xref: /freebsd/sys/netpfil/pf/pf.c (revision fc63421de9f69ed67aad7bae29712fca2f570693)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Daniel Hartmeier
5  * Copyright (c) 2002 - 2008 Henning Brauer
6  * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  *    - Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *    - Redistributions in binary form must reproduce the above
16  *      copyright notice, this list of conditions and the following
17  *      disclaimer in the documentation and/or other materials provided
18  *      with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Effort sponsored in part by the Defense Advanced Research Projects
34  * Agency (DARPA) and Air Force Research Laboratory, Air Force
35  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36  *
37  *	$OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38  */
39 
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46 
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/random.h>
58 #include <sys/refcount.h>
59 #include <sys/sdt.h>
60 #include <sys/socket.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/ucred.h>
64 
65 #include <crypto/sha2/sha512.h>
66 
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_private.h>
70 #include <net/if_types.h>
71 #include <net/if_vlan_var.h>
72 #include <net/route.h>
73 #include <net/route/nhop.h>
74 #include <net/vnet.h>
75 
76 #include <net/pfil.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #include <net/if_pfsync.h>
80 
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_var.h>
83 #include <netinet/in_fib.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip_fw.h>
86 #include <netinet/ip_icmp.h>
87 #include <netinet/icmp_var.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 
97 /* dummynet */
98 #include <netinet/ip_dummynet.h>
99 #include <netinet/ip_fw.h>
100 #include <netpfil/ipfw/dn_heap.h>
101 #include <netpfil/ipfw/ip_fw_private.h>
102 #include <netpfil/ipfw/ip_dn_private.h>
103 
104 #ifdef INET6
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet6/in6_fib.h>
111 #include <netinet6/scope6_var.h>
112 #endif /* INET6 */
113 
114 #include <netinet/sctp_header.h>
115 #include <netinet/sctp_crc32.h>
116 
117 #include <netipsec/ah.h>
118 
119 #include <machine/in_cksum.h>
120 #include <security/mac/mac_framework.h>
121 
122 SDT_PROVIDER_DEFINE(pf);
123 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int");
124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
125     "struct pf_kstate *");
126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
127     "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
128     "struct pf_kstate *");
129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
130     "struct pfi_kkif *");
131 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
132     "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
133 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
134 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
135 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
136     "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
137 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
138 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
139 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
140     "struct pf_krule *", "struct mbuf *", "int");
141 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
142     "struct pf_sctp_source *");
143 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
144     "struct pf_kstate *", "struct pf_sctp_source *");
145 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int",
146     "int", "struct pf_pdesc *", "int");
147 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t");
148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *",
149     "int");
150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *",
151     "int");
152 
153 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
154     "struct mbuf *");
155 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
156 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
157     "int", "struct pf_keth_rule *", "char *");
158 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
159 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
160     "int", "struct pf_keth_rule *");
161 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
162 SDT_PROBE_DEFINE2(pf, , log, log, "int", "const char *");
163 
164 /*
165  * Global variables
166  */
167 
168 /* state tables */
169 VNET_DEFINE(struct pf_altqqueue,	 pf_altqs[4]);
170 VNET_DEFINE(struct pf_kpalist,		 pf_pabuf[3]);
171 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_active);
172 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_active);
173 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_inactive);
174 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_inactive);
175 VNET_DEFINE(struct pf_kstatus,		 pf_status);
176 
177 VNET_DEFINE(u_int32_t,			 ticket_altqs_active);
178 VNET_DEFINE(u_int32_t,			 ticket_altqs_inactive);
179 VNET_DEFINE(int,			 altqs_inactive_open);
180 VNET_DEFINE(u_int32_t,			 ticket_pabuf);
181 
182 static const int			 PF_HDR_LIMIT = 20;	/* arbitrary limit */
183 
184 VNET_DEFINE(SHA512_CTX,			 pf_tcp_secret_ctx);
185 #define	V_pf_tcp_secret_ctx		 VNET(pf_tcp_secret_ctx)
186 VNET_DEFINE(u_char,			 pf_tcp_secret[16]);
187 #define	V_pf_tcp_secret			 VNET(pf_tcp_secret)
188 VNET_DEFINE(int,			 pf_tcp_secret_init);
189 #define	V_pf_tcp_secret_init		 VNET(pf_tcp_secret_init)
190 VNET_DEFINE(int,			 pf_tcp_iss_off);
191 #define	V_pf_tcp_iss_off		 VNET(pf_tcp_iss_off)
192 VNET_DECLARE(int,			 pf_vnet_active);
193 #define	V_pf_vnet_active		 VNET(pf_vnet_active)
194 
195 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
196 #define V_pf_purge_idx	VNET(pf_purge_idx)
197 
198 #ifdef PF_WANT_32_TO_64_COUNTER
199 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
200 #define	V_pf_counter_periodic_iter	VNET(pf_counter_periodic_iter)
201 
202 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
203 VNET_DEFINE(size_t, pf_allrulecount);
204 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
205 #endif
206 
207 #define PF_SCTP_MAX_ENDPOINTS		8
208 
209 struct pf_sctp_endpoint;
210 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
211 struct pf_sctp_source {
212 	sa_family_t			af;
213 	struct pf_addr			addr;
214 	TAILQ_ENTRY(pf_sctp_source)	entry;
215 };
216 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
217 struct pf_sctp_endpoint
218 {
219 	uint32_t		 v_tag;
220 	struct pf_sctp_sources	 sources;
221 	RB_ENTRY(pf_sctp_endpoint)	entry;
222 };
223 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)224 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
225 {
226 	return (a->v_tag - b->v_tag);
227 }
228 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
229 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
230 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
231 #define V_pf_sctp_endpoints	VNET(pf_sctp_endpoints)
232 static struct mtx_padalign pf_sctp_endpoints_mtx;
233 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
234 #define	PF_SCTP_ENDPOINTS_LOCK()	mtx_lock(&pf_sctp_endpoints_mtx)
235 #define	PF_SCTP_ENDPOINTS_UNLOCK()	mtx_unlock(&pf_sctp_endpoints_mtx)
236 
237 /*
238  * Queue for pf_intr() sends.
239  */
240 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
241 struct pf_send_entry {
242 	STAILQ_ENTRY(pf_send_entry)	pfse_next;
243 	struct mbuf			*pfse_m;
244 	enum {
245 		PFSE_IP,
246 		PFSE_IP6,
247 		PFSE_ICMP,
248 		PFSE_ICMP6,
249 	}				pfse_type;
250 	struct {
251 		int		type;
252 		int		code;
253 		int		mtu;
254 	} icmpopts;
255 };
256 
257 STAILQ_HEAD(pf_send_head, pf_send_entry);
258 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
259 #define	V_pf_sendqueue	VNET(pf_sendqueue)
260 
261 static struct mtx_padalign pf_sendqueue_mtx;
262 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
263 #define	PF_SENDQ_LOCK()		mtx_lock(&pf_sendqueue_mtx)
264 #define	PF_SENDQ_UNLOCK()	mtx_unlock(&pf_sendqueue_mtx)
265 
266 /*
267  * Queue for pf_overload_task() tasks.
268  */
269 struct pf_overload_entry {
270 	SLIST_ENTRY(pf_overload_entry)	next;
271 	struct pf_addr  		addr;
272 	sa_family_t			af;
273 	uint8_t				dir;
274 	struct pf_krule  		*rule;
275 };
276 
277 SLIST_HEAD(pf_overload_head, pf_overload_entry);
278 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
279 #define V_pf_overloadqueue	VNET(pf_overloadqueue)
280 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
281 #define	V_pf_overloadtask	VNET(pf_overloadtask)
282 
283 static struct mtx_padalign pf_overloadqueue_mtx;
284 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
285     "pf overload/flush queue", MTX_DEF);
286 #define	PF_OVERLOADQ_LOCK()	mtx_lock(&pf_overloadqueue_mtx)
287 #define	PF_OVERLOADQ_UNLOCK()	mtx_unlock(&pf_overloadqueue_mtx)
288 
289 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
290 struct mtx_padalign pf_unlnkdrules_mtx;
291 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
292     MTX_DEF);
293 
294 struct sx pf_config_lock;
295 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
296 
297 struct mtx_padalign pf_table_stats_lock;
298 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
299     MTX_DEF);
300 
301 VNET_DEFINE_STATIC(uma_zone_t,	pf_sources_z);
302 #define	V_pf_sources_z	VNET(pf_sources_z)
303 uma_zone_t		pf_mtag_z;
304 VNET_DEFINE(uma_zone_t,	 pf_state_z);
305 VNET_DEFINE(uma_zone_t,	 pf_state_key_z);
306 VNET_DEFINE(uma_zone_t,	 pf_udp_mapping_z);
307 
308 VNET_DEFINE(struct unrhdr64, pf_stateid);
309 
310 static void		 pf_src_tree_remove_state(struct pf_kstate *);
311 static int		 pf_check_threshold(struct pf_kthreshold *);
312 
313 static void		 pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *,
314 			    struct pf_addr *, u_int16_t);
315 static int		 pf_modulate_sack(struct pf_pdesc *,
316 			    struct tcphdr *, struct pf_state_peer *);
317 int			 pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
318 			    u_int16_t *, u_int16_t *);
319 static void		 pf_change_icmp(struct pf_addr *, u_int16_t *,
320 			    struct pf_addr *, struct pf_addr *, u_int16_t,
321 			    u_int16_t *, u_int16_t *, u_int16_t *,
322 			    u_int16_t *, u_int8_t, sa_family_t);
323 int			 pf_change_icmp_af(struct mbuf *, int,
324 			    struct pf_pdesc *, struct pf_pdesc *,
325 			    struct pf_addr *, struct pf_addr *, sa_family_t,
326 			    sa_family_t);
327 int			 pf_translate_icmp_af(int, void *);
328 static void		 pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
329 			    int, sa_family_t, struct pf_krule *, int);
330 static void		 pf_detach_state(struct pf_kstate *);
331 static int		 pf_state_key_attach(struct pf_state_key *,
332 			    struct pf_state_key *, struct pf_kstate *);
333 static void		 pf_state_key_detach(struct pf_kstate *, int);
334 static int		 pf_state_key_ctor(void *, int, void *, int);
335 static u_int32_t	 pf_tcp_iss(struct pf_pdesc *);
336 static __inline void	 pf_dummynet_flag_remove(struct mbuf *m,
337 			    struct pf_mtag *pf_mtag);
338 static int		 pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
339 			    struct pf_krule *, struct mbuf **);
340 static int		 pf_dummynet_route(struct pf_pdesc *,
341 			    struct pf_kstate *, struct pf_krule *,
342 			    struct ifnet *, const struct sockaddr *, struct mbuf **);
343 static int		 pf_test_eth_rule(int, struct pfi_kkif *,
344 			    struct mbuf **);
345 static int		 pf_test_rule(struct pf_krule **, struct pf_kstate **,
346 			    struct pf_pdesc *, struct pf_krule **,
347 			    struct pf_kruleset **, u_short *, struct inpcb *);
348 static int		 pf_create_state(struct pf_krule *,
349 			    struct pf_test_ctx *,
350 			    struct pf_kstate **, u_int16_t, u_int16_t);
351 static int		 pf_state_key_addr_setup(struct pf_pdesc *,
352 			    struct pf_state_key_cmp *, int);
353 static int		 pf_tcp_track_full(struct pf_kstate *,
354 			    struct pf_pdesc *, u_short *, int *,
355 			    struct pf_state_peer *, struct pf_state_peer *,
356 			    u_int8_t, u_int8_t);
357 static int		 pf_tcp_track_sloppy(struct pf_kstate *,
358 			    struct pf_pdesc *, u_short *,
359 			    struct pf_state_peer *, struct pf_state_peer *,
360 			    u_int8_t, u_int8_t);
361 static int		 pf_test_state(struct pf_kstate **, struct pf_pdesc *,
362 			    u_short *);
363 int			 pf_icmp_state_lookup(struct pf_state_key_cmp *,
364 			    struct pf_pdesc *, struct pf_kstate **,
365 			    u_int16_t, u_int16_t, int, int *, int, int);
366 static int		 pf_test_state_icmp(struct pf_kstate **,
367 			    struct pf_pdesc *, u_short *);
368 static int		 pf_sctp_track(struct pf_kstate *, struct pf_pdesc *,
369 			    u_short *);
370 static void		 pf_sctp_multihome_detach_addr(const struct pf_kstate *);
371 static void		 pf_sctp_multihome_delayed(struct pf_pdesc *,
372 			    struct pfi_kkif *, struct pf_kstate *, int);
373 static u_int16_t	 pf_calc_mss(struct pf_addr *, sa_family_t,
374 				int, u_int16_t);
375 static int		 pf_check_proto_cksum(struct mbuf *, int, int,
376 			    u_int8_t, sa_family_t);
377 static int		 pf_walk_option(struct pf_pdesc *, struct ip *,
378 			    int, int, u_short *);
379 static int		 pf_walk_header(struct pf_pdesc *, struct ip *, u_short *);
380 #ifdef INET6
381 static int		 pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *,
382 			    int, int, u_short *);
383 static int		 pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *,
384 			    u_short *);
385 #endif
386 static void		 pf_print_state_parts(struct pf_kstate *,
387 			    struct pf_state_key *, struct pf_state_key *);
388 static int		 pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t,
389 			    bool);
390 static int		 pf_find_state(struct pf_pdesc *,
391 			    const struct pf_state_key_cmp *, struct pf_kstate **);
392 static bool		 pf_src_connlimit(struct pf_kstate *);
393 static int		 pf_match_rcvif(struct mbuf *, struct pf_krule *);
394 static void		 pf_counters_inc(int, struct pf_pdesc *,
395 			    struct pf_kstate *, struct pf_krule *,
396 			    struct pf_krule *);
397 static void		 pf_log_matches(struct pf_pdesc *, struct pf_krule *,
398 			    struct pf_krule *, struct pf_kruleset *,
399 			    struct pf_krule_slist *);
400 static void		 pf_overload_task(void *v, int pending);
401 static u_short		 pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX],
402 			    struct pf_srchash *[PF_SN_MAX], struct pf_krule *,
403 			    struct pf_addr *, sa_family_t, struct pf_addr *,
404 			    struct pfi_kkif *, sa_family_t, pf_sn_types_t);
405 static u_int		 pf_purge_expired_states(u_int, int);
406 static void		 pf_purge_unlinked_rules(void);
407 static int		 pf_mtag_uminit(void *, int, int);
408 static void		 pf_mtag_free(struct m_tag *);
409 static void		 pf_packet_rework_nat(struct pf_pdesc *, int,
410 			    struct pf_state_key *);
411 #ifdef INET
412 static int		 pf_route(struct pf_krule *,
413 			    struct ifnet *, struct pf_kstate *,
414 			    struct pf_pdesc *, struct inpcb *);
415 #endif /* INET */
416 #ifdef INET6
417 static void		 pf_change_a6(struct pf_addr *, u_int16_t *,
418 			    struct pf_addr *, u_int8_t);
419 static int		 pf_route6(struct pf_krule *,
420 			    struct ifnet *, struct pf_kstate *,
421 			    struct pf_pdesc *, struct inpcb *);
422 #endif /* INET6 */
423 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
424 
425 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
426 
427 extern int pf_end_threads;
428 extern struct proc *pf_purge_proc;
429 
430 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
431 
432 #define	PACKET_UNDO_NAT(_pd, _off, _s)					\
433 	do {								\
434 		struct pf_state_key *nk;				\
435 		if ((pd->dir) == PF_OUT)				\
436 			nk = (_s)->key[PF_SK_STACK];			\
437 		else							\
438 			nk = (_s)->key[PF_SK_WIRE];			\
439 		pf_packet_rework_nat(_pd, _off, nk);		\
440 	} while (0)
441 
442 #define	PACKET_LOOPED(pd)	((pd)->pf_mtag &&			\
443 				 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
444 
445 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)446 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
447 {
448 	struct pfi_kkif *k = pd->kif;
449 
450 	SDT_PROBE2(pf, ip, , bound_iface, st, k);
451 
452 	/* Floating unless otherwise specified. */
453 	if (! (st->rule->rule_flag & PFRULE_IFBOUND))
454 		return (V_pfi_all);
455 
456 	/*
457 	 * Initially set to all, because we don't know what interface we'll be
458 	 * sending this out when we create the state.
459 	 */
460 	if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN))
461 		return (V_pfi_all);
462 
463 	/*
464 	 * If this state is created based on another state (e.g. SCTP
465 	 * multihome) always set it floating initially. We can't know for sure
466 	 * what interface the actual traffic for this state will come in on.
467 	 */
468 	if (pd->related_rule)
469 		return (V_pfi_all);
470 
471 	/* Don't overrule the interface for states created on incoming packets. */
472 	if (st->direction == PF_IN)
473 		return (k);
474 
475 	/* No route-to, so don't overrule. */
476 	if (st->act.rt != PF_ROUTETO)
477 		return (k);
478 
479 	/* Bind to the route-to interface. */
480 	return (st->act.rt_kif);
481 }
482 
483 #define	STATE_INC_COUNTERS(s)						\
484 	do {								\
485 		struct pf_krule_item *mrm;				\
486 		counter_u64_add(s->rule->states_cur, 1);		\
487 		counter_u64_add(s->rule->states_tot, 1);		\
488 		if (s->anchor != NULL) {				\
489 			counter_u64_add(s->anchor->states_cur, 1);	\
490 			counter_u64_add(s->anchor->states_tot, 1);	\
491 		}							\
492 		if (s->nat_rule != NULL) {				\
493 			counter_u64_add(s->nat_rule->states_cur, 1);\
494 			counter_u64_add(s->nat_rule->states_tot, 1);\
495 		}							\
496 		SLIST_FOREACH(mrm, &s->match_rules, entry) {		\
497 			counter_u64_add(mrm->r->states_cur, 1);		\
498 			counter_u64_add(mrm->r->states_tot, 1);		\
499 		}							\
500 	} while (0)
501 
502 #define	STATE_DEC_COUNTERS(s)						\
503 	do {								\
504 		struct pf_krule_item *mrm;				\
505 		if (s->nat_rule != NULL)				\
506 			counter_u64_add(s->nat_rule->states_cur, -1);\
507 		if (s->anchor != NULL)				\
508 			counter_u64_add(s->anchor->states_cur, -1);	\
509 		counter_u64_add(s->rule->states_cur, -1);		\
510 		SLIST_FOREACH(mrm, &s->match_rules, entry)		\
511 			counter_u64_add(mrm->r->states_cur, -1);	\
512 	} while (0)
513 
514 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
515 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
516 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
517 VNET_DEFINE(struct pf_idhash *, pf_idhash);
518 VNET_DEFINE(struct pf_srchash *, pf_srchash);
519 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
520 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
521 
522 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
523     "pf(4)");
524 
525 VNET_DEFINE(u_long, pf_hashmask);
526 VNET_DEFINE(u_long, pf_srchashmask);
527 VNET_DEFINE(u_long, pf_udpendpointhashmask);
528 VNET_DEFINE_STATIC(u_long, pf_hashsize);
529 #define V_pf_hashsize	VNET(pf_hashsize)
530 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
531 #define V_pf_srchashsize	VNET(pf_srchashsize)
532 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
533 #define V_pf_udpendpointhashsize	VNET(pf_udpendpointhashsize)
534 u_long	pf_ioctl_maxcount = 65535;
535 
536 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
537     &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
538 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
539     &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
540 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
541     &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
542 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
543     &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
544 
545 VNET_DEFINE(void *, pf_swi_cookie);
546 VNET_DEFINE(struct intr_event *, pf_swi_ie);
547 
548 VNET_DEFINE(uint32_t, pf_hashseed);
549 #define	V_pf_hashseed	VNET(pf_hashseed)
550 
551 static void
pf_sctp_checksum(struct mbuf * m,int off)552 pf_sctp_checksum(struct mbuf *m, int off)
553 {
554 	uint32_t sum = 0;
555 
556 	/* Zero out the checksum, to enable recalculation. */
557 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
558 	    sizeof(sum), (caddr_t)&sum);
559 
560 	sum = sctp_calculate_cksum(m, off);
561 
562 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
563 	    sizeof(sum), (caddr_t)&sum);
564 }
565 
566 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)567 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
568 {
569 
570 	switch (af) {
571 #ifdef INET
572 	case AF_INET:
573 		if (a->addr32[0] > b->addr32[0])
574 			return (1);
575 		if (a->addr32[0] < b->addr32[0])
576 			return (-1);
577 		break;
578 #endif /* INET */
579 #ifdef INET6
580 	case AF_INET6:
581 		if (a->addr32[3] > b->addr32[3])
582 			return (1);
583 		if (a->addr32[3] < b->addr32[3])
584 			return (-1);
585 		if (a->addr32[2] > b->addr32[2])
586 			return (1);
587 		if (a->addr32[2] < b->addr32[2])
588 			return (-1);
589 		if (a->addr32[1] > b->addr32[1])
590 			return (1);
591 		if (a->addr32[1] < b->addr32[1])
592 			return (-1);
593 		if (a->addr32[0] > b->addr32[0])
594 			return (1);
595 		if (a->addr32[0] < b->addr32[0])
596 			return (-1);
597 		break;
598 #endif /* INET6 */
599 	default:
600 		unhandled_af(af);
601 	}
602 	return (0);
603 }
604 
605 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)606 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
607 {
608 	switch (af) {
609 #ifdef INET
610 	case AF_INET:
611 		return IN_LOOPBACK(ntohl(addr->v4.s_addr));
612 #endif /* INET */
613 	case AF_INET6:
614 		return IN6_IS_ADDR_LOOPBACK(&addr->v6);
615 	default:
616 		unhandled_af(af);
617 	}
618 }
619 
620 static void
pf_packet_rework_nat(struct pf_pdesc * pd,int off,struct pf_state_key * nk)621 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk)
622 {
623 
624 	switch (pd->virtual_proto) {
625 	case IPPROTO_TCP: {
626 		struct tcphdr *th = &pd->hdr.tcp;
627 
628 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
629 			pf_change_ap(pd, pd->src, &th->th_sport,
630 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
631 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
632 			pf_change_ap(pd, pd->dst, &th->th_dport,
633 			    &nk->addr[pd->didx], nk->port[pd->didx]);
634 		m_copyback(pd->m, off, sizeof(*th), (caddr_t)th);
635 		break;
636 	}
637 	case IPPROTO_UDP: {
638 		struct udphdr *uh = &pd->hdr.udp;
639 
640 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
641 			pf_change_ap(pd, pd->src, &uh->uh_sport,
642 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
643 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
644 			pf_change_ap(pd, pd->dst, &uh->uh_dport,
645 			    &nk->addr[pd->didx], nk->port[pd->didx]);
646 		m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh);
647 		break;
648 	}
649 	case IPPROTO_SCTP: {
650 		struct sctphdr *sh = &pd->hdr.sctp;
651 
652 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
653 			pf_change_ap(pd, pd->src, &sh->src_port,
654 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
655 		}
656 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
657 			pf_change_ap(pd, pd->dst, &sh->dest_port,
658 			    &nk->addr[pd->didx], nk->port[pd->didx]);
659 		}
660 
661 		break;
662 	}
663 	case IPPROTO_ICMP: {
664 		struct icmp *ih = &pd->hdr.icmp;
665 
666 		if (nk->port[pd->sidx] != ih->icmp_id) {
667 			pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
668 			    ih->icmp_cksum, ih->icmp_id,
669 			    nk->port[pd->sidx], 0);
670 			ih->icmp_id = nk->port[pd->sidx];
671 			pd->sport = &ih->icmp_id;
672 
673 			m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih);
674 		}
675 		/* FALLTHROUGH */
676 	}
677 	default:
678 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
679 			switch (pd->af) {
680 			case AF_INET:
681 				pf_change_a(&pd->src->v4.s_addr,
682 				    pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
683 				    0);
684 				break;
685 			case AF_INET6:
686 				pf_addrcpy(pd->src, &nk->addr[pd->sidx],
687 				    pd->af);
688 				break;
689 			default:
690 				unhandled_af(pd->af);
691 			}
692 		}
693 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
694 			switch (pd->af) {
695 			case AF_INET:
696 				pf_change_a(&pd->dst->v4.s_addr,
697 				    pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
698 				    0);
699 				break;
700 			case AF_INET6:
701 				pf_addrcpy(pd->dst, &nk->addr[pd->didx],
702 				    pd->af);
703 				break;
704 			default:
705 				unhandled_af(pd->af);
706 			}
707 		}
708 		break;
709 	}
710 }
711 
712 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)713 pf_hashkey(const struct pf_state_key *sk)
714 {
715 	uint32_t h;
716 
717 	h = murmur3_32_hash32((const uint32_t *)sk,
718 	    sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
719 	    V_pf_hashseed);
720 
721 	return (h & V_pf_hashmask);
722 }
723 
724 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)725 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
726 {
727 	uint32_t h;
728 
729 	switch (af) {
730 	case AF_INET:
731 		h = murmur3_32_hash32((uint32_t *)&addr->v4,
732 		    sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
733 		break;
734 	case AF_INET6:
735 		h = murmur3_32_hash32((uint32_t *)&addr->v6,
736 		    sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
737 		break;
738 	default:
739 		unhandled_af(af);
740 	}
741 
742 	return (h & V_pf_srchashmask);
743 }
744 
745 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)746 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
747 {
748 	uint32_t h;
749 
750 	h = murmur3_32_hash32((uint32_t *)endpoint,
751 	    sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
752 	    V_pf_hashseed);
753 	return (h & V_pf_udpendpointhashmask);
754 }
755 
756 #ifdef ALTQ
757 static int
pf_state_hash(struct pf_kstate * s)758 pf_state_hash(struct pf_kstate *s)
759 {
760 	u_int32_t hv = (intptr_t)s / sizeof(*s);
761 
762 	hv ^= crc32(&s->src, sizeof(s->src));
763 	hv ^= crc32(&s->dst, sizeof(s->dst));
764 	if (hv == 0)
765 		hv = 1;
766 	return (hv);
767 }
768 #endif /* ALTQ */
769 
770 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)771 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
772 {
773 	if (which == PF_PEER_DST || which == PF_PEER_BOTH)
774 		s->dst.state = newstate;
775 	if (which == PF_PEER_DST)
776 		return;
777 	if (s->src.state == newstate)
778 		return;
779 	if (s->creatorid == V_pf_status.hostid &&
780 	    s->key[PF_SK_STACK] != NULL &&
781 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
782 	    !(TCPS_HAVEESTABLISHED(s->src.state) ||
783 	    s->src.state == TCPS_CLOSED) &&
784 	    (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
785 		atomic_add_32(&V_pf_status.states_halfopen, -1);
786 
787 	s->src.state = newstate;
788 }
789 
790 bool
pf_init_threshold(struct pf_kthreshold * threshold,u_int32_t limit,u_int32_t seconds)791 pf_init_threshold(struct pf_kthreshold *threshold,
792     u_int32_t limit, u_int32_t seconds)
793 {
794 	threshold->limit = limit;
795 	threshold->seconds = seconds;
796 	threshold->cr = counter_rate_alloc(M_NOWAIT, seconds);
797 
798 	return (threshold->cr != NULL);
799 }
800 
801 static int
pf_check_threshold(struct pf_kthreshold * threshold)802 pf_check_threshold(struct pf_kthreshold *threshold)
803 {
804 	return (counter_ratecheck(threshold->cr, threshold->limit) < 0);
805 }
806 
807 static bool
pf_src_connlimit(struct pf_kstate * state)808 pf_src_connlimit(struct pf_kstate *state)
809 {
810 	struct pf_overload_entry	*pfoe;
811 	struct pf_ksrc_node		*src_node = state->sns[PF_SN_LIMIT];
812 	bool				 limited = false;
813 
814 	PF_STATE_LOCK_ASSERT(state);
815 	PF_SRC_NODE_LOCK(src_node);
816 
817 	src_node->conn++;
818 	state->src.tcp_est = 1;
819 
820 	if (state->rule->max_src_conn &&
821 	    state->rule->max_src_conn <
822 	    src_node->conn) {
823 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
824 		limited = true;
825 	}
826 
827 	if (state->rule->max_src_conn_rate.limit &&
828 	    pf_check_threshold(&src_node->conn_rate)) {
829 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
830 		limited = true;
831 	}
832 
833 	if (!limited)
834 		goto done;
835 
836 	/* Kill this state. */
837 	state->timeout = PFTM_PURGE;
838 	pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
839 
840 	if (state->rule->overload_tbl == NULL)
841 		goto done;
842 
843 	/* Schedule overloading and flushing task. */
844 	pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
845 	if (pfoe == NULL)
846 		goto done;  /* too bad :( */
847 
848 	bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
849 	pfoe->af = state->key[PF_SK_WIRE]->af;
850 	pfoe->rule = state->rule;
851 	pfoe->dir = state->direction;
852 	PF_OVERLOADQ_LOCK();
853 	SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
854 	PF_OVERLOADQ_UNLOCK();
855 	taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
856 
857 done:
858 	PF_SRC_NODE_UNLOCK(src_node);
859 	return (limited);
860 }
861 
862 static void
pf_overload_task(void * v,int pending)863 pf_overload_task(void *v, int pending)
864 {
865 	struct pf_overload_head queue;
866 	struct pfr_addr p;
867 	struct pf_overload_entry *pfoe, *pfoe1;
868 	uint32_t killed = 0;
869 
870 	CURVNET_SET((struct vnet *)v);
871 
872 	PF_OVERLOADQ_LOCK();
873 	queue = V_pf_overloadqueue;
874 	SLIST_INIT(&V_pf_overloadqueue);
875 	PF_OVERLOADQ_UNLOCK();
876 
877 	bzero(&p, sizeof(p));
878 	SLIST_FOREACH(pfoe, &queue, next) {
879 		counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
880 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
881 			printf("%s: blocking address ", __func__);
882 			pf_print_host(&pfoe->addr, 0, pfoe->af);
883 			printf("\n");
884 		}
885 
886 		p.pfra_af = pfoe->af;
887 		switch (pfoe->af) {
888 #ifdef INET
889 		case AF_INET:
890 			p.pfra_net = 32;
891 			p.pfra_ip4addr = pfoe->addr.v4;
892 			break;
893 #endif /* INET */
894 #ifdef INET6
895 		case AF_INET6:
896 			p.pfra_net = 128;
897 			p.pfra_ip6addr = pfoe->addr.v6;
898 			break;
899 #endif /* INET6 */
900 		default:
901 			unhandled_af(pfoe->af);
902 		}
903 
904 		PF_RULES_WLOCK();
905 		pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
906 		PF_RULES_WUNLOCK();
907 	}
908 
909 	/*
910 	 * Remove those entries, that don't need flushing.
911 	 */
912 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
913 		if (pfoe->rule->flush == 0) {
914 			SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
915 			free(pfoe, M_PFTEMP);
916 		} else
917 			counter_u64_add(
918 			    V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
919 
920 	/* If nothing to flush, return. */
921 	if (SLIST_EMPTY(&queue)) {
922 		CURVNET_RESTORE();
923 		return;
924 	}
925 
926 	for (int i = 0; i <= V_pf_hashmask; i++) {
927 		struct pf_idhash *ih = &V_pf_idhash[i];
928 		struct pf_state_key *sk;
929 		struct pf_kstate *s;
930 
931 		PF_HASHROW_LOCK(ih);
932 		LIST_FOREACH(s, &ih->states, entry) {
933 		    sk = s->key[PF_SK_WIRE];
934 		    SLIST_FOREACH(pfoe, &queue, next)
935 			if (sk->af == pfoe->af &&
936 			    ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
937 			    pfoe->rule == s->rule) &&
938 			    ((pfoe->dir == PF_OUT &&
939 			    PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
940 			    (pfoe->dir == PF_IN &&
941 			    PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
942 				s->timeout = PFTM_PURGE;
943 				pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
944 				killed++;
945 			}
946 		}
947 		PF_HASHROW_UNLOCK(ih);
948 	}
949 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
950 		free(pfoe, M_PFTEMP);
951 	if (V_pf_status.debug >= PF_DEBUG_MISC)
952 		printf("%s: %u states killed", __func__, killed);
953 
954 	CURVNET_RESTORE();
955 }
956 
957 /*
958  * On node found always returns locked. On not found its configurable.
959  */
960 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,pf_sn_types_t sn_type,bool returnlocked)961 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
962     struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked)
963 {
964 	struct pf_ksrc_node *n;
965 
966 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
967 
968 	*sh = &V_pf_srchash[pf_hashsrc(src, af)];
969 	PF_HASHROW_LOCK(*sh);
970 	LIST_FOREACH(n, &(*sh)->nodes, entry)
971 		if (n->rule == rule && n->af == af && n->type == sn_type &&
972 		    ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
973 		    (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
974 			break;
975 
976 	if (n == NULL && !returnlocked)
977 		PF_HASHROW_UNLOCK(*sh);
978 
979 	return (n);
980 }
981 
982 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)983 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
984 {
985 	struct pf_ksrc_node	*cur;
986 
987 	if ((*sn) == NULL)
988 		return (false);
989 
990 	KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
991 
992 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
993 	PF_HASHROW_LOCK(sh);
994 	LIST_FOREACH(cur, &(sh->nodes), entry) {
995 		if (cur == (*sn) &&
996 		    cur->expire != 1) /* Ignore nodes being killed */
997 			return (true);
998 	}
999 	PF_HASHROW_UNLOCK(sh);
1000 	(*sn) = NULL;
1001 	return (false);
1002 }
1003 
1004 static void
pf_free_src_node(struct pf_ksrc_node * sn)1005 pf_free_src_node(struct pf_ksrc_node *sn)
1006 {
1007 
1008 	for (int i = 0; i < 2; i++) {
1009 		counter_u64_free(sn->bytes[i]);
1010 		counter_u64_free(sn->packets[i]);
1011 	}
1012 	counter_rate_free(sn->conn_rate.cr);
1013 	uma_zfree(V_pf_sources_z, sn);
1014 }
1015 
1016 static u_short
pf_insert_src_node(struct pf_ksrc_node * sns[PF_SN_MAX],struct pf_srchash * snhs[PF_SN_MAX],struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif,sa_family_t raf,pf_sn_types_t sn_type)1017 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX],
1018     struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule,
1019     struct pf_addr *src, sa_family_t af, struct pf_addr *raddr,
1020     struct pfi_kkif *rkif, sa_family_t raf, pf_sn_types_t sn_type)
1021 {
1022 	u_short			 reason = 0;
1023 	struct pf_krule		*r_track = rule;
1024 	struct pf_ksrc_node	**sn = &(sns[sn_type]);
1025 	struct pf_srchash	**sh = &(snhs[sn_type]);
1026 
1027 	KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL),
1028 	    ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__));
1029 
1030 	KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK),
1031 	    ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__));
1032 
1033 	/*
1034 	 * XXX: There could be a KASSERT for
1035 	 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR)
1036 	 * but we'd need to pass pool *only* for this KASSERT.
1037 	 */
1038 
1039 	if ( (rule->rule_flag & PFRULE_SRCTRACK) &&
1040 	    !(rule->rule_flag & PFRULE_RULESRCTRACK))
1041 		r_track = &V_pf_default_rule;
1042 
1043 	/*
1044 	 * Request the sh to always be locked, as we might insert a new sn.
