1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * the Systems Programming Group of the University of Utah Computer
15 * Science Department and William Jolitz of UUNET Technologies Inc.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by the University of
28 * California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 */
45 /*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 * Copyright (c) 2018 The FreeBSD Foundation
49 * All rights reserved.
50 *
51 * This software was developed for the FreeBSD Project by Jake Burkholder,
52 * Safeport Network Services, and Network Associates Laboratories, the
53 * Security Research Division of Network Associates, Inc. under
54 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
55 * CHATS research program.
56 *
57 * Portions of this software were developed by
58 * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
59 * the FreeBSD Foundation.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 * 2. Redistributions in binary form must reproduce the above copyright
67 * notice, this list of conditions and the following disclaimer in the
68 * documentation and/or other materials provided with the distribution.
69 *
70 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
71 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
72 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
73 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
74 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
75 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
76 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
77 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
78 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
79 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
80 * SUCH DAMAGE.
81 */
82
83 #include <sys/cdefs.h>
84 /*
85 * Manages physical address maps.
86 *
87 * Since the information managed by this module is
88 * also stored by the logical address mapping module,
89 * this module may throw away valid virtual-to-physical
90 * mappings at almost any time. However, invalidations
91 * of virtual-to-physical mappings must be done as
92 * requested.
93 *
94 * In order to cope with hardware architectures which
95 * make virtual-to-physical map invalidates expensive,
96 * this module may delay invalidate or reduced protection
97 * operations until such time as they are actually
98 * necessary. This module is given full information as
99 * to which processors are currently using which maps,
100 * and to when physical maps must be made correct.
101 */
102
103 #include "opt_apic.h"
104 #include "opt_cpu.h"
105 #include "opt_pmap.h"
106 #include "opt_smp.h"
107 #include "opt_vm.h"
108
109 #include <sys/param.h>
110 #include <sys/systm.h>
111 #include <sys/kernel.h>
112 #include <sys/ktr.h>
113 #include <sys/lock.h>
114 #include <sys/malloc.h>
115 #include <sys/mman.h>
116 #include <sys/msgbuf.h>
117 #include <sys/mutex.h>
118 #include <sys/proc.h>
119 #include <sys/rwlock.h>
120 #include <sys/sbuf.h>
121 #include <sys/sf_buf.h>
122 #include <sys/sx.h>
123 #include <sys/vmmeter.h>
124 #include <sys/sched.h>
125 #include <sys/sysctl.h>
126 #include <sys/smp.h>
127 #include <sys/vmem.h>
128
129 #include <vm/vm.h>
130 #include <vm/vm_param.h>
131 #include <vm/vm_kern.h>
132 #include <vm/vm_page.h>
133 #include <vm/vm_map.h>
134 #include <vm/vm_object.h>
135 #include <vm/vm_extern.h>
136 #include <vm/vm_pageout.h>
137 #include <vm/vm_pager.h>
138 #include <vm/vm_phys.h>
139 #include <vm/vm_radix.h>
140 #include <vm/vm_reserv.h>
141 #include <vm/uma.h>
142
143 #ifdef DEV_APIC
144 #include <sys/bus.h>
145 #include <machine/intr_machdep.h>
146 #include <x86/apicvar.h>
147 #endif
148 #include <x86/ifunc.h>
149 #include <machine/bootinfo.h>
150 #include <machine/cpu.h>
151 #include <machine/cputypes.h>
152 #include <machine/md_var.h>
153 #include <machine/pcb.h>
154 #include <machine/specialreg.h>
155 #ifdef SMP
156 #include <machine/smp.h>
157 #endif
158 #include <machine/pmap_base.h>
159
160 #ifdef PV_STATS
161 #define PV_STAT(x) do { x ; } while (0)
162 #else
163 #define PV_STAT(x) do { } while (0)
164 #endif
165
166 #define pa_index(pa) ((pa) >> PDRSHIFT)
167 #define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
168
169 /*
170 * PTmap is recursive pagemap at top of virtual address space.
171 * Within PTmap, the page directory can be found (third indirection).
172 */
173 #define PTmap ((pt_entry_t *)(PTDPTDI << PDRSHIFT))
174 #define PTD ((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE)))
175 #define PTDpde ((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE) + \
176 (PTDPTDI * PDESIZE)))
177
178 /*
179 * Translate a virtual address to the kernel virtual address of its page table
180 * entry (PTE). This can be used recursively. If the address of a PTE as
181 * previously returned by this macro is itself given as the argument, then the
182 * address of the page directory entry (PDE) that maps the PTE will be
183 * returned.
184 *
185 * This macro may be used before pmap_bootstrap() is called.
186 */
187 #define vtopte(va) (PTmap + i386_btop(va))
188
189 /*
190 * Get PDEs and PTEs for user/kernel address space
191 */
192 #define pmap_pde(m, v) (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
193 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
194
195 #define pmap_pde_v(pte) ((*(int *)pte & PG_V) != 0)
196 #define pmap_pte_w(pte) ((*(int *)pte & PG_W) != 0)
197 #define pmap_pte_m(pte) ((*(int *)pte & PG_M) != 0)
198 #define pmap_pte_u(pte) ((*(int *)pte & PG_A) != 0)
199 #define pmap_pte_v(pte) ((*(int *)pte & PG_V) != 0)
200
201 #define pmap_pte_set_w(pte, v) ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
202 atomic_clear_int((u_int *)(pte), PG_W))
203 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
204
205 static int pgeflag = 0; /* PG_G or-in */
206 static int pseflag = 0; /* PG_PS or-in */
207
208 static int nkpt = NKPT;
209
210 #ifdef PMAP_PAE_COMP
211 pt_entry_t pg_nx;
212 static uma_zone_t pdptzone;
213 #else
214 #define pg_nx 0
215 #endif
216
217 _Static_assert(VM_MAXUSER_ADDRESS == VADDR(TRPTDI, 0), "VM_MAXUSER_ADDRESS");
218 _Static_assert(VM_MAX_KERNEL_ADDRESS <= VADDR(PTDPTDI, 0),
219 "VM_MAX_KERNEL_ADDRESS");
220 _Static_assert(PMAP_MAP_LOW == VADDR(LOWPTDI, 0), "PMAP_MAP_LOW");
221 _Static_assert(KERNLOAD == (KERNPTDI << PDRSHIFT), "KERNLOAD");
222
223 extern int pat_works;
224 extern int pg_ps_enabled;
225
226 extern int elf32_nxstack;
227
228 #define PAT_INDEX_SIZE 8
229 static int pat_index[PAT_INDEX_SIZE]; /* cache mode to PAT index conversion */
230
231 /*
232 * pmap_mapdev support pre initialization (i.e. console)
233 */
234 #define PMAP_PREINIT_MAPPING_COUNT 8
235 static struct pmap_preinit_mapping {
236 vm_paddr_t pa;
237 vm_offset_t va;
238 vm_size_t sz;
239 int mode;
240 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
241 static int pmap_initialized;
242
243 static struct rwlock_padalign pvh_global_lock;
244
245 /*
246 * Data for the pv entry allocation mechanism
247 */
248 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
249 extern int pv_entry_max, pv_entry_count;
250 static int pv_entry_high_water = 0;
251 static struct md_page *pv_table;
252 extern int shpgperproc;
253
254 static struct pv_chunk *pv_chunkbase; /* KVA block for pv_chunks */
255 static int pv_maxchunks; /* How many chunks we have KVA for */
256 static vm_offset_t pv_vafree; /* freelist stored in the PTE */
257
258 /*
259 * All those kernel PT submaps that BSD is so fond of
260 */
261 static pt_entry_t *CMAP3;
262 static pd_entry_t *KPTD;
263 static caddr_t CADDR3;
264
265 /*
266 * Crashdump maps.
267 */
268 static caddr_t crashdumpmap;
269
270 static pt_entry_t *PMAP1 = NULL, *PMAP2, *PMAP3;
271 static pt_entry_t *PADDR1 = NULL, *PADDR2, *PADDR3;
272 #ifdef SMP
273 static int PMAP1cpu, PMAP3cpu;
274 extern int PMAP1changedcpu;
275 #endif
276 extern int PMAP1changed;
277 extern int PMAP1unchanged;
278 static struct mtx PMAP2mutex;
279
280 /*
281 * Internal flags for pmap_enter()'s helper functions.
282 */
283 #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
284 #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
285
286 static void free_pv_chunk(struct pv_chunk *pc);
287 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
288 static pv_entry_t get_pv_entry(pmap_t pmap, bool try);
289 static void pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
290 static bool pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
291 u_int flags);
292 #if VM_NRESERVLEVEL > 0
293 static void pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
294 #endif
295 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
296 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
297 vm_offset_t va);
298 static int pmap_pvh_wired_mappings(struct md_page *pvh, int count);
299
300 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
301 static bool pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
302 static int pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
303 vm_prot_t prot);
304 static int pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
305 u_int flags, vm_page_t m);
306 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
307 vm_page_t m, vm_prot_t prot, vm_page_t mpte);
308 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
309 bool allpte_PG_A_set);
310 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
311 pd_entry_t pde);
312 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
313 static bool pmap_is_modified_pvh(struct md_page *pvh);
314 static bool pmap_is_referenced_pvh(struct md_page *pvh);
315 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
316 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
317 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
318 #if VM_NRESERVLEVEL > 0
319 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
320 vm_page_t mpte);
321 #endif
322 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
323 vm_prot_t prot);
324 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
325 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
326 struct spglist *free);
327 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
328 struct spglist *free);
329 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
330 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free);
331 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
332 struct spglist *free);
333 static void pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va);
334 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
335 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
336 vm_page_t m);
337 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
338 pd_entry_t newpde);
339 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
340
341 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
342
343 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
344 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
345 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
346 static void pmap_pte_release(pt_entry_t *pte);
347 static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
348 #ifdef PMAP_PAE_COMP
349 static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain,
350 uint8_t *flags, int wait);
351 #endif
352 static void pmap_init_trm(void);
353 static void pmap_invalidate_all_int(pmap_t pmap);
354
355 static __inline void pagezero(void *page);
356
357 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
358 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
359
360 extern char _end[];
361 extern u_long physfree; /* phys addr of next free page */
362 extern u_long vm86phystk;/* PA of vm86/bios stack */
363 extern u_long vm86paddr;/* address of vm86 region */
364 extern int vm86pa; /* phys addr of vm86 region */
365 extern u_long KERNend; /* phys addr end of kernel (just after bss) */
366 #ifdef PMAP_PAE_COMP
367 pd_entry_t *IdlePTD_pae; /* phys addr of kernel PTD */
368 pdpt_entry_t *IdlePDPT; /* phys addr of kernel PDPT */
369 pt_entry_t *KPTmap_pae; /* address of kernel page tables */
370 #define IdlePTD IdlePTD_pae
371 #define KPTmap KPTmap_pae
372 #else
373 pd_entry_t *IdlePTD_nopae;
374 pt_entry_t *KPTmap_nopae;
375 #define IdlePTD IdlePTD_nopae
376 #define KPTmap KPTmap_nopae
377 #endif
378 extern u_long KPTphys; /* phys addr of kernel page tables */
379 extern u_long tramp_idleptd;
380
381 static u_long
allocpages(u_int cnt,u_long * physfree)382 allocpages(u_int cnt, u_long *physfree)
383 {
384 u_long res;
385
386 res = *physfree;
387 *physfree += PAGE_SIZE * cnt;
388 bzero((void *)res, PAGE_SIZE * cnt);
389 return (res);
390 }
391
392 static void
pmap_cold_map(u_long pa,u_long va,u_long cnt)393 pmap_cold_map(u_long pa, u_long va, u_long cnt)
394 {
395 pt_entry_t *pt;
396
397 for (pt = (pt_entry_t *)KPTphys + atop(va); cnt > 0;
398 cnt--, pt++, va += PAGE_SIZE, pa += PAGE_SIZE)
399 *pt = pa | PG_V | PG_RW | PG_A | PG_M;
400 }
401
402 static void
pmap_cold_mapident(u_long pa,u_long cnt)403 pmap_cold_mapident(u_long pa, u_long cnt)
404 {
405
406 pmap_cold_map(pa, pa, cnt);
407 }
408
409 _Static_assert(LOWPTDI * 2 * NBPDR == KERNBASE,
410 "Broken double-map of zero PTD");
411
412 static void
__CONCAT(PMTYPE,remap_lower)413 __CONCAT(PMTYPE, remap_lower)(bool enable)
414 {
415 int i;
416
417 for (i = 0; i < LOWPTDI; i++)
418 IdlePTD[i] = enable ? IdlePTD[LOWPTDI + i] : 0;
419 load_cr3(rcr3()); /* invalidate TLB */
420 }
421
422 /*
423 * Called from locore.s before paging is enabled. Sets up the first
424 * kernel page table. Since kernel is mapped with PA == VA, this code
425 * does not require relocations.
426 */
427 void
__CONCAT(PMTYPE,cold)428 __CONCAT(PMTYPE, cold)(void)
429 {
430 pt_entry_t *pt;
431 u_long a;
432 u_int cr3, ncr4;
433
434 physfree = (u_long)&_end;
435 if (bootinfo.bi_esymtab != 0)
436 physfree = bootinfo.bi_esymtab;
437 if (bootinfo.bi_kernend != 0)
438 physfree = bootinfo.bi_kernend;
439 physfree = roundup2(physfree, NBPDR);
440 KERNend = physfree;
441
442 /* Allocate Kernel Page Tables */
443 KPTphys = allocpages(NKPT, &physfree);
444 KPTmap = (pt_entry_t *)KPTphys;
445
446 /* Allocate Page Table Directory */
447 #ifdef PMAP_PAE_COMP
448 /* XXX only need 32 bytes (easier for now) */
449 IdlePDPT = (pdpt_entry_t *)allocpages(1, &physfree);
450 #endif
451 IdlePTD = (pd_entry_t *)allocpages(NPGPTD, &physfree);
452
453 /*
454 * Allocate KSTACK. Leave a guard page between IdlePTD and
455 * proc0kstack, to control stack overflow for thread0 and
456 * prevent corruption of the page table. We leak the guard
457 * physical memory due to 1:1 mappings.
458 */
459 allocpages(1, &physfree);
460 proc0kstack = allocpages(TD0_KSTACK_PAGES, &physfree);
461
462 /* vm86/bios stack */
463 vm86phystk = allocpages(1, &physfree);
464
465 /* pgtable + ext + IOPAGES */
466 vm86paddr = vm86pa = allocpages(3, &physfree);
467
468 /* Install page tables into PTD. Page table page 1 is wasted. */
469 for (a = 0; a < NKPT; a++)
470 IdlePTD[a] = (KPTphys + ptoa(a)) | PG_V | PG_RW | PG_A | PG_M;
471
472 #ifdef PMAP_PAE_COMP
473 /* PAE install PTD pointers into PDPT */
474 for (a = 0; a < NPGPTD; a++)
475 IdlePDPT[a] = ((u_int)IdlePTD + ptoa(a)) | PG_V;
476 #endif
477
478 /*
479 * Install recursive mapping for kernel page tables into
480 * itself.
481 */
482 for (a = 0; a < NPGPTD; a++)
483 IdlePTD[PTDPTDI + a] = ((u_int)IdlePTD + ptoa(a)) | PG_V |
484 PG_RW;
485
486 /*
487 * Initialize page table pages mapping physical address zero
488 * through the (physical) end of the kernel. Many of these
489 * pages must be reserved, and we reserve them all and map
490 * them linearly for convenience. We do this even if we've
491 * enabled PSE above; we'll just switch the corresponding
492 * kernel PDEs before we turn on paging.
493 *
494 * This and all other page table entries allow read and write
495 * access for various reasons. Kernel mappings never have any
496 * access restrictions.
497 */
498 pmap_cold_mapident(0, atop(NBPDR) * LOWPTDI);
499 pmap_cold_map(0, NBPDR * LOWPTDI, atop(NBPDR) * LOWPTDI);
500 pmap_cold_mapident(KERNBASE, atop(KERNend - KERNBASE));
501
502 /* Map page table directory */
503 #ifdef PMAP_PAE_COMP
504 pmap_cold_mapident((u_long)IdlePDPT, 1);
505 #endif
506 pmap_cold_mapident((u_long)IdlePTD, NPGPTD);
507
508 /* Map early KPTmap. It is really pmap_cold_mapident. */
509 pmap_cold_map(KPTphys, (u_long)KPTmap, NKPT);
510
511 /* Map proc0kstack */
512 pmap_cold_mapident(proc0kstack, TD0_KSTACK_PAGES);
513 /* ISA hole already mapped */
514
515 pmap_cold_mapident(vm86phystk, 1);
516 pmap_cold_mapident(vm86pa, 3);
517
518 /* Map page 0 into the vm86 page table */
519 *(pt_entry_t *)vm86pa = 0 | PG_RW | PG_U | PG_A | PG_M | PG_V;
520
521 /* ...likewise for the ISA hole for vm86 */
522 for (pt = (pt_entry_t *)vm86pa + atop(ISA_HOLE_START), a = 0;
523 a < atop(ISA_HOLE_LENGTH); a++, pt++)
524 *pt = (ISA_HOLE_START + ptoa(a)) | PG_RW | PG_U | PG_A |
525 PG_M | PG_V;
526
527 /* Enable PSE, PGE, VME, and PAE if configured. */
528 ncr4 = 0;
529 if ((cpu_feature & CPUID_PSE) != 0) {
530 ncr4 |= CR4_PSE;
531 pseflag = PG_PS;
532 /*
533 * Superpage mapping of the kernel text. Existing 4k
534 * page table pages are wasted.
535 */
536 for (a = KERNBASE; a < KERNend; a += NBPDR)
537 IdlePTD[a >> PDRSHIFT] = a | PG_PS | PG_A | PG_M |
538 PG_RW | PG_V;
539 }
540 if ((cpu_feature & CPUID_PGE) != 0) {
541 ncr4 |= CR4_PGE;
542 pgeflag = PG_G;
543 }
544 ncr4 |= (cpu_feature & CPUID_VME) != 0 ? CR4_VME : 0;
545 #ifdef PMAP_PAE_COMP
546 ncr4 |= CR4_PAE;
547 #endif
548 if (ncr4 != 0)
549 load_cr4(rcr4() | ncr4);
550
551 /* Now enable paging */
552 #ifdef PMAP_PAE_COMP
553 cr3 = (u_int)IdlePDPT;
554 if ((cpu_feature & CPUID_PAT) == 0)
555 wbinvd();
556 #else
557 cr3 = (u_int)IdlePTD;
558 #endif
559 tramp_idleptd = cr3;
560 load_cr3(cr3);
561 load_cr0(rcr0() | CR0_PG);
562
563 /*
564 * Now running relocated at KERNBASE where the system is
565 * linked to run.
566 */
567
568 /*
569 * Remove the lowest part of the double mapping of low memory
570 * to get some null pointer checks.
571 */
572 __CONCAT(PMTYPE, remap_lower)(false);
573
574 kernel_vm_end = /* 0 + */ NKPT * NBPDR;
575 #ifdef PMAP_PAE_COMP
576 i386_pmap_VM_NFREEORDER = VM_NFREEORDER_PAE;
577 i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_PAE;
578 i386_pmap_PDRSHIFT = PDRSHIFT_PAE;
579 #else
580 i386_pmap_VM_NFREEORDER = VM_NFREEORDER_NOPAE;
581 i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_NOPAE;
582 i386_pmap_PDRSHIFT = PDRSHIFT_NOPAE;
583 #endif
584 }
585
586 static void
__CONCAT(PMTYPE,set_nx)587 __CONCAT(PMTYPE, set_nx)(void)
588 {
589
590 #ifdef PMAP_PAE_COMP
591 if ((amd_feature & AMDID_NX) == 0)
592 return;
593 pg_nx = PG_NX;
594 elf32_nxstack = 1;
595 /* EFER.EFER_NXE is set in initializecpu(). */
596 #endif
597 }
598
599 /*
600 * Bootstrap the system enough to run with virtual memory.
601 *
602 * On the i386 this is called after pmap_cold() created initial
603 * kernel page table and enabled paging, and just syncs the pmap
604 * module with what has already been done.
605 */
606 static void
__CONCAT(PMTYPE,bootstrap)607 __CONCAT(PMTYPE, bootstrap)(vm_paddr_t firstaddr)
608 {
609 vm_offset_t va;
610 pt_entry_t *pte, *unused __unused;
611 struct pcpu *pc;
612 u_long res;
613 int i;
614
615 res = atop(firstaddr - (vm_paddr_t)KERNLOAD);
616
617 /*
618 * Initialize the first available kernel virtual address.
619 * However, using "firstaddr" may waste a few pages of the
620 * kernel virtual address space, because pmap_cold() may not
621 * have mapped every physical page that it allocated.
622 * Preferably, pmap_cold() would provide a first unused
623 * virtual address in addition to "firstaddr".
624 */
625 virtual_avail = (vm_offset_t)firstaddr;
626 virtual_end = VM_MAX_KERNEL_ADDRESS;
627
628 /*
629 * Initialize the kernel pmap (which is statically allocated).
630 * Count bootstrap data as being resident in case any of this data is
631 * later unmapped (using pmap_remove()) and freed.
632 */
633 PMAP_LOCK_INIT(kernel_pmap);
634 kernel_pmap->pm_pdir = IdlePTD;
635 #ifdef PMAP_PAE_COMP
636 kernel_pmap->pm_pdpt = IdlePDPT;
637 #endif
638 CPU_FILL(&kernel_pmap->pm_active); /* don't allow deactivation */
639 kernel_pmap->pm_stats.resident_count = res;
640 TAILQ_INIT(&kernel_pmap->pm_pvchunk);
641 vm_radix_init(&kernel_pmap->pm_root);
642
643 /*
644 * Initialize the global pv list lock.
645 */
646 rw_init(&pvh_global_lock, "pmap pv global");
647
648 /*
649 * Reserve some special page table entries/VA space for temporary
650 * mapping of pages.
651 */
652 #define SYSMAP(c, p, v, n) \
653 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
654
655 va = virtual_avail;
656 pte = vtopte(va);
657
658 /*
659 * Initialize temporary map objects on the current CPU for use
660 * during early boot.
661 * CMAP1/CMAP2 are used for zeroing and copying pages.
662 * CMAP3 is used for the boot-time memory test.
663 */
664 pc = get_pcpu();
665 mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
666 SYSMAP(caddr_t, pc->pc_cmap_pte1, pc->pc_cmap_addr1, 1)
667 SYSMAP(caddr_t, pc->pc_cmap_pte2, pc->pc_cmap_addr2, 1)
668 SYSMAP(vm_offset_t, pte, pc->pc_qmap_addr, 1)
669
670 SYSMAP(caddr_t, CMAP3, CADDR3, 1);
671
672 /*
673 * Crashdump maps.
674 */
675 SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
676
677 /*
678 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
679 */
680 SYSMAP(caddr_t, unused, ptvmmap, 1)
681
682 /*
683 * msgbufp is used to map the system message buffer.
684 */
685 SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
686
687 /*
688 * KPTmap is used by pmap_kextract().
689 *
690 * KPTmap is first initialized by pmap_cold(). However, that initial
691 * KPTmap can only support NKPT page table pages. Here, a larger
692 * KPTmap is created that can support KVA_PAGES page table pages.
693 */
694 SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
695
696 for (i = 0; i < NKPT; i++)
697 KPTD[i] = (KPTphys + ptoa(i)) | PG_RW | PG_V;
698
699 /*
700 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
701 * respectively.
702 */
703 SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
704 SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
705 SYSMAP(pt_entry_t *, PMAP3, PADDR3, 1)
706
707 mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
708
709 virtual_avail = va;
710
711 /*
712 * Initialize the PAT MSR if present.
713 * pmap_init_pat() clears and sets CR4_PGE, which, as a
714 * side-effect, invalidates stale PG_G TLB entries that might
715 * have been created in our pre-boot environment. We assume
716 * that PAT support implies PGE and in reverse, PGE presence
717 * comes with PAT. Both features were added for Pentium Pro.
718 */
719 pmap_init_pat();
720 }
721
722 static void
pmap_init_reserved_pages(void)723 pmap_init_reserved_pages(void)
724 {
725 struct pcpu *pc;
726 vm_offset_t pages;
727 int i;
728
729 #ifdef PMAP_PAE_COMP
730 if (!pae_mode)
731 return;
732 #else
733 if (pae_mode)
734 return;
735 #endif
736 CPU_FOREACH(i) {
737 pc = pcpu_find(i);
738 mtx_init(&pc->pc_copyout_mlock, "cpmlk", NULL, MTX_DEF |
739 MTX_NEW);
740 pc->pc_copyout_maddr = kva_alloc(ptoa(2));
741 if (pc->pc_copyout_maddr == 0)
742 panic("unable to allocate non-sleepable copyout KVA");
743 sx_init(&pc->pc_copyout_slock, "cpslk");
744 pc->pc_copyout_saddr = kva_alloc(ptoa(2));
745 if (pc->pc_copyout_saddr == 0)
746 panic("unable to allocate sleepable copyout KVA");
747 pc->pc_pmap_eh_va = kva_alloc(ptoa(1));
748 if (pc->pc_pmap_eh_va == 0)
749 panic("unable to allocate pmap_extract_and_hold KVA");
750 pc->pc_pmap_eh_ptep = (char *)vtopte(pc->pc_pmap_eh_va);
751
752 /*
753 * Skip if the mappings have already been initialized,
754 * i.e. this is the BSP.
755 */
756 if (pc->pc_cmap_addr1 != 0)
757 continue;
758
759 mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
760 pages = kva_alloc(PAGE_SIZE * 3);
761 if (pages == 0)
762 panic("unable to allocate CMAP KVA");
763 pc->pc_cmap_pte1 = vtopte(pages);
764 pc->pc_cmap_pte2 = vtopte(pages + PAGE_SIZE);
765 pc->pc_cmap_addr1 = (caddr_t)pages;
766 pc->pc_cmap_addr2 = (caddr_t)(pages + PAGE_SIZE);
767 pc->pc_qmap_addr = pages + ptoa(2);
768 }
769 }
770
771 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
772
773 /*
774 * Setup the PAT MSR.
775 */
776 static void
__CONCAT(PMTYPE,init_pat)777 __CONCAT(PMTYPE, init_pat)(void)
778 {
779 int pat_table[PAT_INDEX_SIZE];
780 uint64_t pat_msr;
781 u_long cr0, cr4;
782 int i;
783
784 /* Set default PAT index table. */
785 for (i = 0; i < PAT_INDEX_SIZE; i++)
786 pat_table[i] = -1;
787 pat_table[PAT_WRITE_BACK] = 0;
788 pat_table[PAT_WRITE_THROUGH] = 1;
789 pat_table[PAT_UNCACHEABLE] = 3;
790 pat_table[PAT_WRITE_COMBINING] = 3;
791 pat_table[PAT_WRITE_PROTECTED] = 3;
792 pat_table[PAT_UNCACHED] = 3;
793
794 /*
795 * Bail if this CPU doesn't implement PAT.
796 * We assume that PAT support implies PGE.
797 */
798 if ((cpu_feature & CPUID_PAT) == 0) {
799 for (i = 0; i < PAT_INDEX_SIZE; i++)
800 pat_index[i] = pat_table[i];
801 pat_works = 0;
802 return;
803 }
804
805 /*
806 * Due to some Intel errata, we can only safely use the lower 4
807 * PAT entries.
808 *
809 * Intel Pentium III Processor Specification Update
810 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
811 * or Mode C Paging)
812 *
813 * Intel Pentium IV Processor Specification Update
814 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
815 */
816 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
817 !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
818 pat_works = 0;
819
820 /* Initialize default PAT entries. */
821 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
822 PAT_VALUE(1, PAT_WRITE_THROUGH) |
823 PAT_VALUE(2, PAT_UNCACHED) |
824 PAT_VALUE(3, PAT_UNCACHEABLE) |
825 PAT_VALUE(4, PAT_WRITE_BACK) |
826 PAT_VALUE(5, PAT_WRITE_THROUGH) |
827 PAT_VALUE(6, PAT_UNCACHED) |
828 PAT_VALUE(7, PAT_UNCACHEABLE);
829
830 if (pat_works) {
831 /*
832 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
833 * Program 5 and 6 as WP and WC.
