xref: /illumos-gate/usr/src/cmd/mdb/common/modules/genunix/genunix.c (revision 8c4cbc5227c35cbf837b0144a642e55e7cf84a15)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
23  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  * Copyright 2022 Garrett D'Amore
27  * Copyright 2023 RackTop Systems, Inc.
28  * Copyright 2025 Oxide Computer Company
29  */
30 
31 #include <mdb/mdb_param.h>
32 #include <mdb/mdb_modapi.h>
33 #include <mdb/mdb_ks.h>
34 #include <mdb/mdb_ctf.h>
35 
36 #include <sys/types.h>
37 #include <sys/thread.h>
38 #include <sys/session.h>
39 #include <sys/user.h>
40 #include <sys/proc.h>
41 #include <sys/var.h>
42 #include <sys/t_lock.h>
43 #include <sys/callo.h>
44 #include <sys/priocntl.h>
45 #include <sys/class.h>
46 #include <sys/regset.h>
47 #include <sys/stack.h>
48 #include <sys/cpuvar.h>
49 #include <sys/vnode.h>
50 #include <sys/vfs.h>
51 #include <sys/flock_impl.h>
52 #include <sys/kmem_impl.h>
53 #include <sys/vmem_impl.h>
54 #include <sys/kstat.h>
55 #include <sys/dditypes.h>
56 #include <sys/ddi_impldefs.h>
57 #include <sys/sysmacros.h>
58 #include <sys/sysconf.h>
59 #include <sys/task.h>
60 #include <sys/project.h>
61 #include <sys/errorq_impl.h>
62 #include <sys/cred_impl.h>
63 #include <sys/zone.h>
64 #include <sys/panic.h>
65 #include <regex.h>
66 #include <sys/port_impl.h>
67 #include <sys/contract/process_impl.h>
68 
69 #include "avl.h"
70 #include "bio.h"
71 #include "bitset.h"
72 #include "combined.h"
73 #include "contract.h"
74 #include "cpupart_mdb.h"
75 #include "cred.h"
76 #include "ctxop.h"
77 #include "cyclic.h"
78 #include "damap.h"
79 #include "ddi_periodic.h"
80 #include "devinfo.h"
81 #include "dnlc.h"
82 #include "findstack.h"
83 #include "fm.h"
84 #include "gcore.h"
85 #include "group.h"
86 #include "irm.h"
87 #include "kgrep.h"
88 #include "kmem.h"
89 #include "ldi.h"
90 #include "leaky.h"
91 #include "lgrp.h"
92 #include "list.h"
93 #include "log.h"
94 #include "mdi.h"
95 #include "memory.h"
96 #include "modhash.h"
97 #include "ndievents.h"
98 #include "net.h"
99 #include "netstack.h"
100 #include "nvpair.h"
101 #include "pci.h"
102 #include "pg.h"
103 #include "rctl.h"
104 #include "sobj.h"
105 #include "streams.h"
106 #include "sysevent.h"
107 #include "taskq.h"
108 #include "thread.h"
109 #include "tsd.h"
110 #include "tsol.h"
111 #include "typegraph.h"
112 #include "vfs.h"
113 #include "zone.h"
114 #include "hotplug.h"
115 
116 /*
117  * Surely this is defined somewhere...
118  */
119 #define	NINTR		16
120 
121 #define	KILOS		10
122 #define	MEGS		20
123 #define	GIGS		30
124 
125 #ifndef STACK_BIAS
126 #define	STACK_BIAS	0
127 #endif
128 
129 static char
pstat2ch(uchar_t state)130 pstat2ch(uchar_t state)
131 {
132 	switch (state) {
133 		case SSLEEP: return ('S');
134 		case SRUN: return ('R');
135 		case SZOMB: return ('Z');
136 		case SIDL: return ('I');
137 		case SONPROC: return ('O');
138 		case SSTOP: return ('T');
139 		case SWAIT: return ('W');
140 		default: return ('?');
141 	}
142 }
143 
144 #define	PS_PRTTHREADS	0x1
145 #define	PS_PRTLWPS	0x2
146 #define	PS_PSARGS	0x4
147 #define	PS_TASKS	0x8
148 #define	PS_PROJECTS	0x10
149 #define	PS_ZONES	0x20
150 #define	PS_SERVICES	0x40
151 
152 static int
ps_threadprint(uintptr_t addr,const void * data,void * private)153 ps_threadprint(uintptr_t addr, const void *data, void *private)
154 {
155 	const kthread_t *t = (const kthread_t *)data;
156 	uint_t prt_flags = *((uint_t *)private);
157 
158 	static const mdb_bitmask_t t_state_bits[] = {
159 		{ "TS_FREE",	UINT_MAX,	TS_FREE		},
160 		{ "TS_SLEEP",	TS_SLEEP,	TS_SLEEP	},
161 		{ "TS_RUN",	TS_RUN,		TS_RUN		},
162 		{ "TS_ONPROC",	TS_ONPROC,	TS_ONPROC	},
163 		{ "TS_ZOMB",	TS_ZOMB,	TS_ZOMB		},
164 		{ "TS_STOPPED",	TS_STOPPED,	TS_STOPPED	},
165 		{ "TS_WAIT",	TS_WAIT,	TS_WAIT		},
166 		{ NULL,		0,		0		}
167 	};
168 
169 	if (prt_flags & PS_PRTTHREADS)
170 		mdb_printf("\tT  %?a <%b>\n", addr, t->t_state, t_state_bits);
171 
172 	if (prt_flags & PS_PRTLWPS) {
173 		char desc[128] = "";
174 
175 		(void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc));
176 
177 		mdb_printf("\tL  %?a ID: %s\n", t->t_lwp, desc);
178 	}
179 
180 	return (WALK_NEXT);
181 }
182 
183 typedef struct mdb_pflags_proc {
184 	struct pid	*p_pidp;
185 	ushort_t	p_pidflag;
186 	uint_t		p_proc_flag;
187 	uint_t		p_flag;
188 } mdb_pflags_proc_t;
189 
190 static int
pflags(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)191 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
192 {
193 	mdb_pflags_proc_t pr;
194 	struct pid pid;
195 
196 	static const mdb_bitmask_t p_flag_bits[] = {
197 		{ "SSYS",		SSYS,		SSYS		},
198 		{ "SEXITING",		SEXITING,	SEXITING	},
199 		{ "SITBUSY",		SITBUSY,	SITBUSY		},
200 		{ "SFORKING",		SFORKING,	SFORKING	},
201 		{ "SWATCHOK",		SWATCHOK,	SWATCHOK	},
202 		{ "SKILLED",		SKILLED,	SKILLED		},
203 		{ "SSCONT",		SSCONT,		SSCONT		},
204 		{ "SZONETOP",		SZONETOP,	SZONETOP	},
205 		{ "SEXTKILLED",		SEXTKILLED,	SEXTKILLED	},
206 		{ "SUGID",		SUGID,		SUGID		},
207 		{ "SEXECED",		SEXECED,	SEXECED		},
208 		{ "SJCTL",		SJCTL,		SJCTL		},
209 		{ "SNOWAIT",		SNOWAIT,	SNOWAIT		},
210 		{ "SVFORK",		SVFORK,		SVFORK		},
211 		{ "SVFWAIT",		SVFWAIT,	SVFWAIT		},
212 		{ "SEXITLWPS",		SEXITLWPS,	SEXITLWPS	},
213 		{ "SHOLDFORK",		SHOLDFORK,	SHOLDFORK	},
214 		{ "SHOLDFORK1",		SHOLDFORK1,	SHOLDFORK1	},
215 		{ "SCOREDUMP",		SCOREDUMP,	SCOREDUMP	},
216 		{ "SMSACCT",		SMSACCT,	SMSACCT		},
217 		{ "SLWPWRAP",		SLWPWRAP,	SLWPWRAP	},
218 		{ "SAUTOLPG",		SAUTOLPG,	SAUTOLPG	},
219 		{ "SNOCD",		SNOCD,		SNOCD		},
220 		{ "SHOLDWATCH",		SHOLDWATCH,	SHOLDWATCH	},
221 		{ "SMSFORK",		SMSFORK,	SMSFORK		},
222 		{ "SDOCORE",		SDOCORE,	SDOCORE		},
223 		{ NULL,			0,		0		}
224 	};
225 
226 	static const mdb_bitmask_t p_pidflag_bits[] = {
227 		{ "CLDPEND",		CLDPEND,	CLDPEND		},
228 		{ "CLDCONT",		CLDCONT,	CLDCONT		},
229 		{ "CLDNOSIGCHLD",	CLDNOSIGCHLD,	CLDNOSIGCHLD	},
230 		{ "CLDWAITPID",		CLDWAITPID,	CLDWAITPID	},
231 		{ NULL,			0,		0		}
232 	};
233 
234 	static const mdb_bitmask_t p_proc_flag_bits[] = {
235 		{ "P_PR_TRACE",		P_PR_TRACE,	P_PR_TRACE	},
236 		{ "P_PR_PTRACE",	P_PR_PTRACE,	P_PR_PTRACE	},
237 		{ "P_PR_FORK",		P_PR_FORK,	P_PR_FORK	},
238 		{ "P_PR_LOCK",		P_PR_LOCK,	P_PR_LOCK	},
239 		{ "P_PR_ASYNC",		P_PR_ASYNC,	P_PR_ASYNC	},
240 		{ "P_PR_EXEC",		P_PR_EXEC,	P_PR_EXEC	},
241 		{ "P_PR_BPTADJ",	P_PR_BPTADJ,	P_PR_BPTADJ	},
242 		{ "P_PR_RUNLCL",	P_PR_RUNLCL,	P_PR_RUNLCL	},
243 		{ "P_PR_KILLCL",	P_PR_KILLCL,	P_PR_KILLCL	},
244 		{ NULL,			0,		0		}
245 	};
246 
247 	if (!(flags & DCMD_ADDRSPEC)) {
248 		if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) {
249 			mdb_warn("can't walk 'proc'");
250 			return (DCMD_ERR);
251 		}
252 		return (DCMD_OK);
253 	}
254 
255 	if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 ||
256 	    mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) {
257 		mdb_warn("cannot read proc_t or pid");
258 		return (DCMD_ERR);
259 	}
260 
261 	mdb_printf("%p [pid %d]:\n", addr, pid.pid_id);
262 	mdb_printf("\tp_flag:      %08x <%b>\n", pr.p_flag, pr.p_flag,
263 	    p_flag_bits);
264 	mdb_printf("\tp_pidflag:   %08x <%b>\n", pr.p_pidflag, pr.p_pidflag,
265 	    p_pidflag_bits);
266 	mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag,
267 	    p_proc_flag_bits);
268 
269 	return (DCMD_OK);
270 }
271 
272 typedef struct mdb_ps_proc {
273 	char		p_stat;
274 	struct pid	*p_pidp;
275 	struct pid	*p_pgidp;
276 	struct cred	*p_cred;
277 	struct sess	*p_sessp;
278 	struct task	*p_task;
279 	struct zone	*p_zone;
280 	struct cont_process *p_ct_process;
281 	pid_t		p_ppid;
282 	uint_t		p_flag;
283 	struct {
284 		char		u_comm[MAXCOMLEN + 1];
285 		char		u_psargs[PSARGSZ];
286 	} p_user;
287 } mdb_ps_proc_t;
288 
289 /*
290  * A reasonable enough limit. Note that we purposefully let this column over-run
291  * if needed.
292  */
293 #define	FMRI_LEN (128)
294 
295 int
ps(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)296 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
297 {
298 	uint_t prt_flags = 0;
299 	mdb_ps_proc_t pr;
300 	struct pid pid, pgid, sid;
301 	sess_t session;
302 	cred_t cred;
303 	task_t tk;
304 	kproject_t pj;
305 	zone_t zn;
306 	struct cont_process cp;
307 	char fmri[FMRI_LEN] = "";
308 
309 	if (!(flags & DCMD_ADDRSPEC)) {
310 		if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
311 			mdb_warn("can't walk 'proc'");
312 			return (DCMD_ERR);
313 		}
314 		return (DCMD_OK);
315 	}
316 
317 	if (mdb_getopts(argc, argv,
318 	    'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
319 	    'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
320 	    's', MDB_OPT_SETBITS, PS_SERVICES, &prt_flags,
321 	    'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
322 	    'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
323 	    'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
324 	    't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
325 		return (DCMD_USAGE);
326 
327 	if (DCMD_HDRSPEC(flags)) {
328 		mdb_printf("%<u>%-1s %-6s %-6s %-6s %-6s ",
329 		    "S", "PID", "PPID", "PGID", "SID");
330 		if (prt_flags & PS_TASKS)
331 			mdb_printf("%-5s ", "TASK");
332 		if (prt_flags & PS_PROJECTS)
333 			mdb_printf("%-5s ", "PROJ");
334 		if (prt_flags & PS_ZONES)
335 			mdb_printf("%-5s ", "ZONE");
336 		if (prt_flags & PS_SERVICES)
337 			mdb_printf("%-40s ", "SERVICE");
338 		mdb_printf("%-6s %-10s %-?s %-s%</u>\n",
339 		    "UID", "FLAGS", "ADDR", "NAME");
340 	}
341 
342 	if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1)
343 		return (DCMD_ERR);
344 
345 	mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
346 	mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
347 	mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
348 	mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
349 	mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
350 	if (prt_flags & (PS_TASKS | PS_PROJECTS))
351 		mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
352 	if (prt_flags & PS_PROJECTS)
353 		mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
354 	if (prt_flags & PS_ZONES)
355 		mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone);
356 	if ((prt_flags & PS_SERVICES) && pr.p_ct_process != NULL) {
357 		mdb_vread(&cp, sizeof (cp), (uintptr_t)pr.p_ct_process);
358 
359 		if (mdb_read_refstr((uintptr_t)cp.conp_svc_fmri, fmri,
360 		    sizeof (fmri)) <= 0)
361 			(void) strlcpy(fmri, "?", sizeof (fmri));
362 
363 		/* Strip any standard prefix and suffix. */
364 		if (strncmp(fmri, "svc:/", sizeof ("svc:/") - 1) == 0) {
365 			char *i = fmri;
366 			char *j = fmri + sizeof ("svc:/") - 1;
367 			for (; *j != '\0'; i++, j++) {
368 				if (strcmp(j, ":default") == 0)
369 					break;
370 				*i = *j;
371 			}
372 
373 			*i = '\0';
374 		}
375 	}
376 
377 	mdb_printf("%-c %-6d %-6d %-6d %-6d ",
378 	    pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
379 	    sid.pid_id);
380 	if (prt_flags & PS_TASKS)
381 		mdb_printf("%-5d ", tk.tk_tkid);
382 	if (prt_flags & PS_PROJECTS)
383 		mdb_printf("%-5d ", pj.kpj_id);
384 	if (prt_flags & PS_ZONES)
385 		mdb_printf("%-5d ", zn.zone_id);
386 	if (prt_flags & PS_SERVICES)
387 		mdb_printf("%-40s ", fmri);
388 	mdb_printf("%-6d 0x%08x %0?p %-s\n",
389 	    cred.cr_uid, pr.p_flag, addr,
390 	    (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
391 
392 	if (prt_flags & ~PS_PSARGS)
393 		(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
394 
395 	return (DCMD_OK);
396 }
397 
398 static void
ps_help(void)399 ps_help(void)
400 {
401 	mdb_printf("Display processes.\n\n"
402 	    "Options:\n"
403 	    "    -f\tDisplay command arguments\n"
404 	    "    -l\tDisplay LWPs\n"
405 	    "    -T\tDisplay tasks\n"
406 	    "    -P\tDisplay projects\n"
407 	    "    -s\tDisplay SMF FMRI\n"
408 	    "    -z\tDisplay zones\n"
409 	    "    -t\tDisplay threads\n\n");
410 
411 	mdb_printf("The resulting output is a table of the processes on the "
412 	    "system.  The\n"
413 	    "columns in the output consist of a combination of the "
414 	    "following fields:\n\n");
415 	mdb_printf("S\tProcess state.  Possible states are:\n"
416 	    "\tS\tSleeping (SSLEEP)\n"
417 	    "\tR\tRunnable (SRUN)\n"
418 	    "\tZ\tZombie (SZOMB)\n"
419 	    "\tI\tIdle (SIDL)\n"
420 	    "\tO\tOn Cpu (SONPROC)\n"
421 	    "\tT\tStopped (SSTOP)\n"
422 	    "\tW\tWaiting (SWAIT)\n");
423 
424 	mdb_printf("PID\tProcess id.\n");
425 	mdb_printf("PPID\tParent process id.\n");
426 	mdb_printf("PGID\tProcess group id.\n");
427 	mdb_printf("SID\tProcess id of the session leader.\n");
428 	mdb_printf("TASK\tThe task id of the process.\n");
429 	mdb_printf("PROJ\tThe project id of the process.\n");
430 	mdb_printf("ZONE\tThe zone id of the process.\n");
431 	mdb_printf("SERVICE The SMF service FMRI of the process.\n");
432 	mdb_printf("UID\tThe user id of the process.\n");
433 	mdb_printf("FLAGS\tThe process flags (see ::pflags).\n");
434 	mdb_printf("ADDR\tThe kernel address of the proc_t structure of the "
435 	    "process\n");
436 	mdb_printf("NAME\tThe name (p_user.u_comm field) of the process.  If "
437 	    "the -f flag\n"
438 	    "\tis specified, the arguments of the process are displayed.\n");
439 }
440 
441 #define	PG_NEWEST	0x0001
442 #define	PG_OLDEST	0x0002
443 #define	PG_PIPE_OUT	0x0004
444 #define	PG_EXACT_MATCH	0x0008
445 
446 typedef struct pgrep_data {
447 	uint_t pg_flags;
448 	uint_t pg_psflags;
449 	uintptr_t pg_xaddr;
450 	hrtime_t pg_xstart;
451 	const char *pg_pat;
452 #ifndef _KMDB
453 	regex_t pg_reg;
454 #endif
455 } pgrep_data_t;
456 
457 typedef struct mdb_pgrep_proc {
458 	struct {
459 		timestruc_t	u_start;
460 		char		u_comm[MAXCOMLEN + 1];
461 	} p_user;
462 } mdb_pgrep_proc_t;
463 
464 /*ARGSUSED*/
465 static int
pgrep_cb(uintptr_t addr,const void * ignored,void * data)466 pgrep_cb(uintptr_t addr, const void *ignored, void *data)
467 {
468 	mdb_pgrep_proc_t p;
469 	pgrep_data_t *pgp = data;
470 #ifndef _KMDB
471 	regmatch_t pmatch;
472 #endif
473 
474 	if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1)
475 		return (WALK_ERR);
476 
477 	/*
478 	 * kmdb doesn't have access to the reg* functions, so we fall back
479 	 * to strstr/strcmp.
480 	 */
481 #ifdef _KMDB
482 	if ((pgp->pg_flags & PG_EXACT_MATCH) ?
483 	    (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) :
484 	    (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL))
485 		return (WALK_NEXT);
486 #else
487 	if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0)
488 		return (WALK_NEXT);
489 
490 	if ((pgp->pg_flags & PG_EXACT_MATCH) &&
491 	    (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0'))
492 		return (WALK_NEXT);
493 #endif
494 
495 	if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
496 		hrtime_t start;
497 
498 		start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC +
499 		    p.p_user.u_start.tv_nsec;
500 
501 		if (pgp->pg_flags & PG_NEWEST) {
502 			if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) {
503 				pgp->pg_xaddr = addr;
504 				pgp->pg_xstart = start;
505 			}
506 		} else {
507 			if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) {
508 				pgp->pg_xaddr = addr;
509 				pgp->pg_xstart = start;
510 			}
511 		}
512 
513 	} else if (pgp->pg_flags & PG_PIPE_OUT) {
514 		mdb_printf("%p\n", addr);
515 
516 	} else {
517 		if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
518 			mdb_warn("can't invoke 'ps'");
519 			return (WALK_DONE);
520 		}
521 		pgp->pg_psflags &= ~DCMD_LOOPFIRST;
522 	}
523 
524 	return (WALK_NEXT);
525 }
526 
527 /*ARGSUSED*/
528 int
pgrep(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)529 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
530 {
531 	pgrep_data_t pg;
532 	int i;
533 #ifndef _KMDB
534 	int err;
535 #endif
536 
537 	if (flags & DCMD_ADDRSPEC)
538 		return (DCMD_USAGE);
539 
540 	pg.pg_flags = 0;
541 	pg.pg_xaddr = 0;
542 
543 	i = mdb_getopts(argc, argv,
544 	    'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
545 	    'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
546 	    'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
547 	    NULL);
548 
549 	argc -= i;
550 	argv += i;
551 
552 	if (argc != 1)
553 		return (DCMD_USAGE);
554 
555 	/*
556 	 * -n and -o are mutually exclusive.
