1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 28 /* 29 * University Copyright- Copyright (c) 1982, 1986, 1988 30 * The Regents of the University of California 31 * All Rights Reserved 32 * 33 * University Acknowledgment- Portions of this document are derived from 34 * software developed by the University of California, Berkeley, and its 35 * contributors. 36 */ 37 38 #ifndef _VM_PAGE_H 39 #define _VM_PAGE_H 40 41 #include <vm/seg.h> 42 43 #ifdef __cplusplus 44 extern "C" { 45 #endif 46 47 #if defined(_KERNEL) || defined(_KMEMUSER) 48 49 /* 50 * Shared/Exclusive lock. 51 */ 52 53 /* 54 * Types of page locking supported by page_lock & friends. 55 */ 56 typedef enum { 57 SE_SHARED, 58 SE_EXCL /* exclusive lock (value == -1) */ 59 } se_t; 60 61 /* 62 * For requesting that page_lock reclaim the page from the free list. 63 */ 64 typedef enum { 65 P_RECLAIM, /* reclaim page from free list */ 66 P_NO_RECLAIM /* DON`T reclaim the page */ 67 } reclaim_t; 68 69 /* 70 * Callers of page_try_reclaim_lock and page_lock_es can use this flag 71 * to get SE_EXCL access before reader/writers are given access. 72 */ 73 #define SE_EXCL_WANTED 0x02 74 75 /* 76 * All page_*lock() requests will be denied unless this flag is set in 77 * the 'es' parameter. 78 */ 79 #define SE_RETIRED 0x04 80 81 #endif /* _KERNEL | _KMEMUSER */ 82 83 typedef int selock_t; 84 85 /* 86 * Define VM_STATS to turn on all sorts of statistic gathering about 87 * the VM layer. By default, it is only turned on when DEBUG is 88 * also defined. 89 */ 90 #ifdef DEBUG 91 #define VM_STATS 92 #endif /* DEBUG */ 93 94 #ifdef VM_STATS 95 #define VM_STAT_ADD(stat) (stat)++ 96 #define VM_STAT_COND_ADD(cond, stat) ((void) (!(cond) || (stat)++)) 97 #else 98 #define VM_STAT_ADD(stat) 99 #define VM_STAT_COND_ADD(cond, stat) 100 #endif /* VM_STATS */ 101 102 #ifdef _KERNEL 103 104 /* 105 * PAGE_LLOCK_SIZE is 2 * NCPU, but no smaller than 128. 106 * PAGE_LLOCK_SHIFT is log2(PAGE_LLOCK_SIZE). 107 * 108 * We use ? : instead of #if because <vm/page.h> is included everywhere; 109 * NCPU_P2 is only a constant in the "unix" module. 110 * 111 */ 112 #define PAGE_LLOCK_SHIFT \ 113 ((unsigned)(((2*NCPU_P2) > 128) ? NCPU_LOG2 + 1 : 7)) 114 115 #define PAGE_LLOCK_SIZE (1ul << PAGE_LLOCK_SHIFT) 116 117 /* 118 * The number of low order 0 (or less variable) bits in the page_t address. 119 */ 120 #if defined(__sparc) 121 #define PP_SHIFT 7 122 #else 123 #define PP_SHIFT 6 124 #endif 125 126 /* 127 * pp may be the root of a large page, and many low order bits will be 0. 128 * Shift and XOR multiple times to capture the good bits across the range of 129 * possible page sizes. 130 */ 131 #define PAGE_LLOCK_HASH(pp) \ 132 (((((uintptr_t)(pp) >> PP_SHIFT) ^ \ 133 ((uintptr_t)(pp) >> (PAGE_LLOCK_SHIFT + PP_SHIFT))) ^ \ 134 ((uintptr_t)(pp) >> ((PAGE_LLOCK_SHIFT * 2) + PP_SHIFT)) ^ \ 135 ((uintptr_t)(pp) >> ((PAGE_LLOCK_SHIFT * 3) + PP_SHIFT))) & \ 136 (PAGE_LLOCK_SIZE - 1)) 137 138 #define page_struct_lock(pp) \ 139 mutex_enter(&page_llocks[PAGE_LLOCK_HASH(PP_PAGEROOT(pp))].pad_mutex) 140 #define page_struct_unlock(pp) \ 141 mutex_exit(&page_llocks[PAGE_LLOCK_HASH(PP_PAGEROOT(pp))].pad_mutex) 142 143 #endif /* _KERNEL */ 144 145 #include <sys/t_lock.h> 146 147 struct as; 148 149 /* 150 * Each physical page has a page structure, which is used to maintain 151 * these pages as a cache. A page can be found via a hashed lookup 152 * based on the [vp, offset]. If a page has an [vp, offset] identity, 153 * then it is entered on a doubly linked circular list off the 154 * vnode using the vpnext/vpprev pointers. If the p_free bit 155 * is on, then the page is also on a doubly linked circular free 156 * list using next/prev pointers. If the "p_selock" and "p_iolock" 157 * are held, then the page is currently being read in (exclusive p_selock) 158 * or written back (shared p_selock). In this case, the next/prev pointers 159 * are used to link the pages together for a consecutive i/o request. If 160 * the page is being brought in from its backing store, then other processes 161 * will wait for the i/o to complete before attaching to the page since it 162 * will have an "exclusive" lock. 163 * 164 * Each page structure has the locks described below along with 165 * the fields they protect: 166 * 167 * p_selock This is a per-page shared/exclusive lock that is 168 * used to implement the logical shared/exclusive 169 * lock for each page. The "shared" lock is normally 170 * used in most cases while the "exclusive" lock is 171 * required to destroy or retain exclusive access to 172 * a page (e.g., while reading in pages). The appropriate 173 * lock is always held whenever there is any reference 174 * to a page structure (e.g., during i/o). 175 * (Note that with the addition of the "writer-lock-wanted" 176 * semantics (via SE_EWANTED), threads must not acquire 177 * multiple reader locks or else a deadly embrace will 178 * occur in the following situation: thread 1 obtains a 179 * reader lock; next thread 2 fails to get a writer lock 180 * but specified SE_EWANTED so it will wait by either 181 * blocking (when using page_lock_es) or spinning while 182 * retrying (when using page_try_reclaim_lock) until the 183 * reader lock is released; then thread 1 attempts to 184 * get another reader lock but is denied due to 185 * SE_EWANTED being set, and now both threads are in a 186 * deadly embrace.) 187 * 188 * p_hash 189 * p_vnode 190 * p_offset 191 * 192 * p_free 193 * p_age 194 * 195 * p_iolock This is a binary semaphore lock that provides 196 * exclusive access to the i/o list links in each 197 * page structure. It is always held while the page 198 * is on an i/o list (i.e., involved in i/o). That is, 199 * even though a page may be only `shared' locked 200 * while it is doing a write, the following fields may 201 * change anyway. Normally, the page must be 202 * `exclusively' locked to change anything in it. 203 * 204 * p_next 205 * p_prev 206 * 207 * The following fields are protected by the global page_llocks[]: 208 * 209 * p_lckcnt 210 * p_cowcnt 211 * 212 * The following lists are protected by the global page_freelock: 213 * 214 * page_cachelist 215 * page_freelist 216 * 217 * The following, for our purposes, are protected by 218 * the global freemem_lock: 219 * 220 * freemem 221 * freemem_wait 222 * freemem_cv 223 * 224 * The following fields are protected by hat layer lock(s). When a page 225 * structure is not mapped and is not associated with a vnode (after a call 226 * to page_hashout() for example) the p_nrm field may be modified with out 227 * holding the hat layer lock: 228 * 229 * p_nrm 230 * p_mapping 231 * p_share 232 * 233 * The following field is file system dependent. How it is used and 234 * the locking strategies applied are up to the individual file system 235 * implementation. 