834 * Leave 4 and 7 as WB and UC.
835 */
836 pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
837 pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
838 PAT_VALUE(6, PAT_WRITE_COMBINING);
839 pat_table[PAT_UNCACHED] = 2;
840 pat_table[PAT_WRITE_PROTECTED] = 5;
841 pat_table[PAT_WRITE_COMBINING] = 6;
842 } else {
843 /*
844 * Just replace PAT Index 2 with WC instead of UC-.
845 */
846 pat_msr &= ~PAT_MASK(2);
847 pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
848 pat_table[PAT_WRITE_COMBINING] = 2;
849 }
850
851 /* Disable PGE. */
852 cr4 = rcr4();
853 load_cr4(cr4 & ~CR4_PGE);
854
855 /* Disable caches (CD = 1, NW = 0). */
856 cr0 = rcr0();
857 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
858
859 /* Flushes caches and TLBs. */
860 wbinvd();
861 invltlb();
862
863 /* Update PAT and index table. */
864 wrmsr(MSR_PAT, pat_msr);
865 for (i = 0; i < PAT_INDEX_SIZE; i++)
866 pat_index[i] = pat_table[i];
867
868 /* Flush caches and TLBs again. */
869 wbinvd();
870 invltlb();
871
872 /* Restore caches and PGE. */
873 load_cr0(cr0);
874 load_cr4(cr4);
875 }
876
877 #ifdef PMAP_PAE_COMP
878 static void *
pmap_pdpt_allocf(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)879 pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
880 int wait)
881 {
882
883 /* Inform UMA that this allocator uses kernel_map/object. */
884 *flags = UMA_SLAB_KERNEL;
885 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
886 bytes, wait, 0x0ULL, 0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
887 }
888 #endif
889
890 /*
891 * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
892 * Requirements:
893 * - Must deal with pages in order to ensure that none of the PG_* bits
894 * are ever set, PG_V in particular.
895 * - Assumes we can write to ptes without pte_store() atomic ops, even
896 * on PAE systems. This should be ok.
897 * - Assumes nothing will ever test these addresses for 0 to indicate
898 * no mapping instead of correctly checking PG_V.
899 * - Assumes a vm_offset_t will fit in a pte (true for i386).
900 * Because PG_V is never set, there can be no mappings to invalidate.
901 */
902 static vm_offset_t
pmap_ptelist_alloc(vm_offset_t * head)903 pmap_ptelist_alloc(vm_offset_t *head)
904 {
905 pt_entry_t *pte;
906 vm_offset_t va;
907
908 va = *head;
909 if (va == 0)
910 panic("pmap_ptelist_alloc: exhausted ptelist KVA");
911 pte = vtopte(va);
912 *head = *pte;
913 if (*head & PG_V)
914 panic("pmap_ptelist_alloc: va with PG_V set!");
915 *pte = 0;
916 return (va);
917 }
918
919 static void
pmap_ptelist_free(vm_offset_t * head,vm_offset_t va)920 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
921 {
922 pt_entry_t *pte;
923
924 if (va & PG_V)
925 panic("pmap_ptelist_free: freeing va with PG_V set!");
926 pte = vtopte(va);
927 *pte = *head; /* virtual! PG_V is 0 though */
928 *head = va;
929 }
930
931 static void
pmap_ptelist_init(vm_offset_t * head,void * base,int npages)932 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
933 {
934 int i;
935 vm_offset_t va;
936
937 *head = 0;
938 for (i = npages - 1; i >= 0; i--) {
939 va = (vm_offset_t)base + i * PAGE_SIZE;
940 pmap_ptelist_free(head, va);
941 }
942 }
943
944 /*
945 * Initialize the pmap module.
946 *
947 * Called by vm_mem_init(), to initialize any structures that the pmap
948 * system needs to map virtual memory.
949 */
950 static void
__CONCAT(PMTYPE,init)951 __CONCAT(PMTYPE, init)(void)
952 {
953 struct pmap_preinit_mapping *ppim;
954 vm_page_t mpte;
955 vm_size_t s;
956 int i, pv_npg;
957
958 /*
959 * Initialize the vm page array entries for the kernel pmap's
960 * page table pages.
961 */
962 PMAP_LOCK(kernel_pmap);
963 for (i = 0; i < NKPT; i++) {
964 mpte = PHYS_TO_VM_PAGE(KPTphys + ptoa(i));
965 KASSERT(mpte >= vm_page_array &&
966 mpte < &vm_page_array[vm_page_array_size],
967 ("pmap_init: page table page is out of range"));
968 mpte->pindex = i + KPTDI;
969 mpte->phys_addr = KPTphys + ptoa(i);
970 mpte->ref_count = 1;
971
972 /*
973 * Collect the page table pages that were replaced by a 2/4MB
974 * page. They are filled with equivalent 4KB page mappings.
975 */
976 if (pseflag != 0 &&
977 KERNBASE <= i << PDRSHIFT && i << PDRSHIFT < KERNend &&
978 pmap_insert_pt_page(kernel_pmap, mpte, true, true))
979 panic("pmap_init: pmap_insert_pt_page failed");
980 }
981 PMAP_UNLOCK(kernel_pmap);
982 vm_wire_add(NKPT);
983
984 /*
985 * Initialize the address space (zone) for the pv entries. Set a
986 * high water mark so that the system can recover from excessive
987 * numbers of pv entries.
988 */
989 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
990 pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
991 TUNABLE_INT_FETCH("vm.pmap.pv_entry_max", &pv_entry_max);
992 pv_entry_max = roundup(pv_entry_max, _NPCPV);
993 pv_entry_high_water = 9 * (pv_entry_max / 10);
994
995 /*
996 * If the kernel is running on a virtual machine, then it must assume
997 * that MCA is enabled by the hypervisor. Moreover, the kernel must
998 * be prepared for the hypervisor changing the vendor and family that
999 * are reported by CPUID. Consequently, the workaround for AMD Family
1000 * 10h Erratum 383 is enabled if the processor's feature set does not
1001 * include at least one feature that is only supported by older Intel
1002 * or newer AMD processors.
1003 */
1004 if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
1005 (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
1006 CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
1007 AMDID2_FMA4)) == 0)
1008 workaround_erratum383 = 1;
1009
1010 /*
1011 * Are large page mappings supported and enabled?
1012 */
1013 TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
1014 if (pseflag == 0)
1015 pg_ps_enabled = 0;
1016 else if (pg_ps_enabled) {
1017 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1018 ("pmap_init: can't assign to pagesizes[1]"));
1019 pagesizes[1] = NBPDR;
1020 }
1021
1022 /*
1023 * Calculate the size of the pv head table for superpages.
1024 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1025 */
1026 pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
1027 PAGE_SIZE) / NBPDR + 1;
1028
1029 /*
1030 * Allocate memory for the pv head table for superpages.
1031 */
1032 s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1033 s = round_page(s);
1034 pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
1035 for (i = 0; i < pv_npg; i++)
1036 TAILQ_INIT(&pv_table[i].pv_list);
1037
1038 pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1039 pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1040 if (pv_chunkbase == NULL)
1041 panic("pmap_init: not enough kvm for pv chunks");
1042 pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1043 #ifdef PMAP_PAE_COMP
1044 pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
1045 NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
1046 UMA_ZONE_CONTIG | UMA_ZONE_VM | UMA_ZONE_NOFREE);
1047 uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
1048 #endif
1049
1050 pmap_initialized = 1;
1051 pmap_init_trm();
1052
1053 if (!bootverbose)
1054 return;
1055 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
1056 ppim = pmap_preinit_mapping + i;
1057 if (ppim->va == 0)
1058 continue;
1059 printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
1060 (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
1061 }
1062
1063 }
1064
1065 extern u_long pmap_pde_demotions;
1066 extern u_long pmap_pde_mappings;
1067 extern u_long pmap_pde_p_failures;
1068 extern u_long pmap_pde_promotions;
1069
1070 /***************************************************
1071 * Low level helper routines.....
1072 ***************************************************/
1073
1074 static bool
__CONCAT(PMTYPE,is_valid_memattr)1075 __CONCAT(PMTYPE, is_valid_memattr)(pmap_t pmap __unused, vm_memattr_t mode)
1076 {
1077
1078 return (mode >= 0 && mode < PAT_INDEX_SIZE &&
1079 pat_index[(int)mode] >= 0);
1080 }
1081
1082 /*
1083 * Determine the appropriate bits to set in a PTE or PDE for a specified
1084 * caching mode.
1085 */
1086 static int
__CONCAT(PMTYPE,cache_bits)1087 __CONCAT(PMTYPE, cache_bits)(pmap_t pmap, int mode, bool is_pde)
1088 {
1089 int cache_bits, pat_flag, pat_idx;
1090
1091 if (!pmap_is_valid_memattr(pmap, mode))
1092 panic("Unknown caching mode %d\n", mode);
1093
1094 /* The PAT bit is different for PTE's and PDE's. */
1095 pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1096
1097 /* Map the caching mode to a PAT index. */
1098 pat_idx = pat_index[mode];
1099
1100 /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
1101 cache_bits = 0;
1102 if (pat_idx & 0x4)
1103 cache_bits |= pat_flag;
1104 if (pat_idx & 0x2)
1105 cache_bits |= PG_NC_PCD;
1106 if (pat_idx & 0x1)
1107 cache_bits |= PG_NC_PWT;
1108 return (cache_bits);
1109 }
1110
1111 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)1112 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
1113 {
1114 int pat_flag, pat_idx;
1115
1116 if ((cpu_feature & CPUID_PAT) == 0)
1117 return (0);
1118
1119 pat_idx = 0;
1120 /* The PAT bit is different for PTE's and PDE's. */
1121 pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1122
1123 if ((pte & pat_flag) != 0)
1124 pat_idx |= 0x4;
1125 if ((pte & PG_NC_PCD) != 0)
1126 pat_idx |= 0x2;
1127 if ((pte & PG_NC_PWT) != 0)
1128 pat_idx |= 0x1;
1129
1130 /* See pmap_init_pat(). */
1131 if (pat_works) {
1132 if (pat_idx == 4)
1133 pat_idx = 0;
1134 if (pat_idx == 7)
1135 pat_idx = 3;
1136 } else {
1137 /* XXXKIB */
1138 }
1139
1140 return (pat_idx);
1141 }
1142
1143 static bool
__CONCAT(PMTYPE,ps_enabled)1144 __CONCAT(PMTYPE, ps_enabled)(pmap_t pmap __unused)
1145 {
1146
1147 return (pg_ps_enabled);
1148 }
1149
1150 /*
1151 * The caller is responsible for maintaining TLB consistency.
1152 */
1153 static void
pmap_kenter_pde(vm_offset_t va,pd_entry_t newpde)1154 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
1155 {
1156 pd_entry_t *pde;
1157
1158 pde = pmap_pde(kernel_pmap, va);
1159 pde_store(pde, newpde);
1160 }
1161
1162 /*
1163 * After changing the page size for the specified virtual address in the page
1164 * table, flush the corresponding entries from the processor's TLB. Only the
1165 * calling processor's TLB is affected.
1166 *
1167 * The calling thread must be pinned to a processor.
1168 */
1169 static void
pmap_update_pde_invalidate(vm_offset_t va,pd_entry_t newpde)1170 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
1171 {
1172
1173 if ((newpde & PG_PS) == 0)
1174 /* Demotion: flush a specific 2MB page mapping. */
1175 invlpg(va);
1176 else /* if ((newpde & PG_G) == 0) */
1177 /*
1178 * Promotion: flush every 4KB page mapping from the TLB
1179 * because there are too many to flush individually.
1180 */
1181 invltlb();
1182 }
1183
1184 #ifdef SMP
1185
1186 static void
pmap_curcpu_cb_dummy(pmap_t pmap __unused,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)1187 pmap_curcpu_cb_dummy(pmap_t pmap __unused, vm_offset_t addr1 __unused,
1188 vm_offset_t addr2 __unused)
1189 {
1190 }
1191
1192 /*
1193 * For SMP, these functions have to use the IPI mechanism for coherence.
1194 *
1195 * N.B.: Before calling any of the following TLB invalidation functions,
1196 * the calling processor must ensure that all stores updating a non-
1197 * kernel page table are globally performed. Otherwise, another
1198 * processor could cache an old, pre-update entry without being
1199 * invalidated. This can happen one of two ways: (1) The pmap becomes
1200 * active on another processor after its pm_active field is checked by
1201 * one of the following functions but before a store updating the page
1202 * table is globally performed. (2) The pmap becomes active on another
1203 * processor before its pm_active field is checked but due to
1204 * speculative loads one of the following functions stills reads the
1205 * pmap as inactive on the other processor.
1206 *
1207 * The kernel page table is exempt because its pm_active field is
1208 * immutable. The kernel page table is always active on every
1209 * processor.
1210 */
1211 static void
pmap_invalidate_page_int(pmap_t pmap,vm_offset_t va)1212 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1213 {
1214 cpuset_t *mask, other_cpus;
1215 u_int cpuid;
1216
1217 sched_pin();
1218 if (pmap == kernel_pmap) {
1219 invlpg(va);
1220 mask = &all_cpus;
1221 } else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1222 mask = &all_cpus;
1223 } else {
1224 cpuid = PCPU_GET(cpuid);
1225 other_cpus = all_cpus;
1226 CPU_CLR(cpuid, &other_cpus);
1227 CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
1228 mask = &other_cpus;
1229 }
1230 smp_masked_invlpg(*mask, va, pmap, pmap_curcpu_cb_dummy);
1231 sched_unpin();
1232 }
1233
1234 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
1235 #define PMAP_INVLPG_THRESHOLD (4 * 1024 * PAGE_SIZE)
1236
1237 static void
pmap_invalidate_range_int(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)1238 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1239 {
1240 cpuset_t *mask, other_cpus;
1241 vm_offset_t addr;
1242 u_int cpuid;
1243
1244 if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
1245 pmap_invalidate_all_int(pmap);
1246 return;
1247 }
1248
1249 sched_pin();
1250 if (pmap == kernel_pmap) {
1251 for (addr = sva; addr < eva; addr += PAGE_SIZE)
1252 invlpg(addr);
1253 mask = &all_cpus;
1254 } else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1255 mask = &all_cpus;
1256 } else {
1257 cpuid = PCPU_GET(cpuid);
1258 other_cpus = all_cpus;
1259 CPU_CLR(cpuid, &other_cpus);
1260 CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
1261 mask = &other_cpus;
1262 }
1263 smp_masked_invlpg_range(*mask, sva, eva, pmap, pmap_curcpu_cb_dummy);
1264 sched_unpin();
1265 }
1266
1267 static void
pmap_invalidate_all_int(pmap_t pmap)1268 pmap_invalidate_all_int(pmap_t pmap)
1269 {
1270 cpuset_t *mask, other_cpus;
1271 u_int cpuid;
1272
1273 sched_pin();
1274 if (pmap == kernel_pmap) {
1275 invltlb();
1276 mask = &all_cpus;
1277 } else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1278 mask = &all_cpus;
1279 } else {
1280 cpuid = PCPU_GET(cpuid);
1281 other_cpus = all_cpus;
1282 CPU_CLR(cpuid, &other_cpus);
1283 CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
1284 mask = &other_cpus;
1285 }
1286 smp_masked_invltlb(*mask, pmap, pmap_curcpu_cb_dummy);
1287 sched_unpin();
1288 }
1289
1290 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)1291 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,
1292 vm_offset_t addr1 __unused, vm_offset_t addr2 __unused)
1293 {
1294 wbinvd();
1295 }
1296
1297 static void
__CONCAT(PMTYPE,invalidate_cache)1298 __CONCAT(PMTYPE, invalidate_cache)(void)
1299 {
1300 smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
1301 }
1302
1303 struct pde_action {
1304 cpuset_t invalidate; /* processors that invalidate their TLB */
1305 vm_offset_t va;
1306 pd_entry_t *pde;
1307 pd_entry_t newpde;
1308 u_int store; /* processor that updates the PDE */
1309 };
1310
1311 static void
pmap_update_pde_kernel(void * arg)1312 pmap_update_pde_kernel(void *arg)
1313 {
1314 struct pde_action *act = arg;
1315 pd_entry_t *pde;
1316
1317 if (act->store == PCPU_GET(cpuid)) {
1318 pde = pmap_pde(kernel_pmap, act->va);
1319 pde_store(pde, act->newpde);
1320 }
1321 }
1322
1323 static void
pmap_update_pde_user(void * arg)1324 pmap_update_pde_user(void *arg)
1325 {
1326 struct pde_action *act = arg;
1327
1328 if (act->store == PCPU_GET(cpuid))
1329 pde_store(act->pde, act->newpde);
1330 }
1331
1332 static void
pmap_update_pde_teardown(void * arg)1333 pmap_update_pde_teardown(void *arg)
1334 {
1335 struct pde_action *act = arg;
1336
1337 if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1338 pmap_update_pde_invalidate(act->va, act->newpde);
1339 }
1340
1341 /*
1342 * Change the page size for the specified virtual address in a way that
1343 * prevents any possibility of the TLB ever having two entries that map the
1344 * same virtual address using different page sizes. This is the recommended
1345 * workaround for Erratum 383 on AMD Family 10h processors. It prevents a
1346 * machine check exception for a TLB state that is improperly diagnosed as a
1347 * hardware error.
1348 */
1349 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)1350 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1351 {
1352 struct pde_action act;
1353 cpuset_t active, other_cpus;
1354 u_int cpuid;
1355
1356 sched_pin();
1357 cpuid = PCPU_GET(cpuid);
1358 other_cpus = all_cpus;
1359 CPU_CLR(cpuid, &other_cpus);
1360 if (pmap == kernel_pmap)
1361 active = all_cpus;
1362 else
1363 active = pmap->pm_active;
1364 if (CPU_OVERLAP(&active, &other_cpus)) {
1365 act.store = cpuid;
1366 act.invalidate = active;
1367 act.va = va;
1368 act.pde = pde;
1369 act.newpde = newpde;
1370 CPU_SET(cpuid, &active);
1371 smp_rendezvous_cpus(active,
1372 smp_no_rendezvous_barrier, pmap == kernel_pmap ?
1373 pmap_update_pde_kernel : pmap_update_pde_user,
1374 pmap_update_pde_teardown, &act);
1375 } else {
1376 if (pmap == kernel_pmap)
1377 pmap_kenter_pde(va, newpde);
1378 else
1379 pde_store(pde, newpde);
1380 if (CPU_ISSET(cpuid, &active))
1381 pmap_update_pde_invalidate(va, newpde);
1382 }
1383 sched_unpin();
1384 }
1385 #else /* !SMP */
1386 /*
1387 * Normal, non-SMP, 486+ invalidation functions.
1388 * We inline these within pmap.c for speed.
1389 */
1390 static void
pmap_invalidate_page_int(pmap_t pmap,vm_offset_t va)1391 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1392 {
1393
1394 if (pmap == kernel_pmap)
1395 invlpg(va);
1396 }
1397
1398 static void
pmap_invalidate_range_int(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)1399 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1400 {
1401 vm_offset_t addr;
1402
1403 if (pmap == kernel_pmap)
1404 for (addr = sva; addr < eva; addr += PAGE_SIZE)
1405 invlpg(addr);
1406 }
1407
1408 static void
pmap_invalidate_all_int(pmap_t pmap)1409 pmap_invalidate_all_int(pmap_t pmap)
1410 {
1411
1412 if (pmap == kernel_pmap)
1413 invltlb();
1414 }
1415
1416 static void
__CONCAT(PMTYPE,invalidate_cache)1417 __CONCAT(PMTYPE, invalidate_cache)(void)
1418 {
1419
1420 wbinvd();
1421 }
1422
1423 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)1424 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1425 {
1426
1427 if (pmap == kernel_pmap)
1428 pmap_kenter_pde(va, newpde);
1429 else
1430 pde_store(pde, newpde);
1431 if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1432 pmap_update_pde_invalidate(va, newpde);
1433 }
1434 #endif /* !SMP */
1435
1436 static void
__CONCAT(PMTYPE,invalidate_page)1437 __CONCAT(PMTYPE, invalidate_page)(pmap_t pmap, vm_offset_t va)
1438 {
1439
1440 pmap_invalidate_page_int(pmap, va);
1441 }
1442
1443 static void
__CONCAT(PMTYPE,invalidate_range)1444 __CONCAT(PMTYPE, invalidate_range)(pmap_t pmap, vm_offset_t sva,
1445 vm_offset_t eva)
1446 {
1447
1448 pmap_invalidate_range_int(pmap, sva, eva);
1449 }
1450
1451 static void
__CONCAT(PMTYPE,invalidate_all)1452 __CONCAT(PMTYPE, invalidate_all)(pmap_t pmap)
1453 {
1454
1455 pmap_invalidate_all_int(pmap);
1456 }
1457
1458 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)1459 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1460 {
1461
1462 /*
1463 * When the PDE has PG_PROMOTED set, the 2- or 4MB page mapping was
1464 * created by a promotion that did not invalidate the 512 or 1024 4KB
1465 * page mappings that might exist in the TLB. Consequently, at this
1466 * point, the TLB may hold both 4KB and 2- or 4MB page mappings for
1467 * the address range [va, va + NBPDR). Therefore, the entire range
1468 * must be invalidated here. In contrast, when PG_PROMOTED is clear,
1469 * the TLB will not hold any 4KB page mappings for the address range
1470 * [va, va + NBPDR), and so a single INVLPG suffices to invalidate the
1471 * 2- or 4MB page mapping from the TLB.
1472 */
1473 if ((pde & PG_PROMOTED) != 0)
1474 pmap_invalidate_range_int(pmap, va, va + NBPDR - 1);
1475 else
1476 pmap_invalidate_page_int(pmap, va);
1477 }
1478
1479 /*
1480 * Are we current address space or kernel?
1481 */
1482 static __inline int
pmap_is_current(pmap_t pmap)1483 pmap_is_current(pmap_t pmap)
1484 {
1485
1486 return (pmap == kernel_pmap);
1487 }
1488
1489 /*
1490 * If the given pmap is not the current or kernel pmap, the returned pte must
1491 * be released by passing it to pmap_pte_release().
1492 */
1493 static pt_entry_t *
__CONCAT(PMTYPE,pte)1494 __CONCAT(PMTYPE, pte)(pmap_t pmap, vm_offset_t va)
1495 {
1496 pd_entry_t newpf;
1497 pd_entry_t *pde;
1498
1499 pde = pmap_pde(pmap, va);
1500 if (*pde & PG_PS)
1501 return (pde);
1502 if (*pde != 0) {
1503 /* are we current address space or kernel? */
1504 if (pmap_is_current(pmap))
1505 return (vtopte(va));
1506 mtx_lock(&PMAP2mutex);
1507 newpf = *pde & PG_FRAME;
1508 if ((*PMAP2 & PG_FRAME) != newpf) {
1509 *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1510 pmap_invalidate_page_int(kernel_pmap,
1511 (vm_offset_t)PADDR2);
1512 }
1513 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1514 }
1515 return (NULL);
1516 }
1517
1518 /*
1519 * Releases a pte that was obtained from pmap_pte(). Be prepared for the pte
1520 * being NULL.
1521 */
1522 static __inline void
pmap_pte_release(pt_entry_t * pte)1523 pmap_pte_release(pt_entry_t *pte)
1524 {
1525
1526 if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1527 mtx_unlock(&PMAP2mutex);
1528 }
1529
1530 /*
1531 * NB: The sequence of updating a page table followed by accesses to the
1532 * corresponding pages is subject to the situation described in the "AMD64
1533 * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1534 * "7.3.1 Special Coherency Considerations". Therefore, issuing the INVLPG
1535 * right after modifying the PTE bits is crucial.
1536 */
1537 static __inline void
invlcaddr(void * caddr)1538 invlcaddr(void *caddr)
1539 {
1540
1541 invlpg((u_int)caddr);
1542 }
1543
1544 /*
1545 * Super fast pmap_pte routine best used when scanning
1546 * the pv lists. This eliminates many coarse-grained
1547 * invltlb calls. Note that many of the pv list
1548 * scans are across different pmaps. It is very wasteful
1549 * to do an entire invltlb for checking a single mapping.
1550 *
1551 * If the given pmap is not the current pmap, pvh_global_lock
1552 * must be held and curthread pinned to a CPU.
1553 */
1554 static pt_entry_t *
pmap_pte_quick(pmap_t pmap,vm_offset_t va)1555 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1556 {
1557 pd_entry_t newpf;
1558 pd_entry_t *pde;
1559
1560 pde = pmap_pde(pmap, va);
1561 if (*pde & PG_PS)
1562 return (pde);
1563 if (*pde != 0) {
1564 /* are we current address space or kernel? */
1565 if (pmap_is_current(pmap))
1566 return (vtopte(va));
1567 rw_assert(&pvh_global_lock, RA_WLOCKED);
1568 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1569 newpf = *pde & PG_FRAME;
1570 if ((*PMAP1 & PG_FRAME) != newpf) {
1571 *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1572 #ifdef SMP
1573 PMAP1cpu = PCPU_GET(cpuid);
1574 #endif
1575 invlcaddr(PADDR1);
1576 PMAP1changed++;
1577 } else
1578 #ifdef SMP
1579 if (PMAP1cpu != PCPU_GET(cpuid)) {
1580 PMAP1cpu = PCPU_GET(cpuid);
1581 invlcaddr(PADDR1);
1582 PMAP1changedcpu++;
1583 } else
1584 #endif
1585 PMAP1unchanged++;
1586 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1587 }
1588 return (0);
1589 }
1590
1591 static pt_entry_t *
pmap_pte_quick3(pmap_t pmap,vm_offset_t va)1592 pmap_pte_quick3(pmap_t pmap, vm_offset_t va)
1593 {
1594 pd_entry_t newpf;
1595 pd_entry_t *pde;
1596
1597 pde = pmap_pde(pmap, va);
1598 if (*pde & PG_PS)
1599 return (pde);
1600 if (*pde != 0) {
1601 rw_assert(&pvh_global_lock, RA_WLOCKED);
1602 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1603 newpf = *pde & PG_FRAME;
1604 if ((*PMAP3 & PG_FRAME) != newpf) {
1605 *PMAP3 = newpf | PG_RW | PG_V | PG_A | PG_M;
1606 #ifdef SMP
1607 PMAP3cpu = PCPU_GET(cpuid);
1608 #endif
1609 invlcaddr(PADDR3);
1610 PMAP1changed++;
1611 } else
1612 #ifdef SMP
1613 if (PMAP3cpu != PCPU_GET(cpuid)) {
1614 PMAP3cpu = PCPU_GET(cpuid);
1615 invlcaddr(PADDR3);
1616 PMAP1changedcpu++;
1617 } else
1618 #endif
1619 PMAP1unchanged++;
1620 return (PADDR3 + (i386_btop(va) & (NPTEPG - 1)));
1621 }
1622 return (0);
1623 }
1624
1625 static pt_entry_t
pmap_pte_ufast(pmap_t pmap,vm_offset_t va,pd_entry_t pde)1626 pmap_pte_ufast(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1627 {
1628 pt_entry_t *eh_ptep, pte, *ptep;
1629
1630 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1631 pde &= PG_FRAME;
1632 critical_enter();
1633 eh_ptep = (pt_entry_t *)PCPU_GET(pmap_eh_ptep);
1634 if ((*eh_ptep & PG_FRAME) != pde) {
1635 *eh_ptep = pde | PG_RW | PG_V | PG_A | PG_M;
1636 invlcaddr((void *)PCPU_GET(pmap_eh_va));
1637 }
1638 ptep = (pt_entry_t *)PCPU_GET(pmap_eh_va) + (i386_btop(va) &
1639 (NPTEPG - 1));
1640 pte = *ptep;
1641 critical_exit();
1642 return (pte);
1643 }
1644
1645 /*
1646 * Extract from the kernel page table the physical address that is mapped by
1647 * the given virtual address "va".
