xref: /freebsd/contrib/llvm-project/openmp/runtime/src/z_Windows_NT_util.cpp (revision 7a6dacaca14b62ca4b74406814becb87a3fefac0)
1 /*
2  * z_Windows_NT_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_wait_release.h"
19 
20 /* This code is related to NtQuerySystemInformation() function. This function
21    is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
22    number of running threads in the system. */
23 
24 #include <ntsecapi.h> // UNICODE_STRING
25 #undef WIN32_NO_STATUS
26 #include <ntstatus.h>
27 #include <psapi.h>
28 #ifdef _MSC_VER
29 #pragma comment(lib, "psapi.lib")
30 #endif
31 
32 enum SYSTEM_INFORMATION_CLASS {
33   SystemProcessInformation = 5
34 }; // SYSTEM_INFORMATION_CLASS
35 
36 struct CLIENT_ID {
37   HANDLE UniqueProcess;
38   HANDLE UniqueThread;
39 }; // struct CLIENT_ID
40 
41 enum THREAD_STATE {
42   StateInitialized,
43   StateReady,
44   StateRunning,
45   StateStandby,
46   StateTerminated,
47   StateWait,
48   StateTransition,
49   StateUnknown
50 }; // enum THREAD_STATE
51 
52 struct VM_COUNTERS {
53   SIZE_T PeakVirtualSize;
54   SIZE_T VirtualSize;
55   ULONG PageFaultCount;
56   SIZE_T PeakWorkingSetSize;
57   SIZE_T WorkingSetSize;
58   SIZE_T QuotaPeakPagedPoolUsage;
59   SIZE_T QuotaPagedPoolUsage;
60   SIZE_T QuotaPeakNonPagedPoolUsage;
61   SIZE_T QuotaNonPagedPoolUsage;
62   SIZE_T PagefileUsage;
63   SIZE_T PeakPagefileUsage;
64   SIZE_T PrivatePageCount;
65 }; // struct VM_COUNTERS
66 
67 struct SYSTEM_THREAD {
68   LARGE_INTEGER KernelTime;
69   LARGE_INTEGER UserTime;
70   LARGE_INTEGER CreateTime;
71   ULONG WaitTime;
72   LPVOID StartAddress;
73   CLIENT_ID ClientId;
74   DWORD Priority;
75   LONG BasePriority;
76   ULONG ContextSwitchCount;
77   THREAD_STATE State;
78   ULONG WaitReason;
79 }; // SYSTEM_THREAD
80 
81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
82 #if KMP_ARCH_X86 || KMP_ARCH_ARM
83 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
84 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
85 #else
86 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
87 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
88 #endif
89 
90 struct SYSTEM_PROCESS_INFORMATION {
91   ULONG NextEntryOffset;
92   ULONG NumberOfThreads;
93   LARGE_INTEGER Reserved[3];
94   LARGE_INTEGER CreateTime;
95   LARGE_INTEGER UserTime;
96   LARGE_INTEGER KernelTime;
97   UNICODE_STRING ImageName;
98   DWORD BasePriority;
99   HANDLE ProcessId;
100   HANDLE ParentProcessId;
101   ULONG HandleCount;
102   ULONG Reserved2[2];
103   VM_COUNTERS VMCounters;
104   IO_COUNTERS IOCounters;
105   SYSTEM_THREAD Threads[1];
106 }; // SYSTEM_PROCESS_INFORMATION
107 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
108 
109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
112 #if KMP_ARCH_X86 || KMP_ARCH_ARM
113 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
118 #else
119 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
120 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
121 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
122 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
123 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
124 #endif
125 
126 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
127                                                     PVOID, ULONG, PULONG);
128 NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
129 
130 HMODULE ntdll = NULL;
131 
132 /* End of NtQuerySystemInformation()-related code */
133 
134 static HMODULE kernel32 = NULL;
135 
136 #if KMP_HANDLE_SIGNALS
137 typedef void (*sig_func_t)(int);
138 static sig_func_t __kmp_sighldrs[NSIG];
139 static int __kmp_siginstalled[NSIG];
140 #endif
141 
142 #if KMP_USE_MONITOR
143 static HANDLE __kmp_monitor_ev;
144 #endif
145 static kmp_int64 __kmp_win32_time;
146 double __kmp_win32_tick;
147 
148 int __kmp_init_runtime = FALSE;
149 CRITICAL_SECTION __kmp_win32_section;
150 
151 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
152   InitializeCriticalSection(&mx->cs);
153 #if USE_ITT_BUILD
154   __kmp_itt_system_object_created(&mx->cs, "Critical Section");
155 #endif /* USE_ITT_BUILD */
156 }
157 
158 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
159   DeleteCriticalSection(&mx->cs);
160 }
161 
162 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
163   EnterCriticalSection(&mx->cs);
164 }
165 
166 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) {
167   return TryEnterCriticalSection(&mx->cs);
168 }
169 
170 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
171   LeaveCriticalSection(&mx->cs);
172 }
173 
174 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
175   cv->waiters_count_ = 0;
176   cv->wait_generation_count_ = 0;
177   cv->release_count_ = 0;
178 
179   /* Initialize the critical section */
180   __kmp_win32_mutex_init(&cv->waiters_count_lock_);
181 
182   /* Create a manual-reset event. */
183   cv->event_ = CreateEvent(NULL, // no security
184                            TRUE, // manual-reset
185                            FALSE, // non-signaled initially
186                            NULL); // unnamed
187 #if USE_ITT_BUILD
188   __kmp_itt_system_object_created(cv->event_, "Event");
189 #endif /* USE_ITT_BUILD */
190 }
191 
192 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
193   __kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
194   __kmp_free_handle(cv->event_);
195   memset(cv, '\0', sizeof(*cv));
196 }
197 
198 /* TODO associate cv with a team instead of a thread so as to optimize
199    the case where we wake up a whole team */
200 
201 template <class C>
202 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
203                                   kmp_info_t *th, C *flag) {
204   int my_generation;
205   int last_waiter;
206 
207   /* Avoid race conditions */
208   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
209 
210   /* Increment count of waiters */
211   cv->waiters_count_++;
212 
213   /* Store current generation in our activation record. */
214   my_generation = cv->wait_generation_count_;
215 
216   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
217   __kmp_win32_mutex_unlock(mx);
218 
219   for (;;) {
220     int wait_done = 0;
221     DWORD res, timeout = 5000; // just tried to quess an appropriate number
222     /* Wait until the event is signaled */
223     res = WaitForSingleObject(cv->event_, timeout);
224 
225     if (res == WAIT_OBJECT_0) {
226       // event signaled
227       __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
228       /* Exit the loop when the <cv->event_> is signaled and there are still
229          waiting threads from this <wait_generation> that haven't been released
230          from this wait yet. */
231       wait_done = (cv->release_count_ > 0) &&
232                   (cv->wait_generation_count_ != my_generation);
233       __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
234     } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) {
235       // check if the flag and cv counters are in consistent state
236       // as MS sent us debug dump whith inconsistent state of data
237       __kmp_win32_mutex_lock(mx);
238       typename C::flag_t old_f = flag->set_sleeping();
239       if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) {