236 * 237 * p_fsdata 238 * 239 * The page structure is used to represent and control the system's 240 * physical pages. There is one instance of the structure for each 241 * page that is not permenately allocated. For example, the pages that 242 * hold the page structures are permanently held by the kernel 243 * and hence do not need page structures to track them. The array 244 * of page structures is allocated early on in the kernel's life and 245 * is based on the amount of available physical memory. 246 * 247 * Each page structure may simultaneously appear on several linked lists. 248 * The lists are: hash list, free or in i/o list, and a vnode's page list. 249 * Each type of list is protected by a different group of mutexes as described 250 * below: 251 * 252 * The hash list is used to quickly find a page when the page's vnode and 253 * offset within the vnode are known. Each page that is hashed is 254 * connected via the `p_hash' field. The anchor for each hash is in the 255 * array `page_hash'. An array of mutexes, `ph_mutex', protects the 256 * lists anchored by page_hash[]. To either search or modify a given hash 257 * list, the appropriate mutex in the ph_mutex array must be held. 258 * 259 * The free list contains pages that are `free to be given away'. For 260 * efficiency reasons, pages on this list are placed in two catagories: 261 * pages that are still associated with a vnode, and pages that are not 262 * associated with a vnode. Free pages always have their `p_free' bit set, 263 * free pages that are still associated with a vnode also have their 264 * `p_age' bit set. Pages on the free list are connected via their 265 * `p_next' and `p_prev' fields. When a page is involved in some sort 266 * of i/o, it is not free and these fields may be used to link associated 267 * pages together. At the moment, the free list is protected by a 268 * single mutex `page_freelock'. The list of free pages still associated 269 * with a vnode is anchored by `page_cachelist' while other free pages 270 * are anchored in architecture dependent ways (to handle page coloring etc.). 271 * 272 * Pages associated with a given vnode appear on a list anchored in the 273 * vnode by the `v_pages' field. They are linked together with 274 * `p_vpnext' and `p_vpprev'. The field `p_offset' contains a page's 275 * offset within the vnode. The pages on this list are not kept in 276 * offset order. These lists, in a manner similar to the hash lists, 277 * are protected by an array of mutexes called `vph_hash'. Before 278 * searching or modifying this chain the appropriate mutex in the 279 * vph_hash[] array must be held. 280 * 281 * Again, each of the lists that a page can appear on is protected by a 282 * mutex. Before reading or writing any of the fields comprising the 283 * list, the appropriate lock must be held. These list locks should only 284 * be held for very short intervals. 285 * 286 * In addition to the list locks, each page structure contains a 287 * shared/exclusive lock that protects various fields within it. 288 * To modify one of these fields, the `p_selock' must be exclusively held. 289 * To read a field with a degree of certainty, the lock must be at least 290 * held shared. 291 * 292 * Removing a page structure from one of the lists requires holding 293 * the appropriate list lock and the page's p_selock. A page may be 294 * prevented from changing identity, being freed, or otherwise modified 295 * by acquiring p_selock shared. 296 * 297 * To avoid deadlocks, a strict locking protocol must be followed. Basically 298 * there are two cases: In the first case, the page structure in question 299 * is known ahead of time (e.g., when the page is to be added or removed 300 * from a list). In the second case, the page structure is not known and 301 * must be found by searching one of the lists. 302 * 303 * When adding or removing a known page to one of the lists, first the 304 * page must be exclusively locked (since at least one of its fields 305 * will be modified), second the lock protecting the list must be acquired, 306 * third the page inserted or deleted, and finally the list lock dropped. 307 * 308 * The more interesting case occures when the particular page structure 309 * is not known ahead of time. For example, when a call is made to 310 * page_lookup(), it is not known if a page with the desired (vnode and 311 * offset pair) identity exists. So the appropriate mutex in ph_mutex is 312 * acquired, the hash list searched, and if the desired page is found 313 * an attempt is made to lock it. The attempt to acquire p_selock must 314 * not block while the hash list lock is held. A deadlock could occure 315 * if some other process was trying to remove the page from the list. 316 * The removing process (following the above protocol) would have exclusively 317 * locked the page, and be spinning waiting to acquire the lock protecting 318 * the hash list. Since the searching process holds the hash list lock 319 * and is waiting to acquire the page lock, a deadlock occurs. 320 * 321 * The proper scheme to follow is: first, lock the appropriate list, 322 * search the list, and if the desired page is found either use 323 * page_trylock() (which will not block) or pass the address of the 324 * list lock to page_lock(). If page_lock() can not acquire the page's 325 * lock, it will drop the list lock before going to sleep. page_lock() 326 * returns a value to indicate if the list lock was dropped allowing the 327 * calling program to react appropriately (i.e., retry the operation). 328 * 329 * If the list lock was dropped before the attempt at locking the page 330 * was made, checks would have to be made to ensure that the page had 331 * not changed identity before its lock was obtained. This is because 332 * the interval between dropping the list lock and acquiring the page 333 * lock is indeterminate. 334 * 335 * In addition, when both a hash list lock (ph_mutex[]) and a vnode list 336 * lock (vph_mutex[]) are needed, the hash list lock must be acquired first. 