557 	 */
558 	if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
559 		return (DCMD_USAGE);
560 
561 	if (argv->a_type != MDB_TYPE_STRING)
562 		return (DCMD_USAGE);
563 
564 	if (flags & DCMD_PIPE_OUT)
565 		pg.pg_flags |= PG_PIPE_OUT;
566 
567 	pg.pg_pat = argv->a_un.a_str;
568 	if (DCMD_HDRSPEC(flags))
569 		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
570 	else
571 		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
572 
573 #ifndef _KMDB
574 	if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
575 		size_t nbytes;
576 		char *buf;
577 
578 		nbytes = regerror(err, &pg.pg_reg, NULL, 0);
579 		buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
580 		(void) regerror(err, &pg.pg_reg, buf, nbytes);
581 		mdb_warn("%s\n", buf);
582 
583 		return (DCMD_ERR);
584 	}
585 #endif
586 
587 	if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
588 		mdb_warn("can't walk 'proc'");
589 		return (DCMD_ERR);
590 	}
591 
592 	if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
593 		if (pg.pg_flags & PG_PIPE_OUT) {
594 			mdb_printf("%p\n", pg.pg_xaddr);
595 		} else {
596 			if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
597 			    0, NULL) != 0) {
598 				mdb_warn("can't invoke 'ps'");
599 				return (DCMD_ERR);
600 			}
601 		}
602 	}
603 
604 	return (DCMD_OK);
605 }
606 
607 int
task(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)608 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
609 {
610 	task_t tk;
611 	kproject_t pj;
612 
613 	if (!(flags & DCMD_ADDRSPEC)) {
614 		if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
615 			mdb_warn("can't walk task_cache");
616 			return (DCMD_ERR);
617 		}
618 		return (DCMD_OK);
619 	}
620 	if (DCMD_HDRSPEC(flags)) {
621 		mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
622 		    "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
623 	}
624 	if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
625 		mdb_warn("can't read task_t structure at %p", addr);
626 		return (DCMD_ERR);
627 	}
628 	if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
629 		mdb_warn("can't read project_t structure at %p", addr);
630 		return (DCMD_ERR);
631 	}
632 	mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
633 	    addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
634 	    tk.tk_flags);
635 	return (DCMD_OK);
636 }
637 
638 int
project(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)639 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
640 {
641 	kproject_t pj;
642 
643 	if (!(flags & DCMD_ADDRSPEC)) {
644 		if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
645 			mdb_warn("can't walk projects");
646 			return (DCMD_ERR);
647 		}
648 		return (DCMD_OK);
649 	}
650 	if (DCMD_HDRSPEC(flags)) {
651 		mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
652 		    "ADDR", "PROJID", "ZONEID", "REFCNT");
653 	}
654 	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
655 		mdb_warn("can't read kproject_t structure at %p", addr);
656 		return (DCMD_ERR);
657 	}
658 	mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
659 	    pj.kpj_count);
660 	return (DCMD_OK);
661 }
662 
663 /* walk callouts themselves, either by list or id hash. */
664 int
callout_walk_init(mdb_walk_state_t * wsp)665 callout_walk_init(mdb_walk_state_t *wsp)
666 {
667 	if (wsp->walk_addr == 0) {
668 		mdb_warn("callout doesn't support global walk");
669 		return (WALK_ERR);
670 	}
671 	wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
672 	return (WALK_NEXT);
673 }
674 
675 #define	CALLOUT_WALK_BYLIST	0
676 #define	CALLOUT_WALK_BYID	1
677 
678 /* the walker arg switches between walking by list (0) and walking by id (1). */
679 int
callout_walk_step(mdb_walk_state_t * wsp)680 callout_walk_step(mdb_walk_state_t *wsp)
681 {
682 	int retval;
683 
684 	if (wsp->walk_addr == 0) {
685 		return (WALK_DONE);
686 	}
687 	if (mdb_vread(wsp->walk_data, sizeof (callout_t),
688 	    wsp->walk_addr) == -1) {
689 		mdb_warn("failed to read callout at %p", wsp->walk_addr);
690 		return (WALK_DONE);
691 	}
692 	retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
693 	    wsp->walk_cbdata);
694 
695 	if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
696 		wsp->walk_addr =
697 		    (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
698 	} else {
699 		wsp->walk_addr =
700 		    (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
701 	}
702 
703 	return (retval);
704 }
705 
706 void
callout_walk_fini(mdb_walk_state_t * wsp)707 callout_walk_fini(mdb_walk_state_t *wsp)
708 {
709 	mdb_free(wsp->walk_data, sizeof (callout_t));
710 }
711 
712 /*
713  * walker for callout lists. This is different from hashes and callouts.
714  * Thankfully, it's also simpler.
715  */
716 int
callout_list_walk_init(mdb_walk_state_t * wsp)717 callout_list_walk_init(mdb_walk_state_t *wsp)
718 {
719 	if (wsp->walk_addr == 0) {
720 		mdb_warn("callout list doesn't support global walk");
721 		return (WALK_ERR);
722 	}
723 	wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
724 	return (WALK_NEXT);
725 }
726 
727 int
callout_list_walk_step(mdb_walk_state_t * wsp)728 callout_list_walk_step(mdb_walk_state_t *wsp)
729 {
730 	int retval;
731 
732 	if (wsp->walk_addr == 0) {
733 		return (WALK_DONE);
734 	}
735 	if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
736 	    wsp->walk_addr) != sizeof (callout_list_t)) {
737 		mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
738 		return (WALK_ERR);
739 	}
740 	retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
741 	    wsp->walk_cbdata);
742 
743 	wsp->walk_addr = (uintptr_t)
744 	    (((callout_list_t *)wsp->walk_data)->cl_next);
745 
746 	return (retval);
747 }
748 
749 void
callout_list_walk_fini(mdb_walk_state_t * wsp)750 callout_list_walk_fini(mdb_walk_state_t *wsp)
751 {
752 	mdb_free(wsp->walk_data, sizeof (callout_list_t));
753 }
754 
755 /* routines/structs to walk callout table(s) */
756 typedef struct cot_data {
757 	callout_table_t *ct0;
758 	callout_table_t ct;
759 	callout_hash_t cot_idhash[CALLOUT_BUCKETS];
760 	callout_hash_t cot_clhash[CALLOUT_BUCKETS];
761 	kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
762 	int cotndx;
763 	int cotsize;
764 } cot_data_t;
765 
766 int
callout_table_walk_init(mdb_walk_state_t * wsp)767 callout_table_walk_init(mdb_walk_state_t *wsp)
768 {
769 	int max_ncpus;
770 	cot_data_t *cot_walk_data;
771 
772 	cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
773 
774 	if (wsp->walk_addr == 0) {
775 		if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
776 			mdb_warn("failed to read 'callout_table'");
777 			return (WALK_ERR);
778 		}
779 		if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
780 			mdb_warn("failed to get callout_table array size");
781 			return (WALK_ERR);
782 		}
783 		cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
784 		wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
785 	} else {
786 		/* not a global walk */
787 		cot_walk_data->cotsize = 1;
788 	}
789 
790 	cot_walk_data->cotndx = 0;
791 	wsp->walk_data = cot_walk_data;
792 
793 	return (WALK_NEXT);
794 }
795 
796 int
callout_table_walk_step(mdb_walk_state_t * wsp)797 callout_table_walk_step(mdb_walk_state_t *wsp)
798 {
799 	int retval;
800 	cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
801 	size_t size;
802 
803 	if (cotwd->cotndx >= cotwd->cotsize) {
804 		return (WALK_DONE);
805 	}
806 	if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
807 	    wsp->walk_addr) != sizeof (callout_table_t)) {
808 		mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
809 		return (WALK_ERR);
810 	}
811 
812 	size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
813 	if (cotwd->ct.ct_idhash != NULL) {
814 		if (mdb_vread(cotwd->cot_idhash, size,
815 		    (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
816 			mdb_warn("failed to read id_hash at %p",
817 			    cotwd->ct.ct_idhash);
818 			return (WALK_ERR);
819 		}
820 	}
821 	if (cotwd->ct.ct_clhash != NULL) {
822 		if (mdb_vread(&(cotwd->cot_clhash), size,
823 		    (uintptr_t)cotwd->ct.ct_clhash) == -1) {
824 			mdb_warn("failed to read cl_hash at %p",
825 			    cotwd->ct.ct_clhash);
826 			return (WALK_ERR);
827 		}
828 	}
829 	size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
830 	if (cotwd->ct.ct_kstat_data != NULL) {
831 		if (mdb_vread(&(cotwd->ct_kstat_data), size,
832 		    (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
833 			mdb_warn("failed to read kstats at %p",
834 			    cotwd->ct.ct_kstat_data);
835 			return (WALK_ERR);
836 		}
837 	}
838 	retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
839 	    wsp->walk_cbdata);
840 
841 	cotwd->cotndx++;
842 	if (cotwd->cotndx >= cotwd->cotsize) {
843 		return (WALK_DONE);
844 	}
845 	wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
846 	    sizeof (callout_table_t));
847 
848 	return (retval);
849 }
850 
851 void
callout_table_walk_fini(mdb_walk_state_t * wsp)852 callout_table_walk_fini(mdb_walk_state_t *wsp)
853 {
854 	mdb_free(wsp->walk_data, sizeof (cot_data_t));
855 }
856 
857 static const char *co_typenames[] = { "R", "N" };
858 
859 #define	CO_PLAIN_ID(xid)	((xid) & CALLOUT_ID_MASK)
860 
861 #define	TABLE_TO_SEQID(x)	((x) >> CALLOUT_TYPE_BITS)
862 
863 /* callout flags, in no particular order */
864 #define	COF_REAL	0x00000001
865 #define	COF_NORM	0x00000002
866 #define	COF_LONG	0x00000004
867 #define	COF_SHORT	0x00000008
868 #define	COF_EMPTY	0x00000010
869 #define	COF_TIME	0x00000020
870 #define	COF_BEFORE	0x00000040
871 #define	COF_AFTER	0x00000080
872 #define	COF_SEQID	0x00000100
873 #define	COF_FUNC	0x00000200
874 #define	COF_ADDR	0x00000400
875 #define	COF_EXEC	0x00000800
876 #define	COF_HIRES	0x00001000
877 #define	COF_ABS		0x00002000
878 #define	COF_TABLE	0x00004000
879 #define	COF_BYIDH	0x00008000
880 #define	COF_FREE	0x00010000
881 #define	COF_LIST	0x00020000
882 #define	COF_EXPREL	0x00040000
883 #define	COF_HDR		0x00080000
884 #define	COF_VERBOSE	0x00100000
885 #define	COF_LONGLIST	0x00200000
886 #define	COF_THDR	0x00400000
887 #define	COF_LHDR	0x00800000
888 #define	COF_CHDR	0x01000000
889 #define	COF_PARAM	0x02000000
890 #define	COF_DECODE	0x04000000
891 #define	COF_HEAP	0x08000000
892 #define	COF_QUEUE	0x10000000
893 
894 /* show real and normal, short and long, expired and unexpired. */
895 #define	COF_DEFAULT	(COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
896 
897 #define	COF_LIST_FLAGS	\
898 	(CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
899 
900 /* private callout data for callback functions */
901 typedef struct callout_data {
902 	uint_t flags;		/* COF_* */
903 	cpu_t *cpu;		/* cpu pointer if given */
904 	int seqid;		/* cpu seqid, or -1 */
905 	hrtime_t time;		/* expiration time value */
906 	hrtime_t atime;		/* expiration before value */
907 	hrtime_t btime;		/* expiration after value */
908 	uintptr_t funcaddr;	/* function address or NULL */
909 	uintptr_t param;	/* parameter to function or NULL */
910 	hrtime_t now;		/* current system time */
911 	int nsec_per_tick;	/* for conversions */
912 	ulong_t ctbits;		/* for decoding xid */
913 	callout_table_t *co_table;	/* top of callout table array */
914 	int ndx;		/* table index. */
915 	int bucket;		/* which list/id bucket are we in */
916 	hrtime_t exp;		/* expire time */
917 	int list_flags;		/* copy of cl_flags */
918 } callout_data_t;
919 
920 /* this callback does the actual callback itself (finally). */
921 /*ARGSUSED*/
922 static int
callouts_cb(uintptr_t addr,const void * data,void * priv)923 callouts_cb(uintptr_t addr, const void *data, void *priv)
924 {
925 	callout_data_t *coargs = (callout_data_t *)priv;
926 	callout_t *co = (callout_t *)data;
927 	int tableid, list_flags;
928 	callout_id_t coid;
929 
930 	if ((coargs == NULL) || (co == NULL)) {
931 		return (WALK_ERR);
932 	}
933 
934 	if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
935 		/*
936 		 * The callout must have been reallocated. No point in
937 		 * walking any more.
938 		 */
939 		return (WALK_DONE);
940 	}
941 	if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
942 		/*
943 		 * The callout must have been freed. No point in
944 		 * walking any more.
945 		 */
946 		return (WALK_DONE);
947 	}
948 	if ((coargs->flags & COF_FUNC) &&
949 	    (coargs->funcaddr != (uintptr_t)co->c_func)) {
950 		return (WALK_NEXT);
951 	}
952 	if ((coargs->flags & COF_PARAM) &&
953 	    (coargs->param != (uintptr_t)co->c_arg)) {
954 		return (WALK_NEXT);
955 	}
956 	if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
957 		return (WALK_NEXT);
958 	}
959 	if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
960 		return (WALK_NEXT);
961 	}
962 	if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
963 		return (WALK_NEXT);
964 	}
965 	/* it is possible we don't have the exp time or flags */
966 	if (coargs->flags & COF_BYIDH) {
967 		if (!(coargs->flags & COF_FREE)) {
968 			/* we have to fetch the expire time ourselves. */
969 			if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
970 			    (uintptr_t)co->c_list + offsetof(callout_list_t,
971 			    cl_expiration)) == -1) {
972 				mdb_warn("failed to read expiration "
973 				    "time from %p", co->c_list);
974 				coargs->exp = 0;
975 			}
976 			/* and flags. */
977 			if (mdb_vread(&coargs->list_flags, sizeof (int),
978 			    (uintptr_t)co->c_list + offsetof(callout_list_t,
979 			    cl_flags)) == -1) {
980 				mdb_warn("failed to read list flags"
981 				    "from %p", co->c_list);
982 				coargs->list_flags = 0;
983 			}
984 		} else {
985 			/* free callouts can't use list pointer. */
986 			coargs->exp = 0;
987 			coargs->list_flags = 0;
988 		}
989 		if (coargs->exp != 0) {
990 			if ((coargs->flags & COF_TIME) &&
991 			    (coargs->exp != coargs->time)) {
992 				return (WALK_NEXT);
993 			}
994 			if ((coargs->flags & COF_BEFORE) &&
995 			    (coargs->exp > coargs->btime)) {
996 				return (WALK_NEXT);
997 			}
998 			if ((coargs->flags & COF_AFTER) &&
999 			    (coargs->exp < coargs->atime)) {
1000 				return (WALK_NEXT);
1001 			}
1002 		}
1003 		/* tricky part, since both HIRES and ABS can be set */
1004 		list_flags = coargs->list_flags;
1005 		if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1006 			/* both flags are set, only skip "regular" ones */
1007 			if (! (list_flags & COF_LIST_FLAGS)) {
1008 				return (WALK_NEXT);
1009 			}
1010 		} else {
1011 			/* individual flags, or no flags */
1012 			if ((coargs->flags & COF_HIRES) &&
1013 			    !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1014 				return (WALK_NEXT);
1015 			}
1016 			if ((coargs->flags & COF_ABS) &&
1017 			    !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1018 				return (WALK_NEXT);
1019 			}
1020 		}
1021 		/*
1022 		 * We do the checks for COF_HEAP and COF_QUEUE here only if we
1023 		 * are traversing BYIDH. If the traversal is by callout list,
1024 		 * we do this check in callout_list_cb() to be more
1025 		 * efficient.
1026 		 */
1027 		if ((coargs->flags & COF_HEAP) &&
1028 		    !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1029 			return (WALK_NEXT);
1030 		}
1031 
1032 		if ((coargs->flags & COF_QUEUE) &&
1033 		    !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1034 			return (WALK_NEXT);
1035 		}
1036 	}
1037 
1038 #define	callout_table_mask	((1 << coargs->ctbits) - 1)
1039 	tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
1040 #undef	callout_table_mask
1041 	coid = CO_PLAIN_ID(co->c_xid);
1042 
1043 	if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
1044 		/*
1045 		 * We need to print the headers. If walking by id, then
1046 		 * the list header isn't printed, so we must include
1047 		 * that info here.
1048 		 */
1049 		if (!(coargs->flags & COF_VERBOSE)) {
1050 			mdb_printf("%<u>%3s %-1s %-14s %</u>",
1051 			    "SEQ", "T", "EXP");
1052 		} else if (coargs->flags & COF_BYIDH) {
1053 			mdb_printf("%<u>%-14s %</u>", "EXP");
1054 		}
1055 		mdb_printf("%<u>%-4s %-?s %-20s%</u>",
1056 		    "XHAL", "XID", "FUNC(ARG)");
1057 		if (coargs->flags & COF_LONGLIST) {
1058 			mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
1059 			    "PREVID", "NEXTID", "PREVL", "NEXTL");
1060 			mdb_printf("%<u> %-?s %-4s %-?s%</u>",
1061 			    "DONE", "UTOS", "THREAD");
1062 		}
1063 		mdb_printf("\n");
1064 		coargs->flags &= ~COF_CHDR;
1065 		coargs->flags |= (COF_THDR | COF_LHDR);
1066 	}
1067 
1068 	if (!(coargs->flags & COF_ADDR)) {
1069 		if (!(coargs->flags & COF_VERBOSE)) {
1070 			mdb_printf("%-3d %1s %-14llx ",
1071 			    TABLE_TO_SEQID(tableid),
1072 			    co_typenames[tableid & CALLOUT_TYPE_MASK],
1073 			    (coargs->flags & COF_EXPREL) ?
1074 			    coargs->exp - coargs->now : coargs->exp);
1075 		} else if (coargs->flags & COF_BYIDH) {
1076 			mdb_printf("%-14x ",
1077 			    (coargs->flags & COF_EXPREL) ?
1078 			    coargs->exp - coargs->now : coargs->exp);
1079 		}
1080 		list_flags = coargs->list_flags;
1081 		mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
1082 		    (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
1083 		    (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
1084 		    (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
1085 		    (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
1086 		    (long long)coid, co->c_func, co->c_arg);
1087 		if (coargs->flags & COF_LONGLIST) {
1088 			mdb_printf(" %-?p %-?p %-?p %-?p",
1089 			    co->c_idprev, co->c_idnext, co->c_clprev,
1090 			    co->c_clnext);
1091 			mdb_printf(" %-?p %-4d %-0?p",
1092 			    co->c_done, co->c_waiting, co->c_executor);
1093 		}
1094 	} else {
1095 		/* address only */
1096 		mdb_printf("%-0p", addr);
1097 	}
1098 	mdb_printf("\n");
1099 	return (WALK_NEXT);
1100 }
1101 
1102 /* this callback is for callout list handling. idhash is done by callout_t_cb */
1103 /*ARGSUSED*/
1104 static int
callout_list_cb(uintptr_t addr,const void * data,void * priv)1105 callout_list_cb(uintptr_t addr, const void *data, void *priv)
1106 {
1107 	callout_data_t *coargs = (callout_data_t *)priv;
1108 	callout_list_t *cl = (callout_list_t *)data;
1109 	callout_t *coptr;
1110 	int list_flags;
1111 
1112 	if ((coargs == NULL) || (cl == NULL)) {
1113 		return (WALK_ERR);
1114 	}
1115 
1116 	coargs->exp = cl->cl_expiration;
1117 	coargs->list_flags = cl->cl_flags;
1118 	if ((coargs->flags & COF_FREE) &&
1119 	    !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1120 		/*
1121 		 * The callout list must have been reallocated. No point in
1122 		 * walking any more.
1123 		 */
1124 		return (WALK_DONE);
1125 	}
1126 	if (!(coargs->flags & COF_FREE) &&
1127 	    (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1128 		/*
1129 		 * The callout list must have been freed. No point in
1130 		 * walking any more.
1131 		 */
1132 		return (WALK_DONE);
1133 	}
1134 	if ((coargs->flags & COF_TIME) &&
1135 	    (cl->cl_expiration != coargs->time)) {
1136 		return (WALK_NEXT);
1137 	}
1138 	if ((coargs->flags & COF_BEFORE) &&
1139 	    (cl->cl_expiration > coargs->btime)) {
1140 		return (WALK_NEXT);
1141 	}
1142 	if ((coargs->flags & COF_AFTER) &&
1143 	    (cl->cl_expiration < coargs->atime)) {
1144 		return (WALK_NEXT);
1145 	}
1146 	if (!(coargs->flags & COF_EMPTY) &&
1147 	    (cl->cl_callouts.ch_head == NULL)) {
1148 		return (WALK_NEXT);
1149 	}
1150 	/* FOUR cases, each different, !A!B, !AB, A!B, AB */
1151 	if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1152 		/* both flags are set, only skip "regular" ones */
1153 		if (! (cl->cl_flags & COF_LIST_FLAGS)) {
1154 			return (WALK_NEXT);
1155 		}
1156 	} else {
1157 		if ((coargs->flags & COF_HIRES) &&
1158 		    !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1159 			return (WALK_NEXT);
1160 		}
1161 		if ((coargs->flags & COF_ABS) &&
1162 		    !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1163 			return (WALK_NEXT);
1164 		}
1165 	}
1166 
1167 	if ((coargs->flags & COF_HEAP) &&
1168 	    !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1169 		return (WALK_NEXT);
1170 	}
1171 
1172 	if ((coargs->flags & COF_QUEUE) &&
1173 	    !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1174 		return (WALK_NEXT);
1175 	}
1176 
1177 	if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
1178 	    (coargs->flags & (COF_LIST | COF_VERBOSE))) {
1179 		if (!(coargs->flags & COF_VERBOSE)) {
1180 			/* don't be redundant again */
1181 			mdb_printf("%<u>SEQ T %</u>");
1182 		}
1183 		mdb_printf("%<u>EXP            HA BUCKET "
1184 		    "CALLOUTS         %</u>");
1185 
1186 		if (coargs->flags & COF_LONGLIST) {
1187 			mdb_printf("%<u> %-?s %-?s%</u>",
1188 			    "PREV", "NEXT");
1189 		}
1190 		mdb_printf("\n");
1191 		coargs->flags &= ~COF_LHDR;
1192 		coargs->flags |= (COF_THDR | COF_CHDR);
1193 	}
1194 	if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
1195 		if (!(coargs->flags & COF_ADDR)) {
1196 			if (!(coargs->flags & COF_VERBOSE)) {
1197 				mdb_printf("%3d %1s ",
1198 				    TABLE_TO_SEQID(coargs->ndx),
1199 				    co_typenames[coargs->ndx &
1200 				    CALLOUT_TYPE_MASK]);
1201 			}
1202 
1203 			list_flags = coargs->list_flags;
1204 			mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
1205 			    (coargs->flags & COF_EXPREL) ?