240         __kmp_win32_mutex_unlock(mx);
241         continue;
242       }
243       // condition fulfilled, exiting
244       flag->unset_sleeping();
245       TCW_PTR(th->th.th_sleep_loc, NULL);
246       th->th.th_sleep_loc_type = flag_unset;
247       KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition "
248                     "fulfilled: flag's loc(%p): %u\n",
249                     flag->get(), (unsigned int)flag->load()));
250 
251       __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
252       KMP_DEBUG_ASSERT(cv->waiters_count_ > 0);
253       cv->release_count_ = cv->waiters_count_;
254       cv->wait_generation_count_++;
255       wait_done = 1;
256       __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
257 
258       __kmp_win32_mutex_unlock(mx);
259     }
260     /* there used to be a semicolon after the if statement, it looked like a
261        bug, so i removed it */
262     if (wait_done)
263       break;
264   }
265 
266   __kmp_win32_mutex_lock(mx);
267   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
268 
269   cv->waiters_count_--;
270   cv->release_count_--;
271 
272   last_waiter = (cv->release_count_ == 0);
273 
274   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
275 
276   if (last_waiter) {
277     /* We're the last waiter to be notified, so reset the manual event. */
278     ResetEvent(cv->event_);
279   }
280 }
281 
282 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
283   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
284 
285   if (cv->waiters_count_ > 0) {
286     SetEvent(cv->event_);
287     /* Release all the threads in this generation. */
288 
289     cv->release_count_ = cv->waiters_count_;
290 
291     /* Start a new generation. */
292     cv->wait_generation_count_++;
293   }
294 
295   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
296 }
297 
298 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
299   __kmp_win32_cond_broadcast(cv);
300 }
301 
302 void __kmp_enable(int new_state) {
303   if (__kmp_init_runtime)
304     LeaveCriticalSection(&__kmp_win32_section);
305 }
306 
307 void __kmp_disable(int *old_state) {
308   *old_state = 0;
309 
310   if (__kmp_init_runtime)
311     EnterCriticalSection(&__kmp_win32_section);
312 }
313 
314 void __kmp_suspend_initialize(void) { /* do nothing */
315 }
316 
317 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
318   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init);
319   int new_value = TRUE;
320   // Return if already initialized
321   if (old_value == new_value)
322     return;
323   // Wait, then return if being initialized
324   if (old_value == -1 ||
325       !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) {
326     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) {
327       KMP_CPU_PAUSE();
328     }
329   } else {
330     // Claim to be the initializer and do initializations
331     __kmp_win32_cond_init(&th->th.th_suspend_cv);
332     __kmp_win32_mutex_init(&th->th.th_suspend_mx);
333     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value);
334   }
335 }
336 
337 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
338   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) {
339     /* this means we have initialize the suspension pthread objects for this
340        thread in this instance of the process */
341     __kmp_win32_cond_destroy(&th->th.th_suspend_cv);
342     __kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
343     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE);
344   }
345 }
346 
347 int __kmp_try_suspend_mx(kmp_info_t *th) {
348   return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx);
349 }
350 
351 void __kmp_lock_suspend_mx(kmp_info_t *th) {
352   __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
353 }
354 
355 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
356   __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
357 }
358 
359 /* This routine puts the calling thread to sleep after setting the
360    sleep bit for the indicated flag variable to true. */
361 template <class C>
362 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
363   kmp_info_t *th = __kmp_threads[th_gtid];
364   typename C::flag_t old_spin;
365 
366   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
367                 th_gtid, flag->get()));
368 
369   __kmp_suspend_initialize_thread(th);
370   __kmp_lock_suspend_mx(th);
371 
372   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
373                 " loc(%p)\n",
374                 th_gtid, flag->get()));
375 
376   /* TODO: shouldn't this use release semantics to ensure that
377      __kmp_suspend_initialize_thread gets called first? */
378   old_spin = flag->set_sleeping();
379   TCW_PTR(th->th.th_sleep_loc, (void *)flag);
380   th->th.th_sleep_loc_type = flag->get_type();
381   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
382       __kmp_pause_status != kmp_soft_paused) {
383     flag->unset_sleeping();
384     TCW_PTR(th->th.th_sleep_loc, NULL);
385     th->th.th_sleep_loc_type = flag_unset;
386     __kmp_unlock_suspend_mx(th);
387     return;
388   }
389 
390   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
391                " loc(%p)==%u\n",
392                th_gtid, flag->get(), (unsigned int)flag->load()));
393 
394   if (flag->done_check_val(old_spin) || flag->done_check()) {
395     flag->unset_sleeping();
396     TCW_PTR(th->th.th_sleep_loc, NULL);
397     th->th.th_sleep_loc_type = flag_unset;
398     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
399                  "for flag's loc(%p)\n",
400                  th_gtid, flag->get()));
401   } else {
402 #ifdef DEBUG_SUSPEND
403     __kmp_suspend_count++;
404 #endif
405     /* Encapsulate in a loop as the documentation states that this may "with
406        low probability" return when the condition variable has not been signaled
407        or broadcast */
408     int deactivated = FALSE;
409 
410     while (flag->is_sleeping()) {
411       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
412                     "kmp_win32_cond_wait()\n",
413                     th_gtid));
414       // Mark the thread as no longer active (only in the first iteration of the
415       // loop).
416       if (!deactivated) {
417         th->th.th_active = FALSE;
418         if (th->th.th_active_in_pool) {
419           th->th.th_active_in_pool = FALSE;
420           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
421           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
422         }
423         deactivated = TRUE;
424       }
425 
426       KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
427       KMP_DEBUG_ASSERT(th->th.th_sleep_loc_type == flag->get_type());
428 
429       __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
430                             flag);
431 
432 #ifdef KMP_DEBUG
433       if (flag->is_sleeping()) {
434         KF_TRACE(100,
435                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
436       }
437 #endif /* KMP_DEBUG */
438 
439     } // while
440 
441     // We may have had the loop variable set before entering the loop body;
442     // so we need to reset sleep_loc.