1648 *
1649 * This function may be used before pmap_bootstrap() is called.
1650 */
1651 static vm_paddr_t
__CONCAT(PMTYPE,kextract)1652 __CONCAT(PMTYPE, kextract)(vm_offset_t va)
1653 {
1654 vm_paddr_t pa;
1655
1656 if ((pa = pte_load(&PTD[va >> PDRSHIFT])) & PG_PS) {
1657 pa = (pa & PG_PS_FRAME) | (va & PDRMASK);
1658 } else {
1659 /*
1660 * Beware of a concurrent promotion that changes the PDE at
1661 * this point! For example, vtopte() must not be used to
1662 * access the PTE because it would use the new PDE. It is,
1663 * however, safe to use the old PDE because the page table
1664 * page is preserved by the promotion.
1665 */
1666 pa = KPTmap[i386_btop(va)];
1667 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1668 }
1669 return (pa);
1670 }
1671
1672 /*
1673 * Routine: pmap_extract
1674 * Function:
1675 * Extract the physical page address associated
1676 * with the given map/virtual_address pair.
1677 */
1678 static vm_paddr_t
__CONCAT(PMTYPE,extract)1679 __CONCAT(PMTYPE, extract)(pmap_t pmap, vm_offset_t va)
1680 {
1681 vm_paddr_t rtval;
1682 pt_entry_t pte;
1683 pd_entry_t pde;
1684
1685 rtval = 0;
1686 PMAP_LOCK(pmap);
1687 pde = pmap->pm_pdir[va >> PDRSHIFT];
1688 if (pde != 0) {
1689 if ((pde & PG_PS) != 0)
1690 rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1691 else {
1692 pte = pmap_pte_ufast(pmap, va, pde);
1693 rtval = (pte & PG_FRAME) | (va & PAGE_MASK);
1694 }
1695 }
1696 PMAP_UNLOCK(pmap);
1697 return (rtval);
1698 }
1699
1700 /*
1701 * Routine: pmap_extract_and_hold
1702 * Function:
1703 * Atomically extract and hold the physical page
1704 * with the given pmap and virtual address pair
1705 * if that mapping permits the given protection.
1706 */
1707 static vm_page_t
__CONCAT(PMTYPE,extract_and_hold)1708 __CONCAT(PMTYPE, extract_and_hold)(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1709 {
1710 pd_entry_t pde;
1711 pt_entry_t pte;
1712 vm_page_t m;
1713
1714 m = NULL;
1715 PMAP_LOCK(pmap);
1716 pde = *pmap_pde(pmap, va);
1717 if (pde != 0) {
1718 if (pde & PG_PS) {
1719 if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0)
1720 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1721 (va & PDRMASK));
1722 } else {
1723 pte = pmap_pte_ufast(pmap, va, pde);
1724 if (pte != 0 &&
1725 ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
1726 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1727 }
1728 if (m != NULL && !vm_page_wire_mapped(m))
1729 m = NULL;
1730 }
1731 PMAP_UNLOCK(pmap);
1732 return (m);
1733 }
1734
1735 /***************************************************
1736 * Low level mapping routines.....
1737 ***************************************************/
1738
1739 /*
1740 * Add a wired page to the kva.
1741 * Note: not SMP coherent.
1742 *
1743 * This function may be used before pmap_bootstrap() is called.
1744 */
1745 static void
__CONCAT(PMTYPE,kenter)1746 __CONCAT(PMTYPE, kenter)(vm_offset_t va, vm_paddr_t pa)
1747 {
1748 pt_entry_t *pte;
1749
1750 pte = vtopte(va);
1751 pte_store(pte, pa | PG_RW | PG_V);
1752 }
1753
1754 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)1755 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1756 {
1757 pt_entry_t *pte;
1758
1759 pte = vtopte(va);
1760 pte_store(pte, pa | PG_RW | PG_V | pmap_cache_bits(kernel_pmap,
1761 mode, false));
1762 }
1763
1764 /*
1765 * Remove a page from the kernel pagetables.
1766 * Note: not SMP coherent.
1767 *
1768 * This function may be used before pmap_bootstrap() is called.
1769 */
1770 static void
__CONCAT(PMTYPE,kremove)1771 __CONCAT(PMTYPE, kremove)(vm_offset_t va)
1772 {
1773 pt_entry_t *pte;
1774
1775 pte = vtopte(va);
1776 pte_clear(pte);
1777 }
1778
1779 /*
1780 * Used to map a range of physical addresses into kernel
1781 * virtual address space.
1782 *
1783 * The value passed in '*virt' is a suggested virtual address for
1784 * the mapping. Architectures which can support a direct-mapped
1785 * physical to virtual region can return the appropriate address
1786 * within that region, leaving '*virt' unchanged. Other
1787 * architectures should map the pages starting at '*virt' and
1788 * update '*virt' with the first usable address after the mapped
1789 * region.
1790 */
1791 static vm_offset_t
__CONCAT(PMTYPE,map)1792 __CONCAT(PMTYPE, map)(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1793 int prot)
1794 {
1795 vm_offset_t va, sva;
1796 vm_paddr_t superpage_offset;
1797 pd_entry_t newpde;
1798
1799 va = *virt;
1800 /*
1801 * Does the physical address range's size and alignment permit at
1802 * least one superpage mapping to be created?
1803 */
1804 superpage_offset = start & PDRMASK;
1805 if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1806 /*
1807 * Increase the starting virtual address so that its alignment
1808 * does not preclude the use of superpage mappings.
1809 */
1810 if ((va & PDRMASK) < superpage_offset)
1811 va = (va & ~PDRMASK) + superpage_offset;
1812 else if ((va & PDRMASK) > superpage_offset)
1813 va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1814 }
1815 sva = va;
1816 while (start < end) {
1817 if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1818 pseflag != 0) {
1819 KASSERT((va & PDRMASK) == 0,
1820 ("pmap_map: misaligned va %#x", va));
1821 newpde = start | PG_PS | PG_RW | PG_V;
1822 pmap_kenter_pde(va, newpde);
1823 va += NBPDR;
1824 start += NBPDR;
1825 } else {
1826 pmap_kenter(va, start);
1827 va += PAGE_SIZE;
1828 start += PAGE_SIZE;
1829 }
1830 }
1831 pmap_invalidate_range_int(kernel_pmap, sva, va);
1832 *virt = va;
1833 return (sva);
1834 }
1835
1836 /*
1837 * Add a list of wired pages to the kva
1838 * this routine is only used for temporary
1839 * kernel mappings that do not need to have
1840 * page modification or references recorded.
1841 * Note that old mappings are simply written
1842 * over. The page *must* be wired.
1843 * Note: SMP coherent. Uses a ranged shootdown IPI.
1844 */
1845 static void
__CONCAT(PMTYPE,qenter)1846 __CONCAT(PMTYPE, qenter)(vm_offset_t sva, vm_page_t *ma, int count)
1847 {
1848 pt_entry_t *endpte, oldpte, pa, *pte;
1849 vm_page_t m;
1850
1851 oldpte = 0;
1852 pte = vtopte(sva);
1853 endpte = pte + count;
1854 while (pte < endpte) {
1855 m = *ma++;
1856 pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(kernel_pmap,
1857 m->md.pat_mode, false);
1858 if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1859 oldpte |= *pte;
1860 pte_store(pte, pa | pg_nx | PG_RW | PG_V);
1861 }
1862 pte++;
1863 }
1864 if (__predict_false((oldpte & PG_V) != 0))
1865 pmap_invalidate_range_int(kernel_pmap, sva, sva + count *
1866 PAGE_SIZE);
1867 }
1868
1869 /*
1870 * This routine tears out page mappings from the
1871 * kernel -- it is meant only for temporary mappings.
1872 * Note: SMP coherent. Uses a ranged shootdown IPI.
1873 */
1874 static void
__CONCAT(PMTYPE,qremove)1875 __CONCAT(PMTYPE, qremove)(vm_offset_t sva, int count)
1876 {
1877 vm_offset_t va;
1878
1879 va = sva;
1880 while (count-- > 0) {
1881 pmap_kremove(va);
1882 va += PAGE_SIZE;
1883 }
1884 pmap_invalidate_range_int(kernel_pmap, sva, va);
1885 }
1886
1887 /***************************************************
1888 * Page table page management routines.....
1889 ***************************************************/
1890 /*
1891 * Schedule the specified unused page table page to be freed. Specifically,
1892 * add the page to the specified list of pages that will be released to the
1893 * physical memory manager after the TLB has been updated.
1894 */
1895 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)1896 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
1897 {
1898
1899 if (set_PG_ZERO)
1900 m->flags |= PG_ZERO;
1901 else
1902 m->flags &= ~PG_ZERO;
1903 SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1904 }
1905
1906 /*
1907 * Inserts the specified page table page into the specified pmap's collection
1908 * of idle page table pages. Each of a pmap's page table pages is responsible
1909 * for mapping a distinct range of virtual addresses. The pmap's collection is
1910 * ordered by this virtual address range.
1911 *
1912 * If "promoted" is false, then the page table page "mpte" must be zero filled;
1913 * "mpte"'s valid field will be set to 0.
1914 *
1915 * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
1916 * contain valid mappings with identical attributes except for PG_A; "mpte"'s
1917 * valid field will be set to 1.
1918 *
1919 * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
1920 * valid mappings with identical attributes including PG_A; "mpte"'s valid
1921 * field will be set to VM_PAGE_BITS_ALL.
1922 */
1923 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)1924 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1925 bool allpte_PG_A_set)
1926 {
1927
1928 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1929 KASSERT(promoted || !allpte_PG_A_set,
1930 ("a zero-filled PTP can't have PG_A set in every PTE"));
1931 mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
1932 return (vm_radix_insert(&pmap->pm_root, mpte));
1933 }
1934
1935 /*
1936 * Removes the page table page mapping the specified virtual address from the
1937 * specified pmap's collection of idle page table pages, and returns it.
1938 * Otherwise, returns NULL if there is no page table page corresponding to the
1939 * specified virtual address.
1940 */
1941 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)1942 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
1943 {
1944
1945 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1946 return (vm_radix_remove(&pmap->pm_root, va >> PDRSHIFT));
1947 }
1948
1949 /*
1950 * Decrements a page table page's reference count, which is used to record the
1951 * number of valid page table entries within the page. If the reference count
1952 * drops to zero, then the page table page is unmapped. Returns true if the
1953 * page table page was unmapped and false otherwise.
1954 */
1955 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_page_t m,struct spglist * free)1956 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1957 {
1958
1959 --m->ref_count;
1960 if (m->ref_count == 0) {
1961 _pmap_unwire_ptp(pmap, m, free);
1962 return (true);
1963 } else
1964 return (false);
1965 }
1966
1967 static void
_pmap_unwire_ptp(pmap_t pmap,vm_page_t m,struct spglist * free)1968 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1969 {
1970
1971 /*
1972 * unmap the page table page
1973 */
1974 pmap->pm_pdir[m->pindex] = 0;
1975 --pmap->pm_stats.resident_count;
1976
1977 /*
1978 * There is not need to invalidate the recursive mapping since
1979 * we never instantiate such mapping for the usermode pmaps,
1980 * and never remove page table pages from the kernel pmap.
1981 * Put page on a list so that it is released since all TLB
1982 * shootdown is done.
1983 */
1984 MPASS(pmap != kernel_pmap);
1985 pmap_add_delayed_free_list(m, free, true);
1986 }
1987
1988 /*
1989 * After removing a page table entry, this routine is used to
1990 * conditionally free the page, and manage the reference count.
1991 */
1992 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,struct spglist * free)1993 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1994 {
1995 pd_entry_t ptepde;
1996 vm_page_t mpte;
1997
1998 if (pmap == kernel_pmap)
1999 return (0);
2000 ptepde = *pmap_pde(pmap, va);
2001 mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
2002 return (pmap_unwire_ptp(pmap, mpte, free));
2003 }
2004
2005 /*
2006 * Release a page table page reference after a failed attempt to create a
2007 * mapping.
2008 */
2009 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)2010 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
2011 {
2012 struct spglist free;
2013
2014 SLIST_INIT(&free);
2015 if (pmap_unwire_ptp(pmap, mpte, &free)) {
2016 /*
2017 * Although "va" was never mapped, paging-structure caches
2018 * could nonetheless have entries that refer to the freed
2019 * page table pages. Invalidate those entries.
2020 */
2021 pmap_invalidate_page_int(pmap, va);
2022 vm_page_free_pages_toq(&free, true);
2023 }
2024 }
2025
2026 /*
2027 * Initialize the pmap for the swapper process.
2028 */
2029 static void
__CONCAT(PMTYPE,pinit0)2030 __CONCAT(PMTYPE, pinit0)(pmap_t pmap)
2031 {
2032
2033 PMAP_LOCK_INIT(pmap);
2034 pmap->pm_pdir = IdlePTD;
2035 #ifdef PMAP_PAE_COMP
2036 pmap->pm_pdpt = IdlePDPT;
2037 #endif
2038 vm_radix_init(&pmap->pm_root);
2039 CPU_ZERO(&pmap->pm_active);
2040 TAILQ_INIT(&pmap->pm_pvchunk);
2041 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2042 pmap_activate_boot(pmap);
2043 }
2044
2045 /*
2046 * Initialize a preallocated and zeroed pmap structure,
2047 * such as one in a vmspace structure.
2048 */
2049 static int
__CONCAT(PMTYPE,pinit)2050 __CONCAT(PMTYPE, pinit)(pmap_t pmap)
2051 {
2052 int i;
2053
2054 /*
2055 * No need to allocate page table space yet but we do need a valid
2056 * page directory table.
2057 */
2058 if (pmap->pm_pdir == NULL) {
2059 pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
2060 if (pmap->pm_pdir == NULL)
2061 return (0);
2062 #ifdef PMAP_PAE_COMP
2063 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
2064 KASSERT(((vm_offset_t)pmap->pm_pdpt &
2065 ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
2066 ("pmap_pinit: pdpt misaligned"));
2067 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
2068 ("pmap_pinit: pdpt above 4g"));
2069 #endif
2070 vm_radix_init(&pmap->pm_root);
2071 }
2072 KASSERT(vm_radix_is_empty(&pmap->pm_root),
2073 ("pmap_pinit: pmap has reserved page table page(s)"));
2074
2075 /*
2076 * allocate the page directory page(s)
2077 */
2078 for (i = 0; i < NPGPTD; i++) {
2079 pmap->pm_ptdpg[i] = vm_page_alloc_noobj(VM_ALLOC_WIRED |
2080 VM_ALLOC_ZERO | VM_ALLOC_WAITOK);
2081 #ifdef PMAP_PAE_COMP
2082 pmap->pm_pdpt[i] = VM_PAGE_TO_PHYS(pmap->pm_ptdpg[i]) | PG_V;
2083 #endif
2084 }
2085
2086 pmap_qenter((vm_offset_t)pmap->pm_pdir, pmap->pm_ptdpg, NPGPTD);
2087 #ifdef PMAP_PAE_COMP
2088 if ((cpu_feature & CPUID_PAT) == 0) {
2089 pmap_invalidate_cache_range(
2090 trunc_page((vm_offset_t)pmap->pm_pdpt),
2091 round_page((vm_offset_t)pmap->pm_pdpt +
2092 NPGPTD * sizeof(pdpt_entry_t)));
2093 }
2094 #endif
2095
2096 /* Install the trampoline mapping. */
2097 pmap->pm_pdir[TRPTDI] = PTD[TRPTDI];
2098
2099 CPU_ZERO(&pmap->pm_active);
2100 TAILQ_INIT(&pmap->pm_pvchunk);
2101 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2102
2103 return (1);
2104 }
2105
2106 /*
2107 * this routine is called if the page table page is not
2108 * mapped correctly.
2109 */
2110 static vm_page_t
_pmap_allocpte(pmap_t pmap,u_int ptepindex,u_int flags)2111 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
2112 {
2113 vm_paddr_t ptepa;
2114 vm_page_t m;
2115
2116 /*
2117 * Allocate a page table page.
2118 */
2119 if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2120 if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2121 PMAP_UNLOCK(pmap);
2122 rw_wunlock(&pvh_global_lock);
2123 vm_wait(NULL);
2124 rw_wlock(&pvh_global_lock);
2125 PMAP_LOCK(pmap);
2126 }
2127
2128 /*
2129 * Indicate the need to retry. While waiting, the page table
2130 * page may have been allocated.
2131 */
2132 return (NULL);
2133 }
2134 m->pindex = ptepindex;
2135
2136 /*
2137 * Map the pagetable page into the process address space, if
2138 * it isn't already there.
2139 */
2140
2141 pmap->pm_stats.resident_count++;
2142
2143 ptepa = VM_PAGE_TO_PHYS(m);
2144 KASSERT((pmap->pm_pdir[ptepindex] & PG_V) == 0,
2145 ("%s: page directory entry %#jx is valid",
2146 __func__, (uintmax_t)pmap->pm_pdir[ptepindex]));
2147 pmap->pm_pdir[ptepindex] =
2148 (pd_entry_t)(ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
2149
2150 return (m);
2151 }
2152
2153 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,u_int flags)2154 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
2155 {
2156 u_int ptepindex;
2157 pd_entry_t ptepa;
2158 vm_page_t m;
2159
2160 /*
2161 * Calculate pagetable page index
2162 */
2163 ptepindex = va >> PDRSHIFT;
2164 retry:
2165 /*
2166 * Get the page directory entry
2167 */
2168 ptepa = pmap->pm_pdir[ptepindex];
2169
2170 /*
2171 * This supports switching from a 4MB page to a
2172 * normal 4K page.
2173 */
2174 if (ptepa & PG_PS) {
2175 (void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
2176 ptepa = pmap->pm_pdir[ptepindex];
2177 }
2178
2179 /*
2180 * If the page table page is mapped, we just increment the
2181 * hold count, and activate it.
2182 */
2183 if (ptepa) {
2184 m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
2185 m->ref_count++;
2186 } else {
2187 /*
2188 * Here if the pte page isn't mapped, or if it has
2189 * been deallocated.
2190 */
2191 m = _pmap_allocpte(pmap, ptepindex, flags);
2192 if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2193 goto retry;
2194 }
2195 return (m);
2196 }
2197
2198 /***************************************************
2199 * Pmap allocation/deallocation routines.
2200 ***************************************************/
2201
2202 /*
2203 * Release any resources held by the given physical map.
2204 * Called when a pmap initialized by pmap_pinit is being released.
2205 * Should only be called if the map contains no valid mappings.
2206 */
2207 static void
__CONCAT(PMTYPE,release)2208 __CONCAT(PMTYPE, release)(pmap_t pmap)
2209 {
2210 vm_page_t m;
2211 int i;
2212
2213 KASSERT(pmap->pm_stats.resident_count == 0,
2214 ("pmap_release: pmap resident count %ld != 0",
2215 pmap->pm_stats.resident_count));
2216 KASSERT(vm_radix_is_empty(&pmap->pm_root),
2217 ("pmap_release: pmap has reserved page table page(s)"));
2218 KASSERT(CPU_EMPTY(&pmap->pm_active),
2219 ("releasing active pmap %p", pmap));
2220
2221 pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2222
2223 for (i = 0; i < NPGPTD; i++) {
2224 m = pmap->pm_ptdpg[i];
2225 #ifdef PMAP_PAE_COMP
2226 KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2227 ("pmap_release: got wrong ptd page"));
2228 #endif
2229 vm_page_unwire_noq(m);
2230 vm_page_free(m);
2231 }
2232 }
2233
2234 /*
2235 * grow the number of kernel page table entries, if needed
2236 */
2237 static int
__CONCAT(PMTYPE,growkernel)2238 __CONCAT(PMTYPE, growkernel)(vm_offset_t addr)
2239 {
2240 vm_paddr_t ptppaddr;
2241 vm_page_t nkpg;
2242 pd_entry_t newpdir;
2243
2244 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2245 addr = roundup2(addr, NBPDR);
2246 if (addr - 1 >= vm_map_max(kernel_map))
2247 addr = vm_map_max(kernel_map);
2248 while (kernel_vm_end < addr) {
2249 if (pdir_pde(PTD, kernel_vm_end)) {
2250 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2251 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2252 kernel_vm_end = vm_map_max(kernel_map);
2253 break;
2254 }
2255 continue;
2256 }
2257
2258 nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
2259 VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2260 if (nkpg == NULL)
2261 return (KERN_RESOURCE_SHORTAGE);
2262 nkpg->pindex = kernel_vm_end >> PDRSHIFT;
2263 nkpt++;
2264
2265 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2266 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2267 pdir_pde(KPTD, kernel_vm_end) = newpdir;
2268
2269 pmap_kenter_pde(kernel_vm_end, newpdir);
2270 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2271 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2272 kernel_vm_end = vm_map_max(kernel_map);
2273 break;
2274 }
2275 }
2276
2277 return (KERN_SUCCESS);
2278 }
2279
2280 /***************************************************
2281 * page management routines.
2282 ***************************************************/
2283
2284 static const uint32_t pc_freemask[_NPCM] = {
2285 [0 ... _NPCM - 2] = PC_FREEN,
2286 [_NPCM - 1] = PC_FREEL
2287 };
2288
2289 #ifdef PV_STATS
2290 extern int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2291 extern long pv_entry_frees, pv_entry_allocs;
2292 extern int pv_entry_spare;
2293 #endif
2294
2295 /*
2296 * We are in a serious low memory condition. Resort to
2297 * drastic measures to free some pages so we can allocate
2298 * another pv entry chunk.
2299 */
2300 static vm_page_t
pmap_pv_reclaim(pmap_t locked_pmap)2301 pmap_pv_reclaim(pmap_t locked_pmap)
2302 {
2303 struct pch newtail;
2304 struct pv_chunk *pc;
2305 struct md_page *pvh;
2306 pd_entry_t *pde;
2307 pmap_t pmap;
2308 pt_entry_t *pte, tpte;
2309 pv_entry_t pv;
2310 vm_offset_t va;
2311 vm_page_t m, m_pc;
2312 struct spglist free;
2313 uint32_t inuse;
2314 int bit, field, freed;
2315
2316 PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2317 pmap = NULL;
2318 m_pc = NULL;
2319 SLIST_INIT(&free);
2320 TAILQ_INIT(&newtail);
2321 while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2322 SLIST_EMPTY(&free))) {
2323 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2324 if (pmap != pc->pc_pmap) {
2325 if (pmap != NULL) {
2326 pmap_invalidate_all_int(pmap);
2327 if (pmap != locked_pmap)
2328 PMAP_UNLOCK(pmap);
2329 }
2330 pmap = pc->pc_pmap;
2331 /* Avoid deadlock and lock recursion. */
2332 if (pmap > locked_pmap)
2333 PMAP_LOCK(pmap);
2334 else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2335 pmap = NULL;
2336 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2337 continue;
2338 }
2339 }
2340
2341 /*
2342 * Destroy every non-wired, 4 KB page mapping in the chunk.
2343 */
2344 freed = 0;
2345 for (field = 0; field < _NPCM; field++) {
2346 for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2347 inuse != 0; inuse &= ~(1UL << bit)) {
2348 bit = bsfl(inuse);
2349 pv = &pc->pc_pventry[field * 32 + bit];
2350 va = pv->pv_va;
2351 pde = pmap_pde(pmap, va);
2352 if ((*pde & PG_PS) != 0)
2353 continue;
2354 pte = __CONCAT(PMTYPE, pte)(pmap, va);
2355 tpte = *pte;
2356 if ((tpte & PG_W) == 0)
2357 tpte = pte_load_clear(pte);
2358 pmap_pte_release(pte);
2359 if ((tpte & PG_W) != 0)
2360 continue;
2361 KASSERT(tpte != 0,
2362 ("pmap_pv_reclaim: pmap %p va %x zero pte",
2363 pmap, va));
2364 if ((tpte & PG_G) != 0)
2365 pmap_invalidate_page_int(pmap, va);
2366 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2367 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2368 vm_page_dirty(m);
2369 if ((tpte & PG_A) != 0)
2370 vm_page_aflag_set(m, PGA_REFERENCED);
2371 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2372 if (TAILQ_EMPTY(&m->md.pv_list) &&
2373 (m->flags & PG_FICTITIOUS) == 0) {
2374 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2375 if (TAILQ_EMPTY(&pvh->pv_list)) {
2376 vm_page_aflag_clear(m,
2377 PGA_WRITEABLE);
2378 }
2379 }
2380 pc->pc_map[field] |= 1UL << bit;
2381 pmap_unuse_pt(pmap, va, &free);
2382 freed++;
2383 }
2384 }
2385 if (freed == 0) {
2386 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2387 continue;
2388 }
2389 /* Every freed mapping is for a 4 KB page. */
2390 pmap->pm_stats.resident_count -= freed;
2391 PV_STAT(pv_entry_frees += freed);
2392 PV_STAT(pv_entry_spare += freed);
2393 pv_entry_count -= freed;
2394 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2395 for (field = 0; field < _NPCM; field++)
2396 if (pc->pc_map[field] != pc_freemask[field]) {
2397 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2398 pc_list);
2399 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2400
2401 /*
2402 * One freed pv entry in locked_pmap is
2403 * sufficient.
2404 */
2405 if (pmap == locked_pmap)
2406 goto out;
2407 break;
2408 }
2409 if (field == _NPCM) {
2410 PV_STAT(pv_entry_spare -= _NPCPV);
2411 PV_STAT(pc_chunk_count--);
2412 PV_STAT(pc_chunk_frees++);
2413 /* Entire chunk is free; return it. */
2414 m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2415 pmap_qremove((vm_offset_t)pc, 1);
2416 pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2417 break;
2418 }
2419 }
2420 out:
2421 TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2422 if (pmap != NULL) {
2423 pmap_invalidate_all_int(pmap);
2424 if (pmap != locked_pmap)
2425 PMAP_UNLOCK(pmap);
2426 }
2427 if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2428 m_pc = SLIST_FIRST(&free);
2429 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2430 /* Recycle a freed page table page. */
2431 m_pc->ref_count = 1;
2432 }
2433 vm_page_free_pages_toq(&free, true);
2434 return (m_pc);
2435 }
2436
2437 /*
2438 * free the pv_entry back to the free list
2439 */
2440 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)2441 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2442 {
2443 struct pv_chunk *pc;
2444 int idx, field, bit;
2445
2446 rw_assert(&pvh_global_lock, RA_WLOCKED);
2447 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2448 PV_STAT(pv_entry_frees++);
2449 PV_STAT(pv_entry_spare++);
2450 pv_entry_count--;
2451 pc = pv_to_chunk(pv);
2452 idx = pv - &pc->pc_pventry[0];
2453 field = idx / 32;
2454 bit = idx % 32;
2455 pc->pc_map[field] |= 1ul << bit;
2456 for (idx = 0; idx < _NPCM; idx++)
2457 if (pc->pc_map[idx] != pc_freemask[idx]) {
2458 /*
2459 * 98% of the time, pc is already at the head of the
2460 * list. If it isn't already, move it to the head.
2461 */
2462 if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2463 pc)) {
2464 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2465 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2466 pc_list);
2467 }
2468 return;
2469 }
2470 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2471 free_pv_chunk(pc);
2472 }
2473
2474 static void
free_pv_chunk(struct pv_chunk * pc)2475 free_pv_chunk(struct pv_chunk *pc)
2476 {
2477 vm_page_t m;
2478
2479 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2480 PV_STAT(pv_entry_spare -= _NPCPV);
2481 PV_STAT(pc_chunk_count--);
2482 PV_STAT(pc_chunk_frees++);
2483 /* entire chunk is free, return it */
2484 m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2485 pmap_qremove((vm_offset_t)pc, 1);
2486 vm_page_unwire_noq(m);
2487 vm_page_free(m);
2488 pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2489 }
2490
2491 /*
2492 * get a new pv_entry, allocating a block from the system
2493 * when needed.