1206 			    coargs->exp - coargs->now : coargs->exp,
1207 			    (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
1208 			    "H" : " ",
1209 			    (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
1210 			    "A" : " ",
1211 			    coargs->bucket, cl->cl_callouts.ch_head);
1212 
1213 			if (coargs->flags & COF_LONGLIST) {
1214 				mdb_printf(" %-?p %-?p",
1215 				    cl->cl_prev, cl->cl_next);
1216 			}
1217 		} else {
1218 			/* address only */
1219 			mdb_printf("%-0p", addr);
1220 		}
1221 		mdb_printf("\n");
1222 		if (coargs->flags & COF_LIST) {
1223 			return (WALK_NEXT);
1224 		}
1225 	}
1226 	/* yet another layer as we walk the actual callouts via list. */
1227 	if (cl->cl_callouts.ch_head == NULL) {
1228 		return (WALK_NEXT);
1229 	}
1230 	/* free list structures do not have valid callouts off of them. */
1231 	if (coargs->flags & COF_FREE) {
1232 		return (WALK_NEXT);
1233 	}
1234 	coptr = (callout_t *)cl->cl_callouts.ch_head;
1235 
1236 	if (coargs->flags & COF_VERBOSE) {
1237 		mdb_inc_indent(4);
1238 	}
1239 	/*
1240 	 * walk callouts using yet another callback routine.
1241 	 * we use callouts_bytime because id hash is handled via
1242 	 * the callout_t_cb callback.
1243 	 */
1244 	if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1245 	    (uintptr_t)coptr) == -1) {
1246 		mdb_warn("cannot walk callouts at %p", coptr);
1247 		return (WALK_ERR);
1248 	}
1249 	if (coargs->flags & COF_VERBOSE) {
1250 		mdb_dec_indent(4);
1251 	}
1252 
1253 	return (WALK_NEXT);
1254 }
1255 
1256 /* this callback handles the details of callout table walking. */
1257 static int
callout_t_cb(uintptr_t addr,const void * data,void * priv)1258 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1259 {
1260 	callout_data_t *coargs = (callout_data_t *)priv;
1261 	cot_data_t *cotwd = (cot_data_t *)data;
1262 	callout_table_t *ct = &(cotwd->ct);
1263 	int index, seqid, cotype;
1264 	int i;
1265 	callout_list_t *clptr;
1266 	callout_t *coptr;
1267 
1268 	if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1269 		return (WALK_ERR);
1270 	}
1271 
1272 	index =  ((char *)addr - (char *)coargs->co_table) /
1273 	    sizeof (callout_table_t);
1274 	cotype = index & CALLOUT_TYPE_MASK;
1275 	seqid = TABLE_TO_SEQID(index);
1276 
1277 	if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1278 		return (WALK_NEXT);
1279 	}
1280 
1281 	if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1282 		return (WALK_NEXT);
1283 	}
1284 
1285 	if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1286 		return (WALK_NEXT);
1287 	}
1288 
1289 	if (!(coargs->flags & COF_EMPTY) && (
1290 	    (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) {
1291 		return (WALK_NEXT);
1292 	}
1293 
1294 	if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1295 	    (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1296 		/* print table hdr */
1297 		mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1298 		    "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1299 		coargs->flags &= ~COF_THDR;
1300 		coargs->flags |= (COF_LHDR | COF_CHDR);
1301 		if (coargs->flags & COF_LONGLIST) {
1302 			/* more info! */
1303 			mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1304 			    " %-?s %-?s %-?s%</u>",
1305 			    "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1306 			    "PEND", "FREE", "LOCK");
1307 		}
1308 		mdb_printf("\n");
1309 	}
1310 	if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1311 		if (!(coargs->flags & COF_ADDR)) {
1312 			mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1313 			    seqid, co_typenames[cotype],
1314 			    ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1315 			    ct->ct_heap);
1316 			if (coargs->flags & COF_LONGLIST)  {
1317 				/* more info! */
1318 				mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1319 				    " %-?lld %-?lld %-?p",
1320 				    ct->ct_heap_num,  ct->ct_heap_max,
1321 				    ct->ct_taskq, ct->ct_expired.ch_head,
1322 				    ct->ct_queue.ch_head,
1323 				    cotwd->ct_timeouts_pending,
1324 				    cotwd->ct_allocations -
1325 				    cotwd->ct_timeouts_pending,
1326 				    ct->ct_mutex);
1327 			}
1328 		} else {
1329 			/* address only */
1330 			mdb_printf("%-0?p", addr);
1331 		}
1332 		mdb_printf("\n");
1333 		if (coargs->flags & COF_TABLE) {
1334 			return (WALK_NEXT);
1335 		}
1336 	}
1337 
1338 	coargs->ndx = index;
1339 	if (coargs->flags & COF_VERBOSE) {
1340 		mdb_inc_indent(4);
1341 	}
1342 	/* keep digging. */
1343 	if (!(coargs->flags & COF_BYIDH)) {
1344 		/* walk the list hash table */
1345 		if (coargs->flags & COF_FREE) {
1346 			clptr = ct->ct_lfree;
1347 			coargs->bucket = 0;
1348 			if (clptr == NULL) {
1349 				return (WALK_NEXT);
1350 			}
1351 			if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1352 			    (uintptr_t)clptr) == -1) {
1353 				mdb_warn("cannot walk callout free list at %p",
1354 				    clptr);
1355 				return (WALK_ERR);
1356 			}
1357 		} else {
1358 			/* first print the expired list. */
1359 			clptr = (callout_list_t *)ct->ct_expired.ch_head;
1360 			if (clptr != NULL) {
1361 				coargs->bucket = -1;
1362 				if (mdb_pwalk("callout_list", callout_list_cb,
1363 				    coargs, (uintptr_t)clptr) == -1) {
1364 					mdb_warn("cannot walk callout_list"
1365 					    " at %p", clptr);
1366 					return (WALK_ERR);
1367 				}
1368 			}
1369 			/* then, print the callout queue */
1370 			clptr = (callout_list_t *)ct->ct_queue.ch_head;
1371 			if (clptr != NULL) {
1372 				coargs->bucket = -1;
1373 				if (mdb_pwalk("callout_list", callout_list_cb,
1374 				    coargs, (uintptr_t)clptr) == -1) {
1375 					mdb_warn("cannot walk callout_list"
1376 					    " at %p", clptr);
1377 					return (WALK_ERR);
1378 				}
1379 			}
1380 			for (i = 0; i < CALLOUT_BUCKETS; i++) {
1381 				if (ct->ct_clhash == NULL) {
1382 					/* nothing to do */
1383 					break;
1384 				}
1385 				if (cotwd->cot_clhash[i].ch_head == NULL) {
1386 					continue;
1387 				}
1388 				clptr = (callout_list_t *)
1389 				    cotwd->cot_clhash[i].ch_head;
1390 				coargs->bucket = i;
1391 				/* walk list with callback routine. */
1392 				if (mdb_pwalk("callout_list", callout_list_cb,
1393 				    coargs, (uintptr_t)clptr) == -1) {
1394 					mdb_warn("cannot walk callout_list"
1395 					    " at %p", clptr);
1396 					return (WALK_ERR);
1397 				}
1398 			}
1399 		}
1400 	} else {
1401 		/* walk the id hash table. */
1402 		if (coargs->flags & COF_FREE) {
1403 			coptr = ct->ct_free;
1404 			coargs->bucket = 0;
1405 			if (coptr == NULL) {
1406 				return (WALK_NEXT);
1407 			}
1408 			if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1409 			    (uintptr_t)coptr) == -1) {
1410 				mdb_warn("cannot walk callout id free list"
1411 				    " at %p", coptr);
1412 				return (WALK_ERR);
1413 			}
1414 		} else {
1415 			for (i = 0; i < CALLOUT_BUCKETS; i++) {
1416 				if (ct->ct_idhash == NULL) {
1417 					break;
1418 				}
1419 				coptr = (callout_t *)
1420 				    cotwd->cot_idhash[i].ch_head;
1421 				if (coptr == NULL) {
1422 					continue;
1423 				}
1424 				coargs->bucket = i;
1425 
1426 				/*
1427 				 * walk callouts directly by id. For id
1428 				 * chain, the callout list is just a header,
1429 				 * so there's no need to walk it.
1430 				 */
1431 				if (mdb_pwalk("callouts_byid", callouts_cb,
1432 				    coargs, (uintptr_t)coptr) == -1) {
1433 					mdb_warn("cannot walk callouts at %p",
1434 					    coptr);
1435 					return (WALK_ERR);
1436 				}
1437 			}
1438 		}
1439 	}
1440 	if (coargs->flags & COF_VERBOSE) {
1441 		mdb_dec_indent(4);
1442 	}
1443 	return (WALK_NEXT);
1444 }
1445 
1446 /*
1447  * initialize some common info for both callout dcmds.
1448  */
1449 int
callout_common_init(callout_data_t * coargs)1450 callout_common_init(callout_data_t *coargs)
1451 {
1452 	/* we need a couple of things */
1453 	if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1454 		mdb_warn("failed to read 'callout_table'");
1455 		return (DCMD_ERR);
1456 	}
1457 	/* need to get now in nsecs. Approximate with hrtime vars */
1458 	if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1459 	    sizeof (hrtime_t)) {
1460 		if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1461 		    "hrtime_base") != sizeof (hrtime_t)) {
1462 			mdb_warn("Could not determine current system time");
1463 			return (DCMD_ERR);
1464 		}
1465 	}
1466 
1467 	if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1468 		mdb_warn("failed to read 'callout_table_bits'");
1469 		return (DCMD_ERR);
1470 	}
1471 	if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1472 		mdb_warn("failed to read 'nsec_per_tick'");
1473 		return (DCMD_ERR);
1474 	}
1475 	return (DCMD_OK);
1476 }
1477 
1478 /*
1479  * dcmd to print callouts.  Optional addr limits to specific table.
1480  * Parses lots of options that get passed to callbacks for walkers.
1481  * Has it's own help function.
1482  */
1483 /*ARGSUSED*/
1484 int
callout(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1485 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1486 {
1487 	callout_data_t coargs;
1488 	/* getopts doesn't help much with stuff like this */
1489 	boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1490 	char *funcname = NULL;
1491 	char *paramstr = NULL;
1492 	uintptr_t Stmp, Ctmp;	/* for getopt. */
1493 	int retval;
1494 
1495 	coargs.flags = COF_DEFAULT;
1496 	Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1497 	coargs.seqid = -1;
1498 
1499 	if (mdb_getopts(argc, argv,
1500 	    'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1501 	    'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1502 	    'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1503 	    's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1504 	    'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1505 	    'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1506 	    'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1507 	    'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1508 	    'd', MDB_OPT_SETBITS, 1, &dflag,
1509 	    'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1510 	    'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1511 	    't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1512 	    'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1513 	    'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1514 	    'k', MDB_OPT_SETBITS, 1, &kflag,
1515 	    'f', MDB_OPT_STR, &funcname,
1516 	    'p', MDB_OPT_STR, &paramstr,
1517 	    'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1518 	    'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1519 	    'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1520 	    'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1521 	    'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1522 	    'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1523 	    'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1524 	    'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1525 	    'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1526 	    'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1527 	    NULL) != argc) {
1528 		return (DCMD_USAGE);
1529 	}
1530 
1531 	/* initialize from kernel variables */
1532 	if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1533 		return (retval);
1534 	}
1535 
1536 	/* do some option post-processing */
1537 	if (kflag) {
1538 		coargs.time *= coargs.nsec_per_tick;
1539 		coargs.atime *= coargs.nsec_per_tick;
1540 		coargs.btime *= coargs.nsec_per_tick;
1541 	}
1542 
1543 	if (dflag) {
1544 		coargs.time += coargs.now;
1545 		coargs.atime += coargs.now;
1546 		coargs.btime += coargs.now;
1547 	}
1548 	if (Sflag) {
1549 		if (flags & DCMD_ADDRSPEC) {
1550 			mdb_printf("-S option conflicts with explicit"
1551 			    " address\n");
1552 			return (DCMD_USAGE);
1553 		}
1554 		coargs.flags |= COF_SEQID;
1555 		coargs.seqid = (int)Stmp;
1556 	}
1557 	if (Cflag) {
1558 		if (flags & DCMD_ADDRSPEC) {
1559 			mdb_printf("-C option conflicts with explicit"
1560 			    " address\n");
1561 			return (DCMD_USAGE);
1562 		}
1563 		if (coargs.flags & COF_SEQID) {
1564 			mdb_printf("-C and -S are mutually exclusive\n");
1565 			return (DCMD_USAGE);
1566 		}
1567 		coargs.cpu = (cpu_t *)Ctmp;
1568 		if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1569 		    (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1570 			mdb_warn("failed to read cpu_t at %p", Ctmp);
1571 			return (DCMD_ERR);
1572 		}
1573 		coargs.flags |= COF_SEQID;
1574 	}
1575 	/* avoid null outputs. */
1576 	if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1577 		coargs.flags |= COF_REAL | COF_NORM;
1578 	}
1579 	if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1580 		coargs.flags |= COF_LONG | COF_SHORT;
1581 	}
1582 	if (tflag) {
1583 		if (aflag || bflag) {
1584 			mdb_printf("-t and -a|b are mutually exclusive\n");
1585 			return (DCMD_USAGE);
1586 		}
1587 		coargs.flags |= COF_TIME;
1588 	}
1589 	if (aflag) {
1590 		coargs.flags |= COF_AFTER;
1591 	}
1592 	if (bflag) {
1593 		coargs.flags |= COF_BEFORE;
1594 	}
1595 	if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1596 		mdb_printf("value for -a must be earlier than the value"
1597 		    " for -b.\n");
1598 		return (DCMD_USAGE);
1599 	}
1600 
1601 	if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1602 		mdb_printf("-H and -Q are mutually exclusive\n");
1603 		return (DCMD_USAGE);
1604 	}
1605 
1606 	if (funcname != NULL) {
1607 		GElf_Sym sym;
1608 
1609 		if (mdb_lookup_by_name(funcname, &sym) != 0) {
1610 			coargs.funcaddr = mdb_strtoull(funcname);
1611 		} else {
1612 			coargs.funcaddr = sym.st_value;
1613 		}
1614 		coargs.flags |= COF_FUNC;
1615 	}
1616 
1617 	if (paramstr != NULL) {
1618 		GElf_Sym sym;
1619 
1620 		if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1621 			coargs.param = mdb_strtoull(paramstr);
1622 		} else {
1623 			coargs.param = sym.st_value;
1624 		}
1625 		coargs.flags |= COF_PARAM;
1626 	}
1627 
1628 	if (!(flags & DCMD_ADDRSPEC)) {
1629 		/* don't pass "dot" if no addr. */
1630 		addr = 0;
1631 	}
1632 	if (addr != 0) {
1633 		/*
1634 		 * a callout table was specified. Ignore -r|n option
1635 		 * to avoid null output.
1636 		 */
1637 		coargs.flags |= (COF_REAL | COF_NORM);
1638 	}
1639 
1640 	if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1641 		coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1642 	}
1643 	if (coargs.flags & COF_FREE) {
1644 		coargs.flags |= COF_EMPTY;
1645 		/* -F = free callouts, -FL = free lists */
1646 		if (!(coargs.flags & COF_LIST)) {
1647 			coargs.flags |= COF_BYIDH;
1648 		}
1649 	}
1650 
1651 	/* walk table, using specialized callback routine. */
1652 	if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1653 		mdb_warn("cannot walk callout_table");
1654 		return (DCMD_ERR);
1655 	}
1656 	return (DCMD_OK);
1657 }
1658 
1659 
1660 /*
1661  * Given an extended callout id, dump its information.
1662  */
1663 /*ARGSUSED*/
1664 int
calloutid(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1665 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1666 {
1667 	callout_data_t coargs;
1668 	callout_table_t *ctptr;
1669 	callout_table_t ct;
1670 	callout_id_t coid;
1671 	callout_t *coptr;
1672 	int tableid;
1673 	callout_id_t xid;
1674 	ulong_t idhash;
1675 	int i, retval;
1676 	const mdb_arg_t *arg;
1677 	size_t size;
1678 	callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1679 
1680 	coargs.flags = COF_DEFAULT | COF_BYIDH;
1681 	i = mdb_getopts(argc, argv,
1682 	    'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1683 	    'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1684 	    NULL);
1685 	argc -= i;
1686 	argv += i;
1687 
1688 	if (argc != 1) {
1689 		return (DCMD_USAGE);
1690 	}
1691 	arg = &argv[0];
1692 
1693 	xid = (callout_id_t)mdb_argtoull(arg);
1694 
1695 	if (DCMD_HDRSPEC(flags)) {
1696 		coargs.flags |= COF_CHDR;
1697 	}
1698 
1699 
1700 	/* initialize from kernel variables */
1701 	if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1702 		return (retval);
1703 	}
1704 
1705 	/* we must massage the environment so that the macros will play nice */
1706 #define	callout_table_mask	((1 << coargs.ctbits) - 1)
1707 #define	callout_table_bits	coargs.ctbits
1708 #define	nsec_per_tick		coargs.nsec_per_tick
1709 	tableid = CALLOUT_ID_TO_TABLE(xid);
1710 	idhash = CALLOUT_IDHASH(xid);
1711 #undef	callouts_table_bits
1712 #undef	callout_table_mask
1713 #undef	nsec_per_tick
1714 	coid = CO_PLAIN_ID(xid);
1715 
1716 	if (flags & DCMD_ADDRSPEC) {
1717 		mdb_printf("calloutid does not accept explicit address.\n");
1718 		return (DCMD_USAGE);
1719 	}
1720 
1721 	if (coargs.flags & COF_DECODE) {
1722 		if (DCMD_HDRSPEC(flags)) {
1723 			mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1724 			    "SEQ", "T", "XL", "XID", "IDHASH");
1725 		}
1726 		mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1727 		    TABLE_TO_SEQID(tableid),
1728 		    co_typenames[tableid & CALLOUT_TYPE_MASK],
1729 		    (xid & CALLOUT_EXECUTING) ? "X" : " ",
1730 		    (xid & CALLOUT_LONGTERM) ? "L" : " ",
1731 		    (long long)coid, idhash);
1732 		return (DCMD_OK);
1733 	}
1734 
1735 	/* get our table. Note this relies on the types being correct */
1736 	ctptr = coargs.co_table + tableid;
1737 	if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1738 		mdb_warn("failed to read callout_table at %p", ctptr);
1739 		return (DCMD_ERR);
1740 	}
1741 	size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1742 	if (ct.ct_idhash != NULL) {
1743 		if (mdb_vread(&(cot_idhash), size,
1744 		    (uintptr_t)ct.ct_idhash) == -1) {
1745 			mdb_warn("failed to read id_hash at %p",
1746 			    ct.ct_idhash);
1747 			return (WALK_ERR);
1748 		}
1749 	}
1750 
1751 	/* callout at beginning of hash chain */
1752 	if (ct.ct_idhash == NULL) {
1753 		mdb_printf("id hash chain for this xid is empty\n");
1754 		return (DCMD_ERR);
1755 	}
1756 	coptr = (callout_t *)cot_idhash[idhash].ch_head;
1757 	if (coptr == NULL) {
1758 		mdb_printf("id hash chain for this xid is empty\n");
1759 		return (DCMD_ERR);
1760 	}
1761 
1762 	coargs.ndx = tableid;
1763 	coargs.bucket = idhash;
1764 
1765 	/* use the walker, luke */
1766 	if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1767 	    (uintptr_t)coptr) == -1) {
1768 		mdb_warn("cannot walk callouts at %p", coptr);
1769 		return (WALK_ERR);
1770 	}
1771 
1772 	return (DCMD_OK);
1773 }
1774 
1775 void
callout_help(void)1776 callout_help(void)
1777 {
1778 	mdb_printf("callout: display callouts.\n"
1779 	    "Given a callout table address, display callouts from table.\n"
1780 	    "Without an address, display callouts from all tables.\n"
1781 	    "options:\n"
1782 	    " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1783 	    " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1784 	    " -x : limit display to callouts which are executing\n"
1785 	    " -h : limit display to callouts based on hrestime\n"
1786 	    " -B : limit display to callouts based on absolute time\n"
1787 	    " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1788 	    " (a)fter time,\n     or (b)efore time. Use -a and -b together "
1789 	    " to specify a range.\n     For \"now\", use -d[t|a|b] 0.\n"
1790 	    " -d : interpret time option to -t|a|b as delta from current time\n"
1791 	    " -k : use ticks instead of nanoseconds as arguments to"
1792 	    " -t|a|b. Note that\n     ticks are less accurate and may not"
1793 	    " match other tick times (ie: lbolt).\n"
1794 	    " -D : display exiration time as delta from current time\n"
1795 	    " -S seqid : limit display to callouts for this cpu sequence id\n"
1796 	    " -C addr :  limit display to callouts for this cpu pointer\n"
1797 	    " -f name|addr : limit display to callouts with this function\n"
1798 	    " -p name|addr : limit display to callouts functions with this"
1799 	    " parameter\n"
1800 	    " -T : display the callout table itself, instead of callouts\n"
1801 	    " -L : display callout lists instead of callouts\n"
1802 	    " -E : with -T or L, display empty data structures.\n"
1803 	    " -i : traverse callouts by id hash instead of list hash\n"
1804 	    " -F : walk free callout list (free list with -i) instead\n"
1805 	    " -v : display more info for each item\n"
1806 	    " -V : show details of each level of info as it is traversed\n"
1807 	    " -H : limit display to callouts in the callout heap\n"
1808 	    " -Q : limit display to callouts in the callout queue\n"
1809 	    " -A : show only addresses. Useful for pipelines.\n");
1810 }
1811 
1812 void
calloutid_help(void)1813 calloutid_help(void)
1814 {
1815 	mdb_printf("calloutid: display callout by id.\n"
1816 	    "Given an extended callout id, display the callout infomation.\n"
1817 	    "options:\n"
1818 	    " -d : do not dereference callout, just decode the id.\n"
1819 	    " -v : verbose display more info about the callout\n");
1820 }
1821 
1822 /*ARGSUSED*/
1823 int
class(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1824 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1825 {
1826 	long num_classes, i;
1827 	sclass_t *class_tbl;
1828 	GElf_Sym g_sclass;
1829 	char class_name[PC_CLNMSZ];
1830 	size_t tbl_size;
1831 
1832 	if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1833 		mdb_warn("failed to find symbol sclass\n");
1834 		return (DCMD_ERR);
1835 	}
1836 
1837 	tbl_size = (size_t)g_sclass.st_size;
1838 	num_classes = tbl_size / (sizeof (sclass_t));
1839 	class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1840 
1841 	if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1842 		mdb_warn("failed to read sclass");
1843 		return (DCMD_ERR);
1844 	}
1845 
1846 	mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1847 	    "INIT FCN", "CLASS FCN");
1848 
1849 	for (i = 0; i < num_classes; i++) {
1850 		if (mdb_vread(class_name, sizeof (class_name),
1851 		    (uintptr_t)class_tbl[i].cl_name) == -1)
1852 			(void) strcpy(class_name, "???");
1853 
1854 		mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1855 		    class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1856 	}
1857 
1858 	return (DCMD_OK);
1859 }
1860 
1861 #define	FSNAMELEN	32	/* Max len of FS name we read from vnodeops */
1862 
1863 int
vnode2path(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1864 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1865 {
1866 	uintptr_t rootdir;
1867 	vnode_t vn;
1868 	char buf[MAXPATHLEN];
1869 
1870 	uint_t opt_F = FALSE;
1871 
1872 	if (mdb_getopts(argc, argv,
1873 	    'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1874 		return (DCMD_USAGE);
1875 
1876 	if (!(flags & DCMD_ADDRSPEC)) {
1877 		mdb_warn("expected explicit vnode_t address before ::\n");
1878 		return (DCMD_USAGE);
1879 	}
1880 
1881 	if (mdb_readvar(&rootdir, "rootdir") == -1) {
1882 		mdb_warn("failed to read rootdir");
1883 		return (DCMD_ERR);
1884 	}
1885 
1886 	if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1887 		return (DCMD_ERR);
1888 
1889 	if (*buf == '\0') {
1890 		mdb_printf("??\n");
1891 		return (DCMD_OK);
1892 	}
1893 
1894 	mdb_printf("%s", buf);
1895 	if (opt_F && buf[strlen(buf)-1] != '/' &&
1896 	    mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1897 		mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1898 	mdb_printf("\n");
1899 
1900 	return (DCMD_OK);
1901 }
1902 
1903 int
ld_walk_init(mdb_walk_state_t * wsp)1904 ld_walk_init(mdb_walk_state_t *wsp)
1905 {
1906 	wsp->walk_data = (void *)wsp->walk_addr;
1907 	return (WALK_NEXT);
1908 }
1909 
1910 int
ld_walk_step(mdb_walk_state_t * wsp)1911 ld_walk_step(mdb_walk_state_t *wsp)
1912 {
1913 	int status;
1914 	lock_descriptor_t ld;
1915 
1916 	if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1917 		mdb_warn("couldn't read lock_descriptor_t at %p\n",
1918 		    wsp->walk_addr);
1919 		return (WALK_ERR);
1920 	}
1921 
1922 	status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1923 	if (status == WALK_ERR)
1924 		return (WALK_ERR);
1925 
1926 	wsp->walk_addr = (uintptr_t)ld.l_next;
1927 	if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1928 		return (WALK_DONE);
1929 
1930 	return (status);
1931 }
1932 
1933 int
lg_walk_init(mdb_walk_state_t * wsp)1934 lg_walk_init(mdb_walk_state_t *wsp)
1935 {
1936 	GElf_Sym sym;
1937 
1938 	if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1939 		mdb_warn("failed to find symbol 'lock_graph'\n");
1940 		return (WALK_ERR);
1941 	}
1942 
1943 	wsp->walk_addr = (uintptr_t)sym.st_value;
1944 	wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1945 
1946 	return (WALK_NEXT);
1947 }
1948 
1949 typedef struct lg_walk_data {
1950 	uintptr_t startaddr;
1951 	mdb_walk_cb_t callback;
1952 	void *data;
1953 } lg_walk_data_t;
1954 
1955 /*
1956  * We can't use ::walk lock_descriptor directly, because the head of each graph
1957  * is really a dummy lock.  Rather than trying to dynamically determine if this
1958  * is a dummy node or not, we just filter out the initial element of the
1959  * list.