443     TCW_PTR(th->th.th_sleep_loc, NULL);
444     th->th.th_sleep_loc_type = flag_unset;
445 
446     KMP_DEBUG_ASSERT(!flag->is_sleeping());
447     KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
448 
449     // Mark the thread as active again (if it was previous marked as inactive)
450     if (deactivated) {
451       th->th.th_active = TRUE;
452       if (TCR_4(th->th.th_in_pool)) {
453         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
454         th->th.th_active_in_pool = TRUE;
455       }
456     }
457   }
458 
459   __kmp_unlock_suspend_mx(th);
460   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
461 }
462 
463 template <bool C, bool S>
464 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
465   __kmp_suspend_template(th_gtid, flag);
466 }
467 template <bool C, bool S>
468 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
469   __kmp_suspend_template(th_gtid, flag);
470 }
471 template <bool C, bool S>
472 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
473   __kmp_suspend_template(th_gtid, flag);
474 }
475 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
476   __kmp_suspend_template(th_gtid, flag);
477 }
478 
479 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
480 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
481 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
482 template void
483 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
484 template void
485 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
486 
487 /* This routine signals the thread specified by target_gtid to wake up
488    after setting the sleep bit indicated by the flag argument to FALSE */
489 template <class C>
490 static inline void __kmp_resume_template(int target_gtid, C *flag) {
491   kmp_info_t *th = __kmp_threads[target_gtid];
492 
493 #ifdef KMP_DEBUG
494   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
495 #endif
496 
497   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
498                 gtid, target_gtid));
499 
500   __kmp_suspend_initialize_thread(th);
501   __kmp_lock_suspend_mx(th);
502 
503   if (!flag || flag != th->th.th_sleep_loc) {
504     // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
505     // different location; wake up at new location
506     flag = (C *)th->th.th_sleep_loc;
507   }
508 
509   // First, check if the flag is null or its type has changed. If so, someone
510   // else woke it up.
511   if (!flag || flag->get_type() != th->th.th_sleep_loc_type) {
512     // simply shows what flag was cast to
513     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
514                  "awake: flag's loc(%p)\n",
515                  gtid, target_gtid, NULL));
516     __kmp_unlock_suspend_mx(th);
517     return;
518   } else {
519     if (!flag->is_sleeping()) {
520       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
521                    "awake: flag's loc(%p): %u\n",
522                    gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
523       __kmp_unlock_suspend_mx(th);
524       return;
525     }
526   }
527   KMP_DEBUG_ASSERT(flag);
528   flag->unset_sleeping();
529   TCW_PTR(th->th.th_sleep_loc, NULL);
530   th->th.th_sleep_loc_type = flag_unset;
531 
532   KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
533                "bit for flag's loc(%p)\n",
534                gtid, target_gtid, flag->get()));
535 
536   __kmp_win32_cond_signal(&th->th.th_suspend_cv);
537   __kmp_unlock_suspend_mx(th);
538 
539   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
540                 " for T#%d\n",
541                 gtid, target_gtid));
542 }
543 
544 template <bool C, bool S>
545 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
546   __kmp_resume_template(target_gtid, flag);
547 }
548 template <bool C, bool S>
549 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
550   __kmp_resume_template(target_gtid, flag);
551 }
552 template <bool C, bool S>
553 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
554   __kmp_resume_template(target_gtid, flag);
555 }
556 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
557   __kmp_resume_template(target_gtid, flag);
558 }
559 
560 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
561 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
562 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
563 template void
564 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
565 
566 void __kmp_yield() { Sleep(0); }
567 
568 void __kmp_gtid_set_specific(int gtid) {
569   if (__kmp_init_gtid) {
570     KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
571                   __kmp_gtid_threadprivate_key));
572     kmp_intptr_t g = (kmp_intptr_t)gtid;
573     if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(g + 1)))
574       KMP_FATAL(TLSSetValueFailed);
575   } else {
576     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
577   }
578 }
579 
580 int __kmp_gtid_get_specific() {
581   int gtid;
582   if (!__kmp_init_gtid) {
583     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
584                   "KMP_GTID_SHUTDOWN\n"));
585     return KMP_GTID_SHUTDOWN;
586   }
587   gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
588   if (gtid == 0) {
589     gtid = KMP_GTID_DNE;
590   } else {
591     gtid--;
592   }
593   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
594                 __kmp_gtid_threadprivate_key, gtid));
595   return gtid;
596 }
597 
598 void __kmp_affinity_bind_thread(int proc) {
599   if (__kmp_num_proc_groups > 1) {
600     // Form the GROUP_AFFINITY struct directly, rather than filling
601     // out a bit vector and calling __kmp_set_system_affinity().
602     GROUP_AFFINITY ga;
603     KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
604                                              sizeof(DWORD_PTR))));
605     ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
606     ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
607     ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
608 
609     KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
610     if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
611       DWORD error = GetLastError();
612       // AC: continue silently if not verbose
613       if (__kmp_affinity.flags.verbose) {
614         kmp_msg_t err_code = KMP_ERR(error);
615         __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
616                   __kmp_msg_null);
617         if (__kmp_generate_warnings == kmp_warnings_off) {
618           __kmp_str_free(&err_code.str);
619         }
620       }
621     }
622   } else {
623     kmp_affin_mask_t *mask;
624     KMP_CPU_ALLOC_ON_STACK(mask);
625     KMP_CPU_ZERO(mask);
626     KMP_CPU_SET(proc, mask);
627     __kmp_set_system_affinity(mask, TRUE);
628     KMP_CPU_FREE_FROM_STACK(mask);
629   }
630 }
631 
632 void __kmp_affinity_determine_capable(const char *env_var) {
633   // All versions of Windows* OS (since Win '95) support
634   // SetThreadAffinityMask().
635 
636 #if KMP_GROUP_AFFINITY
637   KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
638 #else
639   KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
640 #endif
641 
642   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
643                 "Windows* OS affinity interface functional (mask size = "
644                 "%" KMP_SIZE_T_SPEC ").\n",
645                 __kmp_affin_mask_size));
646 }
647 
648 double __kmp_read_cpu_time(void) {
649   FILETIME CreationTime, ExitTime, KernelTime, UserTime;
650   int status;
651   double cpu_time;
652 
653   cpu_time = 0;
654 
655   status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
656                            &KernelTime, &UserTime);
657 
658   if (status) {
659     double sec = 0;
660 
661     sec += KernelTime.dwHighDateTime;
662     sec += UserTime.dwHighDateTime;
663 
664     /* Shift left by 32 bits */
665     sec *= (double)(1 << 16) * (double)(1 << 16);
666 
667     sec += KernelTime.dwLowDateTime;
668     sec += UserTime.dwLowDateTime;
669 
670     cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
671   }
672 
673   return cpu_time;
674 }
675 
676 int __kmp_read_system_info(struct kmp_sys_info *info) {
677   info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
678   info->minflt = 0; /* the number of page faults serviced without any I/O */
679   info->majflt = 0; /* the number of page faults serviced that required I/O */
680   info->nswap = 0; // the number of times a process was "swapped" out of memory
681   info->inblock = 0; // the number of times the file system had to perform input
682   info->oublock = 0; // number of times the file system had to perform output
683   info->nvcsw = 0; /* the number of times a context switch was voluntarily */
684   info->nivcsw = 0; /* the number of times a context switch was forced */
685 
686   return 1;
687 }
688 
689 void __kmp_runtime_initialize(void) {
690   SYSTEM_INFO info;
691   kmp_str_buf_t path;
692   UINT path_size;
693 
694   if (__kmp_init_runtime) {
695     return;
696   }
697 
698 #if KMP_DYNAMIC_LIB
699   /* Pin dynamic library for the lifetime of application */
700   {
701     // First, turn off error message boxes
702     UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
703     HMODULE h;
704     BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
705                                      GET_MODULE_HANDLE_EX_FLAG_PIN,
706                                  (LPCTSTR)&__kmp_serial_initialize, &h);
707     (void)ret;
708     KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
709     SetErrorMode(err_mode); // Restore error mode
710     KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
711   }
712 #endif
713 
714   InitializeCriticalSection(&__kmp_win32_section);
715 #if USE_ITT_BUILD
716   __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
717 #endif /* USE_ITT_BUILD */
718   __kmp_initialize_system_tick();
719 
720 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
721   if (!__kmp_cpuinfo.initialized) {
722     __kmp_query_cpuid(&__kmp_cpuinfo);
723   }
724 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
725 
726 /* Set up minimum number of threads to switch to TLS gtid */
727 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
728   // Windows* OS, static library.