1045 	 */
1046 	if (*sn == NULL)
1047 		*sn = pf_find_src_node(src, r_track, af, sh, sn_type, true);
1048 
1049 	if (*sn == NULL) {
1050 		PF_HASHROW_ASSERT(*sh);
1051 
1052 		if (sn_type == PF_SN_LIMIT && rule->max_src_nodes &&
1053 		    counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) {
1054 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1055 			reason = PFRES_SRCLIMIT;
1056 			goto done;
1057 		}
1058 
1059 		(*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1060 		if ((*sn) == NULL) {
1061 			reason = PFRES_MEMORY;
1062 			goto done;
1063 		}
1064 
1065 		for (int i = 0; i < 2; i++) {
1066 			(*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1067 			(*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1068 
1069 			if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1070 				pf_free_src_node(*sn);
1071 				reason = PFRES_MEMORY;
1072 				goto done;
1073 			}
1074 		}
1075 
1076 		if (sn_type == PF_SN_LIMIT)
1077 			if (! pf_init_threshold(&(*sn)->conn_rate,
1078 			    rule->max_src_conn_rate.limit,
1079 			    rule->max_src_conn_rate.seconds)) {
1080 				pf_free_src_node(*sn);
1081 				reason = PFRES_MEMORY;
1082 				goto done;
1083 			}
1084 
1085 		MPASS((*sn)->lock == NULL);
1086 		(*sn)->lock = &(*sh)->lock;
1087 
1088 		(*sn)->af = af;
1089 		(*sn)->rule = r_track;
1090 		pf_addrcpy(&(*sn)->addr, src, af);
1091 		if (raddr != NULL)
1092 			pf_addrcpy(&(*sn)->raddr, raddr, raf);
1093 		(*sn)->rkif = rkif;
1094 		(*sn)->raf = raf;
1095 		LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1096 		(*sn)->creation = time_uptime;
1097 		(*sn)->ruletype = rule->action;
1098 		(*sn)->type = sn_type;
1099 		counter_u64_add(r_track->src_nodes[sn_type], 1);
1100 		counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1101 	} else {
1102 		if (sn_type == PF_SN_LIMIT && rule->max_src_states &&
1103 		    (*sn)->states >= rule->max_src_states) {
1104 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1105 			    1);
1106 			reason = PFRES_SRCLIMIT;
1107 			goto done;
1108 		}
1109 	}
1110 done:
1111 	if (reason == 0)
1112 		(*sn)->states++;
1113 	else
1114 		(*sn) = NULL;
1115 
1116 	PF_HASHROW_UNLOCK(*sh);
1117 	return (reason);
1118 }
1119 
1120 void
pf_unlink_src_node(struct pf_ksrc_node * src)1121 pf_unlink_src_node(struct pf_ksrc_node *src)
1122 {
1123 	PF_SRC_NODE_LOCK_ASSERT(src);
1124 
1125 	LIST_REMOVE(src, entry);
1126 	if (src->rule)
1127 		counter_u64_add(src->rule->src_nodes[src->type], -1);
1128 }
1129 
1130 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1131 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1132 {
1133 	struct pf_ksrc_node *sn, *tmp;
1134 	u_int count = 0;
1135 
1136 	LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1137 		pf_free_src_node(sn);
1138 		count++;
1139 	}
1140 
1141 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1142 
1143 	return (count);
1144 }
1145 
1146 void
pf_mtag_initialize(void)1147 pf_mtag_initialize(void)
1148 {
1149 
1150 	pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1151 	    sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1152 	    UMA_ALIGN_PTR, 0);
1153 }
1154 
1155 /* Per-vnet data storage structures initialization. */
1156 void
pf_initialize(void)1157 pf_initialize(void)
1158 {
1159 	struct pf_keyhash	*kh;
1160 	struct pf_idhash	*ih;
1161 	struct pf_srchash	*sh;
1162 	struct pf_udpendpointhash	*uh;
1163 	u_int i;
1164 
1165 	if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1166 		V_pf_hashsize = PF_HASHSIZ;
1167 	if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1168 		V_pf_srchashsize = PF_SRCHASHSIZ;
1169 	if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1170 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1171 
1172 	V_pf_hashseed = arc4random();
1173 
1174 	/* States and state keys storage. */
1175 	V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1176 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1177 	V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1178 	uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1179 	uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1180 
1181 	V_pf_state_key_z = uma_zcreate("pf state keys",
1182 	    sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1183 	    UMA_ALIGN_PTR, 0);
1184 
1185 	V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1186 	    M_PFHASH, M_NOWAIT | M_ZERO);
1187 	V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1188 	    M_PFHASH, M_NOWAIT | M_ZERO);
1189 	if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1190 		printf("pf: Unable to allocate memory for "
1191 		    "state_hashsize %lu.\n", V_pf_hashsize);
1192 
1193 		free(V_pf_keyhash, M_PFHASH);
1194 		free(V_pf_idhash, M_PFHASH);
1195 
1196 		V_pf_hashsize = PF_HASHSIZ;
1197 		V_pf_keyhash = mallocarray(V_pf_hashsize,
1198 		    sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1199 		V_pf_idhash = mallocarray(V_pf_hashsize,
1200 		    sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1201 	}
1202 
1203 	V_pf_hashmask = V_pf_hashsize - 1;
1204 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1205 	    i++, kh++, ih++) {
1206 		mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1207 		mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1208 	}
1209 
1210 	/* Source nodes. */
1211 	V_pf_sources_z = uma_zcreate("pf source nodes",
1212 	    sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1213 	    0);
1214 	V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1215 	uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1216 	uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1217 
1218 	V_pf_srchash = mallocarray(V_pf_srchashsize,
1219 	    sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1220 	if (V_pf_srchash == NULL) {
1221 		printf("pf: Unable to allocate memory for "
1222 		    "source_hashsize %lu.\n", V_pf_srchashsize);
1223 
1224 		V_pf_srchashsize = PF_SRCHASHSIZ;
1225 		V_pf_srchash = mallocarray(V_pf_srchashsize,
1226 		    sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1227 	}
1228 
1229 	V_pf_srchashmask = V_pf_srchashsize - 1;
1230 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1231 		mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1232 
1233 
1234 	/* UDP endpoint mappings. */
1235 	V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1236 	    sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1237 	    UMA_ALIGN_PTR, 0);
1238 	V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1239 	    sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1240 	if (V_pf_udpendpointhash == NULL) {
1241 		printf("pf: Unable to allocate memory for "
1242 		    "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1243 
1244 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1245 		V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1246 		    sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1247 	}
1248 
1249 	V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1250 	for (i = 0, uh = V_pf_udpendpointhash;
1251 	    i <= V_pf_udpendpointhashmask;
1252 	    i++, uh++) {
1253 		mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1254 		    MTX_DEF | MTX_DUPOK);
1255 	}
1256 
1257 	/* Anchors */
1258 	V_pf_anchor_z = uma_zcreate("pf anchors",
1259 	    sizeof(struct pf_kanchor), NULL, NULL, NULL, NULL,
1260 	    UMA_ALIGN_PTR, 0);
1261 	V_pf_limits[PF_LIMIT_ANCHORS].zone = V_pf_anchor_z;
1262 	uma_zone_set_max(V_pf_anchor_z, PF_ANCHOR_HIWAT);
1263 	uma_zone_set_warning(V_pf_anchor_z, "PF anchor limit reached");
1264 
1265 	V_pf_eth_anchor_z = uma_zcreate("pf Ethernet anchors",
1266 	    sizeof(struct pf_keth_anchor), NULL, NULL, NULL, NULL,
1267 	    UMA_ALIGN_PTR, 0);
1268 	V_pf_limits[PF_LIMIT_ETH_ANCHORS].zone = V_pf_eth_anchor_z;
1269 	uma_zone_set_max(V_pf_eth_anchor_z, PF_ANCHOR_HIWAT);
1270 	uma_zone_set_warning(V_pf_eth_anchor_z, "PF Ethernet anchor limit reached");
1271 
1272 	/* ALTQ */
1273 	TAILQ_INIT(&V_pf_altqs[0]);
1274 	TAILQ_INIT(&V_pf_altqs[1]);
1275 	TAILQ_INIT(&V_pf_altqs[2]);
1276 	TAILQ_INIT(&V_pf_altqs[3]);
1277 	TAILQ_INIT(&V_pf_pabuf[0]);
1278 	TAILQ_INIT(&V_pf_pabuf[1]);
1279 	TAILQ_INIT(&V_pf_pabuf[2]);
1280 	V_pf_altqs_active = &V_pf_altqs[0];
1281 	V_pf_altq_ifs_active = &V_pf_altqs[1];
1282 	V_pf_altqs_inactive = &V_pf_altqs[2];
1283 	V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1284 
1285 	/* Send & overload+flush queues. */
1286 	STAILQ_INIT(&V_pf_sendqueue);
1287 	SLIST_INIT(&V_pf_overloadqueue);
1288 	TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1289 
1290 	/* Unlinked, but may be referenced rules. */
1291 	TAILQ_INIT(&V_pf_unlinked_rules);
1292 }
1293 
1294 void
pf_mtag_cleanup(void)1295 pf_mtag_cleanup(void)
1296 {
1297 
1298 	uma_zdestroy(pf_mtag_z);
1299 }
1300 
1301 void
pf_cleanup(void)1302 pf_cleanup(void)
1303 {
1304 	struct pf_keyhash	*kh;
1305 	struct pf_idhash	*ih;
1306 	struct pf_srchash	*sh;
1307 	struct pf_udpendpointhash	*uh;
1308 	struct pf_send_entry	*pfse, *next;
1309 	u_int i;
1310 
1311 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1312 	    i <= V_pf_hashmask;
1313 	    i++, kh++, ih++) {
1314 		KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1315 		    __func__));
1316 		KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1317 		    __func__));
1318 		mtx_destroy(&kh->lock);
1319 		mtx_destroy(&ih->lock);
1320 	}
1321 	free(V_pf_keyhash, M_PFHASH);
1322 	free(V_pf_idhash, M_PFHASH);
1323 
1324 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1325 		KASSERT(LIST_EMPTY(&sh->nodes),
1326 		    ("%s: source node hash not empty", __func__));
1327 		mtx_destroy(&sh->lock);
1328 	}
1329 	free(V_pf_srchash, M_PFHASH);
1330 
1331 	for (i = 0, uh = V_pf_udpendpointhash;
1332 	    i <= V_pf_udpendpointhashmask;
1333 	    i++, uh++) {
1334 		KASSERT(LIST_EMPTY(&uh->endpoints),
1335 		    ("%s: udp endpoint hash not empty", __func__));
1336 		mtx_destroy(&uh->lock);
1337 	}
1338 	free(V_pf_udpendpointhash, M_PFHASH);
1339 
1340 	STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1341 		m_freem(pfse->pfse_m);
1342 		free(pfse, M_PFTEMP);
1343 	}
1344 	MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1345 
1346 	uma_zdestroy(V_pf_sources_z);
1347 	uma_zdestroy(V_pf_state_z);
1348 	uma_zdestroy(V_pf_state_key_z);
1349 	uma_zdestroy(V_pf_udp_mapping_z);
1350 	uma_zdestroy(V_pf_anchor_z);
1351 	uma_zdestroy(V_pf_eth_anchor_z);
1352 }
1353 
1354 static int
pf_mtag_uminit(void * mem,int size,int how)1355 pf_mtag_uminit(void *mem, int size, int how)
1356 {
1357 	struct m_tag *t;
1358 
1359 	t = (struct m_tag *)mem;
1360 	t->m_tag_cookie = MTAG_ABI_COMPAT;
1361 	t->m_tag_id = PACKET_TAG_PF;
1362 	t->m_tag_len = sizeof(struct pf_mtag);
1363 	t->m_tag_free = pf_mtag_free;
1364 
1365 	return (0);
1366 }
1367 
1368 static void
pf_mtag_free(struct m_tag * t)1369 pf_mtag_free(struct m_tag *t)
1370 {
1371 
1372 	uma_zfree(pf_mtag_z, t);
1373 }
1374 
1375 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1376 pf_get_mtag(struct mbuf *m)
1377 {
1378 	struct m_tag *mtag;
1379 
1380 	if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1381 		return ((struct pf_mtag *)(mtag + 1));
1382 
1383 	mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1384 	if (mtag == NULL)
1385 		return (NULL);
1386 	bzero(mtag + 1, sizeof(struct pf_mtag));
1387 	m_tag_prepend(m, mtag);
1388 
1389 	return ((struct pf_mtag *)(mtag + 1));
1390 }
1391 
1392 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1393 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1394     struct pf_kstate *s)
1395 {
1396 	struct pf_keyhash	*khs, *khw, *kh;
1397 	struct pf_state_key	*sk, *cur;
1398 	struct pf_kstate	*si, *olds = NULL;
1399 	int idx;
1400 
1401 	NET_EPOCH_ASSERT();
1402 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1403 	KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1404 	KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1405 
1406 	/*
1407 	 * We need to lock hash slots of both keys. To avoid deadlock
1408 	 * we always lock the slot with lower address first. Unlock order
1409 	 * isn't important.
1410 	 *
1411 	 * We also need to lock ID hash slot before dropping key
1412 	 * locks. On success we return with ID hash slot locked.
1413 	 */
1414 
1415 	if (skw == sks) {
1416 		khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1417 		PF_HASHROW_LOCK(khs);
1418 	} else {
1419 		khs = &V_pf_keyhash[pf_hashkey(sks)];
1420 		khw = &V_pf_keyhash[pf_hashkey(skw)];
1421 		if (khs == khw) {
1422 			PF_HASHROW_LOCK(khs);
1423 		} else if (khs < khw) {
1424 			PF_HASHROW_LOCK(khs);
1425 			PF_HASHROW_LOCK(khw);
1426 		} else {
1427 			PF_HASHROW_LOCK(khw);
1428 			PF_HASHROW_LOCK(khs);
1429 		}
1430 	}
1431 
1432 #define	KEYS_UNLOCK()	do {			\
1433 	if (khs != khw) {			\
1434 		PF_HASHROW_UNLOCK(khs);		\
1435 		PF_HASHROW_UNLOCK(khw);		\
1436 	} else					\
1437 		PF_HASHROW_UNLOCK(khs);		\
1438 } while (0)
1439 
1440 	/*
1441 	 * First run: start with wire key.
1442 	 */
1443 	sk = skw;
1444 	kh = khw;
1445 	idx = PF_SK_WIRE;
1446 
1447 	MPASS(s->lock == NULL);
1448 	s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1449 
1450 keyattach:
1451 	LIST_FOREACH(cur, &kh->keys, entry)
1452 		if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1453 			break;
1454 
1455 	if (cur != NULL) {
1456 		/* Key exists. Check for same kif, if none, add to key. */
1457 		TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1458 			struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1459 
1460 			PF_HASHROW_LOCK(ih);
1461 			if (si->kif == s->kif &&
1462 			    ((si->key[PF_SK_WIRE]->af == sk->af &&
1463 			    si->direction == s->direction) ||
1464 			    (si->key[PF_SK_WIRE]->af !=
1465 			    si->key[PF_SK_STACK]->af &&
1466 			    sk->af == si->key[PF_SK_STACK]->af &&
1467 			    si->direction != s->direction))) {
1468 				bool reuse = false;
1469 
1470 				if (sk->proto == IPPROTO_TCP &&
1471 				    si->src.state >= TCPS_FIN_WAIT_2 &&
1472 				    si->dst.state >= TCPS_FIN_WAIT_2)
1473 					reuse = true;
1474 
1475 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
1476 					printf("pf: %s key attach "
1477 					    "%s on %s: ",
1478 					    (idx == PF_SK_WIRE) ?
1479 					    "wire" : "stack",
1480 					    reuse ? "reuse" : "failed",
1481 					    s->kif->pfik_name);
1482 					pf_print_state_parts(s,
1483 					    (idx == PF_SK_WIRE) ?
1484 					    sk : NULL,
1485 					    (idx == PF_SK_STACK) ?
1486 					    sk : NULL);
1487 					printf(", existing: ");
1488 					pf_print_state_parts(si,
1489 					    (idx == PF_SK_WIRE) ?
1490 					    sk : NULL,
1491 					    (idx == PF_SK_STACK) ?
1492 					    sk : NULL);
1493 					printf("\n");
1494 				}
1495 
1496 				if (reuse) {
1497 					/*
1498 					 * New state matches an old >FIN_WAIT_2
1499 					 * state. We can't drop key hash locks,
1500 					 * thus we can't unlink it properly.
1501 					 *
1502 					 * As a workaround we drop it into
1503 					 * TCPS_CLOSED state, schedule purge
1504 					 * ASAP and push it into the very end
1505 					 * of the slot TAILQ, so that it won't
1506 					 * conflict with our new state.
1507 					 */
1508 					pf_set_protostate(si, PF_PEER_BOTH,
1509 					    TCPS_CLOSED);
1510 					si->timeout = PFTM_PURGE;
1511 					olds = si;
1512 				} else {
1513 					s->timeout = PFTM_UNLINKED;
1514 					if (idx == PF_SK_STACK)
1515 						/*
1516 						 * Remove the wire key from
1517 						 * the hash. Other threads
1518 						 * can't be referencing it
1519 						 * because we still hold the
1520 						 * hash lock.
1521 						 */
1522 						pf_state_key_detach(s,
1523 						    PF_SK_WIRE);
1524 					PF_HASHROW_UNLOCK(ih);
1525 					KEYS_UNLOCK();
1526 					if (idx == PF_SK_WIRE)
1527 						/*
1528 						 * We've not inserted either key.
1529 						 * Free both.
1530 						 */
1531 						uma_zfree(V_pf_state_key_z, skw);
1532 					if (skw != sks)
1533 						uma_zfree(
1534 						    V_pf_state_key_z,
1535 						    sks);
1536 					return (EEXIST); /* collision! */
1537 				}
1538 			}
1539 			PF_HASHROW_UNLOCK(ih);
1540 		}
1541 		uma_zfree(V_pf_state_key_z, sk);
1542 		s->key[idx] = cur;
1543 	} else {
1544 		LIST_INSERT_HEAD(&kh->keys, sk, entry);
1545 		s->key[idx] = sk;
1546 	}
1547 
1548 stateattach:
1549 	/* List is sorted, if-bound states before floating. */
1550 	if (s->kif == V_pfi_all)
1551 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1552 	else
1553 		TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1554 
1555 	if (olds) {
1556 		TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1557 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1558 		    key_list[idx]);
1559 		olds = NULL;
1560 	}
1561 
1562 	/*
1563 	 * Attach done. See how should we (or should not?)
1564 	 * attach a second key.
1565 	 */
1566 	if (sks == skw) {
1567 		s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1568 		idx = PF_SK_STACK;
1569 		sks = NULL;
1570 		goto stateattach;
1571 	} else if (sks != NULL) {
1572 		/*
1573 		 * Continue attaching with stack key.
1574 		 */
1575 		sk = sks;
1576 		kh = khs;
1577 		idx = PF_SK_STACK;
1578 		sks = NULL;
1579 		goto keyattach;
1580 	}
1581 
1582 	PF_STATE_LOCK(s);
1583 	KEYS_UNLOCK();
1584 
1585 	KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1586 	    ("%s failure", __func__));
1587 
1588 	return (0);
1589 #undef	KEYS_UNLOCK
1590 }
1591 
1592 static void
pf_detach_state(struct pf_kstate * s)1593 pf_detach_state(struct pf_kstate *s)
1594 {
1595 	struct pf_state_key *sks = s->key[PF_SK_STACK];
1596 	struct pf_keyhash *kh;
1597 
1598 	NET_EPOCH_ASSERT();
1599 	MPASS(s->timeout >= PFTM_MAX);
1600 
1601 	pf_sctp_multihome_detach_addr(s);
1602 
1603 	if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1604 		V_pflow_export_state_ptr(s);
1605 
1606 	if (sks != NULL) {
1607 		kh = &V_pf_keyhash[pf_hashkey(sks)];
1608 		PF_HASHROW_LOCK(kh);
1609 		if (s->key[PF_SK_STACK] != NULL)
1610 			pf_state_key_detach(s, PF_SK_STACK);
1611 		/*
1612 		 * If both point to same key, then we are done.
1613 		 */
1614 		if (sks == s->key[PF_SK_WIRE]) {
1615 			pf_state_key_detach(s, PF_SK_WIRE);
1616 			PF_HASHROW_UNLOCK(kh);
1617 			return;
1618 		}
1619 		PF_HASHROW_UNLOCK(kh);
1620 	}
1621 
1622 	if (s->key[PF_SK_WIRE] != NULL) {
1623 		kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1624 		PF_HASHROW_LOCK(kh);
1625 		if (s->key[PF_SK_WIRE] != NULL)
1626 			pf_state_key_detach(s, PF_SK_WIRE);
1627 		PF_HASHROW_UNLOCK(kh);
1628 	}
1629 }
1630 
1631 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1632 pf_state_key_detach(struct pf_kstate *s, int idx)
1633 {
1634 	struct pf_state_key *sk = s->key[idx];
1635 #ifdef INVARIANTS
1636 	struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1637 
1638 	PF_HASHROW_ASSERT(kh);
1639 #endif /* INVARIANTS */
1640 	TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1641 	s->key[idx] = NULL;
1642 
1643 	if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1644 		LIST_REMOVE(sk, entry);
1645 		uma_zfree(V_pf_state_key_z, sk);
1646 	}
1647 }
1648 
1649 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1650 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1651 {
1652 	struct pf_state_key *sk = mem;
1653 
1654 	bzero(sk, sizeof(struct pf_state_key_cmp));
1655 	TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1656 	TAILQ_INIT(&sk->states[PF_SK_STACK]);
1657 
1658 	return (0);
1659 }
1660 
1661 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1662 pf_state_key_addr_setup(struct pf_pdesc *pd,
1663     struct pf_state_key_cmp *key, int multi)
1664 {
1665 	struct pf_addr *saddr = pd->src;
1666 	struct pf_addr *daddr = pd->dst;
1667 #ifdef INET6
1668 	struct nd_neighbor_solicit nd;
1669 	struct pf_addr *target;
1670 
1671 	if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1672 		goto copy;
1673 
1674 	switch (pd->hdr.icmp6.icmp6_type) {
1675 	case ND_NEIGHBOR_SOLICIT:
1676 		if (multi)
1677 			return (-1);
1678 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), NULL,
1679 		    pd->af))
1680 			return (-1);
1681 		target = (struct pf_addr *)&nd.nd_ns_target;
1682 		daddr = target;
1683 		break;
1684 	case ND_NEIGHBOR_ADVERT:
1685 		if (multi)
1686 			return (-1);
1687 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), NULL,
1688 		    pd->af))
1689 			return (-1);
1690 		target = (struct pf_addr *)&nd.nd_ns_target;
1691 		saddr = target;
1692 		if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1693 			key->addr[pd->didx].addr32[0] = 0;
1694 			key->addr[pd->didx].addr32[1] = 0;
1695 			key->addr[pd->didx].addr32[2] = 0;
1696 			key->addr[pd->didx].addr32[3] = 0;
1697 			daddr = NULL; /* overwritten */
1698 		}
1699 		break;
1700 	default:
1701 		if (multi) {
1702 			key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1703 			key->addr[pd->sidx].addr32[1] = 0;
1704 			key->addr[pd->sidx].addr32[2] = 0;
1705 			key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1706 			saddr = NULL; /* overwritten */
1707 		}
1708 	}
1709 copy:
1710 #endif /* INET6 */
1711 	if (saddr)
1712 		pf_addrcpy(&key->addr[pd->sidx], saddr, pd->af);
1713 	if (daddr)
1714 		pf_addrcpy(&key->addr[pd->didx], daddr, pd->af);
1715 
1716 	return (0);
1717 }
1718 
1719 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)1720 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
1721     struct pf_state_key **sk, struct pf_state_key **nk)
1722 {
1723 	*sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1724 	if (*sk == NULL)
1725 		return (ENOMEM);
1726 
1727 	if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
1728 	    0)) {
1729 		uma_zfree(V_pf_state_key_z, *sk);
1730 		*sk = NULL;
1731 		return (ENOMEM);
1732 	}
1733 
1734 	(*sk)->port[pd->sidx] = sport;
1735 	(*sk)->port[pd->didx] = dport;
1736 	(*sk)->proto = pd->proto;
1737 	(*sk)->af = pd->af;
1738 
1739 	*nk = pf_state_key_clone(*sk);
1740 	if (*nk == NULL) {
1741 		uma_zfree(V_pf_state_key_z, *sk);
1742 		*sk = NULL;
1743 		return (ENOMEM);
1744 	}
1745 
1746 	if (pd->af != pd->naf) {
1747 		(*sk)->port[pd->sidx] = pd->osport;
1748 		(*sk)->port[pd->didx] = pd->odport;
1749 
1750 		(*nk)->af = pd->naf;
1751 
1752 		/*
1753 		 * We're overwriting an address here, so potentially there's bits of an IPv6
1754 		 * address left in here. Clear that out first.
1755 		 */
1756 		bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
1757 		bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
1758 		if (pd->dir == PF_IN) {
1759 			pf_addrcpy(&(*nk)->addr[pd->didx], &pd->nsaddr,
1760 			    pd->naf);
1761 			pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->ndaddr,
1762 			    pd->naf);
1763 			(*nk)->port[pd->didx] = pd->nsport;
1764 			(*nk)->port[pd->sidx] = pd->ndport;
1765 		} else {
1766 			pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->nsaddr,
1767 			    pd->naf);
1768 			pf_addrcpy(&(*nk)->addr[pd->didx], &pd->ndaddr,
1769 			    pd->naf);
1770 			(*nk)->port[pd->sidx] = pd->nsport;
1771 			(*nk)->port[pd->didx] = pd->ndport;
1772 		}
1773 
1774 		switch (pd->proto) {
1775 		case IPPROTO_ICMP:
1776 			(*nk)->proto = IPPROTO_ICMPV6;
1777 			break;
1778 		case IPPROTO_ICMPV6:
1779 			(*nk)->proto = IPPROTO_ICMP;
1780 			break;
1781 		default:
1782 			(*nk)->proto = pd->proto;
1783 		}
1784 	}
1785 
1786 	return (0);
1787 }
1788 
1789 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1790 pf_state_key_clone(const struct pf_state_key *orig)
1791 {
1792 	struct pf_state_key *sk;
1793 
1794 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1795 	if (sk == NULL)
1796 		return (NULL);
1797 
1798 	bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1799 
1800 	return (sk);
1801 }
1802 
1803 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1804 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1805     struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1806 {
1807 	struct pf_idhash *ih;
1808 	struct pf_kstate *cur;
1809 	int error;
1810 
1811 	NET_EPOCH_ASSERT();
1812 
1813 	KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1814 	    ("%s: sks not pristine", __func__));
1815 	KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1816 	    ("%s: skw not pristine", __func__));
1817 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1818 
1819 	s->kif = kif;
1820 	s->orig_kif = orig_kif;
1821 
1822 	if (s->id == 0 && s->creatorid == 0) {
1823 		s->id = alloc_unr64(&V_pf_stateid);
1824 		s->id = htobe64(s->id);
1825 		s->creatorid = V_pf_status.hostid;
1826 	}
1827 
1828 	/* Returns with ID locked on success. */
1829 	if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1830 		return (error);
1831 	skw = sks = NULL;
1832 
1833 	ih = &V_pf_idhash[PF_IDHASH(s)];
1834 	PF_HASHROW_ASSERT(ih);
1835 	LIST_FOREACH(cur, &ih->states, entry)
1836 		if (cur->id == s->id && cur->creatorid == s->creatorid)
1837 			break;
1838 
1839 	if (cur != NULL) {
1840 		s->timeout = PFTM_UNLINKED;
1841 		PF_HASHROW_UNLOCK(ih);
1842 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1843 			printf("pf: state ID collision: "
1844 			    "id: %016llx creatorid: %08x\n",
1845 			    (unsigned long long)be64toh(s->id),
1846 			    ntohl(s->creatorid));
1847 		}
1848 		pf_detach_state(s);
1849 		return (EEXIST);
1850 	}
1851 	LIST_INSERT_HEAD(&ih->states, s, entry);
1852 	/* One for keys, one for ID hash. */
1853 	refcount_init(&s->refs, 2);
1854 
1855 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1856 	if (V_pfsync_insert_state_ptr != NULL)
1857 		V_pfsync_insert_state_ptr(s);
1858 
1859 	/* Returns locked. */
1860 	return (0);
1861 }
1862 
1863 /*
1864  * Find state by ID: returns with locked row on success.
1865  */
1866 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1867 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1868 {
1869 	struct pf_idhash *ih;
1870 	struct pf_kstate *s;
1871 
1872 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1873 
1874 	ih = &V_pf_idhash[PF_IDHASHID(id)];
1875 
1876 	PF_HASHROW_LOCK(ih);
1877 	LIST_FOREACH(s, &ih->states, entry)
1878 		if (s->id == id && s->creatorid == creatorid)
1879 			break;
1880 
1881 	if (s == NULL)
1882 		PF_HASHROW_UNLOCK(ih);
1883 
1884 	return (s);
1885 }
1886 
1887 /*
1888  * Find state by key.
1889  * Returns with ID hash slot locked on success.
1890  */
1891 static int
pf_find_state(struct pf_pdesc * pd,const struct pf_state_key_cmp * key,struct pf_kstate ** state)1892 pf_find_state(struct pf_pdesc *pd, const struct pf_state_key_cmp *key,
1893     struct pf_kstate **state)
1894 {
1895 	struct pf_keyhash	*kh;
1896 	struct pf_state_key	*sk;
1897 	struct pf_kstate	*s;
1898 	int idx;
1899 
1900 	*state = NULL;
1901 
1902 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1903 
1904 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1905 
1906 	PF_HASHROW_LOCK(kh);
1907 	LIST_FOREACH(sk, &kh->keys, entry)
1908 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1909 			break;
1910 	if (sk == NULL) {
1911 		PF_HASHROW_UNLOCK(kh);
1912 		return (PF_DROP);
1913 	}
1914 
1915 	idx = (pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1916 
1917 	/* List is sorted, if-bound states before floating ones. */
1918 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1919 		if (s->kif == V_pfi_all || s->kif == pd->kif ||
1920 		    s->orig_kif == pd->kif) {
1921 			PF_STATE_LOCK(s);
1922 			PF_HASHROW_UNLOCK(kh);
1923 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1924 				/*
1925 				 * State is either being processed by
1926 				 * pf_remove_state() in an other thread, or
1927 				 * is scheduled for immediate expiry.
1928 				 */
1929 				PF_STATE_UNLOCK(s);
1930 				SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1931 				    key, (pd->dir), pd, *state);
1932 				return (PF_DROP);
1933 			}
1934 			goto out;
1935 		}
1936 
1937 	/* Look through the other list, in case of AF-TO */
1938 	idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
1939 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1940 		if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
1941 			continue;
1942 		if (s->kif == V_pfi_all || s->kif == pd->kif ||
1943 		    s->orig_kif == pd->kif) {
1944 			PF_STATE_LOCK(s);
1945 			PF_HASHROW_UNLOCK(kh);
1946 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1947 				/*
1948 				 * State is either being processed by
1949 				 * pf_remove_state() in an other thread, or
1950 				 * is scheduled for immediate expiry.
1951 				 */
1952 				PF_STATE_UNLOCK(s);
1953 				SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1954 				    key, (pd->dir), pd, NULL);
1955 				return (PF_DROP);
1956 			}
1957 			goto out;
1958 		}
1959 	}
1960 
1961 	PF_HASHROW_UNLOCK(kh);
1962 
1963 out:
1964 	SDT_PROBE5(pf, ip, state, lookup, pd->kif, key, (pd->dir), pd, *state);
1965 
1966 	if (s == NULL || s->timeout == PFTM_PURGE) {
1967 		if (s)
1968 			PF_STATE_UNLOCK(s);
1969 		return (PF_DROP);
1970 	}
1971 
1972 	if ((s)->rule->pktrate.limit && pd->dir == (s)->direction) {
1973 		if (pf_check_threshold(&(s)->rule->pktrate)) {
1974 			PF_STATE_UNLOCK(s);
1975 			return (PF_DROP);
1976 		}
1977 	}
1978 	if (PACKET_LOOPED(pd)) {
1979 		PF_STATE_UNLOCK(s);
1980 		return (PF_PASS);
1981 	}
1982 
1983 	*state = s;
1984 
1985 	return (PF_MATCH);
1986 }
1987 
1988 /*
1989  * Returns with ID hash slot locked on success.
1990  */
1991 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1992 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1993 {
1994 	struct pf_keyhash	*kh;
1995 	struct pf_state_key	*sk;
1996 	struct pf_kstate	*s, *ret = NULL;
1997 	int			 idx, inout = 0;
1998 
1999 	if (more != NULL)
2000 		*more = 0;
2001 
2002 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
2003 
2004 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
2005 
2006 	PF_HASHROW_LOCK(kh);
2007 	LIST_FOREACH(sk, &kh->keys, entry)
2008 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
2009 			break;
2010 	if (sk == NULL) {
2011 		PF_HASHROW_UNLOCK(kh);
2012 		return (NULL);
2013 	}
2014 	switch (dir) {
2015 	case PF_IN:
2016 		idx = PF_SK_WIRE;
2017 		break;
2018 	case PF_OUT:
2019 		idx = PF_SK_STACK;
2020 		break;
2021 	case PF_INOUT:
2022 		idx = PF_SK_WIRE;
2023 		inout = 1;
2024 		break;
2025 	default:
2026 		panic("%s: dir %u", __func__, dir);
2027 	}
2028 second_run:
2029 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
2030 		if (more == NULL) {
2031 			PF_STATE_LOCK(s);
2032 			PF_HASHROW_UNLOCK(kh);
2033 			return (s);
2034 		}
2035 
2036 		if (ret)
2037 			(*more)++;
2038 		else {
2039 			ret = s;
2040 			PF_STATE_LOCK(s);
2041 		}
2042 	}
2043 	if (inout == 1) {
2044 		inout = 0;
2045 		idx = PF_SK_STACK;
2046 		goto second_run;
2047 	}
2048 	PF_HASHROW_UNLOCK(kh);
2049 
2050 	return (ret);
2051 }
2052 
2053 /*
2054  * FIXME
2055  * This routine is inefficient -- locks the state only to unlock immediately on
2056  * return.
2057  * It is racy -- after the state is unlocked nothing stops other threads from
2058  * removing it.
