc_no:
1139 Res = ParseObjCBoolLiteral();
1140 break;
1141
1142 case tok::kw_nullptr:
1143 if (getLangOpts().CPlusPlus)
1144 Diag(Tok, diag::warn_cxx98_compat_nullptr);
1145 else
1146 Diag(Tok, getLangOpts().C23 ? diag::warn_c23_compat_keyword
1147 : diag::ext_c_nullptr) << Tok.getName();
1148
1149 Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
1150 break;
1151
1152 case tok::annot_primary_expr:
1153 case tok::annot_overload_set:
1154 Res = getExprAnnotation(Tok);
1155 if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set)
1156 Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get());
1157 ConsumeAnnotationToken();
1158 if (!Res.isInvalid() && Tok.is(tok::less))
1159 checkPotentialAngleBracket(Res);
1160 break;
1161
1162 case tok::annot_non_type:
1163 case tok::annot_non_type_dependent:
1164 case tok::annot_non_type_undeclared: {
1165 CXXScopeSpec SS;
1166 Token Replacement;
1167 Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
1168 assert(!Res.isUnset() &&
1169 "should not perform typo correction on annotation token");
1170 break;
1171 }
1172
1173 case tok::annot_embed: {
1174 injectEmbedTokens();
1175 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1176 isVectorLiteral, NotPrimaryExpression);
1177 }
1178
1179 case tok::kw___super:
1180 case tok::kw_decltype:
1181 // Annotate the token and tail recurse.
1182 if (TryAnnotateTypeOrScopeToken())
1183 return ExprError();
1184 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
1185 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1186 isVectorLiteral, NotPrimaryExpression);
1187
1188 case tok::identifier:
1189 ParseIdentifier: { // primary-expression: identifier
1190 // unqualified-id: identifier
1191 // constant: enumeration-constant
1192 // Turn a potentially qualified name into a annot_typename or
1193 // annot_cxxscope if it would be valid. This handles things like x::y, etc.
1194 if (getLangOpts().CPlusPlus) {
1195 // Avoid the unnecessary parse-time lookup in the common case
1196 // where the syntax forbids a type.
1197 Token Next = NextToken();
1198
1199 if (Next.is(tok::ellipsis) && Tok.is(tok::identifier) &&
1200 GetLookAheadToken(2).is(tok::l_square)) {
1201 // Annotate the token and tail recurse.
1202 // If the token is not annotated, then it might be an expression pack
1203 // indexing
1204 if (!TryAnnotateTypeOrScopeToken() &&
1205 Tok.is(tok::annot_pack_indexing_type))
1206 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1207 isVectorLiteral, NotPrimaryExpression);
1208 }
1209
1210 // If this identifier was reverted from a token ID, and the next token
1211 // is a parenthesis, this is likely to be a use of a type trait. Check
1212 // those tokens.
1213 else if (Next.is(tok::l_paren) && Tok.is(tok::identifier) &&
1214 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
1215 IdentifierInfo *II = Tok.getIdentifierInfo();
1216 tok::TokenKind Kind;
1217 if (isRevertibleTypeTrait(II, &Kind)) {
1218 Tok.setKind(Kind);
1219 return ParseCastExpression(ParseKind, isAddressOfOperand,
1220 NotCastExpr, isTypeCast,
1221 isVectorLiteral, NotPrimaryExpression);
1222 }
1223 }
1224
1225 else if ((!ColonIsSacred && Next.is(tok::colon)) ||
1226 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
1227 tok::l_brace)) {
1228 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1229 if (TryAnnotateTypeOrScopeToken())
1230 return ExprError();
1231 if (!Tok.is(tok::identifier))
1232 return ParseCastExpression(ParseKind, isAddressOfOperand,
1233 NotCastExpr, isTypeCast,
1234 isVectorLiteral,
1235 NotPrimaryExpression);
1236 }
1237 }
1238
1239 // Consume the identifier so that we can see if it is followed by a '(' or
1240 // '.'.
1241 IdentifierInfo &II = *Tok.getIdentifierInfo();
1242 SourceLocation ILoc = ConsumeToken();
1243
1244 // Support 'Class.property' and 'super.property' notation.
1245 if (getLangOpts().ObjC && Tok.is(tok::period) &&
1246 (Actions.getTypeName(II, ILoc, getCurScope()) ||
1247 // Allow the base to be 'super' if in an objc-method.
1248 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
1249 ConsumeToken();
1250
1251 if (Tok.is(tok::code_completion) && &II != Ident_super) {
1252 cutOffParsing();
1253 Actions.CodeCompletion().CodeCompleteObjCClassPropertyRefExpr(
1254 getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
1255 return ExprError();
1256 }
1257 // Allow either an identifier or the keyword 'class' (in C++).
1258 if (Tok.isNot(tok::identifier) &&
1259 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
1260 Diag(Tok, diag::err_expected_property_name);
1261 return ExprError();
1262 }
1263 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
1264 SourceLocation PropertyLoc = ConsumeToken();
1265
1266 Res = Actions.ObjC().ActOnClassPropertyRefExpr(II, PropertyName, ILoc,
1267 PropertyLoc);
1268 break;
1269 }
1270
1271 // In an Objective-C method, if we have "super" followed by an identifier,
1272 // the token sequence is ill-formed. However, if there's a ':' or ']' after
1273 // that identifier, this is probably a message send with a missing open
1274 // bracket. Treat it as such.
1275 if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
1276 getCurScope()->isInObjcMethodScope() &&
1277 ((Tok.is(tok::identifier) &&
1278 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
1279 Tok.is(tok::code_completion))) {
1280 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
1281 nullptr);
1282 break;
1283 }
1284
1285 // If we have an Objective-C class name followed by an identifier
1286 // and either ':' or ']', this is an Objective-C class message
1287 // send that's missing the opening '['. Recovery
1288 // appropriately. Also take this path if we're performing code
1289 // completion after an Objective-C class name.
1290 if (getLangOpts().ObjC &&
1291 ((Tok.is(tok::identifier) && !InMessageExpression) ||
1292 Tok.is(tok::code_completion))) {
1293 const Token& Next = NextToken();
1294 if (Tok.is(tok::code_completion) ||
1295 Next.is(tok::colon) || Next.is(tok::r_square))
1296 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1297 if (Typ.get()->isObjCObjectOrInterfaceType()) {
1298 // Fake up a Declarator to use with ActOnTypeName.
1299 DeclSpec DS(AttrFactory);
1300 DS.SetRangeStart(ILoc);
1301 DS.SetRangeEnd(ILoc);
1302 const char *PrevSpec = nullptr;
1303 unsigned DiagID;
1304 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1305 Actions.getASTContext().getPrintingPolicy());
1306
1307 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1308 DeclaratorContext::TypeName);
1309 TypeResult Ty = Actions.ActOnTypeName(DeclaratorInfo);
1310 if (Ty.isInvalid())
1311 break;
1312
1313 Res = ParseObjCMessageExpressionBody(SourceLocation(),
1314 SourceLocation(),
1315 Ty.get(), nullptr);
1316 break;
1317 }
1318 }
1319
1320 // Make sure to pass down the right value for isAddressOfOperand.
1321 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1322 isAddressOfOperand = false;
1323
1324 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1325 // need to know whether or not this identifier is a function designator or
1326 // not.
1327 UnqualifiedId Name;
1328 CXXScopeSpec ScopeSpec;
1329 SourceLocation TemplateKWLoc;
1330 Token Replacement;
1331 CastExpressionIdValidator Validator(
1332 /*Next=*/Tok,
1333 /*AllowTypes=*/isTypeCast != NotTypeCast,
1334 /*AllowNonTypes=*/isTypeCast != IsTypeCast);
1335 Validator.IsAddressOfOperand = isAddressOfOperand;
1336 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1337 Validator.WantExpressionKeywords = false;
1338 Validator.WantRemainingKeywords = false;
1339 } else {
1340 Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren);
1341 }
1342 Name.setIdentifier(&II, ILoc);
1343 Res = Actions.ActOnIdExpression(
1344 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1345 isAddressOfOperand, &Validator,
1346 /*IsInlineAsmIdentifier=*/false,
1347 Tok.is(tok::r_paren) ? nullptr : &Replacement);
1348 if (!Res.isInvalid() && Res.isUnset()) {
1349 UnconsumeToken(Replacement);
1350 return ParseCastExpression(ParseKind, isAddressOfOperand,
1351 NotCastExpr, isTypeCast,
1352 /*isVectorLiteral=*/false,
1353 NotPrimaryExpression);
1354 }
1355 Res = tryParseCXXPackIndexingExpression(Res);
1356 if (!Res.isInvalid() && Tok.is(tok::less))
1357 checkPotentialAngleBracket(Res);
1358 break;
1359 }
1360 case tok::char_constant: // constant: character-constant
1361 case tok::wide_char_constant:
1362 case tok::utf8_char_constant:
1363 case tok::utf16_char_constant:
1364 case tok::utf32_char_constant:
1365 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1366 ConsumeToken();
1367 break;
1368 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
1369 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
1370 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS]
1371 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS]
1372 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
1373 case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS]
1374 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
1375 // Function local predefined macros are represented by PredefinedExpr except
1376 // when Microsoft extensions are enabled and one of these macros is adjacent
1377 // to a string literal or another one of these macros.
1378 if (!(getLangOpts().MicrosoftExt &&
1379 tokenIsLikeStringLiteral(Tok, getLangOpts()) &&
1380 tokenIsLikeStringLiteral(NextToken(), getLangOpts()))) {
1381 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1382 ConsumeToken();
1383 break;
1384 }
1385 [[fallthrough]]; // treat MS function local macros as concatenable strings
1386 case tok::string_literal: // primary-expression: string-literal
1387 case tok::wide_string_literal:
1388 case tok::utf8_string_literal:
1389 case tok::utf16_string_literal:
1390 case tok::utf32_string_literal:
1391 Res = ParseStringLiteralExpression(true);
1392 break;
1393 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
1394 Res = ParseGenericSelectionExpression();
1395 break;
1396 case tok::kw___builtin_available:
1397 Res = ParseAvailabilityCheckExpr(Tok.getLocation());
1398 break;
1399 case tok::kw___builtin_va_arg:
1400 case tok::kw___builtin_offsetof:
1401 case tok::kw___builtin_choose_expr:
1402 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1403 case tok::kw___builtin_convertvector:
1404 case tok::kw___builtin_COLUMN:
1405 case tok::kw___builtin_FILE:
1406 case tok::kw___builtin_FILE_NAME:
1407 case tok::kw___builtin_FUNCTION:
1408 case tok::kw___builtin_FUNCSIG:
1409 case tok::kw___builtin_LINE:
1410 case tok::kw___builtin_source_location:
1411 if (NotPrimaryExpression)
1412 *NotPrimaryExpression = true;
1413 // This parses the complete suffix; we can return early.
1414 return ParseBuiltinPrimaryExpression();
1415 case tok::kw___null:
1416 Res = Actions.ActOnGNUNullExpr(ConsumeToken());
1417 break;
1418
1419 case tok::plusplus: // unary-expression: '++' unary-expression [C99]
1420 case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
1421 if (NotPrimaryExpression)
1422 *NotPrimaryExpression = true;
1423 // C++ [expr.unary] has:
1424 // unary-expression:
1425 // ++ cast-expression
1426 // -- cast-expression
1427 Token SavedTok = Tok;
1428 ConsumeToken();
1429
1430 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(),
1431 SavedTok.getLocation());
1432 // One special case is implicitly handled here: if the preceding tokens are
1433 // an ambiguous cast expression, such as "(T())++", then we recurse to
1434 // determine whether the '++' is prefix or postfix.
1435 Res = ParseCastExpression(getLangOpts().CPlusPlus ?
1436 UnaryExprOnly : AnyCastExpr,
1437 /*isAddressOfOperand*/false, NotCastExpr,
1438 NotTypeCast);
1439 if (NotCastExpr) {
1440 // If we return with NotCastExpr = true, we must not consume any tokens,
1441 // so put the token back where we found it.
1442 assert(Res.isInvalid());
1443 UnconsumeToken(SavedTok);
1444 return ExprError();
1445 }
1446 if (!Res.isInvalid()) {
1447 Expr *Arg = Res.get();
1448 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1449 SavedKind, Arg);
1450 if (Res.isInvalid())
1451 Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(),
1452 Arg->getEndLoc(), Arg);
1453 }
1454 return Res;
1455 }
1456 case tok::amp: { // unary-expression: '&' cast-expression
1457 if (NotPrimaryExpression)
1458 *NotPrimaryExpression = true;
1459 // Special treatment because of member pointers
1460 SourceLocation SavedLoc = ConsumeToken();
1461 PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc);
1462
1463 Res = ParseCastExpression(AnyCastExpr, /*isAddressOfOperand=*/true);
1464 if (!Res.isInvalid()) {
1465 Expr *Arg = Res.get();
1466 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1467 if (Res.isInvalid())
1468 Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(),
1469 Arg);
1470 }
1471 return Res;
1472 }
1473
1474 case tok::star: // unary-expression: '*' cast-expression
1475 case tok::plus: // unary-expression: '+' cast-expression
1476 case tok::minus: // unary-expression: '-' cast-expression
1477 case tok::tilde: // unary-expression: '~' cast-expression
1478 case tok::exclaim: // unary-expression: '!' cast-expression
1479 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
1480 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
1481 if (NotPrimaryExpression)
1482 *NotPrimaryExpression = true;
1483 SourceLocation SavedLoc = ConsumeToken();
1484 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc);
1485 Res = ParseCastExpression(AnyCastExpr);
1486 if (!Res.isInvalid()) {
1487 Expr *Arg = Res.get();
1488 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg,
1489 isAddressOfOperand);
1490 if (Res.isInvalid())
1491 Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg);
1492 }
1493 return Res;
1494 }
1495
1496 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression
1497 if (NotPrimaryExpression)
1498 *NotPrimaryExpression = true;
1499 SourceLocation CoawaitLoc = ConsumeToken();
1500 Res = ParseCastExpression(AnyCastExpr);
1501 if (!Res.isInvalid())
1502 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1503 return Res;
1504 }
1505
1506 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1507 // __extension__ silences extension warnings in the subexpression.