729   /* New thread may use stack space previously used by another thread,
730      currently terminated. On Windows* OS, in case of static linking, we do not
731      know the moment of thread termination, and our structures (__kmp_threads
732      and __kmp_root arrays) are still keep info about dead threads. This leads
733      to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
734      (by searching through stack addresses of all known threads) for
735      unregistered foreign tread.
736 
737      Setting __kmp_tls_gtid_min to 0 workarounds this problem:
738      __kmp_get_global_thread_id() does not search through stacks, but get gtid
739      from TLS immediately.
740       --ln
741   */
742   __kmp_tls_gtid_min = 0;
743 #else
744   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
745 #endif
746 
747   /* for the static library */
748   if (!__kmp_gtid_threadprivate_key) {
749     __kmp_gtid_threadprivate_key = TlsAlloc();
750     if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
751       KMP_FATAL(TLSOutOfIndexes);
752     }
753   }
754 
755   // Load ntdll.dll.
756   /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
757      (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
758      have to specify full path to the library. */
759   __kmp_str_buf_init(&path);
760   path_size = GetSystemDirectory(path.str, path.size);
761   KMP_DEBUG_ASSERT(path_size > 0);
762   if (path_size >= path.size) {
763     // Buffer is too short.  Expand the buffer and try again.
764     __kmp_str_buf_reserve(&path, path_size);
765     path_size = GetSystemDirectory(path.str, path.size);
766     KMP_DEBUG_ASSERT(path_size > 0);
767   }
768   if (path_size > 0 && path_size < path.size) {
769     // Now we have system directory name in the buffer.
770     // Append backslash and name of dll to form full path,
771     path.used = path_size;
772     __kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
773 
774     // Now load ntdll using full path.
775     ntdll = GetModuleHandle(path.str);
776   }
777 
778   KMP_DEBUG_ASSERT(ntdll != NULL);
779   if (ntdll != NULL) {
780     NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
781         ntdll, "NtQuerySystemInformation");
782   }
783   KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
784 
785 #if KMP_GROUP_AFFINITY
786   // Load kernel32.dll.
787   // Same caveat - must use full system path name.
788   if (path_size > 0 && path_size < path.size) {
789     // Truncate the buffer back to just the system path length,
790     // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
791     path.used = path_size;
792     __kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
793 
794     // Load kernel32.dll using full path.
795     kernel32 = GetModuleHandle(path.str);
796     KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
797 
798     // Load the function pointers to kernel32.dll routines
799     // that may or may not exist on this system.
800     if (kernel32 != NULL) {
801       __kmp_GetActiveProcessorCount =
802           (kmp_GetActiveProcessorCount_t)GetProcAddress(
803               kernel32, "GetActiveProcessorCount");
804       __kmp_GetActiveProcessorGroupCount =
805           (kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
806               kernel32, "GetActiveProcessorGroupCount");
807       __kmp_GetThreadGroupAffinity =
808           (kmp_GetThreadGroupAffinity_t)GetProcAddress(
809               kernel32, "GetThreadGroupAffinity");
810       __kmp_SetThreadGroupAffinity =
811           (kmp_SetThreadGroupAffinity_t)GetProcAddress(
812               kernel32, "SetThreadGroupAffinity");
813 
814       KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
815                     " = %p\n",
816                     __kmp_GetActiveProcessorCount));
817       KA_TRACE(10, ("__kmp_runtime_initialize: "
818                     "__kmp_GetActiveProcessorGroupCount = %p\n",
819                     __kmp_GetActiveProcessorGroupCount));
820       KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
821                     " = %p\n",
822                     __kmp_GetThreadGroupAffinity));
823       KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
824                     " = %p\n",
825                     __kmp_SetThreadGroupAffinity));
826       KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
827                     sizeof(kmp_affin_mask_t)));
828 
829       // See if group affinity is supported on this system.
830       // If so, calculate the #groups and #procs.
831       //
832       // Group affinity was introduced with Windows* 7 OS and
833       // Windows* Server 2008 R2 OS.
834       if ((__kmp_GetActiveProcessorCount != NULL) &&
835           (__kmp_GetActiveProcessorGroupCount != NULL) &&
836           (__kmp_GetThreadGroupAffinity != NULL) &&
837           (__kmp_SetThreadGroupAffinity != NULL) &&
838           ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
839            1)) {
840         // Calculate the total number of active OS procs.
841         int i;
842 
843         KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
844                       " detected\n",
845                       __kmp_num_proc_groups));
846 
847         __kmp_xproc = 0;
848 
849         for (i = 0; i < __kmp_num_proc_groups; i++) {
850           DWORD size = __kmp_GetActiveProcessorCount(i);
851           __kmp_xproc += size;
852           KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
853                         i, size));
854         }
855       } else {
856         KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
857                       " detected\n",
858                       __kmp_num_proc_groups));
859       }
860     }
861   }
862   if (__kmp_num_proc_groups <= 1) {
863     GetSystemInfo(&info);
864     __kmp_xproc = info.dwNumberOfProcessors;
865   }
866 #else
867   (void)kernel32;
868   GetSystemInfo(&info);
869   __kmp_xproc = info.dwNumberOfProcessors;
870 #endif /* KMP_GROUP_AFFINITY */
871 
872   // If the OS said there were 0 procs, take a guess and use a value of 2.
873   // This is done for Linux* OS, also.  Do we need error / warning?