2059  */
2060 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)2061 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
2062 {
2063 	struct pf_kstate *s;
2064 
2065 	s = pf_find_state_all(key, dir, NULL);
2066 	if (s != NULL) {
2067 		PF_STATE_UNLOCK(s);
2068 		return (true);
2069 	}
2070 	return (false);
2071 }
2072 
2073 void
pf_state_peer_hton(const struct pf_state_peer * s,struct pf_state_peer_export * d)2074 pf_state_peer_hton(const struct pf_state_peer *s, struct pf_state_peer_export *d)
2075 {
2076 	d->seqlo = htonl(s->seqlo);
2077 	d->seqhi = htonl(s->seqhi);
2078 	d->seqdiff = htonl(s->seqdiff);
2079 	d->max_win = htons(s->max_win);
2080 	d->mss = htons(s->mss);
2081 	d->state = s->state;
2082 	d->wscale = s->wscale;
2083 	if (s->scrub) {
2084 		d->scrub.pfss_flags = htons(
2085 		    s->scrub->pfss_flags & PFSS_TIMESTAMP);
2086 		d->scrub.pfss_ttl = (s)->scrub->pfss_ttl;
2087 		d->scrub.pfss_ts_mod = htonl((s)->scrub->pfss_ts_mod);
2088 		d->scrub.scrub_flag = PF_SCRUB_FLAG_VALID;
2089 	}
2090 }
2091 
2092 void
pf_state_peer_ntoh(const struct pf_state_peer_export * s,struct pf_state_peer * d)2093 pf_state_peer_ntoh(const struct pf_state_peer_export *s, struct pf_state_peer *d)
2094 {
2095 	d->seqlo = ntohl(s->seqlo);
2096 	d->seqhi = ntohl(s->seqhi);
2097 	d->seqdiff = ntohl(s->seqdiff);
2098 	d->max_win = ntohs(s->max_win);
2099 	d->mss = ntohs(s->mss);
2100 	d->state = s->state;
2101 	d->wscale = s->wscale;
2102 	if (s->scrub.scrub_flag == PF_SCRUB_FLAG_VALID &&
2103 	    d->scrub != NULL) {
2104 		d->scrub->pfss_flags = ntohs(s->scrub.pfss_flags) &
2105 		    PFSS_TIMESTAMP;
2106 		d->scrub->pfss_ttl = s->scrub.pfss_ttl;
2107 		d->scrub->pfss_ts_mod = ntohl(s->scrub.pfss_ts_mod);
2108 	}
2109 }
2110 
2111 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)2112 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
2113     struct pf_addr *nat_addr, uint16_t nat_port)
2114 {
2115 	struct pf_udp_mapping *mapping;
2116 
2117 	mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
2118 	if (mapping == NULL)
2119 		return (NULL);
2120 	pf_addrcpy(&mapping->endpoints[0].addr, src_addr, af);
2121 	mapping->endpoints[0].port = src_port;
2122 	mapping->endpoints[0].af = af;
2123 	mapping->endpoints[0].mapping = mapping;
2124 	pf_addrcpy(&mapping->endpoints[1].addr, nat_addr, af);
2125 	mapping->endpoints[1].port = nat_port;
2126 	mapping->endpoints[1].af = af;
2127 	mapping->endpoints[1].mapping = mapping;
2128 	refcount_init(&mapping->refs, 1);
2129 	return (mapping);
2130 }
2131 
2132 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2133 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2134 {
2135 	struct pf_udpendpointhash *h0, *h1;
2136 	struct pf_udp_endpoint *endpoint;
2137 	int ret = EEXIST;
2138 
2139 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2140 	h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2141 	if (h0 == h1) {
2142 		PF_HASHROW_LOCK(h0);
2143 	} else if (h0 < h1) {
2144 		PF_HASHROW_LOCK(h0);
2145 		PF_HASHROW_LOCK(h1);
2146 	} else {
2147 		PF_HASHROW_LOCK(h1);
2148 		PF_HASHROW_LOCK(h0);
2149 	}
2150 
2151 	LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2152 		if (bcmp(endpoint, &mapping->endpoints[0],
2153 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2154 			break;
2155 	}
2156 	if (endpoint != NULL)
2157 		goto cleanup;
2158 	LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2159 		if (bcmp(endpoint, &mapping->endpoints[1],
2160 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2161 			break;
2162 	}
2163 	if (endpoint != NULL)
2164 		goto cleanup;
2165 	LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2166 	LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2167 	ret = 0;
2168 
2169 cleanup:
2170 	if (h0 != h1) {
2171 		PF_HASHROW_UNLOCK(h0);
2172 		PF_HASHROW_UNLOCK(h1);
2173 	} else {
2174 		PF_HASHROW_UNLOCK(h0);
2175 	}
2176 	return (ret);
2177 }
2178 
2179 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2180 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2181 {
2182 	/* refcount is synchronized on the source endpoint's row lock */
2183 	struct pf_udpendpointhash *h0, *h1;
2184 
2185 	if (mapping == NULL)
2186 		return;
2187 
2188 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2189 	PF_HASHROW_LOCK(h0);
2190 	if (refcount_release(&mapping->refs)) {
2191 		LIST_REMOVE(&mapping->endpoints[0], entry);
2192 		PF_HASHROW_UNLOCK(h0);
2193 		h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2194 		PF_HASHROW_LOCK(h1);
2195 		LIST_REMOVE(&mapping->endpoints[1], entry);
2196 		PF_HASHROW_UNLOCK(h1);
2197 
2198 		uma_zfree(V_pf_udp_mapping_z, mapping);
2199 	} else {
2200 			PF_HASHROW_UNLOCK(h0);
2201 	}
2202 }
2203 
2204 
2205 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2206 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2207 {
2208 	struct pf_udpendpointhash *uh;
2209 	struct pf_udp_endpoint *endpoint;
2210 
2211 	uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2212 
2213 	PF_HASHROW_LOCK(uh);
2214 	LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2215 		if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2216 			bcmp(endpoint, &endpoint->mapping->endpoints[0],
2217 			    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2218 			break;
2219 	}
2220 	if (endpoint == NULL) {
2221 		PF_HASHROW_UNLOCK(uh);
2222 		return (NULL);
2223 	}
2224 	refcount_acquire(&endpoint->mapping->refs);
2225 	PF_HASHROW_UNLOCK(uh);
2226 	return (endpoint->mapping);
2227 }
2228 /* END state table stuff */
2229 
2230 static void
pf_send(struct pf_send_entry * pfse)2231 pf_send(struct pf_send_entry *pfse)
2232 {
2233 
2234 	PF_SENDQ_LOCK();
2235 	STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2236 	PF_SENDQ_UNLOCK();
2237 	swi_sched(V_pf_swi_cookie, 0);
2238 }
2239 
2240 static bool
pf_isforlocal(struct mbuf * m,int af)2241 pf_isforlocal(struct mbuf *m, int af)
2242 {
2243 	switch (af) {
2244 #ifdef INET
2245 	case AF_INET: {
2246 		struct ip *ip = mtod(m, struct ip *);
2247 
2248 		return (in_localip(ip->ip_dst));
2249 	}
2250 #endif /* INET */
2251 #ifdef INET6
2252 	case AF_INET6: {
2253 		struct ip6_hdr *ip6;
2254 		struct in6_ifaddr *ia;
2255 		ip6 = mtod(m, struct ip6_hdr *);
2256 		ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2257 		if (ia == NULL)
2258 			return (false);
2259 		return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2260 	}
2261 #endif /* INET6 */
2262 	default:
2263 		unhandled_af(af);
2264 	}
2265 
2266 	return (false);
2267 }
2268 
2269 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,u_int16_t * virtual_id,u_int16_t * virtual_type)2270 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2271     int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type)
2272 {
2273 	/*
2274 	 * ICMP types marked with PF_OUT are typically responses to
2275 	 * PF_IN, and will match states in the opposite direction.
2276 	 * PF_IN ICMP types need to match a state with that type.
2277 	 */
2278 	*icmp_dir = PF_OUT;
2279 
2280 	/* Queries (and responses) */
2281 	switch (pd->af) {
2282 #ifdef INET
2283 	case AF_INET:
2284 		switch (type) {
2285 		case ICMP_ECHO:
2286 			*icmp_dir = PF_IN;
2287 			/* FALLTHROUGH */
2288 		case ICMP_ECHOREPLY:
2289 			*virtual_type = ICMP_ECHO;
2290 			*virtual_id = pd->hdr.icmp.icmp_id;
2291 			break;
2292 
2293 		case ICMP_TSTAMP:
2294 			*icmp_dir = PF_IN;
2295 			/* FALLTHROUGH */
2296 		case ICMP_TSTAMPREPLY:
2297 			*virtual_type = ICMP_TSTAMP;
2298 			*virtual_id = pd->hdr.icmp.icmp_id;
2299 			break;
2300 
2301 		case ICMP_IREQ:
2302 			*icmp_dir = PF_IN;
2303 			/* FALLTHROUGH */
2304 		case ICMP_IREQREPLY:
2305 			*virtual_type = ICMP_IREQ;
2306 			*virtual_id = pd->hdr.icmp.icmp_id;
2307 			break;
2308 
2309 		case ICMP_MASKREQ:
2310 			*icmp_dir = PF_IN;
2311 			/* FALLTHROUGH */
2312 		case ICMP_MASKREPLY:
2313 			*virtual_type = ICMP_MASKREQ;
2314 			*virtual_id = pd->hdr.icmp.icmp_id;
2315 			break;
2316 
2317 		case ICMP_IPV6_WHEREAREYOU:
2318 			*icmp_dir = PF_IN;
2319 			/* FALLTHROUGH */
2320 		case ICMP_IPV6_IAMHERE:
2321 			*virtual_type = ICMP_IPV6_WHEREAREYOU;
2322 			*virtual_id = 0; /* Nothing sane to match on! */
2323 			break;
2324 
2325 		case ICMP_MOBILE_REGREQUEST:
2326 			*icmp_dir = PF_IN;
2327 			/* FALLTHROUGH */
2328 		case ICMP_MOBILE_REGREPLY:
2329 			*virtual_type = ICMP_MOBILE_REGREQUEST;
2330 			*virtual_id = 0; /* Nothing sane to match on! */
2331 			break;
2332 
2333 		case ICMP_ROUTERSOLICIT:
2334 			*icmp_dir = PF_IN;
2335 			/* FALLTHROUGH */
2336 		case ICMP_ROUTERADVERT:
2337 			*virtual_type = ICMP_ROUTERSOLICIT;
2338 			*virtual_id = 0; /* Nothing sane to match on! */
2339 			break;
2340 
2341 		/* These ICMP types map to other connections */
2342 		case ICMP_UNREACH:
2343 		case ICMP_SOURCEQUENCH:
2344 		case ICMP_REDIRECT:
2345 		case ICMP_TIMXCEED:
2346 		case ICMP_PARAMPROB:
2347 			/* These will not be used, but set them anyway */
2348 			*icmp_dir = PF_IN;
2349 			*virtual_type = type;
2350 			*virtual_id = 0;
2351 			*virtual_type = htons(*virtual_type);
2352 			return (1);  /* These types match to another state */
2353 
2354 		/*
2355 		 * All remaining ICMP types get their own states,
2356 		 * and will only match in one direction.
2357 		 */
2358 		default:
2359 			*icmp_dir = PF_IN;
2360 			*virtual_type = type;
2361 			*virtual_id = 0;
2362 			break;
2363 		}
2364 		break;
2365 #endif /* INET */
2366 #ifdef INET6
2367 	case AF_INET6:
2368 		switch (type) {
2369 		case ICMP6_ECHO_REQUEST:
2370 			*icmp_dir = PF_IN;
2371 			/* FALLTHROUGH */
2372 		case ICMP6_ECHO_REPLY:
2373 			*virtual_type = ICMP6_ECHO_REQUEST;
2374 			*virtual_id = pd->hdr.icmp6.icmp6_id;
2375 			break;
2376 
2377 		case MLD_LISTENER_QUERY:
2378 		case MLD_LISTENER_REPORT: {
2379 			/*
2380 			 * Listener Report can be sent by clients
2381 			 * without an associated Listener Query.
2382 			 * In addition to that, when Report is sent as a
2383 			 * reply to a Query its source and destination
2384 			 * address are different.
2385 			 */
2386 			*icmp_dir = PF_IN;
2387 			*virtual_type = MLD_LISTENER_QUERY;
2388 			*virtual_id = 0;
2389 			break;
2390 		}
2391 		case MLD_MTRACE:
2392 			*icmp_dir = PF_IN;
2393 			/* FALLTHROUGH */
2394 		case MLD_MTRACE_RESP:
2395 			*virtual_type = MLD_MTRACE;
2396 			*virtual_id = 0; /* Nothing sane to match on! */
2397 			break;
2398 
2399 		case ND_NEIGHBOR_SOLICIT:
2400 			*icmp_dir = PF_IN;
2401 			/* FALLTHROUGH */
2402 		case ND_NEIGHBOR_ADVERT: {
2403 			*virtual_type = ND_NEIGHBOR_SOLICIT;
2404 			*virtual_id = 0;
2405 			break;
2406 		}
2407 
2408 		/*
2409 		 * These ICMP types map to other connections.
2410 		 * ND_REDIRECT can't be in this list because the triggering
2411 		 * packet header is optional.
2412 		 */
2413 		case ICMP6_DST_UNREACH:
2414 		case ICMP6_PACKET_TOO_BIG:
2415 		case ICMP6_TIME_EXCEEDED:
2416 		case ICMP6_PARAM_PROB:
2417 			/* These will not be used, but set them anyway */
2418 			*icmp_dir = PF_IN;
2419 			*virtual_type = type;
2420 			*virtual_id = 0;
2421 			*virtual_type = htons(*virtual_type);
2422 			return (1);  /* These types match to another state */
2423 		/*
2424 		 * All remaining ICMP6 types get their own states,
2425 		 * and will only match in one direction.
2426 		 */
2427 		default:
2428 			*icmp_dir = PF_IN;
2429 			*virtual_type = type;
2430 			*virtual_id = 0;
2431 			break;
2432 		}
2433 		break;
2434 #endif /* INET6 */
2435 	default:
2436 		unhandled_af(pd->af);
2437 	}
2438 	*virtual_type = htons(*virtual_type);
2439 	return (0);  /* These types match to their own state */
2440 }
2441 
2442 void
pf_intr(void * v)2443 pf_intr(void *v)
2444 {
2445 	struct epoch_tracker et;
2446 	struct pf_send_head queue;
2447 	struct pf_send_entry *pfse, *next;
2448 
2449 	CURVNET_SET((struct vnet *)v);
2450 
2451 	PF_SENDQ_LOCK();
2452 	queue = V_pf_sendqueue;
2453 	STAILQ_INIT(&V_pf_sendqueue);
2454 	PF_SENDQ_UNLOCK();
2455 
2456 	NET_EPOCH_ENTER(et);
2457 
2458 	STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2459 		switch (pfse->pfse_type) {
2460 #ifdef INET
2461 		case PFSE_IP: {
2462 			if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2463 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2464 				    ("%s: rcvif != loif", __func__));
2465 
2466 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2467 				pfse->pfse_m->m_pkthdr.csum_flags |=
2468 				    CSUM_IP_VALID | CSUM_IP_CHECKED |
2469 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2470 				pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2471 				ip_input(pfse->pfse_m);
2472 			} else {
2473 				ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2474 				    NULL);
2475 			}
2476 			break;
2477 		}
2478 		case PFSE_ICMP:
2479 			icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2480 			    pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2481 			break;
2482 #endif /* INET */
2483 #ifdef INET6
2484 		case PFSE_IP6:
2485 			if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2486 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2487 				    ("%s: rcvif != loif", __func__));
2488 
2489 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2490 				    M_LOOP;
2491 				pfse->pfse_m->m_pkthdr.csum_flags |=
2492 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2493 				pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2494 				ip6_input(pfse->pfse_m);
2495 			} else {
2496 				ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2497 				    NULL, NULL);
2498 			}
2499 			break;
2500 		case PFSE_ICMP6:
2501 			icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2502 			    pfse->icmpopts.code, pfse->icmpopts.mtu);
2503 			break;
2504 #endif /* INET6 */
2505 		default:
2506 			panic("%s: unknown type", __func__);
2507 		}
2508 		free(pfse, M_PFTEMP);
2509 	}
2510 	NET_EPOCH_EXIT(et);
2511 	CURVNET_RESTORE();
2512 }
2513 
2514 #define	pf_purge_thread_period	(hz / 10)
2515 
2516 #ifdef PF_WANT_32_TO_64_COUNTER
2517 static void
pf_status_counter_u64_periodic(void)2518 pf_status_counter_u64_periodic(void)
2519 {
2520 
2521 	PF_RULES_RASSERT();
2522 
2523 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2524 		return;
2525 	}
2526 
2527 	for (int i = 0; i < FCNT_MAX; i++) {
2528 		pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2529 	}
2530 }
2531 
2532 static void
pf_kif_counter_u64_periodic(void)2533 pf_kif_counter_u64_periodic(void)
2534 {
2535 	struct pfi_kkif *kif;
2536 	size_t r, run;
2537 
2538 	PF_RULES_RASSERT();
2539 
2540 	if (__predict_false(V_pf_allkifcount == 0)) {
2541 		return;
2542 	}
2543 
2544 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2545 		return;
2546 	}
2547 
2548 	run = V_pf_allkifcount / 10;
2549 	if (run < 5)
2550 		run = 5;
2551 
2552 	for (r = 0; r < run; r++) {
2553 		kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2554 		if (kif == NULL) {
2555 			LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2556 			LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2557 			break;
2558 		}
2559 
2560 		LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2561 		LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2562 
2563 		for (int i = 0; i < 2; i++) {
2564 			for (int j = 0; j < 2; j++) {
2565 				for (int k = 0; k < 2; k++) {
2566 					pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2567 					pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2568 				}
2569 			}
2570 		}
2571 	}
2572 }
2573 
2574 static void
pf_rule_counter_u64_periodic(void)2575 pf_rule_counter_u64_periodic(void)
2576 {
2577 	struct pf_krule *rule;
2578 	size_t r, run;
2579 
2580 	PF_RULES_RASSERT();
2581 
2582 	if (__predict_false(V_pf_allrulecount == 0)) {
2583 		return;
2584 	}
2585 
2586 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2587 		return;
2588 	}
2589 
2590 	run = V_pf_allrulecount / 10;
2591 	if (run < 5)
2592 		run = 5;
2593 
2594 	for (r = 0; r < run; r++) {
2595 		rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2596 		if (rule == NULL) {
2597 			LIST_REMOVE(V_pf_rulemarker, allrulelist);
2598 			LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2599 			break;
2600 		}
2601 
2602 		LIST_REMOVE(V_pf_rulemarker, allrulelist);
2603 		LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2604 
2605 		pf_counter_u64_periodic(&rule->evaluations);
2606 		for (int i = 0; i < 2; i++) {
2607 			pf_counter_u64_periodic(&rule->packets[i]);
2608 			pf_counter_u64_periodic(&rule->bytes[i]);
2609 		}
2610 	}
2611 }
2612 
2613 static void
pf_counter_u64_periodic_main(void)2614 pf_counter_u64_periodic_main(void)
2615 {
2616 	PF_RULES_RLOCK_TRACKER;
2617 
2618 	V_pf_counter_periodic_iter++;
2619 
2620 	PF_RULES_RLOCK();
2621 	pf_counter_u64_critical_enter();
2622 	pf_status_counter_u64_periodic();
2623 	pf_kif_counter_u64_periodic();
2624 	pf_rule_counter_u64_periodic();
2625 	pf_counter_u64_critical_exit();
2626 	PF_RULES_RUNLOCK();
2627 }
2628 #else
2629 #define	pf_counter_u64_periodic_main()	do { } while (0)
2630 #endif
2631 
2632 void
pf_purge_thread(void * unused __unused)2633 pf_purge_thread(void *unused __unused)
2634 {
2635 	struct epoch_tracker	 et;
2636 
2637 	VNET_ITERATOR_DECL(vnet_iter);
2638 
2639 	sx_xlock(&pf_end_lock);
2640 	while (pf_end_threads == 0) {
2641 		sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2642 
2643 		VNET_LIST_RLOCK();
2644 		NET_EPOCH_ENTER(et);
2645 		VNET_FOREACH(vnet_iter) {
2646 			CURVNET_SET(vnet_iter);
2647 
2648 			/* Wait until V_pf_default_rule is initialized. */
2649 			if (V_pf_vnet_active == 0) {
2650 				CURVNET_RESTORE();
2651 				continue;
2652 			}
2653 
2654 			pf_counter_u64_periodic_main();
2655 
2656 			/*
2657 			 *  Process 1/interval fraction of the state
2658 			 * table every run.
2659 			 */
2660 			V_pf_purge_idx =
2661 			    pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2662 			    (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2663 
2664 			/*
2665 			 * Purge other expired types every
2666 			 * PFTM_INTERVAL seconds.
2667 			 */
2668 			if (V_pf_purge_idx == 0) {
2669 				/*
2670 				 * Order is important:
2671 				 * - states and src nodes reference rules
2672 				 * - states and rules reference kifs
2673 				 */
2674 				pf_purge_expired_fragments();
2675 				pf_purge_expired_src_nodes();
2676 				pf_purge_unlinked_rules();
2677 				pfi_kkif_purge();
2678 			}
2679 			CURVNET_RESTORE();
2680 		}
2681 		NET_EPOCH_EXIT(et);
2682 		VNET_LIST_RUNLOCK();
2683 	}
2684 
2685 	pf_end_threads++;
2686 	sx_xunlock(&pf_end_lock);
2687 	kproc_exit(0);
2688 }
2689 
2690 void
pf_unload_vnet_purge(void)2691 pf_unload_vnet_purge(void)
2692 {
2693 
2694 	/*
2695 	 * To cleanse up all kifs and rules we need
2696 	 * two runs: first one clears reference flags,
2697 	 * then pf_purge_expired_states() doesn't
2698 	 * raise them, and then second run frees.
2699 	 */
2700 	pf_purge_unlinked_rules();
2701 	pfi_kkif_purge();
2702 
2703 	/*
2704 	 * Now purge everything.
2705 	 */
2706 	pf_purge_expired_states(0, V_pf_hashmask);
2707 	pf_purge_fragments(UINT_MAX);
2708 	pf_purge_expired_src_nodes();
2709 
2710 	/*
2711 	 * Now all kifs & rules should be unreferenced,
2712 	 * thus should be successfully freed.
2713 	 */
2714 	pf_purge_unlinked_rules();
2715 	pfi_kkif_purge();
2716 }
2717 
2718 u_int32_t
pf_state_expires(const struct pf_kstate * state)2719 pf_state_expires(const struct pf_kstate *state)
2720 {
2721 	u_int32_t	timeout;
2722 	u_int32_t	start;
2723 	u_int32_t	end;
2724 	u_int32_t	states;
2725 
2726 	/* handle all PFTM_* > PFTM_MAX here */
2727 	if (state->timeout == PFTM_PURGE)
2728 		return (time_uptime);
2729 	KASSERT(state->timeout != PFTM_UNLINKED,
2730 	    ("pf_state_expires: timeout == PFTM_UNLINKED"));
2731 	KASSERT((state->timeout < PFTM_MAX),
2732 	    ("pf_state_expires: timeout > PFTM_MAX"));
2733 	timeout = state->rule->timeout[state->timeout];
2734 	if (!timeout)
2735 		timeout = V_pf_default_rule.timeout[state->timeout];
2736 	start = state->rule->timeout[PFTM_ADAPTIVE_START];
2737 	if (start && state->rule != &V_pf_default_rule) {
2738 		end = state->rule->timeout[PFTM_ADAPTIVE_END];
2739 		states = counter_u64_fetch(state->rule->states_cur);
2740 	} else {
2741 		start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2742 		end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2743 		states = V_pf_status.states;
2744 	}
2745 	if (end && states > start && start < end) {
2746 		if (states < end) {
2747 			timeout = (u_int64_t)timeout * (end - states) /
2748 			    (end - start);
2749 			return ((state->expire / 1000) + timeout);
2750 		}
2751 		else
2752 			return (time_uptime);
2753 	}
2754 	return ((state->expire / 1000) + timeout);
2755 }
2756 
2757 void
pf_purge_expired_src_nodes(void)2758 pf_purge_expired_src_nodes(void)
2759 {
2760 	struct pf_ksrc_node_list	 freelist;
2761 	struct pf_srchash	*sh;
2762 	struct pf_ksrc_node	*cur, *next;
2763 	int i;
2764 
2765 	LIST_INIT(&freelist);
2766 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2767 	    PF_HASHROW_LOCK(sh);
2768 	    LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2769 		if (cur->states == 0 && cur->expire <= time_uptime) {
2770 			pf_unlink_src_node(cur);
2771 			LIST_INSERT_HEAD(&freelist, cur, entry);
2772 		} else if (cur->rule != NULL)
2773 			cur->rule->rule_ref |= PFRULE_REFS;
2774 	    PF_HASHROW_UNLOCK(sh);
2775 	}
2776 
2777 	pf_free_src_nodes(&freelist);
2778 
2779 	V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2780 }
2781 
2782 static void
pf_src_tree_remove_state(struct pf_kstate * s)2783 pf_src_tree_remove_state(struct pf_kstate *s)
2784 {
2785 	uint32_t timeout;
2786 
2787 	timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2788 	    s->rule->timeout[PFTM_SRC_NODE] :
2789 	    V_pf_default_rule.timeout[PFTM_SRC_NODE];
2790 
2791 	for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
2792 		if (s->sns[sn_type] == NULL)
2793 			continue;
2794 		PF_SRC_NODE_LOCK(s->sns[sn_type]);
2795 		if (sn_type == PF_SN_LIMIT && s->src.tcp_est)
2796 			--(s->sns[sn_type]->conn);
2797 		if (--(s->sns[sn_type]->states) == 0)
2798 			s->sns[sn_type]->expire = time_uptime + timeout;
2799 		PF_SRC_NODE_UNLOCK(s->sns[sn_type]);
2800 		s->sns[sn_type] = NULL;
2801 	}
2802 
2803 }
2804 
2805 /*
2806  * Unlink and potentilly free a state. Function may be
2807  * called with ID hash row locked, but always returns
2808  * unlocked, since it needs to go through key hash locking.
2809  */
2810 int
pf_remove_state(struct pf_kstate * s)2811 pf_remove_state(struct pf_kstate *s)
2812 {
2813 	struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2814 
2815 	NET_EPOCH_ASSERT();
2816 	PF_HASHROW_ASSERT(ih);
2817 
2818 	if (s->timeout == PFTM_UNLINKED) {
2819 		/*
2820 		 * State is being processed
2821 		 * by pf_remove_state() in
2822 		 * an other thread.
2823 		 */
2824 		PF_HASHROW_UNLOCK(ih);
2825 		return (0);	/* XXXGL: undefined actually */
2826 	}
2827 
2828 	if (s->src.state == PF_TCPS_PROXY_DST) {
2829 		/* XXX wire key the right one? */
2830 		pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2831 		    &s->key[PF_SK_WIRE]->addr[1],
2832 		    &s->key[PF_SK_WIRE]->addr[0],
2833 		    s->key[PF_SK_WIRE]->port[1],
2834 		    s->key[PF_SK_WIRE]->port[0],
2835 		    s->src.seqhi, s->src.seqlo + 1,
2836 		    TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2837 		    s->act.rtableid, NULL);
2838 	}
2839 
2840 	LIST_REMOVE(s, entry);
2841 	pf_src_tree_remove_state(s);
2842 
2843 	if (V_pfsync_delete_state_ptr != NULL)
2844 		V_pfsync_delete_state_ptr(s);
2845 
2846 	STATE_DEC_COUNTERS(s);
2847 
2848 	s->timeout = PFTM_UNLINKED;
2849 
2850 	/* Ensure we remove it from the list of halfopen states, if needed. */
2851 	if (s->key[PF_SK_STACK] != NULL &&
2852 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2853 		pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2854 
2855 	PF_HASHROW_UNLOCK(ih);
2856 
2857 	pf_detach_state(s);
2858 
2859 	pf_udp_mapping_release(s->udp_mapping);
2860 
2861 	/* pf_state_insert() initialises refs to 2 */
2862 	return (pf_release_staten(s, 2));
2863 }
2864 
2865 struct pf_kstate *
pf_alloc_state(int flags)2866 pf_alloc_state(int flags)
2867 {
2868 
2869 	return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2870 }
2871 
2872 void
pf_free_state(struct pf_kstate * cur)2873 pf_free_state(struct pf_kstate *cur)
2874 {
2875 	struct pf_krule_item *ri;
2876 
2877 	KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2878 	KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2879 	    cur->timeout));
2880 
2881 	while ((ri = SLIST_FIRST(&cur->match_rules))) {
2882 		SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2883 		free(ri, M_PF_RULE_ITEM);
2884 	}
2885 
2886 	pf_normalize_tcp_cleanup(cur);
2887 	uma_zfree(V_pf_state_z, cur);
2888 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2889 }
2890 
2891 /*
2892  * Called only from pf_purge_thread(), thus serialized.
2893  */
2894 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2895 pf_purge_expired_states(u_int i, int maxcheck)
2896 {
2897 	struct pf_idhash *ih;
2898 	struct pf_kstate *s;
2899 	struct pf_krule_item *mrm;
2900 	size_t count __unused;
2901 
2902 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2903 
2904 	/*
2905 	 * Go through hash and unlink states that expire now.
2906 	 */
2907 	while (maxcheck > 0) {
2908 		count = 0;
2909 		ih = &V_pf_idhash[i];
2910 
2911 		/* only take the lock if we expect to do work */
2912 		if (!LIST_EMPTY(&ih->states)) {
2913 relock:
2914 			PF_HASHROW_LOCK(ih);
2915 			LIST_FOREACH(s, &ih->states, entry) {
2916 				if (pf_state_expires(s) <= time_uptime) {
2917 					V_pf_status.states -=
2918 					    pf_remove_state(s);
2919 					goto relock;
2920 				}
2921 				s->rule->rule_ref |= PFRULE_REFS;
2922 				if (s->nat_rule != NULL)
2923 					s->nat_rule->rule_ref |= PFRULE_REFS;
2924 				if (s->anchor != NULL)
2925 					s->anchor->rule_ref |= PFRULE_REFS;
2926 				s->kif->pfik_flags |= PFI_IFLAG_REFS;
2927 				SLIST_FOREACH(mrm, &s->match_rules, entry)
2928 					mrm->r->rule_ref |= PFRULE_REFS;
2929 				if (s->act.rt_kif)
2930 					s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2931 				count++;
2932 			}
2933 			PF_HASHROW_UNLOCK(ih);
2934 		}
2935 
2936 		SDT_PROBE2(pf, purge, state, rowcount, i, count);
2937 
2938 		/* Return when we hit end of hash. */
2939 		if (++i > V_pf_hashmask) {
2940 			V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2941 			return (0);
2942 		}
2943 
2944 		maxcheck--;
2945 	}
2946 
2947 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2948 
2949 	return (i);
2950 }
2951 
2952 static void
pf_purge_unlinked_rules(void)2953 pf_purge_unlinked_rules(void)
2954 {
2955 	struct pf_krulequeue tmpq;
2956 	struct pf_krule *r, *r1;
2957 
2958 	/*
2959 	 * If we have overloading task pending, then we'd
2960 	 * better skip purging this time. There is a tiny
2961 	 * probability that overloading task references
2962 	 * an already unlinked rule.
2963 	 */
2964 	PF_OVERLOADQ_LOCK();
2965 	if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2966 		PF_OVERLOADQ_UNLOCK();
2967 		return;
2968 	}
2969 	PF_OVERLOADQ_UNLOCK();
2970 
2971 	/*
2972 	 * Do naive mark-and-sweep garbage collecting of old rules.
2973 	 * Reference flag is raised by pf_purge_expired_states()
2974 	 * and pf_purge_expired_src_nodes().
2975 	 *
2976 	 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2977 	 * use a temporary queue.