337 * The routine page_hashin() is a good example of this sequence. 338 * This sequence is ASSERTed by checking that the vph_mutex[] is not held 339 * just before each acquisition of one of the mutexs in ph_mutex[]. 340 * 341 * So, as a quick summary: 342 * 343 * pse_mutex[]'s protect the p_selock and p_cv fields. 344 * 345 * p_selock protects the p_free, p_age, p_vnode, p_offset and p_hash, 346 * 347 * ph_mutex[]'s protect the page_hash[] array and its chains. 348 * 349 * vph_mutex[]'s protect the v_pages field and the vp page chains. 350 * 351 * First lock the page, then the hash chain, then the vnode chain. When 352 * this is not possible `trylocks' must be used. Sleeping while holding 353 * any of these mutexes (p_selock is not a mutex) is not allowed. 354 * 355 * 356 * field reading writing ordering 357 * ====================================================================== 358 * p_vnode p_selock(E,S) p_selock(E) 359 * p_offset 360 * p_free 361 * p_age 362 * ===================================================================== 363 * p_hash p_selock(E,S) p_selock(E) && p_selock, ph_mutex 364 * ph_mutex[] 365 * ===================================================================== 366 * p_vpnext p_selock(E,S) p_selock(E) && p_selock, vph_mutex 367 * p_vpprev vph_mutex[] 368 * ===================================================================== 369 * When the p_free bit is set: 370 * 371 * p_next p_selock(E,S) p_selock(E) && p_selock, 372 * p_prev page_freelock page_freelock 373 * 374 * When the p_free bit is not set: 375 * 376 * p_next p_selock(E,S) p_selock(E) && p_selock, p_iolock 377 * p_prev p_iolock 378 * ===================================================================== 379 * p_selock pse_mutex[] pse_mutex[] can`t acquire any 380 * p_cv other mutexes or 381 * sleep while holding 382 * this lock. 383 * ===================================================================== 384 * p_lckcnt p_selock(E,S) p_selock(E) 385 * OR 386 * p_selock(S) && 387 * page_llocks[] 388 * p_cowcnt 389 * ===================================================================== 390 * p_nrm hat layer lock hat layer lock 391 * p_mapping 392 * p_pagenum 393 * ===================================================================== 394 * 395 * where: 396 * E----> exclusive version of p_selock. 397 * S----> shared version of p_selock. 398 * 399 * 400 * Global data structures and variable: 401 * 402 * field reading writing ordering 403 * ===================================================================== 404 * page_hash[] ph_mutex[] ph_mutex[] can hold this lock 405 * before acquiring 406 * a vph_mutex or 407 * pse_mutex. 408 * ===================================================================== 409 * vp->v_pages vph_mutex[] vph_mutex[] can only acquire 410 * a pse_mutex while 411 * holding this lock. 412 * ===================================================================== 413 * page_cachelist page_freelock page_freelock can't acquire any 414 * page_freelist page_freelock page_freelock 415 * ===================================================================== 416 * freemem freemem_lock freemem_lock can't acquire any 417 * freemem_wait other mutexes while 418 * freemem_cv holding this mutex. 419 * ===================================================================== 420 * 421 * Page relocation, PG_NORELOC and P_NORELOC. 422 * 423 * Pages may be relocated using the page_relocate() interface. Relocation 424 * involves moving the contents and identity of a page to another, free page. 425 * To relocate a page, the SE_EXCL lock must be obtained. The way to prevent 426 * a page from being relocated is to hold the SE_SHARED lock (the SE_EXCL 427 * lock must not be held indefinitely). If the page is going to be held 428 * SE_SHARED indefinitely, then the PG_NORELOC hint should be passed 429 * to page_create_va so that pages that are prevented from being relocated 430 * can be managed differently by the platform specific layer. 431 * 432 * Pages locked in memory using page_pp_lock (p_lckcnt/p_cowcnt != 0) 433 * are guaranteed to be held in memory, but can still be relocated 434 * providing the SE_EXCL lock can be obtained. 435 * 436 * The P_NORELOC bit in the page_t.p_state field is provided for use by 437 * the platform specific code in managing pages when the PG_NORELOC 438 * hint is used. 439 * 440 * Memory delete and page locking. 441 * 442 * The set of all usable pages is managed using the global page list as 443 * implemented by the memseg structure defined below. When memory is added 444 * or deleted this list changes. Additions to this list guarantee that the 445 * list is never corrupt. In order to avoid the necessity of an additional 446 * lock to protect against failed accesses to the memseg being deleted and, 447 * more importantly, the page_ts, the memseg structure is never freed and the 448 * page_t virtual address space is remapped to a page (or pages) of 449 * zeros. If a page_t is manipulated while it is p_selock'd, or if it is 450 * locked indirectly via a hash or freelist lock, it is not possible for 451 * memory delete to collect the page and so that part of the page list is 452 * prevented from being deleted. If the page is referenced outside of one 453 * of these locks, it is possible for the page_t being referenced to be 454 * deleted. Examples of this are page_t pointers returned by 455 * page_numtopp_nolock, page_first and page_next. Providing the page_t 456 * is re-checked after taking the p_selock (for p_vnode != NULL), the 457 * remapping to the zero pages will be detected. 458 * 459 * 460 * Page size (p_szc field) and page locking. 461 * 462 * p_szc field of free pages is changed by free list manager under freelist 463 * locks and is of no concern to the rest of VM subsystem. 464 * 465 * p_szc changes of allocated anonymous (swapfs) can only be done only after 466 * exclusively locking all constituent pages and calling hat_pageunload() on 467 * each of them. To prevent p_szc changes of non free anonymous (swapfs) large 468 * pages it's enough to either lock SHARED any of constituent pages or prevent 469 * hat_pageunload() by holding hat level lock that protects mapping lists (this 470 * method is for hat code only) 471 * 472 * To increase (promote) p_szc of allocated non anonymous file system pages 473 * one has to first lock exclusively all involved constituent pages and call 474 * hat_pageunload() on each of them. To prevent p_szc promote it's enough to 475 * either lock SHARED any of constituent pages that will be needed to make a 476 * large page or prevent hat_pageunload() by holding hat level lock that 477 * protects mapping lists (this method is for hat code only). 