874   if (__kmp_xproc <= 0) {
875     __kmp_xproc = 2;
876   }
877 
878   KA_TRACE(5,
879            ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
880 
881   __kmp_str_buf_free(&path);
882 
883 #if USE_ITT_BUILD
884   __kmp_itt_initialize();
885 #endif /* USE_ITT_BUILD */
886 
887   __kmp_init_runtime = TRUE;
888 } // __kmp_runtime_initialize
889 
890 void __kmp_runtime_destroy(void) {
891   if (!__kmp_init_runtime) {
892     return;
893   }
894 
895 #if USE_ITT_BUILD
896   __kmp_itt_destroy();
897 #endif /* USE_ITT_BUILD */
898 
899   /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
900   /* due to the KX_TRACE() commands */
901   KA_TRACE(40, ("__kmp_runtime_destroy\n"));
902 
903   if (__kmp_gtid_threadprivate_key) {
904     TlsFree(__kmp_gtid_threadprivate_key);
905     __kmp_gtid_threadprivate_key = 0;
906   }
907 
908   __kmp_affinity_uninitialize();
909   DeleteCriticalSection(&__kmp_win32_section);
910 
911   ntdll = NULL;
912   NtQuerySystemInformation = NULL;
913 
914 #if KMP_ARCH_X86_64
915   kernel32 = NULL;
916   __kmp_GetActiveProcessorCount = NULL;
917   __kmp_GetActiveProcessorGroupCount = NULL;
918   __kmp_GetThreadGroupAffinity = NULL;
919   __kmp_SetThreadGroupAffinity = NULL;
920 #endif // KMP_ARCH_X86_64
921 
922   __kmp_init_runtime = FALSE;
923 }
924 
925 void __kmp_terminate_thread(int gtid) {
926   kmp_info_t *th = __kmp_threads[gtid];
927 
928   if (!th)
929     return;
930 
931   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
932 
933   if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
934     /* It's OK, the thread may have exited already */
935   }
936   __kmp_free_handle(th->th.th_info.ds.ds_thread);
937 }
938 
939 void __kmp_clear_system_time(void) {
940   LARGE_INTEGER time;
941   QueryPerformanceCounter(&time);
942   __kmp_win32_time = (kmp_int64)time.QuadPart;
943 }
944 
945 void __kmp_initialize_system_tick(void) {
946   {
947     BOOL status;
948     LARGE_INTEGER freq;
949 
950     status = QueryPerformanceFrequency(&freq);
951     if (!status) {
952       DWORD error = GetLastError();
953       __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
954                   KMP_ERR(error), __kmp_msg_null);
955 
956     } else {
957       __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
958     }
959   }
960 }
961 
962 /* Calculate the elapsed wall clock time for the user */
963 
964 void __kmp_elapsed(double *t) {
965   LARGE_INTEGER now;
966   QueryPerformanceCounter(&now);
967   *t = ((double)now.QuadPart) * __kmp_win32_tick;
968 }
969 
970 /* Calculate the elapsed wall clock tick for the user */
971 
972 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
973 
974 void __kmp_read_system_time(double *delta) {
975   if (delta != NULL) {
976     LARGE_INTEGER now;
977     QueryPerformanceCounter(&now);
978     *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
979              __kmp_win32_tick;
980   }
981 }
982 
983 /* Return the current time stamp in nsec */
984 kmp_uint64 __kmp_now_nsec() {
985   LARGE_INTEGER now;
986   QueryPerformanceCounter(&now);
987   return 1e9 * __kmp_win32_tick * now.QuadPart;
988 }
989 
990 extern "C" void *__stdcall __kmp_launch_worker(void *arg) {
991   volatile void *stack_data;
992   void *exit_val;
993   void *padding = 0;
994   kmp_info_t *this_thr = (kmp_info_t *)arg;
995   int gtid;
996 
997   gtid = this_thr->th.th_info.ds.ds_gtid;
998   __kmp_gtid_set_specific(gtid);
999 #ifdef KMP_TDATA_GTID
1000 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1001         "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
1002         "reference: http://support.microsoft.com/kb/118816"
1003 //__kmp_gtid = gtid;
1004 #endif
1005 
1006 #if USE_ITT_BUILD
1007   __kmp_itt_thread_name(gtid);
1008 #endif /* USE_ITT_BUILD */
1009 
1010   __kmp_affinity_bind_init_mask(gtid);
1011 
1012 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1013   // Set FP control regs to be a copy of the parallel initialization thread's.
1014   __kmp_clear_x87_fpu_status_word();
1015   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
1016   __kmp_load_mxcsr(&__kmp_init_mxcsr);
1017 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1018 
1019   if (__kmp_stkoffset > 0 && gtid > 0) {
1020     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
1021     (void)padding;
1022   }
1023 
1024   KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
1025   this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1026   TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1027 
1028   if (TCR_4(__kmp_gtid_mode) <
1029       2) { // check stack only if it is used to get gtid
1030     TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
1031     KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
1032     __kmp_check_stack_overlap(this_thr);
1033   }
1034   KMP_MB();
1035   exit_val = __kmp_launch_thread(this_thr);
1036   KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
1037   TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1038   KMP_MB();
1039   return exit_val;
1040 }
1041 
1042 #if KMP_USE_MONITOR
1043 /* The monitor thread controls all of the threads in the complex */
1044 
1045 void *__stdcall __kmp_launch_monitor(void *arg) {
1046   DWORD wait_status;
1047   kmp_thread_t monitor;
1048   int status;
1049   int interval;
1050   kmp_info_t *this_thr = (kmp_info_t *)arg;
1051 
1052   KMP_DEBUG_ASSERT(__kmp_init_monitor);
1053   TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
1054   // TODO: hide "2" in enum (like {true,false,started})
1055   this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1056   TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1057 
1058   KMP_MB(); /* Flush all pending memory write invalidates.  */
1059   KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
1060 
1061   monitor = GetCurrentThread();
1062 
1063   /* set thread priority */
1064   status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
1065   if (!status) {
1066     DWORD error = GetLastError();
1067     __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1068   }
1069 
1070   /* register us as monitor */
1071   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
1072 #ifdef KMP_TDATA_GTID
1073 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1074         "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
1075         "reference: http://support.microsoft.com/kb/118816"
1076 //__kmp_gtid = KMP_GTID_MONITOR;
1077 #endif
1078 
1079 #if USE_ITT_BUILD
1080   __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
1081 // monitor thread.
1082 #endif /* USE_ITT_BUILD */
1083 
1084   KMP_MB(); /* Flush all pending memory write invalidates.  */
1085 
1086   interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
1087 
1088   while (!TCR_4(__kmp_global.g.g_done)) {
1089     /*  This thread monitors the state of the system */
1090 
1091     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
1092 
1093     wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
1094 
1095     if (wait_status == WAIT_TIMEOUT) {
1096       TCW_4(__kmp_global.g.g_time.dt.t_value,
1097             TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
1098     }
1099 
1100     KMP_MB(); /* Flush all pending memory write invalidates.  */
1101   }
1102 
1103   KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
1104 
1105   status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
1106   if (!status) {
1107     DWORD error = GetLastError();
1108     __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1109   }
1110 
1111   if (__kmp_global.g.g_abort != 0) {
1112     /* now we need to terminate the worker threads   */
1113     /* the value of t_abort is the signal we caught */
1114     int gtid;
1115 
1116     KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
1117                   (__kmp_global.g.g_abort)));
1118 
1119     /* terminate the OpenMP worker threads */
1120     /* TODO this is not valid for sibling threads!!