2494 */
2495 static pv_entry_t
get_pv_entry(pmap_t pmap,bool try)2496 get_pv_entry(pmap_t pmap, bool try)
2497 {
2498 static const struct timeval printinterval = { 60, 0 };
2499 static struct timeval lastprint;
2500 int bit, field;
2501 pv_entry_t pv;
2502 struct pv_chunk *pc;
2503 vm_page_t m;
2504
2505 rw_assert(&pvh_global_lock, RA_WLOCKED);
2506 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2507 PV_STAT(pv_entry_allocs++);
2508 pv_entry_count++;
2509 if (pv_entry_count > pv_entry_high_water)
2510 if (ratecheck(&lastprint, &printinterval))
2511 printf("Approaching the limit on PV entries, consider "
2512 "increasing either the vm.pmap.shpgperproc or the "
2513 "vm.pmap.pv_entry_max tunable.\n");
2514 retry:
2515 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2516 if (pc != NULL) {
2517 for (field = 0; field < _NPCM; field++) {
2518 if (pc->pc_map[field]) {
2519 bit = bsfl(pc->pc_map[field]);
2520 break;
2521 }
2522 }
2523 if (field < _NPCM) {
2524 pv = &pc->pc_pventry[field * 32 + bit];
2525 pc->pc_map[field] &= ~(1ul << bit);
2526 /* If this was the last item, move it to tail */
2527 for (field = 0; field < _NPCM; field++)
2528 if (pc->pc_map[field] != 0) {
2529 PV_STAT(pv_entry_spare--);
2530 return (pv); /* not full, return */
2531 }
2532 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2533 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2534 PV_STAT(pv_entry_spare--);
2535 return (pv);
2536 }
2537 }
2538 /*
2539 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2540 * global lock. If "pv_vafree" is currently non-empty, it will
2541 * remain non-empty until pmap_ptelist_alloc() completes.
2542 */
2543 if (pv_vafree == 0 ||
2544 (m = vm_page_alloc_noobj(VM_ALLOC_WIRED)) == NULL) {
2545 if (try) {
2546 pv_entry_count--;
2547 PV_STAT(pc_chunk_tryfail++);
2548 return (NULL);
2549 }
2550 m = pmap_pv_reclaim(pmap);
2551 if (m == NULL)
2552 goto retry;
2553 }
2554 PV_STAT(pc_chunk_count++);
2555 PV_STAT(pc_chunk_allocs++);
2556 pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2557 pmap_qenter((vm_offset_t)pc, &m, 1);
2558 pc->pc_pmap = pmap;
2559 pc->pc_map[0] = pc_freemask[0] & ~1ul; /* preallocated bit 0 */
2560 for (field = 1; field < _NPCM; field++)
2561 pc->pc_map[field] = pc_freemask[field];
2562 TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2563 pv = &pc->pc_pventry[0];
2564 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2565 PV_STAT(pv_entry_spare += _NPCPV - 1);
2566 return (pv);
2567 }
2568
2569 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)2570 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2571 {
2572 pv_entry_t pv;
2573
2574 rw_assert(&pvh_global_lock, RA_WLOCKED);
2575 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2576 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2577 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2578 break;
2579 }
2580 }
2581 return (pv);
2582 }
2583
2584 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa)2585 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2586 {
2587 struct md_page *pvh;
2588 pv_entry_t pv;
2589 vm_offset_t va_last;
2590 vm_page_t m;
2591
2592 rw_assert(&pvh_global_lock, RA_WLOCKED);
2593 KASSERT((pa & PDRMASK) == 0,
2594 ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2595
2596 /*
2597 * Transfer the 4mpage's pv entry for this mapping to the first
2598 * page's pv list.
2599 */
2600 pvh = pa_to_pvh(pa);
2601 va = trunc_4mpage(va);
2602 pv = pmap_pvh_remove(pvh, pmap, va);
2603 KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2604 m = PHYS_TO_VM_PAGE(pa);
2605 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2606 /* Instantiate the remaining NPTEPG - 1 pv entries. */
2607 va_last = va + NBPDR - PAGE_SIZE;
2608 do {
2609 m++;
2610 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2611 ("pmap_pv_demote_pde: page %p is not managed", m));
2612 va += PAGE_SIZE;
2613 pmap_insert_entry(pmap, va, m);
2614 } while (va < va_last);
2615 }
2616
2617 #if VM_NRESERVLEVEL > 0
2618 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa)2619 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2620 {
2621 struct md_page *pvh;
2622 pv_entry_t pv;
2623 vm_offset_t va_last;
2624 vm_page_t m;
2625
2626 rw_assert(&pvh_global_lock, RA_WLOCKED);
2627 KASSERT((pa & PDRMASK) == 0,
2628 ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2629
2630 /*
2631 * Transfer the first page's pv entry for this mapping to the
2632 * 4mpage's pv list. Aside from avoiding the cost of a call
2633 * to get_pv_entry(), a transfer avoids the possibility that
2634 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2635 * removes one of the mappings that is being promoted.
2636 */
2637 m = PHYS_TO_VM_PAGE(pa);
2638 va = trunc_4mpage(va);
2639 pv = pmap_pvh_remove(&m->md, pmap, va);
2640 KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2641 pvh = pa_to_pvh(pa);
2642 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2643 /* Free the remaining NPTEPG - 1 pv entries. */
2644 va_last = va + NBPDR - PAGE_SIZE;
2645 do {
2646 m++;
2647 va += PAGE_SIZE;
2648 pmap_pvh_free(&m->md, pmap, va);
2649 } while (va < va_last);
2650 }
2651 #endif /* VM_NRESERVLEVEL > 0 */
2652
2653 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)2654 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2655 {
2656 pv_entry_t pv;
2657
2658 pv = pmap_pvh_remove(pvh, pmap, va);
2659 KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2660 free_pv_entry(pmap, pv);
2661 }
2662
2663 static void
pmap_remove_entry(pmap_t pmap,vm_page_t m,vm_offset_t va)2664 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2665 {
2666 struct md_page *pvh;
2667
2668 rw_assert(&pvh_global_lock, RA_WLOCKED);
2669 pmap_pvh_free(&m->md, pmap, va);
2670 if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2671 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2672 if (TAILQ_EMPTY(&pvh->pv_list))
2673 vm_page_aflag_clear(m, PGA_WRITEABLE);
2674 }
2675 }
2676
2677 /*
2678 * Create a pv entry for page at pa for
2679 * (pmap, va).
2680 */
2681 static void
pmap_insert_entry(pmap_t pmap,vm_offset_t va,vm_page_t m)2682 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2683 {
2684 pv_entry_t pv;
2685
2686 rw_assert(&pvh_global_lock, RA_WLOCKED);
2687 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2688 pv = get_pv_entry(pmap, false);
2689 pv->pv_va = va;
2690 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2691 }
2692
2693 /*
2694 * Conditionally create a pv entry.
2695 */
2696 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m)2697 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2698 {
2699 pv_entry_t pv;
2700
2701 rw_assert(&pvh_global_lock, RA_WLOCKED);
2702 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2703 if (pv_entry_count < pv_entry_high_water &&
2704 (pv = get_pv_entry(pmap, true)) != NULL) {
2705 pv->pv_va = va;
2706 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2707 return (true);
2708 } else
2709 return (false);
2710 }
2711
2712 /*
2713 * Create the pv entries for each of the pages within a superpage.
2714 */
2715 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags)2716 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags)
2717 {
2718 struct md_page *pvh;
2719 pv_entry_t pv;
2720 bool noreclaim;
2721
2722 rw_assert(&pvh_global_lock, RA_WLOCKED);
2723 noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
2724 if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
2725 (pv = get_pv_entry(pmap, noreclaim)) == NULL)
2726 return (false);
2727 pv->pv_va = va;
2728 pvh = pa_to_pvh(pde & PG_PS_FRAME);
2729 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2730 return (true);
2731 }
2732
2733 /*
2734 * Fills a page table page with mappings to consecutive physical pages.
2735 */
2736 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)2737 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2738 {
2739 pt_entry_t *pte;
2740
2741 for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2742 *pte = newpte;
2743 newpte += PAGE_SIZE;
2744 }
2745 }
2746
2747 /*
2748 * Tries to demote a 2- or 4MB page mapping. If demotion fails, the
2749 * 2- or 4MB page mapping is invalidated.
2750 */
2751 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)2752 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2753 {
2754 pd_entry_t newpde, oldpde;
2755 pt_entry_t *firstpte, newpte;
2756 vm_paddr_t mptepa;
2757 vm_page_t mpte;
2758 struct spglist free;
2759 vm_offset_t sva;
2760
2761 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2762 oldpde = *pde;
2763 KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2764 ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2765 if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
2766 NULL) {
2767 KASSERT((oldpde & PG_W) == 0,
2768 ("pmap_demote_pde: page table page for a wired mapping"
2769 " is missing"));
2770
2771 /*
2772 * Invalidate the 2- or 4MB page mapping and return
2773 * "failure" if the mapping was never accessed or the
2774 * allocation of the new page table page fails.
2775 */
2776 if ((oldpde & PG_A) == 0 ||
2777 (mpte = vm_page_alloc_noobj(VM_ALLOC_WIRED)) == NULL) {
2778 SLIST_INIT(&free);
2779 sva = trunc_4mpage(va);
2780 pmap_remove_pde(pmap, pde, sva, &free);
2781 if ((oldpde & PG_G) == 0)
2782 pmap_invalidate_pde_page(pmap, sva, oldpde);
2783 vm_page_free_pages_toq(&free, true);
2784 CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2785 " in pmap %p", va, pmap);
2786 return (false);
2787 }
2788 mpte->pindex = va >> PDRSHIFT;
2789 if (pmap != kernel_pmap) {
2790 mpte->ref_count = NPTEPG;
2791 pmap->pm_stats.resident_count++;
2792 }
2793 }
2794 mptepa = VM_PAGE_TO_PHYS(mpte);
2795
2796 /*
2797 * If the page mapping is in the kernel's address space, then the
2798 * KPTmap can provide access to the page table page. Otherwise,
2799 * temporarily map the page table page (mpte) into the kernel's
2800 * address space at either PADDR1 or PADDR2.
2801 */
2802 if (pmap == kernel_pmap)
2803 firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2804 else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2805 if ((*PMAP1 & PG_FRAME) != mptepa) {
2806 *PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2807 #ifdef SMP
2808 PMAP1cpu = PCPU_GET(cpuid);
2809 #endif
2810 invlcaddr(PADDR1);
2811 PMAP1changed++;
2812 } else
2813 #ifdef SMP
2814 if (PMAP1cpu != PCPU_GET(cpuid)) {
2815 PMAP1cpu = PCPU_GET(cpuid);
2816 invlcaddr(PADDR1);
2817 PMAP1changedcpu++;
2818 } else
2819 #endif
2820 PMAP1unchanged++;
2821 firstpte = PADDR1;
2822 } else {
2823 mtx_lock(&PMAP2mutex);
2824 if ((*PMAP2 & PG_FRAME) != mptepa) {
2825 *PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2826 pmap_invalidate_page_int(kernel_pmap,
2827 (vm_offset_t)PADDR2);
2828 }
2829 firstpte = PADDR2;
2830 }
2831 newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2832 KASSERT((oldpde & PG_A) != 0,
2833 ("pmap_demote_pde: oldpde is missing PG_A"));
2834 KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2835 ("pmap_demote_pde: oldpde is missing PG_M"));
2836 newpte = oldpde & ~PG_PS;
2837 if ((newpte & PG_PDE_PAT) != 0)
2838 newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2839
2840 /*
2841 * If the PTP is not leftover from an earlier promotion or it does not
2842 * have PG_A set in every PTE, then fill it. The new PTEs will all
2843 * have PG_A set.
2844 */
2845 if (!vm_page_all_valid(mpte))
2846 pmap_fill_ptp(firstpte, newpte);
2847
2848 KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2849 ("pmap_demote_pde: firstpte and newpte map different physical"
2850 " addresses"));
2851
2852 /*
2853 * If the mapping has changed attributes, update the PTEs.
2854 */
2855 if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2856 pmap_fill_ptp(firstpte, newpte);
2857
2858 /*
2859 * Demote the mapping. This pmap is locked. The old PDE has
2860 * PG_A set. If the old PDE has PG_RW set, it also has PG_M
2861 * set. Thus, there is no danger of a race with another
2862 * processor changing the setting of PG_A and/or PG_M between
2863 * the read above and the store below.
2864 */
2865 if (workaround_erratum383)
2866 pmap_update_pde(pmap, va, pde, newpde);
2867 else if (pmap == kernel_pmap)
2868 pmap_kenter_pde(va, newpde);
2869 else
2870 pde_store(pde, newpde);
2871 if (firstpte == PADDR2)
2872 mtx_unlock(&PMAP2mutex);
2873
2874 /*
2875 * Invalidate the recursive mapping of the page table page.
2876 */
2877 pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2878
2879 /*
2880 * Demote the pv entry. This depends on the earlier demotion
2881 * of the mapping. Specifically, the (re)creation of a per-
2882 * page pv entry might trigger the execution of pmap_collect(),
2883 * which might reclaim a newly (re)created per-page pv entry
2884 * and destroy the associated mapping. In order to destroy
2885 * the mapping, the PDE must have already changed from mapping
2886 * the 2mpage to referencing the page table page.
2887 */
2888 if ((oldpde & PG_MANAGED) != 0)
2889 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2890
2891 pmap_pde_demotions++;
2892 CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2893 " in pmap %p", va, pmap);
2894 return (true);
2895 }
2896
2897 /*
2898 * Removes a 2- or 4MB page mapping from the kernel pmap.
2899 */
2900 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)2901 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2902 {
2903 pd_entry_t newpde;
2904 vm_paddr_t mptepa;
2905 vm_page_t mpte;
2906
2907 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2908 mpte = pmap_remove_pt_page(pmap, va);
2909 if (mpte == NULL)
2910 panic("pmap_remove_kernel_pde: Missing pt page.");
2911
2912 mptepa = VM_PAGE_TO_PHYS(mpte);
2913 newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2914
2915 /*
2916 * If this page table page was unmapped by a promotion, then it
2917 * contains valid mappings. Zero it to invalidate those mappings.
2918 */
2919 if (vm_page_any_valid(mpte))
2920 pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2921
2922 /*
2923 * Remove the mapping.
2924 */
2925 if (workaround_erratum383)
2926 pmap_update_pde(pmap, va, pde, newpde);
2927 else
2928 pmap_kenter_pde(va, newpde);
2929
2930 /*
2931 * Invalidate the recursive mapping of the page table page.
2932 */
2933 pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2934 }
2935
2936 /*
2937 * pmap_remove_pde: do the things to unmap a superpage in a process
2938 */
2939 static void
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free)2940 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2941 struct spglist *free)
2942 {
2943 struct md_page *pvh;
2944 pd_entry_t oldpde;
2945 vm_offset_t eva, va;
2946 vm_page_t m, mpte;
2947
2948 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2949 KASSERT((sva & PDRMASK) == 0,
2950 ("pmap_remove_pde: sva is not 4mpage aligned"));
2951 oldpde = pte_load_clear(pdq);
2952 if (oldpde & PG_W)
2953 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2954
2955 /*
2956 * Machines that don't support invlpg, also don't support
2957 * PG_G.
2958 */
2959 if ((oldpde & PG_G) != 0)
2960 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
2961
2962 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2963 if (oldpde & PG_MANAGED) {
2964 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2965 pmap_pvh_free(pvh, pmap, sva);
2966 eva = sva + NBPDR;
2967 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2968 va < eva; va += PAGE_SIZE, m++) {
2969 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2970 vm_page_dirty(m);
2971 if (oldpde & PG_A)
2972 vm_page_aflag_set(m, PGA_REFERENCED);
2973 if (TAILQ_EMPTY(&m->md.pv_list) &&
2974 TAILQ_EMPTY(&pvh->pv_list))
2975 vm_page_aflag_clear(m, PGA_WRITEABLE);
2976 }
2977 }
2978 if (pmap == kernel_pmap) {
2979 pmap_remove_kernel_pde(pmap, pdq, sva);
2980 } else {
2981 mpte = pmap_remove_pt_page(pmap, sva);
2982 if (mpte != NULL) {
2983 KASSERT(vm_page_any_valid(mpte),
2984 ("pmap_remove_pde: pte page not promoted"));
2985 pmap->pm_stats.resident_count--;
2986 KASSERT(mpte->ref_count == NPTEPG,
2987 ("pmap_remove_pde: pte page ref count error"));
2988 mpte->ref_count = 0;
2989 pmap_add_delayed_free_list(mpte, free, false);
2990 }
2991 }
2992 }
2993
2994 /*
2995 * pmap_remove_pte: do the things to unmap a page in a process
2996 */
2997 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,struct spglist * free)2998 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2999 struct spglist *free)
3000 {
3001 pt_entry_t oldpte;
3002 vm_page_t m;
3003
3004 rw_assert(&pvh_global_lock, RA_WLOCKED);
3005 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3006 oldpte = pte_load_clear(ptq);
3007 KASSERT(oldpte != 0,
3008 ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
3009 if (oldpte & PG_W)
3010 pmap->pm_stats.wired_count -= 1;
3011 /*
3012 * Machines that don't support invlpg, also don't support
3013 * PG_G.
3014 */
3015 if (oldpte & PG_G)
3016 pmap_invalidate_page_int(kernel_pmap, va);
3017 pmap->pm_stats.resident_count -= 1;
3018 if (oldpte & PG_MANAGED) {
3019 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
3020 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3021 vm_page_dirty(m);
3022 if (oldpte & PG_A)
3023 vm_page_aflag_set(m, PGA_REFERENCED);
3024 pmap_remove_entry(pmap, m, va);
3025 }
3026 return (pmap_unuse_pt(pmap, va, free));
3027 }
3028
3029 /*
3030 * Remove a single page from a process address space
3031 */
3032 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,struct spglist * free)3033 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
3034 {
3035 pt_entry_t *pte;
3036
3037 rw_assert(&pvh_global_lock, RA_WLOCKED);
3038 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3039 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3040 if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
3041 return;
3042 pmap_remove_pte(pmap, pte, va, free);
3043 pmap_invalidate_page_int(pmap, va);
3044 }
3045
3046 /*
3047 * Removes the specified range of addresses from the page table page.
3048 */
3049 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,struct spglist * free)3050 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3051 struct spglist *free)
3052 {
3053 pt_entry_t *pte;
3054 bool anyvalid;
3055
3056 rw_assert(&pvh_global_lock, RA_WLOCKED);
3057 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3058 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3059 anyvalid = false;
3060 for (pte = pmap_pte_quick(pmap, sva); sva != eva; pte++,
3061 sva += PAGE_SIZE) {
3062 if (*pte == 0)
3063 continue;
3064
3065 /*
3066 * The TLB entry for a PG_G mapping is invalidated by
3067 * pmap_remove_pte().
3068 */
3069 if ((*pte & PG_G) == 0)
3070 anyvalid = true;
3071
3072 if (pmap_remove_pte(pmap, pte, sva, free))
3073 break;
3074 }
3075 return (anyvalid);
3076 }
3077
3078 /*
3079 * Remove the given range of addresses from the specified map.
3080 *
3081 * It is assumed that the start and end are properly
3082 * rounded to the page size.
3083 */
3084 static void
__CONCAT(PMTYPE,remove)3085 __CONCAT(PMTYPE, remove)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3086 {
3087 vm_offset_t pdnxt;
3088 pd_entry_t ptpaddr;
3089 struct spglist free;
3090 int anyvalid;
3091
3092 /*
3093 * Perform an unsynchronized read. This is, however, safe.
3094 */
3095 if (pmap->pm_stats.resident_count == 0)
3096 return;
3097
3098 anyvalid = 0;
3099 SLIST_INIT(&free);
3100
3101 rw_wlock(&pvh_global_lock);
3102 sched_pin();
3103 PMAP_LOCK(pmap);
3104
3105 /*
3106 * special handling of removing one page. a very
3107 * common operation and easy to short circuit some
3108 * code.
3109 */
3110 if ((sva + PAGE_SIZE == eva) &&
3111 ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
3112 pmap_remove_page(pmap, sva, &free);
3113 goto out;
3114 }
3115
3116 for (; sva < eva; sva = pdnxt) {
3117 u_int pdirindex;
3118
3119 /*
3120 * Calculate index for next page table.
3121 */
3122 pdnxt = (sva + NBPDR) & ~PDRMASK;
3123 if (pdnxt < sva)
3124 pdnxt = eva;
3125 if (pmap->pm_stats.resident_count == 0)
3126 break;
3127
3128 pdirindex = sva >> PDRSHIFT;
3129 ptpaddr = pmap->pm_pdir[pdirindex];
3130
3131 /*
3132 * Weed out invalid mappings. Note: we assume that the page
3133 * directory table is always allocated, and in kernel virtual.
3134 */
3135 if (ptpaddr == 0)
3136 continue;
3137
3138 /*
3139 * Check for large page.
3140 */
3141 if ((ptpaddr & PG_PS) != 0) {
3142 /*
3143 * Are we removing the entire large page? If not,
3144 * demote the mapping and fall through.
3145 */
3146 if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3147 /*
3148 * The TLB entry for a PG_G mapping is
3149 * invalidated by pmap_remove_pde().
3150 */
3151 if ((ptpaddr & PG_G) == 0)
3152 anyvalid = 1;
3153 pmap_remove_pde(pmap,
3154 &pmap->pm_pdir[pdirindex], sva, &free);
3155 continue;
3156 } else if (!pmap_demote_pde(pmap,
3157 &pmap->pm_pdir[pdirindex], sva)) {
3158 /* The large page mapping was destroyed. */
3159 continue;
3160 }
3161 }
3162
3163 /*
3164 * Limit our scan to either the end of the va represented
3165 * by the current page table page, or to the end of the
3166 * range being removed.
3167 */
3168 if (pdnxt > eva)
3169 pdnxt = eva;
3170
3171 if (pmap_remove_ptes(pmap, sva, pdnxt, &free))
3172 anyvalid = 1;
3173 }
3174 out:
3175 sched_unpin();
3176 if (anyvalid)
3177 pmap_invalidate_all_int(pmap);
3178 rw_wunlock(&pvh_global_lock);
3179 PMAP_UNLOCK(pmap);
3180 vm_page_free_pages_toq(&free, true);
3181 }
3182
3183 /*
3184 * Routine: pmap_remove_all
3185 * Function:
3186 * Removes this physical page from
3187 * all physical maps in which it resides.
3188 * Reflects back modify bits to the pager.
3189 *
3190 * Notes:
3191 * Original versions of this routine were very
3192 * inefficient because they iteratively called
3193 * pmap_remove (slow...)
3194 */
3195
3196 static void
__CONCAT(PMTYPE,remove_all)3197 __CONCAT(PMTYPE, remove_all)(vm_page_t m)
3198 {
3199 struct md_page *pvh;
3200 pv_entry_t pv;
3201 pmap_t pmap;
3202 pt_entry_t *pte, tpte;
3203 pd_entry_t *pde;
3204 vm_offset_t va;
3205 struct spglist free;
3206
3207 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3208 ("pmap_remove_all: page %p is not managed", m));
3209 SLIST_INIT(&free);
3210 rw_wlock(&pvh_global_lock);
3211 sched_pin();
3212 if ((m->flags & PG_FICTITIOUS) != 0)
3213 goto small_mappings;
3214 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3215 while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3216 va = pv->pv_va;
3217 pmap = PV_PMAP(pv);
3218 PMAP_LOCK(pmap);
3219 pde = pmap_pde(pmap, va);
3220 (void)pmap_demote_pde(pmap, pde, va);
3221 PMAP_UNLOCK(pmap);
3222 }
3223 small_mappings:
3224 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3225 pmap = PV_PMAP(pv);
3226 PMAP_LOCK(pmap);
3227 pmap->pm_stats.resident_count--;
3228 pde = pmap_pde(pmap, pv->pv_va);
3229 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3230 " a 4mpage in page %p's pv list", m));
3231 pte = pmap_pte_quick(pmap, pv->pv_va);
3232 tpte = pte_load_clear(pte);
3233 KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3234 pmap, pv->pv_va));
3235 if (tpte & PG_W)
3236 pmap->pm_stats.wired_count--;
3237 if (tpte & PG_A)
3238 vm_page_aflag_set(m, PGA_REFERENCED);
3239
3240 /*
3241 * Update the vm_page_t clean and reference bits.
3242 */
3243 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3244 vm_page_dirty(m);
3245 pmap_unuse_pt(pmap, pv->pv_va, &free);
3246 pmap_invalidate_page_int(pmap, pv->pv_va);
3247 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3248 free_pv_entry(pmap, pv);
3249 PMAP_UNLOCK(pmap);
3250 }
3251 vm_page_aflag_clear(m, PGA_WRITEABLE);
3252 sched_unpin();
3253 rw_wunlock(&pvh_global_lock);
3254 vm_page_free_pages_toq(&free, true);
3255 }
3256
3257 /*
3258 * pmap_protect_pde: do the things to protect a 4mpage in a process
3259 */
3260 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)3261 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3262 {
3263 pd_entry_t newpde, oldpde;
3264 vm_page_t m, mt;
3265 bool anychanged;
3266
3267 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3268 KASSERT((sva & PDRMASK) == 0,
3269 ("pmap_protect_pde: sva is not 4mpage aligned"));
3270 anychanged = false;
3271 retry:
3272 oldpde = newpde = *pde;
3273 if ((prot & VM_PROT_WRITE) == 0) {
3274 if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
3275 (PG_MANAGED | PG_M | PG_RW)) {
3276 m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3277 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3278 vm_page_dirty(mt);
3279 }
3280 newpde &= ~(PG_RW | PG_M);
3281 }
3282 #ifdef PMAP_PAE_COMP
3283 if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3284 newpde |= pg_nx;
3285 #endif
3286 if (newpde != oldpde) {
3287 /*
3288 * As an optimization to future operations on this PDE, clear
3289 * PG_PROMOTED. The impending invalidation will remove any
3290 * lingering 4KB page mappings from the TLB.
3291 */
3292 if (!pde_cmpset(pde, oldpde, newpde & ~PG_PROMOTED))
3293 goto retry;
3294 if ((oldpde & PG_G) != 0)
3295 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
3296 else
3297 anychanged = true;
3298 }
3299 return (anychanged);
3300 }
3301
3302 /*
3303 * Set the physical protection on the
3304 * specified range of this map as requested.
3305 */
3306 static void
__CONCAT(PMTYPE,protect)3307 __CONCAT(PMTYPE, protect)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3308 vm_prot_t prot)
3309 {
3310 vm_offset_t pdnxt;
3311 pd_entry_t ptpaddr;
3312 pt_entry_t *pte;
3313 bool anychanged, pv_lists_locked;
3314
3315 KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3316 if (prot == VM_PROT_NONE) {
3317 pmap_remove(pmap, sva, eva);
3318 return;
3319 }
3320
3321 #ifdef PMAP_PAE_COMP
3322 if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
3323 (VM_PROT_WRITE | VM_PROT_EXECUTE))
3324 return;
3325 #else
3326 if (prot & VM_PROT_WRITE)
3327 return;
3328 #endif
3329
3330 if (pmap_is_current(pmap))
3331 pv_lists_locked = false;
3332 else {
3333 pv_lists_locked = true;
3334 resume:
3335 rw_wlock(&pvh_global_lock);
3336 sched_pin();
3337 }
3338 anychanged = false;
3339
3340 PMAP_LOCK(pmap);
3341 for (; sva < eva; sva = pdnxt) {
3342 pt_entry_t obits, pbits;
3343 u_int pdirindex;
3344
3345 pdnxt = (sva + NBPDR) & ~PDRMASK;
3346 if (pdnxt < sva)
3347 pdnxt = eva;
3348
3349 pdirindex = sva >> PDRSHIFT;
3350 ptpaddr = pmap->pm_pdir[pdirindex];
3351
3352 /*
3353 * Weed out invalid mappings. Note: we assume that the page
3354 * directory table is always allocated, and in kernel virtual.