478 * 479 * To decrease (demote) p_szc of an allocated non anonymous file system large 480 * page one can either use the same method as used for changeing p_szc of 481 * anonymous large pages or if it's not possible to lock all constituent pages 482 * exclusively a different method can be used. In the second method one only 483 * has to exclusively lock one of constituent pages but then one has to 484 * acquire further locks by calling page_szc_lock() and 485 * hat_page_demote(). hat_page_demote() acquires hat level locks and then 486 * demotes the page. This mechanism relies on the fact that any code that 487 * needs to prevent p_szc of a file system large page from changeing either 488 * locks all constituent large pages at least SHARED or locks some pages at 489 * least SHARED and calls page_szc_lock() or uses hat level page locks. 490 * Demotion using this method is implemented by page_demote_vp_pages(). 491 * Please see comments in front of page_demote_vp_pages(), hat_page_demote() 492 * and page_szc_lock() for more details. 493 * 494 * Lock order: p_selock, page_szc_lock, ph_mutex/vph_mutex/freelist, 495 * hat level locks. 496 */ 497 498 typedef struct page { 499 u_offset_t p_offset; /* offset into vnode for this page */ 500 struct vnode *p_vnode; /* vnode that this page is named by */ 501 selock_t p_selock; /* shared/exclusive lock on the page */ 502 #if defined(_LP64) 503 uint_t p_vpmref; /* vpm ref - index of the vpmap_t */ 504 #endif 505 struct page *p_hash; /* hash by [vnode, offset] */ 506 struct page *p_vpnext; /* next page in vnode list */ 507 struct page *p_vpprev; /* prev page in vnode list */ 508 struct page *p_next; /* next page in free/intrans lists */ 509 struct page *p_prev; /* prev page in free/intrans lists */ 510 ushort_t p_lckcnt; /* number of locks on page data */ 511 ushort_t p_cowcnt; /* number of copy on write lock */ 512 kcondvar_t p_cv; /* page struct's condition var */ 513 kcondvar_t p_io_cv; /* for iolock */ 514 uchar_t p_iolock_state; /* replaces p_iolock */ 515 volatile uchar_t p_szc; /* page size code */ 516 uchar_t p_fsdata; /* file system dependent byte */ 517 uchar_t p_state; /* p_free, p_noreloc */ 518 uchar_t p_nrm; /* non-cache, ref, mod readonly bits */ 519 #if defined(__sparc) 520 uchar_t p_vcolor; /* virtual color */ 521 #else 522 uchar_t p_embed; /* x86 - changes p_mapping & p_index */ 523 #endif 524 uchar_t p_index; /* MPSS mapping info. Not used on x86 */ 525 uchar_t p_toxic; /* page has an unrecoverable error */ 526 void *p_mapping; /* hat specific translation info */ 527 pfn_t p_pagenum; /* physical page number */ 528 529 uint_t p_share; /* number of translations */ 530 #if defined(_LP64) 531 uint_t p_sharepad; /* pad for growing p_share */ 532 #endif 533 uint_t p_slckcnt; /* number of softlocks */ 534 #if defined(__sparc) 535 uint_t p_kpmref; /* number of kpm mapping sharers */ 536 struct kpme *p_kpmelist; /* kpm specific mapping info */ 537 #else 538 /* index of entry in p_map when p_embed is set */ 539 uint_t p_mlentry; 540 #endif 541 #if defined(_LP64) 542 kmutex_t p_ilock; /* protects p_vpmref */ 543 #else 544 uint64_t p_msresv_2; /* page allocation debugging */ 545 #endif 546 } page_t; 547 548 549 typedef page_t devpage_t; 550 #define devpage page 551 552 #define PAGE_LOCK_MAXIMUM \ 553 ((1 << (sizeof (((page_t *)0)->p_lckcnt) * NBBY)) - 1) 554 555 #define PAGE_SLOCK_MAXIMUM UINT_MAX 556 557 /* 558 * Page hash table is a power-of-two in size, externally chained 559 * through the hash field. PAGE_HASHAVELEN is the average length 560 * desired for this chain, from which the size of the page_hash 561 * table is derived at boot time and stored in the kernel variable 562 * page_hashsz. In the hash function it is given by PAGE_HASHSZ. 563 * 564 * PAGE_HASH_FUNC returns an index into the page_hash[] array. This 565 * index is also used to derive the mutex that protects the chain. 566 * 567 * In constructing the hash function, first we dispose of unimportant bits 568 * (page offset from "off" and the low 3 bits of "vp" which are zero for 569 * struct alignment). Then shift and sum the remaining bits a couple times 570 * in order to get as many source bits from the two source values into the 571 * resulting hashed value. Note that this will perform quickly, since the 572 * shifting/summing are fast register to register operations with no additional 573 * memory references). 574 * 575 * PH_SHIFT_SIZE is the amount to use for the successive shifts in the hash 576 * function below. The actual value is LOG2(PH_TABLE_SIZE), so that as many 577 * bits as possible will filter thru PAGE_HASH_FUNC() and PAGE_HASH_MUTEX(). 578 * 579 * We use ? : instead of #if because <vm/page.h> is included everywhere; 580 * NCPU maps to a global variable outside of the "unix" module. 581 */ 582 #if defined(_LP64) 583 #define PH_SHIFT_SIZE ((NCPU < 4) ? 7 : (NCPU_LOG2 + 1)) 584 #else /* 32 bits */ 585 #define PH_SHIFT_SIZE ((NCPU < 4) ? 4 : 7) 586 #endif /* _LP64 */ 587 588 #define PH_TABLE_SIZE (1ul << PH_SHIFT_SIZE) 589 590 /* 591 * 592 * We take care to get as much randomness as possible from both the vp and 593 * the offset. Workloads can have few vnodes with many offsets, many vnodes 594 * with few offsets or a moderate mix of both. This hash should perform 595 * equally well for each of these possibilities and for all types of memory 596 * allocations. 597 * 598 * vnodes representing files are created over a long period of time and 599 * have good variation in the upper vp bits, and the right shifts below 600 * capture these bits. However, swap vnodes are created quickly in a 601 * narrow vp* range. Refer to comments at swap_alloc: vnum has exactly 602 * AN_VPSHIFT bits, so the kmem_alloc'd vnode addresses have approximately 603 * AN_VPSHIFT bits of variation above their VNODE_ALIGN low order 0 bits. 604 * Spread swap vnodes widely in the hash table by XOR'ing a term with the 605 * vp bits of variation left shifted to the top of the range. 