1121      * the uber master might not be 0 anymore.. */
1122     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
1123       __kmp_terminate_thread(gtid);
1124 
1125     __kmp_cleanup();
1126 
1127     Sleep(0);
1128 
1129     KA_TRACE(10,
1130              ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
1131 
1132     if (__kmp_global.g.g_abort > 0) {
1133       raise(__kmp_global.g.g_abort);
1134     }
1135   }
1136 
1137   TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1138 
1139   KMP_MB();
1140   return arg;
1141 }
1142 #endif
1143 
1144 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
1145   kmp_thread_t handle;
1146   DWORD idThread;
1147 
1148   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
1149 
1150   th->th.th_info.ds.ds_gtid = gtid;
1151 
1152   if (KMP_UBER_GTID(gtid)) {
1153     int stack_data;
1154 
1155     /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
1156        other threads to use. Is it appropriate to just use GetCurrentThread?
1157        When should we close this handle?  When unregistering the root? */
1158     {
1159       BOOL rc;
1160       rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1161                            GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
1162                            FALSE, DUPLICATE_SAME_ACCESS);
1163       KMP_ASSERT(rc);
1164       KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
1165                     "handle = %" KMP_UINTPTR_SPEC "\n",
1166                     (LPVOID)th, th->th.th_info.ds.ds_thread));
1167       th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1168     }
1169     if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
1170       /* we will dynamically update the stack range if gtid_mode == 1 */
1171       TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
1172       TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
1173       TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
1174       __kmp_check_stack_overlap(th);
1175     }
1176   } else {
1177     KMP_MB(); /* Flush all pending memory write invalidates.  */
1178 
1179     /* Set stack size for this thread now. */
1180     KA_TRACE(10,
1181              ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
1182               stack_size));
1183 
1184     stack_size += gtid * __kmp_stkoffset;
1185 
1186     TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
1187     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
1188 
1189     KA_TRACE(10,
1190              ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
1191               " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
1192               (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1193               (LPVOID)th, &idThread));
1194 
1195     handle = CreateThread(
1196         NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
1197         (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1198 
1199     KA_TRACE(10,
1200              ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
1201               " bytes, &__kmp_launch_worker = %p, th = %p, "
1202               "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
1203               (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1204               (LPVOID)th, idThread, handle));
1205 
1206     if (handle == 0) {
1207       DWORD error = GetLastError();
1208       __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1209     } else {
1210       th->th.th_info.ds.ds_thread = handle;
1211     }
1212 
1213     KMP_MB(); /* Flush all pending memory write invalidates.  */
1214   }
1215 
1216   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
1217 }
1218 
1219 int __kmp_still_running(kmp_info_t *th) {
1220   return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
1221 }
1222 
1223 #if KMP_USE_MONITOR
1224 void __kmp_create_monitor(kmp_info_t *th) {
1225   kmp_thread_t handle;
1226   DWORD idThread;
1227   int ideal, new_ideal;
1228 
1229   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
1230     // We don't need monitor thread in case of MAX_BLOCKTIME
1231     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
1232                   "MAX blocktime\n"));
1233     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
1234     th->th.th_info.ds.ds_gtid = 0;
1235     TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
1236     return;
1237   }
1238   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
1239 
1240   KMP_MB(); /* Flush all pending memory write invalidates.  */
1241 
1242   __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
1243   if (__kmp_monitor_ev == NULL) {
1244     DWORD error = GetLastError();
1245     __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
1246   }
1247 #if USE_ITT_BUILD
1248   __kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
1249 #endif /* USE_ITT_BUILD */
1250 
1251   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
1252   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
1253 
1254   // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
1255   // to automatically expand stacksize based on CreateThread error code.
1256   if (__kmp_monitor_stksize == 0) {
1257     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1258   }
1259   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
1260     __kmp_monitor_stksize = __kmp_sys_min_stksize;
1261   }
1262 
1263   KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
1264                 (int)__kmp_monitor_stksize));
1265 
1266   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
1267 
1268   handle =
1269       CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
1270                    (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
1271                    STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1272   if (handle == 0) {
1273     DWORD error = GetLastError();
1274     __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1275   } else
1276     th->th.th_info.ds.ds_thread = handle;
1277 
1278   KMP_MB(); /* Flush all pending memory write invalidates.  */
1279 
1280   KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
1281                 (void *)th->th.th_info.ds.ds_thread));
1282 }
1283 #endif
1284 
1285 /* Check to see if thread is still alive.
1286    NOTE:  The ExitProcess(code) system call causes all threads to Terminate
1287    with a exit_val = code.  Because of this we can not rely on exit_val having
1288    any particular value.  So this routine may return STILL_ALIVE in exit_val
1289    even after the thread is dead. */
1290 
1291 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
1292   DWORD rc;
1293   rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
1294   if (rc == 0) {
1295     DWORD error = GetLastError();
1296     __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
1297                 __kmp_msg_null);
1298   }
1299   return (*exit_val == STILL_ACTIVE);
1300 }
1301 
1302 void __kmp_exit_thread(int exit_status) {
1303   ExitThread(exit_status);
1304 } // __kmp_exit_thread
1305 
1306 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
1307 static void __kmp_reap_common(kmp_info_t *th) {
1308   DWORD exit_val;
1309 
1310   KMP_MB(); /* Flush all pending memory write invalidates.  */
1311 
1312   KA_TRACE(
1313       10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
1314 
1315   /* 2006-10-19:
1316      There are two opposite situations:
1317      1. Windows* OS keep thread alive after it resets ds_alive flag and
1318      exits from thread function. (For example, see C70770/Q394281 "unloading of
1319      dll based on OMP is very slow".)
1320      2. Windows* OS may kill thread before it resets ds_alive flag.
1321 
1322      Right solution seems to be waiting for *either* thread termination *or*
1323      ds_alive resetting. */
1324   {
1325     // TODO: This code is very similar to KMP_WAIT. Need to generalize
1326     // KMP_WAIT to cover this usage also.