2978 	 */
2979 	TAILQ_INIT(&tmpq);
2980 	PF_UNLNKDRULES_LOCK();
2981 	TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2982 		if (!(r->rule_ref & PFRULE_REFS)) {
2983 			TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2984 			TAILQ_INSERT_TAIL(&tmpq, r, entries);
2985 		} else
2986 			r->rule_ref &= ~PFRULE_REFS;
2987 	}
2988 	PF_UNLNKDRULES_UNLOCK();
2989 
2990 	if (!TAILQ_EMPTY(&tmpq)) {
2991 		PF_CONFIG_LOCK();
2992 		PF_RULES_WLOCK();
2993 		TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2994 			TAILQ_REMOVE(&tmpq, r, entries);
2995 			pf_free_rule(r);
2996 		}
2997 		PF_RULES_WUNLOCK();
2998 		PF_CONFIG_UNLOCK();
2999 	}
3000 }
3001 
3002 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)3003 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
3004 {
3005 	switch (af) {
3006 #ifdef INET
3007 	case AF_INET: {
3008 		u_int32_t a = ntohl(addr->addr32[0]);
3009 		printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
3010 		    (a>>8)&255, a&255);
3011 		if (p) {
3012 			p = ntohs(p);
3013 			printf(":%u", p);
3014 		}
3015 		break;
3016 	}
3017 #endif /* INET */
3018 #ifdef INET6
3019 	case AF_INET6: {
3020 		u_int16_t b;
3021 		u_int8_t i, curstart, curend, maxstart, maxend;
3022 		curstart = curend = maxstart = maxend = 255;
3023 		for (i = 0; i < 8; i++) {
3024 			if (!addr->addr16[i]) {
3025 				if (curstart == 255)
3026 					curstart = i;
3027 				curend = i;
3028 			} else {
3029 				if ((curend - curstart) >
3030 				    (maxend - maxstart)) {
3031 					maxstart = curstart;
3032 					maxend = curend;
3033 				}
3034 				curstart = curend = 255;
3035 			}
3036 		}
3037 		if ((curend - curstart) >
3038 		    (maxend - maxstart)) {
3039 			maxstart = curstart;
3040 			maxend = curend;
3041 		}
3042 		for (i = 0; i < 8; i++) {
3043 			if (i >= maxstart && i <= maxend) {
3044 				if (i == 0)
3045 					printf(":");
3046 				if (i == maxend)
3047 					printf(":");
3048 			} else {
3049 				b = ntohs(addr->addr16[i]);
3050 				printf("%x", b);
3051 				if (i < 7)
3052 					printf(":");
3053 			}
3054 		}
3055 		if (p) {
3056 			p = ntohs(p);
3057 			printf("[%u]", p);
3058 		}
3059 		break;
3060 	}
3061 #endif /* INET6 */
3062 	default:
3063 		unhandled_af(af);
3064 	}
3065 }
3066 
3067 void
pf_print_state(struct pf_kstate * s)3068 pf_print_state(struct pf_kstate *s)
3069 {
3070 	pf_print_state_parts(s, NULL, NULL);
3071 }
3072 
3073 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)3074 pf_print_state_parts(struct pf_kstate *s,
3075     struct pf_state_key *skwp, struct pf_state_key *sksp)
3076 {
3077 	struct pf_state_key *skw, *sks;
3078 	u_int8_t proto, dir;
3079 
3080 	/* Do our best to fill these, but they're skipped if NULL */
3081 	skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
3082 	sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
3083 	proto = skw ? skw->proto : (sks ? sks->proto : 0);
3084 	dir = s ? s->direction : 0;
3085 
3086 	switch (proto) {
3087 	case IPPROTO_IPV4:
3088 		printf("IPv4");
3089 		break;
3090 	case IPPROTO_IPV6:
3091 		printf("IPv6");
3092 		break;
3093 	case IPPROTO_TCP:
3094 		printf("TCP");
3095 		break;
3096 	case IPPROTO_UDP:
3097 		printf("UDP");
3098 		break;
3099 	case IPPROTO_ICMP:
3100 		printf("ICMP");
3101 		break;
3102 	case IPPROTO_ICMPV6:
3103 		printf("ICMPv6");
3104 		break;
3105 	default:
3106 		printf("%u", proto);
3107 		break;
3108 	}
3109 	switch (dir) {
3110 	case PF_IN:
3111 		printf(" in");
3112 		break;
3113 	case PF_OUT:
3114 		printf(" out");
3115 		break;
3116 	}
3117 	if (skw) {
3118 		printf(" wire: ");
3119 		pf_print_host(&skw->addr[0], skw->port[0], skw->af);
3120 		printf(" ");
3121 		pf_print_host(&skw->addr[1], skw->port[1], skw->af);
3122 	}
3123 	if (sks) {
3124 		printf(" stack: ");
3125 		if (sks != skw) {
3126 			pf_print_host(&sks->addr[0], sks->port[0], sks->af);
3127 			printf(" ");
3128 			pf_print_host(&sks->addr[1], sks->port[1], sks->af);
3129 		} else
3130 			printf("-");
3131 	}
3132 	if (s) {
3133 		if (proto == IPPROTO_TCP) {
3134 			printf(" [lo=%u high=%u win=%u modulator=%u",
3135 			    s->src.seqlo, s->src.seqhi,
3136 			    s->src.max_win, s->src.seqdiff);
3137 			if (s->src.wscale && s->dst.wscale)
3138 				printf(" wscale=%u",
3139 				    s->src.wscale & PF_WSCALE_MASK);
3140 			printf("]");
3141 			printf(" [lo=%u high=%u win=%u modulator=%u",
3142 			    s->dst.seqlo, s->dst.seqhi,
3143 			    s->dst.max_win, s->dst.seqdiff);
3144 			if (s->src.wscale && s->dst.wscale)
3145 				printf(" wscale=%u",
3146 				s->dst.wscale & PF_WSCALE_MASK);
3147 			printf("]");
3148 		}
3149 		printf(" %u:%u", s->src.state, s->dst.state);
3150 		if (s->rule)
3151 			printf(" @%d", s->rule->nr);
3152 	}
3153 }
3154 
3155 void
pf_print_flags(uint16_t f)3156 pf_print_flags(uint16_t f)
3157 {
3158 	if (f)
3159 		printf(" ");
3160 	if (f & TH_FIN)
3161 		printf("F");
3162 	if (f & TH_SYN)
3163 		printf("S");
3164 	if (f & TH_RST)
3165 		printf("R");
3166 	if (f & TH_PUSH)
3167 		printf("P");
3168 	if (f & TH_ACK)
3169 		printf("A");
3170 	if (f & TH_URG)
3171 		printf("U");
3172 	if (f & TH_ECE)
3173 		printf("E");
3174 	if (f & TH_CWR)
3175 		printf("W");
3176 	if (f & TH_AE)
3177 		printf("e");
3178 }
3179 
3180 #define	PF_SET_SKIP_STEPS(i)					\
3181 	do {							\
3182 		while (head[i] != cur) {			\
3183 			head[i]->skip[i] = cur;			\
3184 			head[i] = TAILQ_NEXT(head[i], entries);	\
3185 		}						\
3186 	} while (0)
3187 
3188 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3189 pf_calc_skip_steps(struct pf_krulequeue *rules)
3190 {
3191 	struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3192 	int i;
3193 
3194 	cur = TAILQ_FIRST(rules);
3195 	prev = cur;
3196 	for (i = 0; i < PF_SKIP_COUNT; ++i)
3197 		head[i] = cur;
3198 	while (cur != NULL) {
3199 		if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3200 			PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3201 		if (cur->direction != prev->direction)
3202 			PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3203 		if (cur->af != prev->af)
3204 			PF_SET_SKIP_STEPS(PF_SKIP_AF);
3205 		if (cur->proto != prev->proto)
3206 			PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3207 		if (cur->src.neg != prev->src.neg ||
3208 		    pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3209 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3210 		if (cur->dst.neg != prev->dst.neg ||
3211 		    pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3212 			PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3213 		if (cur->src.port[0] != prev->src.port[0] ||
3214 		    cur->src.port[1] != prev->src.port[1] ||
3215 		    cur->src.port_op != prev->src.port_op)
3216 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3217 		if (cur->dst.port[0] != prev->dst.port[0] ||
3218 		    cur->dst.port[1] != prev->dst.port[1] ||
3219 		    cur->dst.port_op != prev->dst.port_op)
3220 			PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3221 
3222 		prev = cur;
3223 		cur = TAILQ_NEXT(cur, entries);
3224 	}
3225 	for (i = 0; i < PF_SKIP_COUNT; ++i)
3226 		PF_SET_SKIP_STEPS(i);
3227 }
3228 
3229 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3230 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3231 {
3232 	if (aw1->type != aw2->type)
3233 		return (1);
3234 	switch (aw1->type) {
3235 	case PF_ADDR_ADDRMASK:
3236 	case PF_ADDR_RANGE:
3237 		if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3238 			return (1);
3239 		if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3240 			return (1);
3241 		return (0);
3242 	case PF_ADDR_DYNIFTL:
3243 		return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3244 	case PF_ADDR_NONE:
3245 	case PF_ADDR_NOROUTE:
3246 	case PF_ADDR_URPFFAILED:
3247 		return (0);
3248 	case PF_ADDR_TABLE:
3249 		return (aw1->p.tbl != aw2->p.tbl);
3250 	default:
3251 		printf("invalid address type: %d\n", aw1->type);
3252 		return (1);
3253 	}
3254 }
3255 
3256 /**
3257  * Checksum updates are a little complicated because the checksum in the TCP/UDP
3258  * header isn't always a full checksum. In some cases (i.e. output) it's a
3259  * pseudo-header checksum, which is a partial checksum over src/dst IP
3260  * addresses, protocol number and length.
3261  *
3262  * That means we have the following cases:
3263  *  * Input or forwarding: we don't have TSO, the checksum fields are full
3264  *  	checksums, we need to update the checksum whenever we change anything.
3265  *  * Output (i.e. the checksum is a pseudo-header checksum):
3266  *  	x The field being updated is src/dst address or affects the length of
3267  *  	the packet. We need to update the pseudo-header checksum (note that this
3268  *  	checksum is not ones' complement).
3269  *  	x Some other field is being modified (e.g. src/dst port numbers): We
3270  *  	don't have to update anything.
3271  **/
3272 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3273 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3274 {
3275 	u_int32_t x;
3276 
3277 	x = cksum + old - new;
3278 	x = (x + (x >> 16)) & 0xffff;
3279 
3280 	/* optimise: eliminate a branch when not udp */
3281 	if (udp && cksum == 0x0000)
3282 		return cksum;
3283 	if (udp && x == 0x0000)
3284 		x = 0xffff;
3285 
3286 	return (u_int16_t)(x);
3287 }
3288 
3289 static int
pf_patch_8(struct pf_pdesc * pd,u_int8_t * f,u_int8_t v,bool hi)3290 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi)
3291 {
3292 	int	 rewrite = 0;
3293 
3294 	if (*f != v) {
3295 		uint16_t old = htons(hi ? (*f << 8) : *f);
3296 		uint16_t new = htons(hi ? ( v << 8) :  v);
3297 
3298 		*f = v;
3299 
3300 		if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3301 		    CSUM_DELAY_DATA_IPV6)))
3302 			*pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new,
3303 			    pd->proto == IPPROTO_UDP);
3304 
3305 		rewrite = 1;
3306 	}
3307 
3308 	return (rewrite);
3309 }
3310 
3311 int
pf_patch_16(struct pf_pdesc * pd,void * f,u_int16_t v,bool hi)3312 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi)
3313 {
3314 	int rewrite = 0;
3315 	u_int8_t *fb = (u_int8_t *)f;
3316 	u_int8_t *vb = (u_int8_t *)&v;
3317 
3318 	rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3319 	rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3320 
3321 	return (rewrite);
3322 }
3323 
3324 int
pf_patch_32(struct pf_pdesc * pd,void * f,u_int32_t v,bool hi)3325 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi)
3326 {
3327 	int rewrite = 0;
3328 	u_int8_t *fb = (u_int8_t *)f;
3329 	u_int8_t *vb = (u_int8_t *)&v;
3330 
3331 	rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3332 	rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3333 	rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3334 	rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3335 
3336 	return (rewrite);
3337 }
3338 
3339 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3340 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3341         u_int16_t new, u_int8_t udp)
3342 {
3343 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3344 		return (cksum);
3345 
3346 	return (pf_cksum_fixup(cksum, old, new, udp));
3347 }
3348 
3349 static void
pf_change_ap(struct pf_pdesc * pd,struct pf_addr * a,u_int16_t * p,struct pf_addr * an,u_int16_t pn)3350 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p,
3351         struct pf_addr *an, u_int16_t pn)
3352 {
3353 	struct pf_addr	ao;
3354 	u_int16_t	po;
3355 	uint8_t		u = pd->virtual_proto == IPPROTO_UDP;
3356 
3357 	MPASS(pd->pcksum);
3358 	if (pd->af == AF_INET) {
3359 		MPASS(pd->ip_sum);
3360 	}
3361 
3362 	pf_addrcpy(&ao, a, pd->af);
3363 	if (pd->af == pd->naf)
3364 		pf_addrcpy(a, an, pd->af);
3365 
3366 	if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3367 		*pd->pcksum = ~*pd->pcksum;
3368 
3369 	if (p == NULL)  /* no port -> done. no cksum to worry about. */
3370 		return;
3371 	po = *p;
3372 	*p = pn;
3373 
3374 	switch (pd->af) {
3375 #ifdef INET
3376 	case AF_INET:
3377 		switch (pd->naf) {
3378 		case AF_INET:
3379 			*pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum,
3380 			    ao.addr16[0], an->addr16[0], 0),
3381 			    ao.addr16[1], an->addr16[1], 0);
3382 			*p = pn;
3383 
3384 			*pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3385 			    ao.addr16[0], an->addr16[0], u),
3386 			    ao.addr16[1], an->addr16[1], u);
3387 
3388 			*pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3389 			break;
3390 #ifdef INET6
3391 		case AF_INET6:
3392 			*pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3393 			   pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3394 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3395 			    ao.addr16[0], an->addr16[0], u),
3396 			    ao.addr16[1], an->addr16[1], u),
3397 			    0,            an->addr16[2], u),
3398 			    0,            an->addr16[3], u),
3399 			    0,            an->addr16[4], u),
3400 			    0,            an->addr16[5], u),
3401 			    0,            an->addr16[6], u),
3402 			    0,            an->addr16[7], u),
3403 			    po, pn, u);
3404 			break;
3405 #endif /* INET6 */
3406 		default:
3407 			unhandled_af(pd->naf);
3408 		}
3409 		break;
3410 #endif /* INET */
3411 #ifdef INET6
3412 	case AF_INET6:
3413 		switch (pd->naf) {
3414 #ifdef INET
3415 		case AF_INET:
3416 			*pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3417 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3418 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3419 			    ao.addr16[0], an->addr16[0], u),
3420 			    ao.addr16[1], an->addr16[1], u),
3421 			    ao.addr16[2], 0,             u),
3422 			    ao.addr16[3], 0,             u),
3423 			    ao.addr16[4], 0,             u),
3424 			    ao.addr16[5], 0,             u),
3425 			    ao.addr16[6], 0,             u),
3426 			    ao.addr16[7], 0,             u),
3427 			    po, pn, u);
3428 			break;
3429 #endif /* INET */
3430 		case AF_INET6:
3431 			*pd->pcksum  = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3432 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3433 			    pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3434 			    ao.addr16[0], an->addr16[0], u),
3435 			    ao.addr16[1], an->addr16[1], u),
3436 			    ao.addr16[2], an->addr16[2], u),
3437 			    ao.addr16[3], an->addr16[3], u),
3438 			    ao.addr16[4], an->addr16[4], u),
3439 			    ao.addr16[5], an->addr16[5], u),
3440 			    ao.addr16[6], an->addr16[6], u),
3441 			    ao.addr16[7], an->addr16[7], u);
3442 
3443 			*pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3444 			break;
3445 		default:
3446 			unhandled_af(pd->naf);
3447 		}
3448 		break;
3449 #endif /* INET6 */
3450 	default:
3451 		unhandled_af(pd->af);
3452 	}
3453 
3454 	if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3455 	    CSUM_DELAY_DATA_IPV6)) {
3456 		*pd->pcksum = ~*pd->pcksum;
3457 		if (! *pd->pcksum)
3458 			*pd->pcksum = 0xffff;
3459 	}
3460 }
3461 
3462 /* Changes a u_int32_t.  Uses a void * so there are no align restrictions */
3463 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3464 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3465 {
3466 	u_int32_t	ao;
3467 
3468 	memcpy(&ao, a, sizeof(ao));
3469 	memcpy(a, &an, sizeof(u_int32_t));
3470 	*c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3471 	    ao % 65536, an % 65536, u);
3472 }
3473 
3474 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3475 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3476 {
3477 	u_int32_t	ao;
3478 
3479 	memcpy(&ao, a, sizeof(ao));
3480 	memcpy(a, &an, sizeof(u_int32_t));
3481 
3482 	*c = pf_proto_cksum_fixup(m,
3483 	    pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3484 	    ao % 65536, an % 65536, udp);
3485 }
3486 
3487 #ifdef INET6
3488 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3489 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3490 {
3491 	struct pf_addr	ao;
3492 
3493 	pf_addrcpy(&ao, a, AF_INET6);
3494 	pf_addrcpy(a, an, AF_INET6);
3495 
3496 	*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3497 	    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3498 	    pf_cksum_fixup(pf_cksum_fixup(*c,
3499 	    ao.addr16[0], an->addr16[0], u),
3500 	    ao.addr16[1], an->addr16[1], u),
3501 	    ao.addr16[2], an->addr16[2], u),
3502 	    ao.addr16[3], an->addr16[3], u),
3503 	    ao.addr16[4], an->addr16[4], u),
3504 	    ao.addr16[5], an->addr16[5], u),
3505 	    ao.addr16[6], an->addr16[6], u),
3506 	    ao.addr16[7], an->addr16[7], u);
3507 }
3508 #endif /* INET6 */
3509 
3510 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3511 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3512     struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3513     u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3514 {
3515 	struct pf_addr	oia, ooa;
3516 
3517 	pf_addrcpy(&oia, ia, af);
3518 	if (oa)
3519 		pf_addrcpy(&ooa, oa, af);
3520 
3521 	/* Change inner protocol port, fix inner protocol checksum. */
3522 	if (ip != NULL) {
3523 		u_int16_t	oip = *ip;
3524 		u_int32_t	opc;
3525 
3526 		if (pc != NULL)
3527 			opc = *pc;
3528 		*ip = np;
3529 		if (pc != NULL)
3530 			*pc = pf_cksum_fixup(*pc, oip, *ip, u);
3531 		*ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3532 		if (pc != NULL)
3533 			*ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3534 	}
3535 	/* Change inner ip address, fix inner ip and icmp checksums. */
3536 	pf_addrcpy(ia, na, af);
3537 	switch (af) {
3538 #ifdef INET
3539 	case AF_INET: {
3540 		u_int32_t	 oh2c = *h2c;
3541 
3542 		*h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3543 		    oia.addr16[0], ia->addr16[0], 0),
3544 		    oia.addr16[1], ia->addr16[1], 0);
3545 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3546 		    oia.addr16[0], ia->addr16[0], 0),
3547 		    oia.addr16[1], ia->addr16[1], 0);
3548 		*ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3549 		break;
3550 	}
3551 #endif /* INET */
3552 #ifdef INET6
3553 	case AF_INET6:
3554 		*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3555 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3556 		    pf_cksum_fixup(pf_cksum_fixup(*ic,
3557 		    oia.addr16[0], ia->addr16[0], u),
3558 		    oia.addr16[1], ia->addr16[1], u),
3559 		    oia.addr16[2], ia->addr16[2], u),
3560 		    oia.addr16[3], ia->addr16[3], u),
3561 		    oia.addr16[4], ia->addr16[4], u),
3562 		    oia.addr16[5], ia->addr16[5], u),
3563 		    oia.addr16[6], ia->addr16[6], u),
3564 		    oia.addr16[7], ia->addr16[7], u);
3565 		break;
3566 #endif /* INET6 */
3567 	}
3568 	/* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3569 	if (oa) {
3570 		pf_addrcpy(oa, na, af);
3571 		switch (af) {
3572 #ifdef INET
3573 		case AF_INET:
3574 			*hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3575 			    ooa.addr16[0], oa->addr16[0], 0),
3576 			    ooa.addr16[1], oa->addr16[1], 0);
3577 			break;
3578 #endif /* INET */
3579 #ifdef INET6
3580 		case AF_INET6:
3581 			*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3582 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3583 			    pf_cksum_fixup(pf_cksum_fixup(*ic,
3584 			    ooa.addr16[0], oa->addr16[0], u),
3585 			    ooa.addr16[1], oa->addr16[1], u),
3586 			    ooa.addr16[2], oa->addr16[2], u),
3587 			    ooa.addr16[3], oa->addr16[3], u),
3588 			    ooa.addr16[4], oa->addr16[4], u),
3589 			    ooa.addr16[5], oa->addr16[5], u),
3590 			    ooa.addr16[6], oa->addr16[6], u),
3591 			    ooa.addr16[7], oa->addr16[7], u);
3592 			break;
3593 #endif /* INET6 */
3594 		}
3595 	}
3596 }
3597 
3598 int
pf_translate_af(struct pf_pdesc * pd)3599 pf_translate_af(struct pf_pdesc *pd)
3600 {
3601 #if defined(INET) && defined(INET6)
3602 	struct mbuf		*mp;
3603 	struct ip		*ip4;
3604 	struct ip6_hdr		*ip6;
3605 	struct icmp6_hdr	*icmp;
3606 	struct m_tag		*mtag;
3607 	struct pf_fragment_tag	*ftag;
3608 	int			 hlen;
3609 
3610 	hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3611 
3612 	/* trim the old header */
3613 	m_adj(pd->m, pd->off);
3614 
3615 	/* prepend a new one */
3616 	M_PREPEND(pd->m, hlen, M_NOWAIT);
3617 	if (pd->m == NULL)
3618 		return (-1);
3619 
3620 	switch (pd->naf) {
3621 	case AF_INET:
3622 		ip4 = mtod(pd->m, struct ip *);
3623 		bzero(ip4, hlen);
3624 		ip4->ip_v = IPVERSION;
3625 		ip4->ip_hl = hlen >> 2;
3626 		ip4->ip_tos = pd->tos;
3627 		ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3628 		ip_fillid(ip4, V_ip_random_id);
3629 		ip4->ip_ttl = pd->ttl;
3630 		ip4->ip_p = pd->proto;
3631 		ip4->ip_src = pd->nsaddr.v4;
3632 		ip4->ip_dst = pd->ndaddr.v4;
3633 		pd->src = (struct pf_addr *)&ip4->ip_src;
3634 		pd->dst = (struct pf_addr *)&ip4->ip_dst;
3635 		pd->off = sizeof(struct ip);
3636 		if (pd->m->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
3637 			pd->m->m_pkthdr.csum_flags &= ~CSUM_TCP_IPV6;
3638 			pd->m->m_pkthdr.csum_flags |= CSUM_TCP;
3639 		}
3640 		if (pd->m->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
3641 			pd->m->m_pkthdr.csum_flags &= ~CSUM_UDP_IPV6;
3642 			pd->m->m_pkthdr.csum_flags |= CSUM_UDP;
3643 		}
3644 		if (pd->m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
3645 			pd->m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
3646 			pd->m->m_pkthdr.csum_flags |= CSUM_SCTP;
3647 		}
3648 		break;
3649 	case AF_INET6:
3650 		ip6 = mtod(pd->m, struct ip6_hdr *);
3651 		bzero(ip6, hlen);
3652 		ip6->ip6_vfc = IPV6_VERSION;
3653 		ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
3654 		ip6->ip6_plen = htons(pd->tot_len - pd->off);
3655 		ip6->ip6_nxt = pd->proto;
3656 		if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
3657 			ip6->ip6_hlim = IPV6_DEFHLIM;
3658 		else
3659 			ip6->ip6_hlim = pd->ttl;
3660 		ip6->ip6_src = pd->nsaddr.v6;
3661 		ip6->ip6_dst = pd->ndaddr.v6;
3662 		pd->src = (struct pf_addr *)&ip6->ip6_src;
3663 		pd->dst = (struct pf_addr *)&ip6->ip6_dst;
3664 		pd->off = sizeof(struct ip6_hdr);
3665 		if (pd->m->m_pkthdr.csum_flags & CSUM_TCP) {
3666 			pd->m->m_pkthdr.csum_flags &= ~CSUM_TCP;
3667 			pd->m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
3668 		}
3669 		if (pd->m->m_pkthdr.csum_flags & CSUM_UDP) {
3670 			pd->m->m_pkthdr.csum_flags &= ~CSUM_UDP;
3671 			pd->m->m_pkthdr.csum_flags |= CSUM_UDP_IPV6;
3672 		}
3673 		if (pd->m->m_pkthdr.csum_flags & CSUM_SCTP) {
3674 			pd->m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
3675 			pd->m->m_pkthdr.csum_flags |= CSUM_SCTP_IPV6;
3676 		}
3677 
3678 		/*
3679 		 * If we're dealing with a reassembled packet we need to adjust
3680 		 * the header length from the IPv4 header size to IPv6 header
3681 		 * size.
3682 		 */
3683 		mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
3684 		if (mtag) {
3685 			ftag = (struct pf_fragment_tag *)(mtag + 1);
3686 			ftag->ft_hdrlen = sizeof(*ip6);
3687 			ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
3688 			    sizeof(struct ip) + sizeof(struct ip6_frag);
3689 		}
3690 		break;
3691 	default:
3692 		return (-1);
3693 	}
3694 
3695 	/* recalculate icmp/icmp6 checksums */
3696 	if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
3697 		int off;
3698 		if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
3699 		    NULL) {
3700 			pd->m = NULL;
3701 			return (-1);
3702 		}
3703 		icmp = (struct icmp6_hdr *)(mp->m_data + off);
3704 		icmp->icmp6_cksum = 0;
3705 		icmp->icmp6_cksum = pd->naf == AF_INET ?
3706 		    in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
3707 		    in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
3708 			ntohs(ip6->ip6_plen));
3709 	}
3710 #endif /* INET && INET6 */
3711 
3712 	return (0);
3713 }
3714 
3715 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)3716 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
3717     struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
3718     sa_family_t af, sa_family_t naf)
3719 {
3720 #if defined(INET) && defined(INET6)
3721 	struct mbuf	*n = NULL;
3722 	struct ip	*ip4;
3723 	struct ip6_hdr	*ip6;
3724 	int		 hlen, olen, mlen;
3725 
3726 	if (af == naf || (af != AF_INET && af != AF_INET6) ||
3727 	    (naf != AF_INET && naf != AF_INET6))
3728 		return (-1);
3729 
3730 	/* split the mbuf chain on the inner ip/ip6 header boundary */
3731 	if ((n = m_split(m, off, M_NOWAIT)) == NULL)
3732 		return (-1);
3733 
3734 	/* old header */
3735 	olen = pd2->off - off;
3736 	/* new header */
3737 	hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3738 
3739 	/* trim old header */
3740 	m_adj(n, olen);
3741 
3742 	/* prepend a new one */
3743 	M_PREPEND(n, hlen, M_NOWAIT);
3744 	if (n == NULL)
3745 		return (-1);
3746 
3747 	/* translate inner ip/ip6 header */
3748 	switch (naf) {
3749 	case AF_INET:
3750 		ip4 = mtod(n, struct ip *);
3751 		bzero(ip4, sizeof(*ip4));
3752 		ip4->ip_v = IPVERSION;
3753 		ip4->ip_hl = sizeof(*ip4) >> 2;
3754 		ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen);
3755 		ip_fillid(ip4, V_ip_random_id);
3756 		ip4->ip_off = htons(IP_DF);
3757 		ip4->ip_ttl = pd2->ttl;
3758 		if (pd2->proto == IPPROTO_ICMPV6)
3759 			ip4->ip_p = IPPROTO_ICMP;
3760 		else
3761 			ip4->ip_p = pd2->proto;
3762 		ip4->ip_src = src->v4;
3763 		ip4->ip_dst = dst->v4;
3764 		ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
3765 		break;
3766 	case AF_INET6:
3767 		ip6 = mtod(n, struct ip6_hdr *);
3768 		bzero(ip6, sizeof(*ip6));
3769 		ip6->ip6_vfc = IPV6_VERSION;
3770 		ip6->ip6_plen = htons(pd2->tot_len - olen);
3771 		if (pd2->proto == IPPROTO_ICMP)
3772 			ip6->ip6_nxt = IPPROTO_ICMPV6;
3773 		else
3774 			ip6->ip6_nxt = pd2->proto;
3775 		if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
3776 			ip6->ip6_hlim = IPV6_DEFHLIM;
3777 		else
3778 			ip6->ip6_hlim = pd2->ttl;
3779 		ip6->ip6_src = src->v6;
3780 		ip6->ip6_dst = dst->v6;
3781 		break;
3782 	default:
3783 		unhandled_af(naf);
3784 	}
3785 
3786 	/* adjust payload offset and total packet length */
3787 	pd2->off += hlen - olen;
3788 	pd->tot_len += hlen - olen;
3789 
3790 	/* merge modified inner packet with the original header */
3791 	mlen = n->m_pkthdr.len;
3792 	m_cat(m, n);
3793 	m->m_pkthdr.len += mlen;
3794 #endif /* INET && INET6 */
3795 
3796 	return (0);
3797 }
3798 
3799 #define PTR_IP(field)	(offsetof(struct ip, field))
3800 #define PTR_IP6(field)	(offsetof(struct ip6_hdr, field))
3801 
3802 int
pf_translate_icmp_af(int af,void * arg)3803 pf_translate_icmp_af(int af, void *arg)
3804 {
3805 #if defined(INET) && defined(INET6)
3806 	struct icmp		*icmp4;
3807 	struct icmp6_hdr	*icmp6;
3808 	u_int32_t		 mtu;
3809 	int32_t			 ptr = -1;
3810 	u_int8_t		 type;
3811 	u_int8_t		 code;
3812 
3813 	switch (af) {
3814 	case AF_INET:
3815 		icmp6 = arg;
3816 		type = icmp6->icmp6_type;
3817 		code = icmp6->icmp6_code;
3818 		mtu = ntohl(icmp6->icmp6_mtu);
3819 
3820 		switch (type) {
3821 		case ICMP6_ECHO_REQUEST:
3822 			type = ICMP_ECHO;
3823 			break;
3824 		case ICMP6_ECHO_REPLY:
3825 			type = ICMP_ECHOREPLY;
3826 			break;
3827 		case ICMP6_DST_UNREACH:
3828 			type = ICMP_UNREACH;
3829 			switch (code) {
3830 			case ICMP6_DST_UNREACH_NOROUTE:
3831 			case ICMP6_DST_UNREACH_BEYONDSCOPE:
3832 			case ICMP6_DST_UNREACH_ADDR:
3833 				code = ICMP_UNREACH_HOST;
3834 				break;
3835 			case ICMP6_DST_UNREACH_ADMIN:
3836 				code = ICMP_UNREACH_HOST_PROHIB;
3837 				break;
3838 			case ICMP6_DST_UNREACH_NOPORT:
3839 				code = ICMP_UNREACH_PORT;
3840 				break;
3841 			default:
3842 				return (-1);
3843 			}
3844 			break;
3845 		case ICMP6_PACKET_TOO_BIG:
3846 			type = ICMP_UNREACH;
3847 			code = ICMP_UNREACH_NEEDFRAG;
3848 			mtu -= 20;
3849 			break;
3850 		case ICMP6_TIME_EXCEEDED:
3851 			type = ICMP_TIMXCEED;
3852 			break;
3853 		case ICMP6_PARAM_PROB:
3854 			switch (code) {
3855 			case ICMP6_PARAMPROB_HEADER:
3856 				type = ICMP_PARAMPROB;
3857 				code = ICMP_PARAMPROB_ERRATPTR;
3858 				ptr = ntohl(icmp6->icmp6_pptr);
3859 
3860 				if (ptr == PTR_IP6(ip6_vfc))
3861 					; /* preserve */
3862 				else if (ptr == PTR_IP6(ip6_vfc) + 1)
3863 					ptr = PTR_IP(ip_tos);
3864 				else if (ptr == PTR_IP6(ip6_plen) ||
3865 				    ptr == PTR_IP6(ip6_plen) + 1)
3866 					ptr = PTR_IP(ip_len);
3867 				else if (ptr == PTR_IP6(ip6_nxt))
3868 					ptr = PTR_IP(ip_p);
3869 				else if (ptr == PTR_IP6(ip6_hlim))
3870 					ptr = PTR_IP(ip_ttl);
3871 				else if (ptr >= PTR_IP6(ip6_src) &&
3872 				    ptr < PTR_IP6(ip6_dst))
3873 					ptr = PTR_IP(ip_src);
3874 				else if (ptr >= PTR_IP6(ip6_dst) &&
3875 				    ptr < sizeof(struct ip6_hdr))
3876 					ptr = PTR_IP(ip_dst);
3877 				else {
3878 					return (-1);
3879 				}
3880 				break;
3881 			case ICMP6_PARAMPROB_NEXTHEADER:
3882 				type = ICMP_UNREACH;
3883 				code = ICMP_UNREACH_PROTOCOL;
3884 				break;
3885 			default:
3886 				return (-1);
3887 			}
3888 			break;
3889 		default:
3890 			return (-1);
3891 		}
3892 		if (icmp6->icmp6_type != type) {
3893 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3894 			    icmp6->icmp6_type, type, 0);
3895 			icmp6->icmp6_type = type;
3896 		}
3897 		if (icmp6->icmp6_code != code) {
3898 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3899 			    icmp6->icmp6_code, code, 0);
3900 			icmp6->icmp6_code = code;
3901 		}
3902 		if (icmp6->icmp6_mtu != htonl(mtu)) {
3903 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3904 			    htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
3905 			/* aligns well with a icmpv4 nextmtu */
3906 			icmp6->icmp6_mtu = htonl(mtu);
3907 		}
3908 		if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
3909 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3910 			    htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
3911 			/* icmpv4 pptr is a one most significant byte */
3912 			icmp6->icmp6_pptr = htonl(ptr << 24);
3913 		}
3914 		break;
3915 	case AF_INET6:
3916 		icmp4 = arg;
3917 		type = icmp4->icmp_type;
3918 		code = icmp4->icmp_code;
3919 		mtu = ntohs(icmp4->icmp_nextmtu);
3920 
3921 		switch (type) {
3922 		case ICMP_ECHO:
3923 			type = ICMP6_ECHO_REQUEST;
3924 			break;
3925 		case ICMP_ECHOREPLY:
3926 			type = ICMP6_ECHO_REPLY;
3927 			break;
3928 		case ICMP_UNREACH:
3929 			type = ICMP6_DST_UNREACH;
3930 			switch (code) {
3931 			case ICMP_UNREACH_NET:
3932 			case ICMP_UNREACH_HOST:
3933 			case ICMP_UNREACH_NET_UNKNOWN:
3934 			case ICMP_UNREACH_HOST_UNKNOWN:
3935 			case ICMP_UNREACH_ISOLATED:
3936 			case ICMP_UNREACH_TOSNET:
3937 			case ICMP_UNREACH_TOSHOST:
3938 				code = ICMP6_DST_UNREACH_NOROUTE;
3939 				break;
3940 			case ICMP_UNREACH_PORT:
3941 				code = ICMP6_DST_UNREACH_NOPORT;
3942 				break;
3943 			case ICMP_UNREACH_NET_PROHIB:
3944 			case ICMP_UNREACH_HOST_PROHIB:
3945 			case ICMP_UNREACH_FILTER_PROHIB:
3946 			case ICMP_UNREACH_PRECEDENCE_CUTOFF:
3947 				code = ICMP6_DST_UNREACH_ADMIN;
3948 				break;
3949 			case ICMP_UNREACH_PROTOCOL:
3950 				type = ICMP6_PARAM_PROB;
3951 				code = ICMP6_PARAMPROB_NEXTHEADER;
3952 				ptr = offsetof(struct ip6_hdr, ip6_nxt);
3953 				break;
3954 			case ICMP_UNREACH_NEEDFRAG:
3955 				type = ICMP6_PACKET_TOO_BIG;
3956 				code = 0;
3957 				mtu += 20;
3958 				break;
3959 			default:
3960 				return (-1);
3961 			}
3962 			break;
3963 		case ICMP_TIMXCEED:
3964 			type = ICMP6_TIME_EXCEEDED;
3965 			break;
3966 		case ICMP_PARAMPROB:
3967 			type = ICMP6_PARAM_PROB;
3968 			switch (code) {
3969 			case ICMP_PARAMPROB_ERRATPTR:
3970 				code = ICMP6_PARAMPROB_HEADER;
3971 				break;
3972 			case ICMP_PARAMPROB_LENGTH:
3973 				code = ICMP6_PARAMPROB_HEADER;
3974 				break;
3975 			default:
3976 				return (-1);
3977 			}
3978 
3979 			ptr = icmp4->icmp_pptr;
3980 			if (ptr == 0 || ptr == PTR_IP(ip_tos))
3981 				; /* preserve */
3982 			else if (ptr == PTR_IP(ip_len) ||
3983 			    ptr == PTR_IP(ip_len) + 1)
3984 				ptr = PTR_IP6(ip6_plen);
3985 			else if (ptr == PTR_IP(ip_ttl))
3986 				ptr = PTR_IP6(ip6_hlim);
3987 			else if (ptr == PTR_IP(ip_p))
3988 				ptr = PTR_IP6(ip6_nxt);
3989 			else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
3990 				ptr = PTR_IP6(ip6_src);
3991 			else if (ptr >= PTR_IP(ip_dst) &&
3992 			    ptr < sizeof(struct ip))
3993 				ptr = PTR_IP6(ip6_dst);
3994 			else {
3995 				return (-1);
3996 			}
3997 			break;
3998 		default:
3999 			return (-1);
4000 		}
4001 		if (icmp4->icmp_type != type) {
4002 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4003 			    icmp4->icmp_type, type, 0);
4004 			icmp4->icmp_type = type;
4005 		}
4006 		if (icmp4->icmp_code != code) {
4007 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4008 			    icmp4->icmp_code, code, 0);
4009 			icmp4->icmp_code = code;
4010 		}
4011 		if (icmp4->icmp_nextmtu != htons(mtu)) {
4012 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4013 			    icmp4->icmp_nextmtu, htons(mtu), 0);
4014 			icmp4->icmp_nextmtu = htons(mtu);
4015 		}
4016 		if (ptr >= 0 && icmp4->icmp_void != ptr) {
4017 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4018 			    htons(icmp4->icmp_pptr), htons(ptr), 0);
4019 			icmp4->icmp_void = htonl(ptr);
4020 		}
4021 		break;
4022 	default:
4023 		unhandled_af(af);
4024 	}
4025 #endif /* INET && INET6 */
4026 
4027 	return (0);
4028 }
4029 
4030 /*
4031  * Need to modulate the sequence numbers in the TCP SACK option
4032  * (credits to Krzysztof Pfaff for report and patch)
4033  */
4034 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)4035 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
4036     struct pf_state_peer *dst)
4037 {
4038 	struct sackblk	 sack;
4039 	int		 copyback = 0, i;
4040 	int		 olen, optsoff;
4041 	uint8_t		 opts[MAX_TCPOPTLEN], *opt, *eoh;
4042 
4043 	olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
4044 	optsoff = pd->off + sizeof(struct tcphdr);
4045 #define	TCPOLEN_MINSACK	(TCPOLEN_SACK + 2)
4046 	if (olen < TCPOLEN_MINSACK ||
4047 	    !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, pd->af))
4048 		return (0);
4049 
4050 	eoh = opts + olen;
4051 	opt = opts;
4052 	while ((opt = pf_find_tcpopt(opt, opts, olen,
4053 	    TCPOPT_SACK, TCPOLEN_MINSACK)) != NULL)
4054 	{
4055 		size_t safelen = MIN(opt[1], (eoh - opt));
4056 		for (i = 2; i + TCPOLEN_SACK <= safelen; i += TCPOLEN_SACK) {
4057 			size_t startoff = (opt + i) - opts;
4058 			memcpy(&sack, &opt[i], sizeof(sack));
4059 			pf_patch_32(pd, &sack.start,
4060 			    htonl(ntohl(sack.start) - dst->seqdiff),
4061 			    PF_ALGNMNT(startoff));
4062 			pf_patch_32(pd, &sack.end,
4063 			    htonl(ntohl(sack.end) - dst->seqdiff),
4064 			    PF_ALGNMNT(startoff + sizeof(sack.start)));
4065 			memcpy(&opt[i], &sack, sizeof(sack));
4066 		}
4067 		copyback = 1;
4068 		opt += opt[1];
4069 	}
4070 
4071 	if (copyback)
4072 		m_copyback(pd->m, optsoff, olen, (caddr_t)opts);
4073 
4074 	return (copyback);
4075 }
4076 
4077 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,u_int sack,int rtableid,u_short * reason)4078 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
4079     const struct pf_addr *saddr, const struct pf_addr *daddr,
4080     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4081     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4082     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack,
4083     int rtableid, u_short *reason)
4084 {
4085 	struct mbuf	*m;
4086 	int		 len, tlen;
4087 #ifdef INET
4088 	struct ip	*h = NULL;
4089 #endif /* INET */
4090 #ifdef INET6
4091 	struct ip6_hdr	*h6 = NULL;
4092 #endif /* INET6 */
4093 	struct tcphdr	*th;
4094 	char		*opt;
4095 	struct pf_mtag  *pf_mtag;
4096 
4097 	len = 0;
4098 	th = NULL;
4099 
4100 	/* maximum segment size tcp option */
4101 	tlen = sizeof(struct tcphdr);
4102 	if (mss)
4103 		tlen += 4;
4104 	if (sack)
4105 		tlen += 2;
4106 
4107 	switch (af) {
4108 #ifdef INET
4109 	case AF_INET:
4110 		len = sizeof(struct ip) + tlen;
4111 		break;
4112 #endif /* INET */
4113 #ifdef INET6
4114 	case AF_INET6:
4115 		len = sizeof(struct ip6_hdr) + tlen;
4116 		break;
4117 #endif /* INET6 */
4118 	default:
4119 		unhandled_af(af);
4120 	}
4121 
4122 	m = m_gethdr(M_NOWAIT, MT_DATA);
4123 	if (m == NULL) {
4124 		REASON_SET(reason, PFRES_MEMORY);
4125 		return (NULL);
4126 	}
4127 
4128 #ifdef MAC
4129 	mac_netinet_firewall_send(m);
4130 #endif
4131 	if ((pf_mtag = pf_get_mtag(m)) == NULL) {
4132 		REASON_SET(reason, PFRES_MEMORY);
4133 		m_freem(m);
4134 		return (NULL);
4135 	}
4136 	m->m_flags |= mbuf_flags;
4137 	pf_mtag->tag = mtag_tag;
4138 	pf_mtag->flags = mtag_flags;
4139 
4140 	if (rtableid >= 0)
4141 		M_SETFIB(m, rtableid);
4142 
4143 #ifdef ALTQ
4144 	if (r != NULL && r->qid) {
4145 		pf_mtag->qid = r->qid;
4146 
4147 		/* add hints for ecn */
4148 		pf_mtag->hdr = mtod(m, struct ip *);
4149 	}
4150 #endif /* ALTQ */
4151 	m->m_data += max_linkhdr;
4152 	m->m_pkthdr.len = m->m_len = len;
4153 	/* The rest of the stack assumes a rcvif, so provide one.