3355 */
3356 if (ptpaddr == 0)
3357 continue;
3358
3359 /*
3360 * Check for large page.
3361 */
3362 if ((ptpaddr & PG_PS) != 0) {
3363 /*
3364 * Are we protecting the entire large page? If not,
3365 * demote the mapping and fall through.
3366 */
3367 if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3368 /*
3369 * The TLB entry for a PG_G mapping is
3370 * invalidated by pmap_protect_pde().
3371 */
3372 if (pmap_protect_pde(pmap,
3373 &pmap->pm_pdir[pdirindex], sva, prot))
3374 anychanged = true;
3375 continue;
3376 } else {
3377 if (!pv_lists_locked) {
3378 pv_lists_locked = true;
3379 if (!rw_try_wlock(&pvh_global_lock)) {
3380 if (anychanged)
3381 pmap_invalidate_all_int(
3382 pmap);
3383 PMAP_UNLOCK(pmap);
3384 goto resume;
3385 }
3386 sched_pin();
3387 }
3388 if (!pmap_demote_pde(pmap,
3389 &pmap->pm_pdir[pdirindex], sva)) {
3390 /*
3391 * The large page mapping was
3392 * destroyed.
3393 */
3394 continue;
3395 }
3396 }
3397 }
3398
3399 if (pdnxt > eva)
3400 pdnxt = eva;
3401
3402 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3403 sva += PAGE_SIZE) {
3404 vm_page_t m;
3405
3406 retry:
3407 /*
3408 * Regardless of whether a pte is 32 or 64 bits in
3409 * size, PG_RW, PG_A, and PG_M are among the least
3410 * significant 32 bits.
3411 */
3412 obits = pbits = *pte;
3413 if ((pbits & PG_V) == 0)
3414 continue;
3415
3416 if ((prot & VM_PROT_WRITE) == 0) {
3417 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3418 (PG_MANAGED | PG_M | PG_RW)) {
3419 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3420 vm_page_dirty(m);
3421 }
3422 pbits &= ~(PG_RW | PG_M);
3423 }
3424 #ifdef PMAP_PAE_COMP
3425 if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3426 pbits |= pg_nx;
3427 #endif
3428
3429 if (pbits != obits) {
3430 #ifdef PMAP_PAE_COMP
3431 if (!atomic_cmpset_64(pte, obits, pbits))
3432 goto retry;
3433 #else
3434 if (!atomic_cmpset_int((u_int *)pte, obits,
3435 pbits))
3436 goto retry;
3437 #endif
3438 if (obits & PG_G)
3439 pmap_invalidate_page_int(pmap, sva);
3440 else
3441 anychanged = true;
3442 }
3443 }
3444 }
3445 if (anychanged)
3446 pmap_invalidate_all_int(pmap);
3447 if (pv_lists_locked) {
3448 sched_unpin();
3449 rw_wunlock(&pvh_global_lock);
3450 }
3451 PMAP_UNLOCK(pmap);
3452 }
3453
3454 #if VM_NRESERVLEVEL > 0
3455 /*
3456 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3457 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3458 * For promotion to occur, two conditions must be met: (1) the 4KB page
3459 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3460 * mappings must have identical characteristics.
3461 *
3462 * Managed (PG_MANAGED) mappings within the kernel address space are not
3463 * promoted. The reason is that kernel PDEs are replicated in each pmap but
3464 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3465 * pmap.
3466 */
3467 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte)3468 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte)
3469 {
3470 pd_entry_t newpde;
3471 pt_entry_t allpte_PG_A, *firstpte, oldpte, pa, *pte;
3472 #ifdef KTR
3473 vm_offset_t oldpteva;
3474 #endif
3475
3476 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3477 if (!pg_ps_enabled)
3478 return (false);
3479
3480 /*
3481 * Examine the first PTE in the specified PTP. Abort if this PTE is
3482 * either invalid or does not map the first 4KB physical page
3483 * within a 2- or 4MB page.
3484 */
3485 firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3486 setpde:
3487 newpde = *firstpte;
3488 if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
3489 pmap_pde_p_failures++;
3490 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3491 " in pmap %p", va, pmap);
3492 return (false);
3493 }
3494 if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3495 pmap_pde_p_failures++;
3496 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3497 " in pmap %p", va, pmap);
3498 return (false);
3499 }
3500
3501 /*
3502 * Both here and in the below "for" loop, to allow for repromotion
3503 * after MADV_FREE, conditionally write protect a clean PTE before
3504 * possibly aborting the promotion due to other PTE attributes. Why?
3505 * Suppose that MADV_FREE is applied to a part of a superpage, the
3506 * address range [S, E). pmap_advise() will demote the superpage
3507 * mapping, destroy the 4KB page mapping at the end of [S, E), and
3508 * clear PG_M and PG_A in the PTEs for the rest of [S, E). Later,
3509 * imagine that the memory in [S, E) is recycled, but the last 4KB
3510 * page in [S, E) is not the last to be rewritten, or simply accessed.
3511 * In other words, there is still a 4KB page in [S, E), call it P,
3512 * that is writeable but PG_M and PG_A are clear in P's PTE. Unless
3513 * we write protect P before aborting the promotion, if and when P is
3514 * finally rewritten, there won't be a page fault to trigger
3515 * repromotion.
3516 */
3517 if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3518 /*
3519 * When PG_M is already clear, PG_RW can be cleared without
3520 * a TLB invalidation.
3521 */
3522 if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3523 ~PG_RW))
3524 goto setpde;
3525 newpde &= ~PG_RW;
3526 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
3527 " in pmap %p", va & ~PDRMASK, pmap);
3528 }
3529
3530 /*
3531 * Examine each of the other PTEs in the specified PTP. Abort if this
3532 * PTE maps an unexpected 4KB physical page or does not have identical
3533 * characteristics to the first PTE.
3534 */
3535 allpte_PG_A = newpde & PG_A;
3536 pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
3537 for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3538 setpte:
3539 oldpte = *pte;
3540 if ((oldpte & (PG_FRAME | PG_V)) != pa) {
3541 pmap_pde_p_failures++;
3542 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3543 " in pmap %p", va, pmap);
3544 return (false);
3545 }
3546 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3547 /*
3548 * When PG_M is already clear, PG_RW can be cleared
3549 * without a TLB invalidation.
3550 */
3551 if (!atomic_cmpset_int((u_int *)pte, oldpte,
3552 oldpte & ~PG_RW))
3553 goto setpte;
3554 oldpte &= ~PG_RW;
3555 #ifdef KTR
3556 oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3557 (va & ~PDRMASK);
3558 #endif
3559 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3560 " in pmap %p", oldpteva, pmap);
3561 }
3562 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3563 pmap_pde_p_failures++;
3564 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3565 " in pmap %p", va, pmap);
3566 return (false);
3567 }
3568 allpte_PG_A &= oldpte;
3569 pa -= PAGE_SIZE;
3570 }
3571
3572 /*
3573 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
3574 * so that promotions triggered by speculative mappings, such as
3575 * pmap_enter_quick(), don't automatically mark the underlying pages
3576 * as referenced.
3577 */
3578 newpde &= ~PG_A | allpte_PG_A;
3579
3580 /*
3581 * Save the PTP in its current state until the PDE mapping the
3582 * superpage is demoted by pmap_demote_pde() or destroyed by
3583 * pmap_remove_pde(). If PG_A is not set in every PTE, then request
3584 * that the PTP be refilled on demotion.
3585 */
3586 if (mpte == NULL)
3587 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3588 KASSERT(mpte >= vm_page_array &&
3589 mpte < &vm_page_array[vm_page_array_size],
3590 ("pmap_promote_pde: page table page is out of range"));
3591 KASSERT(mpte->pindex == va >> PDRSHIFT,
3592 ("pmap_promote_pde: page table page's pindex is wrong"));
3593 if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
3594 pmap_pde_p_failures++;
3595 CTR2(KTR_PMAP,
3596 "pmap_promote_pde: failure for va %#x in pmap %p", va,
3597 pmap);
3598 return (false);
3599 }
3600
3601 /*
3602 * Promote the pv entries.
3603 */
3604 if ((newpde & PG_MANAGED) != 0)
3605 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3606
3607 /*
3608 * Propagate the PAT index to its proper position.
3609 */
3610 if ((newpde & PG_PTE_PAT) != 0)
3611 newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3612
3613 /*
3614 * Map the superpage.
3615 */
3616 if (workaround_erratum383)
3617 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3618 else if (pmap == kernel_pmap)
3619 pmap_kenter_pde(va, PG_PROMOTED | PG_PS | newpde);
3620 else
3621 pde_store(pde, PG_PROMOTED | PG_PS | newpde);
3622
3623 pmap_pde_promotions++;
3624 CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3625 " in pmap %p", va, pmap);
3626 return (true);
3627 }
3628 #endif /* VM_NRESERVLEVEL > 0 */
3629
3630 /*
3631 * Insert the given physical page (p) at
3632 * the specified virtual address (v) in the
3633 * target physical map with the protection requested.
3634 *
3635 * If specified, the page will be wired down, meaning
3636 * that the related pte can not be reclaimed.
3637 *
3638 * NB: This is the only routine which MAY NOT lazy-evaluate
3639 * or lose information. That is, this routine must actually
3640 * insert this page into the given map NOW.
3641 */
3642 static int
__CONCAT(PMTYPE,enter)3643 __CONCAT(PMTYPE, enter)(pmap_t pmap, vm_offset_t va, vm_page_t m,
3644 vm_prot_t prot, u_int flags, int8_t psind)
3645 {
3646 pd_entry_t *pde;
3647 pt_entry_t *pte;
3648 pt_entry_t newpte, origpte;
3649 pv_entry_t pv;
3650 vm_paddr_t opa, pa;
3651 vm_page_t mpte, om;
3652 int rv;
3653
3654 va = trunc_page(va);
3655 KASSERT((pmap == kernel_pmap && va < VM_MAX_KERNEL_ADDRESS) ||
3656 (pmap != kernel_pmap && va < VM_MAXUSER_ADDRESS),
3657 ("pmap_enter: toobig k%d %#x", pmap == kernel_pmap, va));
3658 KASSERT(va < PMAP_TRM_MIN_ADDRESS,
3659 ("pmap_enter: invalid to pmap_enter into trampoline (va: 0x%x)",
3660 va));
3661 KASSERT(pmap != kernel_pmap || (m->oflags & VPO_UNMANAGED) != 0 ||
3662 !VA_IS_CLEANMAP(va),
3663 ("pmap_enter: managed mapping within the clean submap"));
3664 if ((m->oflags & VPO_UNMANAGED) == 0)
3665 VM_PAGE_OBJECT_BUSY_ASSERT(m);
3666 KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3667 ("pmap_enter: flags %u has reserved bits set", flags));
3668 pa = VM_PAGE_TO_PHYS(m);
3669 newpte = (pt_entry_t)(pa | PG_A | PG_V);
3670 if ((flags & VM_PROT_WRITE) != 0)
3671 newpte |= PG_M;
3672 if ((prot & VM_PROT_WRITE) != 0)
3673 newpte |= PG_RW;
3674 KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
3675 ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
3676 #ifdef PMAP_PAE_COMP
3677 if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3678 newpte |= pg_nx;
3679 #endif
3680 if ((flags & PMAP_ENTER_WIRED) != 0)
3681 newpte |= PG_W;
3682 if (pmap != kernel_pmap)
3683 newpte |= PG_U;
3684 newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
3685 if ((m->oflags & VPO_UNMANAGED) == 0)
3686 newpte |= PG_MANAGED;
3687
3688 rw_wlock(&pvh_global_lock);
3689 PMAP_LOCK(pmap);
3690 sched_pin();
3691 if (psind == 1) {
3692 /* Assert the required virtual and physical alignment. */
3693 KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
3694 KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3695 rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m);
3696 goto out;
3697 }
3698
3699 pde = pmap_pde(pmap, va);
3700 if (pmap != kernel_pmap) {
3701 /*
3702 * va is for UVA.
3703 * In the case that a page table page is not resident,
3704 * we are creating it here. pmap_allocpte() handles
3705 * demotion.
3706 */
3707 mpte = pmap_allocpte(pmap, va, flags);
3708 if (mpte == NULL) {
3709 KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3710 ("pmap_allocpte failed with sleep allowed"));
3711 rv = KERN_RESOURCE_SHORTAGE;
3712 goto out;
3713 }
3714 } else {
3715 /*
3716 * va is for KVA, so pmap_demote_pde() will never fail
3717 * to install a page table page. PG_V is also
3718 * asserted by pmap_demote_pde().
3719 */
3720 mpte = NULL;
3721 KASSERT(pde != NULL && (*pde & PG_V) != 0,
3722 ("KVA %#x invalid pde pdir %#jx", va,
3723 (uintmax_t)pmap->pm_pdir[PTDPTDI]));
3724 if ((*pde & PG_PS) != 0)
3725 pmap_demote_pde(pmap, pde, va);
3726 }
3727 pte = pmap_pte_quick(pmap, va);
3728
3729 /*
3730 * Page Directory table entry is not valid, which should not
3731 * happen. We should have either allocated the page table
3732 * page or demoted the existing mapping above.
3733 */
3734 if (pte == NULL) {
3735 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3736 (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3737 }
3738
3739 origpte = *pte;
3740 pv = NULL;
3741
3742 /*
3743 * Is the specified virtual address already mapped?
3744 */
3745 if ((origpte & PG_V) != 0) {
3746 /*
3747 * Wiring change, just update stats. We don't worry about
3748 * wiring PT pages as they remain resident as long as there
3749 * are valid mappings in them. Hence, if a user page is wired,
3750 * the PT page will be also.
3751 */
3752 if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
3753 pmap->pm_stats.wired_count++;
3754 else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
3755 pmap->pm_stats.wired_count--;
3756
3757 /*
3758 * Remove the extra PT page reference.
3759 */
3760 if (mpte != NULL) {
3761 mpte->ref_count--;
3762 KASSERT(mpte->ref_count > 0,
3763 ("pmap_enter: missing reference to page table page,"
3764 " va: 0x%x", va));
3765 }
3766
3767 /*
3768 * Has the physical page changed?
3769 */
3770 opa = origpte & PG_FRAME;
3771 if (opa == pa) {
3772 /*
3773 * No, might be a protection or wiring change.
3774 */
3775 if ((origpte & PG_MANAGED) != 0 &&
3776 (newpte & PG_RW) != 0)
3777 vm_page_aflag_set(m, PGA_WRITEABLE);
3778 if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
3779 goto unchanged;
3780 goto validate;
3781 }
3782
3783 /*
3784 * The physical page has changed. Temporarily invalidate
3785 * the mapping. This ensures that all threads sharing the
3786 * pmap keep a consistent view of the mapping, which is
3787 * necessary for the correct handling of COW faults. It
3788 * also permits reuse of the old mapping's PV entry,
3789 * avoiding an allocation.
3790 *
3791 * For consistency, handle unmanaged mappings the same way.
3792 */
3793 origpte = pte_load_clear(pte);
3794 KASSERT((origpte & PG_FRAME) == opa,
3795 ("pmap_enter: unexpected pa update for %#x", va));
3796 if ((origpte & PG_MANAGED) != 0) {
3797 om = PHYS_TO_VM_PAGE(opa);
3798
3799 /*
3800 * The pmap lock is sufficient to synchronize with
3801 * concurrent calls to pmap_page_test_mappings() and
3802 * pmap_ts_referenced().
3803 */
3804 if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3805 vm_page_dirty(om);
3806 if ((origpte & PG_A) != 0) {
3807 pmap_invalidate_page_int(pmap, va);
3808 vm_page_aflag_set(om, PGA_REFERENCED);
3809 }
3810 pv = pmap_pvh_remove(&om->md, pmap, va);
3811 KASSERT(pv != NULL,
3812 ("pmap_enter: no PV entry for %#x", va));
3813 if ((newpte & PG_MANAGED) == 0)
3814 free_pv_entry(pmap, pv);
3815 if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3816 TAILQ_EMPTY(&om->md.pv_list) &&
3817 ((om->flags & PG_FICTITIOUS) != 0 ||
3818 TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3819 vm_page_aflag_clear(om, PGA_WRITEABLE);
3820 } else {
3821 /*
3822 * Since this mapping is unmanaged, assume that PG_A
3823 * is set.
3824 */
3825 pmap_invalidate_page_int(pmap, va);
3826 }
3827 origpte = 0;
3828 } else {
3829 /*
3830 * Increment the counters.
3831 */
3832 if ((newpte & PG_W) != 0)
3833 pmap->pm_stats.wired_count++;
3834 pmap->pm_stats.resident_count++;
3835 }
3836
3837 /*
3838 * Enter on the PV list if part of our managed memory.
3839 */
3840 if ((newpte & PG_MANAGED) != 0) {
3841 if (pv == NULL) {
3842 pv = get_pv_entry(pmap, false);
3843 pv->pv_va = va;
3844 }
3845 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3846 if ((newpte & PG_RW) != 0)
3847 vm_page_aflag_set(m, PGA_WRITEABLE);
3848 }
3849
3850 /*
3851 * Update the PTE.
3852 */
3853 if ((origpte & PG_V) != 0) {
3854 validate:
3855 origpte = pte_load_store(pte, newpte);
3856 KASSERT((origpte & PG_FRAME) == pa,
3857 ("pmap_enter: unexpected pa update for %#x", va));
3858 if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3859 (PG_M | PG_RW)) {
3860 if ((origpte & PG_MANAGED) != 0)
3861 vm_page_dirty(m);
3862
3863 /*
3864 * Although the PTE may still have PG_RW set, TLB
3865 * invalidation may nonetheless be required because
3866 * the PTE no longer has PG_M set.
3867 */
3868 }
3869 #ifdef PMAP_PAE_COMP
3870 else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
3871 /*
3872 * This PTE change does not require TLB invalidation.
3873 */
3874 goto unchanged;
3875 }
3876 #endif
3877 if ((origpte & PG_A) != 0)
3878 pmap_invalidate_page_int(pmap, va);
3879 } else
3880 pte_store_zero(pte, newpte);
3881
3882 unchanged:
3883
3884 #if VM_NRESERVLEVEL > 0
3885 /*
3886 * If both the page table page and the reservation are fully
3887 * populated, then attempt promotion.
3888 */
3889 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3890 (m->flags & PG_FICTITIOUS) == 0 &&
3891 vm_reserv_level_iffullpop(m) == 0)
3892 (void)pmap_promote_pde(pmap, pde, va, mpte);
3893 #endif
3894
3895 rv = KERN_SUCCESS;
3896 out:
3897 sched_unpin();
3898 rw_wunlock(&pvh_global_lock);
3899 PMAP_UNLOCK(pmap);
3900 return (rv);
3901 }
3902
3903 /*
3904 * Tries to create a read- and/or execute-only 2 or 4 MB page mapping. Returns
3905 * KERN_SUCCESS if the mapping was created. Otherwise, returns an error
3906 * value. See pmap_enter_pde() for the possible error values when "no sleep",
3907 * "no replace", and "no reclaim" are specified.
3908 */
3909 static int
pmap_enter_4mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)3910 pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3911 {
3912 pd_entry_t newpde;
3913
3914 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3915 newpde = VM_PAGE_TO_PHYS(m) |
3916 pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
3917 if ((m->oflags & VPO_UNMANAGED) == 0)
3918 newpde |= PG_MANAGED;
3919 #ifdef PMAP_PAE_COMP
3920 if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3921 newpde |= pg_nx;
3922 #endif
3923 if (pmap != kernel_pmap)
3924 newpde |= PG_U;
3925 return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3926 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL));
3927 }
3928
3929 /*
3930 * Returns true if every page table entry in the page table page that maps
3931 * the specified kernel virtual address is zero.
3932 */
3933 static bool
pmap_every_pte_zero(vm_offset_t va)3934 pmap_every_pte_zero(vm_offset_t va)
3935 {
3936 pt_entry_t *pt_end, *pte;
3937
3938 KASSERT((va & PDRMASK) == 0, ("va is misaligned"));
3939 pte = vtopte(va);
3940 for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
3941 if (*pte != 0)
3942 return (false);
3943 }
3944 return (true);
3945 }
3946
3947 /*
3948 * Tries to create the specified 2 or 4 MB page mapping. Returns KERN_SUCCESS
3949 * if the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
3950 * or KERN_RESOURCE_SHORTAGE otherwise. Returns KERN_FAILURE if
3951 * PMAP_ENTER_NOREPLACE was specified and a 4 KB page mapping already exists
3952 * within the 2 or 4 MB virtual address range starting at the specified virtual
3953 * address. Returns KERN_NO_SPACE if PMAP_ENTER_NOREPLACE was specified and a
3954 * 2 or 4 MB page mapping already exists at the specified virtual address.
3955 * Returns KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NORECLAIM was specified and a
3956 * PV entry allocation failed.
3957 *
3958 * The parameter "m" is only used when creating a managed, writeable mapping.
3959 */
3960 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m)3961 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
3962 vm_page_t m)
3963 {
3964 struct spglist free;
3965 pd_entry_t oldpde, *pde;
3966 vm_page_t mt;
3967 vm_page_t uwptpg;
3968
3969 rw_assert(&pvh_global_lock, RA_WLOCKED);
3970 KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3971 ("pmap_enter_pde: newpde is missing PG_M"));
3972 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3973 pde = pmap_pde(pmap, va);
3974 oldpde = *pde;
3975 if ((oldpde & PG_V) != 0) {
3976 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3977 if ((oldpde & PG_PS) != 0) {
3978 CTR2(KTR_PMAP,
3979 "pmap_enter_pde: no space for va %#lx"
3980 " in pmap %p", va, pmap);
3981 return (KERN_NO_SPACE);
3982 } else if (pmap != kernel_pmap ||
3983 !pmap_every_pte_zero(va)) {
3984 CTR2(KTR_PMAP,
3985 "pmap_enter_pde: failure for va %#lx"
3986 " in pmap %p", va, pmap);
3987 return (KERN_FAILURE);
3988 }
3989 }
3990 /* Break the existing mapping(s). */
3991 SLIST_INIT(&free);
3992 if ((oldpde & PG_PS) != 0) {
3993 /*
3994 * If the PDE resulted from a promotion, then a
3995 * reserved PT page could be freed.
3996 */
3997 (void)pmap_remove_pde(pmap, pde, va, &free);
3998 if ((oldpde & PG_G) == 0)
3999 pmap_invalidate_pde_page(pmap, va, oldpde);
4000 } else {
4001 if (pmap_remove_ptes(pmap, va, va + NBPDR, &free))
4002 pmap_invalidate_all_int(pmap);
4003 }
4004 if (pmap != kernel_pmap) {
4005 vm_page_free_pages_toq(&free, true);
4006 KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
4007 pde));
4008 } else {
4009 KASSERT(SLIST_EMPTY(&free),
4010 ("pmap_enter_pde: freed kernel page table page"));
4011
4012 /*
4013 * Both pmap_remove_pde() and pmap_remove_ptes() will
4014 * leave the kernel page table page zero filled.
4015 */
4016 mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
4017 if (pmap_insert_pt_page(pmap, mt, false, false))
4018 panic("pmap_enter_pde: trie insert failed");
4019 }
4020 }
4021
4022 /*
4023 * Allocate a leaf ptpage for wired userspace pages.
4024 */
4025 uwptpg = NULL;
4026 if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
4027 uwptpg = vm_page_alloc_noobj(VM_ALLOC_WIRED);
4028 if (uwptpg == NULL) {
4029 return (KERN_RESOURCE_SHORTAGE);
4030 }
4031 uwptpg->pindex = va >> PDRSHIFT;
4032 if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
4033 vm_page_unwire_noq(uwptpg);
4034 vm_page_free(uwptpg);
4035 return (KERN_RESOURCE_SHORTAGE);
4036 }
4037 pmap->pm_stats.resident_count++;
4038 uwptpg->ref_count = NPTEPG;
4039 }
4040 if ((newpde & PG_MANAGED) != 0) {
4041 /*
4042 * Abort this mapping if its PV entry could not be created.
4043 */
4044 if (!pmap_pv_insert_pde(pmap, va, newpde, flags)) {
4045 if (uwptpg != NULL) {
4046 mt = pmap_remove_pt_page(pmap, va);
4047 KASSERT(mt == uwptpg,
4048 ("removed pt page %p, expected %p", mt,
4049 uwptpg));
4050 pmap->pm_stats.resident_count--;
4051 uwptpg->ref_count = 1;
4052 vm_page_unwire_noq(uwptpg);
4053 vm_page_free(uwptpg);
4054 }
4055 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4056 " in pmap %p", va, pmap);
4057 return (KERN_RESOURCE_SHORTAGE);
4058 }
4059 if ((newpde & PG_RW) != 0) {
4060 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4061 vm_page_aflag_set(mt, PGA_WRITEABLE);
4062 }
4063 }
4064
4065 /*
4066 * Increment counters.
4067 */
4068 if ((newpde & PG_W) != 0)
4069 pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
4070 pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
4071
4072 /*
4073 * Map the superpage. (This is not a promoted mapping; there will not
4074 * be any lingering 4KB page mappings in the TLB.)
4075 */
4076 pde_store(pde, newpde);
4077
4078 pmap_pde_mappings++;
4079 CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
4080 va, pmap);
4081 return (KERN_SUCCESS);
4082 }
4083
4084 /*
4085 * Maps a sequence of resident pages belonging to the same object.
4086 * The sequence begins with the given page m_start. This page is
4087 * mapped at the given virtual address start. Each subsequent page is
4088 * mapped at a virtual address that is offset from start by the same
4089 * amount as the page is offset from m_start within the object. The
4090 * last page in the sequence is the page with the largest offset from
4091 * m_start that can be mapped at a virtual address less than the given
4092 * virtual address end. Not every virtual page between start and end
4093 * is mapped; only those for which a resident page exists with the
4094 * corresponding offset from m_start are mapped.
4095 */
4096 static void
__CONCAT(PMTYPE,enter_object)4097 __CONCAT(PMTYPE, enter_object)(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4098 vm_page_t m_start, vm_prot_t prot)
4099 {
4100 struct pctrie_iter pages;
4101 vm_offset_t va;
4102 vm_page_t m, mpte;
4103 int rv;
4104
4105 VM_OBJECT_ASSERT_LOCKED(m_start->object);
4106
4107 mpte = NULL;
4108 vm_page_iter_limit_init(&pages, m_start->object,
4109 m_start->pindex + atop(end - start));
4110 m = vm_radix_iter_lookup(&pages, m_start->pindex);
4111 rw_wlock(&pvh_global_lock);
4112 PMAP_LOCK(pmap);
4113 while (m != NULL) {
4114 va = start + ptoa(m->pindex - m_start->pindex);
4115 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
4116 m->psind == 1 && pg_ps_enabled &&
4117 ((rv = pmap_enter_4mpage(pmap, va, m, prot)) ==
4118 KERN_SUCCESS || rv == KERN_NO_SPACE)) {
4119 m = vm_radix_iter_jump(&pages, NBPDR / PAGE_SIZE);
4120 } else {
4121 mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte);
4122 m = vm_radix_iter_step(&pages);
4123 }
4124 }
4125 rw_wunlock(&pvh_global_lock);
4126 PMAP_UNLOCK(pmap);
4127 }
4128
4129 /*
4130 * this code makes some *MAJOR* assumptions:
4131 * 1. Current pmap & pmap exists.
4132 * 2. Not wired.
4133 * 3. Read access.
4134 * 4. No page table pages.
4135 * but is *MUCH* faster than pmap_enter...