1508 if (NotPrimaryExpression)
1509 *NotPrimaryExpression = true;
1510 ExtensionRAIIObject O(Diags); // Use RAII to do this.
1511 SourceLocation SavedLoc = ConsumeToken();
1512 Res = ParseCastExpression(AnyCastExpr);
1513 if (!Res.isInvalid())
1514 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1515 return Res;
1516 }
1517 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
1518 diagnoseUseOfC11Keyword(Tok);
1519 [[fallthrough]];
1520 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
1521 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
1522 // unary-expression: '__alignof' '(' type-name ')'
1523 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
1524 // unary-expression: 'sizeof' '(' type-name ')'
1525 // unary-expression: '__datasizeof' unary-expression
1526 // unary-expression: '__datasizeof' '(' type-name ')'
1527 case tok::kw___datasizeof:
1528 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
1529 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1530 case tok::kw___builtin_omp_required_simd_align:
1531 case tok::kw___builtin_vectorelements:
1532 if (NotPrimaryExpression)
1533 *NotPrimaryExpression = true;
1534 AllowSuffix = false;
1535 Res = ParseUnaryExprOrTypeTraitExpression();
1536 break;
1537 case tok::ampamp: { // unary-expression: '&&' identifier
1538 if (NotPrimaryExpression)
1539 *NotPrimaryExpression = true;
1540 SourceLocation AmpAmpLoc = ConsumeToken();
1541 if (Tok.isNot(tok::identifier))
1542 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1543
1544 if (getCurScope()->getFnParent() == nullptr)
1545 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1546
1547 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1548 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1549 Tok.getLocation());
1550 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1551 ConsumeToken();
1552 AllowSuffix = false;
1553 break;
1554 }
1555 case tok::kw_const_cast:
1556 case tok::kw_dynamic_cast:
1557 case tok::kw_reinterpret_cast:
1558 case tok::kw_static_cast:
1559 case tok::kw_addrspace_cast:
1560 if (NotPrimaryExpression)
1561 *NotPrimaryExpression = true;
1562 Res = ParseCXXCasts();
1563 break;
1564 case tok::kw___builtin_bit_cast:
1565 if (NotPrimaryExpression)
1566 *NotPrimaryExpression = true;
1567 Res = ParseBuiltinBitCast();
1568 break;
1569 case tok::kw_typeid:
1570 if (NotPrimaryExpression)
1571 *NotPrimaryExpression = true;
1572 Res = ParseCXXTypeid();
1573 break;
1574 case tok::kw___uuidof:
1575 if (NotPrimaryExpression)
1576 *NotPrimaryExpression = true;
1577 Res = ParseCXXUuidof();
1578 break;
1579 case tok::kw_this:
1580 Res = ParseCXXThis();
1581 break;
1582 case tok::kw___builtin_sycl_unique_stable_name:
1583 Res = ParseSYCLUniqueStableNameExpression();
1584 break;
1585
1586 case tok::annot_typename:
1587 if (isStartOfObjCClassMessageMissingOpenBracket()) {
1588 TypeResult Type = getTypeAnnotation(Tok);
1589
1590 // Fake up a Declarator to use with ActOnTypeName.
1591 DeclSpec DS(AttrFactory);
1592 DS.SetRangeStart(Tok.getLocation());
1593 DS.SetRangeEnd(Tok.getLastLoc());
1594
1595 const char *PrevSpec = nullptr;
1596 unsigned DiagID;
1597 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1598 PrevSpec, DiagID, Type,
1599 Actions.getASTContext().getPrintingPolicy());
1600
1601 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1602 DeclaratorContext::TypeName);
1603 TypeResult Ty = Actions.ActOnTypeName(DeclaratorInfo);
1604 if (Ty.isInvalid())
1605 break;
1606
1607 ConsumeAnnotationToken();
1608 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1609 Ty.get(), nullptr);
1610 break;
1611 }
1612 [[fallthrough]];
1613
1614 case tok::annot_decltype:
1615 case tok::annot_pack_indexing_type:
1616 case tok::kw_char:
1617 case tok::kw_wchar_t:
1618 case tok::kw_char8_t:
1619 case tok::kw_char16_t:
1620 case tok::kw_char32_t:
1621 case tok::kw_bool:
1622 case tok::kw_short:
1623 case tok::kw_int:
1624 case tok::kw_long:
1625 case tok::kw___int64:
1626 case tok::kw___int128:
1627 case tok::kw__ExtInt:
1628 case tok::kw__BitInt:
1629 case tok::kw_signed:
1630 case tok::kw_unsigned:
1631 case tok::kw_half:
1632 case tok::kw_float:
1633 case tok::kw_double:
1634 case tok::kw___bf16:
1635 case tok::kw__Float16:
1636 case tok::kw___float128:
1637 case tok::kw___ibm128:
1638 case tok::kw_void:
1639 case tok::kw_auto:
1640 case tok::kw_typename:
1641 case tok::kw_typeof:
1642 case tok::kw___vector:
1643 case tok::kw__Accum:
1644 case tok::kw__Fract:
1645 case tok::kw__Sat:
1646 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1647 #include "clang/Basic/OpenCLImageTypes.def"
1648 {
1649 if (!getLangOpts().CPlusPlus) {
1650 Diag(Tok, diag::err_expected_expression);
1651 return ExprError();
1652 }
1653
1654 // Everything henceforth is a postfix-expression.
1655 if (NotPrimaryExpression)
1656 *NotPrimaryExpression = true;
1657
1658 if (SavedKind == tok::kw_typename) {
1659 // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1660 // typename-specifier braced-init-list
1661 if (TryAnnotateTypeOrScopeToken())
1662 return ExprError();
1663
1664 if (!Tok.isSimpleTypeSpecifier(getLangOpts()))
1665 // We are trying to parse a simple-type-specifier but might not get such
1666 // a token after error recovery.
1667 return ExprError();
1668 }
1669
1670 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1671 // simple-type-specifier braced-init-list
1672 //
1673 DeclSpec DS(AttrFactory);
1674
1675 ParseCXXSimpleTypeSpecifier(DS);
1676 if (Tok.isNot(tok::l_paren) &&
1677 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1678 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1679 << DS.getSourceRange());
1680
1681 if (Tok.is(tok::l_brace))
1682 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1683
1684 Res = ParseCXXTypeConstructExpression(DS);
1685 break;
1686 }
1687
1688 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1689 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1690 // (We can end up in this situation after tentative parsing.)
1691 if (TryAnnotateTypeOrScopeToken())
1692 return ExprError();
1693 if (!Tok.is(tok::annot_cxxscope))
1694 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1695 isTypeCast, isVectorLiteral,
1696 NotPrimaryExpression);
1697
1698 Token Next = NextToken();
1699 if (Next.is(tok::annot_template_id)) {
1700 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1701 if (TemplateId->Kind == TNK_Type_template) {
1702 // We have a qualified template-id that we know refers to a
1703 // type, translate it into a type and continue parsing as a
1704 // cast expression.
1705 CXXScopeSpec SS;
1706 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
1707 /*ObjectHasErrors=*/false,
1708 /*EnteringContext=*/false);
1709 AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1710 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1711 isTypeCast, isVectorLiteral,
1712 NotPrimaryExpression);
1713 }
1714 }
1715
1716 // Parse as an id-expression.
1717 Res = ParseCXXIdExpression(isAddressOfOperand);
1718 break;
1719 }
1720
1721 case tok::annot_template_id: { // [C++] template-id
1722 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1723 if (TemplateId->Kind == TNK_Type_template) {
1724 // We have a template-id that we know refers to a type,
1725 // translate it into a type and continue parsing as a cast
1726 // expression.
1727 CXXScopeSpec SS;
1728 AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1729 return ParseCastExpression(ParseKind, isAddressOfOperand,
1730 NotCastExpr, isTypeCast, isVectorLiteral,
1731 NotPrimaryExpression);
1732 }
1733
1734 // Fall through to treat the template-id as an id-expression.
1735 [[fallthrough]];
1736 }
1737
1738 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1739 Res = ParseCXXIdExpression(isAddressOfOperand);
1740 break;
1741
1742 case tok::coloncolon: {
1743 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
1744 // annotates the token, tail recurse.
1745 if (TryAnnotateTypeOrScopeToken())
1746 return ExprError();
1747 if (!Tok.is(tok::coloncolon))
1748 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1749 isVectorLiteral, NotPrimaryExpression);
1750
1751 // ::new -> [C++] new-expression
1752 // ::delete -> [C++] delete-expression
1753 SourceLocation CCLoc = ConsumeToken();
1754 if (Tok.is(tok::kw_new)) {
1755 if (NotPrimaryExpression)
1756 *NotPrimaryExpression = true;
1757 Res = ParseCXXNewExpression(true, CCLoc);
1758 AllowSuffix = false;
1759 break;
1760 }
1761 if (Tok.is(tok::kw_delete)) {
1762 if (NotPrimaryExpression)
1763 *NotPrimaryExpression = true;
1764 Res = ParseCXXDeleteExpression(true, CCLoc);
1765 AllowSuffix = false;
1766 break;
1767 }
1768
1769 // This is not a type name or scope specifier, it is an invalid expression.
1770 Diag(CCLoc, diag::err_expected_expression);
1771 return ExprError();
1772 }
1773
1774 case tok::kw_new: // [C++] new-expression
1775 if (NotPrimaryExpression)
1776 *NotPrimaryExpression = true;
1777 Res = ParseCXXNewExpression(false, Tok.getLocation());
1778 AllowSuffix = false;
1779 break;
1780
1781 case tok::kw_delete: // [C++] delete-expression
1782 if (NotPrimaryExpression)
1783 *NotPrimaryExpression = true;
1784 Res = ParseCXXDeleteExpression(false, Tok.getLocation());
1785 AllowSuffix = false;
1786 break;
1787
1788 case tok::kw_requires: // [C++2a] requires-expression
1789 Res = ParseRequiresExpression();
1790 AllowSuffix = false;
1791 break;
1792
1793 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1794 if (NotPrimaryExpression)
1795 *NotPrimaryExpression = true;
1796 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1797 SourceLocation KeyLoc = ConsumeToken();
1798 BalancedDelimiterTracker T(*this, tok::l_paren);
1799
1800 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1801 return ExprError();
1802 // C++11 [expr.unary.noexcept]p1:
1803 // The noexcept operator determines whether the evaluation of its operand,
1804 // which is an unevaluated operand, can throw an exception.
1805 EnterExpressionEvaluationContext Unevaluated(
1806 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1807 Res = ParseExpression();
1808
1809 T.consumeClose();
1810
1811 if (!Res.isInvalid())
1812 Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(),
1813 T.getCloseLocation());
1814 AllowSuffix = false;
1815 break;
1816 }
1817
1818 #define TYPE_TRAIT(N,Spelling,K) \
1819 case tok::kw_##Spelling:
1820 #include "clang/Basic/TokenKinds.def"
1821 Res = ParseTypeTrait();
1822 break;
1823
1824 case tok::kw___array_rank:
1825 case tok::kw___array_extent:
1826 if (NotPrimaryExpression)
1827 *NotPrimaryExpression = true;
1828 Res = ParseArrayTypeTrait();
1829 break;
1830
1831 case tok::kw___builtin_ptrauth_type_discriminator:
1832 return ParseBuiltinPtrauthTypeDiscriminator();
1833
1834 case tok::kw___is_lvalue_expr:
1835 case tok::kw___is_rvalue_expr:
1836 if (NotPrimaryExpression)
1837 *NotPrimaryExpression = true;
1838 Res = ParseExpressionTrait();
1839 break;
1840
1841 case tok::at: {
1842 if (NotPrimaryExpression)
1843 *NotPrimaryExpression = true;
1844 SourceLocation AtLoc = ConsumeToken();
1845 return ParseObjCAtExpression(AtLoc);
1846 }
1847 case tok::caret:
1848 Res = ParseBlockLiteralExpression();
1849 break;
1850 case tok::code_completion: {
1851 cutOffParsing();
1852 Actions.CodeCompletion().CodeCompleteExpression(
1853 getCurScope(), PreferredType.get(Tok.getLocation()));
1854 return ExprError();
1855 }
1856 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
1857 #include "clang/Basic/TransformTypeTraits.def"
1858 // HACK: libstdc++ uses some of the transform-type-traits as alias
1859 // templates, so we need to work around this.
1860 if (!NextToken().is(tok::l_paren)) {
1861 Tok.setKind(tok::identifier);
1862 Diag(Tok, diag::ext_keyword_as_ident)
1863 << Tok.getIdentifierInfo()->getName() << 0;
1864 goto ParseIdentifier;
1865 }
1866 goto ExpectedExpression;
1867 case tok::l_square:
1868 if (getLangOpts().CPlusPlus) {
1869 if (getLangOpts().ObjC) {
1870 // C++11 lambda expressions and Objective-C message sends both start with a
1871 // square bracket. There are three possibilities here:
1872 // we have a valid lambda expression, we have an invalid lambda
1873 // expression, or we have something that doesn't appear to be a lambda.