4154 	 * This is a locally generated packet, so .. close enough. */
4155 	m->m_pkthdr.rcvif = V_loif;
4156 	bzero(m->m_data, len);
4157 	switch (af) {
4158 #ifdef INET
4159 	case AF_INET:
4160 		m->m_pkthdr.csum_flags |= CSUM_TCP;
4161 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4162 
4163 		h = mtod(m, struct ip *);
4164 
4165 		h->ip_p = IPPROTO_TCP;
4166 		h->ip_len = htons(tlen);
4167 		h->ip_v = 4;
4168 		h->ip_hl = sizeof(*h) >> 2;
4169 		h->ip_tos = IPTOS_LOWDELAY;
4170 		h->ip_len = htons(len);
4171 		h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4172 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
4173 		h->ip_sum = 0;
4174 		h->ip_src.s_addr = saddr->v4.s_addr;
4175 		h->ip_dst.s_addr = daddr->v4.s_addr;
4176 
4177 		th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
4178 		th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr,
4179 		    htons(len - sizeof(struct ip) + IPPROTO_TCP));
4180 		break;
4181 #endif /* INET */
4182 #ifdef INET6
4183 	case AF_INET6:
4184 		m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
4185 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4186 
4187 		h6 = mtod(m, struct ip6_hdr *);
4188 
4189 		/* IP header fields included in the TCP checksum */
4190 		h6->ip6_nxt = IPPROTO_TCP;
4191 		h6->ip6_plen = htons(tlen);
4192 		h6->ip6_vfc |= IPV6_VERSION;
4193 		h6->ip6_hlim = V_ip6_defhlim;
4194 		memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
4195 		memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
4196 
4197 		th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4198 		th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr),
4199 		    IPPROTO_TCP, 0);
4200 		break;
4201 #endif /* INET6 */
4202 	}
4203 
4204 	/* TCP header */
4205 	th->th_sport = sport;
4206 	th->th_dport = dport;
4207 	th->th_seq = htonl(seq);
4208 	th->th_ack = htonl(ack);
4209 	th->th_off = tlen >> 2;
4210 	tcp_set_flags(th, tcp_flags);
4211 	th->th_win = htons(win);
4212 
4213 	opt = (char *)(th + 1);
4214 	if (mss) {
4215 		opt = (char *)(th + 1);
4216 		opt[0] = TCPOPT_MAXSEG;
4217 		opt[1] = 4;
4218 		mss = htons(mss);
4219 		memcpy((opt + 2), &mss, 2);
4220 		opt += 4;
4221 	}
4222 	if (sack) {
4223 		opt[0] = TCPOPT_SACK_PERMITTED;
4224 		opt[1] = 2;
4225 		opt += 2;
4226 	}
4227 
4228 	return (m);
4229 }
4230 
4231 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4232 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4233     uint8_t ttl, int rtableid)
4234 {
4235 	struct mbuf		*m;
4236 #ifdef INET
4237 	struct ip		*h = NULL;
4238 #endif /* INET */
4239 #ifdef INET6
4240 	struct ip6_hdr		*h6 = NULL;
4241 #endif /* INET6 */
4242 	struct sctphdr		*hdr;
4243 	struct sctp_chunkhdr	*chunk;
4244 	struct pf_send_entry	*pfse;
4245 	int			 off = 0;
4246 
4247 	MPASS(af == pd->af);
4248 
4249 	m = m_gethdr(M_NOWAIT, MT_DATA);
4250 	if (m == NULL)
4251 		return;
4252 
4253 	m->m_data += max_linkhdr;
4254 	m->m_flags |= M_SKIP_FIREWALL;
4255 	/* The rest of the stack assumes a rcvif, so provide one.
4256 	 * This is a locally generated packet, so .. close enough. */
4257 	m->m_pkthdr.rcvif = V_loif;
4258 
4259 	/* IPv4|6 header */
4260 	switch (af) {
4261 #ifdef INET
4262 	case AF_INET:
4263 		bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4264 
4265 		h = mtod(m, struct ip *);
4266 
4267 		/* IP header fields included in the TCP checksum */
4268 
4269 		h->ip_p = IPPROTO_SCTP;
4270 		h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4271 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
4272 		h->ip_src = pd->dst->v4;
4273 		h->ip_dst = pd->src->v4;
4274 
4275 		off += sizeof(struct ip);
4276 		break;
4277 #endif /* INET */
4278 #ifdef INET6
4279 	case AF_INET6:
4280 		bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4281 
4282 		h6 = mtod(m, struct ip6_hdr *);
4283 
4284 		/* IP header fields included in the TCP checksum */
4285 		h6->ip6_vfc |= IPV6_VERSION;
4286 		h6->ip6_nxt = IPPROTO_SCTP;
4287 		h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4288 		h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4289 		memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4290 		memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4291 
4292 		off += sizeof(struct ip6_hdr);
4293 		break;
4294 #endif /* INET6 */
4295 	default:
4296 		unhandled_af(af);
4297 	}
4298 
4299 	/* SCTP header */
4300 	hdr = mtodo(m, off);
4301 
4302 	hdr->src_port = pd->hdr.sctp.dest_port;
4303 	hdr->dest_port = pd->hdr.sctp.src_port;
4304 	hdr->v_tag = pd->sctp_initiate_tag;
4305 	hdr->checksum = 0;
4306 
4307 	/* Abort chunk. */
4308 	off += sizeof(struct sctphdr);
4309 	chunk = mtodo(m, off);
4310 
4311 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4312 	chunk->chunk_length = htons(sizeof(*chunk));
4313 
4314 	/* SCTP checksum */
4315 	off += sizeof(*chunk);
4316 	m->m_pkthdr.len = m->m_len = off;
4317 
4318 	pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4319 
4320 	if (rtableid >= 0)
4321 		M_SETFIB(m, rtableid);
4322 
4323 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4324 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4325 	if (pfse == NULL) {
4326 		m_freem(m);
4327 		return;
4328 	}
4329 
4330 	switch (af) {
4331 #ifdef INET
4332 	case AF_INET:
4333 		pfse->pfse_type = PFSE_IP;
4334 		break;
4335 #endif /* INET */
4336 #ifdef INET6
4337 	case AF_INET6:
4338 		pfse->pfse_type = PFSE_IP6;
4339 		break;
4340 #endif /* INET6 */
4341 	}
4342 
4343 	pfse->pfse_m = m;
4344 	pf_send(pfse);
4345 }
4346 
4347 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid,u_short * reason)4348 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4349     const struct pf_addr *saddr, const struct pf_addr *daddr,
4350     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4351     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4352     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid,
4353     u_short *reason)
4354 {
4355 	struct pf_send_entry *pfse;
4356 	struct mbuf	*m;
4357 
4358 	m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4359 	    win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid, reason);
4360 	if (m == NULL)
4361 		return;
4362 
4363 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4364 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4365 	if (pfse == NULL) {
4366 		m_freem(m);
4367 		REASON_SET(reason, PFRES_MEMORY);
4368 		return;
4369 	}
4370 
4371 	switch (af) {
4372 #ifdef INET
4373 	case AF_INET:
4374 		pfse->pfse_type = PFSE_IP;
4375 		break;
4376 #endif /* INET */
4377 #ifdef INET6
4378 	case AF_INET6:
4379 		pfse->pfse_type = PFSE_IP6;
4380 		break;
4381 #endif /* INET6 */
4382 	default:
4383 		unhandled_af(af);
4384 	}
4385 
4386 	pfse->pfse_m = m;
4387 	pf_send(pfse);
4388 }
4389 
4390 static void
pf_undo_nat(struct pf_krule * nr,struct pf_pdesc * pd,uint16_t bip_sum)4391 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum)
4392 {
4393 	/* undo NAT changes, if they have taken place */
4394 	if (nr != NULL) {
4395 		pf_addrcpy(pd->src, &pd->osrc, pd->af);
4396 		pf_addrcpy(pd->dst, &pd->odst, pd->af);
4397 		if (pd->sport)
4398 			*pd->sport = pd->osport;
4399 		if (pd->dport)
4400 			*pd->dport = pd->odport;
4401 		if (pd->ip_sum)
4402 			*pd->ip_sum = bip_sum;
4403 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4404 	}
4405 }
4406 
4407 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4408 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4409     struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum,
4410     u_short *reason, int rtableid)
4411 {
4412 	pf_undo_nat(nr, pd, bip_sum);
4413 
4414 	if (pd->proto == IPPROTO_TCP &&
4415 	    ((r->rule_flag & PFRULE_RETURNRST) ||
4416 	    (r->rule_flag & PFRULE_RETURN)) &&
4417 	    !(tcp_get_flags(th) & TH_RST)) {
4418 		u_int32_t	 ack = ntohl(th->th_seq) + pd->p_len;
4419 
4420 		if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4421 		    IPPROTO_TCP, pd->af))
4422 			REASON_SET(reason, PFRES_PROTCKSUM);
4423 		else {
4424 			if (tcp_get_flags(th) & TH_SYN)
4425 				ack++;
4426 			if (tcp_get_flags(th) & TH_FIN)
4427 				ack++;
4428 			pf_send_tcp(r, pd->af, pd->dst,
4429 			    pd->src, th->th_dport, th->th_sport,
4430 			    ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4431 			    r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid,
4432 			    reason);
4433 		}
4434 	} else if (pd->proto == IPPROTO_SCTP &&
4435 	    (r->rule_flag & PFRULE_RETURN)) {
4436 		pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4437 	} else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4438 		r->return_icmp)
4439 		pf_send_icmp(pd->m, r->return_icmp >> 8,
4440 			r->return_icmp & 255, 0, pd->af, r, rtableid);
4441 	else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4442 		r->return_icmp6)
4443 		pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4444 			r->return_icmp6 & 255, 0, pd->af, r, rtableid);
4445 }
4446 
4447 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4448 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4449 {
4450 	struct m_tag *mtag;
4451 	u_int8_t mpcp;
4452 
4453 	mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4454 	if (mtag == NULL)
4455 		return (0);
4456 
4457 	if (prio == PF_PRIO_ZERO)
4458 		prio = 0;
4459 
4460 	mpcp = *(uint8_t *)(mtag + 1);
4461 
4462 	return (mpcp == prio);
4463 }
4464 
4465 static int
pf_icmp_to_bandlim(uint8_t type)4466 pf_icmp_to_bandlim(uint8_t type)
4467 {
4468 	switch (type) {
4469 		case ICMP_ECHO:
4470 		case ICMP_ECHOREPLY:
4471 			return (BANDLIM_ICMP_ECHO);
4472 		case ICMP_TSTAMP:
4473 		case ICMP_TSTAMPREPLY:
4474 			return (BANDLIM_ICMP_TSTAMP);
4475 		case ICMP_UNREACH:
4476 		default:
4477 			return (BANDLIM_ICMP_UNREACH);
4478 	}
4479 }
4480 
4481 static void
pf_send_challenge_ack(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_state_peer * src,struct pf_state_peer * dst,u_short * reason)4482 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s,
4483     struct pf_state_peer *src, struct pf_state_peer *dst,
4484     u_short *reason)
4485 {
4486 	/*
4487 	 * We are sending challenge ACK as a response to SYN packet, which
4488 	 * matches existing state (modulo TCP window check). Therefore packet
4489 	 * must be sent on behalf of destination.
4490 	 *
4491 	 * We expect sender to remain either silent, or send RST packet
4492 	 * so both, firewall and remote peer, can purge dead state from
4493 	 * memory.
4494 	 */
4495 	pf_send_tcp(s->rule, pd->af, pd->dst, pd->src,
4496 	    pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo,
4497 	    src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0,
4498 	    s->rule->rtableid, reason);
4499 }
4500 
4501 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,int mtu,sa_family_t af,struct pf_krule * r,int rtableid)4502 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, int mtu,
4503     sa_family_t af, struct pf_krule *r, int rtableid)
4504 {
4505 	struct pf_send_entry *pfse;
4506 	struct mbuf *m0;
4507 	struct pf_mtag *pf_mtag;
4508 
4509 	/* ICMP packet rate limitation. */
4510 	switch (af) {
4511 #ifdef INET6
4512 	case AF_INET6:
4513 		if (icmp6_ratelimit(NULL, type, code))
4514 			return;
4515 		break;
4516 #endif /* INET6 */
4517 #ifdef INET
4518 	case AF_INET:
4519 		if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4520 			return;
4521 		break;
4522 #endif /* INET */
4523 	}
4524 
4525 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4526 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4527 	if (pfse == NULL)
4528 		return;
4529 
4530 	if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4531 		free(pfse, M_PFTEMP);
4532 		return;
4533 	}
4534 
4535 	if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4536 		free(pfse, M_PFTEMP);
4537 		return;
4538 	}
4539 	/* XXX: revisit */
4540 	m0->m_flags |= M_SKIP_FIREWALL;
4541 
4542 	if (rtableid >= 0)
4543 		M_SETFIB(m0, rtableid);
4544 
4545 #ifdef ALTQ
4546 	if (r->qid) {
4547 		pf_mtag->qid = r->qid;
4548 		/* add hints for ecn */
4549 		pf_mtag->hdr = mtod(m0, struct ip *);
4550 	}
4551 #endif /* ALTQ */
4552 
4553 	switch (af) {
4554 #ifdef INET
4555 	case AF_INET:
4556 		pfse->pfse_type = PFSE_ICMP;
4557 		break;
4558 #endif /* INET */
4559 #ifdef INET6
4560 	case AF_INET6:
4561 		pfse->pfse_type = PFSE_ICMP6;
4562 		break;
4563 #endif /* INET6 */
4564 	}
4565 	pfse->pfse_m = m0;
4566 	pfse->icmpopts.type = type;
4567 	pfse->icmpopts.code = code;
4568 	pfse->icmpopts.mtu = mtu;
4569 	pf_send(pfse);
4570 }
4571 
4572 /*
4573  * Return ((n = 0) == (a = b [with mask m]))
4574  * Note: n != 0 => returns (a != b [with mask m])
4575  */
4576 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4577 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4578     const struct pf_addr *b, sa_family_t af)
4579 {
4580 	switch (af) {
4581 #ifdef INET
4582 	case AF_INET:
4583 		if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4584 			return (n == 0);
4585 		break;
4586 #endif /* INET */
4587 #ifdef INET6
4588 	case AF_INET6:
4589 		if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4590 			return (n == 0);
4591 		break;
4592 #endif /* INET6 */
4593 	}
4594 
4595 	return (n != 0);
4596 }
4597 
4598 /*
4599  * Return 1 if b <= a <= e, otherwise return 0.
4600  */
4601 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4602 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4603     const struct pf_addr *a, sa_family_t af)
4604 {
4605 	switch (af) {
4606 #ifdef INET
4607 	case AF_INET:
4608 		if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4609 		    (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4610 			return (0);
4611 		break;
4612 #endif /* INET */
4613 #ifdef INET6
4614 	case AF_INET6: {
4615 		int	i;
4616 
4617 		/* check a >= b */
4618 		for (i = 0; i < 4; ++i)
4619 			if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4620 				break;
4621 			else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4622 				return (0);
4623 		/* check a <= e */
4624 		for (i = 0; i < 4; ++i)
4625 			if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4626 				break;
4627 			else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4628 				return (0);
4629 		break;
4630 	}
4631 #endif /* INET6 */
4632 	}
4633 	return (1);
4634 }
4635 
4636 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)4637 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
4638 {
4639 	switch (op) {
4640 	case PF_OP_IRG:
4641 		return ((p > a1) && (p < a2));
4642 	case PF_OP_XRG:
4643 		return ((p < a1) || (p > a2));
4644 	case PF_OP_RRG:
4645 		return ((p >= a1) && (p <= a2));
4646 	case PF_OP_EQ:
4647 		return (p == a1);
4648 	case PF_OP_NE:
4649 		return (p != a1);
4650 	case PF_OP_LT:
4651 		return (p < a1);
4652 	case PF_OP_LE:
4653 		return (p <= a1);
4654 	case PF_OP_GT:
4655 		return (p > a1);
4656 	case PF_OP_GE:
4657 		return (p >= a1);
4658 	}
4659 	return (0); /* never reached */
4660 }
4661 
4662 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)4663 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
4664 {
4665 	return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p)));
4666 }
4667 
4668 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)4669 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
4670 {
4671 	if (u == -1 && op != PF_OP_EQ && op != PF_OP_NE)
4672 		return (0);
4673 	return (pf_match(op, a1, a2, u));
4674 }
4675 
4676 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)4677 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
4678 {
4679 	if (g == -1 && op != PF_OP_EQ && op != PF_OP_NE)
4680 		return (0);
4681 	return (pf_match(op, a1, a2, g));
4682 }
4683 
4684 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)4685 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
4686 {
4687 	if (*tag == -1)
4688 		*tag = mtag;
4689 
4690 	return ((!r->match_tag_not && r->match_tag == *tag) ||
4691 	    (r->match_tag_not && r->match_tag != *tag));
4692 }
4693 
4694 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)4695 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
4696 {
4697 	struct ifnet *ifp = m->m_pkthdr.rcvif;
4698 	struct pfi_kkif *kif;
4699 
4700 	if (ifp == NULL)
4701 		return (0);
4702 
4703 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
4704 
4705 	if (kif == NULL) {
4706 		DPFPRINTF(PF_DEBUG_URGENT,
4707 		    "%s: kif == NULL, @%d via %s", __func__, r->nr,
4708 			r->rcv_ifname);
4709 		return (0);
4710 	}
4711 
4712 	return (pfi_kkif_match(r->rcv_kif, kif));
4713 }
4714 
4715 int
pf_tag_packet(struct pf_pdesc * pd,int tag)4716 pf_tag_packet(struct pf_pdesc *pd, int tag)
4717 {
4718 
4719 	KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4720 
4721 	if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4722 		return (ENOMEM);
4723 
4724 	pd->pf_mtag->tag = tag;
4725 
4726 	return (0);
4727 }
4728 
4729 /*
4730  * XXX: We rely on malloc(9) returning pointer aligned addresses.
4731  */
4732 #define	PF_ANCHORSTACK_MATCH	0x00000001
4733 #define	PF_ANCHORSTACK_MASK	(PF_ANCHORSTACK_MATCH)
4734 
4735 #define	PF_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4736 #define	PF_ANCHOR_RULE(f)	(struct pf_krule *)			\
4737 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4738 #define	PF_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 			\
4739 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
4740 } while (0)
4741 
4742 enum pf_test_status
pf_step_into_anchor(struct pf_test_ctx * ctx,struct pf_krule * r)4743 pf_step_into_anchor(struct pf_test_ctx *ctx, struct pf_krule *r)
4744 {
4745 	enum pf_test_status	rv;
4746 
4747 	PF_RULES_RASSERT();
4748 
4749 	if (ctx->depth >= PF_ANCHOR_STACK_MAX) {
4750 		printf("%s: anchor stack overflow on %s\n",
4751 		    __func__, r->anchor->name);
4752 		return (PF_TEST_FAIL);
4753 	}
4754 
4755 	ctx->depth++;
4756 
4757 	if (r->anchor_wildcard) {
4758 		struct pf_kanchor *child;
4759 		rv = PF_TEST_OK;
4760 		RB_FOREACH(child, pf_kanchor_node, &r->anchor->children) {
4761 			rv = pf_match_rule(ctx, &child->ruleset);
4762 			if ((rv == PF_TEST_QUICK) || (rv == PF_TEST_FAIL)) {
4763 				/*
4764 				 * we either hit a rule with quick action
4765 				 * (more likely), or hit some runtime
4766 				 * error (e.g. pool_get() failure).
4767 				 */
4768 				break;
4769 			}
4770 		}
4771 	} else {
4772 		rv = pf_match_rule(ctx, &r->anchor->ruleset);
4773 		/*
4774 		 * Unless errors occured, stop iff any rule matched
4775 		 * within quick anchors.
4776 		 */
4777 		if (rv != PF_TEST_FAIL && r->quick == PF_TEST_QUICK &&
4778 		    *ctx->am == r)
4779 			rv = PF_TEST_QUICK;
4780 	}
4781 
4782 	ctx->depth--;
4783 
4784 	return (rv);
4785 }
4786 
4787 struct pf_keth_anchor_stackframe {
4788 	struct pf_keth_ruleset	*rs;
4789 	struct pf_keth_rule	*r;	/* XXX: + match bit */
4790 	struct pf_keth_anchor	*child;
4791 };
4792 
4793 #define	PF_ETH_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4794 #define	PF_ETH_ANCHOR_RULE(f)	(struct pf_keth_rule *)			\
4795 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4796 #define	PF_ETH_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 		\
4797 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
4798 } while (0)
4799 
4800 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4801 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4802     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4803     struct pf_keth_rule **a, int *match)
4804 {
4805 	struct pf_keth_anchor_stackframe	*f;
4806 
4807 	NET_EPOCH_ASSERT();
4808 
4809 	if (match)
4810 		*match = 0;
4811 	if (*depth >= PF_ANCHOR_STACK_MAX) {
4812 		printf("%s: anchor stack overflow on %s\n",
4813 		    __func__, (*r)->anchor->name);
4814 		*r = TAILQ_NEXT(*r, entries);
4815 		return;
4816 	} else if (*depth == 0 && a != NULL)
4817 		*a = *r;
4818 	f = stack + (*depth)++;
4819 	f->rs = *rs;
4820 	f->r = *r;
4821 	if ((*r)->anchor_wildcard) {
4822 		struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4823 
4824 		if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4825 			*r = NULL;
4826 			return;
4827 		}
4828 		*rs = &f->child->ruleset;
4829 	} else {
4830 		f->child = NULL;
4831 		*rs = &(*r)->anchor->ruleset;
4832 	}
4833 	*r = TAILQ_FIRST((*rs)->active.rules);
4834 }
4835 
4836 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4837 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4838     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4839     struct pf_keth_rule **a, int *match)
4840 {
4841 	struct pf_keth_anchor_stackframe	*f;
4842 	struct pf_keth_rule *fr;
4843 	int quick = 0;
4844 
4845 	NET_EPOCH_ASSERT();
4846 
4847 	do {
4848 		if (*depth <= 0)
4849 			break;
4850 		f = stack + *depth - 1;
4851 		fr = PF_ETH_ANCHOR_RULE(f);
4852 		if (f->child != NULL) {
4853 			/*
4854 			 * This block traverses through
4855 			 * a wildcard anchor.
4856 			 */
4857 			if (match != NULL && *match) {
4858 				/*
4859 				 * If any of "*" matched, then
4860 				 * "foo/ *" matched, mark frame
4861 				 * appropriately.
4862 				 */
4863 				PF_ETH_ANCHOR_SET_MATCH(f);
4864 				*match = 0;
4865 			}
4866 			f->child = RB_NEXT(pf_keth_anchor_node,
4867 			    &fr->anchor->children, f->child);
4868 			if (f->child != NULL) {
4869 				*rs = &f->child->ruleset;
4870 				*r = TAILQ_FIRST((*rs)->active.rules);
4871 				if (*r == NULL)
4872 					continue;
4873 				else
4874 					break;
4875 			}
4876 		}
4877 		(*depth)--;
4878 		if (*depth == 0 && a != NULL)
4879 			*a = NULL;
4880 		*rs = f->rs;
4881 		if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4882 			quick = fr->quick;
4883 		*r = TAILQ_NEXT(fr, entries);
4884 	} while (*r == NULL);
4885 
4886 	return (quick);
4887 }
4888 
4889 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4890 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4891     struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4892 {
4893 	switch (af) {
4894 #ifdef INET
4895 	case AF_INET:
4896 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4897 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4898 		break;
4899 #endif /* INET */
4900 #ifdef INET6
4901 	case AF_INET6:
4902 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4903 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4904 		naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4905 		((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4906 		naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4907 		((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4908 		naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4909 		((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4910 		break;
4911 #endif /* INET6 */
4912 	}
4913 }
4914 
4915 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4916 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4917 {
4918 	switch (af) {
4919 #ifdef INET
4920 	case AF_INET:
4921 		addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4922 		break;
4923 #endif /* INET */
4924 #ifdef INET6
4925 	case AF_INET6:
4926 		if (addr->addr32[3] == 0xffffffff) {
4927 			addr->addr32[3] = 0;
4928 			if (addr->addr32[2] == 0xffffffff) {
4929 				addr->addr32[2] = 0;
4930 				if (addr->addr32[1] == 0xffffffff) {
4931 					addr->addr32[1] = 0;
4932 					addr->addr32[0] =
4933 					    htonl(ntohl(addr->addr32[0]) + 1);
4934 				} else
4935 					addr->addr32[1] =
4936 					    htonl(ntohl(addr->addr32[1]) + 1);
4937 			} else
4938 				addr->addr32[2] =
4939 				    htonl(ntohl(addr->addr32[2]) + 1);
4940 		} else
4941 			addr->addr32[3] =
4942 			    htonl(ntohl(addr->addr32[3]) + 1);
4943 		break;
4944 #endif /* INET6 */
4945 	}
4946 }
4947 
4948 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4949 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4950 {
4951 	/*
4952 	 * Modern rules use the same flags in rules as they do in states.
4953 	 */
4954 	a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4955 	    PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4956 
4957 	/*
4958 	 * Old-style scrub rules have different flags which need to be translated.
4959 	 */
4960 	if (r->rule_flag & PFRULE_RANDOMID)
4961 		a->flags |= PFSTATE_RANDOMID;
4962 	if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4963 		a->flags |= PFSTATE_SETTOS;
4964 		a->set_tos = r->set_tos;
4965 	}
4966 
4967 	if (r->qid)
4968 		a->qid = r->qid;
4969 	if (r->pqid)
4970 		a->pqid = r->pqid;
4971 	if (r->rtableid >= 0)
4972 		a->rtableid = r->rtableid;
4973 	a->log |= r->log;
4974 	if (r->min_ttl)
4975 		a->min_ttl = r->min_ttl;
4976 	if (r->max_mss)
4977 		a->max_mss = r->max_mss;
4978 	if (r->dnpipe)
4979 		a->dnpipe = r->dnpipe;
4980 	if (r->dnrpipe)
4981 		a->dnrpipe = r->dnrpipe;
4982 	if (r->dnpipe || r->dnrpipe) {
4983 		if (r->free_flags & PFRULE_DN_IS_PIPE)
4984 			a->flags |= PFSTATE_DN_IS_PIPE;
4985 		else
4986 			a->flags &= ~PFSTATE_DN_IS_PIPE;
4987 	}
4988 	if (r->scrub_flags & PFSTATE_SETPRIO) {
4989 		a->set_prio[0] = r->set_prio[0];
4990 		a->set_prio[1] = r->set_prio[1];
4991 	}
4992 	if (r->allow_opts)
4993 		a->allow_opts = r->allow_opts;
4994 	if (r->max_pkt_size)
4995 		a->max_pkt_size = r->max_pkt_size;
4996 }
4997 
4998 int
pf_socket_lookup(struct pf_pdesc * pd)4999 pf_socket_lookup(struct pf_pdesc *pd)
5000 {
5001 	struct pf_addr		*saddr, *daddr;
5002 	u_int16_t		 sport, dport;
5003 	struct inpcbinfo	*pi;
5004 	struct inpcb		*inp;
5005 
5006 	pd->lookup.uid = -1;
5007 	pd->lookup.gid = -1;
5008 
5009 	switch (pd->proto) {
5010 	case IPPROTO_TCP:
5011 		sport = pd->hdr.tcp.th_sport;
5012 		dport = pd->hdr.tcp.th_dport;
5013 		pi = &V_tcbinfo;
5014 		break;
5015 	case IPPROTO_UDP:
5016 		sport = pd->hdr.udp.uh_sport;
5017 		dport = pd->hdr.udp.uh_dport;
5018 		pi = &V_udbinfo;
5019 		break;
5020 	default:
5021 		return (-1);
5022 	}
5023 	if (pd->dir == PF_IN) {
5024 		saddr = pd->src;
5025 		daddr = pd->dst;
5026 	} else {
5027 		u_int16_t	p;
5028 
5029 		p = sport;
5030 		sport = dport;
5031 		dport = p;
5032 		saddr = pd->dst;
5033 		daddr = pd->src;
5034 	}
5035 	switch (pd->af) {
5036 #ifdef INET
5037 	case AF_INET:
5038 		inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
5039 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
5040 		if (inp == NULL) {
5041 			inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
5042 			   daddr->v4, dport, INPLOOKUP_WILDCARD |
5043 			   INPLOOKUP_RLOCKPCB, NULL, pd->m);
5044 			if (inp == NULL)
5045 				return (-1);
5046 		}
5047 		break;
5048 #endif /* INET */
5049 #ifdef INET6
5050 	case AF_INET6:
5051 		inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
5052 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
5053 		if (inp == NULL) {
5054 			inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
5055 			    &daddr->v6, dport, INPLOOKUP_WILDCARD |
5056 			    INPLOOKUP_RLOCKPCB, NULL, pd->m);
5057 			if (inp == NULL)
5058 				return (-1);
5059 		}
5060 		break;
5061 #endif /* INET6 */
5062 	default:
5063 		unhandled_af(pd->af);
5064 	}
5065 	INP_RLOCK_ASSERT(inp);
5066 	pd->lookup.uid = inp->inp_cred->cr_uid;
5067 	pd->lookup.gid = inp->inp_cred->cr_gid;
5068 	INP_RUNLOCK(inp);
5069 
5070 	return (1);
5071 }
5072 
5073 /* post: r  => (r[0] == type /\ r[1] >= min_typelen >= 2  "validity"
5074  *                      /\ (eoh - r) >= min_typelen >= 2  "safety"  )
5075  *
5076  * warning: r + r[1] may exceed opts bounds for r[1] > min_typelen
5077  */
5078 uint8_t*
pf_find_tcpopt(u_int8_t * opt,u_int8_t * opts,size_t hlen,u_int8_t type,u_int8_t min_typelen)5079 pf_find_tcpopt(u_int8_t *opt, u_int8_t *opts, size_t hlen, u_int8_t type,
5080     u_int8_t min_typelen)
5081 {
5082 	uint8_t	*eoh = opts + hlen;
5083 
5084 	if (min_typelen < 2)
5085 		return (NULL);
5086 
5087 	while ((eoh - opt) >= min_typelen) {
5088 		switch (*opt) {
5089 		case TCPOPT_EOL:
5090 			/* FALLTHROUGH - Workaround the failure of some
5091 			 systems to NOP-pad their bzero'd option buffers,
5092 			 producing spurious EOLs */
5093 		case TCPOPT_NOP:
5094 			opt++;
5095 			continue;
5096 		default:
5097 		if (opt[0] == type &&
5098 			    opt[1] >= min_typelen)
5099 			return (opt);
5100 		}
5101 
5102 		opt += MAX(opt[1], 2); /* evade infinite loops */
5103 	}
5104 
5105 	return (NULL);
5106 }
5107 
5108 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)5109 pf_get_wscale(struct pf_pdesc *pd)
5110 {
5111 	int	 olen;
5112 	uint8_t	 opts[MAX_TCPOPTLEN], *opt;
5113 	uint8_t	 wscale = 0;
5114 
5115 	olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5116 	if (olen < TCPOLEN_WINDOW || !pf_pull_hdr(pd->m,
5117 	    pd->off + sizeof(struct tcphdr), opts, olen, NULL, pd->af))
5118 		return (0);
5119 
5120 	opt = opts;
5121 	while ((opt = pf_find_tcpopt(opt, opts, olen,
5122 		    TCPOPT_WINDOW, TCPOLEN_WINDOW)) != NULL) {
5123 		wscale = opt[2];
5124 		wscale = MIN(wscale, TCP_MAX_WINSHIFT);
5125 		wscale |= PF_WSCALE_FLAG;
5126 
5127 		opt += opt[1];
5128 	}
5129 
5130 	return (wscale);
5131 }
5132 
5133 u_int16_t
pf_get_mss(struct pf_pdesc * pd)5134 pf_get_mss(struct pf_pdesc *pd)
5135 {
5136 	int		 olen;
5137 	uint8_t		 opts[MAX_TCPOPTLEN], *opt;
5138 	u_int16_t	 mss = V_tcp_mssdflt;
5139 
5140 	olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5141 	if (olen < TCPOLEN_MAXSEG || !pf_pull_hdr(pd->m,
5142 	    pd->off + sizeof(struct tcphdr), opts, olen, NULL, pd->af))
5143 		return (0);
5144 
5145 	opt = opts;
5146 	while ((opt = pf_find_tcpopt(opt, opts, olen,
5147 	    TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) {
5148 		memcpy(&mss, (opt + 2), 2);
5149 		mss = ntohs(mss);
5150 		opt += opt[1];
5151 	}
5152 
5153 	return (mss);
5154 }
5155 
5156 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5157 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5158 {
5159 	struct nhop_object *nh;
5160 #ifdef INET6
5161 	struct in6_addr		dst6;
5162 	uint32_t		scopeid;
5163 #endif /* INET6 */
5164 	int			 hlen = 0;
5165 	uint16_t		 mss = 0;
5166 
5167 	NET_EPOCH_ASSERT();
5168 
5169 	switch (af) {
5170 #ifdef INET
5171 	case AF_INET:
5172 		hlen = sizeof(struct ip);
5173 		nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5174 		if (nh != NULL)
5175 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5176 		break;
5177 #endif /* INET */
5178 #ifdef INET6
5179 	case AF_INET6:
5180 		hlen = sizeof(struct ip6_hdr);
5181 		in6_splitscope(&addr->v6, &dst6, &scopeid);
5182 		nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5183 		if (nh != NULL)
5184 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5185 		break;
5186 #endif /* INET6 */
5187 	}
5188 
5189 	mss = max(V_tcp_mssdflt, mss);
5190 	mss = min(mss, offer);
5191 	mss = max(mss, 64);		/* sanity - at least max opt space */
5192 	return (mss);
5193 }
5194 
5195 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5196 pf_tcp_iss(struct pf_pdesc *pd)
5197 {
5198 	SHA512_CTX ctx;
5199 	union {
5200 		uint8_t bytes[SHA512_DIGEST_LENGTH];
5201 		uint32_t words[1];
5202 	} digest;
5203 
5204 	if (V_pf_tcp_secret_init == 0) {
5205 		arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5206 		SHA512_Init(&V_pf_tcp_secret_ctx);
5207 		SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5208 		    sizeof(V_pf_tcp_secret));
5209 		V_pf_tcp_secret_init = 1;
5210 	}
5211 
5212 	ctx = V_pf_tcp_secret_ctx;
5213 
5214 	SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short));
5215 	SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short));
5216 	switch (pd->af) {
5217 	case AF_INET6:
5218 		SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr));
5219 		SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr));
5220 		break;
5221 	case AF_INET:
5222 		SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr));
5223 		SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr));
5224 		break;
5225 	}
5226 	SHA512_Final(digest.bytes, &ctx);
5227 	V_pf_tcp_iss_off += 4096;
5228 #define	ISN_RANDOM_INCREMENT (4096 - 1)
5229 	return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5230 	    V_pf_tcp_iss_off);
5231 #undef	ISN_RANDOM_INCREMENT
5232 }
5233 
5234 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5235 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5236 {
5237 	bool match = true;
5238 
5239 	/* Always matches if not set */
5240 	if (! r->isset)
5241 		return (!r->neg);
5242 
5243 	for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5244 		if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5245 			match = false;
5246 			break;
5247 		}
5248 	}
5249 
5250 	return (match ^ r->neg);
5251 }
5252 
5253 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5254 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5255 {
5256 	if (*tag == -1)
5257 		*tag = mtag;
5258 
5259 	return ((!r->match_tag_not && r->match_tag == *tag) ||
5260 	    (r->match_tag_not && r->match_tag != *tag));
5261 }
5262 
5263 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5264 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5265 {
5266 	/* If we don't have the interface drop the packet. */
5267 	if (ifp == NULL) {
5268 		m_freem(m);
5269 		return;
5270 	}
5271 
5272 	switch (ifp->if_type) {
5273 	case IFT_ETHER:
5274 	case IFT_XETHER:
5275 	case IFT_L2VLAN:
5276 	case IFT_BRIDGE:
5277 	case IFT_IEEE8023ADLAG:
5278 		break;
5279 	default:
5280 		m_freem(m);
5281 		return;
5282 	}
5283 
5284 	ifp->if_transmit(ifp, m);
5285 }
5286 
5287 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5288 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5289 {
5290 #ifdef INET
5291 	struct ip ip;
5292 #endif /* INET */
5293 #ifdef INET6
5294 	struct ip6_hdr ip6;
5295 #endif /* INET6 */
5296 	struct mbuf *m = *m0;
5297 	struct ether_header *e;
5298 	struct pf_keth_rule *r, *rm, *a = NULL;
5299 	struct pf_keth_ruleset *ruleset = NULL;
5300 	struct pf_mtag *mtag;
5301 	struct pf_keth_ruleq *rules;
5302 	struct pf_addr *src = NULL, *dst = NULL;
5303 	struct pfi_kkif *bridge_to;
5304 	sa_family_t af = 0;
5305 	uint16_t proto;
5306 	int asd = 0, match = 0;
5307 	int tag = -1;
5308 	uint8_t action;
5309 	struct pf_keth_anchor_stackframe	anchor_stack[PF_ANCHOR_STACK_MAX];
5310 
5311 	MPASS(kif->pfik_ifp->if_vnet == curvnet);
5312 	NET_EPOCH_ASSERT();
5313 
5314 	PF_RULES_RLOCK_TRACKER;
5315 
5316 	SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5317 
5318 	mtag = pf_find_mtag(m);
5319 	if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5320 		/* Dummynet re-injects packets after they've
5321 		 * completed their delay. We've already
5322 		 * processed them, so pass unconditionally. */
5323 
5324 		/* But only once. We may see the packet multiple times (e.g.