4136 */
4137
4138 static void
__CONCAT(PMTYPE,enter_quick)4139 __CONCAT(PMTYPE, enter_quick)(pmap_t pmap, vm_offset_t va, vm_page_t m,
4140 vm_prot_t prot)
4141 {
4142
4143 rw_wlock(&pvh_global_lock);
4144 PMAP_LOCK(pmap);
4145 (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4146 rw_wunlock(&pvh_global_lock);
4147 PMAP_UNLOCK(pmap);
4148 }
4149
4150 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte)4151 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4152 vm_prot_t prot, vm_page_t mpte)
4153 {
4154 pt_entry_t newpte, *pte;
4155 pd_entry_t *pde;
4156
4157 KASSERT(pmap != kernel_pmap || !VA_IS_CLEANMAP(va) ||
4158 (m->oflags & VPO_UNMANAGED) != 0,
4159 ("pmap_enter_quick_locked: managed mapping within the clean submap"));
4160 rw_assert(&pvh_global_lock, RA_WLOCKED);
4161 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4162 pde = NULL;
4163
4164 /*
4165 * In the case that a page table page is not
4166 * resident, we are creating it here.
4167 */
4168 if (pmap != kernel_pmap) {
4169 u_int ptepindex;
4170 pd_entry_t ptepa;
4171
4172 /*
4173 * Calculate pagetable page index
4174 */
4175 ptepindex = va >> PDRSHIFT;
4176 if (mpte && (mpte->pindex == ptepindex)) {
4177 mpte->ref_count++;
4178 } else {
4179 /*
4180 * Get the page directory entry
4181 */
4182 pde = &pmap->pm_pdir[ptepindex];
4183 ptepa = *pde;
4184
4185 /*
4186 * If the page table page is mapped, we just increment
4187 * the hold count, and activate it.
4188 */
4189 if (ptepa) {
4190 if (ptepa & PG_PS)
4191 return (NULL);
4192 mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
4193 mpte->ref_count++;
4194 } else {
4195 mpte = _pmap_allocpte(pmap, ptepindex,
4196 PMAP_ENTER_NOSLEEP);
4197 if (mpte == NULL)
4198 return (mpte);
4199 }
4200 }
4201 } else {
4202 mpte = NULL;
4203 }
4204
4205 sched_pin();
4206 pte = pmap_pte_quick(pmap, va);
4207 if (*pte) {
4208 if (mpte != NULL)
4209 mpte->ref_count--;
4210 sched_unpin();
4211 return (NULL);
4212 }
4213
4214 /*
4215 * Enter on the PV list if part of our managed memory.
4216 */
4217 if ((m->oflags & VPO_UNMANAGED) == 0 &&
4218 !pmap_try_insert_pv_entry(pmap, va, m)) {
4219 if (mpte != NULL)
4220 pmap_abort_ptp(pmap, va, mpte);
4221 sched_unpin();
4222 return (NULL);
4223 }
4224
4225 /*
4226 * Increment counters
4227 */
4228 pmap->pm_stats.resident_count++;
4229
4230 newpte = VM_PAGE_TO_PHYS(m) | PG_V |
4231 pmap_cache_bits(pmap, m->md.pat_mode, false);
4232 if ((m->oflags & VPO_UNMANAGED) == 0)
4233 newpte |= PG_MANAGED;
4234 #ifdef PMAP_PAE_COMP
4235 if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
4236 newpte |= pg_nx;
4237 #endif
4238 if (pmap != kernel_pmap)
4239 newpte |= PG_U;
4240 pte_store_zero(pte, newpte);
4241
4242 #if VM_NRESERVLEVEL > 0
4243 /*
4244 * If both the PTP and the reservation are fully populated, then
4245 * attempt promotion.
4246 */
4247 if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
4248 (mpte == NULL || mpte->ref_count == NPTEPG) &&
4249 (m->flags & PG_FICTITIOUS) == 0 &&
4250 vm_reserv_level_iffullpop(m) == 0) {
4251 if (pde == NULL)
4252 pde = pmap_pde(pmap, va);
4253
4254 /*
4255 * If promotion succeeds, then the next call to this function
4256 * should not be given the unmapped PTP as a hint.
4257 */
4258 if (pmap_promote_pde(pmap, pde, va, mpte))
4259 mpte = NULL;
4260 }
4261 #endif
4262
4263 sched_unpin();
4264 return (mpte);
4265 }
4266
4267 /*
4268 * Make a temporary mapping for a physical address. This is only intended
4269 * to be used for panic dumps.
4270 */
4271 static void *
__CONCAT(PMTYPE,kenter_temporary)4272 __CONCAT(PMTYPE, kenter_temporary)(vm_paddr_t pa, int i)
4273 {
4274 vm_offset_t va;
4275
4276 va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
4277 pmap_kenter(va, pa);
4278 invlpg(va);
4279 return ((void *)crashdumpmap);
4280 }
4281
4282 /*
4283 * This code maps large physical mmap regions into the
4284 * processor address space. Note that some shortcuts
4285 * are taken, but the code works.
4286 */
4287 static void
__CONCAT(PMTYPE,object_init_pt)4288 __CONCAT(PMTYPE, object_init_pt)(pmap_t pmap, vm_offset_t addr,
4289 vm_object_t object, vm_pindex_t pindex, vm_size_t size)
4290 {
4291 struct pctrie_iter pages;
4292 pd_entry_t *pde;
4293 vm_paddr_t pa, ptepa;
4294 vm_page_t p;
4295 int pat_mode;
4296
4297 VM_OBJECT_ASSERT_WLOCKED(object);
4298 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4299 ("pmap_object_init_pt: non-device object"));
4300 if (pg_ps_enabled &&
4301 (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
4302 if (!vm_object_populate(object, pindex, pindex + atop(size)))
4303 return;
4304 vm_page_iter_init(&pages, object);
4305 p = vm_radix_iter_lookup(&pages, pindex);
4306 KASSERT(vm_page_all_valid(p),
4307 ("pmap_object_init_pt: invalid page %p", p));
4308 pat_mode = p->md.pat_mode;
4309
4310 /*
4311 * Abort the mapping if the first page is not physically
4312 * aligned to a 2/4MB page boundary.
4313 */
4314 ptepa = VM_PAGE_TO_PHYS(p);
4315 if (ptepa & (NBPDR - 1))
4316 return;
4317
4318 /*
4319 * Skip the first page. Abort the mapping if the rest of
4320 * the pages are not physically contiguous or have differing
4321 * memory attributes.
4322 */
4323 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4324 pa += PAGE_SIZE) {
4325 p = vm_radix_iter_next(&pages);
4326 KASSERT(vm_page_all_valid(p),
4327 ("pmap_object_init_pt: invalid page %p", p));
4328 if (pa != VM_PAGE_TO_PHYS(p) ||
4329 pat_mode != p->md.pat_mode)
4330 return;
4331 }
4332
4333 /*
4334 * Map using 2/4MB pages. Since "ptepa" is 2/4M aligned and
4335 * "size" is a multiple of 2/4M, adding the PAT setting to
4336 * "pa" will not affect the termination of this loop.
4337 */
4338 PMAP_LOCK(pmap);
4339 for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
4340 pa < ptepa + size; pa += NBPDR) {
4341 pde = pmap_pde(pmap, addr);
4342 if (*pde == 0) {
4343 pde_store(pde, pa | PG_PS | PG_M | PG_A |
4344 PG_U | PG_RW | PG_V);
4345 pmap->pm_stats.resident_count += NBPDR /
4346 PAGE_SIZE;
4347 pmap_pde_mappings++;
4348 }
4349 /* Else continue on if the PDE is already valid. */
4350 addr += NBPDR;
4351 }
4352 PMAP_UNLOCK(pmap);
4353 }
4354 }
4355
4356 /*
4357 * Clear the wired attribute from the mappings for the specified range of
4358 * addresses in the given pmap. Every valid mapping within that range
4359 * must have the wired attribute set. In contrast, invalid mappings
4360 * cannot have the wired attribute set, so they are ignored.
4361 *
4362 * The wired attribute of the page table entry is not a hardware feature,
4363 * so there is no need to invalidate any TLB entries.
4364 */
4365 static void
__CONCAT(PMTYPE,unwire)4366 __CONCAT(PMTYPE, unwire)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4367 {
4368 vm_offset_t pdnxt;
4369 pd_entry_t *pde;
4370 pt_entry_t *pte;
4371 bool pv_lists_locked;
4372
4373 if (pmap_is_current(pmap))
4374 pv_lists_locked = false;
4375 else {
4376 pv_lists_locked = true;
4377 resume:
4378 rw_wlock(&pvh_global_lock);
4379 sched_pin();
4380 }
4381 PMAP_LOCK(pmap);
4382 for (; sva < eva; sva = pdnxt) {
4383 pdnxt = (sva + NBPDR) & ~PDRMASK;
4384 if (pdnxt < sva)
4385 pdnxt = eva;
4386 pde = pmap_pde(pmap, sva);
4387 if ((*pde & PG_V) == 0)
4388 continue;
4389 if ((*pde & PG_PS) != 0) {
4390 if ((*pde & PG_W) == 0)
4391 panic("pmap_unwire: pde %#jx is missing PG_W",
4392 (uintmax_t)*pde);
4393
4394 /*
4395 * Are we unwiring the entire large page? If not,
4396 * demote the mapping and fall through.
4397 */
4398 if (sva + NBPDR == pdnxt && eva >= pdnxt) {
4399 /*
4400 * Regardless of whether a pde (or pte) is 32
4401 * or 64 bits in size, PG_W is among the least
4402 * significant 32 bits.
4403 */
4404 atomic_clear_int((u_int *)pde, PG_W);
4405 pmap->pm_stats.wired_count -= NBPDR /
4406 PAGE_SIZE;
4407 continue;
4408 } else {
4409 if (!pv_lists_locked) {
4410 pv_lists_locked = true;
4411 if (!rw_try_wlock(&pvh_global_lock)) {
4412 PMAP_UNLOCK(pmap);
4413 /* Repeat sva. */
4414 goto resume;
4415 }
4416 sched_pin();
4417 }
4418 if (!pmap_demote_pde(pmap, pde, sva))
4419 panic("pmap_unwire: demotion failed");
4420 }
4421 }
4422 if (pdnxt > eva)
4423 pdnxt = eva;
4424 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4425 sva += PAGE_SIZE) {
4426 if ((*pte & PG_V) == 0)
4427 continue;
4428 if ((*pte & PG_W) == 0)
4429 panic("pmap_unwire: pte %#jx is missing PG_W",
4430 (uintmax_t)*pte);
4431
4432 /*
4433 * PG_W must be cleared atomically. Although the pmap
4434 * lock synchronizes access to PG_W, another processor
4435 * could be setting PG_M and/or PG_A concurrently.
4436 *
4437 * PG_W is among the least significant 32 bits.
4438 */
4439 atomic_clear_int((u_int *)pte, PG_W);
4440 pmap->pm_stats.wired_count--;
4441 }
4442 }
4443 if (pv_lists_locked) {
4444 sched_unpin();
4445 rw_wunlock(&pvh_global_lock);
4446 }
4447 PMAP_UNLOCK(pmap);
4448 }
4449
4450 /*
4451 * Copy the range specified by src_addr/len
4452 * from the source map to the range dst_addr/len
4453 * in the destination map.
4454 *
4455 * This routine is only advisory and need not do anything. Since
4456 * current pmap is always the kernel pmap when executing in
4457 * kernel, and we do not copy from the kernel pmap to a user
4458 * pmap, this optimization is not usable in 4/4G full split i386
4459 * world.
4460 */
4461
4462 static void
__CONCAT(PMTYPE,copy)4463 __CONCAT(PMTYPE, copy)(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4464 vm_size_t len, vm_offset_t src_addr)
4465 {
4466 pt_entry_t *src_pte, *dst_pte, ptetemp;
4467 pd_entry_t srcptepaddr;
4468 vm_page_t dstmpte, srcmpte;
4469 vm_offset_t addr, end_addr, pdnxt;
4470 u_int ptepindex;
4471
4472 if (dst_addr != src_addr)
4473 return;
4474
4475 end_addr = src_addr + len;
4476
4477 rw_wlock(&pvh_global_lock);
4478 if (dst_pmap < src_pmap) {
4479 PMAP_LOCK(dst_pmap);
4480 PMAP_LOCK(src_pmap);
4481 } else {
4482 PMAP_LOCK(src_pmap);
4483 PMAP_LOCK(dst_pmap);
4484 }
4485 sched_pin();
4486 for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4487 KASSERT(addr < PMAP_TRM_MIN_ADDRESS,
4488 ("pmap_copy: invalid to pmap_copy the trampoline"));
4489
4490 pdnxt = (addr + NBPDR) & ~PDRMASK;
4491 if (pdnxt < addr)
4492 pdnxt = end_addr;
4493 ptepindex = addr >> PDRSHIFT;
4494
4495 srcptepaddr = src_pmap->pm_pdir[ptepindex];
4496 if (srcptepaddr == 0)
4497 continue;
4498
4499 if (srcptepaddr & PG_PS) {
4500 if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4501 continue;
4502 if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4503 ((srcptepaddr & PG_MANAGED) == 0 ||
4504 pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
4505 PMAP_ENTER_NORECLAIM))) {
4506 dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4507 ~PG_W;
4508 dst_pmap->pm_stats.resident_count +=
4509 NBPDR / PAGE_SIZE;
4510 pmap_pde_mappings++;
4511 }
4512 continue;
4513 }
4514
4515 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4516 KASSERT(srcmpte->ref_count > 0,
4517 ("pmap_copy: source page table page is unused"));
4518
4519 if (pdnxt > end_addr)
4520 pdnxt = end_addr;
4521
4522 src_pte = pmap_pte_quick3(src_pmap, addr);
4523 while (addr < pdnxt) {
4524 ptetemp = *src_pte;
4525 /*
4526 * we only virtual copy managed pages
4527 */
4528 if ((ptetemp & PG_MANAGED) != 0) {
4529 dstmpte = pmap_allocpte(dst_pmap, addr,
4530 PMAP_ENTER_NOSLEEP);
4531 if (dstmpte == NULL)
4532 goto out;
4533 dst_pte = pmap_pte_quick(dst_pmap, addr);
4534 if (*dst_pte == 0 &&
4535 pmap_try_insert_pv_entry(dst_pmap, addr,
4536 PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4537 /*
4538 * Clear the wired, modified, and
4539 * accessed (referenced) bits
4540 * during the copy.
4541 */
4542 *dst_pte = ptetemp & ~(PG_W | PG_M |
4543 PG_A);
4544 dst_pmap->pm_stats.resident_count++;
4545 } else {
4546 pmap_abort_ptp(dst_pmap, addr, dstmpte);
4547 goto out;
4548 }
4549 if (dstmpte->ref_count >= srcmpte->ref_count)
4550 break;
4551 }
4552 addr += PAGE_SIZE;
4553 src_pte++;
4554 }
4555 }
4556 out:
4557 sched_unpin();
4558 rw_wunlock(&pvh_global_lock);
4559 PMAP_UNLOCK(src_pmap);
4560 PMAP_UNLOCK(dst_pmap);
4561 }
4562
4563 /*
4564 * Zero 1 page of virtual memory mapped from a hardware page by the caller.
4565 */
4566 static __inline void
pagezero(void * page)4567 pagezero(void *page)
4568 {
4569 #if defined(I686_CPU)
4570 if (cpu_class == CPUCLASS_686) {
4571 if (cpu_feature & CPUID_SSE2)
4572 sse2_pagezero(page);
4573 else
4574 i686_pagezero(page);
4575 } else
4576 #endif
4577 bzero(page, PAGE_SIZE);
4578 }
4579
4580 /*
4581 * Zero the specified hardware page.
4582 */
4583 static void
__CONCAT(PMTYPE,zero_page)4584 __CONCAT(PMTYPE, zero_page)(vm_page_t m)
4585 {
4586 pt_entry_t *cmap_pte2;
4587 struct pcpu *pc;
4588
4589 sched_pin();
4590 pc = get_pcpu();
4591 cmap_pte2 = pc->pc_cmap_pte2;
4592 mtx_lock(&pc->pc_cmap_lock);
4593 if (*cmap_pte2)
4594 panic("pmap_zero_page: CMAP2 busy");
4595 *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4596 pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4597 invlcaddr(pc->pc_cmap_addr2);
4598 pagezero(pc->pc_cmap_addr2);
4599 *cmap_pte2 = 0;
4600
4601 /*
4602 * Unpin the thread before releasing the lock. Otherwise the thread
4603 * could be rescheduled while still bound to the current CPU, only
4604 * to unpin itself immediately upon resuming execution.
4605 */
4606 sched_unpin();
4607 mtx_unlock(&pc->pc_cmap_lock);
4608 }
4609
4610 /*
4611 * Zero an area within a single hardware page. off and size must not
4612 * cover an area beyond a single hardware page.
4613 */
4614 static void
__CONCAT(PMTYPE,zero_page_area)4615 __CONCAT(PMTYPE, zero_page_area)(vm_page_t m, int off, int size)
4616 {
4617 pt_entry_t *cmap_pte2;
4618 struct pcpu *pc;
4619
4620 sched_pin();
4621 pc = get_pcpu();
4622 cmap_pte2 = pc->pc_cmap_pte2;
4623 mtx_lock(&pc->pc_cmap_lock);
4624 if (*cmap_pte2)
4625 panic("pmap_zero_page_area: CMAP2 busy");
4626 *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4627 pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4628 invlcaddr(pc->pc_cmap_addr2);
4629 if (off == 0 && size == PAGE_SIZE)
4630 pagezero(pc->pc_cmap_addr2);
4631 else
4632 bzero(pc->pc_cmap_addr2 + off, size);
4633 *cmap_pte2 = 0;
4634 sched_unpin();
4635 mtx_unlock(&pc->pc_cmap_lock);
4636 }
4637
4638 /*
4639 * Copy 1 specified hardware page to another.
4640 */
4641 static void
__CONCAT(PMTYPE,copy_page)4642 __CONCAT(PMTYPE, copy_page)(vm_page_t src, vm_page_t dst)
4643 {
4644 pt_entry_t *cmap_pte1, *cmap_pte2;
4645 struct pcpu *pc;
4646
4647 sched_pin();
4648 pc = get_pcpu();
4649 cmap_pte1 = pc->pc_cmap_pte1;
4650 cmap_pte2 = pc->pc_cmap_pte2;
4651 mtx_lock(&pc->pc_cmap_lock);
4652 if (*cmap_pte1)
4653 panic("pmap_copy_page: CMAP1 busy");
4654 if (*cmap_pte2)
4655 panic("pmap_copy_page: CMAP2 busy");
4656 *cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4657 pmap_cache_bits(kernel_pmap, src->md.pat_mode, false);
4658 invlcaddr(pc->pc_cmap_addr1);
4659 *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4660 pmap_cache_bits(kernel_pmap, dst->md.pat_mode, false);
4661 invlcaddr(pc->pc_cmap_addr2);
4662 bcopy(pc->pc_cmap_addr1, pc->pc_cmap_addr2, PAGE_SIZE);
4663 *cmap_pte1 = 0;
4664 *cmap_pte2 = 0;
4665 sched_unpin();
4666 mtx_unlock(&pc->pc_cmap_lock);
4667 }
4668
4669 static void
__CONCAT(PMTYPE,copy_pages)4670 __CONCAT(PMTYPE, copy_pages)(vm_page_t ma[], vm_offset_t a_offset,
4671 vm_page_t mb[], vm_offset_t b_offset, int xfersize)
4672 {
4673 vm_page_t a_pg, b_pg;
4674 char *a_cp, *b_cp;
4675 vm_offset_t a_pg_offset, b_pg_offset;
4676 pt_entry_t *cmap_pte1, *cmap_pte2;
4677 struct pcpu *pc;
4678 int cnt;
4679
4680 sched_pin();
4681 pc = get_pcpu();
4682 cmap_pte1 = pc->pc_cmap_pte1;
4683 cmap_pte2 = pc->pc_cmap_pte2;
4684 mtx_lock(&pc->pc_cmap_lock);
4685 if (*cmap_pte1 != 0)
4686 panic("pmap_copy_pages: CMAP1 busy");
4687 if (*cmap_pte2 != 0)
4688 panic("pmap_copy_pages: CMAP2 busy");
4689 while (xfersize > 0) {
4690 a_pg = ma[a_offset >> PAGE_SHIFT];
4691 a_pg_offset = a_offset & PAGE_MASK;
4692 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4693 b_pg = mb[b_offset >> PAGE_SHIFT];
4694 b_pg_offset = b_offset & PAGE_MASK;
4695 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4696 *cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4697 pmap_cache_bits(kernel_pmap, a_pg->md.pat_mode, false);
4698 invlcaddr(pc->pc_cmap_addr1);
4699 *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4700 PG_M | pmap_cache_bits(kernel_pmap, b_pg->md.pat_mode,
4701 false);
4702 invlcaddr(pc->pc_cmap_addr2);
4703 a_cp = pc->pc_cmap_addr1 + a_pg_offset;
4704 b_cp = pc->pc_cmap_addr2 + b_pg_offset;
4705 bcopy(a_cp, b_cp, cnt);
4706 a_offset += cnt;
4707 b_offset += cnt;
4708 xfersize -= cnt;
4709 }
4710 *cmap_pte1 = 0;
4711 *cmap_pte2 = 0;
4712 sched_unpin();
4713 mtx_unlock(&pc->pc_cmap_lock);
4714 }
4715
4716 /*
4717 * Returns true if the pmap's pv is one of the first
4718 * 16 pvs linked to from this page. This count may
4719 * be changed upwards or downwards in the future; it
4720 * is only necessary that true be returned for a small
4721 * subset of pmaps for proper page aging.
4722 */
4723 static bool
__CONCAT(PMTYPE,page_exists_quick)4724 __CONCAT(PMTYPE, page_exists_quick)(pmap_t pmap, vm_page_t m)
4725 {
4726 struct md_page *pvh;
4727 pv_entry_t pv;
4728 int loops = 0;
4729 bool rv;
4730
4731 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4732 ("pmap_page_exists_quick: page %p is not managed", m));
4733 rv = false;
4734 rw_wlock(&pvh_global_lock);
4735 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4736 if (PV_PMAP(pv) == pmap) {
4737 rv = true;
4738 break;
4739 }
4740 loops++;
4741 if (loops >= 16)
4742 break;
4743 }
4744 if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4745 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4746 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4747 if (PV_PMAP(pv) == pmap) {
4748 rv = true;
4749 break;
4750 }
4751 loops++;
4752 if (loops >= 16)
4753 break;
4754 }
4755 }
4756 rw_wunlock(&pvh_global_lock);
4757 return (rv);
4758 }
4759
4760 /*
4761 * pmap_page_wired_mappings:
4762 *
4763 * Return the number of managed mappings to the given physical page
4764 * that are wired.
4765 */
4766 static int
__CONCAT(PMTYPE,page_wired_mappings)4767 __CONCAT(PMTYPE, page_wired_mappings)(vm_page_t m)
4768 {
4769 int count;
4770
4771 count = 0;
4772 if ((m->oflags & VPO_UNMANAGED) != 0)
4773 return (count);
4774 rw_wlock(&pvh_global_lock);
4775 count = pmap_pvh_wired_mappings(&m->md, count);
4776 if ((m->flags & PG_FICTITIOUS) == 0) {
4777 count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4778 count);
4779 }
4780 rw_wunlock(&pvh_global_lock);
4781 return (count);
4782 }
4783
4784 /*
4785 * pmap_pvh_wired_mappings:
4786 *
4787 * Return the updated number "count" of managed mappings that are wired.
4788 */
4789 static int
pmap_pvh_wired_mappings(struct md_page * pvh,int count)4790 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4791 {
4792 pmap_t pmap;
4793 pt_entry_t *pte;
4794 pv_entry_t pv;
4795
4796 rw_assert(&pvh_global_lock, RA_WLOCKED);
4797 sched_pin();
4798 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4799 pmap = PV_PMAP(pv);
4800 PMAP_LOCK(pmap);
4801 pte = pmap_pte_quick(pmap, pv->pv_va);
4802 if ((*pte & PG_W) != 0)
4803 count++;
4804 PMAP_UNLOCK(pmap);
4805 }
4806 sched_unpin();
4807 return (count);
4808 }
4809
4810 /*
4811 * Returns true if the given page is mapped individually or as part of
4812 * a 4mpage. Otherwise, returns false.
4813 */
4814 static bool
__CONCAT(PMTYPE,page_is_mapped)4815 __CONCAT(PMTYPE, page_is_mapped)(vm_page_t m)
4816 {
4817 bool rv;
4818
4819 if ((m->oflags & VPO_UNMANAGED) != 0)
4820 return (false);
4821 rw_wlock(&pvh_global_lock);
4822 rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4823 ((m->flags & PG_FICTITIOUS) == 0 &&
4824 !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4825 rw_wunlock(&pvh_global_lock);
4826 return (rv);
4827 }
4828
4829 /*
4830 * Remove all pages from specified address space
4831 * this aids process exit speeds. Also, this code
4832 * is special cased for current process only, but
4833 * can have the more generic (and slightly slower)
4834 * mode enabled. This is much faster than pmap_remove
4835 * in the case of running down an entire address space.
4836 */
4837 static void
__CONCAT(PMTYPE,remove_pages)4838 __CONCAT(PMTYPE, remove_pages)(pmap_t pmap)
4839 {
4840 pt_entry_t *pte, tpte;
4841 vm_page_t m, mpte, mt;
4842 pv_entry_t pv;
4843 struct md_page *pvh;
4844 struct pv_chunk *pc, *npc;
4845 struct spglist free;
4846 int field, idx;
4847 int32_t bit;
4848 uint32_t inuse, bitmask;
4849 int allfree;
4850
4851 if (pmap != PCPU_GET(curpmap)) {
4852 printf("warning: pmap_remove_pages called with non-current pmap\n");
4853 return;
4854 }
4855 SLIST_INIT(&free);
4856 rw_wlock(&pvh_global_lock);
4857 PMAP_LOCK(pmap);
4858 sched_pin();
4859 TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4860 KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4861 pc->pc_pmap));
4862 allfree = 1;
4863 for (field = 0; field < _NPCM; field++) {
4864 inuse = ~pc->pc_map[field] & pc_freemask[field];
4865 while (inuse != 0) {
4866 bit = bsfl(inuse);
4867 bitmask = 1UL << bit;
4868 idx = field * 32 + bit;
4869 pv = &pc->pc_pventry[idx];
4870 inuse &= ~bitmask;
4871
4872 pte = pmap_pde(pmap, pv->pv_va);
4873 tpte = *pte;
4874 if ((tpte & PG_PS) == 0) {
4875 pte = pmap_pte_quick(pmap, pv->pv_va);
4876 tpte = *pte & ~PG_PTE_PAT;
4877 }
4878
4879 if (tpte == 0) {
4880 printf(
4881 "TPTE at %p IS ZERO @ VA %08x\n",
4882 pte, pv->pv_va);
4883 panic("bad pte");
4884 }
4885
4886 /*
4887 * We cannot remove wired pages from a process' mapping at this time
4888 */
4889 if (tpte & PG_W) {
4890 allfree = 0;
4891 continue;
4892 }
4893
4894 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4895 KASSERT(m->phys_addr == (tpte & PG_FRAME),
4896 ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4897 m, (uintmax_t)m->phys_addr,
4898 (uintmax_t)tpte));
4899
4900 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4901 m < &vm_page_array[vm_page_array_size],
4902 ("pmap_remove_pages: bad tpte %#jx",
4903 (uintmax_t)tpte));
4904
4905 pte_clear(pte);
4906
4907 /*
4908 * Update the vm_page_t clean/reference bits.