1874 // If we're in the last case, we fall back to ParseObjCMessageExpression.
1875 Res = TryParseLambdaExpression();
1876 if (!Res.isInvalid() && !Res.get()) {
1877 // We assume Objective-C++ message expressions are not
1878 // primary-expressions.
1879 if (NotPrimaryExpression)
1880 *NotPrimaryExpression = true;
1881 Res = ParseObjCMessageExpression();
1882 }
1883 break;
1884 }
1885 Res = ParseLambdaExpression();
1886 break;
1887 }
1888 if (getLangOpts().ObjC) {
1889 Res = ParseObjCMessageExpression();
1890 break;
1891 }
1892 [[fallthrough]];
1893 default:
1894 ExpectedExpression:
1895 NotCastExpr = true;
1896 return ExprError();
1897 }
1898
1899 // Check to see whether Res is a function designator only. If it is and we
1900 // are compiling for OpenCL, we need to return an error as this implies
1901 // that the address of the function is being taken, which is illegal in CL.
1902
1903 if (ParseKind == PrimaryExprOnly)
1904 // This is strictly a primary-expression - no postfix-expr pieces should be
1905 // parsed.
1906 return Res;
1907
1908 if (!AllowSuffix) {
1909 // FIXME: Don't parse a primary-expression suffix if we encountered a parse
1910 // error already.
1911 if (Res.isInvalid())
1912 return Res;
1913
1914 switch (Tok.getKind()) {
1915 case tok::l_square:
1916 case tok::l_paren:
1917 case tok::plusplus:
1918 case tok::minusminus:
1919 // "expected ';'" or similar is probably the right diagnostic here. Let
1920 // the caller decide what to do.
1921 if (Tok.isAtStartOfLine())
1922 return Res;
1923
1924 [[fallthrough]];
1925 case tok::period:
1926 case tok::arrow:
1927 break;
1928
1929 default:
1930 return Res;
1931 }
1932
1933 // This was a unary-expression for which a postfix-expression suffix is
1934 // not permitted by the grammar (eg, a sizeof expression or
1935 // new-expression or similar). Diagnose but parse the suffix anyway.
1936 Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens)
1937 << Tok.getKind() << Res.get()->getSourceRange()
1938 << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(")
1939 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation),
1940 ")");
1941 }
1942
1943 // These can be followed by postfix-expr pieces.
1944 PreferredType = SavedType;
1945 Res = ParsePostfixExpressionSuffix(Res);
1946 if (getLangOpts().OpenCL &&
1947 !getActions().getOpenCLOptions().isAvailableOption(
1948 "__cl_clang_function_pointers", getLangOpts()))
1949 if (Expr *PostfixExpr = Res.get()) {
1950 QualType Ty = PostfixExpr->getType();
1951 if (!Ty.isNull() && Ty->isFunctionType()) {
1952 Diag(PostfixExpr->getExprLoc(),
1953 diag::err_opencl_taking_function_address_parser);
1954 return ExprError();
1955 }
1956 }
1957
1958 return Res;
1959 }
1960
1961 /// Once the leading part of a postfix-expression is parsed, this
1962 /// method parses any suffixes that apply.
1963 ///
1964 /// \verbatim
1965 /// postfix-expression: [C99 6.5.2]
1966 /// primary-expression
1967 /// postfix-expression '[' expression ']'
1968 /// postfix-expression '[' braced-init-list ']'
1969 /// postfix-expression '[' expression-list [opt] ']' [C++23 12.4.5]
1970 /// postfix-expression '(' argument-expression-list[opt] ')'
1971 /// postfix-expression '.' identifier
1972 /// postfix-expression '->' identifier
1973 /// postfix-expression '++'
1974 /// postfix-expression '--'
1975 /// '(' type-name ')' '{' initializer-list '}'
1976 /// '(' type-name ')' '{' initializer-list ',' '}'
1977 ///
1978 /// argument-expression-list: [C99 6.5.2]
1979 /// argument-expression ...[opt]
1980 /// argument-expression-list ',' assignment-expression ...[opt]
1981 /// \endverbatim
1982 ExprResult
ParsePostfixExpressionSuffix(ExprResult LHS)1983 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1984 // Now that the primary-expression piece of the postfix-expression has been
1985 // parsed, see if there are any postfix-expression pieces here.
1986 SourceLocation Loc;
1987 auto SavedType = PreferredType;
1988 while (true) {
1989 // Each iteration relies on preferred type for the whole expression.
1990 PreferredType = SavedType;
1991 switch (Tok.getKind()) {
1992 case tok::code_completion:
1993 if (InMessageExpression)
1994 return LHS;
1995
1996 cutOffParsing();
1997 Actions.CodeCompletion().CodeCompletePostfixExpression(
1998 getCurScope(), LHS, PreferredType.get(Tok.getLocation()));
1999 return ExprError();
2000
2001 case tok::identifier:
2002 // If we see identifier: after an expression, and we're not already in a
2003 // message send, then this is probably a message send with a missing
2004 // opening bracket '['.
2005 if (getLangOpts().ObjC && !InMessageExpression &&
2006 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2007 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
2008 nullptr, LHS.get());
2009 break;
2010 }
2011 // Fall through; this isn't a message send.
2012 [[fallthrough]];
2013
2014 default: // Not a postfix-expression suffix.
2015 return LHS;
2016 case tok::l_square: { // postfix-expression: p-e '[' expression ']'
2017 // If we have a array postfix expression that starts on a new line and
2018 // Objective-C is enabled, it is highly likely that the user forgot a
2019 // semicolon after the base expression and that the array postfix-expr is
2020 // actually another message send. In this case, do some look-ahead to see
2021 // if the contents of the square brackets are obviously not a valid
2022 // expression and recover by pretending there is no suffix.
2023 if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
2024 isSimpleObjCMessageExpression())
2025 return LHS;
2026
2027 // Reject array indices starting with a lambda-expression. '[[' is
2028 // reserved for attributes.
2029 if (CheckProhibitedCXX11Attribute()) {
2030 (void)Actions.CorrectDelayedTyposInExpr(LHS);
2031 return ExprError();
2032 }
2033 BalancedDelimiterTracker T(*this, tok::l_square);
2034 T.consumeOpen();
2035 Loc = T.getOpenLocation();
2036 ExprResult Length, Stride;
2037 SourceLocation ColonLocFirst, ColonLocSecond;
2038 ExprVector ArgExprs;
2039 bool HasError = false;
2040 PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get());
2041
2042 // We try to parse a list of indexes in all language mode first
2043 // and, in we find 0 or one index, we try to parse an OpenMP/OpenACC array
2044 // section. This allow us to support C++23 multi dimensional subscript and
2045 // OpenMP/OpenACC sections in the same language mode.
2046 if ((!getLangOpts().OpenMP && !AllowOpenACCArraySections) ||
2047 Tok.isNot(tok::colon)) {
2048 if (!getLangOpts().CPlusPlus23) {
2049 ExprResult Idx;
2050 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2051 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2052 Idx = ParseBraceInitializer();
2053 } else {
2054 Idx = ParseExpression(); // May be a comma expression
2055 }
2056 LHS = Actions.CorrectDelayedTyposInExpr(LHS);
2057 Idx = Actions.CorrectDelayedTyposInExpr(Idx);
2058 if (Idx.isInvalid()) {
2059 HasError = true;
2060 } else {
2061 ArgExprs.push_back(Idx.get());
2062 }
2063 } else if (Tok.isNot(tok::r_square)) {
2064 if (ParseExpressionList(ArgExprs)) {
2065 LHS = Actions.CorrectDelayedTyposInExpr(LHS);
2066 HasError = true;
2067 }
2068 }
2069 }
2070
2071 // Handle OpenACC first, since 'AllowOpenACCArraySections' is only enabled
2072 // when actively parsing a 'var' in a 'var-list' during clause/'cache'
2073 // parsing, so it is the most specific, and best allows us to handle
2074 // OpenACC and OpenMP at the same time.
2075 if (ArgExprs.size() <= 1 && AllowOpenACCArraySections) {
2076 ColonProtectionRAIIObject RAII(*this);
2077 if (Tok.is(tok::colon)) {
2078 // Consume ':'
2079 ColonLocFirst = ConsumeToken();
2080 if (Tok.isNot(tok::r_square))
2081 Length = Actions.CorrectDelayedTyposInExpr(ParseExpression());
2082 }
2083 } else if (ArgExprs.size() <= 1 && getLangOpts().OpenMP) {
2084 ColonProtectionRAIIObject RAII(*this);
2085 if (Tok.is(tok::colon)) {
2086 // Consume ':'
2087 ColonLocFirst = ConsumeToken();
2088 if (Tok.isNot(tok::r_square) &&
2089 (getLangOpts().OpenMP < 50 ||
2090 ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) {
2091 Length = ParseExpression();
2092 Length = Actions.CorrectDelayedTyposInExpr(Length);
2093 }
2094 }
2095 if (getLangOpts().OpenMP >= 50 &&
2096 (OMPClauseKind == llvm::omp::Clause::OMPC_to ||
2097 OMPClauseKind == llvm::omp::Clause::OMPC_from) &&
2098 Tok.is(tok::colon)) {
2099 // Consume ':'
2100 ColonLocSecond = ConsumeToken();
2101 if (Tok.isNot(tok::r_square)) {
2102 Stride = ParseExpression();
2103 }
2104 }
2105 }
2106
2107 SourceLocation RLoc = Tok.getLocation();
2108 LHS = Actions.CorrectDelayedTyposInExpr(LHS);
2109
2110 if (!LHS.isInvalid() && !HasError && !Length.isInvalid() &&
2111 !Stride.isInvalid() && Tok.is(tok::r_square)) {
2112 if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) {
2113 // Like above, AllowOpenACCArraySections is 'more specific' and only
2114 // enabled when actively parsing a 'var' in a 'var-list' during
2115 // clause/'cache' construct parsing, so it is more specific. So we
2116 // should do it first, so that the correct node gets created.
2117 if (AllowOpenACCArraySections) {
2118 assert(!Stride.isUsable() && !ColonLocSecond.isValid() &&
2119 "Stride/second colon not allowed for OpenACC");
2120 LHS = Actions.OpenACC().ActOnArraySectionExpr(
2121 LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0],
2122 ColonLocFirst, Length.get(), RLoc);
2123 } else {
2124 LHS = Actions.OpenMP().ActOnOMPArraySectionExpr(
2125 LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0],
2126 ColonLocFirst, ColonLocSecond, Length.get(), Stride.get(),
2127 RLoc);
2128 }
2129 } else {
2130 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
2131 ArgExprs, RLoc);
2132 }
2133 } else {
2134 LHS = ExprError();
2135 }
2136
2137 // Match the ']'.
2138 T.consumeClose();
2139 break;
2140 }
2141
2142 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
2143 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
2144 // '(' argument-expression-list[opt] ')'
2145 tok::TokenKind OpKind = Tok.getKind();
2146 InMessageExpressionRAIIObject InMessage(*this, false);
2147
2148 Expr *ExecConfig = nullptr;
2149
2150 BalancedDelimiterTracker PT(*this, tok::l_paren);
2151
2152 if (OpKind == tok::lesslessless) {
2153 ExprVector ExecConfigExprs;
2154 SourceLocation OpenLoc = ConsumeToken();
2155
2156 if (ParseSimpleExpressionList(ExecConfigExprs)) {
2157 (void)Actions.CorrectDelayedTyposInExpr(LHS);
2158 LHS = ExprError();
2159 }
2160
2161 SourceLocation CloseLoc;
2162 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
2163 } else if (LHS.isInvalid()) {
2164 SkipUntil(tok::greatergreatergreater, StopAtSemi);
2165 } else {
2166 // There was an error closing the brackets
2167 Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
2168 Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
2169 SkipUntil(tok::greatergreatergreater, StopAtSemi);
2170 LHS = ExprError();
2171 }
2172
2173 if (!LHS.isInvalid()) {
2174 if (ExpectAndConsume(tok::l_paren))
2175 LHS = ExprError();
2176 else
2177 Loc = PrevTokLocation;
2178 }
2179
2180 if (!LHS.isInvalid()) {
2181 ExprResult ECResult = Actions.CUDA().ActOnExecConfigExpr(
2182 getCurScope(), OpenLoc, ExecConfigExprs, CloseLoc);
2183 if (ECResult.isInvalid())
2184 LHS = ExprError();
2185 else
2186 ExecConfig = ECResult.get();
2187 }
2188 } else {
2189 PT.consumeOpen();
2190 Loc = PT.getOpenLocation();
2191 }
2192
2193 ExprVector ArgExprs;
2194 auto RunSignatureHelp = [&]() -> QualType {
2195 QualType PreferredType =
2196 Actions.CodeCompletion().ProduceCallSignatureHelp(
2197 LHS.get(), ArgExprs, PT.getOpenLocation());
2198 CalledSignatureHelp = true;
2199 return PreferredType;
2200 };
2201 if (OpKind == tok::l_paren || !LHS.isInvalid()) {
2202 if (Tok.isNot(tok::r_paren)) {
2203 if (ParseExpressionList(ArgExprs, [&] {
2204 PreferredType.enterFunctionArgument(Tok.getLocation(),
2205 RunSignatureHelp);
2206 })) {
2207 (void)Actions.CorrectDelayedTyposInExpr(LHS);
2208 // If we got an error when parsing expression list, we don't call
2209 // the CodeCompleteCall handler inside the parser. So call it here
2210 // to make sure we get overload suggestions even when we are in the
2211 // middle of a parameter.