5325 		 * PFIL_IN/PFIL_OUT). */
5326 		pf_dummynet_flag_remove(m, mtag);
5327 
5328 		return (PF_PASS);
5329 	}
5330 
5331 	if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5332 	    (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5333 		DPFPRINTF(PF_DEBUG_URGENT,
5334 		    "%s: m_len < sizeof(struct ether_header)"
5335 		     ", pullup failed", __func__);
5336 		return (PF_DROP);
5337 	}
5338 	e = mtod(m, struct ether_header *);
5339 	proto = ntohs(e->ether_type);
5340 
5341 	switch (proto) {
5342 #ifdef INET
5343 	case ETHERTYPE_IP: {
5344 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
5345 		    sizeof(ip)))
5346 			return (PF_DROP);
5347 
5348 		af = AF_INET;
5349 		m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5350 		    (caddr_t)&ip);
5351 		src = (struct pf_addr *)&ip.ip_src;
5352 		dst = (struct pf_addr *)&ip.ip_dst;
5353 		break;
5354 	}
5355 #endif /* INET */
5356 #ifdef INET6
5357 	case ETHERTYPE_IPV6: {
5358 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
5359 		    sizeof(ip6)))
5360 			return (PF_DROP);
5361 
5362 		af = AF_INET6;
5363 		m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5364 		    (caddr_t)&ip6);
5365 		src = (struct pf_addr *)&ip6.ip6_src;
5366 		dst = (struct pf_addr *)&ip6.ip6_dst;
5367 		break;
5368 	}
5369 #endif /* INET6 */
5370 	}
5371 
5372 	PF_RULES_RLOCK();
5373 
5374 	ruleset = V_pf_keth;
5375 	rules = atomic_load_ptr(&ruleset->active.rules);
5376 	for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) {
5377 		counter_u64_add(r->evaluations, 1);
5378 		SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5379 
5380 		if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5381 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5382 			    "kif");
5383 			r = r->skip[PFE_SKIP_IFP].ptr;
5384 		}
5385 		else if (r->direction && r->direction != dir) {
5386 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5387 			    "dir");
5388 			r = r->skip[PFE_SKIP_DIR].ptr;
5389 		}
5390 		else if (r->proto && r->proto != proto) {
5391 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5392 			    "proto");
5393 			r = r->skip[PFE_SKIP_PROTO].ptr;
5394 		}
5395 		else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5396 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5397 			    "src");
5398 			r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5399 		}
5400 		else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5401 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5402 			    "dst");
5403 			r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5404 		}
5405 		else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5406 		    r->ipsrc.neg, kif, M_GETFIB(m))) {
5407 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5408 			    "ip_src");
5409 			r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5410 		}
5411 		else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5412 		    r->ipdst.neg, kif, M_GETFIB(m))) {
5413 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5414 			    "ip_dst");
5415 			r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5416 		}
5417 		else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5418 		    mtag ? mtag->tag : 0)) {
5419 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5420 			    "match_tag");
5421 			r = TAILQ_NEXT(r, entries);
5422 		}
5423 		else {
5424 			if (r->tag)
5425 				tag = r->tag;
5426 			if (r->anchor == NULL) {
5427 				/* Rule matches */
5428 				rm = r;
5429 
5430 				SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5431 
5432 				if (r->quick)
5433 					break;
5434 
5435 				r = TAILQ_NEXT(r, entries);
5436 			} else {
5437 				pf_step_into_keth_anchor(anchor_stack, &asd,
5438 				    &ruleset, &r, &a, &match);
5439 			}
5440 		}
5441 		if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5442 		    &ruleset, &r, &a, &match))
5443 			break;
5444 	}
5445 
5446 	r = rm;
5447 
5448 	SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5449 
5450 	/* Default to pass. */
5451 	if (r == NULL) {
5452 		PF_RULES_RUNLOCK();
5453 		return (PF_PASS);
5454 	}
5455 
5456 	/* Execute action. */
5457 	counter_u64_add(r->packets[dir == PF_OUT], 1);
5458 	counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5459 	pf_update_timestamp(r);
5460 
5461 	/* Shortcut. Don't tag if we're just going to drop anyway. */
5462 	if (r->action == PF_DROP) {
5463 		PF_RULES_RUNLOCK();
5464 		return (PF_DROP);
5465 	}
5466 
5467 	if (tag > 0) {
5468 		if (mtag == NULL)
5469 			mtag = pf_get_mtag(m);
5470 		if (mtag == NULL) {
5471 			PF_RULES_RUNLOCK();
5472 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5473 			return (PF_DROP);
5474 		}
5475 		mtag->tag = tag;
5476 	}
5477 
5478 	if (r->qid != 0) {
5479 		if (mtag == NULL)
5480 			mtag = pf_get_mtag(m);
5481 		if (mtag == NULL) {
5482 			PF_RULES_RUNLOCK();
5483 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5484 			return (PF_DROP);
5485 		}
5486 		mtag->qid = r->qid;
5487 	}
5488 
5489 	action = r->action;
5490 	bridge_to = r->bridge_to;
5491 
5492 	/* Dummynet */
5493 	if (r->dnpipe) {
5494 		struct ip_fw_args dnflow;
5495 
5496 		/* Drop packet if dummynet is not loaded. */
5497 		if (ip_dn_io_ptr == NULL) {
5498 			PF_RULES_RUNLOCK();
5499 			m_freem(m);
5500 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5501 			return (PF_DROP);
5502 		}
5503 		if (mtag == NULL)
5504 			mtag = pf_get_mtag(m);
5505 		if (mtag == NULL) {
5506 			PF_RULES_RUNLOCK();
5507 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5508 			return (PF_DROP);
5509 		}
5510 
5511 		bzero(&dnflow, sizeof(dnflow));
5512 
5513 		/* We don't have port numbers here, so we set 0.  That means
5514 		 * that we'll be somewhat limited in distinguishing flows (i.e.
5515 		 * only based on IP addresses, not based on port numbers), but
5516 		 * it's better than nothing. */
5517 		dnflow.f_id.dst_port = 0;
5518 		dnflow.f_id.src_port = 0;
5519 		dnflow.f_id.proto = 0;
5520 
5521 		dnflow.rule.info = r->dnpipe;
5522 		dnflow.rule.info |= IPFW_IS_DUMMYNET;
5523 		if (r->dnflags & PFRULE_DN_IS_PIPE)
5524 			dnflow.rule.info |= IPFW_IS_PIPE;
5525 
5526 		dnflow.f_id.extra = dnflow.rule.info;
5527 
5528 		dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5529 		dnflow.flags |= IPFW_ARGS_ETHER;
5530 		dnflow.ifp = kif->pfik_ifp;
5531 
5532 		switch (af) {
5533 		case AF_INET:
5534 			dnflow.f_id.addr_type = 4;
5535 			dnflow.f_id.src_ip = src->v4.s_addr;
5536 			dnflow.f_id.dst_ip = dst->v4.s_addr;
5537 			break;
5538 		case AF_INET6:
5539 			dnflow.flags |= IPFW_ARGS_IP6;
5540 			dnflow.f_id.addr_type = 6;
5541 			dnflow.f_id.src_ip6 = src->v6;
5542 			dnflow.f_id.dst_ip6 = dst->v6;
5543 			break;
5544 		}
5545 
5546 		PF_RULES_RUNLOCK();
5547 
5548 		mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5549 		ip_dn_io_ptr(m0, &dnflow);
5550 		if (*m0 != NULL)
5551 			pf_dummynet_flag_remove(m, mtag);
5552 	} else {
5553 		PF_RULES_RUNLOCK();
5554 	}
5555 
5556 	if (action == PF_PASS && bridge_to) {
5557 		pf_bridge_to(bridge_to->pfik_ifp, *m0);
5558 		*m0 = NULL; /* We've eaten the packet. */
5559 	}
5560 
5561 	return (action);
5562 }
5563 
5564 #define PF_TEST_ATTRIB(t, a)		\
5565 	if (t) {			\
5566 		r = a;			\
5567 		continue;		\
5568 	} else do {			\
5569 	} while (0)
5570 
5571 static __inline u_short
pf_rule_apply_nat(struct pf_test_ctx * ctx,struct pf_krule * r)5572 pf_rule_apply_nat(struct pf_test_ctx *ctx, struct pf_krule *r)
5573 {
5574 	struct pf_pdesc	*pd = ctx->pd;
5575 	u_short		 transerror;
5576 	u_int8_t	 nat_action;
5577 
5578 	if (r->rule_flag & PFRULE_AFTO) {
5579 		/* Don't translate if there was an old style NAT rule */
5580 		if (ctx->nr != NULL)
5581 			return (PFRES_TRANSLATE);
5582 
5583 		/* pass af-to rules, unsupported on match rules */
5584 		KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__));
5585 		/* XXX I can imagine scenarios where we have both NAT and RDR source tracking */
5586 		ctx->nat_pool = &(r->nat);
5587 		ctx->nr = r;
5588 		pd->naf = r->naf;
5589 		if (pf_get_transaddr_af(ctx->nr, pd) == -1) {
5590 			return (PFRES_TRANSLATE);
5591 		}
5592 		return (PFRES_MATCH);
5593 	} else if (r->rdr.cur || r->nat.cur) {
5594 		/* Don't translate if there was an old style NAT rule */
5595 		if (ctx->nr != NULL)
5596 			return (PFRES_TRANSLATE);
5597 
5598 		/* match/pass nat-to/rdr-to rules */
5599 		ctx->nr = r;
5600 		if (r->nat.cur) {
5601 			nat_action = PF_NAT;
5602 			ctx->nat_pool = &(r->nat);
5603 		} else {
5604 			nat_action = PF_RDR;
5605 			ctx->nat_pool = &(r->rdr);
5606 		}
5607 
5608 		transerror = pf_get_transaddr(ctx, ctx->nr,
5609 		    nat_action, ctx->nat_pool);
5610 		if (transerror == PFRES_MATCH) {
5611 			ctx->rewrite += pf_translate_compat(ctx);
5612 			return(PFRES_MATCH);
5613 		}
5614 		return (transerror);
5615 	}
5616 
5617 	return (PFRES_MAX);
5618 }
5619 
5620 enum pf_test_status
pf_match_rule(struct pf_test_ctx * ctx,struct pf_kruleset * ruleset)5621 pf_match_rule(struct pf_test_ctx *ctx, struct pf_kruleset *ruleset)
5622 {
5623 	struct pf_krule_item	*ri;
5624 	struct pf_krule		*r;
5625 	struct pf_krule		*save_a;
5626 	struct pf_kruleset	*save_aruleset;
5627 	struct pf_pdesc		*pd = ctx->pd;
5628 	u_short			 transerror;
5629 
5630 	r = TAILQ_FIRST(ruleset->rules[PF_RULESET_FILTER].active.ptr);
5631 	while (r != NULL) {
5632 		if (ctx->pd->related_rule) {
5633 			*ctx->rm = ctx->pd->related_rule;
5634 			break;
5635 		}
5636 		pf_counter_u64_add(&r->evaluations, 1);
5637 		PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5638 			r->skip[PF_SKIP_IFP]);
5639 		PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5640 			r->skip[PF_SKIP_DIR]);
5641 		PF_TEST_ATTRIB(r->af && r->af != pd->af,
5642 			r->skip[PF_SKIP_AF]);
5643 		PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5644 			r->skip[PF_SKIP_PROTO]);
5645 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
5646 		    r->src.neg, pd->kif, M_GETFIB(pd->m)),
5647 			r->skip[PF_SKIP_SRC_ADDR]);
5648 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
5649 		    r->dst.neg, NULL, M_GETFIB(pd->m)),
5650 			r->skip[PF_SKIP_DST_ADDR]);
5651 		switch (pd->virtual_proto) {
5652 		case PF_VPROTO_FRAGMENT:
5653 			/* tcp/udp only. port_op always 0 in other cases */
5654 			PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5655 				TAILQ_NEXT(r, entries));
5656 			PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5657 				TAILQ_NEXT(r, entries));
5658 			/* icmp only. type/code always 0 in other cases */
5659 			PF_TEST_ATTRIB((r->type || r->code),
5660 				TAILQ_NEXT(r, entries));
5661 			/* tcp/udp only. {uid|gid}.op always 0 in other cases */
5662 			PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5663 				TAILQ_NEXT(r, entries));
5664 			break;
5665 
5666 		case IPPROTO_TCP:
5667 			PF_TEST_ATTRIB((r->flagset & tcp_get_flags(ctx->th))
5668 			    != r->flags,
5669 				TAILQ_NEXT(r, entries));
5670 			/* FALLTHROUGH */
5671 		case IPPROTO_SCTP:
5672 		case IPPROTO_UDP:
5673 			/* tcp/udp only. port_op always 0 in other cases */
5674 			PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5675 			    r->src.port[0], r->src.port[1], pd->nsport),
5676 				r->skip[PF_SKIP_SRC_PORT]);
5677 			/* tcp/udp only. port_op always 0 in other cases */
5678 			PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5679 			    r->dst.port[0], r->dst.port[1], pd->ndport),
5680 				r->skip[PF_SKIP_DST_PORT]);
5681 			/* tcp/udp only. uid.op always 0 in other cases */
5682 			PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5683 			    pf_socket_lookup(pd), 1)) &&
5684 			    !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5685 			    pd->lookup.uid),
5686 				TAILQ_NEXT(r, entries));
5687 			/* tcp/udp only. gid.op always 0 in other cases */
5688 			PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5689 			    pf_socket_lookup(pd), 1)) &&
5690 			    !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5691 			    pd->lookup.gid),
5692 				TAILQ_NEXT(r, entries));
5693 			break;
5694 
5695 		case IPPROTO_ICMP:
5696 		case IPPROTO_ICMPV6:
5697 			/* icmp only. type always 0 in other cases */
5698 			PF_TEST_ATTRIB(r->type && r->type != ctx->icmptype + 1,
5699 				TAILQ_NEXT(r, entries));
5700 			/* icmp only. type always 0 in other cases */
5701 			PF_TEST_ATTRIB(r->code && r->code != ctx->icmpcode + 1,
5702 				TAILQ_NEXT(r, entries));
5703 			break;
5704 
5705 		default:
5706 			break;
5707 		}
5708 		PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5709 			TAILQ_NEXT(r, entries));
5710 		PF_TEST_ATTRIB(r->prio &&
5711 		    !pf_match_ieee8021q_pcp(r->prio, pd->m),
5712 			TAILQ_NEXT(r, entries));
5713 		PF_TEST_ATTRIB(r->prob &&
5714 		    r->prob <= arc4random(),
5715 			TAILQ_NEXT(r, entries));
5716 		PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r,
5717 		    &ctx->tag, pd->pf_mtag ? pd->pf_mtag->tag : 0),
5718 			TAILQ_NEXT(r, entries));
5719 		PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) ==
5720 		   r->rcvifnot),
5721 			TAILQ_NEXT(r, entries));
5722 		PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5723 		    pd->virtual_proto != PF_VPROTO_FRAGMENT),
5724 			TAILQ_NEXT(r, entries));
5725 		PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5726 		    (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5727 		    pf_osfp_fingerprint(pd, ctx->th),
5728 		    r->os_fingerprint)),
5729 			TAILQ_NEXT(r, entries));
5730 		/* must be last! */
5731 		if (r->pktrate.limit) {
5732 			PF_TEST_ATTRIB((pf_check_threshold(&r->pktrate)),
5733 			    TAILQ_NEXT(r, entries));
5734 		}
5735 		/* FALLTHROUGH */
5736 		if (r->tag)
5737 			ctx->tag = r->tag;
5738 		if (r->anchor == NULL) {
5739 			if (r->action == PF_MATCH) {
5740 				/*
5741 				 * Apply translations before increasing counters,
5742 				 * in case it fails.
5743 				 */
5744 				transerror = pf_rule_apply_nat(ctx, r);
5745 				switch (transerror) {
5746 				case PFRES_MATCH:
5747 					/* Translation action found in rule and applied successfully */
5748 				case PFRES_MAX:
5749 					/* No translation action found in rule */
5750 					break;
5751 				default:
5752 					/* Translation action found in rule but failed to apply */
5753 					REASON_SET(&ctx->reason, transerror);
5754 					return (PF_TEST_FAIL);
5755 				}
5756 				ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5757 				if (ri == NULL) {
5758 					REASON_SET(&ctx->reason, PFRES_MEMORY);
5759 					return (PF_TEST_FAIL);
5760 				}
5761 				ri->r = r;
5762 				SLIST_INSERT_HEAD(&ctx->rules, ri, entry);
5763 				pf_counter_u64_critical_enter();
5764 				pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5765 				pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5766 				pf_counter_u64_critical_exit();
5767 				pf_rule_to_actions(r, &pd->act);
5768 				if (r->log)
5769 					PFLOG_PACKET(r->action, PFRES_MATCH, r,
5770 					    ctx->a, ruleset, pd, 1, NULL);
5771 			} else {
5772 				/*
5773 				 * found matching r
5774 				 */
5775 				*ctx->rm = r;
5776 				/*
5777 				 * anchor, with ruleset, where r belongs to
5778 				 */
5779 				*ctx->am = ctx->a;
5780 				/*
5781 				 * ruleset where r belongs to
5782 				 */
5783 				*ctx->rsm = ruleset;
5784 				/*
5785 				 * ruleset, where anchor belongs to.
5786 				 */
5787 				ctx->arsm = ctx->aruleset;
5788 			}
5789 			if (pd->act.log & PF_LOG_MATCHES)
5790 				pf_log_matches(pd, r, ctx->a, ruleset, &ctx->rules);
5791 			if (r->quick) {
5792 				ctx->test_status = PF_TEST_QUICK;
5793 				break;
5794 			}
5795 		} else {
5796 			save_a = ctx->a;
5797 			save_aruleset = ctx->aruleset;
5798 
5799 			ctx->a = r;			/* remember anchor */
5800 			ctx->aruleset = ruleset;	/* and its ruleset */
5801 			if (ctx->a->quick)
5802 				ctx->test_status = PF_TEST_QUICK;
5803 			/*
5804 			 * Note: we don't need to restore if we are not going
5805 			 * to continue with ruleset evaluation.
5806 			 */
5807 			if (pf_step_into_anchor(ctx, r) != PF_TEST_OK) {
5808 				break;
5809 			}
5810 			ctx->a = save_a;
5811 			ctx->aruleset = save_aruleset;
5812 		}
5813 		r = TAILQ_NEXT(r, entries);
5814 	}
5815 
5816 	return (ctx->test_status);
5817 }
5818 
5819 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,u_short * reason,struct inpcb * inp)5820 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
5821     struct pf_pdesc *pd, struct pf_krule **am,
5822     struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp)
5823 {
5824 	struct pf_krule		*r = NULL;
5825 	struct pf_kruleset	*ruleset = NULL;
5826 	struct pf_krule_item	*ri;
5827 	struct pf_test_ctx	 ctx;
5828 	u_short			 transerror;
5829 	int			 action = PF_PASS;
5830 	u_int16_t		 bproto_sum = 0, bip_sum = 0;
5831 	enum pf_test_status	 rv;
5832 
5833 	PF_RULES_RASSERT();
5834 
5835 	bzero(&ctx, sizeof(ctx));
5836 	ctx.tag = -1;
5837 	ctx.pd = pd;
5838 	ctx.rm = rm;
5839 	ctx.am = am;
5840 	ctx.rsm = rsm;
5841 	ctx.th = &pd->hdr.tcp;
5842 	ctx.reason = *reason;
5843 	SLIST_INIT(&ctx.rules);
5844 
5845 	pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
5846 	pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
5847 
5848 	if (inp != NULL) {
5849 		INP_LOCK_ASSERT(inp);
5850 		pd->lookup.uid = inp->inp_cred->cr_uid;
5851 		pd->lookup.gid = inp->inp_cred->cr_gid;
5852 		pd->lookup.done = 1;
5853 	}
5854 
5855 	if (pd->ip_sum)
5856 		bip_sum = *pd->ip_sum;
5857 
5858 	switch (pd->virtual_proto) {
5859 	case IPPROTO_TCP:
5860 		bproto_sum = ctx.th->th_sum;
5861 		pd->nsport = ctx.th->th_sport;
5862 		pd->ndport = ctx.th->th_dport;
5863 		break;
5864 	case IPPROTO_UDP:
5865 		bproto_sum = pd->hdr.udp.uh_sum;
5866 		pd->nsport = pd->hdr.udp.uh_sport;
5867 		pd->ndport = pd->hdr.udp.uh_dport;
5868 		break;
5869 	case IPPROTO_SCTP:
5870 		pd->nsport = pd->hdr.sctp.src_port;
5871 		pd->ndport = pd->hdr.sctp.dest_port;
5872 		break;
5873 #ifdef INET
5874 	case IPPROTO_ICMP:
5875 		MPASS(pd->af == AF_INET);
5876 		ctx.icmptype = pd->hdr.icmp.icmp_type;
5877 		ctx.icmpcode = pd->hdr.icmp.icmp_code;
5878 		ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5879 		    &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5880 		if (ctx.icmp_dir == PF_IN) {
5881 			pd->nsport = ctx.virtual_id;
5882 			pd->ndport = ctx.virtual_type;
5883 		} else {
5884 			pd->nsport = ctx.virtual_type;
5885 			pd->ndport = ctx.virtual_id;
5886 		}
5887 		break;
5888 #endif /* INET */
5889 #ifdef INET6
5890 	case IPPROTO_ICMPV6:
5891 		MPASS(pd->af == AF_INET6);
5892 		ctx.icmptype = pd->hdr.icmp6.icmp6_type;
5893 		ctx.icmpcode = pd->hdr.icmp6.icmp6_code;
5894 		ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5895 		    &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5896 		if (ctx.icmp_dir == PF_IN) {
5897 			pd->nsport = ctx.virtual_id;
5898 			pd->ndport = ctx.virtual_type;
5899 		} else {
5900 			pd->nsport = ctx.virtual_type;
5901 			pd->ndport = ctx.virtual_id;
5902 		}
5903 
5904 		break;
5905 #endif /* INET6 */
5906 	default:
5907 		pd->nsport = pd->ndport = 0;
5908 		break;
5909 	}
5910 	pd->osport = pd->nsport;
5911 	pd->odport = pd->ndport;
5912 
5913 	/* check packet for BINAT/NAT/RDR */
5914 	transerror = pf_get_translation(&ctx);
5915 	switch (transerror) {
5916 	default:
5917 		/* A translation error occurred. */
5918 		REASON_SET(&ctx.reason, transerror);
5919 		goto cleanup;
5920 	case PFRES_MAX:
5921 		/* No match. */
5922 		break;
5923 	case PFRES_MATCH:
5924 		KASSERT(ctx.sk != NULL, ("%s: null sk", __func__));
5925 		KASSERT(ctx.nk != NULL, ("%s: null nk", __func__));
5926 		if (ctx.nr->log) {
5927 			PFLOG_PACKET(ctx.nr->action, PFRES_MATCH, ctx.nr, ctx.a,
5928 			    ruleset, pd, 1, NULL);
5929 		}
5930 
5931 		ctx.rewrite += pf_translate_compat(&ctx);
5932 		ctx.nat_pool = &(ctx.nr->rdr);
5933 	}
5934 
5935 	ruleset = &pf_main_ruleset;
5936 	rv = pf_match_rule(&ctx, ruleset);
5937 	if (rv == PF_TEST_FAIL) {
5938 		/*
5939 		 * Reason has been set in pf_match_rule() already.
5940 		 */
5941 		goto cleanup;
5942 	}
5943 
5944 	r = *ctx.rm;			/* matching rule */
5945 	ctx.a = *ctx.am;		/* rule that defines an anchor containing 'r' */
5946 	ruleset = *ctx.rsm;		/* ruleset of the anchor defined by the rule 'a' */
5947 	ctx.aruleset = ctx.arsm;	/* ruleset of the 'a' rule itself */
5948 
5949 	REASON_SET(&ctx.reason, PFRES_MATCH);
5950 
5951 	/* apply actions for last matching pass/block rule */
5952 	pf_rule_to_actions(r, &pd->act);
5953 	transerror = pf_rule_apply_nat(&ctx, r);
5954 	switch (transerror) {
5955 	case PFRES_MATCH:
5956 		/* Translation action found in rule and applied successfully */
5957 	case PFRES_MAX:
5958 		/* No translation action found in rule */
5959 		break;
5960 	default:
5961 		/* Translation action found in rule but failed to apply */
5962 		REASON_SET(&ctx.reason, transerror);
5963 		goto cleanup;
5964 	}
5965 
5966 	if (r->log) {
5967 		if (ctx.rewrite)
5968 			m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5969 		PFLOG_PACKET(r->action, ctx.reason, r, ctx.a, ruleset, pd, 1, NULL);
5970 	}
5971 	if (pd->act.log & PF_LOG_MATCHES)
5972 		pf_log_matches(pd, r, ctx.a, ruleset, &ctx.rules);
5973 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5974 	   (r->action == PF_DROP) &&
5975 	    ((r->rule_flag & PFRULE_RETURNRST) ||
5976 	    (r->rule_flag & PFRULE_RETURNICMP) ||
5977 	    (r->rule_flag & PFRULE_RETURN))) {
5978 		pf_return(r, ctx.nr, pd, ctx.th, bproto_sum,
5979 		    bip_sum, &ctx.reason, r->rtableid);
5980 	}
5981 
5982 	if (r->action == PF_DROP)
5983 		goto cleanup;
5984 
5985 	if (ctx.tag > 0 && pf_tag_packet(pd, ctx.tag)) {
5986 		REASON_SET(&ctx.reason, PFRES_MEMORY);
5987 		goto cleanup;
5988 	}
5989 	if (pd->act.rtableid >= 0)
5990 		M_SETFIB(pd->m, pd->act.rtableid);
5991 
5992 	if (r->rt) {
5993 		/*
5994 		 * Set act.rt here instead of in pf_rule_to_actions() because
5995 		 * it is applied only from the last pass rule. For rules
5996 		 * with the prefer-ipv6-nexthop option act.rt_af is a hint
5997 		 * about AF of the forwarded packet and might be changed.
5998 		 */
5999 		pd->act.rt = r->rt;
6000 		if (r->rt == PF_REPLYTO)
6001 			pd->act.rt_af = pd->af;
6002 		else
6003 			pd->act.rt_af = pd->naf;
6004 		if ((transerror = pf_map_addr_sn(pd->af, r, pd->src,
6005 		    &pd->act.rt_addr, &pd->act.rt_af, &pd->act.rt_kif, NULL,
6006 		    &(r->route), PF_SN_ROUTE)) != PFRES_MATCH) {
6007 			REASON_SET(&ctx.reason, transerror);
6008 			goto cleanup;
6009 		}
6010 	}
6011 
6012 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
6013 	   (!ctx.state_icmp && (r->keep_state || ctx.nr != NULL ||
6014 	    (pd->flags & PFDESC_TCP_NORM)))) {
6015 		bool nat64;
6016 
6017 		action = pf_create_state(r, &ctx, sm, bproto_sum, bip_sum);
6018 		ctx.sk = ctx.nk = NULL;
6019 		if (action != PF_PASS) {
6020 			pf_udp_mapping_release(ctx.udp_mapping);
6021 			if (r->log || (ctx.nr != NULL && ctx.nr->log) ||
6022 			    ctx.reason == PFRES_MEMORY)
6023 				pd->act.log |= PF_LOG_FORCE;
6024 			if (action == PF_DROP &&
6025 			    (r->rule_flag & PFRULE_RETURN))
6026 				pf_return(r, ctx.nr, pd, ctx.th,
6027 				    bproto_sum, bip_sum, &ctx.reason,
6028 				    pd->act.rtableid);
6029 			*reason = ctx.reason;
6030 			return (action);
6031 		}
6032 
6033 		nat64 = pd->af != pd->naf;
6034 		if (nat64) {
6035 			int			 ret;
6036 
6037 			if (ctx.sk == NULL)
6038 				ctx.sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
6039 			if (ctx.nk == NULL)
6040 				ctx.nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
6041 
6042 			if (pd->dir == PF_IN) {
6043 				ret = pf_translate(pd, &ctx.sk->addr[pd->didx],
6044 				    ctx.sk->port[pd->didx], &ctx.sk->addr[pd->sidx],
6045 				    ctx.sk->port[pd->sidx], ctx.virtual_type,
6046 				    ctx.icmp_dir);
6047 			} else {
6048 				ret = pf_translate(pd, &ctx.sk->addr[pd->sidx],
6049 				    ctx.sk->port[pd->sidx], &ctx.sk->addr[pd->didx],
6050 				    ctx.sk->port[pd->didx], ctx.virtual_type,
6051 				    ctx.icmp_dir);
6052 			}
6053 
6054 			if (ret < 0)
6055 				goto cleanup;
6056 
6057 			ctx.rewrite += ret;
6058 
6059 			if (ctx.rewrite && ctx.sk->af != ctx.nk->af)
6060 				action = PF_AFRT;
6061 		}
6062 	} else {
6063 		while ((ri = SLIST_FIRST(&ctx.rules))) {
6064 			SLIST_REMOVE_HEAD(&ctx.rules, entry);
6065 			free(ri, M_PF_RULE_ITEM);
6066 		}
6067 
6068 		uma_zfree(V_pf_state_key_z, ctx.sk);
6069 		uma_zfree(V_pf_state_key_z, ctx.nk);
6070 		ctx.sk = ctx.nk = NULL;
6071 		pf_udp_mapping_release(ctx.udp_mapping);
6072 	}
6073 
6074 	/* copy back packet headers if we performed NAT operations */
6075 	if (ctx.rewrite)
6076 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6077 
6078 	if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
6079 	    pd->dir == PF_OUT &&
6080 	    V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) {
6081 		/*
6082 		 * We want the state created, but we dont
6083 		 * want to send this in case a partner
6084 		 * firewall has to know about it to allow
6085 		 * replies through it.