1960  */
1961 static int
lg_walk_cb(uintptr_t addr,const void * data,void * priv)1962 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1963 {
1964 	lg_walk_data_t *lw = priv;
1965 
1966 	if (addr != lw->startaddr)
1967 		return (lw->callback(addr, data, lw->data));
1968 
1969 	return (WALK_NEXT);
1970 }
1971 
1972 int
lg_walk_step(mdb_walk_state_t * wsp)1973 lg_walk_step(mdb_walk_state_t *wsp)
1974 {
1975 	graph_t *graph;
1976 	lg_walk_data_t lw;
1977 
1978 	if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1979 		return (WALK_DONE);
1980 
1981 	if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1982 		mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1983 		return (WALK_ERR);
1984 	}
1985 
1986 	wsp->walk_addr += sizeof (graph);
1987 
1988 	if (graph == NULL)
1989 		return (WALK_NEXT);
1990 
1991 	lw.callback = wsp->walk_callback;
1992 	lw.data = wsp->walk_cbdata;
1993 
1994 	lw.startaddr = (uintptr_t)&(graph->active_locks);
1995 	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1996 		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1997 		return (WALK_ERR);
1998 	}
1999 
2000 	lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
2001 	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
2002 		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
2003 		return (WALK_ERR);
2004 	}
2005 
2006 	return (WALK_NEXT);
2007 }
2008 
2009 /*
2010  * The space available for the path corresponding to the locked vnode depends
2011  * on whether we are printing 32- or 64-bit addresses.
2012  */
2013 #ifdef _LP64
2014 #define	LM_VNPATHLEN	20
2015 #else
2016 #define	LM_VNPATHLEN	30
2017 #endif
2018 
2019 typedef struct mdb_lminfo_proc {
2020 	struct {
2021 		char		u_comm[MAXCOMLEN + 1];
2022 	} p_user;
2023 } mdb_lminfo_proc_t;
2024 
2025 /*ARGSUSED*/
2026 static int
lminfo_cb(uintptr_t addr,const void * data,void * priv)2027 lminfo_cb(uintptr_t addr, const void *data, void *priv)
2028 {
2029 	const lock_descriptor_t *ld = data;
2030 	char buf[LM_VNPATHLEN];
2031 	mdb_lminfo_proc_t p;
2032 	uintptr_t paddr = 0;
2033 
2034 	if (ld->l_flock.l_pid != 0)
2035 		paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL);
2036 
2037 	if (paddr != 0)
2038 		mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0);
2039 
2040 	mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
2041 	    addr, ld->l_type == F_RDLCK ? "RD" :
2042 	    ld->l_type == F_WRLCK ? "WR" : "??",
2043 	    ld->l_state, ld->l_flock.l_pid,
2044 	    ld->l_flock.l_pid == 0 ? "<kernel>" :
2045 	    paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode);
2046 
2047 	mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
2048 	    sizeof (buf));
2049 	mdb_printf("%s\n", buf);
2050 
2051 	return (WALK_NEXT);
2052 }
2053 
2054 /*ARGSUSED*/
2055 int
lminfo(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2056 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2057 {
2058 	if (DCMD_HDRSPEC(flags))
2059 		mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
2060 		    "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
2061 
2062 	return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0));
2063 }
2064 
2065 typedef struct mdb_whereopen {
2066 	uint_t mwo_flags;
2067 	uintptr_t mwo_target;
2068 	boolean_t mwo_found;
2069 } mdb_whereopen_t;
2070 
2071 /*ARGSUSED*/
2072 int
whereopen_fwalk(uintptr_t addr,const void * farg,void * arg)2073 whereopen_fwalk(uintptr_t addr, const void *farg, void *arg)
2074 {
2075 	const struct file *f = farg;
2076 	mdb_whereopen_t *mwo = arg;
2077 
2078 	if ((uintptr_t)f->f_vnode == mwo->mwo_target) {
2079 		if ((mwo->mwo_flags & DCMD_PIPE_OUT) == 0 &&
2080 		    !mwo->mwo_found) {
2081 			mdb_printf("file %p\n", addr);
2082 		}
2083 		mwo->mwo_found = B_TRUE;
2084 	}
2085 
2086 	return (WALK_NEXT);
2087 }
2088 
2089 /*ARGSUSED*/
2090 int
whereopen_pwalk(uintptr_t addr,const void * ignored,void * arg)2091 whereopen_pwalk(uintptr_t addr, const void *ignored, void *arg)
2092 {
2093 	mdb_whereopen_t *mwo = arg;
2094 
2095 	mwo->mwo_found = B_FALSE;
2096 	if (mdb_pwalk("file", whereopen_fwalk, mwo, addr) == -1) {
2097 		mdb_warn("couldn't file walk proc %p", addr);
2098 		return (WALK_ERR);
2099 	}
2100 
2101 	if (mwo->mwo_found) {
2102 		mdb_printf("%p\n", addr);
2103 	}
2104 
2105 	return (WALK_NEXT);
2106 }
2107 
2108 /*ARGSUSED*/
2109 int
whereopen(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2110 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2111 {
2112 	mdb_whereopen_t mwo;
2113 
2114 	if (!(flags & DCMD_ADDRSPEC) || addr == 0)
2115 		return (DCMD_USAGE);
2116 
2117 	mwo.mwo_flags = flags;
2118 	mwo.mwo_target = addr;
2119 	mwo.mwo_found = B_FALSE;
2120 
2121 	if (mdb_walk("proc", whereopen_pwalk, &mwo) == -1) {
2122 		mdb_warn("can't proc walk");
2123 		return (DCMD_ERR);
2124 	}
2125 
2126 	return (DCMD_OK);
2127 }
2128 
2129 typedef struct datafmt {
2130 	char	*hdr1;
2131 	char	*hdr2;
2132 	char	*dashes;
2133 	char	*fmt;
2134 } datafmt_t;
2135 
2136 static datafmt_t kmemfmt[] = {
2137 	{ "cache                    ", "name                     ",
2138 	"-------------------------", "%-25s "				},
2139 	{ "   buf",	"  size",	"------",	"%6u "		},
2140 	{ "   buf",	"in use",	"------",	"%6u "		},
2141 	{ "   buf",	" total",	"------",	"%6u "		},
2142 	{ "   memory",	"   in use",	"----------",	"%10lu%c "	},
2143 	{ "    alloc",	"  succeed",	"---------",	"%9u "		},
2144 	{ "alloc",	" fail",	"-----",	"%5u "		},
2145 	{ NULL,		NULL,		NULL,		NULL		}
2146 };
2147 
2148 static datafmt_t vmemfmt[] = {
2149 	{ "vmem                     ", "name                     ",
2150 	"-------------------------", "%-*s "				},
2151 	{ "   memory",	"   in use",	"----------",	"%9llu%c "	},
2152 	{ "    memory",	"     total",	"-----------",	"%10llu%c "	},
2153 	{ "   memory",	"   import",	"----------",	"%9llu%c "	},
2154 	{ "    alloc",	"  succeed",	"---------",	"%9llu "	},
2155 	{ "alloc",	" fail",	"-----",	"%5llu "	},
2156 	{ NULL,		NULL,		NULL,		NULL		}
2157 };
2158 
2159 /*ARGSUSED*/
2160 static int
kmastat_cpu_avail(uintptr_t addr,const kmem_cpu_cache_t * ccp,int * avail)2161 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
2162 {
2163 	short rounds, prounds;
2164 
2165 	if (KMEM_DUMPCC(ccp)) {
2166 		rounds = ccp->cc_dump_rounds;
2167 		prounds = ccp->cc_dump_prounds;
2168 	} else {
2169 		rounds = ccp->cc_rounds;
2170 		prounds = ccp->cc_prounds;
2171 	}
2172 	if (rounds > 0)
2173 		*avail += rounds;
2174 	if (prounds > 0)
2175 		*avail += prounds;
2176 
2177 	return (WALK_NEXT);
2178 }
2179 
2180 /*ARGSUSED*/
2181 static int
kmastat_cpu_alloc(uintptr_t addr,const kmem_cpu_cache_t * ccp,int * alloc)2182 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
2183 {
2184 	*alloc += ccp->cc_alloc;
2185 
2186 	return (WALK_NEXT);
2187 }
2188 
2189 /*ARGSUSED*/
2190 static int
kmastat_slab_avail(uintptr_t addr,const kmem_slab_t * sp,int * avail)2191 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
2192 {
2193 	*avail += sp->slab_chunks - sp->slab_refcnt;
2194 
2195 	return (WALK_NEXT);
2196 }
2197 
2198 typedef struct kmastat_vmem {
2199 	uintptr_t kv_addr;
2200 	struct kmastat_vmem *kv_next;
2201 	size_t kv_meminuse;
2202 	int kv_alloc;
2203 	int kv_fail;
2204 } kmastat_vmem_t;
2205 
2206 typedef struct kmastat_args {
2207 	kmastat_vmem_t **ka_kvpp;
2208 	uint_t ka_shift;
2209 } kmastat_args_t;
2210 
2211 static int
kmastat_cache(uintptr_t addr,const kmem_cache_t * cp,kmastat_args_t * kap)2212 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
2213 {
2214 	kmastat_vmem_t **kvpp = kap->ka_kvpp;
2215 	kmastat_vmem_t *kv;
2216 	datafmt_t *dfp = kmemfmt;
2217 	int magsize;
2218 
2219 	int avail, alloc, total;
2220 	size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
2221 	    cp->cache_slabsize;
2222 
2223 	mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
2224 	mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
2225 	mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
2226 
2227 	magsize = kmem_get_magsize(cp);
2228 
2229 	alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2230 	avail = cp->cache_full.ml_total * magsize;
2231 	total = cp->cache_buftotal;
2232 
2233 	(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2234 	(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2235 	(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2236 
2237 	for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2238 		if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2239 			goto out;
2240 	}
2241 
2242 	kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2243 	kv->kv_next = *kvpp;
2244 	kv->kv_addr = (uintptr_t)cp->cache_arena;
2245 	*kvpp = kv;
2246 out:
2247 	kv->kv_meminuse += meminuse;
2248 	kv->kv_alloc += alloc;
2249 	kv->kv_fail += cp->cache_alloc_fail;
2250 
2251 	mdb_printf((dfp++)->fmt, cp->cache_name);
2252 	mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2253 	mdb_printf((dfp++)->fmt, total - avail);
2254 	mdb_printf((dfp++)->fmt, total);
2255 	mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2256 	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2257 	    kap->ka_shift == KILOS ? 'K' : 'B');
2258 	mdb_printf((dfp++)->fmt, alloc);
2259 	mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2260 	mdb_printf("\n");
2261 
2262 	return (WALK_NEXT);
2263 }
2264 
2265 static int
kmastat_vmem_totals(uintptr_t addr,const vmem_t * v,kmastat_args_t * kap)2266 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2267 {
2268 	kmastat_vmem_t *kv = *kap->ka_kvpp;
2269 	size_t len;
2270 
2271 	while (kv != NULL && kv->kv_addr != addr)
2272 		kv = kv->kv_next;
2273 
2274 	if (kv == NULL || kv->kv_alloc == 0)
2275 		return (WALK_NEXT);
2276 
2277 	len = MIN(17, strlen(v->vm_name));
2278 
2279 	mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2280 	    17 - len, "", "", "", "",
2281 	    kv->kv_meminuse >> kap->ka_shift,
2282 	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2283 	    kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2284 
2285 	return (WALK_NEXT);
2286 }
2287 
2288 /*ARGSUSED*/
2289 static int
kmastat_vmem(uintptr_t addr,const vmem_t * v,const uint_t * shiftp)2290 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2291 {
2292 	datafmt_t *dfp = vmemfmt;
2293 	const vmem_kstat_t *vkp = &v->vm_kstat;
2294 	uintptr_t paddr;
2295 	vmem_t parent;
2296 	int ident = 0;
2297 
2298 	for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) {
2299 		if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2300 			mdb_warn("couldn't trace %p's ancestry", addr);
2301 			ident = 0;
2302 			break;
2303 		}
2304 		paddr = (uintptr_t)parent.vm_source;
2305 	}
2306 
2307 	mdb_printf("%*s", ident, "");
2308 	mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2309 	mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2310 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2311 	    *shiftp == KILOS ? 'K' : 'B');
2312 	mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2313 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2314 	    *shiftp == KILOS ? 'K' : 'B');
2315 	mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2316 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2317 	    *shiftp == KILOS ? 'K' : 'B');
2318 	mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2319 	mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2320 
2321 	mdb_printf("\n");
2322 
2323 	return (WALK_NEXT);
2324 }
2325 
2326 /*ARGSUSED*/
2327 int
kmastat(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2328 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2329 {
2330 	kmastat_vmem_t *kv = NULL;
2331 	datafmt_t *dfp;
2332 	kmastat_args_t ka;
2333 
2334 	ka.ka_shift = 0;
2335 	if (mdb_getopts(argc, argv,
2336 	    'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2337 	    'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2338 	    'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2339 		return (DCMD_USAGE);
2340 
2341 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2342 		mdb_printf("%s ", dfp->hdr1);
2343 	mdb_printf("\n");
2344 
2345 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2346 		mdb_printf("%s ", dfp->hdr2);
2347 	mdb_printf("\n");
2348 
2349 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2350 		mdb_printf("%s ", dfp->dashes);
2351 	mdb_printf("\n");
2352 
2353 	ka.ka_kvpp = &kv;
2354 	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2355 		mdb_warn("can't walk 'kmem_cache'");
2356 		return (DCMD_ERR);
2357 	}
2358 
2359 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2360 		mdb_printf("%s ", dfp->dashes);
2361 	mdb_printf("\n");
2362 
2363 	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2364 		mdb_warn("can't walk 'vmem'");
2365 		return (DCMD_ERR);
2366 	}
2367 
2368 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2369 		mdb_printf("%s ", dfp->dashes);
2370 	mdb_printf("\n");
2371 
2372 	mdb_printf("\n");
2373 
2374 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2375 		mdb_printf("%s ", dfp->hdr1);
2376 	mdb_printf("\n");
2377 
2378 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2379 		mdb_printf("%s ", dfp->hdr2);
2380 	mdb_printf("\n");
2381 
2382 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2383 		mdb_printf("%s ", dfp->dashes);
2384 	mdb_printf("\n");
2385 
2386 	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2387 		mdb_warn("can't walk 'vmem'");
2388 		return (DCMD_ERR);
2389 	}
2390 
2391 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2392 		mdb_printf("%s ", dfp->dashes);
2393 	mdb_printf("\n");
2394 	return (DCMD_OK);
2395 }
2396 
2397 /*
2398  * Our ::kgrep callback scans the entire kernel VA space (kas).  kas is made
2399  * up of a set of 'struct seg's.  We could just scan each seg en masse, but
2400  * unfortunately, a few of the segs are both large and sparse, so we could
2401  * spend quite a bit of time scanning VAs which have no backing pages.
2402  *
2403  * So for the few very sparse segs, we skip the segment itself, and scan
2404  * the allocated vmem_segs in the vmem arena which manages that part of kas.
2405  * Currently, we do this for:
2406  *
2407  *	SEG		VMEM ARENA
2408  *	kvseg		heap_arena
2409  *	kvseg32		heap32_arena
2410  *	kvseg_core	heap_core_arena
2411  *
2412  * In addition, we skip the segkpm segment in its entirety, since it is very
2413  * sparse, and contains no new kernel data.