2212 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
2213 RunSignatureHelp();
2214 LHS = ExprError();
2215 } else if (LHS.isInvalid()) {
2216 for (auto &E : ArgExprs)
2217 Actions.CorrectDelayedTyposInExpr(E);
2218 }
2219 }
2220 }
2221
2222 // Match the ')'.
2223 if (LHS.isInvalid()) {
2224 SkipUntil(tok::r_paren, StopAtSemi);
2225 } else if (Tok.isNot(tok::r_paren)) {
2226 bool HadDelayedTypo = false;
2227 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
2228 HadDelayedTypo = true;
2229 for (auto &E : ArgExprs)
2230 if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
2231 HadDelayedTypo = true;
2232 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
2233 // instead of PT.consumeClose() to avoid emitting extra diagnostics for
2234 // the unmatched l_paren.
2235 if (HadDelayedTypo)
2236 SkipUntil(tok::r_paren, StopAtSemi);
2237 else
2238 PT.consumeClose();
2239 LHS = ExprError();
2240 } else {
2241 Expr *Fn = LHS.get();
2242 SourceLocation RParLoc = Tok.getLocation();
2243 LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc,
2244 ExecConfig);
2245 if (LHS.isInvalid()) {
2246 ArgExprs.insert(ArgExprs.begin(), Fn);
2247 LHS =
2248 Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs);
2249 }
2250 PT.consumeClose();
2251 }
2252
2253 break;
2254 }
2255 case tok::arrow:
2256 case tok::period: {
2257 // postfix-expression: p-e '->' template[opt] id-expression
2258 // postfix-expression: p-e '.' template[opt] id-expression
2259 tok::TokenKind OpKind = Tok.getKind();
2260 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
2261
2262 CXXScopeSpec SS;
2263 ParsedType ObjectType;
2264 bool MayBePseudoDestructor = false;
2265 Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
2266
2267 PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS);
2268
2269 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
2270 Expr *Base = OrigLHS;
2271 const Type* BaseType = Base->getType().getTypePtrOrNull();
2272 if (BaseType && Tok.is(tok::l_paren) &&
2273 (BaseType->isFunctionType() ||
2274 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
2275 Diag(OpLoc, diag::err_function_is_not_record)
2276 << OpKind << Base->getSourceRange()
2277 << FixItHint::CreateRemoval(OpLoc);
2278 return ParsePostfixExpressionSuffix(Base);
2279 }
2280
2281 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc,
2282 OpKind, ObjectType,
2283 MayBePseudoDestructor);
2284 if (LHS.isInvalid()) {
2285 // Clang will try to perform expression based completion as a
2286 // fallback, which is confusing in case of member references. So we
2287 // stop here without any completions.
2288 if (Tok.is(tok::code_completion)) {
2289 cutOffParsing();
2290 return ExprError();
2291 }
2292 break;
2293 }
2294 ParseOptionalCXXScopeSpecifier(
2295 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2296 /*EnteringContext=*/false, &MayBePseudoDestructor);
2297 if (SS.isNotEmpty())
2298 ObjectType = nullptr;
2299 }
2300
2301 if (Tok.is(tok::code_completion)) {
2302 tok::TokenKind CorrectedOpKind =
2303 OpKind == tok::arrow ? tok::period : tok::arrow;
2304 ExprResult CorrectedLHS(/*Invalid=*/true);
2305 if (getLangOpts().CPlusPlus && OrigLHS) {
2306 // FIXME: Creating a TentativeAnalysisScope from outside Sema is a
2307 // hack.
2308 Sema::TentativeAnalysisScope Trap(Actions);
2309 CorrectedLHS = Actions.ActOnStartCXXMemberReference(
2310 getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
2311 MayBePseudoDestructor);
2312 }
2313
2314 Expr *Base = LHS.get();
2315 Expr *CorrectedBase = CorrectedLHS.get();
2316 if (!CorrectedBase && !getLangOpts().CPlusPlus)
2317 CorrectedBase = Base;
2318
2319 // Code completion for a member access expression.
2320 cutOffParsing();
2321 Actions.CodeCompletion().CodeCompleteMemberReferenceExpr(
2322 getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
2323 Base && ExprStatementTokLoc == Base->getBeginLoc(),
2324 PreferredType.get(Tok.getLocation()));
2325
2326 return ExprError();
2327 }
2328
2329 if (MayBePseudoDestructor && !LHS.isInvalid()) {
2330 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
2331 ObjectType);
2332 break;
2333 }
2334
2335 // Either the action has told us that this cannot be a
2336 // pseudo-destructor expression (based on the type of base
2337 // expression), or we didn't see a '~' in the right place. We
2338 // can still parse a destructor name here, but in that case it
2339 // names a real destructor.
2340 // Allow explicit constructor calls in Microsoft mode.
2341 // FIXME: Add support for explicit call of template constructor.
2342 SourceLocation TemplateKWLoc;
2343 UnqualifiedId Name;
2344 if (getLangOpts().ObjC && OpKind == tok::period &&
2345 Tok.is(tok::kw_class)) {
2346 // Objective-C++:
2347 // After a '.' in a member access expression, treat the keyword
2348 // 'class' as if it were an identifier.
2349 //
2350 // This hack allows property access to the 'class' method because it is
2351 // such a common method name. For other C++ keywords that are
2352 // Objective-C method names, one must use the message send syntax.
2353 IdentifierInfo *Id = Tok.getIdentifierInfo();
2354 SourceLocation Loc = ConsumeToken();
2355 Name.setIdentifier(Id, Loc);
2356 } else if (ParseUnqualifiedId(
2357 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2358 /*EnteringContext=*/false,
2359 /*AllowDestructorName=*/true,
2360 /*AllowConstructorName=*/
2361 getLangOpts().MicrosoftExt && SS.isNotEmpty(),
2362 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) {
2363 (void)Actions.CorrectDelayedTyposInExpr(LHS);
2364 LHS = ExprError();
2365 }
2366
2367 if (!LHS.isInvalid())
2368 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
2369 OpKind, SS, TemplateKWLoc, Name,
2370 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
2371 : nullptr);
2372 if (!LHS.isInvalid()) {
2373 if (Tok.is(tok::less))
2374 checkPotentialAngleBracket(LHS);
2375 } else if (OrigLHS && Name.isValid()) {
2376 // Preserve the LHS if the RHS is an invalid member.
2377 LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(),
2378 Name.getEndLoc(), {OrigLHS});
2379 }
2380 break;
2381 }
2382 case tok::plusplus: // postfix-expression: postfix-expression '++'
2383 case tok::minusminus: // postfix-expression: postfix-expression '--'
2384 if (!LHS.isInvalid()) {
2385 Expr *Arg = LHS.get();
2386 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
2387 Tok.getKind(), Arg);
2388 if (LHS.isInvalid())
2389 LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(),
2390 Tok.getLocation(), Arg);
2391 }
2392 ConsumeToken();
2393 break;
2394 }
2395 }
2396 }
2397
2398 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
2399 /// vec_step and we are at the start of an expression or a parenthesized
2400 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
2401 /// expression (isCastExpr == false) or the type (isCastExpr == true).
2402 ///
2403 /// \verbatim
2404 /// unary-expression: [C99 6.5.3]
2405 /// 'sizeof' unary-expression
2406 /// 'sizeof' '(' type-name ')'
2407 /// [Clang] '__datasizeof' unary-expression
2408 /// [Clang] '__datasizeof' '(' type-name ')'
2409 /// [GNU] '__alignof' unary-expression
2410 /// [GNU] '__alignof' '(' type-name ')'
2411 /// [C11] '_Alignof' '(' type-name ')'
2412 /// [C++0x] 'alignof' '(' type-id ')'
2413 ///
2414 /// [GNU] typeof-specifier:
2415 /// typeof ( expressions )
2416 /// typeof ( type-name )
2417 /// [GNU/C++] typeof unary-expression
2418 /// [C23] typeof-specifier:
2419 /// typeof '(' typeof-specifier-argument ')'
2420 /// typeof_unqual '(' typeof-specifier-argument ')'
2421 ///
2422 /// typeof-specifier-argument:
2423 /// expression
2424 /// type-name
2425 ///
2426 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
2427 /// vec_step ( expressions )
2428 /// vec_step ( type-name )
2429 /// \endverbatim
2430 ExprResult
ParseExprAfterUnaryExprOrTypeTrait(const Token & OpTok,bool & isCastExpr,ParsedType & CastTy,SourceRange & CastRange)2431 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
2432 bool &isCastExpr,
2433 ParsedType &CastTy,
2434 SourceRange &CastRange) {
2435
2436 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual, tok::kw_sizeof,
2437 tok::kw___datasizeof, tok::kw___alignof, tok::kw_alignof,
2438 tok::kw__Alignof, tok::kw_vec_step,
2439 tok::kw___builtin_omp_required_simd_align,
2440 tok::kw___builtin_vectorelements) &&
2441 "Not a typeof/sizeof/alignof/vec_step expression!");
2442
2443 ExprResult Operand;
2444
2445 // If the operand doesn't start with an '(', it must be an expression.
2446 if (Tok.isNot(tok::l_paren)) {
2447 // If construct allows a form without parenthesis, user may forget to put
2448 // pathenthesis around type name.
2449 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof,
2450 tok::kw_alignof, tok::kw__Alignof)) {
2451 if (isTypeIdUnambiguously()) {
2452 DeclSpec DS(AttrFactory);
2453 ParseSpecifierQualifierList(DS);
2454 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
2455 DeclaratorContext::TypeName);
2456 ParseDeclarator(DeclaratorInfo);
2457
2458 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
2459 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
2460 if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) {
2461 Diag(OpTok.getLocation(),
2462 diag::err_expected_parentheses_around_typename)
2463 << OpTok.getName();
2464 } else {
2465 Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
2466 << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(")
2467 << FixItHint::CreateInsertion(RParenLoc, ")");
2468 }
2469 isCastExpr = true;
2470 return ExprEmpty();
2471 }
2472 }
2473
2474 isCastExpr = false;
2475 if (OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) &&
2476 !getLangOpts().CPlusPlus) {
2477 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
2478 << tok::l_paren;
2479 return ExprError();
2480 }
2481
2482 Operand = ParseCastExpression(UnaryExprOnly);
2483 } else {
2484 // If it starts with a '(', we know that it is either a parenthesized
2485 // type-name, or it is a unary-expression that starts with a compound
2486 // literal, or starts with a primary-expression that is a parenthesized
2487 // expression.
2488 ParenParseOption ExprType = CastExpr;
2489 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
2490
2491 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
2492 false, CastTy, RParenLoc);
2493 CastRange = SourceRange(LParenLoc, RParenLoc);
2494
2495 // If ParseParenExpression parsed a '(typename)' sequence only, then this is
2496 // a type.
2497 if (ExprType == CastExpr) {
2498 isCastExpr = true;
2499 return ExprEmpty();
2500 }
2501
2502 if (getLangOpts().CPlusPlus ||
2503 !OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual)) {
2504 // GNU typeof in C requires the expression to be parenthesized. Not so for
2505 // sizeof/alignof or in C++. Therefore, the parenthesized expression is
2506 // the start of a unary-expression, but doesn't include any postfix
2507 // pieces. Parse these now if present.
2508 if (!Operand.isInvalid())
2509 Operand = ParsePostfixExpressionSuffix(Operand.get());
2510 }
2511 }
2512
2513 // If we get here, the operand to the typeof/sizeof/alignof was an expression.
2514 isCastExpr = false;
2515 return Operand;
2516 }
2517
2518 /// Parse a __builtin_sycl_unique_stable_name expression. Accepts a type-id as
2519 /// a parameter.
ParseSYCLUniqueStableNameExpression()2520 ExprResult Parser::ParseSYCLUniqueStableNameExpression() {
2521 assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) &&
2522 "Not __builtin_sycl_unique_stable_name");
2523
2524 SourceLocation OpLoc = ConsumeToken();
2525 BalancedDelimiterTracker T(*this, tok::l_paren);
2526
2527 // __builtin_sycl_unique_stable_name expressions are always parenthesized.
2528 if (T.expectAndConsume(diag::err_expected_lparen_after,
2529 "__builtin_sycl_unique_stable_name"))
2530 return ExprError();
2531
2532 TypeResult Ty = ParseTypeName();
2533
2534 if (Ty.isInvalid()) {
2535 T.skipToEnd();
2536 return ExprError();
2537 }
2538
2539 if (T.consumeClose())
2540 return ExprError();
2541
2542 return Actions.SYCL().ActOnUniqueStableNameExpr(
2543 OpLoc, T.getOpenLocation(), T.getCloseLocation(), Ty.get());
2544 }
2545
2546 /// Parse a sizeof or alignof expression.