606 */ 607 608 #define PAGE_HASHSZ page_hashsz 609 #define PAGE_HASHAVELEN 4 610 #define PAGE_HASH_FUNC(vp, off) \ 611 (((((uintptr_t)(off) >> PAGESHIFT) ^ \ 612 ((uintptr_t)(off) >> (PAGESHIFT + PH_SHIFT_SIZE))) ^ \ 613 (((uintptr_t)(vp) >> 3) ^ \ 614 ((uintptr_t)(vp) >> (3 + PH_SHIFT_SIZE)) ^ \ 615 ((uintptr_t)(vp) >> (3 + 2 * PH_SHIFT_SIZE)) ^ \ 616 ((uintptr_t)(vp) << \ 617 (page_hashsz_shift - AN_VPSHIFT - VNODE_ALIGN_LOG2)))) & \ 618 (PAGE_HASHSZ - 1)) 619 620 #ifdef _KERNEL 621 622 /* 623 * The page hash value is re-hashed to an index for the ph_mutex array. 624 * 625 * For 64 bit kernels, the mutex array is padded out to prevent false 626 * sharing of cache sub-blocks (64 bytes) of adjacent mutexes. 627 * 628 * For 32 bit kernels, we don't want to waste kernel address space with 629 * padding, so instead we rely on the hash function to introduce skew of 630 * adjacent vnode/offset indexes (the left shift part of the hash function). 631 * Since sizeof (kmutex_t) is 8, we shift an additional 3 to skew to a different 632 * 64 byte sub-block. 633 */ 634 extern pad_mutex_t ph_mutex[]; 635 636 #define PAGE_HASH_MUTEX(x) \ 637 &(ph_mutex[((x) ^ ((x) >> PH_SHIFT_SIZE) + ((x) << 3)) & \ 638 (PH_TABLE_SIZE - 1)].pad_mutex) 639 640 /* 641 * Flags used while creating pages. 642 */ 643 #define PG_EXCL 0x0001 644 #define PG_WAIT 0x0002 /* Blocking memory allocations */ 645 #define PG_PHYSCONTIG 0x0004 /* NOT SUPPORTED */ 646 #define PG_MATCH_COLOR 0x0008 /* SUPPORTED by free list routines */ 647 #define PG_NORELOC 0x0010 /* Non-relocatable alloc hint. */ 648 /* Page must be PP_ISNORELOC */ 649 #define PG_PANIC 0x0020 /* system will panic if alloc fails */ 650 #define PG_PUSHPAGE 0x0040 /* alloc may use reserve */ 651 #define PG_LOCAL 0x0080 /* alloc from given lgrp only */ 652 #define PG_NORMALPRI 0x0100 /* PG_WAIT like priority, but */ 653 /* non-blocking */ 654 /* 655 * When p_selock has the SE_EWANTED bit set, threads waiting for SE_EXCL 656 * access are given priority over all other waiting threads. 657 */ 658 #define SE_EWANTED 0x40000000 659 #define PAGE_LOCKED(pp) (((pp)->p_selock & ~SE_EWANTED) != 0) 660 #define PAGE_SHARED(pp) (((pp)->p_selock & ~SE_EWANTED) > 0) 661 #define PAGE_EXCL(pp) ((pp)->p_selock < 0) 662 #define PAGE_LOCKED_SE(pp, se) \ 663 ((se) == SE_EXCL ? PAGE_EXCL(pp) : PAGE_SHARED(pp)) 664 665 extern long page_hashsz; 666 extern unsigned int page_hashsz_shift; 667 extern page_t **page_hash; 668 669 extern pad_mutex_t page_llocks[]; /* page logical lock mutex */ 670 extern kmutex_t freemem_lock; /* freemem lock */ 671 672 extern pgcnt_t total_pages; /* total pages in the system */ 673 674 /* 675 * Variables controlling locking of physical memory. 676 */ 677 extern pgcnt_t pages_pp_maximum; /* tuning: lock + claim <= max */ 678 extern void init_pages_pp_maximum(void); 679 680 struct lgrp; 681 682 /* page_list_{add,sub} flags */ 683 684 /* which list */ 685 #define PG_FREE_LIST 0x0001 686 #define PG_CACHE_LIST 0x0002 687 688 /* where on list */ 689 #define PG_LIST_TAIL 0x0010 690 #define PG_LIST_HEAD 0x0020 691 692 /* called from */ 693 #define PG_LIST_ISINIT 0x1000 694 695 /* 696 * Page frame operations. 697 */ 698 page_t *page_lookup(struct vnode *, u_offset_t, se_t); 699 page_t *page_lookup_create(struct vnode *, u_offset_t, se_t, page_t *, 700 spgcnt_t *, int); 701 page_t *page_lookup_nowait(struct vnode *, u_offset_t, se_t); 702 page_t *page_find(struct vnode *, u_offset_t); 703 page_t *page_exists(struct vnode *, u_offset_t); 704 int page_exists_physcontig(vnode_t *, u_offset_t, uint_t, page_t *[]); 705 int page_exists_forreal(struct vnode *, u_offset_t, uint_t *); 706 void page_needfree(spgcnt_t); 707 page_t *page_create(struct vnode *, u_offset_t, size_t, uint_t); 708 int page_alloc_pages(struct vnode *, struct seg *, caddr_t, page_t **, 709 page_t **, uint_t, int, int); 710 page_t *page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, 711 uint_t flags, struct seg *seg, caddr_t vaddr, void *arg); 712 page_t *page_create_va(struct vnode *, u_offset_t, size_t, uint_t, 713 struct seg *, caddr_t); 714 int page_create_wait(pgcnt_t npages, uint_t flags); 715 void page_create_putback(spgcnt_t npages); 716 void page_free(page_t *, int); 717 void page_free_at_startup(page_t *); 718 void page_free_pages(page_t *); 719 void free_vp_pages(struct vnode *, u_offset_t, size_t); 720 int page_reclaim(page_t *, kmutex_t *); 721 int page_reclaim_pages(page_t *, kmutex_t *, uint_t); 722 void page_destroy(page_t *, int); 723 void page_destroy_pages(page_t *); 724 void page_destroy_free(page_t *); 725 void page_rename(page_t *, struct vnode *, u_offset_t); 726 int page_hashin(page_t *, struct vnode *, u_offset_t, kmutex_t *); 727 void page_hashout(page_t *, kmutex_t *); 728 int page_num_hashin(pfn_t, struct vnode *, u_offset_t); 729 void page_add(page_t **, page_t *); 730 void page_add_common(page_t **, page_t *); 731 void page_sub(page_t **, page_t *); 732 void page_sub_common(page_t **, page_t *); 733 page_t *page_get_freelist(struct vnode *, u_offset_t, struct seg *, 734 caddr_t, size_t, uint_t, struct lgrp *); 735 736 page_t *page_get_cachelist(struct vnode *, u_offset_t, struct seg *, 737 caddr_t, uint_t, struct lgrp *); 738 #if defined(__i386) || defined(__amd64) 739 int page_chk_freelist(uint_t); 740 #endif 741 void page_list_add(page_t *, int); 742 void page_boot_demote(page_t *); 743 void page_promote_size(page_t *, uint_t); 744 void page_list_add_pages(page_t *, int); 745 void page_list_sub(page_t *, int); 746 void page_list_sub_pages(page_t *, uint_t); 747 void page_list_xfer(page_t *, int, int); 748 void page_list_break(page_t **, page_t **, size_t); 749 void page_list_concat(page_t **, page_t **); 750 void page_vpadd(page_t **, page_t *); 751 void page_vpsub(page_t **, page_t *); 752 int page_lock(page_t *, se_t, kmutex_t *, reclaim_t); 753 int page_lock_es(page_t *, se_t, kmutex_t *, reclaim_t, int); 754 void page_lock_clr_exclwanted(page_t *); 755 int page_trylock(page_t *, se_t); 756 int page_try_reclaim_lock(page_t *, se_t, int); 757 int page_tryupgrade(page_t *); 758 void page_downgrade(page_t *); 759 void page_unlock(page_t *); 760 void page_unlock_nocapture(page_t *); 761 void page_lock_delete(page_t *); 762 int page_deleted(page_t *); 763 int page_pp_lock(page_t *, int, int); 764 void page_pp_unlock(page_t *, int, int); 765 int page_resv(pgcnt_t, uint_t); 766 void page_unresv(pgcnt_t); 767 void page_pp_useclaim(page_t *, page_t *, uint_t); 768 int page_addclaim(page_t *); 769 int page_subclaim(page_t *); 770 int page_addclaim_pages(page_t **); 771 int page_subclaim_pages(page_t **); 772 pfn_t page_pptonum(page_t *); 773 page_t *page_numtopp(pfn_t, se_t); 774 page_t *page_numtopp_noreclaim(pfn_t, se_t); 775 page_t *page_numtopp_nolock(pfn_t); 776 page_t *page_numtopp_nowait(pfn_t, se_t); 777 page_t *page_first(); 778 page_t *page_next(page_t *); 779 page_t *page_list_next(page_t *); 780 page_t *page_nextn(page_t *, ulong_t); 781 page_t *page_next_scan_init(void **); 782 page_t *page_next_scan_large(page_t *, ulong_t *, void **); 783 void prefetch_page_r(void *); 784 int ppcopy(page_t *, page_t *); 785 void page_relocate_hash(page_t *, page_t *); 786 void pagezero(page_t *, uint_t, uint_t); 787 void pagescrub(page_t *, uint_t, uint_t); 788 void page_io_lock(page_t *); 789 void page_io_unlock(page_t *); 790 int page_io_trylock(page_t *); 791 int page_iolock_assert(page_t *); 792 void page_iolock_init(page_t *); 793 void page_io_wait(page_t *); 794 int page_io_locked(page_t *); 795 pgcnt_t page_busy(int); 796 void page_lock_init(void); 797 ulong_t page_share_cnt(page_t *); 798 int page_isshared(page_t *); 799 int page_isfree(page_t *); 800 int page_isref(page_t *); 801 int page_ismod(page_t *); 802 int page_release(page_t *, int); 803 void page_retire_init(void); 804 int page_retire(uint64_t, uchar_t); 805 int page_retire_check(uint64_t, uint64_t *); 806 int page_unretire(uint64_t); 807 int page_unretire_pp(page_t *, int); 808 void page_tryretire(page_t *); 809 void page_retire_mdboot(); 810 uint64_t page_retire_pend_count(void); 811 uint64_t page_retire_pend_kas_count(void); 812 void page_retire_incr_pend_count(void *); 813 void page_retire_decr_pend_count(void *); 814 void page_clrtoxic(page_t *, uchar_t); 815 void page_settoxic(page_t *, uchar_t); 816 817 int page_reclaim_mem(pgcnt_t, pgcnt_t, int); 818 819 void page_set_props(page_t *, uint_t); 820 void page_clr_all_props(page_t *); 821 int page_clear_lck_cow(page_t *, int); 822 823 kmutex_t *page_vnode_mutex(struct vnode *); 824 kmutex_t *page_se_mutex(struct page *); 825 kmutex_t *page_szc_lock(struct page *); 826 int page_szc_lock_assert(struct page *pp); 827 828 /* 829 * Page relocation interfaces. page_relocate() is generic. 830 * page_get_replacement_page() is provided by the PSM. 831 * page_free_replacement_page() is generic. 832 */ 833 int group_page_trylock(page_t *, se_t); 834 void group_page_unlock(page_t *); 835 int page_relocate(page_t **, page_t **, int, int, spgcnt_t *, struct lgrp *); 836 int do_page_relocate(page_t **, page_t **, int, spgcnt_t *, struct lgrp *); 837 page_t *page_get_replacement_page(page_t *, struct lgrp *, uint_t); 838 void page_free_replacement_page(page_t *); 839 int page_relocate_cage(page_t **, page_t **); 840 841 int page_try_demote_pages(page_t *); 842 int page_try_demote_free_pages(page_t *); 843 void page_demote_free_pages(page_t *); 844 845 struct anon_map; 846 847 void page_mark_migrate(struct seg *, caddr_t, size_t, struct anon_map *, 848 ulong_t, vnode_t *, u_offset_t, int); 849 void page_migrate(struct seg *, caddr_t, page_t **, pgcnt_t); 850 851 /* 852 * Tell the PIM we are adding physical memory 853 */ 854 void add_physmem(page_t *, size_t, pfn_t); 855 void add_physmem_cb(page_t *, pfn_t); /* callback for page_t part */ 856 857 /* 858 * hw_page_array[] is configured with hardware supported page sizes by 859 * platform specific code. 860 */ 861 typedef struct { 862 size_t hp_size; 863 uint_t hp_shift; 864 uint_t hp_colors; 865 pgcnt_t hp_pgcnt; /* base pagesize cnt */ 866 } hw_pagesize_t; 867 868 extern hw_pagesize_t hw_page_array[]; 869 extern uint_t page_coloring_shift; 870 extern uint_t page_colors_mask; 871 extern int cpu_page_colors; 872 extern uint_t colorequiv; 873 extern uchar_t colorequivszc[]; 874 875 uint_t page_num_pagesizes(void); 876 uint_t page_num_user_pagesizes(int); 877 size_t page_get_pagesize(uint_t); 878 size_t page_get_user_pagesize(uint_t n); 879 pgcnt_t page_get_pagecnt(uint_t); 880 uint_t page_get_shift(uint_t); 881 int page_szc(size_t); 882 int page_szc_user_filtered(size_t); 883 884 /* page_get_replacement page flags */ 885 #define PGR_SAMESZC 0x1 /* only look for page size same as orig */ 886 #define PGR_NORELOC 0x2 /* allocate a P_NORELOC page */ 887 888 /* 889 * macros for "masked arithmetic" 890 * The purpose is to step through all combinations of a set of bits while 891 * keeping some other bits fixed. Fixed bits need not be contiguous. The 892 * variable bits need not be contiguous either, or even right aligned. The 893 * trick is to set all fixed bits to 1, then increment, then restore the 894 * fixed bits. If incrementing causes a carry from a low bit position, the 895 * carry propagates thru the fixed bits, because they are temporarily set to 1. 896 * v is the value 897 * i is the increment 898 * eq_mask defines the fixed bits 899 * mask limits the size of the result 900 */ 901 #define ADD_MASKED(v, i, eq_mask, mask) \ 902 (((((v) | (eq_mask)) + (i)) & (mask) & ~(eq_mask)) | ((v) & (eq_mask))) 903 904 /* 905 * convenience macro which increments by 1 906 */ 907 #define INC_MASKED(v, eq_mask, mask) ADD_MASKED(v, 1, eq_mask, mask) 908 909 #endif /* _KERNEL */ 910 911 /* 912 * Constants used for the p_iolock_state 913 */ 914 #define PAGE_IO_INUSE 0x1 915 #define PAGE_IO_WANTED 0x2 916 917 /* 918 * Constants used for page_release status 919 */ 920 #define PGREL_NOTREL 0x1 921 #define PGREL_CLEAN 0x2 922 #define PGREL_MOD 0x3 923 924 /* 925 * The p_state field holds what used to be the p_age and p_free 926 * bits. These fields are protected by p_selock (see above). 927 */ 928 #define P_FREE 0x80 /* Page on free list */ 929 #define P_NORELOC 0x40 /* Page is non-relocatable */ 930 #define P_MIGRATE 0x20 /* Migrate page on next touch */ 931 #define P_SWAP 0x10 /* belongs to vnode that is V_ISSWAP */ 932 #define P_BOOTPAGES 0x08 /* member of bootpages list */ 933 #define P_RAF 0x04 /* page retired at free */ 934 935 #define PP_ISFREE(pp) ((pp)->p_state & P_FREE) 936 #define PP_ISAGED(pp) (((pp)->p_state & P_FREE) && \ 937 ((pp)->p_vnode == NULL)) 938 #define PP_ISNORELOC(pp) ((pp)->p_state & P_NORELOC) 939 #define PP_ISKAS(pp) (VN_ISKAS((pp)->p_vnode)) 940 #define PP_ISNORELOCKERNEL(pp) (PP_ISNORELOC(pp) && PP_ISKAS(pp)) 941 #define PP_ISMIGRATE(pp) ((pp)->p_state & P_MIGRATE) 942 #define PP_ISSWAP(pp) ((pp)->p_state & P_SWAP) 943 #define PP_ISBOOTPAGES(pp) ((pp)->p_state & P_BOOTPAGES) 944 #define PP_ISRAF(pp) ((pp)->p_state & P_RAF) 945 946 #define PP_SETFREE(pp) ((pp)->p_state = ((pp)->p_state & ~P_MIGRATE) \ 947 | P_FREE) 948 #define PP_SETAGED(pp) ASSERT(PP_ISAGED(pp)) 949 #define PP_SETNORELOC(pp) ((pp)->p_state |= P_NORELOC) 950 #define PP_SETMIGRATE(pp) ((pp)->p_state |= P_MIGRATE) 951 #define PP_SETSWAP(pp) ((pp)->p_state |= P_SWAP) 952 #define PP_SETBOOTPAGES(pp) ((pp)->p_state |= P_BOOTPAGES) 953 #define PP_SETRAF(pp) ((pp)->p_state |= P_RAF) 954 955 #define PP_CLRFREE(pp) ((pp)->p_state &= ~P_FREE) 956 #define PP_CLRAGED(pp) ASSERT(!PP_ISAGED(pp)) 957 #define PP_CLRNORELOC(pp) ((pp)->p_state &= ~P_NORELOC) 958 #define PP_CLRMIGRATE(pp) ((pp)->p_state &= ~P_MIGRATE) 959 #define PP_CLRSWAP(pp) ((pp)->p_state &= ~P_SWAP) 960 #define PP_CLRBOOTPAGES(pp) ((pp)->p_state &= ~P_BOOTPAGES) 961 #define PP_CLRRAF(pp) ((pp)->p_state &= ~P_RAF) 962 963 /* 964 * Flags for page_t p_toxic, for tracking memory hardware errors. 