6086 		 */
6087 		*reason = ctx.reason;
6088 		return (PF_DEFER);
6089 	}
6090 
6091 	*reason = ctx.reason;
6092 	return (action);
6093 
6094 cleanup:
6095 	while ((ri = SLIST_FIRST(&ctx.rules))) {
6096 		SLIST_REMOVE_HEAD(&ctx.rules, entry);
6097 		free(ri, M_PF_RULE_ITEM);
6098 	}
6099 
6100 	uma_zfree(V_pf_state_key_z, ctx.sk);
6101 	uma_zfree(V_pf_state_key_z, ctx.nk);
6102 	pf_udp_mapping_release(ctx.udp_mapping);
6103 	*reason = ctx.reason;
6104 
6105 	return (PF_DROP);
6106 }
6107 
6108 static int
pf_create_state(struct pf_krule * r,struct pf_test_ctx * ctx,struct pf_kstate ** sm,u_int16_t bproto_sum,u_int16_t bip_sum)6109 pf_create_state(struct pf_krule *r, struct pf_test_ctx *ctx,
6110     struct pf_kstate **sm, u_int16_t bproto_sum, u_int16_t bip_sum)
6111 {
6112 	struct pf_pdesc		*pd = ctx->pd;
6113 	struct pf_kstate	*s = NULL;
6114 	struct pf_ksrc_node	*sns[PF_SN_MAX] = { NULL };
6115 	/*
6116 	 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same
6117 	 *        but for PF_SN_NAT it is different. Don't try optimizing it,
6118 	 *        just store all 3 hashes.
6119 	 */
6120 	struct pf_srchash	*snhs[PF_SN_MAX] = { NULL };
6121 	struct tcphdr		*th = &pd->hdr.tcp;
6122 	u_int16_t		 mss = V_tcp_mssdflt;
6123 	u_short			 sn_reason;
6124 	struct pf_krule_item	*ri;
6125 
6126 	/* check maximums */
6127 	if (r->max_states &&
6128 	    (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6129 		counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6130 		REASON_SET(&ctx->reason, PFRES_MAXSTATES);
6131 		goto csfailed;
6132 	}
6133 	/* src node for limits */
6134 	if ((r->rule_flag & PFRULE_SRCTRACK) &&
6135 	    (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af,
6136 	    NULL, NULL, pd->af, PF_SN_LIMIT)) != 0) {
6137 		REASON_SET(&ctx->reason, sn_reason);
6138 		goto csfailed;
6139 	}
6140 	/* src node for route-to rule */
6141 	if (r->rt) {
6142 		if ((r->route.opts & PF_POOL_STICKYADDR) &&
6143 		    (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src,
6144 		    pd->af, &pd->act.rt_addr, pd->act.rt_kif, pd->act.rt_af,
6145 		    PF_SN_ROUTE)) != 0) {
6146 			REASON_SET(&ctx->reason, sn_reason);
6147 			goto csfailed;
6148 		}
6149 	}
6150 	/* src node for translation rule */
6151 	if (ctx->nr != NULL) {
6152 		KASSERT(ctx->nat_pool != NULL, ("%s: nat_pool is NULL", __func__));
6153 		/*
6154 		 * The NAT addresses are chosen during ruleset parsing.
6155 		 * The new afto code stores post-nat addresses in nsaddr.
6156 		 * The old nat code (also used for new nat-to rules) creates
6157 		 * state keys and stores addresses in them.
6158 		 */
6159 		if ((ctx->nat_pool->opts & PF_POOL_STICKYADDR) &&
6160 		    (sn_reason = pf_insert_src_node(sns, snhs, ctx->nr,
6161 		    ctx->sk ? &(ctx->sk->addr[pd->sidx]) : pd->src, pd->af,
6162 		    ctx->nk ? &(ctx->nk->addr[1]) : &(pd->nsaddr), NULL,
6163 		    pd->naf, PF_SN_NAT)) != 0 ) {
6164 			REASON_SET(&ctx->reason, sn_reason);
6165 			goto csfailed;
6166 		}
6167 	}
6168 	s = pf_alloc_state(M_NOWAIT);
6169 	if (s == NULL) {
6170 		REASON_SET(&ctx->reason, PFRES_MEMORY);
6171 		goto csfailed;
6172 	}
6173 	s->rule = r;
6174 	s->nat_rule = ctx->nr;
6175 	s->anchor = ctx->a;
6176 	memcpy(&s->match_rules, &ctx->rules, sizeof(s->match_rules));
6177 	memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6178 
6179 	if (pd->act.allow_opts)
6180 		s->state_flags |= PFSTATE_ALLOWOPTS;
6181 	if (r->rule_flag & PFRULE_STATESLOPPY)
6182 		s->state_flags |= PFSTATE_SLOPPY;
6183 	if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6184 		s->state_flags |= PFSTATE_SCRUB_TCP;
6185 	if ((r->rule_flag & PFRULE_PFLOW) ||
6186 	    (ctx->nr != NULL && ctx->nr->rule_flag & PFRULE_PFLOW))
6187 		s->state_flags |= PFSTATE_PFLOW;
6188 
6189 	s->act.log = pd->act.log & PF_LOG_ALL;
6190 	s->sync_state = PFSYNC_S_NONE;
6191 	s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6192 
6193 	if (ctx->nr != NULL)
6194 		s->act.log |= ctx->nr->log & PF_LOG_ALL;
6195 	switch (pd->proto) {
6196 	case IPPROTO_TCP:
6197 		s->src.seqlo = ntohl(th->th_seq);
6198 		s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6199 		if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6200 		    r->keep_state == PF_STATE_MODULATE) {
6201 			/* Generate sequence number modulator */
6202 			if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6203 			    0)
6204 				s->src.seqdiff = 1;
6205 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6206 			    htonl(s->src.seqlo + s->src.seqdiff), 0);
6207 			ctx->rewrite = 1;
6208 		} else
6209 			s->src.seqdiff = 0;
6210 		if (tcp_get_flags(th) & TH_SYN) {
6211 			s->src.seqhi++;
6212 			s->src.wscale = pf_get_wscale(pd);
6213 		}
6214 		s->src.max_win = MAX(ntohs(th->th_win), 1);
6215 		if (s->src.wscale & PF_WSCALE_MASK) {
6216 			/* Remove scale factor from initial window */
6217 			int win = s->src.max_win;
6218 			win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6219 			s->src.max_win = (win - 1) >>
6220 			    (s->src.wscale & PF_WSCALE_MASK);
6221 		}
6222 		if (tcp_get_flags(th) & TH_FIN)
6223 			s->src.seqhi++;
6224 		s->dst.seqhi = 1;
6225 		s->dst.max_win = 1;
6226 		pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6227 		pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6228 		s->timeout = PFTM_TCP_FIRST_PACKET;
6229 		atomic_add_32(&V_pf_status.states_halfopen, 1);
6230 		break;
6231 	case IPPROTO_UDP:
6232 		pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6233 		pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6234 		s->timeout = PFTM_UDP_FIRST_PACKET;
6235 		break;
6236 	case IPPROTO_SCTP:
6237 		pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6238 		pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6239 		s->timeout = PFTM_SCTP_FIRST_PACKET;
6240 		break;
6241 	case IPPROTO_ICMP:
6242 #ifdef INET6
6243 	case IPPROTO_ICMPV6:
6244 #endif /* INET6 */
6245 		s->timeout = PFTM_ICMP_FIRST_PACKET;
6246 		break;
6247 	default:
6248 		pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6249 		pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6250 		s->timeout = PFTM_OTHER_FIRST_PACKET;
6251 	}
6252 
6253 	s->creation = s->expire = pf_get_uptime();
6254 
6255 	if (pd->proto == IPPROTO_TCP) {
6256 		if (s->state_flags & PFSTATE_SCRUB_TCP &&
6257 		    pf_normalize_tcp_init(pd, th, &s->src)) {
6258 			REASON_SET(&ctx->reason, PFRES_MEMORY);
6259 			goto csfailed;
6260 		}
6261 		if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6262 		    pf_normalize_tcp_stateful(pd, &ctx->reason, th, s,
6263 		    &s->src, &s->dst, &ctx->rewrite)) {
6264 			/* This really shouldn't happen!!! */
6265 			DPFPRINTF(PF_DEBUG_URGENT,
6266 			    "%s: tcp normalize failed on first "
6267 			     "pkt", __func__);
6268 			goto csfailed;
6269 		}
6270 	} else if (pd->proto == IPPROTO_SCTP) {
6271 		if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6272 			goto csfailed;
6273 		if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6274 			goto csfailed;
6275 	}
6276 	s->direction = pd->dir;
6277 
6278 	/*
6279 	 * sk/nk could already been setup by pf_get_translation().
6280 	 */
6281 	if (ctx->sk == NULL && ctx->nk == NULL) {
6282 		MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6283 		MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6284 		if (pf_state_key_setup(pd, pd->nsport, pd->ndport,
6285 		    &ctx->sk, &ctx->nk)) {
6286 			goto csfailed;
6287 		}
6288 	} else
6289 		KASSERT((ctx->sk != NULL && ctx->nk != NULL), ("%s: nr %p sk %p, nk %p",
6290 		    __func__, ctx->nr, ctx->sk, ctx->nk));
6291 
6292 	/* Swap sk/nk for PF_OUT. */
6293 	if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6294 	    (pd->dir == PF_IN) ? ctx->sk : ctx->nk,
6295 	    (pd->dir == PF_IN) ? ctx->nk : ctx->sk, s)) {
6296 		REASON_SET(&ctx->reason, PFRES_STATEINS);
6297 		goto drop;
6298 	} else
6299 		*sm = s;
6300 	ctx->sk = ctx->nk = NULL;
6301 
6302 	STATE_INC_COUNTERS(s);
6303 
6304 	/*
6305 	 * Lock order is important: first state, then source node.
6306 	 */
6307 	for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6308 		if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6309 			s->sns[sn_type] = sns[sn_type];
6310 			PF_HASHROW_UNLOCK(snhs[sn_type]);
6311 		}
6312 	}
6313 
6314 	if (ctx->tag > 0)
6315 		s->tag = ctx->tag;
6316 	if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6317 	    TH_SYN && r->keep_state == PF_STATE_SYNPROXY && pd->dir == PF_IN) {
6318 		pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6319 		pf_undo_nat(ctx->nr, pd, bip_sum);
6320 		s->src.seqhi = arc4random();
6321 		/* Find mss option */
6322 		int rtid = M_GETFIB(pd->m);
6323 		mss = pf_get_mss(pd);
6324 		mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6325 		mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6326 		s->src.mss = mss;
6327 		pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6328 		    th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6329 		    TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6330 		    pd->act.rtableid, &ctx->reason);
6331 		REASON_SET(&ctx->reason, PFRES_SYNPROXY);
6332 		return (PF_SYNPROXY_DROP);
6333 	}
6334 
6335 	s->udp_mapping = ctx->udp_mapping;
6336 
6337 	return (PF_PASS);
6338 
6339 csfailed:
6340 	while ((ri = SLIST_FIRST(&ctx->rules))) {
6341 		SLIST_REMOVE_HEAD(&ctx->rules, entry);
6342 		free(ri, M_PF_RULE_ITEM);
6343 	}
6344 
6345 	uma_zfree(V_pf_state_key_z, ctx->sk);
6346 	uma_zfree(V_pf_state_key_z, ctx->nk);
6347 
6348 	for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6349 		if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6350 			if (--sns[sn_type]->states == 0 &&
6351 			    sns[sn_type]->expire == 0) {
6352 				pf_unlink_src_node(sns[sn_type]);
6353 				pf_free_src_node(sns[sn_type]);
6354 				counter_u64_add(
6355 				    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6356 			}
6357 			PF_HASHROW_UNLOCK(snhs[sn_type]);
6358 		}
6359 	}
6360 
6361 drop:
6362 	if (s != NULL) {
6363 		pf_src_tree_remove_state(s);
6364 		s->timeout = PFTM_UNLINKED;
6365 		pf_free_state(s);
6366 	}
6367 
6368 	return (PF_DROP);
6369 }
6370 
6371 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)6372 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
6373     struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
6374     int icmp_dir)
6375 {
6376 	/*
6377 	 * pf_translate() implements OpenBSD's "new" NAT approach.
6378 	 * We don't follow it, because it involves a breaking syntax change
6379 	 * (removing nat/rdr rules, moving it into regular pf rules.)
6380 	 * It also moves NAT processing to be done after normal rules evaluation
6381 	 * whereas in FreeBSD that's done before rules processing.
6382 	 *
6383 	 * We adopt the function only for nat64, and keep other NAT processing
6384 	 * before rules processing.
6385 	 */
6386 	int	rewrite = 0;
6387 	int	afto = pd->af != pd->naf;
6388 
6389 	MPASS(afto);
6390 
6391 	switch (pd->proto) {
6392 	case IPPROTO_TCP:
6393 	case IPPROTO_UDP:
6394 	case IPPROTO_SCTP:
6395 		if (afto || *pd->sport != sport) {
6396 			pf_change_ap(pd, pd->src, pd->sport,
6397 			    saddr, sport);
6398 			rewrite = 1;
6399 		}
6400 		if (afto || *pd->dport != dport) {
6401 			pf_change_ap(pd, pd->dst, pd->dport,
6402 			    daddr, dport);
6403 			rewrite = 1;
6404 		}
6405 		break;
6406 
6407 #ifdef INET
6408 	case IPPROTO_ICMP:
6409 		/* pf_translate() is also used when logging invalid packets */
6410 		if (pd->af != AF_INET)
6411 			return (0);
6412 
6413 		if (afto) {
6414 			if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
6415 				return (-1);
6416 			pd->proto = IPPROTO_ICMPV6;
6417 			rewrite = 1;
6418 		}
6419 		if (virtual_type == htons(ICMP_ECHO)) {
6420 			u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
6421 
6422 			if (icmpid != pd->hdr.icmp.icmp_id) {
6423 				pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6424 				    pd->hdr.icmp.icmp_cksum,
6425 				    pd->hdr.icmp.icmp_id, icmpid, 0);
6426 				pd->hdr.icmp.icmp_id = icmpid;
6427 				/* XXX TODO copyback. */
6428 				rewrite = 1;
6429 			}
6430 		}
6431 		break;
6432 #endif /* INET */
6433 
6434 #ifdef INET6
6435 	case IPPROTO_ICMPV6:
6436 		/* pf_translate() is also used when logging invalid packets */
6437 		if (pd->af != AF_INET6)
6438 			return (0);
6439 
6440 		if (afto) {
6441 			/* ip_sum will be recalculated in pf_translate_af */
6442 			if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
6443 				return (0);
6444 			pd->proto = IPPROTO_ICMP;
6445 			rewrite = 1;
6446 		}
6447 		break;
6448 #endif /* INET6 */
6449 
6450 	default:
6451 		break;
6452 	}
6453 
6454 	return (rewrite);
6455 }
6456 
6457 int
pf_translate_compat(struct pf_test_ctx * ctx)6458 pf_translate_compat(struct pf_test_ctx *ctx)
6459 {
6460 	struct pf_pdesc		*pd = ctx->pd;
6461 	struct pf_state_key	*nk = ctx->nk;
6462 	struct tcphdr		*th = &pd->hdr.tcp;
6463 	int 			 rewrite = 0;
6464 
6465 	KASSERT(ctx->sk != NULL, ("%s: null sk", __func__));
6466 	KASSERT(ctx->nk != NULL, ("%s: null nk", __func__));
6467 
6468 	switch (pd->virtual_proto) {
6469 	case IPPROTO_TCP:
6470 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6471 		    nk->port[pd->sidx] != pd->nsport) {
6472 			pf_change_ap(pd, pd->src, &th->th_sport,
6473 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
6474 			pd->sport = &th->th_sport;
6475 			pd->nsport = th->th_sport;
6476 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6477 		}
6478 
6479 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6480 		    nk->port[pd->didx] != pd->ndport) {
6481 			pf_change_ap(pd, pd->dst, &th->th_dport,
6482 			    &nk->addr[pd->didx], nk->port[pd->didx]);
6483 			pd->dport = &th->th_dport;
6484 			pd->ndport = th->th_dport;
6485 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6486 		}
6487 		rewrite++;
6488 		break;
6489 	case IPPROTO_UDP:
6490 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6491 		    nk->port[pd->sidx] != pd->nsport) {
6492 			pf_change_ap(pd, pd->src,
6493 			    &pd->hdr.udp.uh_sport,
6494 			    &nk->addr[pd->sidx],
6495 			    nk->port[pd->sidx]);
6496 			pd->sport = &pd->hdr.udp.uh_sport;
6497 			pd->nsport = pd->hdr.udp.uh_sport;
6498 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6499 		}
6500 
6501 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6502 		    nk->port[pd->didx] != pd->ndport) {
6503 			pf_change_ap(pd, pd->dst,
6504 			    &pd->hdr.udp.uh_dport,
6505 			    &nk->addr[pd->didx],
6506 			    nk->port[pd->didx]);
6507 			pd->dport = &pd->hdr.udp.uh_dport;
6508 			pd->ndport = pd->hdr.udp.uh_dport;
6509 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6510 		}
6511 		rewrite++;
6512 		break;
6513 	case IPPROTO_SCTP: {
6514 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6515 		    nk->port[pd->sidx] != pd->nsport) {
6516 			pf_change_ap(pd, pd->src,
6517 			    &pd->hdr.sctp.src_port,
6518 			    &nk->addr[pd->sidx],
6519 			    nk->port[pd->sidx]);
6520 			pd->sport = &pd->hdr.sctp.src_port;
6521 			pd->nsport = pd->hdr.sctp.src_port;
6522 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6523 		}
6524 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6525 		    nk->port[pd->didx] != pd->ndport) {
6526 			pf_change_ap(pd, pd->dst,
6527 			    &pd->hdr.sctp.dest_port,
6528 			    &nk->addr[pd->didx],
6529 			    nk->port[pd->didx]);
6530 			pd->dport = &pd->hdr.sctp.dest_port;
6531 			pd->ndport = pd->hdr.sctp.dest_port;
6532 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6533 		}
6534 		break;
6535 	}
6536 #ifdef INET
6537 	case IPPROTO_ICMP:
6538 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
6539 			pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
6540 			    nk->addr[pd->sidx].v4.s_addr, 0);
6541 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6542 		}
6543 
6544 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
6545 			pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
6546 			    nk->addr[pd->didx].v4.s_addr, 0);
6547 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6548 		}
6549 
6550 		if (ctx->virtual_type == htons(ICMP_ECHO) &&
6551 		    nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
6552 			pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6553 			    pd->hdr.icmp.icmp_cksum, pd->nsport,
6554 			    nk->port[pd->sidx], 0);
6555 			pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
6556 			pd->sport = &pd->hdr.icmp.icmp_id;
6557 		}
6558 		m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
6559 		break;
6560 #endif /* INET */
6561 #ifdef INET6
6562 	case IPPROTO_ICMPV6:
6563 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
6564 			pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
6565 			    &nk->addr[pd->sidx], 0);
6566 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6567 		}
6568 
6569 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
6570 			pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
6571 			    &nk->addr[pd->didx], 0);
6572 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6573 		}
6574 		rewrite++;
6575 		break;
6576 #endif /* INET */
6577 	default:
6578 		switch (pd->af) {
6579 #ifdef INET
6580 		case AF_INET:
6581 			if (PF_ANEQ(&pd->nsaddr,
6582 				&nk->addr[pd->sidx], AF_INET)) {
6583 				pf_change_a(&pd->src->v4.s_addr,
6584 				    pd->ip_sum,
6585 				    nk->addr[pd->sidx].v4.s_addr, 0);
6586 				pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6587 			}
6588 
6589 			if (PF_ANEQ(&pd->ndaddr,
6590 				&nk->addr[pd->didx], AF_INET)) {
6591 				pf_change_a(&pd->dst->v4.s_addr,
6592 				    pd->ip_sum,
6593 				    nk->addr[pd->didx].v4.s_addr, 0);
6594 				pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6595 			}
6596 			break;
6597 #endif /* INET */
6598 #ifdef INET6
6599 		case AF_INET6:
6600 			if (PF_ANEQ(&pd->nsaddr,
6601 				&nk->addr[pd->sidx], AF_INET6)) {
6602 				pf_addrcpy(&pd->nsaddr, &nk->addr[pd->sidx],
6603 				    pd->af);
6604 				pf_addrcpy(pd->src, &nk->addr[pd->sidx], pd->af);
6605 			}
6606 
6607 			if (PF_ANEQ(&pd->ndaddr,
6608 				&nk->addr[pd->didx], AF_INET6)) {
6609 				pf_addrcpy(&pd->ndaddr, &nk->addr[pd->didx],
6610 				    pd->af);
6611 				pf_addrcpy(pd->dst, &nk->addr[pd->didx],
6612 				    pd->af);
6613 			}
6614 			break;
6615 #endif /* INET6 */
6616 		}
6617 		break;
6618 	}
6619 	return (rewrite);
6620 }
6621 
6622 static int
pf_tcp_track_full(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,int * copyback,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6623 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd,
6624     u_short *reason, int *copyback, struct pf_state_peer *src,
6625     struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst)
6626 {
6627 	struct tcphdr		*th = &pd->hdr.tcp;
6628 	u_int16_t		 win = ntohs(th->th_win);
6629 	u_int32_t		 ack, end, data_end, seq, orig_seq;
6630 	u_int8_t		 sws, dws;
6631 	int			 ackskew;
6632 
6633 	if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
6634 		sws = src->wscale & PF_WSCALE_MASK;
6635 		dws = dst->wscale & PF_WSCALE_MASK;
6636 	} else
6637 		sws = dws = 0;
6638 
6639 	/*
6640 	 * Sequence tracking algorithm from Guido van Rooij's paper:
6641 	 *   http://www.madison-gurkha.com/publications/tcp_filtering/
6642 	 *	tcp_filtering.ps
6643 	 */
6644 
6645 	orig_seq = seq = ntohl(th->th_seq);
6646 	if (src->seqlo == 0) {
6647 		/* First packet from this end. Set its state */
6648 
6649 		if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
6650 		    src->scrub == NULL) {
6651 			if (pf_normalize_tcp_init(pd, th, src)) {
6652 				REASON_SET(reason, PFRES_MEMORY);
6653 				return (PF_DROP);
6654 			}
6655 		}
6656 
6657 		/* Deferred generation of sequence number modulator */
6658 		if (dst->seqdiff && !src->seqdiff) {
6659 			/* use random iss for the TCP server */
6660 			while ((src->seqdiff = arc4random() - seq) == 0)
6661 				;
6662 			ack = ntohl(th->th_ack) - dst->seqdiff;
6663 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6664 			    src->seqdiff), 0);
6665 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6666 			*copyback = 1;
6667 		} else {
6668 			ack = ntohl(th->th_ack);
6669 		}
6670 
6671 		end = seq + pd->p_len;
6672 		if (tcp_get_flags(th) & TH_SYN) {
6673 			end++;
6674 			if (dst->wscale & PF_WSCALE_FLAG) {
6675 				src->wscale = pf_get_wscale(pd);
6676 				if (src->wscale & PF_WSCALE_FLAG) {
6677 					/* Remove scale factor from initial
6678 					 * window */
6679 					sws = src->wscale & PF_WSCALE_MASK;
6680 					win = ((u_int32_t)win + (1 << sws) - 1)
6681 					    >> sws;
6682 					dws = dst->wscale & PF_WSCALE_MASK;
6683 				} else {
6684 					/* fixup other window */
6685 					dst->max_win = MIN(TCP_MAXWIN,
6686 					    (u_int32_t)dst->max_win <<
6687 					    (dst->wscale & PF_WSCALE_MASK));
6688 					/* in case of a retrans SYN|ACK */
6689 					dst->wscale = 0;
6690 				}
6691 			}
6692 		}
6693 		data_end = end;
6694 		if (tcp_get_flags(th) & TH_FIN)
6695 			end++;
6696 
6697 		src->seqlo = seq;
6698 		if (src->state < TCPS_SYN_SENT)
6699 			pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6700 
6701 		/*
6702 		 * May need to slide the window (seqhi may have been set by
6703 		 * the crappy stack check or if we picked up the connection
6704 		 * after establishment)
6705 		 */
6706 		if (src->seqhi == 1 ||
6707 		    SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
6708 			src->seqhi = end + MAX(1, dst->max_win << dws);
6709 		if (win > src->max_win)
6710 			src->max_win = win;
6711 
6712 	} else {
6713 		ack = ntohl(th->th_ack) - dst->seqdiff;
6714 		if (src->seqdiff) {
6715 			/* Modulate sequence numbers */
6716 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6717 			    src->seqdiff), 0);
6718 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6719 			*copyback = 1;
6720 		}
6721 		end = seq + pd->p_len;
6722 		if (tcp_get_flags(th) & TH_SYN)
6723 			end++;
6724 		data_end = end;
6725 		if (tcp_get_flags(th) & TH_FIN)
6726 			end++;
6727 	}
6728 
6729 	if ((tcp_get_flags(th) & TH_ACK) == 0) {
6730 		/* Let it pass through the ack skew check */
6731 		ack = dst->seqlo;
6732 	} else if ((ack == 0 &&
6733 	    (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
6734 	    /* broken tcp stacks do not set ack */
6735 	    (dst->state < TCPS_SYN_SENT)) {
6736 		/*
6737 		 * Many stacks (ours included) will set the ACK number in an
6738 		 * FIN|ACK if the SYN times out -- no sequence to ACK.
6739 		 */
6740 		ack = dst->seqlo;
6741 	}
6742 
6743 	if (seq == end) {
6744 		/* Ease sequencing restrictions on no data packets */
6745 		seq = src->seqlo;
6746 		data_end = end = seq;
6747 	}
6748 
6749 	ackskew = dst->seqlo - ack;
6750 
6751 	/*
6752 	 * Need to demodulate the sequence numbers in any TCP SACK options
6753 	 * (Selective ACK). We could optionally validate the SACK values
6754 	 * against the current ACK window, either forwards or backwards, but
6755 	 * I'm not confident that SACK has been implemented properly
6756 	 * everywhere. It wouldn't surprise me if several stacks accidentally
6757 	 * SACK too far backwards of previously ACKed data. There really aren't
6758 	 * any security implications of bad SACKing unless the target stack
6759 	 * doesn't validate the option length correctly. Someone trying to
6760 	 * spoof into a TCP connection won't bother blindly sending SACK
6761 	 * options anyway.
6762 	 */
6763 	if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
6764 		if (pf_modulate_sack(pd, th, dst))
6765 			*copyback = 1;
6766 	}
6767 
6768 #define	MAXACKWINDOW (0xffff + 1500)	/* 1500 is an arbitrary fudge factor */
6769 	if (SEQ_GEQ(src->seqhi, data_end) &&
6770 	    /* Last octet inside other's window space */
6771 	    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
6772 	    /* Retrans: not more than one window back */
6773 	    (ackskew >= -MAXACKWINDOW) &&
6774 	    /* Acking not more than one reassembled fragment backwards */
6775 	    (ackskew <= (MAXACKWINDOW << sws)) &&
6776 	    /* Acking not more than one window forward */
6777 	    ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
6778 	    (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) ||
6779 	    /* Require an exact/+1 sequence match on resets when possible */
6780 	    (SEQ_GEQ(orig_seq, src->seqlo - (dst->max_win << dws)) &&
6781 	    SEQ_LEQ(orig_seq, src->seqlo + 1) && ackskew == 0 &&
6782 	    (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)))) {
6783 		/* Allow resets to match sequence window if ack is perfect match */
6784 
6785 		if (dst->scrub || src->scrub) {
6786 			if (pf_normalize_tcp_stateful(pd, reason, th,
6787 			    state, src, dst, copyback))
6788 				return (PF_DROP);
6789 		}
6790 
6791 		/* update max window */
6792 		if (src->max_win < win)
6793 			src->max_win = win;
6794 		/* synchronize sequencing */
6795 		if (SEQ_GT(end, src->seqlo))
6796 			src->seqlo = end;
6797 		/* slide the window of what the other end can send */
6798 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6799 			dst->seqhi = ack + MAX((win << sws), 1);
6800 
6801 		/* update states */
6802 		if (tcp_get_flags(th) & TH_SYN)
6803 			if (src->state < TCPS_SYN_SENT)
6804 				pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6805 		if (tcp_get_flags(th) & TH_FIN)
6806 			if (src->state < TCPS_CLOSING)
6807 				pf_set_protostate(state, psrc, TCPS_CLOSING);
6808 		if (tcp_get_flags(th) & TH_ACK) {
6809 			if (dst->state == TCPS_SYN_SENT) {
6810 				pf_set_protostate(state, pdst,
6811 				    TCPS_ESTABLISHED);
6812 				if (src->state == TCPS_ESTABLISHED &&
6813 				    state->sns[PF_SN_LIMIT] != NULL &&
6814 				    pf_src_connlimit(state)) {
6815 					REASON_SET(reason, PFRES_SRCLIMIT);
6816 					return (PF_DROP);
6817 				}
6818 			} else if (dst->state == TCPS_CLOSING)
6819 				pf_set_protostate(state, pdst,
6820 				    TCPS_FIN_WAIT_2);
6821 		}
6822 		if (tcp_get_flags(th) & TH_RST)
6823 			pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6824 
6825 		/* update expire time */
6826 		state->expire = pf_get_uptime();
6827 		if (src->state >= TCPS_FIN_WAIT_2 &&
6828 		    dst->state >= TCPS_FIN_WAIT_2)
6829 			state->timeout = PFTM_TCP_CLOSED;
6830 		else if (src->state >= TCPS_CLOSING &&
6831 		    dst->state >= TCPS_CLOSING)
6832 			state->timeout = PFTM_TCP_FIN_WAIT;
6833 		else if (src->state < TCPS_ESTABLISHED ||
6834 		    dst->state < TCPS_ESTABLISHED)
6835 			state->timeout = PFTM_TCP_OPENING;
6836 		else if (src->state >= TCPS_CLOSING ||
6837 		    dst->state >= TCPS_CLOSING)
6838 			state->timeout = PFTM_TCP_CLOSING;
6839 		else
6840 			state->timeout = PFTM_TCP_ESTABLISHED;
6841 
6842 		/* Fall through to PASS packet */
6843 
6844 	} else if ((dst->state < TCPS_SYN_SENT ||
6845 		dst->state >= TCPS_FIN_WAIT_2 ||
6846 		src->state >= TCPS_FIN_WAIT_2) &&
6847 	    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
6848 	    /* Within a window forward of the originating packet */
6849 	    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
6850 	    /* Within a window backward of the originating packet */
6851 
6852 		/*
6853 		 * This currently handles three situations:
6854 		 *  1) Stupid stacks will shotgun SYNs before their peer
6855 		 *     replies.
6856 		 *  2) When PF catches an already established stream (the
6857 		 *     firewall rebooted, the state table was flushed, routes
6858 		 *     changed...)
6859 		 *  3) Packets get funky immediately after the connection
6860 		 *     closes (this should catch Solaris spurious ACK|FINs
6861 		 *     that web servers like to spew after a close)
6862 		 *
6863 		 * This must be a little more careful than the above code
6864 		 * since packet floods will also be caught here. We don't
6865 		 * update the TTL here to mitigate the damage of a packet
6866 		 * flood and so the same code can handle awkward establishment
6867 		 * and a loosened connection close.
6868 		 * In the establishment case, a correct peer response will
6869 		 * validate the connection, go through the normal state code
6870 		 * and keep updating the state TTL.
6871 		 */
6872 
6873 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
6874 			printf("pf: loose state match: ");
6875 			pf_print_state(state);
6876 			pf_print_flags(tcp_get_flags(th));
6877 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6878 			    "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
6879 			    pd->p_len, ackskew, (unsigned long long)state->packets[0],
6880 			    (unsigned long long)state->packets[1],
6881 			    pd->dir == PF_IN ? "in" : "out",
6882 			    pd->dir == state->direction ? "fwd" : "rev");
6883 		}
6884 
6885 		if (dst->scrub || src->scrub) {
6886 			if (pf_normalize_tcp_stateful(pd, reason, th,
6887 			    state, src, dst, copyback))
6888 				return (PF_DROP);
6889 		}
6890 
6891 		/* update max window */
6892 		if (src->max_win < win)
6893 			src->max_win = win;
6894 		/* synchronize sequencing */
6895 		if (SEQ_GT(end, src->seqlo))
6896 			src->seqlo = end;
6897 		/* slide the window of what the other end can send */
6898 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6899 			dst->seqhi = ack + MAX((win << sws), 1);
6900 
6901 		/*
6902 		 * Cannot set dst->seqhi here since this could be a shotgunned
6903 		 * SYN and not an already established connection.
6904 		 */
6905 
6906 		if (tcp_get_flags(th) & TH_FIN)
6907 			if (src->state < TCPS_CLOSING)
6908 				pf_set_protostate(state, psrc, TCPS_CLOSING);
6909 		if (tcp_get_flags(th) & TH_RST)
6910 			pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6911 
6912 		/* Fall through to PASS packet */
6913 
6914 	} else {
6915 		if (state->dst.state == TCPS_SYN_SENT &&
6916 		    state->src.state == TCPS_SYN_SENT) {
6917 			/* Send RST for state mismatches during handshake */
6918 			if (!(tcp_get_flags(th) & TH_RST))
6919 				pf_send_tcp(state->rule, pd->af,
6920 				    pd->dst, pd->src, th->th_dport,
6921 				    th->th_sport, ntohl(th->th_ack), 0,
6922 				    TH_RST, 0, 0,
6923 				    state->rule->return_ttl, M_SKIP_FIREWALL,
6924 				    0, 0, state->act.rtableid, reason);
6925 			src->seqlo = 0;
6926 			src->seqhi = 1;
6927 			src->max_win = 1;
6928 		} else if (V_pf_status.debug >= PF_DEBUG_MISC) {
6929 			printf("pf: BAD state: ");
6930 			pf_print_state(state);
6931 			pf_print_flags(tcp_get_flags(th));
6932 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6933 			    "pkts=%llu:%llu dir=%s,%s\n",
6934 			    seq, orig_seq, ack, pd->p_len, ackskew,
6935 			    (unsigned long long)state->packets[0],
6936 			    (unsigned long long)state->packets[1],
6937 			    pd->dir == PF_IN ? "in" : "out",
6938 			    pd->dir == state->direction ? "fwd" : "rev");
6939 			printf("pf: State failure on: %c %c %c %c | %c %c\n",
6940 			    SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
6941 			    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
6942 			    ' ': '2',
6943 			    (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
6944 			    (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
6945 			    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
6946 			    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
6947 		}
6948 		REASON_SET(reason, PFRES_BADSTATE);
6949 		return (PF_DROP);
6950 	}
6951 
6952 	return (PF_PASS);
6953 }
6954 
6955 static int
pf_tcp_track_sloppy(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6956 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd,
6957     u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst,
6958     u_int8_t psrc, u_int8_t pdst)
6959 {
6960 	struct tcphdr		*th = &pd->hdr.tcp;
6961 
6962 	if (tcp_get_flags(th) & TH_SYN)
6963 		if (src->state < TCPS_SYN_SENT)
6964 			pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6965 	if (tcp_get_flags(th) & TH_FIN)
6966 		if (src->state < TCPS_CLOSING)
6967 			pf_set_protostate(state, psrc, TCPS_CLOSING);
6968 	if (tcp_get_flags(th) & TH_ACK) {
6969 		if (dst->state == TCPS_SYN_SENT) {
6970 			pf_set_protostate(state, pdst, TCPS_ESTABLISHED);
6971 			if (src->state == TCPS_ESTABLISHED &&
6972 			    state->sns[PF_SN_LIMIT] != NULL &&
6973 			    pf_src_connlimit(state)) {
6974 				REASON_SET(reason, PFRES_SRCLIMIT);
6975 				return (PF_DROP);
6976 			}
6977 		} else if (dst->state == TCPS_CLOSING) {
6978 			pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2);
6979 		} else if (src->state == TCPS_SYN_SENT &&
6980 		    dst->state < TCPS_SYN_SENT) {
6981 			/*
6982 			 * Handle a special sloppy case where we only see one
6983 			 * half of the connection. If there is a ACK after
6984 			 * the initial SYN without ever seeing a packet from
6985 			 * the destination, set the connection to established.