1327     void *obj = NULL;
1328     kmp_uint32 spins;
1329     kmp_uint64 time;
1330 #if USE_ITT_BUILD
1331     KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
1332 #endif /* USE_ITT_BUILD */
1333     KMP_INIT_YIELD(spins);
1334     KMP_INIT_BACKOFF(time);
1335     do {
1336 #if USE_ITT_BUILD
1337       KMP_FSYNC_SPIN_PREPARE(obj);
1338 #endif /* USE_ITT_BUILD */
1339       __kmp_is_thread_alive(th, &exit_val);
1340       KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);
1341     } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
1342 #if USE_ITT_BUILD
1343     if (exit_val == STILL_ACTIVE) {
1344       KMP_FSYNC_CANCEL(obj);
1345     } else {
1346       KMP_FSYNC_SPIN_ACQUIRED(obj);
1347     }
1348 #endif /* USE_ITT_BUILD */
1349   }
1350 
1351   __kmp_free_handle(th->th.th_info.ds.ds_thread);
1352 
1353   /* NOTE:  The ExitProcess(code) system call causes all threads to Terminate
1354      with a exit_val = code.  Because of this we can not rely on exit_val having
1355      any particular value. */
1356   kmp_intptr_t e = (kmp_intptr_t)exit_val;
1357   if (exit_val == STILL_ACTIVE) {
1358     KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
1359   } else if ((void *)e != (void *)th) {
1360     KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
1361   }
1362 
1363   KA_TRACE(10,
1364            ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
1365             "\n",
1366             th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
1367 
1368   th->th.th_info.ds.ds_thread = 0;
1369   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1370   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1371   th->th.th_info.ds.ds_thread_id = 0;
1372 
1373   KMP_MB(); /* Flush all pending memory write invalidates.  */
1374 }
1375 
1376 #if KMP_USE_MONITOR
1377 void __kmp_reap_monitor(kmp_info_t *th) {
1378   int status;
1379 
1380   KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
1381                 (void *)th->th.th_info.ds.ds_thread));
1382 
1383   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1384   // If both tid and gtid are 0, it means the monitor did not ever start.
1385   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1386   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1387   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1388     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1389     return;
1390   }
1391 
1392   KMP_MB(); /* Flush all pending memory write invalidates.  */
1393 
1394   status = SetEvent(__kmp_monitor_ev);
1395   if (status == FALSE) {
1396     DWORD error = GetLastError();
1397     __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
1398   }
1399   KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
1400                 th->th.th_info.ds.ds_gtid));
1401   __kmp_reap_common(th);
1402 
1403   __kmp_free_handle(__kmp_monitor_ev);
1404 
1405   KMP_MB(); /* Flush all pending memory write invalidates.  */
1406 }
1407 #endif
1408 
1409 void __kmp_reap_worker(kmp_info_t *th) {
1410   KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
1411                 th->th.th_info.ds.ds_gtid));
1412   __kmp_reap_common(th);
1413 }
1414 
1415 #if KMP_HANDLE_SIGNALS
1416 
1417 static void __kmp_team_handler(int signo) {
1418   if (__kmp_global.g.g_abort == 0) {
1419     // Stage 1 signal handler, let's shut down all of the threads.
1420     if (__kmp_debug_buf) {
1421       __kmp_dump_debug_buffer();
1422     }
1423     KMP_MB(); // Flush all pending memory write invalidates.
1424     TCW_4(__kmp_global.g.g_abort, signo);
1425     KMP_MB(); // Flush all pending memory write invalidates.
1426     TCW_4(__kmp_global.g.g_done, TRUE);
1427     KMP_MB(); // Flush all pending memory write invalidates.
1428   }
1429 } // __kmp_team_handler
1430 
1431 static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
1432   sig_func_t old = signal(signum, handler);
1433   if (old == SIG_ERR) {
1434     int error = errno;
1435     __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
1436                 __kmp_msg_null);
1437   }
1438   return old;
1439 }
1440 
1441 static void __kmp_install_one_handler(int sig, sig_func_t handler,
1442                                       int parallel_init) {
1443   sig_func_t old;
1444   KMP_MB(); /* Flush all pending memory write invalidates.  */
1445   KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
1446   if (parallel_init) {
1447     old = __kmp_signal(sig, handler);
1448     // SIG_DFL on Windows* OS in NULL or 0.
1449     if (old == __kmp_sighldrs[sig]) {
1450       __kmp_siginstalled[sig] = 1;
1451     } else { // Restore/keep user's handler if one previously installed.
1452       old = __kmp_signal(sig, old);
1453     }
1454   } else {
1455     // Save initial/system signal handlers to see if user handlers installed.
1456     // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
1457     // called once with parallel_init == TRUE.
1458     old = __kmp_signal(sig, SIG_DFL);
1459     __kmp_sighldrs[sig] = old;
1460     __kmp_signal(sig, old);
1461   }
1462   KMP_MB(); /* Flush all pending memory write invalidates.  */
1463 } // __kmp_install_one_handler
1464 
1465 static void __kmp_remove_one_handler(int sig) {
1466   if (__kmp_siginstalled[sig]) {
1467     sig_func_t old;
1468     KMP_MB(); // Flush all pending memory write invalidates.
1469     KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
1470     old = __kmp_signal(sig, __kmp_sighldrs[sig]);
1471     if (old != __kmp_team_handler) {
1472       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1473                     "restoring: sig=%d\n",
1474                     sig));
1475       old = __kmp_signal(sig, old);
1476     }
1477     __kmp_sighldrs[sig] = NULL;
1478     __kmp_siginstalled[sig] = 0;
1479     KMP_MB(); // Flush all pending memory write invalidates.
1480   }
1481 } // __kmp_remove_one_handler
1482 
1483 void __kmp_install_signals(int parallel_init) {
1484   KB_TRACE(10, ("__kmp_install_signals: called\n"));
1485   if (!__kmp_handle_signals) {
1486     KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
1487                   "handlers not installed\n"));
1488     return;
1489   }
1490   __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1491   __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1492   __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1493   __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1494   __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1495   __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1496 } // __kmp_install_signals
1497 
1498 void __kmp_remove_signals(void) {
1499   int sig;
1500   KB_TRACE(10, ("__kmp_remove_signals: called\n"));
1501   for (sig = 1; sig < NSIG; ++sig) {
1502     __kmp_remove_one_handler(sig);
1503   }
1504 } // __kmp_remove_signals
1505 
1506 #endif // KMP_HANDLE_SIGNALS
1507 
1508 /* Put the thread to sleep for a time period */
1509 void __kmp_thread_sleep(int millis) {
1510   DWORD status;
1511 
1512   status = SleepEx((DWORD)millis, FALSE);
1513   if (status) {
1514     DWORD error = GetLastError();
1515     __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
1516                 __kmp_msg_null);
1517   }
1518 }
1519 
1520 // Determine whether the given address is mapped into the current address space.