4909 */
4910 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4911 if ((tpte & PG_PS) != 0) {
4912 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4913 vm_page_dirty(mt);
4914 } else
4915 vm_page_dirty(m);
4916 }
4917
4918 /* Mark free */
4919 PV_STAT(pv_entry_frees++);
4920 PV_STAT(pv_entry_spare++);
4921 pv_entry_count--;
4922 pc->pc_map[field] |= bitmask;
4923 if ((tpte & PG_PS) != 0) {
4924 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4925 pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4926 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4927 if (TAILQ_EMPTY(&pvh->pv_list)) {
4928 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4929 if (TAILQ_EMPTY(&mt->md.pv_list))
4930 vm_page_aflag_clear(mt, PGA_WRITEABLE);
4931 }
4932 mpte = pmap_remove_pt_page(pmap, pv->pv_va);
4933 if (mpte != NULL) {
4934 KASSERT(vm_page_any_valid(mpte),
4935 ("pmap_remove_pages: pte page not promoted"));
4936 pmap->pm_stats.resident_count--;
4937 KASSERT(mpte->ref_count == NPTEPG,
4938 ("pmap_remove_pages: pte page ref count error"));
4939 mpte->ref_count = 0;
4940 pmap_add_delayed_free_list(mpte, &free, false);
4941 }
4942 } else {
4943 pmap->pm_stats.resident_count--;
4944 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4945 if (TAILQ_EMPTY(&m->md.pv_list) &&
4946 (m->flags & PG_FICTITIOUS) == 0) {
4947 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4948 if (TAILQ_EMPTY(&pvh->pv_list))
4949 vm_page_aflag_clear(m, PGA_WRITEABLE);
4950 }
4951 pmap_unuse_pt(pmap, pv->pv_va, &free);
4952 }
4953 }
4954 }
4955 if (allfree) {
4956 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4957 free_pv_chunk(pc);
4958 }
4959 }
4960 sched_unpin();
4961 pmap_invalidate_all_int(pmap);
4962 rw_wunlock(&pvh_global_lock);
4963 PMAP_UNLOCK(pmap);
4964 vm_page_free_pages_toq(&free, true);
4965 }
4966
4967 /*
4968 * pmap_is_modified:
4969 *
4970 * Return whether or not the specified physical page was modified
4971 * in any physical maps.
4972 */
4973 static bool
__CONCAT(PMTYPE,is_modified)4974 __CONCAT(PMTYPE, is_modified)(vm_page_t m)
4975 {
4976 bool rv;
4977
4978 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4979 ("pmap_is_modified: page %p is not managed", m));
4980
4981 /*
4982 * If the page is not busied then this check is racy.
4983 */
4984 if (!pmap_page_is_write_mapped(m))
4985 return (false);
4986 rw_wlock(&pvh_global_lock);
4987 rv = pmap_is_modified_pvh(&m->md) ||
4988 ((m->flags & PG_FICTITIOUS) == 0 &&
4989 pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4990 rw_wunlock(&pvh_global_lock);
4991 return (rv);
4992 }
4993
4994 /*
4995 * Returns true if any of the given mappings were used to modify
4996 * physical memory. Otherwise, returns false. Both page and 2mpage
4997 * mappings are supported.
4998 */
4999 static bool
pmap_is_modified_pvh(struct md_page * pvh)5000 pmap_is_modified_pvh(struct md_page *pvh)
5001 {
5002 pv_entry_t pv;
5003 pt_entry_t *pte;
5004 pmap_t pmap;
5005 bool rv;
5006
5007 rw_assert(&pvh_global_lock, RA_WLOCKED);
5008 rv = false;
5009 sched_pin();
5010 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5011 pmap = PV_PMAP(pv);
5012 PMAP_LOCK(pmap);
5013 pte = pmap_pte_quick(pmap, pv->pv_va);
5014 rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
5015 PMAP_UNLOCK(pmap);
5016 if (rv)
5017 break;
5018 }
5019 sched_unpin();
5020 return (rv);
5021 }
5022
5023 /*
5024 * pmap_is_prefaultable:
5025 *
5026 * Return whether or not the specified virtual address is elgible
5027 * for prefault.
5028 */
5029 static bool
__CONCAT(PMTYPE,is_prefaultable)5030 __CONCAT(PMTYPE, is_prefaultable)(pmap_t pmap, vm_offset_t addr)
5031 {
5032 pd_entry_t pde;
5033 bool rv;
5034
5035 rv = false;
5036 PMAP_LOCK(pmap);
5037 pde = *pmap_pde(pmap, addr);
5038 if (pde != 0 && (pde & PG_PS) == 0)
5039 rv = pmap_pte_ufast(pmap, addr, pde) == 0;
5040 PMAP_UNLOCK(pmap);
5041 return (rv);
5042 }
5043
5044 /*
5045 * pmap_is_referenced:
5046 *
5047 * Return whether or not the specified physical page was referenced
5048 * in any physical maps.
5049 */
5050 static bool
__CONCAT(PMTYPE,is_referenced)5051 __CONCAT(PMTYPE, is_referenced)(vm_page_t m)
5052 {
5053 bool rv;
5054
5055 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5056 ("pmap_is_referenced: page %p is not managed", m));
5057 rw_wlock(&pvh_global_lock);
5058 rv = pmap_is_referenced_pvh(&m->md) ||
5059 ((m->flags & PG_FICTITIOUS) == 0 &&
5060 pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5061 rw_wunlock(&pvh_global_lock);
5062 return (rv);
5063 }
5064
5065 /*
5066 * Returns true if any of the given mappings were referenced and false
5067 * otherwise. Both page and 4mpage mappings are supported.
5068 */
5069 static bool
pmap_is_referenced_pvh(struct md_page * pvh)5070 pmap_is_referenced_pvh(struct md_page *pvh)
5071 {
5072 pv_entry_t pv;
5073 pt_entry_t *pte;
5074 pmap_t pmap;
5075 bool rv;
5076
5077 rw_assert(&pvh_global_lock, RA_WLOCKED);
5078 rv = false;
5079 sched_pin();
5080 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5081 pmap = PV_PMAP(pv);
5082 PMAP_LOCK(pmap);
5083 pte = pmap_pte_quick(pmap, pv->pv_va);
5084 rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
5085 PMAP_UNLOCK(pmap);
5086 if (rv)
5087 break;
5088 }
5089 sched_unpin();
5090 return (rv);
5091 }
5092
5093 /*
5094 * Clear the write and modified bits in each of the given page's mappings.
5095 */
5096 static void
__CONCAT(PMTYPE,remove_write)5097 __CONCAT(PMTYPE, remove_write)(vm_page_t m)
5098 {
5099 struct md_page *pvh;
5100 pv_entry_t next_pv, pv;
5101 pmap_t pmap;
5102 pd_entry_t *pde;
5103 pt_entry_t oldpte, *pte;
5104 vm_offset_t va;
5105
5106 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5107 ("pmap_remove_write: page %p is not managed", m));
5108 vm_page_assert_busied(m);
5109
5110 if (!pmap_page_is_write_mapped(m))
5111 return;
5112 rw_wlock(&pvh_global_lock);
5113 sched_pin();
5114 if ((m->flags & PG_FICTITIOUS) != 0)
5115 goto small_mappings;
5116 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5117 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5118 va = pv->pv_va;
5119 pmap = PV_PMAP(pv);
5120 PMAP_LOCK(pmap);
5121 pde = pmap_pde(pmap, va);
5122 if ((*pde & PG_RW) != 0)
5123 (void)pmap_demote_pde(pmap, pde, va);
5124 PMAP_UNLOCK(pmap);
5125 }
5126 small_mappings:
5127 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5128 pmap = PV_PMAP(pv);
5129 PMAP_LOCK(pmap);
5130 pde = pmap_pde(pmap, pv->pv_va);
5131 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
5132 " a 4mpage in page %p's pv list", m));
5133 pte = pmap_pte_quick(pmap, pv->pv_va);
5134 retry:
5135 oldpte = *pte;
5136 if ((oldpte & PG_RW) != 0) {
5137 /*
5138 * Regardless of whether a pte is 32 or 64 bits
5139 * in size, PG_RW and PG_M are among the least
5140 * significant 32 bits.
5141 */
5142 if (!atomic_cmpset_int((u_int *)pte, oldpte,
5143 oldpte & ~(PG_RW | PG_M)))
5144 goto retry;
5145 if ((oldpte & PG_M) != 0)
5146 vm_page_dirty(m);
5147 pmap_invalidate_page_int(pmap, pv->pv_va);
5148 }
5149 PMAP_UNLOCK(pmap);
5150 }
5151 vm_page_aflag_clear(m, PGA_WRITEABLE);
5152 sched_unpin();
5153 rw_wunlock(&pvh_global_lock);
5154 }
5155
5156 /*
5157 * pmap_ts_referenced:
5158 *
5159 * Return a count of reference bits for a page, clearing those bits.
5160 * It is not necessary for every reference bit to be cleared, but it
5161 * is necessary that 0 only be returned when there are truly no
5162 * reference bits set.
5163 *
5164 * As an optimization, update the page's dirty field if a modified bit is
5165 * found while counting reference bits. This opportunistic update can be
5166 * performed at low cost and can eliminate the need for some future calls
5167 * to pmap_is_modified(). However, since this function stops after
5168 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5169 * dirty pages. Those dirty pages will only be detected by a future call
5170 * to pmap_is_modified().
5171 */
5172 static int
__CONCAT(PMTYPE,ts_referenced)5173 __CONCAT(PMTYPE, ts_referenced)(vm_page_t m)
5174 {
5175 struct md_page *pvh;
5176 pv_entry_t pv, pvf;
5177 pmap_t pmap;
5178 pd_entry_t *pde;
5179 pt_entry_t *pte;
5180 vm_paddr_t pa;
5181 int rtval = 0;
5182
5183 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5184 ("pmap_ts_referenced: page %p is not managed", m));
5185 pa = VM_PAGE_TO_PHYS(m);
5186 pvh = pa_to_pvh(pa);
5187 rw_wlock(&pvh_global_lock);
5188 sched_pin();
5189 if ((m->flags & PG_FICTITIOUS) != 0 ||
5190 (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5191 goto small_mappings;
5192 pv = pvf;
5193 do {
5194 pmap = PV_PMAP(pv);
5195 PMAP_LOCK(pmap);
5196 pde = pmap_pde(pmap, pv->pv_va);
5197 if ((*pde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5198 /*
5199 * Although "*pde" is mapping a 2/4MB page, because
5200 * this function is called at a 4KB page granularity,
5201 * we only update the 4KB page under test.
5202 */
5203 vm_page_dirty(m);
5204 }
5205 if ((*pde & PG_A) != 0) {
5206 /*
5207 * Since this reference bit is shared by either 1024
5208 * or 512 4KB pages, it should not be cleared every
5209 * time it is tested. Apply a simple "hash" function
5210 * on the physical page number, the virtual superpage
5211 * number, and the pmap address to select one 4KB page
5212 * out of the 1024 or 512 on which testing the
5213 * reference bit will result in clearing that bit.
5214 * This function is designed to avoid the selection of
5215 * the same 4KB page for every 2- or 4MB page mapping.
5216 *
5217 * On demotion, a mapping that hasn't been referenced
5218 * is simply destroyed. To avoid the possibility of a
5219 * subsequent page fault on a demoted wired mapping,
5220 * always leave its reference bit set. Moreover,
5221 * since the superpage is wired, the current state of
5222 * its reference bit won't affect page replacement.
5223 */
5224 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
5225 (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
5226 (*pde & PG_W) == 0) {
5227 atomic_clear_int((u_int *)pde, PG_A);
5228 pmap_invalidate_page_int(pmap, pv->pv_va);
5229 }
5230 rtval++;
5231 }
5232 PMAP_UNLOCK(pmap);
5233 /* Rotate the PV list if it has more than one entry. */
5234 if (TAILQ_NEXT(pv, pv_next) != NULL) {
5235 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5236 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5237 }
5238 if (rtval >= PMAP_TS_REFERENCED_MAX)
5239 goto out;
5240 } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5241 small_mappings:
5242 if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5243 goto out;
5244 pv = pvf;
5245 do {
5246 pmap = PV_PMAP(pv);
5247 PMAP_LOCK(pmap);
5248 pde = pmap_pde(pmap, pv->pv_va);
5249 KASSERT((*pde & PG_PS) == 0,
5250 ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
5251 m));
5252 pte = pmap_pte_quick(pmap, pv->pv_va);
5253 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5254 vm_page_dirty(m);
5255 if ((*pte & PG_A) != 0) {
5256 atomic_clear_int((u_int *)pte, PG_A);
5257 pmap_invalidate_page_int(pmap, pv->pv_va);
5258 rtval++;
5259 }
5260 PMAP_UNLOCK(pmap);
5261 /* Rotate the PV list if it has more than one entry. */
5262 if (TAILQ_NEXT(pv, pv_next) != NULL) {
5263 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5264 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5265 }
5266 } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5267 PMAP_TS_REFERENCED_MAX);
5268 out:
5269 sched_unpin();
5270 rw_wunlock(&pvh_global_lock);
5271 return (rtval);
5272 }
5273
5274 /*
5275 * Apply the given advice to the specified range of addresses within the
5276 * given pmap. Depending on the advice, clear the referenced and/or
5277 * modified flags in each mapping and set the mapped page's dirty field.
5278 */
5279 static void
__CONCAT(PMTYPE,advise)5280 __CONCAT(PMTYPE, advise)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5281 int advice)
5282 {
5283 pd_entry_t oldpde, *pde;
5284 pt_entry_t *pte;
5285 vm_offset_t va, pdnxt;
5286 vm_page_t m;
5287 bool anychanged, pv_lists_locked;
5288
5289 if (advice != MADV_DONTNEED && advice != MADV_FREE)
5290 return;
5291 if (pmap_is_current(pmap))
5292 pv_lists_locked = false;
5293 else {
5294 pv_lists_locked = true;
5295 resume:
5296 rw_wlock(&pvh_global_lock);
5297 sched_pin();
5298 }
5299 anychanged = false;
5300 PMAP_LOCK(pmap);
5301 for (; sva < eva; sva = pdnxt) {
5302 pdnxt = (sva + NBPDR) & ~PDRMASK;
5303 if (pdnxt < sva)
5304 pdnxt = eva;
5305 pde = pmap_pde(pmap, sva);
5306 oldpde = *pde;
5307 if ((oldpde & PG_V) == 0)
5308 continue;
5309 else if ((oldpde & PG_PS) != 0) {
5310 if ((oldpde & PG_MANAGED) == 0)
5311 continue;
5312 if (!pv_lists_locked) {
5313 pv_lists_locked = true;
5314 if (!rw_try_wlock(&pvh_global_lock)) {
5315 if (anychanged)
5316 pmap_invalidate_all_int(pmap);
5317 PMAP_UNLOCK(pmap);
5318 goto resume;
5319 }
5320 sched_pin();
5321 }
5322 if (!pmap_demote_pde(pmap, pde, sva)) {
5323 /*
5324 * The large page mapping was destroyed.
5325 */
5326 continue;
5327 }
5328
5329 /*
5330 * Unless the page mappings are wired, remove the
5331 * mapping to a single page so that a subsequent
5332 * access may repromote. Choosing the last page
5333 * within the address range [sva, min(pdnxt, eva))
5334 * generally results in more repromotions. Since the
5335 * underlying page table page is fully populated, this
5336 * removal never frees a page table page.
5337 */
5338 if ((oldpde & PG_W) == 0) {
5339 va = eva;
5340 if (va > pdnxt)
5341 va = pdnxt;
5342 va -= PAGE_SIZE;
5343 KASSERT(va >= sva,
5344 ("pmap_advise: no address gap"));
5345 pte = pmap_pte_quick(pmap, va);
5346 KASSERT((*pte & PG_V) != 0,
5347 ("pmap_advise: invalid PTE"));
5348 pmap_remove_pte(pmap, pte, va, NULL);
5349 anychanged = true;
5350 }
5351 }
5352 if (pdnxt > eva)
5353 pdnxt = eva;
5354 va = pdnxt;
5355 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
5356 sva += PAGE_SIZE) {
5357 if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
5358 goto maybe_invlrng;
5359 else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5360 if (advice == MADV_DONTNEED) {
5361 /*
5362 * Future calls to pmap_is_modified()
5363 * can be avoided by making the page
5364 * dirty now.
5365 */
5366 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
5367 vm_page_dirty(m);
5368 }
5369 atomic_clear_int((u_int *)pte, PG_M | PG_A);
5370 } else if ((*pte & PG_A) != 0)
5371 atomic_clear_int((u_int *)pte, PG_A);
5372 else
5373 goto maybe_invlrng;
5374 if ((*pte & PG_G) != 0) {
5375 if (va == pdnxt)
5376 va = sva;
5377 } else
5378 anychanged = true;
5379 continue;
5380 maybe_invlrng:
5381 if (va != pdnxt) {
5382 pmap_invalidate_range_int(pmap, va, sva);
5383 va = pdnxt;
5384 }
5385 }
5386 if (va != pdnxt)
5387 pmap_invalidate_range_int(pmap, va, sva);
5388 }
5389 if (anychanged)
5390 pmap_invalidate_all_int(pmap);
5391 if (pv_lists_locked) {
5392 sched_unpin();
5393 rw_wunlock(&pvh_global_lock);
5394 }
5395 PMAP_UNLOCK(pmap);
5396 }
5397
5398 /*
5399 * Clear the modify bits on the specified physical page.
5400 */
5401 static void
__CONCAT(PMTYPE,clear_modify)5402 __CONCAT(PMTYPE, clear_modify)(vm_page_t m)
5403 {
5404 struct md_page *pvh;
5405 pv_entry_t next_pv, pv;
5406 pmap_t pmap;
5407 pd_entry_t oldpde, *pde;
5408 pt_entry_t *pte;
5409 vm_offset_t va;
5410
5411 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5412 ("pmap_clear_modify: page %p is not managed", m));
5413 vm_page_assert_busied(m);
5414
5415 if (!pmap_page_is_write_mapped(m))
5416 return;
5417 rw_wlock(&pvh_global_lock);
5418 sched_pin();
5419 if ((m->flags & PG_FICTITIOUS) != 0)
5420 goto small_mappings;
5421 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5422 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5423 va = pv->pv_va;
5424 pmap = PV_PMAP(pv);
5425 PMAP_LOCK(pmap);
5426 pde = pmap_pde(pmap, va);
5427 oldpde = *pde;
5428 /* If oldpde has PG_RW set, then it also has PG_M set. */
5429 if ((oldpde & PG_RW) != 0 &&
5430 pmap_demote_pde(pmap, pde, va) &&
5431 (oldpde & PG_W) == 0) {
5432 /*
5433 * Write protect the mapping to a single page so that
5434 * a subsequent write access may repromote.
5435 */
5436 va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
5437 pte = pmap_pte_quick(pmap, va);
5438 /*
5439 * Regardless of whether a pte is 32 or 64 bits
5440 * in size, PG_RW and PG_M are among the least
5441 * significant 32 bits.
5442 */
5443 atomic_clear_int((u_int *)pte, PG_M | PG_RW);
5444 vm_page_dirty(m);
5445 pmap_invalidate_page_int(pmap, va);
5446 }
5447 PMAP_UNLOCK(pmap);
5448 }
5449 small_mappings:
5450 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5451 pmap = PV_PMAP(pv);
5452 PMAP_LOCK(pmap);
5453 pde = pmap_pde(pmap, pv->pv_va);
5454 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5455 " a 4mpage in page %p's pv list", m));
5456 pte = pmap_pte_quick(pmap, pv->pv_va);
5457 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5458 /*
5459 * Regardless of whether a pte is 32 or 64 bits
5460 * in size, PG_M is among the least significant
5461 * 32 bits.
5462 */
5463 atomic_clear_int((u_int *)pte, PG_M);
5464 pmap_invalidate_page_int(pmap, pv->pv_va);
5465 }
5466 PMAP_UNLOCK(pmap);
5467 }
5468 sched_unpin();
5469 rw_wunlock(&pvh_global_lock);
5470 }
5471
5472 /*
5473 * Miscellaneous support routines follow
5474 */
5475
5476 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
5477 static __inline void
pmap_pte_attr(pt_entry_t * pte,int cache_bits)5478 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5479 {
5480 u_int opte, npte;
5481
5482 /*
5483 * The cache mode bits are all in the low 32-bits of the
5484 * PTE, so we can just spin on updating the low 32-bits.
5485 */
5486 do {
5487 opte = *(u_int *)pte;
5488 npte = opte & ~PG_PTE_CACHE;
5489 npte |= cache_bits;
5490 } while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5491 }
5492
5493 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5494 static __inline void
pmap_pde_attr(pd_entry_t * pde,int cache_bits)5495 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5496 {
5497 u_int opde, npde;
5498
5499 /*
5500 * The cache mode bits are all in the low 32-bits of the
5501 * PDE, so we can just spin on updating the low 32-bits.
5502 */
5503 do {
5504 opde = *(u_int *)pde;
5505 npde = opde & ~PG_PDE_CACHE;
5506 npde |= cache_bits;
5507 } while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5508 }
5509
5510 /*
5511 * Map a set of physical memory pages into the kernel virtual
5512 * address space. Return a pointer to where it is mapped. This
5513 * routine is intended to be used for mapping device memory,
5514 * NOT real memory.
5515 */
5516 static void *
__CONCAT(PMTYPE,mapdev_attr)5517 __CONCAT(PMTYPE, mapdev_attr)(vm_paddr_t pa, vm_size_t size, int mode,
5518 int flags)
5519 {
5520 struct pmap_preinit_mapping *ppim;
5521 vm_offset_t va, offset;
5522 vm_page_t m;
5523 vm_size_t tmpsize;
5524 int i;
5525
5526 offset = pa & PAGE_MASK;
5527 size = round_page(offset + size);
5528 pa = pa & PG_FRAME;
5529
5530 if (pa < PMAP_MAP_LOW && pa + size <= PMAP_MAP_LOW) {
5531 va = pa + PMAP_MAP_LOW;
5532 if ((flags & MAPDEV_SETATTR) == 0)
5533 return ((void *)(va + offset));
5534 } else if (!pmap_initialized) {
5535 va = 0;
5536 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5537 ppim = pmap_preinit_mapping + i;
5538 if (ppim->va == 0) {
5539 ppim->pa = pa;
5540 ppim->sz = size;
5541 ppim->mode = mode;
5542 ppim->va = virtual_avail;
5543 virtual_avail += size;
5544 va = ppim->va;
5545 break;
5546 }
5547 }
5548 if (va == 0)
5549 panic("%s: too many preinit mappings", __func__);
5550 } else {
5551 /*
5552 * If we have a preinit mapping, re-use it.
5553 */
5554 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5555 ppim = pmap_preinit_mapping + i;
5556 if (ppim->pa == pa && ppim->sz == size &&
5557 (ppim->mode == mode ||
5558 (flags & MAPDEV_SETATTR) == 0))
5559 return ((void *)(ppim->va + offset));
5560 }
5561 va = kva_alloc(size);
5562 if (va == 0)
5563 panic("%s: Couldn't allocate KVA", __func__);
5564 }
5565 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE) {
5566 if ((flags & MAPDEV_SETATTR) == 0 && pmap_initialized) {
5567 m = PHYS_TO_VM_PAGE(pa);
5568 if (m != NULL && VM_PAGE_TO_PHYS(m) == pa) {
5569 pmap_kenter_attr(va + tmpsize, pa + tmpsize,
5570 m->md.pat_mode);
5571 continue;
5572 }
5573 }
5574 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5575 }
5576 pmap_invalidate_range_int(kernel_pmap, va, va + tmpsize);
5577 pmap_invalidate_cache_range(va, va + size);
5578 return ((void *)(va + offset));
5579 }
5580
5581 static void
__CONCAT(PMTYPE,unmapdev)5582 __CONCAT(PMTYPE, unmapdev)(void *p, vm_size_t size)
5583 {
5584 struct pmap_preinit_mapping *ppim;
5585 vm_offset_t offset, va;
5586 int i;
5587
5588 va = (vm_offset_t)p;
5589 if (va >= PMAP_MAP_LOW && va <= KERNBASE && va + size <= KERNBASE)
5590 return;
5591 offset = va & PAGE_MASK;
5592 size = round_page(offset + size);
5593 va = trunc_page(va);
5594 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5595 ppim = pmap_preinit_mapping + i;
5596 if (ppim->va == va && ppim->sz == size) {
5597 if (pmap_initialized)
5598 return;
5599 ppim->pa = 0;
5600 ppim->va = 0;
5601 ppim->sz = 0;
5602 ppim->mode = 0;
5603 if (va + size == virtual_avail)
5604 virtual_avail = va;
5605 return;
5606 }
5607 }
5608 if (pmap_initialized) {
5609 pmap_qremove(va, atop(size));
5610 kva_free(va, size);
5611 }
5612 }
5613
5614 /*
5615 * Sets the memory attribute for the specified page.
5616 */
5617 static void
__CONCAT(PMTYPE,page_set_memattr)5618 __CONCAT(PMTYPE, page_set_memattr)(vm_page_t m, vm_memattr_t ma)
5619 {
5620
5621 m->md.pat_mode = ma;
5622 if ((m->flags & PG_FICTITIOUS) != 0)
5623 return;
5624
5625 /*
5626 * If "m" is a normal page, flush it from the cache.
5627 * See pmap_invalidate_cache_range().
5628 *
5629 * First, try to find an existing mapping of the page by sf
5630 * buffer. sf_buf_invalidate_cache() modifies mapping and
5631 * flushes the cache.
5632 */
5633 if (sf_buf_invalidate_cache(m))
5634 return;
5635
5636 /*
5637 * If page is not mapped by sf buffer, but CPU does not
5638 * support self snoop, map the page transient and do
5639 * invalidation. In the worst case, whole cache is flushed by
5640 * pmap_invalidate_cache_range().
5641 */
5642 if ((cpu_feature & CPUID_SS) == 0)
5643 pmap_flush_page(m);
5644 }
5645
5646 static void
__CONCAT(PMTYPE,flush_page)5647 __CONCAT(PMTYPE, flush_page)(vm_page_t m)
5648 {
5649 pt_entry_t *cmap_pte2;
5650 struct pcpu *pc;
5651 vm_offset_t sva, eva;
5652 bool useclflushopt;
5653
5654 useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
5655 if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
5656 sched_pin();
5657 pc = get_pcpu();
5658 cmap_pte2 = pc->pc_cmap_pte2;
5659 mtx_lock(&pc->pc_cmap_lock);
5660 if (*cmap_pte2)
5661 panic("pmap_flush_page: CMAP2 busy");
5662 *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5663 PG_A | PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode,
5664 false);
5665 invlcaddr(pc->pc_cmap_addr2);
5666 sva = (vm_offset_t)pc->pc_cmap_addr2;
5667 eva = sva + PAGE_SIZE;
5668
5669 /*
5670 * Use mfence or sfence despite the ordering implied by
5671 * mtx_{un,}lock() because clflush on non-Intel CPUs
5672 * and clflushopt are not guaranteed to be ordered by
5673 * any other instruction.
5674 */
5675 if (useclflushopt)
5676 sfence();
5677 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5678 mfence();
5679 for (; sva < eva; sva += cpu_clflush_line_size) {
5680 if (useclflushopt)
5681 clflushopt(sva);
5682 else
5683 clflush(sva);
5684 }
5685 if (useclflushopt)
5686 sfence();
5687 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5688 mfence();
5689 *cmap_pte2 = 0;
5690 sched_unpin();
5691 mtx_unlock(&pc->pc_cmap_lock);
5692 } else
5693 pmap_invalidate_cache();
5694 }
5695
5696 /*
5697 * Changes the specified virtual address range's memory type to that given by
5698 * the parameter "mode". The specified virtual address range must be
5699 * completely contained within either the kernel map.
5700 *
5701 * Returns zero if the change completed successfully, and either EINVAL or
5702 * ENOMEM if the change failed. Specifically, EINVAL is returned if some part
5703 * of the virtual address range was not mapped, and ENOMEM is returned if
5704 * there was insufficient memory available to complete the change.