2414  */
2415 typedef struct kgrep_walk_data {
2416 	kgrep_cb_func *kg_cb;
2417 	void *kg_cbdata;
2418 	uintptr_t kg_kvseg;
2419 	uintptr_t kg_kvseg32;
2420 	uintptr_t kg_kvseg_core;
2421 	uintptr_t kg_segkpm;
2422 	uintptr_t kg_heap_lp_base;
2423 	uintptr_t kg_heap_lp_end;
2424 } kgrep_walk_data_t;
2425 
2426 static int
kgrep_walk_seg(uintptr_t addr,const struct seg * seg,kgrep_walk_data_t * kg)2427 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2428 {
2429 	uintptr_t base = (uintptr_t)seg->s_base;
2430 
2431 	if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2432 	    addr == kg->kg_kvseg_core)
2433 		return (WALK_NEXT);
2434 
2435 	if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2436 		return (WALK_NEXT);
2437 
2438 	return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2439 }
2440 
2441 /*ARGSUSED*/
2442 static int
kgrep_walk_vseg(uintptr_t addr,const vmem_seg_t * seg,kgrep_walk_data_t * kg)2443 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2444 {
2445 	/*
2446 	 * skip large page heap address range - it is scanned by walking
2447 	 * allocated vmem_segs in the heap_lp_arena
2448 	 */
2449 	if (seg->vs_start == kg->kg_heap_lp_base &&
2450 	    seg->vs_end == kg->kg_heap_lp_end)
2451 		return (WALK_NEXT);
2452 
2453 	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2454 }
2455 
2456 /*ARGSUSED*/
2457 static int
kgrep_xwalk_vseg(uintptr_t addr,const vmem_seg_t * seg,kgrep_walk_data_t * kg)2458 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2459 {
2460 	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2461 }
2462 
2463 static int
kgrep_walk_vmem(uintptr_t addr,const vmem_t * vmem,kgrep_walk_data_t * kg)2464 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2465 {
2466 	mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2467 
2468 	if (strcmp(vmem->vm_name, "heap") != 0 &&
2469 	    strcmp(vmem->vm_name, "heap32") != 0 &&
2470 	    strcmp(vmem->vm_name, "heap_core") != 0 &&
2471 	    strcmp(vmem->vm_name, "heap_lp") != 0)
2472 		return (WALK_NEXT);
2473 
2474 	if (strcmp(vmem->vm_name, "heap_lp") == 0)
2475 		walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2476 
2477 	if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2478 		mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2479 		return (WALK_ERR);
2480 	}
2481 
2482 	return (WALK_NEXT);
2483 }
2484 
2485 int
kgrep_subr(kgrep_cb_func * cb,void * cbdata)2486 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2487 {
2488 	GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2489 	kgrep_walk_data_t kg;
2490 
2491 	if (mdb_get_state() == MDB_STATE_RUNNING) {
2492 		mdb_warn("kgrep can only be run on a system "
2493 		    "dump or under kmdb; see dumpadm(8)\n");
2494 		return (DCMD_ERR);
2495 	}
2496 
2497 	if (mdb_lookup_by_name("kas", &kas) == -1) {
2498 		mdb_warn("failed to locate 'kas' symbol\n");
2499 		return (DCMD_ERR);
2500 	}
2501 
2502 	if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2503 		mdb_warn("failed to locate 'kvseg' symbol\n");
2504 		return (DCMD_ERR);
2505 	}
2506 
2507 	if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2508 		mdb_warn("failed to locate 'kvseg32' symbol\n");
2509 		return (DCMD_ERR);
2510 	}
2511 
2512 	if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2513 		mdb_warn("failed to locate 'kvseg_core' symbol\n");
2514 		return (DCMD_ERR);
2515 	}
2516 
2517 	if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2518 		mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2519 		return (DCMD_ERR);
2520 	}
2521 
2522 	if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2523 		mdb_warn("failed to read 'heap_lp_base'\n");
2524 		return (DCMD_ERR);
2525 	}
2526 
2527 	if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2528 		mdb_warn("failed to read 'heap_lp_end'\n");
2529 		return (DCMD_ERR);
2530 	}
2531 
2532 	kg.kg_cb = cb;
2533 	kg.kg_cbdata = cbdata;
2534 	kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2535 	kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2536 	kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2537 	kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2538 
2539 	if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2540 	    &kg, kas.st_value) == -1) {
2541 		mdb_warn("failed to walk kas segments");
2542 		return (DCMD_ERR);
2543 	}
2544 
2545 	if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2546 		mdb_warn("failed to walk heap/heap32 vmem arenas");
2547 		return (DCMD_ERR);
2548 	}
2549 
2550 	return (DCMD_OK);
2551 }
2552 
2553 size_t
kgrep_subr_pagesize(void)2554 kgrep_subr_pagesize(void)
2555 {
2556 	return (PAGESIZE);
2557 }
2558 
2559 typedef struct file_walk_data {
2560 	struct uf_entry *fw_flist;
2561 	int fw_flistsz;
2562 	int fw_ndx;
2563 	int fw_nofiles;
2564 } file_walk_data_t;
2565 
2566 typedef struct mdb_file_proc {
2567 	struct {
2568 		struct {
2569 			int			fi_nfiles;
2570 			uf_entry_t *volatile	fi_list;
2571 		} u_finfo;
2572 	} p_user;
2573 } mdb_file_proc_t;
2574 
2575 int
file_walk_init(mdb_walk_state_t * wsp)2576 file_walk_init(mdb_walk_state_t *wsp)
2577 {
2578 	file_walk_data_t *fw;
2579 	mdb_file_proc_t p;
2580 
2581 	if (wsp->walk_addr == 0) {
2582 		mdb_warn("file walk doesn't support global walks\n");
2583 		return (WALK_ERR);
2584 	}
2585 
2586 	fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2587 
2588 	if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t",
2589 	    wsp->walk_addr, 0) == -1) {
2590 		mdb_free(fw, sizeof (file_walk_data_t));
2591 		mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2592 		return (WALK_ERR);
2593 	}
2594 
2595 	if (p.p_user.u_finfo.fi_nfiles == 0) {
2596 		mdb_free(fw, sizeof (file_walk_data_t));
2597 		return (WALK_DONE);
2598 	}
2599 
2600 	fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2601 	fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2602 	fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2603 
2604 	if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2605 	    (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2606 		mdb_warn("failed to read file array at %p",
2607 		    p.p_user.u_finfo.fi_list);
2608 		mdb_free(fw->fw_flist, fw->fw_flistsz);
2609 		mdb_free(fw, sizeof (file_walk_data_t));
2610 		return (WALK_ERR);
2611 	}
2612 
2613 	fw->fw_ndx = 0;
2614 	wsp->walk_data = fw;
2615 
2616 	return (WALK_NEXT);
2617 }
2618 
2619 int
file_walk_step(mdb_walk_state_t * wsp)2620 file_walk_step(mdb_walk_state_t *wsp)
2621 {
2622 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2623 	struct file file;
2624 	uintptr_t fp;
2625 
2626 again:
2627 	if (fw->fw_ndx == fw->fw_nofiles)
2628 		return (WALK_DONE);
2629 
2630 	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0)
2631 		goto again;
2632 
2633 	(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2634 	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2635 }
2636 
2637 int
allfile_walk_step(mdb_walk_state_t * wsp)2638 allfile_walk_step(mdb_walk_state_t *wsp)
2639 {
2640 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2641 	struct file file;
2642 	uintptr_t fp;
2643 
2644 	if (fw->fw_ndx == fw->fw_nofiles)
2645 		return (WALK_DONE);
2646 
2647 	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0)
2648 		(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2649 	else
2650 		bzero(&file, sizeof (file));
2651 
2652 	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2653 }
2654 
2655 void
file_walk_fini(mdb_walk_state_t * wsp)2656 file_walk_fini(mdb_walk_state_t *wsp)
2657 {
2658 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2659 
2660 	mdb_free(fw->fw_flist, fw->fw_flistsz);
2661 	mdb_free(fw, sizeof (file_walk_data_t));
2662 }
2663 
2664 int
port_walk_init(mdb_walk_state_t * wsp)2665 port_walk_init(mdb_walk_state_t *wsp)
2666 {
2667 	if (wsp->walk_addr == 0) {
2668 		mdb_warn("port walk doesn't support global walks\n");
2669 		return (WALK_ERR);
2670 	}
2671 
2672 	if (mdb_layered_walk("file", wsp) == -1) {
2673 		mdb_warn("couldn't walk 'file'");
2674 		return (WALK_ERR);
2675 	}
2676 	return (WALK_NEXT);
2677 }
2678 
2679 int
port_walk_step(mdb_walk_state_t * wsp)2680 port_walk_step(mdb_walk_state_t *wsp)
2681 {
2682 	struct vnode	vn;
2683 	uintptr_t	vp;
2684 	uintptr_t	pp;
2685 	struct port	port;
2686 
2687 	vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2688 	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2689 		mdb_warn("failed to read vnode_t at %p", vp);
2690 		return (WALK_ERR);
2691 	}
2692 	if (vn.v_type != VPORT)
2693 		return (WALK_NEXT);
2694 
2695 	pp = (uintptr_t)vn.v_data;
2696 	if (mdb_vread(&port, sizeof (port), pp) == -1) {
2697 		mdb_warn("failed to read port_t at %p", pp);
2698 		return (WALK_ERR);
2699 	}
2700 	return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2701 }
2702 
2703 typedef struct portev_walk_data {
2704 	list_node_t	*pev_node;
2705 	list_node_t	*pev_last;
2706 	size_t		pev_offset;
2707 } portev_walk_data_t;
2708 
2709 int
portev_walk_init(mdb_walk_state_t * wsp)2710 portev_walk_init(mdb_walk_state_t *wsp)
2711 {
2712 	portev_walk_data_t *pevd;
2713 	struct port	port;
2714 	struct vnode	vn;
2715 	struct list	*list;
2716 	uintptr_t	vp;
2717 
2718 	if (wsp->walk_addr == 0) {
2719 		mdb_warn("portev walk doesn't support global walks\n");
2720 		return (WALK_ERR);
2721 	}
2722 
2723 	pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2724 
2725 	if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2726 		mdb_free(pevd, sizeof (portev_walk_data_t));
2727 		mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2728 		return (WALK_ERR);
2729 	}
2730 
2731 	vp = (uintptr_t)port.port_vnode;
2732 	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2733 		mdb_free(pevd, sizeof (portev_walk_data_t));
2734 		mdb_warn("failed to read vnode_t at %p", vp);
2735 		return (WALK_ERR);
2736 	}
2737 
2738 	if (vn.v_type != VPORT) {
2739 		mdb_free(pevd, sizeof (portev_walk_data_t));
2740 		mdb_warn("input address (%p) does not point to an event port",
2741 		    wsp->walk_addr);
2742 		return (WALK_ERR);
2743 	}
2744 
2745 	if (port.port_queue.portq_nent == 0) {
2746 		mdb_free(pevd, sizeof (portev_walk_data_t));
2747 		return (WALK_DONE);
2748 	}
2749 	list = &port.port_queue.portq_list;
2750 	pevd->pev_offset = list->list_offset;
2751 	pevd->pev_last = list->list_head.list_prev;
2752 	pevd->pev_node = list->list_head.list_next;
2753 	wsp->walk_data = pevd;
2754 	return (WALK_NEXT);
2755 }
2756 
2757 int
portev_walk_step(mdb_walk_state_t * wsp)2758 portev_walk_step(mdb_walk_state_t *wsp)
2759 {
2760 	portev_walk_data_t	*pevd;
2761 	struct port_kevent	ev;
2762 	uintptr_t		evp;
2763 
2764 	pevd = (portev_walk_data_t *)wsp->walk_data;
2765 
2766 	if (pevd->pev_last == NULL)
2767 		return (WALK_DONE);
2768 	if (pevd->pev_node == pevd->pev_last)
2769 		pevd->pev_last = NULL;		/* last round */
2770 
2771 	evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2772 	if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2773 		mdb_warn("failed to read port_kevent at %p", evp);
2774 		return (WALK_DONE);
2775 	}
2776 	pevd->pev_node = ev.portkev_node.list_next;
2777 	return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2778 }
2779 
2780 void
portev_walk_fini(mdb_walk_state_t * wsp)2781 portev_walk_fini(mdb_walk_state_t *wsp)
2782 {
2783 	portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2784 
2785 	if (pevd != NULL)
2786 		mdb_free(pevd, sizeof (portev_walk_data_t));
2787 }
2788 
2789 typedef struct proc_walk_data {
2790 	uintptr_t *pw_stack;
2791 	int pw_depth;
2792 	int pw_max;
2793 } proc_walk_data_t;
2794 
2795 int
proc_walk_init(mdb_walk_state_t * wsp)2796 proc_walk_init(mdb_walk_state_t *wsp)
2797 {
2798 	GElf_Sym sym;
2799 	proc_walk_data_t *pw;
2800 
2801 	if (wsp->walk_addr == 0) {
2802 		if (mdb_lookup_by_name("p0", &sym) == -1) {
2803 			mdb_warn("failed to read 'practive'");
2804 			return (WALK_ERR);
2805 		}
2806 		wsp->walk_addr = (uintptr_t)sym.st_value;
2807 	}
2808 
2809 	pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2810 
2811 	if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2812 		mdb_warn("failed to read 'nproc'");
2813 		mdb_free(pw, sizeof (pw));
2814 		return (WALK_ERR);
2815 	}
2816 
2817 	pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2818 	wsp->walk_data = pw;
2819 
2820 	return (WALK_NEXT);
2821 }
2822 
2823 typedef struct mdb_walk_proc {
2824 	struct proc	*p_child;
2825 	struct proc	*p_sibling;
2826 } mdb_walk_proc_t;
2827 
2828 int
proc_walk_step(mdb_walk_state_t * wsp)2829 proc_walk_step(mdb_walk_state_t *wsp)
2830 {
2831 	proc_walk_data_t *pw = wsp->walk_data;
2832 	uintptr_t addr = wsp->walk_addr;
2833 	uintptr_t cld, sib;
2834 	int status;
2835 	mdb_walk_proc_t pr;
2836 
2837 	if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2838 	    addr, 0) == -1) {
2839 		mdb_warn("failed to read proc at %p", addr);
2840 		return (WALK_DONE);
2841 	}
2842 
2843 	cld = (uintptr_t)pr.p_child;
2844 	sib = (uintptr_t)pr.p_sibling;
2845 
2846 	if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2847 		pw->pw_depth--;
2848 		goto sib;
2849 	}
2850 
2851 	/*
2852 	 * Always pass NULL as the local copy pointer. Consumers
2853 	 * should use mdb_ctf_vread() to read their own minimal
2854 	 * version of proc_t. Thus minimizing the chance of breakage
2855 	 * with older crash dumps.
2856 	 */
2857 	status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata);
2858 
2859 	if (status != WALK_NEXT)
2860 		return (status);
2861 
2862 	if ((wsp->walk_addr = cld) != 0) {
2863 		if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2864 		    cld, 0) == -1) {
2865 			mdb_warn("proc %p has invalid p_child %p; skipping\n",
2866 			    addr, cld);
2867 			goto sib;
2868 		}
2869 
2870 		pw->pw_stack[pw->pw_depth++] = addr;
2871 
2872 		if (pw->pw_depth == pw->pw_max) {
2873 			mdb_warn("depth %d exceeds max depth; try again\n",
2874 			    pw->pw_depth);
2875 			return (WALK_DONE);
2876 		}
2877 		return (WALK_NEXT);
2878 	}
2879 
2880 sib:
2881 	/*
2882 	 * We know that p0 has no siblings, and if another starting proc
2883 	 * was given, we don't want to walk its siblings anyway.
2884 	 */
2885 	if (pw->pw_depth == 0)
2886 		return (WALK_DONE);
2887 
2888 	if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2889 	    sib, 0) == -1) {
2890 		mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2891 		    addr, sib);
2892 		sib = 0;
2893 	}
2894 
2895 	if ((wsp->walk_addr = sib) == 0) {
2896 		if (pw->pw_depth > 0) {
2897 			wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2898 			return (WALK_NEXT);
2899 		}
2900 		return (WALK_DONE);
2901 	}
2902 
2903 	return (WALK_NEXT);
2904 }
2905 
2906 void
proc_walk_fini(mdb_walk_state_t * wsp)2907 proc_walk_fini(mdb_walk_state_t *wsp)
2908 {
2909 	proc_walk_data_t *pw = wsp->walk_data;
2910 
2911 	mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2912 	mdb_free(pw, sizeof (proc_walk_data_t));
2913 }
2914 
2915 int
task_walk_init(mdb_walk_state_t * wsp)2916 task_walk_init(mdb_walk_state_t *wsp)
2917 {
2918 	task_t task;
2919 
2920 	if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2921 		mdb_warn("failed to read task at %p", wsp->walk_addr);
2922 		return (WALK_ERR);
2923 	}
2924 	wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2925 	wsp->walk_data = task.tk_memb_list;
2926 	return (WALK_NEXT);
2927 }
2928 
2929 typedef struct mdb_task_proc {
2930 	struct proc	*p_tasknext;
2931 } mdb_task_proc_t;
2932 
2933 int
task_walk_step(mdb_walk_state_t * wsp)2934 task_walk_step(mdb_walk_state_t *wsp)
2935 {
2936 	mdb_task_proc_t proc;
2937 	int status;
2938 
2939 	if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t",
2940 	    wsp->walk_addr, 0) == -1) {
2941 		mdb_warn("failed to read proc at %p", wsp->walk_addr);
2942 		return (WALK_DONE);
2943 	}
2944 
2945 	status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2946 
2947 	if (proc.p_tasknext == wsp->walk_data)
2948 		return (WALK_DONE);
2949 
2950 	wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2951 	return (status);
2952 }
2953 
2954 int
project_walk_init(mdb_walk_state_t * wsp)2955 project_walk_init(mdb_walk_state_t *wsp)
2956 {
2957 	if (wsp->walk_addr == 0) {
2958 		if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2959 			mdb_warn("failed to read 'proj0p'");
2960 			return (WALK_ERR);
2961 		}
2962 	}
2963 	wsp->walk_data = (void *)wsp->walk_addr;
2964 	return (WALK_NEXT);
2965 }
2966 
2967 int
project_walk_step(mdb_walk_state_t * wsp)2968 project_walk_step(mdb_walk_state_t *wsp)
2969 {
2970 	uintptr_t addr = wsp->walk_addr;
2971 	kproject_t pj;
2972 	int status;
2973 
2974 	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2975 		mdb_warn("failed to read project at %p", addr);
2976 		return (WALK_DONE);
2977 	}
2978 	status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2979 	if (status != WALK_NEXT)
2980 		return (status);
2981 	wsp->walk_addr = (uintptr_t)pj.kpj_next;
2982 	if ((void *)wsp->walk_addr == wsp->walk_data)
2983 		return (WALK_DONE);
2984 	return (WALK_NEXT);
2985 }
2986 
2987 static int
generic_walk_step(mdb_walk_state_t * wsp)2988 generic_walk_step(mdb_walk_state_t *wsp)
2989 {
2990 	return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2991 	    wsp->walk_cbdata));
2992 }
2993 
2994 static int
cpu_walk_cmp(const void * l,const void * r)2995 cpu_walk_cmp(const void *l, const void *r)
2996 {
2997 	uintptr_t lhs = *((uintptr_t *)l);
2998 	uintptr_t rhs = *((uintptr_t *)r);
2999 	cpu_t lcpu, rcpu;
3000 
3001 	(void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
3002 	(void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
3003 
3004 	if (lcpu.cpu_id < rcpu.cpu_id)
3005 		return (-1);
3006 
3007 	if (lcpu.cpu_id > rcpu.cpu_id)
3008 		return (1);
3009 
3010 	return (0);
3011 }
3012 
3013 typedef struct cpu_walk {
3014 	uintptr_t *cw_array;
3015 	int cw_ndx;
3016 } cpu_walk_t;
3017 
3018 int
cpu_walk_init(mdb_walk_state_t * wsp)3019 cpu_walk_init(mdb_walk_state_t *wsp)
3020 {
3021 	cpu_walk_t *cw;
3022 	int max_ncpus, i = 0;
3023 	uintptr_t current, first;
3024 	cpu_t cpu, panic_cpu;
3025 	uintptr_t panicstr, addr = 0;
3026 	GElf_Sym sym;
3027 
3028 	cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
3029 
3030 	if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
3031 		mdb_warn("failed to read 'max_ncpus'");
3032 		return (WALK_ERR);
3033 	}
3034 
3035 	if (mdb_readvar(&panicstr, "panicstr") == -1) {
3036 		mdb_warn("failed to read 'panicstr'");
3037 		return (WALK_ERR);
3038 	}
3039 
3040 	if (panicstr != 0) {
3041 		if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
3042 			mdb_warn("failed to find 'panic_cpu'");
3043 			return (WALK_ERR);
3044 		}
3045 
3046 		addr = (uintptr_t)sym.st_value;
3047 
3048 		if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
3049 			mdb_warn("failed to read 'panic_cpu'");
3050 			return (WALK_ERR);
3051 		}
3052 	}
3053 
3054 	/*
3055 	 * Unfortunately, there is no platform-independent way to walk
3056 	 * CPUs in ID order.  We therefore loop through in cpu_next order,
3057 	 * building an array of CPU pointers which will subsequently be
3058 	 * sorted.
3059 	 */
3060 	cw->cw_array =
3061 	    mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
3062 
3063 	if (mdb_readvar(&first, "cpu_list") == -1) {
3064 		mdb_warn("failed to read 'cpu_list'");
3065 		return (WALK_ERR);
3066 	}
3067 
3068 	current = first;
3069 	do {
3070 		if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
3071 			mdb_warn("failed to read cpu at %p", current);
3072 			return (WALK_ERR);
3073 		}
3074 
3075 		if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) {
3076 			cw->cw_array[i++] = addr;
3077 		} else {
3078 			cw->cw_array[i++] = current;
3079 		}
3080 	} while ((current = (uintptr_t)cpu.cpu_next) != first);
3081 
3082 	qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
3083 	wsp->walk_data = cw;
3084 
3085 	return (WALK_NEXT);
3086 }
3087 
3088 int
cpu_walk_step(mdb_walk_state_t * wsp)3089 cpu_walk_step(mdb_walk_state_t *wsp)
3090 {
3091 	cpu_walk_t *cw = wsp->walk_data;
3092 	cpu_t cpu;
3093 	uintptr_t addr = cw->cw_array[cw->cw_ndx++];
3094 
3095 	if (addr == 0)
3096 		return (WALK_DONE);
3097 
3098 	if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
3099 		mdb_warn("failed to read cpu at %p", addr);
3100 		return (WALK_DONE);
3101 	}
3102 
3103 	return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
3104 }
3105 
3106 typedef struct cpuinfo_data {
3107 	intptr_t cid_cpu;
3108 	uintptr_t **cid_ithr;
3109 	char	cid_print_head;
3110 	char	cid_print_thr;
3111 	char	cid_print_ithr;
3112 	char	cid_print_flags;
3113 } cpuinfo_data_t;
3114 
3115 int
cpuinfo_walk_ithread(uintptr_t addr,const kthread_t * thr,cpuinfo_data_t * cid)3116 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
3117 {
3118 	cpu_t c;
3119 	int id;
3120 	uint8_t pil;
3121 
3122 	if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
3123 		return (WALK_NEXT);
3124 
3125 	if (thr->t_bound_cpu == NULL) {
3126 		mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
3127 		return (WALK_NEXT);
3128 	}
3129 
3130 	(void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
3131 
3132 	if ((id = c.cpu_id) >= NCPU) {
3133 		mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
3134 		    thr->t_bound_cpu, id, NCPU);
3135 		return (WALK_NEXT);
3136 	}
3137 
3138 	if ((pil = thr->t_pil) >= NINTR) {
3139 		mdb_warn("thread %p has pil (%d) greater than %d\n",
3140 		    addr, pil, NINTR);
3141 		return (WALK_NEXT);
3142 	}
3143 
3144 	if (cid->cid_ithr[id][pil] != 0) {
3145 		mdb_warn("CPU %d has multiple threads at pil %d (at least "
3146 		    "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
3147 		return (WALK_NEXT);
3148 	}
3149 
3150 	cid->cid_ithr[id][pil] = addr;
3151 
3152 	return (WALK_NEXT);
3153 }
3154 
3155 #define	CPUINFO_IDWIDTH		3
3156 #define	CPUINFO_FLAGWIDTH	9
3157 
3158 #ifdef _LP64
3159 #if defined(__amd64)
3160 #define	CPUINFO_TWIDTH		16
3161 #define	CPUINFO_CPUWIDTH	16
3162 #else
3163 #define	CPUINFO_CPUWIDTH	11
3164 #define	CPUINFO_TWIDTH		11
3165 #endif
3166 #else
3167 #define	CPUINFO_CPUWIDTH	8
3168 #define	CPUINFO_TWIDTH		8
3169 #endif
3170 
3171 #define	CPUINFO_THRDELT		(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
3172 #define	CPUINFO_FLAGDELT	(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
3173 #define	CPUINFO_ITHRDELT	4
3174 
3175 #define	CPUINFO_INDENT	mdb_printf("%*s", CPUINFO_THRDELT, \
3176     flagline < nflaglines ? flagbuf[flagline++] : "")
3177 
3178 typedef struct mdb_cpuinfo_proc {
3179 	struct {
3180 		char		u_comm[MAXCOMLEN + 1];
3181 	} p_user;
3182 } mdb_cpuinfo_proc_t;
3183 
3184 int
cpuinfo_walk_cpu(uintptr_t addr,const cpu_t * cpu,cpuinfo_data_t * cid)3185 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
3186 {
3187 	kthread_t t;
3188 	disp_t disp;
3189 	mdb_cpuinfo_proc_t p;
3190 	uintptr_t pinned = 0;
3191 	char **flagbuf;
3192 	int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
3193 
3194 	const char *flags[] = {
3195 	    "RUNNING", "READY", "QUIESCED", "EXISTS",
3196 	    "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
3197 	    "SPARE", "FAULTED", "DISABLED", NULL
3198 	};
3199 
3200 	if (cid->cid_cpu != -1) {
3201 		if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
3202 			return (WALK_NEXT);
3203 
3204 		/*
3205 		 * Set cid_cpu to -1 to indicate that we found a matching CPU.