965 * 966 * These flags are OR'ed into p_toxic with page_settoxic() to track which 967 * error(s) have occurred on a given page. The flags are cleared with 968 * page_clrtoxic(). Both page_settoxic() and page_cleartoxic use atomic 969 * primitives to manipulate the p_toxic field so no other locking is needed. 970 * 971 * When an error occurs on a page, p_toxic is set to record the error. The 972 * error could be a memory error or something else (i.e. a datapath). The Page 973 * Retire mechanism does not try to determine the exact cause of the error; 974 * Page Retire rightly leaves that sort of determination to FMA's Diagnostic 975 * Engine (DE). 976 * 977 * Note that, while p_toxic bits can be set without holding any locks, they 978 * should only be cleared while holding the page exclusively locked. 979 * There is one exception to this, the PR_CAPTURE bit is protected by a mutex 980 * within the page capture logic and thus to set or clear the bit, that mutex 981 * needs to be held. The page does not need to be locked but the page_clrtoxic 982 * function must be used as we need an atomic operation. 983 * Also note that there is what amounts to a hack to prevent recursion with 984 * large pages such that if we are unlocking a page and the PR_CAPTURE bit is 985 * set, we will only try to capture the page if the current threads T_CAPTURING 986 * flag is not set. If the flag is set, the unlock will not try to capture 987 * the page even though the PR_CAPTURE bit is set. 988 * 989 * Pages with PR_UE or PR_FMA flags are retired unconditionally, while pages 990 * with PR_MCE are retired if the system has not retired too many of them. 991 * 992 * A page must be exclusively locked to be retired. Pages can be retired if 993 * they are mapped, modified, or both, as long as they are not marked PR_UE, 994 * since pages with uncorrectable errors cannot be relocated in memory. 995 * Once a page has been successfully retired it is zeroed, attached to the 996 * retired_pages vnode and, finally, PR_RETIRED is set in p_toxic. The other 997 * p_toxic bits are NOT cleared. Pages are not left locked after retiring them 998 * to avoid special case code throughout the kernel; rather, page_*lock() will 999 * fail to lock the page, unless SE_RETIRED is passed as an argument. 1000 * 1001 * While we have your attention, go take a look at the comments at the 1002 * beginning of page_retire.c too. 1003 */ 1004 #define PR_OK 0x00 /* no problem */ 1005 #define PR_MCE 0x01 /* page has seen two or more CEs */ 1006 #define PR_UE 0x02 /* page has an unhandled UE */ 1007 #define PR_UE_SCRUBBED 0x04 /* page has seen a UE but was cleaned */ 1008 #define PR_FMA 0x08 /* A DE wants this page retired */ 1009 #define PR_CAPTURE 0x10 /* page is hashed on page_capture_hash[] */ 1010 #define PR_RESV 0x20 /* Reserved for future use */ 1011 #define PR_MSG 0x40 /* message(s) already printed for this page */ 1012 #define PR_RETIRED 0x80 /* This page has been retired */ 1013 1014 #define PR_REASONS (PR_UE | PR_MCE | PR_FMA) 1015 #define PR_TOXIC (PR_UE) 1016 #define PR_ERRMASK (PR_UE | PR_UE_SCRUBBED | PR_MCE | PR_FMA) 1017 #define PR_TOXICFLAGS (0xCF) 1018 1019 #define PP_RETIRED(pp) ((pp)->p_toxic & PR_RETIRED) 1020 #define PP_TOXIC(pp) ((pp)->p_toxic & PR_TOXIC) 1021 #define PP_PR_REQ(pp) (((pp)->p_toxic & PR_REASONS) && !PP_RETIRED(pp)) 1022 #define PP_PR_NOSHARE(pp) \ 1023 ((((pp)->p_toxic & (PR_RETIRED | PR_FMA | PR_UE)) == PR_FMA) && \ 1024 !PP_ISKAS(pp)) 1025 1026 /* 1027 * Flags for page_unretire_pp 1028 */ 1029 #define PR_UNR_FREE 0x1 1030 #define PR_UNR_CLEAN 0x2 1031 #define PR_UNR_TEMP 0x4 1032 1033 /* 1034 * kpm large page description. 1035 * The virtual address range of segkpm is divided into chunks of 1036 * kpm_pgsz. Each chunk is controlled by a kpm_page_t. The ushort 1037 * is sufficient for 2^^15 * PAGESIZE, so e.g. the maximum kpm_pgsz 1038 * for 8K is 256M and 2G for 64K pages. It it kept as small as 1039 * possible to save physical memory space. 1040 * 1041 * There are 2 segkpm mapping windows within in the virtual address 1042 * space when we have to prevent VAC alias conflicts. The so called 1043 * Alias window (mappings are always by PAGESIZE) is controlled by 1044 * kp_refcnta. The regular window is controlled by kp_refcnt for the 1045 * normal operation, which is to use the largest available pagesize. 1046 * When VAC alias conflicts are present within a chunk in the regular 1047 * window the large page mapping is broken up into smaller PAGESIZE 1048 * mappings. kp_refcntc is used to control the pages that are invoked 1049 * in the conflict and kp_refcnts holds the active mappings done 1050 * with the small page size. In non vac conflict mode kp_refcntc is 1051 * also used as "go" indication (-1) for the trap level tsbmiss 1052 * handler. 1053 */ 1054 typedef struct kpm_page { 1055 short kp_refcnt; /* pages mapped large */ 1056 short kp_refcnta; /* pages mapped in Alias window */ 1057 short kp_refcntc; /* TL-tsbmiss flag; #vac alias conflict pages */ 1058 short kp_refcnts; /* vac alias: pages mapped small */ 1059 } kpm_page_t; 1060 1061 /* 1062 * Note: khl_lock offset changes must be reflected in sfmmu_asm.s 1063 */ 1064 typedef struct kpm_hlk { 1065 kmutex_t khl_mutex; /* kpm_page mutex */ 1066 uint_t khl_lock; /* trap level tsbmiss handling */ 1067 } kpm_hlk_t; 1068 1069 /* 1070 * kpm small page description. 1071 * When kpm_pgsz is equal to PAGESIZE a smaller representation is used 1072 * to save memory space. Alias range mappings and regular segkpm 1073 * mappings are done in units of PAGESIZE and can share the mapping 1074 * information and the mappings are always distinguishable by their 1075 * virtual address. Other information needed for VAC conflict prevention 1076 * is already available on a per page basis. 