2547 ///
2548 /// \verbatim
2549 /// unary-expression: [C99 6.5.3]
2550 /// 'sizeof' unary-expression
2551 /// 'sizeof' '(' type-name ')'
2552 /// [C++11] 'sizeof' '...' '(' identifier ')'
2553 /// [Clang] '__datasizeof' unary-expression
2554 /// [Clang] '__datasizeof' '(' type-name ')'
2555 /// [GNU] '__alignof' unary-expression
2556 /// [GNU] '__alignof' '(' type-name ')'
2557 /// [C11] '_Alignof' '(' type-name ')'
2558 /// [C++11] 'alignof' '(' type-id ')'
2559 /// \endverbatim
ParseUnaryExprOrTypeTraitExpression()2560 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
2561 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof,
2562 tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
2563 tok::kw___builtin_omp_required_simd_align,
2564 tok::kw___builtin_vectorelements) &&
2565 "Not a sizeof/alignof/vec_step expression!");
2566 Token OpTok = Tok;
2567 ConsumeToken();
2568
2569 // [C++11] 'sizeof' '...' '(' identifier ')'
2570 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
2571 SourceLocation EllipsisLoc = ConsumeToken();
2572 SourceLocation LParenLoc, RParenLoc;
2573 IdentifierInfo *Name = nullptr;
2574 SourceLocation NameLoc;
2575 if (Tok.is(tok::l_paren)) {
2576 BalancedDelimiterTracker T(*this, tok::l_paren);
2577 T.consumeOpen();
2578 LParenLoc = T.getOpenLocation();
2579 if (Tok.is(tok::identifier)) {
2580 Name = Tok.getIdentifierInfo();
2581 NameLoc = ConsumeToken();
2582 T.consumeClose();
2583 RParenLoc = T.getCloseLocation();
2584 if (RParenLoc.isInvalid())
2585 RParenLoc = PP.getLocForEndOfToken(NameLoc);
2586 } else {
2587 Diag(Tok, diag::err_expected_parameter_pack);
2588 SkipUntil(tok::r_paren, StopAtSemi);
2589 }
2590 } else if (Tok.is(tok::identifier)) {
2591 Name = Tok.getIdentifierInfo();
2592 NameLoc = ConsumeToken();
2593 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
2594 RParenLoc = PP.getLocForEndOfToken(NameLoc);
2595 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
2596 << Name
2597 << FixItHint::CreateInsertion(LParenLoc, "(")
2598 << FixItHint::CreateInsertion(RParenLoc, ")");
2599 } else {
2600 Diag(Tok, diag::err_sizeof_parameter_pack);
2601 }
2602
2603 if (!Name)
2604 return ExprError();
2605
2606 EnterExpressionEvaluationContext Unevaluated(
2607 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2608 Sema::ReuseLambdaContextDecl);
2609
2610 return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2611 OpTok.getLocation(),
2612 *Name, NameLoc,
2613 RParenLoc);
2614 }
2615
2616 if (getLangOpts().CPlusPlus &&
2617 OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2618 Diag(OpTok, diag::warn_cxx98_compat_alignof);
2619 else if (getLangOpts().C23 && OpTok.is(tok::kw_alignof))
2620 Diag(OpTok, diag::warn_c23_compat_keyword) << OpTok.getName();
2621
2622 EnterExpressionEvaluationContext Unevaluated(
2623 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2624 Sema::ReuseLambdaContextDecl);
2625
2626 bool isCastExpr;
2627 ParsedType CastTy;
2628 SourceRange CastRange;
2629 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2630 isCastExpr,
2631 CastTy,
2632 CastRange);
2633
2634 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2635 switch (OpTok.getKind()) {
2636 case tok::kw_alignof:
2637 case tok::kw__Alignof:
2638 ExprKind = UETT_AlignOf;
2639 break;
2640 case tok::kw___alignof:
2641 ExprKind = UETT_PreferredAlignOf;
2642 break;
2643 case tok::kw_vec_step:
2644 ExprKind = UETT_VecStep;
2645 break;
2646 case tok::kw___builtin_omp_required_simd_align:
2647 ExprKind = UETT_OpenMPRequiredSimdAlign;
2648 break;
2649 case tok::kw___datasizeof:
2650 ExprKind = UETT_DataSizeOf;
2651 break;
2652 case tok::kw___builtin_vectorelements:
2653 ExprKind = UETT_VectorElements;
2654 break;
2655 default:
2656 break;
2657 }
2658
2659 if (isCastExpr)
2660 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2661 ExprKind,
2662 /*IsType=*/true,
2663 CastTy.getAsOpaquePtr(),
2664 CastRange);
2665
2666 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2667 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2668
2669 // If we get here, the operand to the sizeof/alignof was an expression.
2670 if (!Operand.isInvalid())
2671 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2672 ExprKind,
2673 /*IsType=*/false,
2674 Operand.get(),
2675 CastRange);
2676 return Operand;
2677 }
2678
2679 /// ParseBuiltinPrimaryExpression
2680 ///
2681 /// \verbatim
2682 /// primary-expression: [C99 6.5.1]
2683 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2684 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2685 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2686 /// assign-expr ')'
2687 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2688 /// [GNU] '__builtin_FILE' '(' ')'
2689 /// [CLANG] '__builtin_FILE_NAME' '(' ')'
2690 /// [GNU] '__builtin_FUNCTION' '(' ')'
2691 /// [MS] '__builtin_FUNCSIG' '(' ')'
2692 /// [GNU] '__builtin_LINE' '(' ')'
2693 /// [CLANG] '__builtin_COLUMN' '(' ')'
2694 /// [GNU] '__builtin_source_location' '(' ')'
2695 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
2696 ///
2697 /// [GNU] offsetof-member-designator:
2698 /// [GNU] identifier
2699 /// [GNU] offsetof-member-designator '.' identifier
2700 /// [GNU] offsetof-member-designator '[' expression ']'
2701 /// \endverbatim
ParseBuiltinPrimaryExpression()2702 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2703 ExprResult Res;
2704 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2705
2706 tok::TokenKind T = Tok.getKind();
2707 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
2708
2709 // All of these start with an open paren.
2710 if (Tok.isNot(tok::l_paren))
2711 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2712 << tok::l_paren);
2713
2714 BalancedDelimiterTracker PT(*this, tok::l_paren);
2715 PT.consumeOpen();
2716
2717 // TODO: Build AST.
2718
2719 switch (T) {
2720 default: llvm_unreachable("Not a builtin primary expression!");
2721 case tok::kw___builtin_va_arg: {
2722 ExprResult Expr(ParseAssignmentExpression());
2723
2724 if (ExpectAndConsume(tok::comma)) {
2725 SkipUntil(tok::r_paren, StopAtSemi);
2726 Expr = ExprError();
2727 }
2728
2729 TypeResult Ty = ParseTypeName();
2730
2731 if (Tok.isNot(tok::r_paren)) {
2732 Diag(Tok, diag::err_expected) << tok::r_paren;
2733 Expr = ExprError();
2734 }
2735
2736 if (Expr.isInvalid() || Ty.isInvalid())
2737 Res = ExprError();
2738 else
2739 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2740 break;
2741 }
2742 case tok::kw___builtin_offsetof: {
2743 SourceLocation TypeLoc = Tok.getLocation();
2744 auto OOK = Sema::OffsetOfKind::OOK_Builtin;
2745 if (Tok.getLocation().isMacroID()) {
2746 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
2747 Tok.getLocation(), PP.getSourceManager(), getLangOpts());
2748 if (MacroName == "offsetof")
2749 OOK = Sema::OffsetOfKind::OOK_Macro;
2750 }
2751 TypeResult Ty;
2752 {
2753 OffsetOfStateRAIIObject InOffsetof(*this, OOK);
2754 Ty = ParseTypeName();
2755 if (Ty.isInvalid()) {
2756 SkipUntil(tok::r_paren, StopAtSemi);
2757 return ExprError();
2758 }
2759 }
2760
2761 if (ExpectAndConsume(tok::comma)) {
2762 SkipUntil(tok::r_paren, StopAtSemi);
2763 return ExprError();
2764 }
2765
2766 // We must have at least one identifier here.
2767 if (Tok.isNot(tok::identifier)) {
2768 Diag(Tok, diag::err_expected) << tok::identifier;
2769 SkipUntil(tok::r_paren, StopAtSemi);
2770 return ExprError();
2771 }
2772
2773 // Keep track of the various subcomponents we see.
2774 SmallVector<Sema::OffsetOfComponent, 4> Comps;
2775
2776 Comps.push_back(Sema::OffsetOfComponent());
2777 Comps.back().isBrackets = false;
2778 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2779 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2780
2781 // FIXME: This loop leaks the index expressions on error.
2782 while (true) {
2783 if (Tok.is(tok::period)) {
2784 // offsetof-member-designator: offsetof-member-designator '.' identifier
2785 Comps.push_back(Sema::OffsetOfComponent());
2786 Comps.back().isBrackets = false;
2787 Comps.back().LocStart = ConsumeToken();
2788
2789 if (Tok.isNot(tok::identifier)) {
2790 Diag(Tok, diag::err_expected) << tok::identifier;
2791 SkipUntil(tok::r_paren, StopAtSemi);
2792 return ExprError();
2793 }
2794 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2795 Comps.back().LocEnd = ConsumeToken();
2796 } else if (Tok.is(tok::l_square)) {
2797 if (CheckProhibitedCXX11Attribute())
2798 return ExprError();
2799
2800 // offsetof-member-designator: offsetof-member-design '[' expression ']'
2801 Comps.push_back(Sema::OffsetOfComponent());
2802 Comps.back().isBrackets = true;
2803 BalancedDelimiterTracker ST(*this, tok::l_square);
2804 ST.consumeOpen();
2805 Comps.back().LocStart = ST.getOpenLocation();
2806 Res = ParseExpression();
2807 if (Res.isInvalid()) {
2808 SkipUntil(tok::r_paren, StopAtSemi);
2809 return Res;
2810 }
2811 Comps.back().U.E = Res.get();
2812
2813 ST.consumeClose();
2814 Comps.back().LocEnd = ST.getCloseLocation();
2815 } else {
2816 if (Tok.isNot(tok::r_paren)) {
2817 PT.consumeClose();
2818 Res = ExprError();
2819 } else if (Ty.isInvalid()) {
2820 Res = ExprError();
2821 } else {
2822 PT.consumeClose();
2823 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2824 Ty.get(), Comps,
2825 PT.getCloseLocation());
2826 }
2827 break;
2828 }
2829 }
2830 break;
2831 }
2832 case tok::kw___builtin_choose_expr: {
2833 ExprResult Cond(ParseAssignmentExpression());
2834 if (Cond.isInvalid()) {
2835 SkipUntil(tok::r_paren, StopAtSemi);
2836 return Cond;
2837 }
2838 if (ExpectAndConsume(tok::comma)) {
2839 SkipUntil(tok::r_paren, StopAtSemi);
2840 return ExprError();
2841 }
2842
2843 ExprResult Expr1(ParseAssignmentExpression());
2844 if (Expr1.isInvalid()) {
2845 SkipUntil(tok::r_paren, StopAtSemi);
2846 return Expr1;
2847 }
2848 if (ExpectAndConsume(tok::comma)) {
2849 SkipUntil(tok::r_paren, StopAtSemi);
2850 return ExprError();
2851 }
2852
2853 ExprResult Expr2(ParseAssignmentExpression());
2854 if (Expr2.isInvalid()) {
2855 SkipUntil(tok::r_paren, StopAtSemi);
2856 return Expr2;
2857 }
2858 if (Tok.isNot(tok::r_paren)) {
2859 Diag(Tok, diag::err_expected) << tok::r_paren;
2860 return ExprError();
2861 }
2862 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2863 Expr2.get(), ConsumeParen());
2864 break;
2865 }
2866 case tok::kw___builtin_astype: {
2867 // The first argument is an expression to be converted, followed by a comma.
2868 ExprResult Expr(ParseAssignmentExpression());
2869 if (Expr.isInvalid()) {
2870 SkipUntil(tok::r_paren, StopAtSemi);
2871 return ExprError();
2872 }
2873
2874 if (ExpectAndConsume(tok::comma)) {
2875 SkipUntil(tok::r_paren, StopAtSemi);
2876 return ExprError();
2877 }
2878
2879 // Second argument is the type to bitcast to.
2880 TypeResult DestTy = ParseTypeName();
2881 if (DestTy.isInvalid())
2882 return ExprError();
2883
2884 // Attempt to consume the r-paren.
2885 if (Tok.isNot(tok::r_paren)) {
2886 Diag(Tok, diag::err_expected) << tok::r_paren;
2887 SkipUntil(tok::r_paren, StopAtSemi);
2888 return ExprError();
2889 }
2890
2891 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2892 ConsumeParen());
2893 break;
2894 }
2895 case tok::kw___builtin_convertvector: {
2896 // The first argument is an expression to be converted, followed by a comma.
2897 ExprResult Expr(ParseAssignmentExpression());
2898 if (Expr.isInvalid()) {
2899 SkipUntil(tok::r_paren, StopAtSemi);
2900 return ExprError();
2901 }
2902
2903 if (ExpectAndConsume(tok::comma)) {
2904 SkipUntil(tok::r_paren, StopAtSemi);
2905 return ExprError();
2906 }
2907
2908 // Second argument is the type to bitcast to.
2909 TypeResult DestTy = ParseTypeName();
2910 if (DestTy.isInvalid())
2911 return ExprError();
2912
2913 // Attempt to consume the r-paren.
2914 if (Tok.isNot(tok::r_paren)) {
2915 Diag(Tok, diag::err_expected) << tok::r_paren;
2916 SkipUntil(tok::r_paren, StopAtSemi);
2917 return ExprError();
2918 }
2919
2920 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2921 ConsumeParen());
2922 break;
2923 }
2924 case tok::kw___builtin_COLUMN:
2925 case tok::kw___builtin_FILE:
2926 case tok::kw___builtin_FILE_NAME:
2927 case tok::kw___builtin_FUNCTION:
2928 case tok::kw___builtin_FUNCSIG:
2929 case tok::kw___builtin_LINE:
2930 case tok::kw___builtin_source_location: {
2931 // Attempt to consume the r-paren.