3206 		 */
3207 		cid->cid_cpu = -1;
3208 		rval = WALK_DONE;
3209 	}
3210 
3211 	if (cid->cid_print_head) {
3212 		mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
3213 		    "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
3214 		    "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
3215 		    "PROC");
3216 		cid->cid_print_head = FALSE;
3217 	}
3218 
3219 	bspl = cpu->cpu_base_spl;
3220 
3221 	if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
3222 		mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
3223 		return (WALK_ERR);
3224 	}
3225 
3226 	mdb_printf("%3d %0*p %3x %4d %4d ",
3227 	    cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
3228 	    disp.disp_nrunnable, bspl);
3229 
3230 	if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
3231 		mdb_printf("%3d ", t.t_pri);
3232 	} else {
3233 		mdb_printf("%3s ", "-");
3234 	}
3235 
3236 	mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
3237 	    cpu->cpu_kprunrun ? "yes" : "no");
3238 
3239 	if (cpu->cpu_last_swtch) {
3240 		mdb_printf("t-%-4d ",
3241 		    (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
3242 	} else {
3243 		mdb_printf("%-6s ", "-");
3244 	}
3245 
3246 	mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
3247 
3248 	if (cpu->cpu_thread == cpu->cpu_idle_thread)
3249 		mdb_printf(" (idle)\n");
3250 	else if (cpu->cpu_thread == NULL)
3251 		mdb_printf(" -\n");
3252 	else {
3253 		if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3254 		    (uintptr_t)t.t_procp, 0) != -1) {
3255 			mdb_printf(" %s\n", p.p_user.u_comm);
3256 		} else {
3257 			mdb_printf(" ?\n");
3258 		}
3259 	}
3260 
3261 	flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
3262 
3263 	if (cid->cid_print_flags) {
3264 		int first = 1, i, j, k;
3265 		char *s;
3266 
3267 		cid->cid_print_head = TRUE;
3268 
3269 		for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3270 			if (!(cpu->cpu_flags & i))
3271 				continue;
3272 
3273 			if (first) {
3274 				s = mdb_alloc(CPUINFO_THRDELT + 1,
3275 				    UM_GC | UM_SLEEP);
3276 
3277 				(void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3278 				    "%*s|%*s", CPUINFO_FLAGDELT, "",
3279 				    CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3280 				flagbuf[nflaglines++] = s;
3281 			}
3282 
3283 			s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3284 			(void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3285 			    CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3286 			    CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3287 			    first ? "<--+" : "");
3288 
3289 			for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3290 				s[k] = ' ';
3291 			s[k] = '\0';
3292 
3293 			flagbuf[nflaglines++] = s;
3294 			first = 0;
3295 		}
3296 	}
3297 
3298 	if (cid->cid_print_ithr) {
3299 		int i, found_one = FALSE;
3300 		int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3301 
3302 		for (i = NINTR - 1; i >= 0; i--) {
3303 			uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3304 
3305 			if (iaddr == 0)
3306 				continue;
3307 
3308 			if (!found_one) {
3309 				found_one = TRUE;
3310 
3311 				CPUINFO_INDENT;
3312 				mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3313 				    CPUINFO_ITHRDELT, "");
3314 
3315 				CPUINFO_INDENT;
3316 				mdb_printf("%c%*s+--> %3s %s\n",
3317 				    print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3318 				    "", "PIL", "THREAD");
3319 			}
3320 
3321 			if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3322 				mdb_warn("failed to read kthread_t at %p",
3323 				    iaddr);
3324 				return (WALK_ERR);
3325 			}
3326 
3327 			CPUINFO_INDENT;
3328 			mdb_printf("%c%*s     %3d %0*p\n",
3329 			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3330 			    t.t_pil, CPUINFO_TWIDTH, iaddr);
3331 
3332 			pinned = (uintptr_t)t.t_intr;
3333 		}
3334 
3335 		if (found_one && pinned != 0) {
3336 			cid->cid_print_head = TRUE;
3337 			(void) strcpy(p.p_user.u_comm, "?");
3338 
3339 			if (mdb_vread(&t, sizeof (t),
3340 			    (uintptr_t)pinned) == -1) {
3341 				mdb_warn("failed to read kthread_t at %p",
3342 				    pinned);
3343 				return (WALK_ERR);
3344 			}
3345 			if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3346 			    (uintptr_t)t.t_procp, 0) == -1) {
3347 				mdb_warn("failed to read proc_t at %p",
3348 				    t.t_procp);
3349 				return (WALK_ERR);
3350 			}
3351 
3352 			CPUINFO_INDENT;
3353 			mdb_printf("%c%*s     %3s %0*p %s\n",
3354 			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3355 			    CPUINFO_TWIDTH, pinned,
3356 			    pinned == (uintptr_t)cpu->cpu_idle_thread ?
3357 			    "(idle)" : p.p_user.u_comm);
3358 		}
3359 	}
3360 
3361 	if (disp.disp_nrunnable && cid->cid_print_thr) {
3362 		dispq_t *dq;
3363 
3364 		int i, npri = disp.disp_npri;
3365 
3366 		dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3367 
3368 		if (mdb_vread(dq, sizeof (dispq_t) * npri,
3369 		    (uintptr_t)disp.disp_q) == -1) {
3370 			mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3371 			return (WALK_ERR);
3372 		}
3373 
3374 		CPUINFO_INDENT;
3375 		mdb_printf("|\n");
3376 
3377 		CPUINFO_INDENT;
3378 		mdb_printf("+-->  %3s %-*s %s\n", "PRI",
3379 		    CPUINFO_TWIDTH, "THREAD", "PROC");
3380 
3381 		for (i = npri - 1; i >= 0; i--) {
3382 			uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3383 
3384 			while (taddr != 0) {
3385 				if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3386 					mdb_warn("failed to read kthread_t "
3387 					    "at %p", taddr);
3388 					return (WALK_ERR);
3389 				}
3390 				if (mdb_ctf_vread(&p, "proc_t",
3391 				    "mdb_cpuinfo_proc_t",
3392 				    (uintptr_t)t.t_procp, 0) == -1) {
3393 					mdb_warn("failed to read proc_t at %p",
3394 					    t.t_procp);
3395 					return (WALK_ERR);
3396 				}
3397 
3398 				CPUINFO_INDENT;
3399 				mdb_printf("      %3d %0*p %s\n", t.t_pri,
3400 				    CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3401 
3402 				taddr = (uintptr_t)t.t_link;
3403 			}
3404 		}
3405 		cid->cid_print_head = TRUE;
3406 	}
3407 
3408 	while (flagline < nflaglines)
3409 		mdb_printf("%s\n", flagbuf[flagline++]);
3410 
3411 	if (cid->cid_print_head)
3412 		mdb_printf("\n");
3413 
3414 	return (rval);
3415 }
3416 
3417 int
cpuinfo(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3418 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3419 {
3420 	uint_t verbose = FALSE;
3421 	cpuinfo_data_t cid;
3422 
3423 	cid.cid_print_ithr = FALSE;
3424 	cid.cid_print_thr = FALSE;
3425 	cid.cid_print_flags = FALSE;
3426 	cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3427 	cid.cid_cpu = -1;
3428 
3429 	if (flags & DCMD_ADDRSPEC)
3430 		cid.cid_cpu = addr;
3431 
3432 	if (mdb_getopts(argc, argv,
3433 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3434 		return (DCMD_USAGE);
3435 
3436 	if (verbose) {
3437 		cid.cid_print_ithr = TRUE;
3438 		cid.cid_print_thr = TRUE;
3439 		cid.cid_print_flags = TRUE;
3440 		cid.cid_print_head = TRUE;
3441 	}
3442 
3443 	if (cid.cid_print_ithr) {
3444 		int i;
3445 
3446 		cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3447 		    * NCPU, UM_SLEEP | UM_GC);
3448 
3449 		for (i = 0; i < NCPU; i++)
3450 			cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3451 			    NINTR, UM_SLEEP | UM_GC);
3452 
3453 		if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3454 		    &cid) == -1) {
3455 			mdb_warn("couldn't walk thread");
3456 			return (DCMD_ERR);
3457 		}
3458 	}
3459 
3460 	if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3461 		mdb_warn("can't walk cpus");
3462 		return (DCMD_ERR);
3463 	}
3464 
3465 	if (cid.cid_cpu != -1) {
3466 		/*
3467 		 * We didn't find this CPU when we walked through the CPUs
3468 		 * (i.e. the address specified doesn't show up in the "cpu"
3469 		 * walk).  However, the specified address may still correspond
3470 		 * to a valid cpu_t (for example, if the specified address is
3471 		 * the actual panicking cpu_t and not the cached panic_cpu).
3472 		 * Point is:  even if we didn't find it, we still want to try
3473 		 * to print the specified address as a cpu_t.
3474 		 */
3475 		cpu_t cpu;
3476 
3477 		if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3478 			mdb_warn("%p is neither a valid CPU ID nor a "
3479 			    "valid cpu_t address\n", cid.cid_cpu);
3480 			return (DCMD_ERR);
3481 		}
3482 
3483 		(void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3484 	}
3485 
3486 	return (DCMD_OK);
3487 }
3488 
3489 /*ARGSUSED*/
3490 int
flipone(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3491 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3492 {
3493 	int i;
3494 
3495 	if (!(flags & DCMD_ADDRSPEC))
3496 		return (DCMD_USAGE);
3497 
3498 	for (i = 0; i < sizeof (addr) * NBBY; i++)
3499 		mdb_printf("%p\n", addr ^ (1UL << i));
3500 
3501 	return (DCMD_OK);
3502 }
3503 
3504 typedef struct mdb_as2proc_proc {
3505 	struct as *p_as;
3506 } mdb_as2proc_proc_t;
3507 
3508 /*ARGSUSED*/
3509 int
as2proc_walk(uintptr_t addr,const void * ignored,struct as ** asp)3510 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp)
3511 {
3512 	mdb_as2proc_proc_t p;
3513 
3514 	mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0);
3515 
3516 	if (p.p_as == *asp)
3517 		mdb_printf("%p\n", addr);
3518 	return (WALK_NEXT);
3519 }
3520 
3521 /*ARGSUSED*/
3522 int
as2proc(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3523 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3524 {
3525 	if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3526 		return (DCMD_USAGE);
3527 
3528 	if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3529 		mdb_warn("failed to walk proc");
3530 		return (DCMD_ERR);
3531 	}
3532 
3533 	return (DCMD_OK);
3534 }
3535 
3536 typedef struct mdb_ptree_proc {
3537 	struct proc	*p_parent;
3538 	struct {
3539 		char		u_comm[MAXCOMLEN + 1];
3540 	} p_user;
3541 } mdb_ptree_proc_t;
3542 
3543 /*ARGSUSED*/
3544 int
ptree_walk(uintptr_t addr,const void * ignored,void * data)3545 ptree_walk(uintptr_t addr, const void *ignored, void *data)
3546 {
3547 	mdb_ptree_proc_t proc;
3548 	mdb_ptree_proc_t parent;
3549 	int ident = 0;
3550 	uintptr_t paddr;
3551 
3552 	mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0);
3553 
3554 	for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) {
3555 		mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0);
3556 		paddr = (uintptr_t)parent.p_parent;
3557 	}
3558 
3559 	mdb_inc_indent(ident);
3560 	mdb_printf("%0?p  %s\n", addr, proc.p_user.u_comm);
3561 	mdb_dec_indent(ident);
3562 
3563 	return (WALK_NEXT);
3564 }
3565 
3566 void
ptree_ancestors(uintptr_t addr,uintptr_t start)3567 ptree_ancestors(uintptr_t addr, uintptr_t start)
3568 {
3569 	mdb_ptree_proc_t p;
3570 
3571 	if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) {
3572 		mdb_warn("couldn't read ancestor at %p", addr);
3573 		return;
3574 	}
3575 
3576 	if (p.p_parent != NULL)
3577 		ptree_ancestors((uintptr_t)p.p_parent, start);
3578 
3579 	if (addr != start)
3580 		(void) ptree_walk(addr, &p, NULL);
3581 }
3582 
3583 /*ARGSUSED*/
3584 int
ptree(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3585 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3586 {
3587 	if (!(flags & DCMD_ADDRSPEC))
3588 		addr = 0;
3589 	else
3590 		ptree_ancestors(addr, addr);
3591 
3592 	if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3593 		mdb_warn("couldn't walk 'proc'");
3594 		return (DCMD_ERR);
3595 	}
3596 
3597 	return (DCMD_OK);
3598 }
3599 
3600 typedef struct mdb_fd_proc {
3601 	struct {
3602 		struct {
3603 			int			fi_nfiles;
3604 			uf_entry_t *volatile	fi_list;
3605 		} u_finfo;
3606 	} p_user;
3607 } mdb_fd_proc_t;
3608 
3609 /*ARGSUSED*/
3610 static int
fd(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3611 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3612 {
3613 	int fdnum;
3614 	const mdb_arg_t *argp = &argv[0];
3615 	mdb_fd_proc_t p;
3616 	uf_entry_t uf;
3617 
3618 	if ((flags & DCMD_ADDRSPEC) == 0) {
3619 		mdb_warn("fd doesn't give global information\n");
3620 		return (DCMD_ERR);
3621 	}
3622 	if (argc != 1)
3623 		return (DCMD_USAGE);
3624 
3625 	fdnum = (int)mdb_argtoull(argp);
3626 
3627 	if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) {
3628 		mdb_warn("couldn't read proc_t at %p", addr);
3629 		return (DCMD_ERR);
3630 	}
3631 	if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3632 		mdb_warn("process %p only has %d files open.\n",
3633 		    addr, p.p_user.u_finfo.fi_nfiles);
3634 		return (DCMD_ERR);
3635 	}
3636 	if (mdb_vread(&uf, sizeof (uf_entry_t),
3637 	    (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3638 		mdb_warn("couldn't read uf_entry_t at %p",
3639 		    &p.p_user.u_finfo.fi_list[fdnum]);
3640 		return (DCMD_ERR);
3641 	}
3642 
3643 	mdb_printf("%p\n", uf.uf_file);
3644 	return (DCMD_OK);
3645 }
3646 
3647 /*ARGSUSED*/
3648 static int
pid2proc(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3649 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3650 {
3651 	pid_t pid = (pid_t)addr;
3652 
3653 	if (argc != 0)
3654 		return (DCMD_USAGE);
3655 
3656 	if ((addr = mdb_pid2proc(pid, NULL)) == 0) {
3657 		mdb_warn("PID 0t%d not found\n", pid);
3658 		return (DCMD_ERR);
3659 	}
3660 
3661 	mdb_printf("%p\n", addr);
3662 	return (DCMD_OK);
3663 }
3664 
3665 static char *sysfile_cmd[] = {
3666 	"exclude:",
3667 	"include:",
3668 	"forceload:",
3669 	"rootdev:",
3670 	"rootfs:",
3671 	"swapdev:",
3672 	"swapfs:",
3673 	"moddir:",
3674 	"set",
3675 	"unknown",
3676 };
3677 
3678 static char *sysfile_ops[] = { "", "=", "&", "|" };
3679 
3680 /*ARGSUSED*/
3681 static int
sysfile_vmem_seg(uintptr_t addr,const vmem_seg_t * vsp,void ** target)3682 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3683 {
3684 	if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3685 		*target = NULL;
3686 		return (WALK_DONE);
3687 	}
3688 	return (WALK_NEXT);
3689 }
3690 
3691 /*ARGSUSED*/
3692 static int
sysfile(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3693 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3694 {
3695 	struct sysparam *sysp, sys;
3696 	char var[256];
3697 	char modname[256];
3698 	char val[256];
3699 	char strval[256];
3700 	vmem_t *mod_sysfile_arena;
3701 	void *straddr;
3702 
3703 	if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3704 		mdb_warn("failed to read sysparam_hd");
3705 		return (DCMD_ERR);
3706 	}
3707 
3708 	if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3709 		mdb_warn("failed to read mod_sysfile_arena");
3710 		return (DCMD_ERR);
3711 	}
3712 
3713 	while (sysp != NULL) {
3714 		var[0] = '\0';
3715 		val[0] = '\0';
3716 		modname[0] = '\0';
3717 		if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3718 			mdb_warn("couldn't read sysparam %p", sysp);
3719 			return (DCMD_ERR);
3720 		}
3721 		if (sys.sys_modnam != NULL &&
3722 		    mdb_readstr(modname, 256,
3723 		    (uintptr_t)sys.sys_modnam) == -1) {
3724 			mdb_warn("couldn't read modname in %p", sysp);
3725 			return (DCMD_ERR);
3726 		}
3727 		if (sys.sys_ptr != NULL &&
3728 		    mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3729 			mdb_warn("couldn't read ptr in %p", sysp);
3730 			return (DCMD_ERR);
3731 		}
3732 		if (sys.sys_op != SETOP_NONE) {
3733 			/*
3734 			 * Is this an int or a string?  We determine this
3735 			 * by checking whether straddr is contained in
3736 			 * mod_sysfile_arena.  If so, the walker will set
3737 			 * straddr to NULL.
3738 			 */
3739 			straddr = (void *)(uintptr_t)sys.sys_info;
3740 			if (sys.sys_op == SETOP_ASSIGN &&
3741 			    sys.sys_info != 0 &&
3742 			    mdb_pwalk("vmem_seg",
3743 			    (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3744 			    (uintptr_t)mod_sysfile_arena) == 0 &&
3745 			    straddr == NULL &&
3746 			    mdb_readstr(strval, 256,
3747 			    (uintptr_t)sys.sys_info) != -1) {
3748 				(void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3749 				    strval);
3750 			} else {
3751 				(void) mdb_snprintf(val, sizeof (val),
3752 				    "0x%llx [0t%llu]", sys.sys_info,
3753 				    sys.sys_info);
3754 			}
3755 		}
3756 		mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3757 		    modname, modname[0] == '\0' ? "" : ":",
3758 		    var, sysfile_ops[sys.sys_op], val);
3759 
3760 		sysp = sys.sys_next;
3761 	}
3762 
3763 	return (DCMD_OK);
3764 }
3765 
3766 int
didmatch(uintptr_t addr,const kthread_t * thr,kt_did_t * didp)3767 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3768 {
3769 
3770 	if (*didp == thr->t_did) {
3771 		mdb_printf("%p\n", addr);
3772 		return (WALK_DONE);
3773 	} else
3774 		return (WALK_NEXT);
3775 }
3776 
3777 /*ARGSUSED*/
3778 int
did2thread(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3779 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3780 {
3781 	const mdb_arg_t *argp = &argv[0];
3782 	kt_did_t	did;
3783 
3784 	if (argc != 1)
3785 		return (DCMD_USAGE);
3786 
3787 	did = (kt_did_t)mdb_argtoull(argp);
3788 
3789 	if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3790 		mdb_warn("failed to walk thread");
3791 		return (DCMD_ERR);
3792 
3793 	}
3794 	return (DCMD_OK);
3795 
3796 }
3797 
3798 static int
errorq_walk_init(mdb_walk_state_t * wsp)3799 errorq_walk_init(mdb_walk_state_t *wsp)
3800 {
3801 	if (wsp->walk_addr == 0 &&
3802 	    mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3803 		mdb_warn("failed to read errorq_list");
3804 		return (WALK_ERR);
3805 	}
3806 
3807 	return (WALK_NEXT);
3808 }
3809 
3810 static int
errorq_walk_step(mdb_walk_state_t * wsp)3811 errorq_walk_step(mdb_walk_state_t *wsp)
3812 {
3813 	uintptr_t addr = wsp->walk_addr;
3814 	errorq_t eq;
3815 
3816 	if (addr == 0)
3817 		return (WALK_DONE);
3818 
3819 	if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3820 		mdb_warn("failed to read errorq at %p", addr);
3821 		return (WALK_ERR);
3822 	}
3823 
3824 	wsp->walk_addr = (uintptr_t)eq.eq_next;
3825 	return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3826 }
3827 
3828 typedef struct eqd_walk_data {
3829 	uintptr_t *eqd_stack;
3830 	void *eqd_buf;
3831 	ulong_t eqd_qpos;
3832 	ulong_t eqd_qlen;
3833 	size_t eqd_size;
3834 } eqd_walk_data_t;
3835 
3836 /*
3837  * In order to walk the list of pending error queue elements, we push the
3838  * addresses of the corresponding data buffers in to the eqd_stack array.