1521 int __kmp_is_address_mapped(void *addr) {
1522   MEMORY_BASIC_INFORMATION lpBuffer;
1523   SIZE_T dwLength;
1524 
1525   dwLength = sizeof(MEMORY_BASIC_INFORMATION);
1526 
1527   VirtualQuery(addr, &lpBuffer, dwLength);
1528 
1529   return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
1530            ((lpBuffer.Protect == PAGE_NOACCESS) ||
1531             (lpBuffer.Protect == PAGE_EXECUTE)));
1532 }
1533 
1534 kmp_uint64 __kmp_hardware_timestamp(void) {
1535   kmp_uint64 r = 0;
1536 
1537   QueryPerformanceCounter((LARGE_INTEGER *)&r);
1538   return r;
1539 }
1540 
1541 /* Free handle and check the error code */
1542 void __kmp_free_handle(kmp_thread_t tHandle) {
1543   /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
1544    * as HANDLE */
1545   BOOL rc;
1546   rc = CloseHandle(tHandle);
1547   if (!rc) {
1548     DWORD error = GetLastError();
1549     __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
1550   }
1551 }
1552 
1553 int __kmp_get_load_balance(int max) {
1554   static ULONG glb_buff_size = 100 * 1024;
1555 
1556   // Saved count of the running threads for the thread balance algorithm
1557   static int glb_running_threads = 0;
1558   static double glb_call_time = 0; /* Thread balance algorithm call time */
1559 
1560   int running_threads = 0; // Number of running threads in the system.
1561   NTSTATUS status = 0;
1562   ULONG buff_size = 0;
1563   ULONG info_size = 0;
1564   void *buffer = NULL;
1565   PSYSTEM_PROCESS_INFORMATION spi = NULL;
1566   int first_time = 1;
1567 
1568   double call_time = 0.0; // start, finish;
1569 
1570   __kmp_elapsed(&call_time);
1571 
1572   if (glb_call_time &&
1573       (call_time - glb_call_time < __kmp_load_balance_interval)) {
1574     running_threads = glb_running_threads;
1575     goto finish;
1576   }
1577   glb_call_time = call_time;
1578 
1579   // Do not spend time on running algorithm if we have a permanent error.
1580   if (NtQuerySystemInformation == NULL) {
1581     running_threads = -1;
1582     goto finish;
1583   }
1584 
1585   if (max <= 0) {
1586     max = INT_MAX;
1587   }
1588 
1589   do {
1590 
1591     if (first_time) {
1592       buff_size = glb_buff_size;
1593     } else {
1594       buff_size = 2 * buff_size;
1595     }
1596 
1597     buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
1598     if (buffer == NULL) {
1599       running_threads = -1;
1600       goto finish;
1601     }
1602     status = NtQuerySystemInformation(SystemProcessInformation, buffer,
1603                                       buff_size, &info_size);
1604     first_time = 0;
1605 
1606   } while (status == STATUS_INFO_LENGTH_MISMATCH);
1607   glb_buff_size = buff_size;
1608 
1609 #define CHECK(cond)                                                            \
1610   {                                                                            \
1611     KMP_DEBUG_ASSERT(cond);                                                    \
1612     if (!(cond)) {                                                             \
1613       running_threads = -1;                                                    \
1614       goto finish;                                                             \
1615     }                                                                          \
1616   }
1617 
1618   CHECK(buff_size >= info_size);
1619   spi = PSYSTEM_PROCESS_INFORMATION(buffer);
1620   for (;;) {
1621     ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
1622     CHECK(0 <= offset &&
1623           offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
1624     HANDLE pid = spi->ProcessId;
1625     ULONG num = spi->NumberOfThreads;
1626     CHECK(num >= 1);
1627     size_t spi_size =
1628         sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
1629     CHECK(offset + spi_size <
1630           info_size); // Make sure process info record fits the buffer.
1631     if (spi->NextEntryOffset != 0) {
1632       CHECK(spi_size <=
1633             spi->NextEntryOffset); // And do not overlap with the next record.
1634     }
1635     // pid == 0 corresponds to the System Idle Process. It always has running
1636     // threads on all cores. So, we don't consider the running threads of this
1637     // process.
1638     if (pid != 0) {
1639       for (ULONG i = 0; i < num; ++i) {
1640         THREAD_STATE state = spi->Threads[i].State;
1641         // Count threads that have Ready or Running state.
1642         // !!! TODO: Why comment does not match the code???
1643         if (state == StateRunning) {
1644           ++running_threads;
1645           // Stop counting running threads if the number is already greater than
1646           // the number of available cores
1647           if (running_threads >= max) {
1648             goto finish;
1649           }
1650         }
1651       }
1652     }
1653     if (spi->NextEntryOffset == 0) {
1654       break;
1655     }
1656     spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
1657   }
1658 
1659 #undef CHECK
1660 
1661 finish: // Clean up and exit.
1662 
1663   if (buffer != NULL) {
1664     KMP_INTERNAL_FREE(buffer);
1665   }
1666 
1667   glb_running_threads = running_threads;
1668 
1669   return running_threads;
1670 } //__kmp_get_load_balance()
1671 
1672 // Find symbol from the loaded modules
1673 void *__kmp_lookup_symbol(const char *name, bool next) {
1674   HANDLE process = GetCurrentProcess();
1675   DWORD needed;
1676   HMODULE *modules = nullptr;
1677   if (!EnumProcessModules(process, modules, 0, &needed))
1678     return nullptr;
1679   DWORD num_modules = needed / sizeof(HMODULE);
1680   modules = (HMODULE *)malloc(num_modules * sizeof(HMODULE));
1681   if (!EnumProcessModules(process, modules, needed, &needed)) {
1682     free(modules);
1683     return nullptr;
1684   }
1685   HMODULE curr_module = nullptr;
1686   if (next) {
1687     // Current module needs to be skipped if next flag is true
1688     if (!GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
1689                            (LPCTSTR)&__kmp_lookup_symbol, &curr_module)) {
1690       free(modules);
1691       return nullptr;
1692     }
1693   }
1694   void *proc = nullptr;
1695   for (uint32_t i = 0; i < num_modules; i++) {
1696     if (next && modules[i] == curr_module)
1697       continue;
1698     proc = (void *)GetProcAddress(modules[i], name);
1699     if (proc)
1700       break;
1701   }
1702   free(modules);
1703   return proc;
1704 }
1705 
1706 // Functions for hidden helper task
1707 void __kmp_hidden_helper_worker_thread_wait() {
1708   KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1709 }
1710 
1711 void __kmp_do_initialize_hidden_helper_threads() {
1712   KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1713 }
1714 
1715 void __kmp_hidden_helper_threads_initz_wait() {
1716   KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1717 }
1718 
1719 void __kmp_hidden_helper_initz_release() {
1720   KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1721 }
1722 
1723 void __kmp_hidden_helper_main_thread_wait() {
1724   KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1725 }
1726 
1727 void __kmp_hidden_helper_main_thread_release() {
1728   KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1729 }
1730 
1731 void __kmp_hidden_helper_worker_thread_signal() {
1732   KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1733 }
1734 
1735 void __kmp_hidden_helper_threads_deinitz_wait() {
1736   KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1737 }
1738 
1739 void __kmp_hidden_helper_threads_deinitz_release() {
1740   KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1741 }
1742