2932 if (Tok.isNot(tok::r_paren)) {
2933 Diag(Tok, diag::err_expected) << tok::r_paren;
2934 SkipUntil(tok::r_paren, StopAtSemi);
2935 return ExprError();
2936 }
2937 SourceLocIdentKind Kind = [&] {
2938 switch (T) {
2939 case tok::kw___builtin_FILE:
2940 return SourceLocIdentKind::File;
2941 case tok::kw___builtin_FILE_NAME:
2942 return SourceLocIdentKind::FileName;
2943 case tok::kw___builtin_FUNCTION:
2944 return SourceLocIdentKind::Function;
2945 case tok::kw___builtin_FUNCSIG:
2946 return SourceLocIdentKind::FuncSig;
2947 case tok::kw___builtin_LINE:
2948 return SourceLocIdentKind::Line;
2949 case tok::kw___builtin_COLUMN:
2950 return SourceLocIdentKind::Column;
2951 case tok::kw___builtin_source_location:
2952 return SourceLocIdentKind::SourceLocStruct;
2953 default:
2954 llvm_unreachable("invalid keyword");
2955 }
2956 }();
2957 Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen());
2958 break;
2959 }
2960 }
2961
2962 if (Res.isInvalid())
2963 return ExprError();
2964
2965 // These can be followed by postfix-expr pieces because they are
2966 // primary-expressions.
2967 return ParsePostfixExpressionSuffix(Res.get());
2968 }
2969
tryParseOpenMPArrayShapingCastPart()2970 bool Parser::tryParseOpenMPArrayShapingCastPart() {
2971 assert(Tok.is(tok::l_square) && "Expected open bracket");
2972 bool ErrorFound = true;
2973 TentativeParsingAction TPA(*this);
2974 do {
2975 if (Tok.isNot(tok::l_square))
2976 break;
2977 // Consume '['
2978 ConsumeBracket();
2979 // Skip inner expression.
2980 while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end,
2981 StopAtSemi | StopBeforeMatch))
2982 ;
2983 if (Tok.isNot(tok::r_square))
2984 break;
2985 // Consume ']'
2986 ConsumeBracket();
2987 // Found ')' - done.
2988 if (Tok.is(tok::r_paren)) {
2989 ErrorFound = false;
2990 break;
2991 }
2992 } while (Tok.isNot(tok::annot_pragma_openmp_end));
2993 TPA.Revert();
2994 return !ErrorFound;
2995 }
2996
2997 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2998 /// based on what is allowed by ExprType. The actual thing parsed is returned
2999 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
3000 /// not the parsed cast-expression.
3001 ///
3002 /// \verbatim
3003 /// primary-expression: [C99 6.5.1]
3004 /// '(' expression ')'
3005 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
3006 /// postfix-expression: [C99 6.5.2]
3007 /// '(' type-name ')' '{' initializer-list '}'
3008 /// '(' type-name ')' '{' initializer-list ',' '}'
3009 /// cast-expression: [C99 6.5.4]
3010 /// '(' type-name ')' cast-expression
3011 /// [ARC] bridged-cast-expression
3012 /// [ARC] bridged-cast-expression:
3013 /// (__bridge type-name) cast-expression
3014 /// (__bridge_transfer type-name) cast-expression
3015 /// (__bridge_retained type-name) cast-expression
3016 /// fold-expression: [C++1z]
3017 /// '(' cast-expression fold-operator '...' ')'
3018 /// '(' '...' fold-operator cast-expression ')'
3019 /// '(' cast-expression fold-operator '...'
3020 /// fold-operator cast-expression ')'
3021 /// [OPENMP] Array shaping operation
3022 /// '(' '[' expression ']' { '[' expression ']' } cast-expression
3023 /// \endverbatim
3024 ExprResult
ParseParenExpression(ParenParseOption & ExprType,bool stopIfCastExpr,bool isTypeCast,ParsedType & CastTy,SourceLocation & RParenLoc)3025 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
3026 bool isTypeCast, ParsedType &CastTy,
3027 SourceLocation &RParenLoc) {
3028 assert(Tok.is(tok::l_paren) && "Not a paren expr!");
3029 ColonProtectionRAIIObject ColonProtection(*this, false);
3030 BalancedDelimiterTracker T(*this, tok::l_paren);
3031 if (T.consumeOpen())
3032 return ExprError();
3033 SourceLocation OpenLoc = T.getOpenLocation();
3034
3035 PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc);
3036
3037 ExprResult Result(true);
3038 bool isAmbiguousTypeId;
3039 CastTy = nullptr;
3040
3041 if (Tok.is(tok::code_completion)) {
3042 cutOffParsing();
3043 Actions.CodeCompletion().CodeCompleteExpression(
3044 getCurScope(), PreferredType.get(Tok.getLocation()),
3045 /*IsParenthesized=*/ExprType >= CompoundLiteral);
3046 return ExprError();
3047 }
3048
3049 // Diagnose use of bridge casts in non-arc mode.
3050 bool BridgeCast = (getLangOpts().ObjC &&
3051 Tok.isOneOf(tok::kw___bridge,
3052 tok::kw___bridge_transfer,
3053 tok::kw___bridge_retained,
3054 tok::kw___bridge_retain));
3055 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
3056 if (!TryConsumeToken(tok::kw___bridge)) {
3057 StringRef BridgeCastName = Tok.getName();
3058 SourceLocation BridgeKeywordLoc = ConsumeToken();
3059 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
3060 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
3061 << BridgeCastName
3062 << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
3063 }
3064 BridgeCast = false;
3065 }
3066
3067 // None of these cases should fall through with an invalid Result
3068 // unless they've already reported an error.
3069 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
3070 Diag(Tok, OpenLoc.isMacroID() ? diag::ext_gnu_statement_expr_macro
3071 : diag::ext_gnu_statement_expr);
3072
3073 checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin);
3074
3075 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
3076 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
3077 } else {
3078 // Find the nearest non-record decl context. Variables declared in a
3079 // statement expression behave as if they were declared in the enclosing
3080 // function, block, or other code construct.
3081 DeclContext *CodeDC = Actions.CurContext;
3082 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
3083 CodeDC = CodeDC->getParent();
3084 assert(CodeDC && !CodeDC->isFileContext() &&
3085 "statement expr not in code context");
3086 }
3087 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
3088
3089 Actions.ActOnStartStmtExpr();
3090
3091 StmtResult Stmt(ParseCompoundStatement(true));
3092 ExprType = CompoundStmt;
3093
3094 // If the substmt parsed correctly, build the AST node.
3095 if (!Stmt.isInvalid()) {
3096 Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(),
3097 Tok.getLocation());
3098 } else {
3099 Actions.ActOnStmtExprError();
3100 }
3101 }
3102 } else if (ExprType >= CompoundLiteral && BridgeCast) {
3103 tok::TokenKind tokenKind = Tok.getKind();
3104 SourceLocation BridgeKeywordLoc = ConsumeToken();
3105
3106 // Parse an Objective-C ARC ownership cast expression.
3107 ObjCBridgeCastKind Kind;
3108 if (tokenKind == tok::kw___bridge)
3109 Kind = OBC_Bridge;
3110 else if (tokenKind == tok::kw___bridge_transfer)
3111 Kind = OBC_BridgeTransfer;
3112 else if (tokenKind == tok::kw___bridge_retained)
3113 Kind = OBC_BridgeRetained;
3114 else {
3115 // As a hopefully temporary workaround, allow __bridge_retain as
3116 // a synonym for __bridge_retained, but only in system headers.
3117 assert(tokenKind == tok::kw___bridge_retain);
3118 Kind = OBC_BridgeRetained;
3119 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
3120 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
3121 << FixItHint::CreateReplacement(BridgeKeywordLoc,
3122 "__bridge_retained");
3123 }
3124
3125 TypeResult Ty = ParseTypeName();
3126 T.consumeClose();
3127 ColonProtection.restore();
3128 RParenLoc = T.getCloseLocation();
3129
3130 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get());
3131 ExprResult SubExpr = ParseCastExpression(AnyCastExpr);
3132
3133 if (Ty.isInvalid() || SubExpr.isInvalid())
3134 return ExprError();
3135
3136 return Actions.ObjC().ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
3137 BridgeKeywordLoc, Ty.get(),
3138 RParenLoc, SubExpr.get());
3139 } else if (ExprType >= CompoundLiteral &&
3140 isTypeIdInParens(isAmbiguousTypeId)) {
3141
3142 // Otherwise, this is a compound literal expression or cast expression.
3143
3144 // In C++, if the type-id is ambiguous we disambiguate based on context.
3145 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
3146 // in which case we should treat it as type-id.
3147 // if stopIfCastExpr is false, we need to determine the context past the
3148 // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
3149 if (isAmbiguousTypeId && !stopIfCastExpr) {
3150 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
3151 ColonProtection);
3152 RParenLoc = T.getCloseLocation();
3153 return res;
3154 }
3155
3156 // Parse the type declarator.
3157 DeclSpec DS(AttrFactory);
3158 ParseSpecifierQualifierList(DS);
3159 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3160 DeclaratorContext::TypeName);
3161 ParseDeclarator(DeclaratorInfo);
3162
3163 // If our type is followed by an identifier and either ':' or ']', then
3164 // this is probably an Objective-C message send where the leading '[' is
3165 // missing. Recover as if that were the case.
3166 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
3167 !InMessageExpression && getLangOpts().ObjC &&
3168 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
3169 TypeResult Ty;
3170 {
3171 InMessageExpressionRAIIObject InMessage(*this, false);
3172 Ty = Actions.ActOnTypeName(DeclaratorInfo);
3173 }
3174 Result = ParseObjCMessageExpressionBody(SourceLocation(),
3175 SourceLocation(),
3176 Ty.get(), nullptr);
3177 } else {
3178 // Match the ')'.
3179 T.consumeClose();
3180 ColonProtection.restore();
3181 RParenLoc = T.getCloseLocation();
3182 if (Tok.is(tok::l_brace)) {
3183 ExprType = CompoundLiteral;
3184 TypeResult Ty;
3185 {
3186 InMessageExpressionRAIIObject InMessage(*this, false);
3187 Ty = Actions.ActOnTypeName(DeclaratorInfo);
3188 }
3189 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
3190 }
3191
3192 if (Tok.is(tok::l_paren)) {
3193 // This could be OpenCL vector Literals
3194 if (getLangOpts().OpenCL)
3195 {
3196 TypeResult Ty;
3197 {
3198 InMessageExpressionRAIIObject InMessage(*this, false);
3199 Ty = Actions.ActOnTypeName(DeclaratorInfo);
3200 }
3201 if(Ty.isInvalid())
3202 {
3203 return ExprError();
3204 }
3205 QualType QT = Ty.get().get().getCanonicalType();
3206 if (QT->isVectorType())
3207 {
3208 // We parsed '(' vector-type-name ')' followed by '('
3209
3210 // Parse the cast-expression that follows it next.
3211 // isVectorLiteral = true will make sure we don't parse any
3212 // Postfix expression yet
3213 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3214 /*isAddressOfOperand=*/false,
3215 /*isTypeCast=*/IsTypeCast,
3216 /*isVectorLiteral=*/true);
3217
3218 if (!Result.isInvalid()) {
3219 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3220 DeclaratorInfo, CastTy,
3221 RParenLoc, Result.get());
3222 }
3223
3224 // After we performed the cast we can check for postfix-expr pieces.
3225 if (!Result.isInvalid()) {
3226 Result = ParsePostfixExpressionSuffix(Result);
3227 }
3228
3229 return Result;
3230 }
3231 }
3232 }
3233
3234 if (ExprType == CastExpr) {
3235 // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
3236
3237 if (DeclaratorInfo.isInvalidType())
3238 return ExprError();
3239
3240 // Note that this doesn't parse the subsequent cast-expression, it just
3241 // returns the parsed type to the callee.
3242 if (stopIfCastExpr) {
3243 TypeResult Ty;
3244 {
3245 InMessageExpressionRAIIObject InMessage(*this, false);
3246 Ty = Actions.ActOnTypeName(DeclaratorInfo);
3247 }
3248 CastTy = Ty.get();
3249 return ExprResult();
3250 }
3251
3252 // Reject the cast of super idiom in ObjC.
3253 if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
3254 Tok.getIdentifierInfo() == Ident_super &&
3255 getCurScope()->isInObjcMethodScope() &&
3256 GetLookAheadToken(1).isNot(tok::period)) {
3257 Diag(Tok.getLocation(), diag::err_illegal_super_cast)
3258 << SourceRange(OpenLoc, RParenLoc);
3259 return ExprError();
3260 }
3261
3262 PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get());
3263 // Parse the cast-expression that follows it next.
3264 // TODO: For cast expression with CastTy.
3265 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3266 /*isAddressOfOperand=*/false,
3267 /*isTypeCast=*/IsTypeCast);
3268 if (!Result.isInvalid()) {
3269 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3270 DeclaratorInfo, CastTy,
3271 RParenLoc, Result.get());
3272 }
3273 return Result;
3274 }
3275
3276 Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
3277 return ExprError();
3278 }
3279 } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
3280 isFoldOperator(NextToken().getKind())) {
3281 ExprType = FoldExpr;
3282 return ParseFoldExpression(ExprResult(), T);
3283 } else if (isTypeCast) {
3284 // Parse the expression-list.
3285 InMessageExpressionRAIIObject InMessage(*this, false);
3286 ExprVector ArgExprs;
3287
3288 if (!ParseSimpleExpressionList(ArgExprs)) {
3289 // FIXME: If we ever support comma expressions as operands to
3290 // fold-expressions, we'll need to allow multiple ArgExprs here.