3839  * The error lists are in reverse chronological order when iterating using
3840  * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3841  * walker client gets addresses in order from oldest error to newest error.
3842  */
3843 static void
eqd_push_list(eqd_walk_data_t * eqdp,uintptr_t addr)3844 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3845 {
3846 	errorq_elem_t eqe;
3847 
3848 	while (addr != 0) {
3849 		if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3850 			mdb_warn("failed to read errorq element at %p", addr);
3851 			break;
3852 		}
3853 
3854 		if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3855 			mdb_warn("errorq is overfull -- more than %lu "
3856 			    "elems found\n", eqdp->eqd_qlen);
3857 			break;
3858 		}
3859 
3860 		eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3861 		addr = (uintptr_t)eqe.eqe_prev;
3862 	}
3863 }
3864 
3865 static int
eqd_walk_init(mdb_walk_state_t * wsp)3866 eqd_walk_init(mdb_walk_state_t *wsp)
3867 {
3868 	eqd_walk_data_t *eqdp;
3869 	errorq_elem_t eqe, *addr;
3870 	errorq_t eq;
3871 	ulong_t i;
3872 
3873 	if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3874 		mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3875 		return (WALK_ERR);
3876 	}
3877 
3878 	if (eq.eq_ptail != NULL &&
3879 	    mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3880 		mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3881 		return (WALK_ERR);
3882 	}
3883 
3884 	eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3885 	wsp->walk_data = eqdp;
3886 
3887 	eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3888 	eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3889 	eqdp->eqd_qlen = eq.eq_qlen;
3890 	eqdp->eqd_qpos = 0;
3891 	eqdp->eqd_size = eq.eq_size;
3892 
3893 	/*
3894 	 * The newest elements in the queue are on the pending list, so we
3895 	 * push those on to our stack first.
3896 	 */
3897 	eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3898 
3899 	/*
3900 	 * If eq_ptail is set, it may point to a subset of the errors on the
3901 	 * pending list in the event a atomic_cas_ptr() failed; if ptail's
3902 	 * data is already in our stack, NULL out eq_ptail and ignore it.
3903 	 */
3904 	if (eq.eq_ptail != NULL) {
3905 		for (i = 0; i < eqdp->eqd_qpos; i++) {
3906 			if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3907 				eq.eq_ptail = NULL;
3908 				break;
3909 			}
3910 		}
3911 	}
3912 
3913 	/*
3914 	 * If eq_phead is set, it has the processing list in order from oldest
3915 	 * to newest.  Use this to recompute eq_ptail as best we can and then
3916 	 * we nicely fall into eqd_push_list() of eq_ptail below.
3917 	 */
3918 	for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3919 	    (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3920 		eq.eq_ptail = addr;
3921 
3922 	/*
3923 	 * The oldest elements in the queue are on the processing list, subject
3924 	 * to machinations in the if-clauses above.  Push any such elements.
3925 	 */
3926 	eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3927 	return (WALK_NEXT);
3928 }
3929 
3930 static int
eqd_walk_step(mdb_walk_state_t * wsp)3931 eqd_walk_step(mdb_walk_state_t *wsp)
3932 {
3933 	eqd_walk_data_t *eqdp = wsp->walk_data;
3934 	uintptr_t addr;
3935 
3936 	if (eqdp->eqd_qpos == 0)
3937 		return (WALK_DONE);
3938 
3939 	addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3940 
3941 	if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3942 		mdb_warn("failed to read errorq data at %p", addr);
3943 		return (WALK_ERR);
3944 	}
3945 
3946 	return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3947 }
3948 
3949 static void
eqd_walk_fini(mdb_walk_state_t * wsp)3950 eqd_walk_fini(mdb_walk_state_t *wsp)
3951 {
3952 	eqd_walk_data_t *eqdp = wsp->walk_data;
3953 
3954 	mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3955 	mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3956 	mdb_free(eqdp, sizeof (eqd_walk_data_t));
3957 }
3958 
3959 #define	EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3960 
3961 static int
errorq(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3962 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3963 {
3964 	int i;
3965 	errorq_t eq;
3966 	uint_t opt_v = FALSE;
3967 
3968 	if (!(flags & DCMD_ADDRSPEC)) {
3969 		if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3970 			mdb_warn("can't walk 'errorq'");
3971 			return (DCMD_ERR);
3972 		}
3973 		return (DCMD_OK);
3974 	}
3975 
3976 	i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3977 	argc -= i;
3978 	argv += i;
3979 
3980 	if (argc != 0)
3981 		return (DCMD_USAGE);
3982 
3983 	if (opt_v || DCMD_HDRSPEC(flags)) {
3984 		mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3985 		    "ADDR", "NAME", "S", "V", "N");
3986 		if (!opt_v) {
3987 			mdb_printf("%7s %7s %7s%</u>\n",
3988 			    "ACCEPT", "DROP", "LOG");
3989 		} else {
3990 			mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3991 			    "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3992 		}
3993 	}
3994 
3995 	if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3996 		mdb_warn("failed to read errorq at %p", addr);
3997 		return (DCMD_ERR);
3998 	}
3999 
4000 	mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
4001 	    (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
4002 	    (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
4003 	    (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
4004 
4005 	if (!opt_v) {
4006 		mdb_printf("%7llu %7llu %7llu\n",
4007 		    EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
4008 		    EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
4009 		    EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
4010 	} else {
4011 		mdb_printf("%5s %6lu %6lu %3u %a\n",
4012 		    "  |  ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
4013 		mdb_printf("%38s\n%41s"
4014 		    "%12s %llu\n"
4015 		    "%53s %llu\n"
4016 		    "%53s %llu\n"
4017 		    "%53s %llu\n"
4018 		    "%53s %llu\n"
4019 		    "%53s %llu\n"
4020 		    "%53s %llu\n"
4021 		    "%53s %llu\n\n",
4022 		    "|", "+-> ",
4023 		    "DISPATCHED",	EQKSVAL(eq, eqk_dispatched),
4024 		    "DROPPED",		EQKSVAL(eq, eqk_dropped),
4025 		    "LOGGED",		EQKSVAL(eq, eqk_logged),
4026 		    "RESERVED",		EQKSVAL(eq, eqk_reserved),
4027 		    "RESERVE FAIL",	EQKSVAL(eq, eqk_reserve_fail),
4028 		    "COMMITTED",	EQKSVAL(eq, eqk_committed),
4029 		    "COMMIT FAIL",	EQKSVAL(eq, eqk_commit_fail),
4030 		    "CANCELLED",	EQKSVAL(eq, eqk_cancelled));
4031 	}
4032 
4033 	return (DCMD_OK);
4034 }
4035 
4036 /*ARGSUSED*/
4037 static int
panicinfo(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4038 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4039 {
4040 	cpu_t panic_cpu;
4041 	kthread_t *panic_thread;
4042 	void *buf;
4043 	panic_data_t *pd;
4044 	int i, n;
4045 
4046 	if (!mdb_prop_postmortem) {
4047 		mdb_warn("panicinfo can only be run on a system "
4048 		    "dump; see dumpadm(8)\n");
4049 		return (DCMD_ERR);
4050 	}
4051 
4052 	if (flags & DCMD_ADDRSPEC || argc != 0)
4053 		return (DCMD_USAGE);
4054 
4055 	if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
4056 		mdb_warn("failed to read 'panic_cpu'");
4057 	else
4058 		mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
4059 
4060 	if (mdb_readvar(&panic_thread, "panic_thread") == -1)
4061 		mdb_warn("failed to read 'panic_thread'");
4062 	else
4063 		mdb_printf("%16s %?p\n", "thread", panic_thread);
4064 
4065 	buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
4066 	pd = (panic_data_t *)buf;
4067 
4068 	if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
4069 	    pd->pd_version != PANICBUFVERS) {
4070 		mdb_warn("failed to read 'panicbuf'");
4071 		mdb_free(buf, PANICBUFSIZE);
4072 		return (DCMD_ERR);
4073 	}
4074 
4075 	mdb_printf("%16s %s\n", "message",  (char *)buf + pd->pd_msgoff);
4076 
4077 	n = (pd->pd_msgoff - (sizeof (panic_data_t) -
4078 	    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
4079 
4080 	for (i = 0; i < n; i++)
4081 		mdb_printf("%16s %?llx\n",
4082 		    pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
4083 
4084 	mdb_free(buf, PANICBUFSIZE);
4085 	return (DCMD_OK);
4086 }
4087 
4088 /*
4089  * ::time dcmd, which will print a hires timestamp of when we entered the
4090  * debugger, or the lbolt value if used with the -l option.
4091  *
4092  */
4093 /*ARGSUSED*/
4094 static int
time(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4095 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4096 {
4097 	uint_t opt_dec = FALSE;
4098 	uint_t opt_lbolt = FALSE;
4099 	uint_t opt_hex = FALSE;
4100 	const char *fmt;
4101 	hrtime_t result;
4102 
4103 	if (mdb_getopts(argc, argv,
4104 	    'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
4105 	    'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
4106 	    'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
4107 	    NULL) != argc)
4108 		return (DCMD_USAGE);
4109 
4110 	if (opt_dec && opt_hex)
4111 		return (DCMD_USAGE);
4112 
4113 	result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
4114 	fmt =
4115 	    opt_hex ? "0x%llx\n" :
4116 	    opt_dec ? "0t%lld\n" : "%#llr\n";
4117 
4118 	mdb_printf(fmt, result);
4119 	return (DCMD_OK);
4120 }
4121 
4122 void
time_help(void)4123 time_help(void)
4124 {
4125 	mdb_printf("Prints the system time in nanoseconds.\n\n"
4126 	    "::time will return the timestamp at which we dropped into, \n"
4127 	    "if called from, kmdb(1); the core dump's high resolution \n"
4128 	    "time if inspecting one; or the running hires time if we're \n"
4129 	    "looking at a live system.\n\n"
4130 	    "Switches:\n"
4131 	    "  -d   report times in decimal\n"
4132 	    "  -l   prints the number of clock ticks since system boot\n"
4133 	    "  -x   report times in hexadecimal\n");
4134 }
4135 
4136 extern int cmd_refstr(uintptr_t, uint_t, int, const mdb_arg_t *);
4137 
4138 static const mdb_dcmd_t dcmds[] = {
4139 
4140 	/* from genunix.c */
4141 	{ "as2proc", ":", "convert as to proc_t address", as2proc },
4142 	{ "binding_hash_entry", ":", "print driver names hash table entry",
4143 		binding_hash_entry },
4144 	{ "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
4145 	    " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
4146 	    " [-FivVA]",
4147 	    "display callouts", callout, callout_help },
4148 	{ "calloutid", "[-d|v] xid", "print callout by extended id",
4149 	    calloutid, calloutid_help },
4150 	{ "class", NULL, "print process scheduler classes", class },
4151 	{ "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
4152 	{ "did2thread", "? kt_did", "find kernel thread for this id",
4153 		did2thread },
4154 	{ "errorq", "?[-v]", "display kernel error queues", errorq },
4155 	{ "fd", ":[fd num]", "get a file pointer from an fd", fd },
4156 	{ "flipone", ":", "the vik_rev_level 2 special", flipone },
4157 	{ "lminfo", NULL, "print lock manager information", lminfo },
4158 	{ "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
4159 	{ "panicinfo", NULL, "print panic information", panicinfo },
4160 	{ "pid2proc", "?", "convert PID to proc_t address", pid2proc },
4161 	{ "project", NULL, "display kernel project(s)", project },
4162 	{ "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps,
4163 	    ps_help },
4164 	{ "pflags", NULL, "display various proc_t flags", pflags },
4165 	{ "pgrep", "[-x] [-n | -o] pattern",
4166 		"pattern match against all processes", pgrep },
4167 	{ "ptree", NULL, "print process tree", ptree },
4168 	{ "refstr", NULL, "print string from a refstr_t", cmd_refstr, NULL },
4169 	{ "sysevent", "?[-sv]", "print sysevent pending or sent queue",
4170 		sysevent},
4171 	{ "sysevent_channel", "?", "print sysevent channel database",
4172 		sysevent_channel},
4173 	{ "sysevent_class_list", ":", "print sysevent class list",
4174 		sysevent_class_list},
4175 	{ "sysevent_subclass_list", ":",
4176 		"print sysevent subclass list", sysevent_subclass_list},
4177 	{ "system", NULL, "print contents of /etc/system file", sysfile },
4178 	{ "task", NULL, "display kernel task(s)", task },
4179 	{ "time", "[-dlx]", "display system time", time, time_help },
4180 	{ "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
4181 	{ "whereopen", ":", "given a vnode, dumps procs which have it open",
4182 	    whereopen },
4183 
4184 	/* from bio.c */
4185 	{ "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
4186 
4187 	/* from bitset.c */
4188 	{ "bitset", ":", "display a bitset", bitset, bitset_help },
4189 
4190 	/* from contract.c */
4191 	{ "contract", "?", "display a contract", cmd_contract },
4192 	{ "ctevent", ":", "display a contract event", cmd_ctevent },
4193 	{ "ctid", ":", "convert id to a contract pointer", cmd_ctid },
4194 
4195 	/* from cpupart.c */
4196 	{ "cpupart", "?[-v]", "print cpu partition info", cpupart },
4197 
4198 	/* from cred.c */
4199 	{ "cred", ":[-v]", "display a credential", cmd_cred },
4200 	{ "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
4201 	{ "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
4202 	{ "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
4203 
4204 	/* from cyclic.c */
4205 	{ "cyccover", NULL, "dump cyclic coverage information", cyccover },
4206 	{ "cycid", "?", "dump a cyclic id", cycid },
4207 	{ "cycinfo", "?", "dump cyc_cpu info", cycinfo },
4208 	{ "cyclic", ":", "developer information", cyclic },
4209 	{ "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
4210 
4211 	/* from damap.c */
4212 	{ "damap", ":", "display a damap_t", damap, damap_help },
4213 
4214 	/* from ddi_periodic.c */
4215 	{ "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo },
4216 
4217 	/* from devinfo.c */
4218 	{ "devbindings", "?[-qs] [device-name | major-num]",
4219 	    "print devinfo nodes bound to device-name or major-num",
4220 	    devbindings, devinfo_help },
4221 	{ "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node",
4222 	    devinfo, devinfo_help },
4223 	{ "devinfo_audit", ":[-v]", "devinfo configuration audit record",
4224 	    devinfo_audit },
4225 	{ "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
4226 	    devinfo_audit_log },
4227 	{ "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
4228 	    devinfo_audit_node },
4229 	{ "devinfo2driver", ":", "find driver name for this devinfo node",
4230 	    devinfo2driver },
4231 	{ "devnames", "?[-vm] [num]", "print devnames array", devnames },
4232 	{ "dev2major", "?<dev_t>", "convert dev_t to a major number",
4233 	    dev2major },
4234 	{ "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
4235 	    dev2minor },
4236 	{ "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
4237 	    devt },
4238 	{ "major2name", "?<major-num>", "convert major number to dev name",
4239 	    major2name },
4240 	{ "minornodes", ":", "given a devinfo node, print its minor nodes",
4241 	    minornodes },
4242 	{ "modctl2devinfo", ":", "given a modctl, list its devinfos",
4243 	    modctl2devinfo },
4244 	{ "name2major", "<dev-name>", "convert dev name to major number",
4245 	    name2major },
4246 	{ "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree",
4247 	    prtconf, prtconf_help },
4248 	{ "softstate", ":<instance>", "retrieve soft-state pointer",
4249 	    softstate },
4250 	{ "devinfo_fm", ":", "devinfo fault managment configuration",
4251 	    devinfo_fm },
4252 	{ "devinfo_fmce", ":", "devinfo fault managment cache entry",
4253 	    devinfo_fmce},
4254 
4255 	/* from findstack.c */
4256 	{ "findstack", ":[-v]", "find kernel thread stack", findstack },
4257 	{ "findstack_debug", NULL, "toggle findstack debugging",
4258 		findstack_debug },
4259 	{ "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
4260 		"[-s sobj | -S sobj] [-t tstate | -T tstate]",
4261 		"print unique kernel thread stacks",
4262 		stacks, stacks_help },
4263 
4264 	/* from fm.c */
4265 	{ "ereport", "[-v]", "print ereports logged in dump",
4266 	    ereport },
4267 
4268 	/* from group.c */
4269 	{ "group", "?[-q]", "display a group", group},
4270 
4271 	/* from hotplug.c */
4272 	{ "hotplug", "?[-p]", "display a registered hotplug attachment",
4273 	    hotplug, hotplug_help },
4274 
4275 	/* from irm.c */
4276 	{ "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
4277 	{ "irmreqs", NULL, "display interrupt requests in an interrupt pool",
4278 	    irmreqs_dcmd },
4279 	{ "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
4280 
4281 	/* from kgrep.c + genunix.c */
4282 	{ "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
4283 		kgrep_help },
4284 
4285 	/* from kmem.c */
4286 	{ "allocdby", ":", "given a thread, print its allocated buffers",
4287 		allocdby },
4288 	{ "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
4289 		"[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
4290 	{ "freedby", ":", "given a thread, print its freed buffers", freedby },
4291 	{ "kmalog", "?[ fail | slab | zerosized ]",
4292 	    "display kmem transaction log and stack traces for specified type",
4293 	    kmalog },
4294 	{ "kmastat", "[-kmg]", "kernel memory allocator stats",
4295 	    kmastat },
4296 	{ "kmausers", "?[-ef] [cache ...]", "current medium and large users "
4297 		"of the kmem allocator", kmausers, kmausers_help },
4298 	{ "kmem_cache", "?[-n name]",
4299 		"print kernel memory caches", kmem_cache, kmem_cache_help},
4300 	{ "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4301 		"[-B minbinsize]", "display slab usage per kmem cache",
4302 		kmem_slabs, kmem_slabs_help },
4303 	{ "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4304 	{ "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4305 	{ "kmem_verify", "?", "check integrity of kmem-managed memory",
4306 		kmem_verify },
4307 	{ "vmem", "?", "print a vmem_t", vmem },
4308 	{ "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4309 		"[-m minsize] [-M maxsize] [-t thread] [-T type]",
4310 		"print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4311 	{ "whatthread", ":[-v]", "print threads whose stack contains the "
4312 		"given address", whatthread },
4313 
4314 	/* from ldi.c */
4315 	{ "ldi_handle", "?[-i]", "display a layered driver handle",
4316 	    ldi_handle, ldi_handle_help },
4317 	{ "ldi_ident", NULL, "display a layered driver identifier",
4318 	    ldi_ident, ldi_ident_help },
4319 
4320 	/* from leaky.c + leaky_subr.c */
4321 	{ "findleaks", FINDLEAKS_USAGE,
4322 	    "search for potential kernel memory leaks", findleaks,
4323 	    findleaks_help },
4324 
4325 	/* from lgrp.c */
4326 	{ "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4327 	{ "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4328 
4329 	/* from log.c */
4330 	{ "msgbuf", "?[-tTv]", "print most recent console messages", msgbuf,
4331 		msgbuf_help },
4332 
4333 	/* from mdi.c */
4334 	{ "mdipi", NULL, "given a path, dump mdi_pathinfo "
4335 		"and detailed pi_prop list", mdipi },
4336 	{ "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4337 		mdiprops },
4338 	{ "mdiphci", NULL, "given a phci, dump mdi_phci and "
4339 		"list all paths", mdiphci },
4340 	{ "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4341 		"all phcis", mdivhci },
4342 	{ "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4343 		"client links", mdiclient_paths },
4344 	{ "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4345 		"phci links", mdiphci_paths },
4346 	{ "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4347 		mdiphcis },
4348 
4349 	/* from memory.c */
4350 	{ "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4351 	{ "memlist", "?[-iav]", "display a struct memlist", memlist },
4352 	{ "memstat", NULL, "display memory usage summary", memstat },
4353 	{ "page", "?", "display a summarized page_t", page },
4354 	{ "pagelookup", "?[-v vp] [-o offset]",
4355 		"find the page_t with the name {vp, offset}",
4356 		pagelookup, pagelookup_help },
4357 	{ "page_num2pp", ":", "find the page_t for a given page frame number",
4358 		page_num2pp },
4359 	{ "pmap", ":[-q]", "print process memory map", pmap },
4360 	{ "seg", ":", "print address space segment", seg },
4361 	{ "swapinfo", "?", "display a struct swapinfo", swapinfof },
4362 	{ "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4363 
4364 	/* from modhash.c */
4365 	{ "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4366 		"display information about one or all mod_hash structures",
4367 		modhash, modhash_help },
4368 	{ "modent", ":[-k | -v | -t type]",
4369 		"display information about a mod_hash_entry", modent,
4370 		modent_help },
4371 
4372 	/* from net.c */
4373 	{ "dladm", "?<sub-command> [flags]", "show data link information",
4374 		dladm, dladm_help },
4375 	{ "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4376 		mi },
4377 	{ "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4378 		"show network statistics", netstat },
4379 	{ "sonode", "?[-f inet | inet6 | unix | #] "
4380 		"[-t stream | dgram | raw | #] [-p #]",
4381 		"filter and display sonode", sonode },
4382 
4383 	/* from netstack.c */
4384 	{ "netstack", "", "show stack instances", netstack },
4385 	{ "netstackid2netstack", ":",
4386 		"translate a netstack id to its netstack_t",
4387 		netstackid2netstack },
4388 
4389 	/* from nvpair.c */
4390 	{ NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4391 		nvpair_print },
4392 	{ NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4393 		print_nvlist },
4394 
4395 	/* from pg.c */
4396 	{ "pg", "?[-q]", "display a pg", pg},
4397 
4398 	/* from rctl.c */
4399 	{ "rctl_dict", "?", "print systemwide default rctl definitions",
4400 		rctl_dict },
4401 	{ "rctl_list", ":[handle]", "print rctls for the given proc",
4402 		rctl_list },
4403 	{ "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4404 		rctl },
4405 	{ "rctl_validate", ":[-v] [-n #]", "test resource control value "
4406 		"sequence", rctl_validate },
4407 
4408 	/* from sobj.c */
4409 	{ "rwlock", ":", "dump out a readers/writer lock", rwlock },
4410 	{ "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4411 		mutex_help },
4412 	{ "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4413 	{ "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4414 	{ "turnstile", "?", "display a turnstile", turnstile },
4415 
4416 	/* from stream.c */
4417 	{ "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4418 		"print an mblk", mblk_prt, mblk_help },
4419 	{ "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4420 	{ "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4421 		mblk2dblk },
4422 	{ "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4423 	{ "q2rdq", ":", "print read queue for a given queue", q2rdq },
4424 	{ "q2syncq", ":", "print syncq for a given queue", q2syncq },
4425 	{ "q2stream", ":", "print stream pointer for a given queue", q2stream },
4426 	{ "q2wrq", ":", "print write queue for a given queue", q2wrq },
4427 	{ "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4428 		"filter and display STREAM queue", queue, queue_help },
4429 	{ "stdata", ":[-q|v] [-f flag] [-F flag]",
4430 		"filter and display STREAM head", stdata, stdata_help },
4431 	{ "str2mate", ":", "print mate of this stream", str2mate },
4432 	{ "str2wrq", ":", "print write queue of this stream", str2wrq },
4433 	{ "stream", ":", "display STREAM", stream },
4434 	{ "strftevent", ":", "print STREAMS flow trace event", strftevent },
4435 	{ "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4436 		"filter and display STREAM sync queue", syncq, syncq_help },
4437 	{ "syncq2q", ":", "print queue for a given syncq", syncq2q },
4438 
4439 	/* from taskq.c */
4440 	{ "taskq", ":[-atT] [-m min_maxq] [-n name]",
4441 	    "display a taskq", taskq, taskq_help },
4442 	{ "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4443 
4444 	/* from thread.c */
4445 	{ "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4446 		thread_help },
4447 	{ "threadlist", "?[-t] [-v [count]]",
4448 		"display threads and associated C stack traces", threadlist,
4449 		threadlist_help },
4450 	{ "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4451 		stackinfo_help },
4452 
4453 	/* from tsd.c */
4454 	{ "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4455 	{ "tsdtot", ":", "find thread with this tsd", tsdtot },
4456 
4457 	/*
4458 	 * typegraph does not work under kmdb, as it requires too much memory
4459 	 * for its internal data structures.