1077 * 1078 * The state about how a kpm page is mapped and whether it is ready to go 1079 * is indicated by the following 1 byte kpm_spage structure. This byte is 1080 * split into two 4-bit parts - kp_mapped and kp_mapped_go. 1081 * - kp_mapped == 1 the page is mapped cacheable 1082 * - kp_mapped == 2 the page is mapped non-cacheable 1083 * - kp_mapped_go == 1 the mapping is ready to be dropped in 1084 * - kp_mapped_go == 0 the mapping is not ready to be dropped in. 1085 * When kp_mapped_go == 0, we will have C handler resolve the VAC conflict. 1086 * Otherwise, the assembly tsb miss handler can simply drop in the mapping 1087 * when a tsb miss occurs. 1088 */ 1089 typedef union kpm_spage { 1090 struct { 1091 #ifdef _BIG_ENDIAN 1092 uchar_t mapped_go: 4; /* go or nogo flag */ 1093 uchar_t mapped: 4; /* page mapped small */ 1094 #else 1095 uchar_t mapped: 4; /* page mapped small */ 1096 uchar_t mapped_go: 4; /* go or nogo flag */ 1097 #endif 1098 } kpm_spage_un; 1099 uchar_t kp_mapped_flag; 1100 } kpm_spage_t; 1101 1102 #define kp_mapped kpm_spage_un.mapped 1103 #define kp_mapped_go kpm_spage_un.mapped_go 1104 1105 /* 1106 * Note: kshl_lock offset changes must be reflected in sfmmu_asm.s 1107 */ 1108 typedef struct kpm_shlk { 1109 uint_t kshl_lock; /* trap level tsbmiss handling */ 1110 } kpm_shlk_t; 1111 1112 /* 1113 * Each segment of physical memory is described by a memseg struct. 1114 * Within a segment, memory is considered contiguous. The members 1115 * can be categorized as follows: 1116 * . Platform independent: 1117 * pages, epages, pages_base, pages_end, next, lnext. 1118 * . 64bit only but platform independent: 1119 * kpm_pbase, kpm_nkpmpgs, kpm_pages, kpm_spages. 1120 * . Really platform or mmu specific: 1121 * pagespa, epagespa, nextpa, kpm_pagespa. 1122 * . Mixed: 1123 * msegflags. 1124 */ 1125 struct memseg { 1126 page_t *pages, *epages; /* [from, to] in page array */ 1127 pfn_t pages_base, pages_end; /* [from, to] in page numbers */ 1128 struct memseg *next; /* next segment in list */ 1129 struct memseg *lnext; /* next segment in deleted list */ 1130 #if defined(__sparc) 1131 uint64_t pagespa, epagespa; /* [from, to] page array physical */ 1132 uint64_t nextpa; /* physical next pointer */ 1133 pfn_t kpm_pbase; /* start of kpm range */ 1134 pgcnt_t kpm_nkpmpgs; /* # of kpm_pgsz pages */ 1135 union _mseg_un { 1136 kpm_page_t *kpm_lpgs; /* ptr to kpm_page array */ 1137 kpm_spage_t *kpm_spgs; /* ptr to kpm_spage array */ 1138 } mseg_un; 1139 uint64_t kpm_pagespa; /* physical ptr to kpm (s)pages array */ 1140 #endif /* __sparc */ 1141 uint_t msegflags; /* memseg flags */ 1142 }; 1143 1144 /* memseg union aliases */ 1145 #define kpm_pages mseg_un.kpm_lpgs 1146 #define kpm_spages mseg_un.kpm_spgs 1147 1148 /* msegflags */ 1149 #define MEMSEG_DYNAMIC 0x1 /* DR: memory was added dynamically */ 1150 #define MEMSEG_META_INCL 0x2 /* DR: memseg includes it's metadata */ 1151 #define MEMSEG_META_ALLOC 0x4 /* DR: memseg allocated it's metadata */ 1152 1153 /* memseg support macros */ 1154 #define MSEG_NPAGES(SEG) ((SEG)->pages_end - (SEG)->pages_base) 1155 1156 /* memseg hash */ 1157 #define MEM_HASH_SHIFT 0x9 1158 #define N_MEM_SLOTS 0x200 /* must be a power of 2 */ 1159 #define MEMSEG_PFN_HASH(pfn) (((pfn)/mhash_per_slot) & (N_MEM_SLOTS - 1)) 1160 1161 /* memseg externals */ 1162 extern struct memseg *memsegs; /* list of memory segments */ 1163 extern ulong_t mhash_per_slot; 1164 extern uint64_t memsegspa; /* memsegs as physical address */ 1165 1166 void build_pfn_hash(); 1167 extern struct memseg *page_numtomemseg_nolock(pfn_t pfnum); 1168 1169 /* 1170 * page capture related info: 1171 * The page capture routines allow us to asynchronously capture given pages 1172 * for the explicit use of the requestor. New requestors can be added by 1173 * explicitly adding themselves to the PC_* flags below and incrementing 1174 * PC_NUM_CALLBACKS as necessary. 1175 * 1176 * Subsystems using page capture must register a callback before attempting 1177 * to capture a page. A duration of -1 will indicate that we will never give 1178 * up while trying to capture a page and will only stop trying to capture the 1179 * given page once we have successfully captured it. Thus the user needs to be 1180 * aware of the behavior of all callers who have a duration of -1. 1181 * 1182 * For now, only /dev/physmem and page retire use the page capture interface 1183 * and only a single request can be outstanding for a given page. Thus, if 1184 * /dev/phsymem wants a page and page retire also wants the same page, only 1185 * the page retire request will be honored until the point in time that the 1186 * page is actually retired, at which point in time, subsequent requests by 1187 * /dev/physmem will succeed if the CAPTURE_GET_RETIRED flag was set. 1188 */ 1189 1190 #define PC_RETIRE (0) 1191 #define PC_PHYSMEM (1) 1192 #define PC_NUM_CALLBACKS (2) 1193 #define PC_MASK ((1 << PC_NUM_CALLBACKS) - 1) 1194 1195 #define CAPTURE_RETIRE (1 << PC_RETIRE) 1196 #define CAPTURE_PHYSMEM (1 << PC_PHYSMEM) 1197 1198 #define CAPTURE_ASYNC (0x0200) 1199 1200 #define CAPTURE_GET_RETIRED (0x1000) 1201 #define CAPTURE_GET_CAGE (0x2000) 1202 1203 struct page_capture_callback { 1204 int cb_active; /* 1 means active, 0 means inactive */ 1205 clock_t duration; /* the length in time that we'll attempt to */ 1206 /* capture this page asynchronously. (in HZ) */ 1207 krwlock_t cb_rwlock; 1208 int (*cb_func)(page_t *, void *, uint_t); /* callback function */ 1209 }; 1210 1211 extern kcondvar_t pc_cv; 1212 1213 void page_capture_register_callback(uint_t index, clock_t duration, 1214 int (*cb_func)(page_t *, void *, uint_t)); 1215 void page_capture_unregister_callback(uint_t index); 1216 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap); 1217 void page_unlock_capture(page_t *pp); 1218 int page_capture_unretire_pp(page_t *); 1219 1220 extern int memsegs_trylock(int); 1221 extern void memsegs_lock(int); 1222 extern void memsegs_unlock(int); 1223 extern int memsegs_lock_held(void); 1224 extern void memlist_read_lock(void); 1225 extern void memlist_read_unlock(void); 1226 extern void memlist_write_lock(void); 1227 extern void memlist_write_unlock(void); 1228 1229 #ifdef __cplusplus 1230 } 1231 #endif 1232 1233 #endif /* _VM_PAGE_H */ 1234