3291 if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
3292 isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
3293 ExprType = FoldExpr;
3294 return ParseFoldExpression(ArgExprs[0], T);
3295 }
3296
3297 ExprType = SimpleExpr;
3298 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
3299 ArgExprs);
3300 }
3301 } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing &&
3302 ExprType == CastExpr && Tok.is(tok::l_square) &&
3303 tryParseOpenMPArrayShapingCastPart()) {
3304 bool ErrorFound = false;
3305 SmallVector<Expr *, 4> OMPDimensions;
3306 SmallVector<SourceRange, 4> OMPBracketsRanges;
3307 do {
3308 BalancedDelimiterTracker TS(*this, tok::l_square);
3309 TS.consumeOpen();
3310 ExprResult NumElements =
3311 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3312 if (!NumElements.isUsable()) {
3313 ErrorFound = true;
3314 while (!SkipUntil(tok::r_square, tok::r_paren,
3315 StopAtSemi | StopBeforeMatch))
3316 ;
3317 }
3318 TS.consumeClose();
3319 OMPDimensions.push_back(NumElements.get());
3320 OMPBracketsRanges.push_back(TS.getRange());
3321 } while (Tok.isNot(tok::r_paren));
3322 // Match the ')'.
3323 T.consumeClose();
3324 RParenLoc = T.getCloseLocation();
3325 Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3326 if (ErrorFound) {
3327 Result = ExprError();
3328 } else if (!Result.isInvalid()) {
3329 Result = Actions.OpenMP().ActOnOMPArrayShapingExpr(
3330 Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges);
3331 }
3332 return Result;
3333 } else {
3334 InMessageExpressionRAIIObject InMessage(*this, false);
3335
3336 Result = ParseExpression(MaybeTypeCast);
3337 if (!getLangOpts().CPlusPlus && Result.isUsable()) {
3338 // Correct typos in non-C++ code earlier so that implicit-cast-like
3339 // expressions are parsed correctly.
3340 Result = Actions.CorrectDelayedTyposInExpr(Result);
3341 }
3342
3343 if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
3344 NextToken().is(tok::ellipsis)) {
3345 ExprType = FoldExpr;
3346 return ParseFoldExpression(Result, T);
3347 }
3348 ExprType = SimpleExpr;
3349
3350 // Don't build a paren expression unless we actually match a ')'.
3351 if (!Result.isInvalid() && Tok.is(tok::r_paren))
3352 Result =
3353 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
3354 }
3355
3356 // Match the ')'.
3357 if (Result.isInvalid()) {
3358 SkipUntil(tok::r_paren, StopAtSemi);
3359 return ExprError();
3360 }
3361
3362 T.consumeClose();
3363 RParenLoc = T.getCloseLocation();
3364 return Result;
3365 }
3366
3367 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
3368 /// and we are at the left brace.
3369 ///
3370 /// \verbatim
3371 /// postfix-expression: [C99 6.5.2]
3372 /// '(' type-name ')' '{' initializer-list '}'
3373 /// '(' type-name ')' '{' initializer-list ',' '}'
3374 /// \endverbatim
3375 ExprResult
ParseCompoundLiteralExpression(ParsedType Ty,SourceLocation LParenLoc,SourceLocation RParenLoc)3376 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
3377 SourceLocation LParenLoc,
3378 SourceLocation RParenLoc) {
3379 assert(Tok.is(tok::l_brace) && "Not a compound literal!");
3380 if (!getLangOpts().C99) // Compound literals don't exist in C90.
3381 Diag(LParenLoc, diag::ext_c99_compound_literal);
3382 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get());
3383 ExprResult Result = ParseInitializer();
3384 if (!Result.isInvalid() && Ty)
3385 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
3386 return Result;
3387 }
3388
3389 /// ParseStringLiteralExpression - This handles the various token types that
3390 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
3391 /// translation phase #6].
3392 ///
3393 /// \verbatim
3394 /// primary-expression: [C99 6.5.1]
3395 /// string-literal
3396 /// \verbatim
ParseStringLiteralExpression(bool AllowUserDefinedLiteral)3397 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
3398 return ParseStringLiteralExpression(AllowUserDefinedLiteral,
3399 /*Unevaluated=*/false);
3400 }
3401
ParseUnevaluatedStringLiteralExpression()3402 ExprResult Parser::ParseUnevaluatedStringLiteralExpression() {
3403 return ParseStringLiteralExpression(/*AllowUserDefinedLiteral=*/false,
3404 /*Unevaluated=*/true);
3405 }
3406
ParseStringLiteralExpression(bool AllowUserDefinedLiteral,bool Unevaluated)3407 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral,
3408 bool Unevaluated) {
3409 assert(tokenIsLikeStringLiteral(Tok, getLangOpts()) &&
3410 "Not a string-literal-like token!");
3411
3412 // String concatenation.
3413 // Note: some keywords like __FUNCTION__ are not considered to be strings
3414 // for concatenation purposes, unless Microsoft extensions are enabled.
3415 SmallVector<Token, 4> StringToks;
3416
3417 do {
3418 StringToks.push_back(Tok);
3419 ConsumeAnyToken();
3420 } while (tokenIsLikeStringLiteral(Tok, getLangOpts()));
3421
3422 if (Unevaluated) {
3423 assert(!AllowUserDefinedLiteral && "UDL are always evaluated");
3424 return Actions.ActOnUnevaluatedStringLiteral(StringToks);
3425 }
3426
3427 // Pass the set of string tokens, ready for concatenation, to the actions.
3428 return Actions.ActOnStringLiteral(StringToks,
3429 AllowUserDefinedLiteral ? getCurScope()
3430 : nullptr);
3431 }
3432
3433 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
3434 /// [C11 6.5.1.1].
3435 ///
3436 /// \verbatim
3437 /// generic-selection:
3438 /// _Generic ( assignment-expression , generic-assoc-list )
3439 /// generic-assoc-list:
3440 /// generic-association
3441 /// generic-assoc-list , generic-association
3442 /// generic-association:
3443 /// type-name : assignment-expression
3444 /// default : assignment-expression
3445 /// \endverbatim
3446 ///
3447 /// As an extension, Clang also accepts:
3448 /// \verbatim
3449 /// generic-selection:
3450 /// _Generic ( type-name, generic-assoc-list )
3451 /// \endverbatim
ParseGenericSelectionExpression()3452 ExprResult Parser::ParseGenericSelectionExpression() {
3453 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
3454
3455 diagnoseUseOfC11Keyword(Tok);
3456
3457 SourceLocation KeyLoc = ConsumeToken();
3458 BalancedDelimiterTracker T(*this, tok::l_paren);
3459 if (T.expectAndConsume())
3460 return ExprError();
3461
3462 // We either have a controlling expression or we have a controlling type, and
3463 // we need to figure out which it is.
3464 TypeResult ControllingType;
3465 ExprResult ControllingExpr;
3466 if (isTypeIdForGenericSelection()) {
3467 ControllingType = ParseTypeName();
3468 if (ControllingType.isInvalid()) {
3469 SkipUntil(tok::r_paren, StopAtSemi);
3470 return ExprError();
3471 }
3472 const auto *LIT = cast<LocInfoType>(ControllingType.get().get());
3473 SourceLocation Loc = LIT->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
3474 Diag(Loc, getLangOpts().C2y ? diag::warn_c2y_compat_generic_with_type_arg
3475 : diag::ext_c2y_generic_with_type_arg);
3476 } else {
3477 // C11 6.5.1.1p3 "The controlling expression of a generic selection is
3478 // not evaluated."
3479 EnterExpressionEvaluationContext Unevaluated(
3480 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3481 ControllingExpr =
3482 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3483 if (ControllingExpr.isInvalid()) {
3484 SkipUntil(tok::r_paren, StopAtSemi);
3485 return ExprError();
3486 }
3487 }
3488
3489 if (ExpectAndConsume(tok::comma)) {
3490 SkipUntil(tok::r_paren, StopAtSemi);
3491 return ExprError();
3492 }
3493
3494 SourceLocation DefaultLoc;
3495 SmallVector<ParsedType, 12> Types;
3496 ExprVector Exprs;
3497 do {
3498 ParsedType Ty;
3499 if (Tok.is(tok::kw_default)) {
3500 // C11 6.5.1.1p2 "A generic selection shall have no more than one default
3501 // generic association."
3502 if (!DefaultLoc.isInvalid()) {
3503 Diag(Tok, diag::err_duplicate_default_assoc);
3504 Diag(DefaultLoc, diag::note_previous_default_assoc);
3505 SkipUntil(tok::r_paren, StopAtSemi);
3506 return ExprError();
3507 }
3508 DefaultLoc = ConsumeToken();
3509 Ty = nullptr;
3510 } else {
3511 ColonProtectionRAIIObject X(*this);
3512 TypeResult TR = ParseTypeName(nullptr, DeclaratorContext::Association);
3513 if (TR.isInvalid()) {
3514 SkipUntil(tok::r_paren, StopAtSemi);
3515 return ExprError();
3516 }
3517 Ty = TR.get();
3518 }
3519 Types.push_back(Ty);
3520
3521 if (ExpectAndConsume(tok::colon)) {
3522 SkipUntil(tok::r_paren, StopAtSemi);
3523 return ExprError();
3524 }
3525
3526 // FIXME: These expressions should be parsed in a potentially potentially
3527 // evaluated context.
3528 ExprResult ER(
3529 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
3530 if (ER.isInvalid()) {
3531 SkipUntil(tok::r_paren, StopAtSemi);
3532 return ExprError();
3533 }
3534 Exprs.push_back(ER.get());
3535 } while (TryConsumeToken(tok::comma));
3536
3537 T.consumeClose();
3538 if (T.getCloseLocation().isInvalid())
3539 return ExprError();
3540
3541 void *ExprOrTy = ControllingExpr.isUsable()
3542 ? ControllingExpr.get()
3543 : ControllingType.get().getAsOpaquePtr();
3544
3545 return Actions.ActOnGenericSelectionExpr(
3546 KeyLoc, DefaultLoc, T.getCloseLocation(), ControllingExpr.isUsable(),
3547 ExprOrTy, Types, Exprs);
3548 }
3549
3550 /// Parse A C++1z fold-expression after the opening paren and optional
3551 /// left-hand-side expression.
3552 ///
3553 /// \verbatim
3554 /// fold-expression:
3555 /// ( cast-expression fold-operator ... )
3556 /// ( ... fold-operator cast-expression )
3557 /// ( cast-expression fold-operator ... fold-operator cast-expression )
ParseFoldExpression(ExprResult LHS,BalancedDelimiterTracker & T)3558 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
3559 BalancedDelimiterTracker &T) {
3560 if (LHS.isInvalid()) {
3561 T.skipToEnd();
3562 return true;
3563 }
3564
3565 tok::TokenKind Kind = tok::unknown;
3566 SourceLocation FirstOpLoc;
3567 if (LHS.isUsable()) {
3568 Kind = Tok.getKind();
3569 assert(isFoldOperator(Kind) && "missing fold-operator");
3570 FirstOpLoc = ConsumeToken();
3571 }
3572
3573 assert(Tok.is(tok::ellipsis) && "not a fold-expression");
3574 SourceLocation EllipsisLoc = ConsumeToken();
3575
3576 ExprResult RHS;
3577 if (Tok.isNot(tok::r_paren)) {
3578 if (!isFoldOperator(Tok.getKind()))
3579 return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
3580
3581 if (Kind != tok::unknown && Tok.getKind() != Kind)
3582 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
3583 << SourceRange(FirstOpLoc);
3584 Kind = Tok.getKind();
3585 ConsumeToken();
3586
3587 RHS = ParseExpression();
3588 if (RHS.isInvalid()) {
3589 T.skipToEnd();
3590 return true;
3591 }
3592 }
3593
3594 Diag(EllipsisLoc, getLangOpts().CPlusPlus17
3595 ? diag::warn_cxx14_compat_fold_expression
3596 : diag::ext_fold_expression);
3597
3598 T.consumeClose();
3599 return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(),
3600 Kind, EllipsisLoc, RHS.get(),
3601 T.getCloseLocation());
3602 }
3603
injectEmbedTokens()3604 void Parser::injectEmbedTokens() {
3605 EmbedAnnotationData *Data =
3606 reinterpret_cast<EmbedAnnotationData *>(Tok.getAnnotationValue());
3607 MutableArrayRef<Token> Toks(PP.getPreprocessorAllocator().Allocate<Token>(
3608 Data->BinaryData.size() * 2 - 1),
3609 Data->BinaryData.size() * 2 - 1);
3610 unsigned I = 0;
3611 for (auto &Byte : Data->BinaryData) {
3612 Toks[I].startToken();
3613 Toks[I].setKind(tok::binary_data);
3614 Toks[I].setLocation(Tok.getLocation());
3615 Toks[I].setLength(1);
3616 Toks[I].setLiteralData(&Byte);
3617 if (I != ((Data->BinaryData.size() - 1) * 2)) {
3618 Toks[I + 1].startToken();
3619 Toks[I + 1].setKind(tok::comma);
3620 Toks[I + 1].setLocation(Tok.getLocation());
3621 }
3622 I += 2;
3623 }
3624 PP.EnterTokenStream(std::move(Toks), /*DisableMacroExpansion=*/true,
3625 /*IsReinject=*/true);
3626 ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
3627 }
3628
3629 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
3630 ///
3631 /// \verbatim
3632 /// argument-expression-list:
3633 /// assignment-expression
3634 /// argument-expression-list , assignment-expression
3635 ///
3636 /// [C++] expression-list:
3637 /// [C++] assignment-expression
3638 /// [C++] expression-list , assignment-expression
3639 ///
3640 /// [C++0x] expression-list:
3641 /// [C++0x] initializer-list
3642 ///
3643 /// [C++0x] initializer-list
3644 /// [C++0x] initializer-clause ...[opt]
3645 /// [C++0x] initializer-list , initializer-clause ...[opt]
3646 ///
3647 /// [C++0x] initializer-clause:
3648 /// [C++0x] assignment-expression
3649 /// [C++0x] braced-init-list
3650 /// \endverbatim
ParseExpressionList(SmallVectorImpl<Expr * > & Exprs,llvm::function_ref<void ()> ExpressionStarts,bool FailImmediatelyOnInvalidExpr,bool EarlyTypoCorrection)3651 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
3652 llvm::function_ref<void()> ExpressionStarts,
3653 bool FailImmediatelyOnInvalidExpr,
3654 bool EarlyTypoCorrection) {
3655 bool SawError = false;
3656 while (true) {
3657 if (ExpressionStarts)
3658 ExpressionStarts();
3659
3660 ExprResult Expr;
3661 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
3662 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
3663 Expr = ParseBraceInitializer();
3664 } else
3665 Expr = ParseAssignmentExpression();
3666
3667 if (EarlyTypoCorrection)
3668 Expr = Actions.CorrectDelayedTyposInExpr(Expr);
3669
3670 if (Tok.is(tok::ellipsis))
3671 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
3672 else if (Tok.is(tok::code_completion)) {
3673 // There's nothing to suggest in here as we parsed a full expression.