5705 */
5706 static int
__CONCAT(PMTYPE,change_attr)5707 __CONCAT(PMTYPE, change_attr)(vm_offset_t va, vm_size_t size, int mode)
5708 {
5709 vm_offset_t base, offset, tmpva;
5710 pd_entry_t *pde;
5711 pt_entry_t *pte;
5712 int cache_bits_pte, cache_bits_pde;
5713 bool changed;
5714
5715 base = trunc_page(va);
5716 offset = va & PAGE_MASK;
5717 size = round_page(offset + size);
5718
5719 /*
5720 * Only supported on kernel virtual addresses above the recursive map.
5721 */
5722 if (base < VM_MIN_KERNEL_ADDRESS)
5723 return (EINVAL);
5724
5725 cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, true);
5726 cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, false);
5727 changed = false;
5728
5729 /*
5730 * Pages that aren't mapped aren't supported. Also break down
5731 * 2/4MB pages into 4KB pages if required.
5732 */
5733 PMAP_LOCK(kernel_pmap);
5734 for (tmpva = base; tmpva < base + size; ) {
5735 pde = pmap_pde(kernel_pmap, tmpva);
5736 if (*pde == 0) {
5737 PMAP_UNLOCK(kernel_pmap);
5738 return (EINVAL);
5739 }
5740 if (*pde & PG_PS) {
5741 /*
5742 * If the current 2/4MB page already has
5743 * the required memory type, then we need not
5744 * demote this page. Just increment tmpva to
5745 * the next 2/4MB page frame.
5746 */
5747 if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5748 tmpva = trunc_4mpage(tmpva) + NBPDR;
5749 continue;
5750 }
5751
5752 /*
5753 * If the current offset aligns with a 2/4MB
5754 * page frame and there is at least 2/4MB left
5755 * within the range, then we need not break
5756 * down this page into 4KB pages.
5757 */
5758 if ((tmpva & PDRMASK) == 0 &&
5759 tmpva + PDRMASK < base + size) {
5760 tmpva += NBPDR;
5761 continue;
5762 }
5763 if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5764 PMAP_UNLOCK(kernel_pmap);
5765 return (ENOMEM);
5766 }
5767 }
5768 pte = vtopte(tmpva);
5769 if (*pte == 0) {
5770 PMAP_UNLOCK(kernel_pmap);
5771 return (EINVAL);
5772 }
5773 tmpva += PAGE_SIZE;
5774 }
5775 PMAP_UNLOCK(kernel_pmap);
5776
5777 /*
5778 * Ok, all the pages exist, so run through them updating their
5779 * cache mode if required.
5780 */
5781 for (tmpva = base; tmpva < base + size; ) {
5782 pde = pmap_pde(kernel_pmap, tmpva);
5783 if (*pde & PG_PS) {
5784 if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5785 pmap_pde_attr(pde, cache_bits_pde);
5786 changed = true;
5787 }
5788 tmpva = trunc_4mpage(tmpva) + NBPDR;
5789 } else {
5790 pte = vtopte(tmpva);
5791 if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5792 pmap_pte_attr(pte, cache_bits_pte);
5793 changed = true;
5794 }
5795 tmpva += PAGE_SIZE;
5796 }
5797 }
5798
5799 /*
5800 * Flush CPU caches to make sure any data isn't cached that
5801 * shouldn't be, etc.
5802 */
5803 if (changed) {
5804 pmap_invalidate_range_int(kernel_pmap, base, tmpva);
5805 pmap_invalidate_cache_range(base, tmpva);
5806 }
5807 return (0);
5808 }
5809
5810 /*
5811 * Perform the pmap work for mincore(2). If the page is not both referenced and
5812 * modified by this pmap, returns its physical address so that the caller can
5813 * find other mappings.
5814 */
5815 static int
__CONCAT(PMTYPE,mincore)5816 __CONCAT(PMTYPE, mincore)(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
5817 {
5818 pd_entry_t pde;
5819 pt_entry_t pte;
5820 vm_paddr_t pa;
5821 int val;
5822
5823 PMAP_LOCK(pmap);
5824 pde = *pmap_pde(pmap, addr);
5825 if (pde != 0) {
5826 if ((pde & PG_PS) != 0) {
5827 pte = pde;
5828 /* Compute the physical address of the 4KB page. */
5829 pa = ((pde & PG_PS_FRAME) | (addr & PDRMASK)) &
5830 PG_FRAME;
5831 val = MINCORE_PSIND(1);
5832 } else {
5833 pte = pmap_pte_ufast(pmap, addr, pde);
5834 pa = pte & PG_FRAME;
5835 val = 0;
5836 }
5837 } else {
5838 pte = 0;
5839 pa = 0;
5840 val = 0;
5841 }
5842 if ((pte & PG_V) != 0) {
5843 val |= MINCORE_INCORE;
5844 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5845 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5846 if ((pte & PG_A) != 0)
5847 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5848 }
5849 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5850 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5851 (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5852 *pap = pa;
5853 }
5854 PMAP_UNLOCK(pmap);
5855 return (val);
5856 }
5857
5858 static void
__CONCAT(PMTYPE,activate)5859 __CONCAT(PMTYPE, activate)(struct thread *td)
5860 {
5861 pmap_t pmap, oldpmap;
5862 u_int cpuid;
5863 u_int32_t cr3;
5864
5865 critical_enter();
5866 pmap = vmspace_pmap(td->td_proc->p_vmspace);
5867 oldpmap = PCPU_GET(curpmap);
5868 cpuid = PCPU_GET(cpuid);
5869 #if defined(SMP)
5870 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5871 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5872 #else
5873 CPU_CLR(cpuid, &oldpmap->pm_active);
5874 CPU_SET(cpuid, &pmap->pm_active);
5875 #endif
5876 #ifdef PMAP_PAE_COMP
5877 cr3 = vtophys(pmap->pm_pdpt);
5878 #else
5879 cr3 = vtophys(pmap->pm_pdir);
5880 #endif
5881 /*
5882 * pmap_activate is for the current thread on the current cpu
5883 */
5884 td->td_pcb->pcb_cr3 = cr3;
5885 PCPU_SET(curpmap, pmap);
5886 critical_exit();
5887 }
5888
5889 static void
__CONCAT(PMTYPE,activate_boot)5890 __CONCAT(PMTYPE, activate_boot)(pmap_t pmap)
5891 {
5892 u_int cpuid;
5893
5894 cpuid = PCPU_GET(cpuid);
5895 #if defined(SMP)
5896 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5897 #else
5898 CPU_SET(cpuid, &pmap->pm_active);
5899 #endif
5900 PCPU_SET(curpmap, pmap);
5901 }
5902
5903 /*
5904 * Increase the starting virtual address of the given mapping if a
5905 * different alignment might result in more superpage mappings.
5906 */
5907 static void
__CONCAT(PMTYPE,align_superpage)5908 __CONCAT(PMTYPE, align_superpage)(vm_object_t object, vm_ooffset_t offset,
5909 vm_offset_t *addr, vm_size_t size)
5910 {
5911 vm_offset_t superpage_offset;
5912
5913 if (size < NBPDR)
5914 return;
5915 if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5916 offset += ptoa(object->pg_color);
5917 superpage_offset = offset & PDRMASK;
5918 if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5919 (*addr & PDRMASK) == superpage_offset)
5920 return;
5921 if ((*addr & PDRMASK) < superpage_offset)
5922 *addr = (*addr & ~PDRMASK) + superpage_offset;
5923 else
5924 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5925 }
5926
5927 static vm_offset_t
__CONCAT(PMTYPE,quick_enter_page)5928 __CONCAT(PMTYPE, quick_enter_page)(vm_page_t m)
5929 {
5930 vm_offset_t qaddr;
5931 pt_entry_t *pte;
5932
5933 critical_enter();
5934 qaddr = PCPU_GET(qmap_addr);
5935 pte = vtopte(qaddr);
5936
5937 KASSERT(*pte == 0,
5938 ("pmap_quick_enter_page: PTE busy %#jx", (uintmax_t)*pte));
5939 *pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
5940 pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(m), false);
5941 invlpg(qaddr);
5942
5943 return (qaddr);
5944 }
5945
5946 static void
__CONCAT(PMTYPE,quick_remove_page)5947 __CONCAT(PMTYPE, quick_remove_page)(vm_offset_t addr)
5948 {
5949 vm_offset_t qaddr;
5950 pt_entry_t *pte;
5951
5952 qaddr = PCPU_GET(qmap_addr);
5953 pte = vtopte(qaddr);
5954
5955 KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
5956 KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
5957
5958 *pte = 0;
5959 critical_exit();
5960 }
5961
5962 static vmem_t *pmap_trm_arena;
5963 static vmem_addr_t pmap_trm_arena_last = PMAP_TRM_MIN_ADDRESS;
5964 static int trm_guard = PAGE_SIZE;
5965
5966 static int
pmap_trm_import(void * unused __unused,vmem_size_t size,int flags,vmem_addr_t * addrp)5967 pmap_trm_import(void *unused __unused, vmem_size_t size, int flags,
5968 vmem_addr_t *addrp)
5969 {
5970 vm_page_t m;
5971 vmem_addr_t af, addr, prev_addr;
5972 pt_entry_t *trm_pte;
5973
5974 prev_addr = atomic_load_int(&pmap_trm_arena_last);
5975 size = round_page(size) + trm_guard;
5976 for (;;) {
5977 if (prev_addr + size < prev_addr || prev_addr + size < size ||
5978 prev_addr + size > PMAP_TRM_MAX_ADDRESS)
5979 return (ENOMEM);
5980 addr = prev_addr + size;
5981 if (atomic_fcmpset_int(&pmap_trm_arena_last, &prev_addr, addr))
5982 break;
5983 }
5984 prev_addr += trm_guard;
5985 trm_pte = PTmap + atop(prev_addr);
5986 for (af = prev_addr; af < addr; af += PAGE_SIZE) {
5987 m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
5988 pte_store(&trm_pte[atop(af - prev_addr)], VM_PAGE_TO_PHYS(m) |
5989 PG_M | PG_A | PG_RW | PG_V | pgeflag |
5990 pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false));
5991 }
5992 *addrp = prev_addr;
5993 return (0);
5994 }
5995
5996 void
pmap_init_trm(void)5997 pmap_init_trm(void)
5998 {
5999 vm_page_t pd_m;
6000
6001 TUNABLE_INT_FETCH("machdep.trm_guard", &trm_guard);
6002 if ((trm_guard & PAGE_MASK) != 0)
6003 trm_guard = 0;
6004 pmap_trm_arena = vmem_create("i386trampoline", 0, 0, 1, 0, M_WAITOK);
6005 vmem_set_import(pmap_trm_arena, pmap_trm_import, NULL, NULL, PAGE_SIZE);
6006 pd_m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_WAITOK |
6007 VM_ALLOC_ZERO);
6008 PTD[TRPTDI] = VM_PAGE_TO_PHYS(pd_m) | PG_M | PG_A | PG_RW | PG_V |
6009 pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, true);
6010 }
6011
6012 static void *
__CONCAT(PMTYPE,trm_alloc)6013 __CONCAT(PMTYPE, trm_alloc)(size_t size, int flags)
6014 {
6015 vmem_addr_t res;
6016 int error;
6017
6018 MPASS((flags & ~(M_WAITOK | M_NOWAIT | M_ZERO)) == 0);
6019 error = vmem_xalloc(pmap_trm_arena, roundup2(size, 4), sizeof(int),
6020 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags | M_FIRSTFIT, &res);
6021 if (error != 0)
6022 return (NULL);
6023 if ((flags & M_ZERO) != 0)
6024 bzero((void *)res, size);
6025 return ((void *)res);
6026 }
6027
6028 static void
__CONCAT(PMTYPE,trm_free)6029 __CONCAT(PMTYPE, trm_free)(void *addr, size_t size)
6030 {
6031
6032 vmem_free(pmap_trm_arena, (uintptr_t)addr, roundup2(size, 4));
6033 }
6034
6035 static void
__CONCAT(PMTYPE,ksetrw)6036 __CONCAT(PMTYPE, ksetrw)(vm_offset_t va)
6037 {
6038
6039 *vtopte(va) |= PG_RW;
6040 }
6041
6042 static void
__CONCAT(PMTYPE,remap_lowptdi)6043 __CONCAT(PMTYPE, remap_lowptdi)(bool enable)
6044 {
6045
6046 PTD[KPTDI] = enable ? PTD[LOWPTDI] : 0;
6047 invltlb_glob();
6048 }
6049
6050 static vm_offset_t
__CONCAT(PMTYPE,get_map_low)6051 __CONCAT(PMTYPE, get_map_low)(void)
6052 {
6053
6054 return (PMAP_MAP_LOW);
6055 }
6056
6057 static vm_offset_t
__CONCAT(PMTYPE,get_vm_maxuser_address)6058 __CONCAT(PMTYPE, get_vm_maxuser_address)(void)
6059 {
6060
6061 return (VM_MAXUSER_ADDRESS);
6062 }
6063
6064 static vm_paddr_t
__CONCAT(PMTYPE,pg_frame)6065 __CONCAT(PMTYPE, pg_frame)(vm_paddr_t pa)
6066 {
6067
6068 return (pa & PG_FRAME);
6069 }
6070
6071 static void
__CONCAT(PMTYPE,sf_buf_map)6072 __CONCAT(PMTYPE, sf_buf_map)(struct sf_buf *sf)
6073 {
6074 pt_entry_t opte, *ptep;
6075
6076 /*
6077 * Update the sf_buf's virtual-to-physical mapping, flushing the
6078 * virtual address from the TLB. Since the reference count for
6079 * the sf_buf's old mapping was zero, that mapping is not
6080 * currently in use. Consequently, there is no need to exchange
6081 * the old and new PTEs atomically, even under PAE.
6082 */
6083 ptep = vtopte(sf->kva);
6084 opte = *ptep;
6085 *ptep = VM_PAGE_TO_PHYS(sf->m) | PG_RW | PG_V |
6086 pmap_cache_bits(kernel_pmap, sf->m->md.pat_mode, false);
6087
6088 /*
6089 * Avoid unnecessary TLB invalidations: If the sf_buf's old
6090 * virtual-to-physical mapping was not used, then any processor
6091 * that has invalidated the sf_buf's virtual address from its TLB
6092 * since the last used mapping need not invalidate again.
6093 */
6094 #ifdef SMP
6095 if ((opte & (PG_V | PG_A)) == (PG_V | PG_A))
6096 CPU_ZERO(&sf->cpumask);
6097 #else
6098 if ((opte & (PG_V | PG_A)) == (PG_V | PG_A))
6099 pmap_invalidate_page_int(kernel_pmap, sf->kva);
6100 #endif
6101 }
6102
6103 static void
__CONCAT(PMTYPE,cp_slow0_map)6104 __CONCAT(PMTYPE, cp_slow0_map)(vm_offset_t kaddr, int plen, vm_page_t *ma)
6105 {
6106 pt_entry_t *pte;
6107 int i;
6108
6109 for (i = 0, pte = vtopte(kaddr); i < plen; i++, pte++) {
6110 *pte = PG_V | PG_RW | PG_A | PG_M | VM_PAGE_TO_PHYS(ma[i]) |
6111 pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(ma[i]),
6112 false);
6113 invlpg(kaddr + ptoa(i));
6114 }
6115 }
6116
6117 static u_int
__CONCAT(PMTYPE,get_kcr3)6118 __CONCAT(PMTYPE, get_kcr3)(void)
6119 {
6120
6121 #ifdef PMAP_PAE_COMP
6122 return ((u_int)IdlePDPT);
6123 #else
6124 return ((u_int)IdlePTD);
6125 #endif
6126 }
6127
6128 static u_int
__CONCAT(PMTYPE,get_cr3)6129 __CONCAT(PMTYPE, get_cr3)(pmap_t pmap)
6130 {
6131
6132 #ifdef PMAP_PAE_COMP
6133 return ((u_int)vtophys(pmap->pm_pdpt));
6134 #else
6135 return ((u_int)vtophys(pmap->pm_pdir));
6136 #endif
6137 }
6138
6139 static caddr_t
__CONCAT(PMTYPE,cmap3)6140 __CONCAT(PMTYPE, cmap3)(vm_paddr_t pa, u_int pte_bits)
6141 {
6142 pt_entry_t *pte;
6143
6144 pte = CMAP3;
6145 *pte = pa | pte_bits;
6146 invltlb();
6147 return (CADDR3);
6148 }
6149
6150 static void
__CONCAT(PMTYPE,basemem_setup)6151 __CONCAT(PMTYPE, basemem_setup)(u_int basemem)
6152 {
6153 pt_entry_t *pte;
6154 int i;
6155
6156 /*
6157 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
6158 * the vm86 page table so that vm86 can scribble on them using
6159 * the vm86 map too. XXX: why 2 ways for this and only 1 way for
6160 * page 0, at least as initialized here?
6161 */
6162 pte = (pt_entry_t *)vm86paddr;
6163 for (i = basemem / 4; i < 160; i++)
6164 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
6165 }
6166
6167 struct bios16_pmap_handle {
6168 pt_entry_t *pte;
6169 pd_entry_t *ptd;
6170 pt_entry_t orig_ptd;
6171 };
6172
6173 static void *
__CONCAT(PMTYPE,bios16_enter)6174 __CONCAT(PMTYPE, bios16_enter)(void)
6175 {
6176 struct bios16_pmap_handle *h;
6177
6178 /*
6179 * no page table, so create one and install it.
6180 */
6181 h = malloc(sizeof(struct bios16_pmap_handle), M_TEMP, M_WAITOK);
6182 h->pte = (pt_entry_t *)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
6183 h->ptd = IdlePTD;
6184 *h->pte = vm86phystk | PG_RW | PG_V;
6185 h->orig_ptd = *h->ptd;
6186 *h->ptd = vtophys(h->pte) | PG_RW | PG_V;
6187 pmap_invalidate_all_int(kernel_pmap); /* XXX insurance for now */
6188 return (h);
6189 }
6190
6191 static void
__CONCAT(PMTYPE,bios16_leave)6192 __CONCAT(PMTYPE, bios16_leave)(void *arg)
6193 {
6194 struct bios16_pmap_handle *h;
6195
6196 h = arg;
6197 *h->ptd = h->orig_ptd; /* remove page table */
6198 /*
6199 * XXX only needs to be invlpg(0) but that doesn't work on the 386
6200 */
6201 pmap_invalidate_all_int(kernel_pmap);
6202 free(h->pte, M_TEMP); /* ... and free it */
6203 }
6204
6205 struct pmap_kernel_map_range {
6206 vm_offset_t sva;
6207 pt_entry_t attrs;
6208 int ptes;
6209 int pdes;
6210 int pdpes;
6211 };
6212
6213 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)6214 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
6215 vm_offset_t eva)
6216 {
6217 const char *mode;
6218 int i, pat_idx;
6219
6220 if (eva <= range->sva)
6221 return;
6222
6223 pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
6224 for (i = 0; i < PAT_INDEX_SIZE; i++)
6225 if (pat_index[i] == pat_idx)
6226 break;
6227
6228 switch (i) {
6229 case PAT_WRITE_BACK:
6230 mode = "WB";
6231 break;
6232 case PAT_WRITE_THROUGH:
6233 mode = "WT";
6234 break;
6235 case PAT_UNCACHEABLE:
6236 mode = "UC";
6237 break;
6238 case PAT_UNCACHED:
6239 mode = "U-";
6240 break;
6241 case PAT_WRITE_PROTECTED:
6242 mode = "WP";
6243 break;
6244 case PAT_WRITE_COMBINING:
6245 mode = "WC";
6246 break;
6247 default:
6248 printf("%s: unknown PAT mode %#x for range 0x%08x-0x%08x\n",
6249 __func__, pat_idx, range->sva, eva);
6250 mode = "??";
6251 break;
6252 }
6253
6254 sbuf_printf(sb, "0x%08x-0x%08x r%c%c%c%c %s %d %d %d\n",
6255 range->sva, eva,
6256 (range->attrs & PG_RW) != 0 ? 'w' : '-',
6257 (range->attrs & pg_nx) != 0 ? '-' : 'x',
6258 (range->attrs & PG_U) != 0 ? 'u' : 's',
6259 (range->attrs & PG_G) != 0 ? 'g' : '-',
6260 mode, range->pdpes, range->pdes, range->ptes);
6261
6262 /* Reset to sentinel value. */
6263 range->sva = 0xffffffff;
6264 }
6265
6266 /*
6267 * Determine whether the attributes specified by a page table entry match those
6268 * being tracked by the current range. This is not quite as simple as a direct
6269 * flag comparison since some PAT modes have multiple representations.
6270 */
6271 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)6272 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
6273 {
6274 pt_entry_t diff, mask;
6275
6276 mask = pg_nx | PG_G | PG_RW | PG_U | PG_PDE_CACHE;
6277 diff = (range->attrs ^ attrs) & mask;
6278 if (diff == 0)
6279 return (true);
6280 if ((diff & ~PG_PDE_PAT) == 0 &&
6281 pmap_pat_index(kernel_pmap, range->attrs, true) ==
6282 pmap_pat_index(kernel_pmap, attrs, true))
6283 return (true);
6284 return (false);
6285 }
6286
6287 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)6288 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
6289 pt_entry_t attrs)
6290 {
6291
6292 memset(range, 0, sizeof(*range));
6293 range->sva = va;
6294 range->attrs = attrs;
6295 }
6296
6297 /*
6298 * Given a leaf PTE, derive the mapping's attributes. If they do not match
6299 * those of the current run, dump the address range and its attributes, and
6300 * begin a new run.
6301 */
6302 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pd_entry_t pde,pt_entry_t pte)6303 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
6304 vm_offset_t va, pd_entry_t pde, pt_entry_t pte)
6305 {
6306 pt_entry_t attrs;
6307
6308 attrs = pde & (PG_RW | PG_U | pg_nx);
6309
6310 if ((pde & PG_PS) != 0) {
6311 attrs |= pde & (PG_G | PG_PDE_CACHE);
6312 } else if (pte != 0) {
6313 attrs |= pte & pg_nx;
6314 attrs &= pg_nx | (pte & (PG_RW | PG_U));
6315 attrs |= pte & (PG_G | PG_PTE_CACHE);
6316
6317 /* Canonicalize by always using the PDE PAT bit. */
6318 if ((attrs & PG_PTE_PAT) != 0)
6319 attrs ^= PG_PDE_PAT | PG_PTE_PAT;
6320 }
6321
6322 if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
6323 sysctl_kmaps_dump(sb, range, va);
6324 sysctl_kmaps_reinit(range, va, attrs);
6325 }
6326 }
6327
6328 static int
__CONCAT(PMTYPE,sysctl_kmaps)6329 __CONCAT(PMTYPE, sysctl_kmaps)(SYSCTL_HANDLER_ARGS)
6330 {
6331 struct pmap_kernel_map_range range;
6332 struct sbuf sbuf, *sb;
6333 pd_entry_t pde;
6334 pt_entry_t *pt, pte;
6335 vm_offset_t sva;
6336 int error;
6337 u_int i, k;
6338
6339 error = sysctl_wire_old_buffer(req, 0);
6340 if (error != 0)
6341 return (error);
6342 sb = &sbuf;
6343 sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
6344
6345 /* Sentinel value. */
6346 range.sva = 0xffffffff;
6347
6348 /*
6349 * Iterate over the kernel page tables without holding the
6350 * kernel pmap lock. Kernel page table pages are never freed,
6351 * so at worst we will observe inconsistencies in the output.
6352 */
6353 for (sva = 0, i = 0; i < NPTEPG * NPGPTD * NPDEPG ;) {
6354 if (i == 0)
6355 sbuf_printf(sb, "\nLow PDE:\n");
6356 else if (i == LOWPTDI * NPTEPG)
6357 sbuf_printf(sb, "Low PDE dup:\n");
6358 else if (i == PTDPTDI * NPTEPG)
6359 sbuf_printf(sb, "Recursive map:\n");
6360 else if (i == KERNPTDI * NPTEPG)
6361 sbuf_printf(sb, "Kernel base:\n");
6362 else if (i == TRPTDI * NPTEPG)
6363 sbuf_printf(sb, "Trampoline:\n");
6364 pde = IdlePTD[sva >> PDRSHIFT];
6365 if ((pde & PG_V) == 0) {
6366 sva = rounddown2(sva, NBPDR);
6367 sysctl_kmaps_dump(sb, &range, sva);
6368 sva += NBPDR;
6369 i += NPTEPG;
6370 continue;
6371 }
6372 if ((pde & PG_PS) != 0) {
6373 sysctl_kmaps_check(sb, &range, sva, pde, 0);
6374 range.pdes++;
6375 sva += NBPDR;
6376 i += NPTEPG;
6377 continue;
6378 }
6379 for (pt = vtopte(sva), k = 0; k < NPTEPG; i++, k++, pt++,
6380 sva += PAGE_SIZE) {
6381 pte = *pt;
6382 if ((pte & PG_V) == 0) {
6383 sysctl_kmaps_dump(sb, &range, sva);
6384 continue;
6385 }
6386 sysctl_kmaps_check(sb, &range, sva, pde, pte);
6387 range.ptes++;
6388 }
6389 }
6390
6391 error = sbuf_finish(sb);
6392 sbuf_delete(sb);
6393 return (error);
6394 }
6395
6396 #define PMM(a) \
6397 .pm_##a = __CONCAT(PMTYPE, a),
6398
6399 struct pmap_methods __CONCAT(PMTYPE, methods) = {
6400 PMM(ksetrw)
6401 PMM(remap_lower)
6402 PMM(remap_lowptdi)
6403 PMM(align_superpage)
6404 PMM(quick_enter_page)
6405 PMM(quick_remove_page)
6406 PMM(trm_alloc)
6407 PMM(trm_free)
6408 PMM(get_map_low)
6409 PMM(get_vm_maxuser_address)
6410 PMM(kextract)
6411 PMM(pg_frame)
6412 PMM(sf_buf_map)
6413 PMM(cp_slow0_map)
6414 PMM(get_kcr3)
6415 PMM(get_cr3)
6416 PMM(cmap3)
6417 PMM(basemem_setup)
6418 PMM(set_nx)
6419 PMM(bios16_enter)
6420 PMM(bios16_leave)
6421 PMM(bootstrap)
6422 PMM(is_valid_memattr)
6423 PMM(cache_bits)
6424 PMM(ps_enabled)
6425 PMM(pinit0)
6426 PMM(pinit)
6427 PMM(activate)
6428 PMM(activate_boot)
6429 PMM(advise)
6430 PMM(clear_modify)
6431 PMM(change_attr)
6432 PMM(mincore)
6433 PMM(copy)
6434 PMM(copy_page)
6435 PMM(copy_pages)
6436 PMM(zero_page)
6437 PMM(zero_page_area)
6438 PMM(enter)
6439 PMM(enter_object)
6440 PMM(enter_quick)
6441 PMM(kenter_temporary)
6442 PMM(object_init_pt)
6443 PMM(unwire)
6444 PMM(page_exists_quick)
6445 PMM(page_wired_mappings)
6446 PMM(page_is_mapped)
6447 PMM(remove_pages)
6448 PMM(is_modified)
6449 PMM(is_prefaultable)
6450 PMM(is_referenced)
6451 PMM(remove_write)
6452 PMM(ts_referenced)
6453 PMM(mapdev_attr)
6454 PMM(unmapdev)
6455 PMM(page_set_memattr)
6456 PMM(extract)
6457 PMM(extract_and_hold)
6458 PMM(map)
6459 PMM(qenter)
6460 PMM(qremove)
6461 PMM(release)
6462 PMM(remove)
6463 PMM(protect)
6464 PMM(remove_all)
6465 PMM(init)
6466 PMM(init_pat)
6467 PMM(growkernel)
6468 PMM(invalidate_page)
6469 PMM(invalidate_range)
6470 PMM(invalidate_all)
6471 PMM(invalidate_cache)
6472 PMM(flush_page)
6473 PMM(kenter)
6474 PMM(kremove)
6475 PMM(sysctl_kmaps)
6476 };
6477