4460 	 */
4461 #ifndef _KMDB
4462 	/* from typegraph.c */
4463 	{ "findlocks", ":", "find locks held by specified thread", findlocks },
4464 	{ "findfalse", "?[-v]", "find potentially falsely shared structures",
4465 		findfalse },
4466 	{ "typegraph", NULL, "build type graph", typegraph },
4467 	{ "istype", ":type", "manually set object type", istype },
4468 	{ "notype", ":", "manually clear object type", notype },
4469 	{ "whattype", ":", "determine object type", whattype },
4470 #endif
4471 
4472 	/* from vfs.c */
4473 	{ "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4474 	{ "pfiles", ":[-fp]", "print process file information", pfiles,
4475 		pfiles_help },
4476 
4477 	/* from zone.c */
4478 	{ "zid2zone", ":", "find the zone_t with the given zone id",
4479 		zid2zone },
4480 	{ "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4481 	{ "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4482 	    "selected zones", zsd },
4483 
4484 #ifndef _KMDB
4485 	{ "gcore", NULL, "generate a user core for the given process",
4486 	    gcore_dcmd },
4487 #endif
4488 
4489 	{ NULL }
4490 };
4491 
4492 static const mdb_walker_t walkers[] = {
4493 
4494 	/* from genunix.c */
4495 	{ "callouts_bytime", "walk callouts by list chain (expiration time)",
4496 		callout_walk_init, callout_walk_step, callout_walk_fini,
4497 		(void *)CALLOUT_WALK_BYLIST },
4498 	{ "callouts_byid", "walk callouts by id hash chain",
4499 		callout_walk_init, callout_walk_step, callout_walk_fini,
4500 		(void *)CALLOUT_WALK_BYID },
4501 	{ "callout_list", "walk a callout list", callout_list_walk_init,
4502 		callout_list_walk_step, callout_list_walk_fini },
4503 	{ "callout_table", "walk callout table array", callout_table_walk_init,
4504 		callout_table_walk_step, callout_table_walk_fini },
4505 	{ "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4506 	{ "dnlc", "walk dnlc entries",
4507 		dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini },
4508 	{ "ereportq_dump", "walk list of ereports in dump error queue",
4509 		ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4510 	{ "ereportq_pend", "walk list of ereports in pending error queue",
4511 		ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4512 	{ "errorq", "walk list of system error queues",
4513 		errorq_walk_init, errorq_walk_step, NULL },
4514 	{ "errorq_data", "walk pending error queue data buffers",
4515 		eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4516 	{ "allfile", "given a proc pointer, list all file pointers",
4517 		file_walk_init, allfile_walk_step, file_walk_fini },
4518 	{ "file", "given a proc pointer, list of open file pointers",
4519 		file_walk_init, file_walk_step, file_walk_fini },
4520 	{ "lock_descriptor", "walk lock_descriptor_t structures",
4521 		ld_walk_init, ld_walk_step, NULL },
4522 	{ "lock_graph", "walk lock graph",
4523 		lg_walk_init, lg_walk_step, NULL },
4524 	{ "port", "given a proc pointer, list of created event ports",
4525 		port_walk_init, port_walk_step, NULL },
4526 	{ "portev", "given a port pointer, list of events in the queue",
4527 		portev_walk_init, portev_walk_step, portev_walk_fini },
4528 	{ "proc", "list of active proc_t structures",
4529 		proc_walk_init, proc_walk_step, proc_walk_fini },
4530 	{ "projects", "walk a list of kernel projects",
4531 		project_walk_init, project_walk_step, NULL },
4532 	{ "sysevent_pend", "walk sysevent pending queue",
4533 		sysevent_pend_walk_init, sysevent_walk_step,
4534 		sysevent_walk_fini},
4535 	{ "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4536 		sysevent_walk_step, sysevent_walk_fini},
4537 	{ "sysevent_channel", "walk sysevent channel subscriptions",
4538 		sysevent_channel_walk_init, sysevent_channel_walk_step,
4539 		sysevent_channel_walk_fini},
4540 	{ "sysevent_class_list", "walk sysevent subscription's class list",
4541 		sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4542 		sysevent_class_list_walk_fini},
4543 	{ "sysevent_subclass_list",
4544 		"walk sysevent subscription's subclass list",
4545 		sysevent_subclass_list_walk_init,
4546 		sysevent_subclass_list_walk_step,
4547 		sysevent_subclass_list_walk_fini},
4548 	{ "task", "given a task pointer, walk its processes",
4549 		task_walk_init, task_walk_step, NULL },
4550 
4551 	/* from avl.c */
4552 	{ AVL_WALK_NAME, AVL_WALK_DESC,
4553 		avl_walk_init, avl_walk_step, avl_walk_fini },
4554 
4555 	/* from bio.c */
4556 	{ "buf", "walk the bio buf hash",
4557 		buf_walk_init, buf_walk_step, buf_walk_fini },
4558 
4559 	/* from contract.c */
4560 	{ "contract", "walk all contracts, or those of the specified type",
4561 		ct_walk_init, generic_walk_step, NULL },
4562 	{ "ct_event", "walk events on a contract event queue",
4563 		ct_event_walk_init, generic_walk_step, NULL },
4564 	{ "ct_listener", "walk contract event queue listeners",
4565 		ct_listener_walk_init, generic_walk_step, NULL },
4566 
4567 	/* from cpupart.c */
4568 	{ "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4569 		cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4570 		NULL },
4571 	{ "cpupart_walk", "walk the set of cpu partitions",
4572 		cpupart_walk_init, cpupart_walk_step, NULL },
4573 
4574 	/* from ctxop.c */
4575 	{ "ctxop", "walk list of context ops on a thread",
4576 		ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4577 
4578 	/* from cyclic.c */
4579 	{ "cyccpu", "walk per-CPU cyc_cpu structures",
4580 		cyccpu_walk_init, cyccpu_walk_step, NULL },
4581 	{ "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4582 		cycomni_walk_init, cycomni_walk_step, NULL },
4583 	{ "cyctrace", "walk cyclic trace buffer",
4584 		cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4585 
4586 	/* from devinfo.c */
4587 	{ "binding_hash", "walk all entries in binding hash table",
4588 		binding_hash_walk_init, binding_hash_walk_step, NULL },
4589 	{ "devinfo", "walk devinfo tree or subtree",
4590 		devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4591 	{ "devinfo_audit_log", "walk devinfo audit system-wide log",
4592 		devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4593 		devinfo_audit_log_walk_fini},
4594 	{ "devinfo_audit_node", "walk per-devinfo audit history",
4595 		devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4596 		devinfo_audit_node_walk_fini},
4597 	{ "devinfo_children", "walk children of devinfo node",
4598 		devinfo_children_walk_init, devinfo_children_walk_step,
4599 		devinfo_children_walk_fini },
4600 	{ "devinfo_parents", "walk ancestors of devinfo node",
4601 		devinfo_parents_walk_init, devinfo_parents_walk_step,
4602 		devinfo_parents_walk_fini },
4603 	{ "devinfo_siblings", "walk siblings of devinfo node",
4604 		devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4605 	{ "devi_next", "walk devinfo list",
4606 		NULL, devi_next_walk_step, NULL },
4607 	{ "devnames", "walk devnames array",
4608 		devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4609 	{ "minornode", "given a devinfo node, walk minor nodes",
4610 		minornode_walk_init, minornode_walk_step, NULL },
4611 	{ "softstate",
4612 		"given an i_ddi_soft_state*, list all in-use driver stateps",
4613 		soft_state_walk_init, soft_state_walk_step,
4614 		NULL, NULL },
4615 	{ "softstate_all",
4616 		"given an i_ddi_soft_state*, list all driver stateps",
4617 		soft_state_walk_init, soft_state_all_walk_step,
4618 		NULL, NULL },
4619 	{ "devinfo_fmc",
4620 		"walk a fault management handle cache active list",
4621 		devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4622 
4623 	/* from group.c */
4624 	{ "group", "walk all elements of a group",
4625 		group_walk_init, group_walk_step, NULL },
4626 
4627 	/* from irm.c */
4628 	{ "irmpools", "walk global list of interrupt pools",
4629 	    irmpools_walk_init, list_walk_step, list_walk_fini },
4630 	{ "irmreqs", "walk list of interrupt requests in an interrupt pool",
4631 	    irmreqs_walk_init, list_walk_step, list_walk_fini },
4632 
4633 	/* from kmem.c */
4634 	{ "allocdby", "given a thread, walk its allocated bufctls",
4635 		allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4636 	{ "bufctl", "walk a kmem cache's bufctls",
4637 		bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4638 	{ "bufctl_history", "walk the available history of a bufctl",
4639 		bufctl_history_walk_init, bufctl_history_walk_step,
4640 		bufctl_history_walk_fini },
4641 	{ "freedby", "given a thread, walk its freed bufctls",
4642 		freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4643 	{ "freectl", "walk a kmem cache's free bufctls",
4644 		freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4645 	{ "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4646 		freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4647 	{ "freemem", "walk a kmem cache's free memory",
4648 		freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4649 	{ "freemem_constructed", "walk a kmem cache's constructed free memory",
4650 		freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4651 	{ "kmem", "walk a kmem cache",
4652 		kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4653 	{ "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4654 		kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4655 	{ "kmem_hash", "given a kmem cache, walk its allocated hash table",
4656 		kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4657 	{ "kmem_log", "walk the kmem transaction log",
4658 		kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4659 	{ "kmem_slab", "given a kmem cache, walk its slabs",
4660 		kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4661 	{ "kmem_slab_partial",
4662 	    "given a kmem cache, walk its partially allocated slabs (min 1)",
4663 		kmem_slab_walk_partial_init, combined_walk_step,
4664 		combined_walk_fini },
4665 	{ "vmem", "walk vmem structures in pre-fix, depth-first order",
4666 		vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4667 	{ "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4668 		vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4669 	{ "vmem_free", "given a vmem_t, walk its free vmem_segs",
4670 		vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4671 	{ "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4672 		vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4673 	{ "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4674 		vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4675 	{ "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4676 		vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4677 
4678 	/* from ldi.c */
4679 	{ "ldi_handle", "walk the layered driver handle hash",
4680 		ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4681 	{ "ldi_ident", "walk the layered driver identifier hash",
4682 		ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4683 
4684 	/* from leaky.c + leaky_subr.c */
4685 	{ "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4686 	    "stack trace",
4687 		leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4688 	{ "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4689 	    "leaks w/ same stack trace",
4690 		leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4691 
4692 	/* from lgrp.c */
4693 	{ "lgrp_cpulist", "walk CPUs in a given lgroup",
4694 		lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4695 	{ "lgrptbl", "walk lgroup table",
4696 		lgrp_walk_init, lgrp_walk_step, NULL },
4697 	{ "lgrp_parents", "walk up lgroup lineage from given lgroup",
4698 		lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4699 	{ "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4700 		lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4701 	{ "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4702 		lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4703 
4704 	/* from list.c */
4705 	{ LIST_WALK_NAME, LIST_WALK_DESC,
4706 		list_walk_init, list_walk_step, list_walk_fini },
4707 
4708 	/* from mdi.c */
4709 	{ "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4710 		mdi_pi_client_link_walk_init,
4711 		mdi_pi_client_link_walk_step,
4712 		mdi_pi_client_link_walk_fini },
4713 	{ "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4714 		mdi_pi_phci_link_walk_init,
4715 		mdi_pi_phci_link_walk_step,
4716 		mdi_pi_phci_link_walk_fini },
4717 	{ "mdiphci_list", "Walker for mdi_phci ph_next link",
4718 		mdi_phci_ph_next_walk_init,
4719 		mdi_phci_ph_next_walk_step,
4720 		mdi_phci_ph_next_walk_fini },
4721 
4722 	/* from memory.c */
4723 	{ "allpages", "walk all pages, including free pages",
4724 		allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4725 	{ "anon", "given an amp, list allocated anon structures",
4726 		anon_walk_init, anon_walk_step, anon_walk_fini,
4727 		ANON_WALK_ALLOC },
4728 	{ "anon_all", "given an amp, list contents of all anon slots",
4729 		anon_walk_init, anon_walk_step, anon_walk_fini,
4730 		ANON_WALK_ALL },
4731 	{ "memlist", "walk specified memlist",
4732 		NULL, memlist_walk_step, NULL },
4733 	{ "page", "walk all pages, or those from the specified vnode",
4734 		page_walk_init, page_walk_step, page_walk_fini },
4735 	{ "seg", "given an as, list of segments",
4736 		seg_walk_init, avl_walk_step, avl_walk_fini },
4737 	{ "segvn_anon",
4738 		"given a struct segvn_data, list allocated anon structures",
4739 		segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4740 		ANON_WALK_ALLOC },
4741 	{ "segvn_anon_all",
4742 		"given a struct segvn_data, list contents of all anon slots",
4743 		segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4744 		ANON_WALK_ALL },
4745 	{ "segvn_pages",
4746 		"given a struct segvn_data, list resident pages in "
4747 		"offset order",
4748 		segvn_pages_walk_init, segvn_pages_walk_step,
4749 		segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4750 	{ "segvn_pages_all",
4751 		"for each offset in a struct segvn_data, give page_t pointer "
4752 		"(if resident), or NULL.",
4753 		segvn_pages_walk_init, segvn_pages_walk_step,
4754 		segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4755 	{ "swapinfo", "walk swapinfo structures",
4756 		swap_walk_init, swap_walk_step, NULL },
4757 
4758 	/* from modhash.c */
4759 	{ "modhash", "walk list of mod_hash structures", modhash_walk_init,
4760 		modhash_walk_step, NULL },
4761 	{ "modent", "walk list of entries in a given mod_hash",
4762 		modent_walk_init, modent_walk_step, modent_walk_fini },
4763 	{ "modchain", "walk list of entries in a given mod_hash_entry",
4764 		NULL, modchain_walk_step, NULL },
4765 
4766 	/* from net.c */
4767 	{ "icmp", "walk ICMP control structures using MI for all stacks",
4768 		mi_payload_walk_init, mi_payload_walk_step, NULL,
4769 		&mi_icmp_arg },
4770 	{ "mi", "given a MI_O, walk the MI",
4771 		mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4772 	{ "sonode", "given a sonode, walk its children",
4773 		sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4774 	{ "icmp_stacks", "walk all the icmp_stack_t",
4775 		icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4776 	{ "tcp_stacks", "walk all the tcp_stack_t",
4777 		tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4778 	{ "udp_stacks", "walk all the udp_stack_t",
4779 		udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4780 
4781 	/* from netstack.c */
4782 	{ "netstack", "walk a list of kernel netstacks",
4783 		netstack_walk_init, netstack_walk_step, NULL },
4784 
4785 	/* from nvpair.c */
4786 	{ NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4787 		nvpair_walk_init, nvpair_walk_step, NULL },
4788 
4789 	/* from pci.c */
4790 	{ "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init,
4791 		pcie_bus_walk_step, NULL },
4792 
4793 	/* from rctl.c */
4794 	{ "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4795 		rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4796 	{ "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4797 		rctl_set_walk_step, NULL },
4798 	{ "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4799 		rctl_val_walk_init, rctl_val_walk_step },
4800 
4801 	/* from sobj.c */
4802 	{ "blocked", "walk threads blocked on a given sobj",
4803 		blocked_walk_init, blocked_walk_step, NULL },
4804 	{ "wchan", "given a wchan, list of blocked threads",
4805 		wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4806 
4807 	/* from stream.c */
4808 	{ "b_cont", "walk mblk_t list using b_cont",
4809 		mblk_walk_init, b_cont_step, mblk_walk_fini },
4810 	{ "b_next", "walk mblk_t list using b_next",
4811 		mblk_walk_init, b_next_step, mblk_walk_fini },
4812 	{ "qlink", "walk queue_t list using q_link",
4813 		queue_walk_init, queue_link_step, queue_walk_fini },
4814 	{ "qnext", "walk queue_t list using q_next",
4815 		queue_walk_init, queue_next_step, queue_walk_fini },
4816 	{ "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4817 		strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4818 	{ "readq", "walk read queue side of stdata",
4819 		str_walk_init, strr_walk_step, str_walk_fini },
4820 	{ "writeq", "walk write queue side of stdata",
4821 		str_walk_init, strw_walk_step, str_walk_fini },
4822 
4823 	/* from taskq.c */
4824 	{ "taskq_thread", "given a taskq_t, list all of its threads",
4825 		taskq_thread_walk_init,
4826 		taskq_thread_walk_step,
4827 		taskq_thread_walk_fini },
4828 	{ "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4829 		taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4830 
4831 	/* from thread.c */
4832 	{ "deathrow", "walk threads on both lwp_ and thread_deathrow",
4833 		deathrow_walk_init, deathrow_walk_step, NULL },
4834 	{ "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4835 		cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4836 	{ "cpupart_dispq",
4837 		"given a cpupart_t, walk threads in dispatcher queues",
4838 		cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4839 	{ "lwp_deathrow", "walk lwp_deathrow",
4840 		lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4841 	{ "thread", "global or per-process kthread_t structures",
4842 		thread_walk_init, thread_walk_step, thread_walk_fini },
4843 	{ "thread_deathrow", "walk threads on thread_deathrow",
4844 		thread_deathrow_walk_init, deathrow_walk_step, NULL },
4845 
4846 	/* from tsd.c */
4847 	{ "tsd", "walk list of thread-specific data",
4848 		tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4849 
4850 	/* from tsol.c */
4851 	{ "tnrh", "walk remote host cache structures",
4852 	    tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4853 	{ "tnrhtp", "walk remote host template structures",
4854 	    tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4855 
4856 	/*
4857 	 * typegraph does not work under kmdb, as it requires too much memory
4858 	 * for its internal data structures.
4859 	 */
4860 #ifndef _KMDB
4861 	/* from typegraph.c */
4862 	{ "typeconflict", "walk buffers with conflicting type inferences",
4863 		typegraph_walk_init, typeconflict_walk_step },
4864 	{ "typeunknown", "walk buffers with unknown types",
4865 		typegraph_walk_init, typeunknown_walk_step },
4866 #endif
4867 
4868 	/* from vfs.c */
4869 	{ "vfs", "walk file system list",
4870 		vfs_walk_init, vfs_walk_step },
4871 
4872 	/* from zone.c */
4873 	{ "zone", "walk a list of kernel zones",
4874 		zone_walk_init, zone_walk_step, NULL },
4875 	{ "zsd", "walk list of zsd entries for a zone",
4876 		zsd_walk_init, zsd_walk_step, NULL },
4877 
4878 	{ NULL }
4879 };
4880 
4881 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4882 
4883 /*ARGSUSED*/
4884 static void
genunix_statechange_cb(void * ignored)4885 genunix_statechange_cb(void *ignored)
4886 {
4887 	/*
4888 	 * Force ::findleaks and ::stacks to let go any cached state.
4889 	 */
4890 	leaky_cleanup(1);
4891 	stacks_cleanup(1);
4892 
4893 	kmem_statechange();	/* notify kmem */
4894 }
4895 
4896 const mdb_modinfo_t *
_mdb_init(void)4897 _mdb_init(void)
4898 {
4899 	kmem_init();
4900 
4901 	(void) mdb_callback_add(MDB_CALLBACK_STCHG,
4902 	    genunix_statechange_cb, NULL);
4903 
4904 #ifndef _KMDB
4905 	gcore_init();
4906 #endif
4907 
4908 	return (&modinfo);
4909 }
4910 
4911 void
_mdb_fini(void)4912 _mdb_fini(void)
4913 {
4914 	leaky_cleanup(1);
4915 	stacks_cleanup(1);
4916 }
4917