3674 // Instead fail and propagate the error since caller might have something
3675 // the suggest, e.g. signature help in function call. Note that this is
3676 // performed before pushing the \p Expr, so that signature help can report
3677 // current argument correctly.
3678 SawError = true;
3679 cutOffParsing();
3680 break;
3681 }
3682 if (Expr.isInvalid()) {
3683 SawError = true;
3684 if (FailImmediatelyOnInvalidExpr)
3685 break;
3686 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
3687 } else {
3688 Exprs.push_back(Expr.get());
3689 }
3690
3691 if (Tok.isNot(tok::comma))
3692 break;
3693 // Move to the next argument, remember where the comma was.
3694 Token Comma = Tok;
3695 ConsumeToken();
3696 checkPotentialAngleBracketDelimiter(Comma);
3697 }
3698 if (SawError) {
3699 // Ensure typos get diagnosed when errors were encountered while parsing the
3700 // expression list.
3701 for (auto &E : Exprs) {
3702 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
3703 if (Expr.isUsable()) E = Expr.get();
3704 }
3705 }
3706 return SawError;
3707 }
3708
3709 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
3710 /// used for misc language extensions.
3711 ///
3712 /// \verbatim
3713 /// simple-expression-list:
3714 /// assignment-expression
3715 /// simple-expression-list , assignment-expression
3716 /// \endverbatim
ParseSimpleExpressionList(SmallVectorImpl<Expr * > & Exprs)3717 bool Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr *> &Exprs) {
3718 while (true) {
3719 ExprResult Expr = ParseAssignmentExpression();
3720 if (Expr.isInvalid())
3721 return true;
3722
3723 Exprs.push_back(Expr.get());
3724
3725 // We might be parsing the LHS of a fold-expression. If we reached the fold
3726 // operator, stop.
3727 if (Tok.isNot(tok::comma) || NextToken().is(tok::ellipsis))
3728 return false;
3729
3730 // Move to the next argument, remember where the comma was.
3731 Token Comma = Tok;
3732 ConsumeToken();
3733 checkPotentialAngleBracketDelimiter(Comma);
3734 }
3735 }
3736
3737 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
3738 ///
3739 /// \verbatim
3740 /// [clang] block-id:
3741 /// [clang] specifier-qualifier-list block-declarator
3742 /// \endverbatim
ParseBlockId(SourceLocation CaretLoc)3743 void Parser::ParseBlockId(SourceLocation CaretLoc) {
3744 if (Tok.is(tok::code_completion)) {
3745 cutOffParsing();
3746 Actions.CodeCompletion().CodeCompleteOrdinaryName(
3747 getCurScope(), SemaCodeCompletion::PCC_Type);
3748 return;
3749 }
3750
3751 // Parse the specifier-qualifier-list piece.
3752 DeclSpec DS(AttrFactory);
3753 ParseSpecifierQualifierList(DS);
3754
3755 // Parse the block-declarator.
3756 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3757 DeclaratorContext::BlockLiteral);
3758 DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3759 ParseDeclarator(DeclaratorInfo);
3760
3761 MaybeParseGNUAttributes(DeclaratorInfo);
3762
3763 // Inform sema that we are starting a block.
3764 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
3765 }
3766
3767 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
3768 /// like ^(int x){ return x+1; }
3769 ///
3770 /// \verbatim
3771 /// block-literal:
3772 /// [clang] '^' block-args[opt] compound-statement
3773 /// [clang] '^' block-id compound-statement
3774 /// [clang] block-args:
3775 /// [clang] '(' parameter-list ')'
3776 /// \endverbatim
ParseBlockLiteralExpression()3777 ExprResult Parser::ParseBlockLiteralExpression() {
3778 assert(Tok.is(tok::caret) && "block literal starts with ^");
3779 SourceLocation CaretLoc = ConsumeToken();
3780
3781 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
3782 "block literal parsing");
3783
3784 // Enter a scope to hold everything within the block. This includes the
3785 // argument decls, decls within the compound expression, etc. This also
3786 // allows determining whether a variable reference inside the block is
3787 // within or outside of the block.
3788 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
3789 Scope::CompoundStmtScope | Scope::DeclScope);
3790
3791 // Inform sema that we are starting a block.
3792 Actions.ActOnBlockStart(CaretLoc, getCurScope());
3793
3794 // Parse the return type if present.
3795 DeclSpec DS(AttrFactory);
3796 Declarator ParamInfo(DS, ParsedAttributesView::none(),
3797 DeclaratorContext::BlockLiteral);
3798 ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3799 // FIXME: Since the return type isn't actually parsed, it can't be used to
3800 // fill ParamInfo with an initial valid range, so do it manually.
3801 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
3802
3803 // If this block has arguments, parse them. There is no ambiguity here with
3804 // the expression case, because the expression case requires a parameter list.
3805 if (Tok.is(tok::l_paren)) {
3806 ParseParenDeclarator(ParamInfo);
3807 // Parse the pieces after the identifier as if we had "int(...)".
3808 // SetIdentifier sets the source range end, but in this case we're past
3809 // that location.
3810 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
3811 ParamInfo.SetIdentifier(nullptr, CaretLoc);
3812 ParamInfo.SetRangeEnd(Tmp);
3813 if (ParamInfo.isInvalidType()) {
3814 // If there was an error parsing the arguments, they may have
3815 // tried to use ^(x+y) which requires an argument list. Just
3816 // skip the whole block literal.
3817 Actions.ActOnBlockError(CaretLoc, getCurScope());
3818 return ExprError();
3819 }
3820
3821 MaybeParseGNUAttributes(ParamInfo);
3822
3823 // Inform sema that we are starting a block.
3824 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3825 } else if (!Tok.is(tok::l_brace)) {
3826 ParseBlockId(CaretLoc);
3827 } else {
3828 // Otherwise, pretend we saw (void).
3829 SourceLocation NoLoc;
3830 ParamInfo.AddTypeInfo(
3831 DeclaratorChunk::getFunction(/*HasProto=*/true,
3832 /*IsAmbiguous=*/false,
3833 /*RParenLoc=*/NoLoc,
3834 /*ArgInfo=*/nullptr,
3835 /*NumParams=*/0,
3836 /*EllipsisLoc=*/NoLoc,
3837 /*RParenLoc=*/NoLoc,
3838 /*RefQualifierIsLvalueRef=*/true,
3839 /*RefQualifierLoc=*/NoLoc,
3840 /*MutableLoc=*/NoLoc, EST_None,
3841 /*ESpecRange=*/SourceRange(),
3842 /*Exceptions=*/nullptr,
3843 /*ExceptionRanges=*/nullptr,
3844 /*NumExceptions=*/0,
3845 /*NoexceptExpr=*/nullptr,
3846 /*ExceptionSpecTokens=*/nullptr,
3847 /*DeclsInPrototype=*/std::nullopt,
3848 CaretLoc, CaretLoc, ParamInfo),
3849 CaretLoc);
3850
3851 MaybeParseGNUAttributes(ParamInfo);
3852
3853 // Inform sema that we are starting a block.
3854 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3855 }
3856
3857
3858 ExprResult Result(true);
3859 if (!Tok.is(tok::l_brace)) {
3860 // Saw something like: ^expr
3861 Diag(Tok, diag::err_expected_expression);
3862 Actions.ActOnBlockError(CaretLoc, getCurScope());
3863 return ExprError();
3864 }
3865
3866 StmtResult Stmt(ParseCompoundStatementBody());
3867 BlockScope.Exit();
3868 if (!Stmt.isInvalid())
3869 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3870 else
3871 Actions.ActOnBlockError(CaretLoc, getCurScope());
3872 return Result;
3873 }
3874
3875 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3876 ///
3877 /// '__objc_yes'
3878 /// '__objc_no'
ParseObjCBoolLiteral()3879 ExprResult Parser::ParseObjCBoolLiteral() {
3880 tok::TokenKind Kind = Tok.getKind();
3881 return Actions.ObjC().ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3882 }
3883
3884 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3885 /// true if invalid.
CheckAvailabilitySpecList(Parser & P,ArrayRef<AvailabilitySpec> AvailSpecs)3886 static bool CheckAvailabilitySpecList(Parser &P,
3887 ArrayRef<AvailabilitySpec> AvailSpecs) {
3888 llvm::SmallSet<StringRef, 4> Platforms;
3889 bool HasOtherPlatformSpec = false;
3890 bool Valid = true;
3891 for (const auto &Spec : AvailSpecs) {
3892 if (Spec.isOtherPlatformSpec()) {
3893 if (HasOtherPlatformSpec) {
3894 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3895 Valid = false;
3896 }
3897
3898 HasOtherPlatformSpec = true;
3899 continue;
3900 }
3901
3902 bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3903 if (!Inserted) {
3904 // Rule out multiple version specs referring to the same platform.
3905 // For example, we emit an error for:
3906 // @available(macos 10.10, macos 10.11, *)
3907 StringRef Platform = Spec.getPlatform();
3908 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3909 << Spec.getEndLoc() << Platform;
3910 Valid = false;
3911 }
3912 }
3913
3914 if (!HasOtherPlatformSpec) {
3915 SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3916 P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3917 << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3918 return true;
3919 }
3920
3921 return !Valid;
3922 }
3923
3924 /// Parse availability query specification.
3925 ///
3926 /// availability-spec:
3927 /// '*'
3928 /// identifier version-tuple
ParseAvailabilitySpec()3929 std::optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3930 if (Tok.is(tok::star)) {
3931 return AvailabilitySpec(ConsumeToken());
3932 } else {
3933 // Parse the platform name.
3934 if (Tok.is(tok::code_completion)) {
3935 cutOffParsing();
3936 Actions.CodeCompletion().CodeCompleteAvailabilityPlatformName();
3937 return std::nullopt;
3938 }
3939 if (Tok.isNot(tok::identifier)) {
3940 Diag(Tok, diag::err_avail_query_expected_platform_name);
3941 return std::nullopt;
3942 }
3943
3944 IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3945 SourceRange VersionRange;
3946 VersionTuple Version = ParseVersionTuple(VersionRange);
3947
3948 if (Version.empty())
3949 return std::nullopt;
3950
3951 StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3952 StringRef Platform =
3953 AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3954
3955 if (AvailabilityAttr::getPrettyPlatformName(Platform).empty() ||
3956 (GivenPlatform.contains("xros") || GivenPlatform.contains("xrOS"))) {
3957 Diag(PlatformIdentifier->Loc,
3958 diag::err_avail_query_unrecognized_platform_name)
3959 << GivenPlatform;
3960 return std::nullopt;
3961 }
3962
3963 return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3964 VersionRange.getEnd());
3965 }
3966 }
3967
ParseAvailabilityCheckExpr(SourceLocation BeginLoc)3968 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3969 assert(Tok.is(tok::kw___builtin_available) ||
3970 Tok.isObjCAtKeyword(tok::objc_available));
3971
3972 // Eat the available or __builtin_available.
3973 ConsumeToken();
3974
3975 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3976 if (Parens.expectAndConsume())
3977 return ExprError();
3978
3979 SmallVector<AvailabilitySpec, 4> AvailSpecs;
3980 bool HasError = false;
3981 while (true) {
3982 std::optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3983 if (!Spec)
3984 HasError = true;
3985 else
3986 AvailSpecs.push_back(*Spec);
3987
3988 if (!TryConsumeToken(tok::comma))
3989 break;
3990 }
3991
3992 if (HasError) {
3993 SkipUntil(tok::r_paren, StopAtSemi);
3994 return ExprError();
3995 }
3996
3997 CheckAvailabilitySpecList(*this, AvailSpecs);
3998
3999 if (Parens.consumeClose())
4000 return ExprError();
4001
4002 return Actions.ObjC().ActOnObjCAvailabilityCheckExpr(
4003 AvailSpecs, BeginLoc, Parens.getCloseLocation());
4004 }
4005