6986 			 */
6987 			pf_set_protostate(state, PF_PEER_BOTH,
6988 			    TCPS_ESTABLISHED);
6989 			dst->state = src->state = TCPS_ESTABLISHED;
6990 			if (state->sns[PF_SN_LIMIT] != NULL &&
6991 			    pf_src_connlimit(state)) {
6992 				REASON_SET(reason, PFRES_SRCLIMIT);
6993 				return (PF_DROP);
6994 			}
6995 		} else if (src->state == TCPS_CLOSING &&
6996 		    dst->state == TCPS_ESTABLISHED &&
6997 		    dst->seqlo == 0) {
6998 			/*
6999 			 * Handle the closing of half connections where we
7000 			 * don't see the full bidirectional FIN/ACK+ACK
7001 			 * handshake.
7002 			 */
7003 			pf_set_protostate(state, pdst, TCPS_CLOSING);
7004 		}
7005 	}
7006 	if (tcp_get_flags(th) & TH_RST)
7007 		pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
7008 
7009 	/* update expire time */
7010 	state->expire = pf_get_uptime();
7011 	if (src->state >= TCPS_FIN_WAIT_2 &&
7012 	    dst->state >= TCPS_FIN_WAIT_2)
7013 		state->timeout = PFTM_TCP_CLOSED;
7014 	else if (src->state >= TCPS_CLOSING &&
7015 	    dst->state >= TCPS_CLOSING)
7016 		state->timeout = PFTM_TCP_FIN_WAIT;
7017 	else if (src->state < TCPS_ESTABLISHED ||
7018 	    dst->state < TCPS_ESTABLISHED)
7019 		state->timeout = PFTM_TCP_OPENING;
7020 	else if (src->state >= TCPS_CLOSING ||
7021 	    dst->state >= TCPS_CLOSING)
7022 		state->timeout = PFTM_TCP_CLOSING;
7023 	else
7024 		state->timeout = PFTM_TCP_ESTABLISHED;
7025 
7026 	return (PF_PASS);
7027 }
7028 
7029 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate * state,u_short * reason)7030 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason)
7031 {
7032 	struct pf_state_key	*sk = state->key[pd->didx];
7033 	struct tcphdr		*th = &pd->hdr.tcp;
7034 
7035 	if (state->src.state == PF_TCPS_PROXY_SRC) {
7036 		if (pd->dir != state->direction) {
7037 			REASON_SET(reason, PFRES_SYNPROXY);
7038 			return (PF_SYNPROXY_DROP);
7039 		}
7040 		if (tcp_get_flags(th) & TH_SYN) {
7041 			if (ntohl(th->th_seq) != state->src.seqlo) {
7042 				REASON_SET(reason, PFRES_SYNPROXY);
7043 				return (PF_DROP);
7044 			}
7045 			pf_send_tcp(state->rule, pd->af, pd->dst,
7046 			    pd->src, th->th_dport, th->th_sport,
7047 			    state->src.seqhi, ntohl(th->th_seq) + 1,
7048 			    TH_SYN|TH_ACK, 0, state->src.mss, 0,
7049 			    M_SKIP_FIREWALL, 0, 0, state->act.rtableid,
7050 			    reason);
7051 			REASON_SET(reason, PFRES_SYNPROXY);
7052 			return (PF_SYNPROXY_DROP);
7053 		} else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
7054 		    (ntohl(th->th_ack) != state->src.seqhi + 1) ||
7055 		    (ntohl(th->th_seq) != state->src.seqlo + 1)) {
7056 			REASON_SET(reason, PFRES_SYNPROXY);
7057 			return (PF_DROP);
7058 		} else if (state->sns[PF_SN_LIMIT] != NULL &&
7059 		    pf_src_connlimit(state)) {
7060 			REASON_SET(reason, PFRES_SRCLIMIT);
7061 			return (PF_DROP);
7062 		} else
7063 			pf_set_protostate(state, PF_PEER_SRC,
7064 			    PF_TCPS_PROXY_DST);
7065 	}
7066 	if (state->src.state == PF_TCPS_PROXY_DST) {
7067 		if (pd->dir == state->direction) {
7068 			if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
7069 			    (ntohl(th->th_ack) != state->src.seqhi + 1) ||
7070 			    (ntohl(th->th_seq) != state->src.seqlo + 1)) {
7071 				REASON_SET(reason, PFRES_SYNPROXY);
7072 				return (PF_DROP);
7073 			}
7074 			state->src.max_win = MAX(ntohs(th->th_win), 1);
7075 			if (state->dst.seqhi == 1)
7076 				state->dst.seqhi = arc4random();
7077 			pf_send_tcp(state->rule, pd->af,
7078 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
7079 			    sk->port[pd->sidx], sk->port[pd->didx],
7080 			    state->dst.seqhi, 0, TH_SYN, 0,
7081 			    state->src.mss, 0,
7082 			    state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
7083 			    state->tag, 0, state->act.rtableid,
7084 			    reason);
7085 			REASON_SET(reason, PFRES_SYNPROXY);
7086 			return (PF_SYNPROXY_DROP);
7087 		} else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
7088 		    (TH_SYN|TH_ACK)) ||
7089 		    (ntohl(th->th_ack) != state->dst.seqhi + 1)) {
7090 			REASON_SET(reason, PFRES_SYNPROXY);
7091 			return (PF_DROP);
7092 		} else {
7093 			state->dst.max_win = MAX(ntohs(th->th_win), 1);
7094 			state->dst.seqlo = ntohl(th->th_seq);
7095 			pf_send_tcp(state->rule, pd->af, pd->dst,
7096 			    pd->src, th->th_dport, th->th_sport,
7097 			    ntohl(th->th_ack), ntohl(th->th_seq) + 1,
7098 			    TH_ACK, state->src.max_win, 0, 0, 0,
7099 			    state->tag, 0, state->act.rtableid,
7100 			    reason);
7101 			pf_send_tcp(state->rule, pd->af,
7102 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
7103 			    sk->port[pd->sidx], sk->port[pd->didx],
7104 			    state->src.seqhi + 1, state->src.seqlo + 1,
7105 			    TH_ACK, state->dst.max_win, 0, 0,
7106 			    M_SKIP_FIREWALL, 0, 0, state->act.rtableid,
7107 			    reason);
7108 			state->src.seqdiff = state->dst.seqhi -
7109 			    state->src.seqlo;
7110 			state->dst.seqdiff = state->src.seqhi -
7111 			    state->dst.seqlo;
7112 			state->src.seqhi = state->src.seqlo +
7113 			    state->dst.max_win;
7114 			state->dst.seqhi = state->dst.seqlo +
7115 			    state->src.max_win;
7116 			state->src.wscale = state->dst.wscale = 0;
7117 			pf_set_protostate(state, PF_PEER_BOTH,
7118 			    TCPS_ESTABLISHED);
7119 			REASON_SET(reason, PFRES_SYNPROXY);
7120 			return (PF_SYNPROXY_DROP);
7121 		}
7122 	}
7123 
7124 	return (PF_PASS);
7125 }
7126 
7127 static int
pf_test_state(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7128 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
7129 {
7130 	struct pf_state_key_cmp	 key;
7131 	int			 copyback = 0;
7132 	struct pf_state_peer	*src, *dst;
7133 	uint8_t			 psrc, pdst;
7134 	int			 action;
7135 
7136 	bzero(&key, sizeof(key));
7137 	key.af = pd->af;
7138 	key.proto = pd->virtual_proto;
7139 	pf_addrcpy(&key.addr[pd->sidx], pd->src, key.af);
7140 	pf_addrcpy(&key.addr[pd->didx], pd->dst, key.af);
7141 	key.port[pd->sidx] = pd->osport;
7142 	key.port[pd->didx] = pd->odport;
7143 
7144 	action = pf_find_state(pd, &key, state);
7145 	if (action != PF_MATCH)
7146 		return (action);
7147 
7148 	action = PF_PASS;
7149 	if (pd->dir == (*state)->direction) {
7150 		if (PF_REVERSED_KEY(*state, pd->af)) {
7151 			src = &(*state)->dst;
7152 			dst = &(*state)->src;
7153 			psrc = PF_PEER_DST;
7154 			pdst = PF_PEER_SRC;
7155 		} else {
7156 			src = &(*state)->src;
7157 			dst = &(*state)->dst;
7158 			psrc = PF_PEER_SRC;
7159 			pdst = PF_PEER_DST;
7160 		}
7161 	} else {
7162 		if (PF_REVERSED_KEY(*state, pd->af)) {
7163 			src = &(*state)->src;
7164 			dst = &(*state)->dst;
7165 			psrc = PF_PEER_SRC;
7166 			pdst = PF_PEER_DST;
7167 		} else {
7168 			src = &(*state)->dst;
7169 			dst = &(*state)->src;
7170 			psrc = PF_PEER_DST;
7171 			pdst = PF_PEER_SRC;
7172 		}
7173 	}
7174 
7175 	switch (pd->virtual_proto) {
7176 	case IPPROTO_TCP: {
7177 		struct tcphdr		*th = &pd->hdr.tcp;
7178 
7179 		if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS)
7180 			return (action);
7181 		if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) ||
7182 		    ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK &&
7183 		    pf_syncookie_check(pd) && pd->dir == PF_IN)) {
7184 			if ((*state)->src.state >= TCPS_FIN_WAIT_2 &&
7185 			    (*state)->dst.state >= TCPS_FIN_WAIT_2) {
7186 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
7187 					printf("pf: state reuse ");
7188 					pf_print_state(*state);
7189 					pf_print_flags(tcp_get_flags(th));
7190 					printf("\n");
7191 				}
7192 				/* XXX make sure it's the same direction ?? */
7193 				pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
7194 				pf_remove_state(*state);
7195 				*state = NULL;
7196 				return (PF_DROP);
7197 			} else if ((*state)->src.state >= TCPS_ESTABLISHED &&
7198 			    (*state)->dst.state >= TCPS_ESTABLISHED) {
7199 				/*
7200 				 * SYN matches existing state???
7201 				 * Typically happens when sender boots up after
7202 				 * sudden panic. Certain protocols (NFSv3) are
7203 				 * always using same port numbers. Challenge
7204 				 * ACK enables all parties (firewall and peers)
7205 				 * to get in sync again.
7206 				 */
7207 				pf_send_challenge_ack(pd, *state, src, dst, reason);
7208 				return (PF_DROP);
7209 			}
7210 		}
7211 		if ((*state)->state_flags & PFSTATE_SLOPPY) {
7212 			if (pf_tcp_track_sloppy(*state, pd, reason, src, dst,
7213 			    psrc, pdst) == PF_DROP)
7214 				return (PF_DROP);
7215 		} else {
7216 			int	 ret;
7217 
7218 			ret = pf_tcp_track_full(*state, pd, reason,
7219 			    &copyback, src, dst, psrc, pdst);
7220 			if (ret == PF_DROP)
7221 				return (PF_DROP);
7222 		}
7223 		break;
7224 	}
7225 	case IPPROTO_UDP:
7226 		/* update states */
7227 		if (src->state < PFUDPS_SINGLE)
7228 			pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7229 		if (dst->state == PFUDPS_SINGLE)
7230 			pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7231 
7232 		/* update expire time */
7233 		(*state)->expire = pf_get_uptime();
7234 		if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7235 			(*state)->timeout = PFTM_UDP_MULTIPLE;
7236 		else
7237 			(*state)->timeout = PFTM_UDP_SINGLE;
7238 		break;
7239 	case IPPROTO_SCTP:
7240 		if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7241 		    (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7242 		    pd->sctp_flags & PFDESC_SCTP_INIT) {
7243 			pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7244 			pf_remove_state(*state);
7245 			*state = NULL;
7246 			return (PF_DROP);
7247 		}
7248 
7249 		if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7250 			return (PF_DROP);
7251 
7252 		/* Track state. */
7253 		if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7254 			if (src->state < SCTP_COOKIE_WAIT) {
7255 				pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7256 				(*state)->timeout = PFTM_SCTP_OPENING;
7257 			}
7258 		}
7259 		if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7260 			MPASS(dst->scrub != NULL);
7261 			if (dst->scrub->pfss_v_tag == 0)
7262 				dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7263 		}
7264 
7265 		/*
7266 		 * Bind to the correct interface if we're if-bound. For multihomed
7267 		 * extra associations we don't know which interface that will be until
7268 		 * here, so we've inserted the state on V_pf_all. Fix that now.
7269 		 */
7270 		if ((*state)->kif == V_pfi_all &&
7271 		    (*state)->rule->rule_flag & PFRULE_IFBOUND)
7272 			(*state)->kif = pd->kif;
7273 
7274 		if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7275 			if (src->state < SCTP_ESTABLISHED) {
7276 				pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7277 				(*state)->timeout = PFTM_SCTP_ESTABLISHED;
7278 			}
7279 		}
7280 		if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7281 		    PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7282 			if (src->state < SCTP_SHUTDOWN_PENDING) {
7283 				pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7284 				(*state)->timeout = PFTM_SCTP_CLOSING;
7285 			}
7286 		}
7287 		if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7288 			pf_set_protostate(*state, psrc, SCTP_CLOSED);
7289 			(*state)->timeout = PFTM_SCTP_CLOSED;
7290 		}
7291 
7292 		(*state)->expire = pf_get_uptime();
7293 		break;
7294 	default:
7295 		/* update states */
7296 		if (src->state < PFOTHERS_SINGLE)
7297 			pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7298 		if (dst->state == PFOTHERS_SINGLE)
7299 			pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7300 
7301 		/* update expire time */
7302 		(*state)->expire = pf_get_uptime();
7303 		if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7304 			(*state)->timeout = PFTM_OTHER_MULTIPLE;
7305 		else
7306 			(*state)->timeout = PFTM_OTHER_SINGLE;
7307 		break;
7308 	}
7309 
7310 	/* translate source/destination address, if necessary */
7311 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7312 		struct pf_state_key	*nk;
7313 		int			 afto, sidx, didx;
7314 
7315 		if (PF_REVERSED_KEY(*state, pd->af))
7316 			nk = (*state)->key[pd->sidx];
7317 		else
7318 			nk = (*state)->key[pd->didx];
7319 
7320 		afto = pd->af != nk->af;
7321 
7322 		if (afto && (*state)->direction == PF_IN) {
7323 			sidx = pd->didx;
7324 			didx = pd->sidx;
7325 		} else {
7326 			sidx = pd->sidx;
7327 			didx = pd->didx;
7328 		}
7329 
7330 		if (afto) {
7331 			pf_addrcpy(&pd->nsaddr, &nk->addr[sidx], nk->af);
7332 			pf_addrcpy(&pd->ndaddr, &nk->addr[didx], nk->af);
7333 			pd->naf = nk->af;
7334 			action = PF_AFRT;
7335 		}
7336 
7337 		if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7338 		    nk->port[sidx] != pd->osport)
7339 			pf_change_ap(pd, pd->src, pd->sport,
7340 			    &nk->addr[sidx], nk->port[sidx]);
7341 
7342 		if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7343 		    nk->port[didx] != pd->odport)
7344 			pf_change_ap(pd, pd->dst, pd->dport,
7345 			    &nk->addr[didx], nk->port[didx]);
7346 
7347 		copyback = 1;
7348 	}
7349 
7350 	if (copyback && pd->hdrlen > 0)
7351 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
7352 
7353 	return (action);
7354 }
7355 
7356 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)7357 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
7358     u_short *reason)
7359 {
7360 	struct pf_state_peer	*src;
7361 	if (pd->dir == state->direction) {
7362 		if (PF_REVERSED_KEY(state, pd->af))
7363 			src = &state->dst;
7364 		else
7365 			src = &state->src;
7366 	} else {
7367 		if (PF_REVERSED_KEY(state, pd->af))
7368 			src = &state->src;
7369 		else
7370 			src = &state->dst;
7371 	}
7372 
7373 	if (src->scrub != NULL) {
7374 		if (src->scrub->pfss_v_tag == 0)
7375 			src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
7376 		else  if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
7377 			return (PF_DROP);
7378 	}
7379 
7380 	return (PF_PASS);
7381 }
7382 
7383 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)7384 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
7385 {
7386 	struct pf_sctp_endpoint key;
7387 	struct pf_sctp_endpoint *ep;
7388 	struct pf_state_key *sks = s->key[PF_SK_STACK];
7389 	struct pf_sctp_source *i, *tmp;
7390 
7391 	if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
7392 		return;
7393 
7394 	PF_SCTP_ENDPOINTS_LOCK();
7395 
7396 	key.v_tag = s->dst.scrub->pfss_v_tag;
7397 	ep  = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7398 	if (ep != NULL) {
7399 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7400 			if (pf_addr_cmp(&i->addr,
7401 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
7402 			    s->key[PF_SK_WIRE]->af) == 0) {
7403 				SDT_PROBE3(pf, sctp, multihome, remove,
7404 				    key.v_tag, s, i);
7405 				TAILQ_REMOVE(&ep->sources, i, entry);
7406 				free(i, M_PFTEMP);
7407 				break;
7408 			}
7409 		}
7410 
7411 		if (TAILQ_EMPTY(&ep->sources)) {
7412 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7413 			free(ep, M_PFTEMP);
7414 		}
7415 	}
7416 
7417 	/* Other direction. */
7418 	key.v_tag = s->src.scrub->pfss_v_tag;
7419 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7420 	if (ep != NULL) {
7421 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7422 			if (pf_addr_cmp(&i->addr,
7423 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
7424 			    s->key[PF_SK_WIRE]->af) == 0) {
7425 				SDT_PROBE3(pf, sctp, multihome, remove,
7426 				    key.v_tag, s, i);
7427 				TAILQ_REMOVE(&ep->sources, i, entry);
7428 				free(i, M_PFTEMP);
7429 				break;
7430 			}
7431 		}
7432 
7433 		if (TAILQ_EMPTY(&ep->sources)) {
7434 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7435 			free(ep, M_PFTEMP);
7436 		}
7437 	}
7438 
7439 	PF_SCTP_ENDPOINTS_UNLOCK();
7440 }
7441 
7442 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)7443 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
7444 {
7445 	struct pf_sctp_endpoint key = {
7446 		.v_tag = v_tag,
7447 	};
7448 	struct pf_sctp_source *i;
7449 	struct pf_sctp_endpoint *ep;
7450 	int count;
7451 
7452 	PF_SCTP_ENDPOINTS_LOCK();
7453 
7454 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7455 	if (ep == NULL) {
7456 		ep = malloc(sizeof(struct pf_sctp_endpoint),
7457 		    M_PFTEMP, M_NOWAIT);
7458 		if (ep == NULL) {
7459 			PF_SCTP_ENDPOINTS_UNLOCK();
7460 			return;
7461 		}
7462 
7463 		ep->v_tag = v_tag;
7464 		TAILQ_INIT(&ep->sources);
7465 		RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7466 	}
7467 
7468 	/* Avoid inserting duplicates. */
7469 	count = 0;
7470 	TAILQ_FOREACH(i, &ep->sources, entry) {
7471 		count++;
7472 		if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
7473 			PF_SCTP_ENDPOINTS_UNLOCK();
7474 			return;
7475 		}
7476 	}
7477 
7478 	/* Limit the number of addresses per endpoint. */
7479 	if (count >= PF_SCTP_MAX_ENDPOINTS) {
7480 		PF_SCTP_ENDPOINTS_UNLOCK();
7481 		return;
7482 	}
7483 
7484 	i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
7485 	if (i == NULL) {
7486 		PF_SCTP_ENDPOINTS_UNLOCK();
7487 		return;
7488 	}
7489 
7490 	i->af = pd->af;
7491 	memcpy(&i->addr, a, sizeof(*a));
7492 	TAILQ_INSERT_TAIL(&ep->sources, i, entry);
7493 	SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
7494 
7495 	PF_SCTP_ENDPOINTS_UNLOCK();
7496 }
7497 
7498 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)7499 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
7500     struct pf_kstate *s, int action)
7501 {
7502 	struct pf_sctp_multihome_job	*j, *tmp;
7503 	struct pf_sctp_source		*i;
7504 	int			 ret;
7505 	struct pf_kstate	*sm = NULL;
7506 	struct pf_krule		*ra = NULL;
7507 	struct pf_krule		*r = &V_pf_default_rule;
7508 	struct pf_kruleset	*rs = NULL;
7509 	u_short			 reason;
7510 	bool do_extra = true;
7511 
7512 	PF_RULES_RLOCK_TRACKER;
7513 
7514 again:
7515 	TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
7516 		if (s == NULL || action != PF_PASS)
7517 			goto free;
7518 
7519 		/* Confirm we don't recurse here. */
7520 		MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
7521 
7522 		switch (j->op) {
7523 		case  SCTP_ADD_IP_ADDRESS: {
7524 			uint32_t v_tag = pd->sctp_initiate_tag;
7525 
7526 			if (v_tag == 0) {
7527 				if (s->direction == pd->dir)
7528 					v_tag = s->src.scrub->pfss_v_tag;
7529 				else
7530 					v_tag = s->dst.scrub->pfss_v_tag;
7531 			}
7532 
7533 			/*
7534 			 * Avoid duplicating states. We'll already have
7535 			 * created a state based on the source address of
7536 			 * the packet, but SCTP endpoints may also list this
7537 			 * address again in the INIT(_ACK) parameters.
7538 			 */
7539 			if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
7540 				break;
7541 			}
7542 
7543 			j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
7544 			PF_RULES_RLOCK();
7545 			sm = NULL;
7546 			if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) {
7547 				j->pd.related_rule = s->rule;
7548 			}
7549 			ret = pf_test_rule(&r, &sm,
7550 			    &j->pd, &ra, &rs, &reason, NULL);
7551 			PF_RULES_RUNLOCK();
7552 			SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
7553 			if (ret != PF_DROP && sm != NULL) {
7554 				/* Inherit v_tag values. */
7555 				if (sm->direction == s->direction) {
7556 					sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7557 					sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7558 				} else {
7559 					sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7560 					sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7561 				}
7562 				PF_STATE_UNLOCK(sm);
7563 			} else {
7564 				/* If we try duplicate inserts? */
7565 				break;
7566 			}
7567 
7568 			/* Only add the address if we've actually allowed the state. */
7569 			pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
7570 
7571 			if (! do_extra) {
7572 				break;
7573 			}
7574 			/*
7575 			 * We need to do this for each of our source addresses.
7576 			 * Find those based on the verification tag.
7577 			 */
7578 			struct pf_sctp_endpoint key = {
7579 				.v_tag = pd->hdr.sctp.v_tag,
7580 			};
7581 			struct pf_sctp_endpoint *ep;
7582 
7583 			PF_SCTP_ENDPOINTS_LOCK();
7584 			ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7585 			if (ep == NULL) {
7586 				PF_SCTP_ENDPOINTS_UNLOCK();
7587 				break;
7588 			}
7589 			MPASS(ep != NULL);
7590 
7591 			TAILQ_FOREACH(i, &ep->sources, entry) {
7592 				struct pf_sctp_multihome_job *nj;
7593 
7594 				/* SCTP can intermingle IPv4 and IPv6. */
7595 				if (i->af != pd->af)
7596 					continue;
7597 
7598 				nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
7599 				if (! nj) {
7600 					continue;
7601 				}
7602 				memcpy(&nj->pd, &j->pd, sizeof(j->pd));
7603 				memcpy(&nj->src, &j->src, sizeof(nj->src));
7604 				nj->pd.src = &nj->src;
7605 				// New destination address!
7606 				memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
7607 				nj->pd.dst = &nj->dst;
7608 				nj->pd.m = j->pd.m;
7609 				nj->op = j->op;
7610 
7611 				TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
7612 			}
7613 			PF_SCTP_ENDPOINTS_UNLOCK();
7614 
7615 			break;
7616 		}
7617 		case SCTP_DEL_IP_ADDRESS: {
7618 			struct pf_state_key_cmp key;
7619 			uint8_t psrc;
7620 			int action;
7621 
7622 			bzero(&key, sizeof(key));
7623 			key.af = j->pd.af;
7624 			key.proto = IPPROTO_SCTP;
7625 			if (j->pd.dir == PF_IN)	{	/* wire side, straight */
7626 				pf_addrcpy(&key.addr[0], j->pd.src, key.af);
7627 				pf_addrcpy(&key.addr[1], j->pd.dst, key.af);
7628 				key.port[0] = j->pd.hdr.sctp.src_port;
7629 				key.port[1] = j->pd.hdr.sctp.dest_port;
7630 			} else {			/* stack side, reverse */
7631 				pf_addrcpy(&key.addr[1], j->pd.src, key.af);
7632 				pf_addrcpy(&key.addr[0], j->pd.dst, key.af);
7633 				key.port[1] = j->pd.hdr.sctp.src_port;
7634 				key.port[0] = j->pd.hdr.sctp.dest_port;
7635 			}
7636 
7637 			action = pf_find_state(&j->pd, &key, &sm);
7638 			if (action == PF_MATCH) {
7639 				PF_STATE_LOCK_ASSERT(sm);
7640 				if (j->pd.dir == sm->direction) {
7641 					psrc = PF_PEER_SRC;
7642 				} else {
7643 					psrc = PF_PEER_DST;
7644 				}
7645 				pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
7646 				sm->timeout = PFTM_SCTP_CLOSING;
7647 				PF_STATE_UNLOCK(sm);
7648 			}
7649 			break;
7650 		default:
7651 			panic("Unknown op %#x", j->op);
7652 		}
7653 	}
7654 
7655 	free:
7656 		TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
7657 		free(j, M_PFTEMP);
7658 	}
7659 
7660 	/* We may have inserted extra work while processing the list. */
7661 	if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
7662 		do_extra = false;
7663 		goto again;
7664 	}
7665 }
7666 
7667 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)7668 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
7669 {
7670 	int			 off = 0;
7671 	struct pf_sctp_multihome_job	*job;
7672 
7673 	SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op);
7674 
7675 	while (off < len) {
7676 		struct sctp_paramhdr h;
7677 
7678 		if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL,
7679 		    pd->af))
7680 			return (PF_DROP);
7681 
7682 		/* Parameters are at least 4 bytes. */
7683 		if (ntohs(h.param_length) < 4)
7684 			return (PF_DROP);
7685 
7686 		SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type),
7687 		    ntohs(h.param_length));
7688 
7689 		switch (ntohs(h.param_type)) {
7690 		case  SCTP_IPV4_ADDRESS: {
7691 			struct in_addr t;
7692 
7693 			if (ntohs(h.param_length) !=
7694 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
7695 				return (PF_DROP);
7696 
7697 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7698 			    NULL, pd->af))
7699 				return (PF_DROP);
7700 
7701 			if (in_nullhost(t))
7702 				t.s_addr = pd->src->v4.s_addr;
7703 
7704 			/*
7705 			 * We hold the state lock (idhash) here, which means
7706 			 * that we can't acquire the keyhash, or we'll get a
7707 			 * LOR (and potentially double-lock things too). We also
7708 			 * can't release the state lock here, so instead we'll
7709 			 * enqueue this for async handling.
7710 			 * There's a relatively small race here, in that a
7711 			 * packet using the new addresses could arrive already,
7712 			 * but that's just though luck for it.
7713 			 */
7714 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7715 			if (! job)
7716 				return (PF_DROP);
7717 
7718 			SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op);
7719 
7720 			memcpy(&job->pd, pd, sizeof(*pd));
7721 
7722 			// New source address!
7723 			memcpy(&job->src, &t, sizeof(t));
7724 			job->pd.src = &job->src;
7725 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
7726 			job->pd.dst = &job->dst;
7727 			job->pd.m = pd->m;
7728 			job->op = op;
7729 
7730 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7731 			break;
7732 		}
7733 #ifdef INET6
7734 		case SCTP_IPV6_ADDRESS: {
7735 			struct in6_addr t;
7736 
7737 			if (ntohs(h.param_length) !=
7738 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
7739 				return (PF_DROP);
7740 
7741 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7742 			    NULL, pd->af))
7743 				return (PF_DROP);
7744 			if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
7745 				break;
7746 			if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
7747 				memcpy(&t, &pd->src->v6, sizeof(t));
7748 
7749 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7750 			if (! job)
7751 				return (PF_DROP);
7752 
7753 			SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op);
7754 
7755 			memcpy(&job->pd, pd, sizeof(*pd));
7756 			memcpy(&job->src, &t, sizeof(t));
7757 			job->pd.src = &job->src;
7758 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
7759 			job->pd.dst = &job->dst;
7760 			job->pd.m = pd->m;
7761 			job->op = op;
7762 
7763 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7764 			break;
7765 		}
7766 #endif /* INET6 */
7767 		case SCTP_ADD_IP_ADDRESS: {
7768 			int ret;
7769 			struct sctp_asconf_paramhdr ah;
7770 
7771 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7772 			    NULL, pd->af))
7773 				return (PF_DROP);
7774 
7775 			ret = pf_multihome_scan(start + off + sizeof(ah),
7776 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
7777 			    SCTP_ADD_IP_ADDRESS);
7778 			if (ret != PF_PASS)
7779 				return (ret);
7780 			break;
7781 		}
7782 		case SCTP_DEL_IP_ADDRESS: {
7783 			int ret;
7784 			struct sctp_asconf_paramhdr ah;
7785 
7786 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7787 			    NULL, pd->af))
7788 				return (PF_DROP);
7789 			ret = pf_multihome_scan(start + off + sizeof(ah),
7790 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
7791 			    SCTP_DEL_IP_ADDRESS);
7792 			if (ret != PF_PASS)
7793 				return (ret);
7794 			break;
7795 		}
7796 		default:
7797 			break;
7798 		}
7799 
7800 		off += roundup(ntohs(h.param_length), 4);
7801 	}
7802 
7803 	return (PF_PASS);
7804 }
7805 
7806 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)7807 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
7808 {
7809 	start += sizeof(struct sctp_init_chunk);
7810 	len -= sizeof(struct sctp_init_chunk);
7811 
7812 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7813 }
7814 
7815 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)7816 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
7817 {
7818 	start += sizeof(struct sctp_asconf_chunk);
7819 	len -= sizeof(struct sctp_asconf_chunk);
7820 
7821 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7822 }
7823 
7824 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)7825 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
7826     struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir,
7827     int *iidx, int multi, int inner)
7828 {
7829 	int	 action, direction = pd->dir;
7830 
7831 	key->af = pd->af;
7832 	key->proto = pd->proto;
7833 	if (icmp_dir == PF_IN) {
7834 		*iidx = pd->sidx;
7835 		key->port[pd->sidx] = icmpid;
7836 		key->port[pd->didx] = type;
7837 	} else {
7838 		*iidx = pd->didx;
7839 		key->port[pd->sidx] = type;
7840 		key->port[pd->didx] = icmpid;
7841 	}
7842 	if (pf_state_key_addr_setup(pd, key, multi))
7843 		return (PF_DROP);
7844 
7845 	action = pf_find_state(pd, key, state);
7846 	if (action != PF_MATCH)
7847 		return (action);
7848 
7849 	if ((*state)->state_flags & PFSTATE_SLOPPY)
7850 		return (-1);
7851 
7852 	/* Is this ICMP message flowing in right direction? */
7853 	if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af)
7854 		direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ?
7855 		    PF_IN : PF_OUT;
7856 	else
7857 		direction = (*state)->direction;
7858 	if ((*state)->rule->type &&
7859 	    (((!inner && direction == pd->dir) ||
7860 	    (inner && direction != pd->dir)) ?
7861 	    PF_IN : PF_OUT) != icmp_dir) {
7862 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
7863 			printf("pf: icmp type %d in wrong direction (%d): ",
7864 			    ntohs(type), icmp_dir);
7865 			pf_print_state(*state);
7866 			printf("\n");
7867 		}
7868 		PF_STATE_UNLOCK(*state);
7869 		*state = NULL;
7870 		return (PF_DROP);
7871 	}
7872 	return (-1);
7873 }
7874 
7875 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7876 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
7877     u_short *reason)
7878 {
7879 	struct pf_addr  *saddr = pd->src, *daddr = pd->dst;
7880 	u_int16_t	*icmpsum, virtual_id, virtual_type;
7881 	u_int8_t	 icmptype, icmpcode;
7882 	int		 icmp_dir, iidx, ret;
7883 	struct pf_state_key_cmp key;
7884 #ifdef INET
7885 	u_int16_t	 icmpid;
7886 #endif /* INET*/
7887 
7888 	MPASS(*state == NULL);
7889 
7890 	bzero(&key, sizeof(key));
7891 	switch (pd->proto) {
7892 #ifdef INET
7893 	case IPPROTO_ICMP:
7894 		icmptype = pd->hdr.icmp.icmp_type;
7895 		icmpcode = pd->hdr.icmp.icmp_code;
7896 		icmpid = pd->hdr.icmp.icmp_id;
7897 		icmpsum = &pd->hdr.icmp.icmp_cksum;
7898 		break;
7899 #endif /* INET */
7900 #ifdef INET6
7901 	case IPPROTO_ICMPV6:
7902 		icmptype = pd->hdr.icmp6.icmp6_type;
7903 		icmpcode = pd->hdr.icmp6.icmp6_code;
7904 #ifdef INET
7905 		icmpid = pd->hdr.icmp6.icmp6_id;
7906 #endif /* INET */
7907 		icmpsum = &pd->hdr.icmp6.icmp6_cksum;
7908 		break;
7909 #endif /* INET6 */
7910 	default:
7911 		panic("unhandled proto %d", pd->proto);
7912 	}
7913 
7914 	if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id,
7915 	    &virtual_type) == 0) {
7916 		/*
7917 		 * ICMP query/reply message not related to a TCP/UDP/SCTP
7918 		 * packet. Search for an ICMP state.
7919 		 */
7920 		ret = pf_icmp_state_lookup(&key, pd, state, virtual_id,
7921 		    virtual_type, icmp_dir, &iidx, 0, 0);
7922 		/* IPv6? try matching a multicast address */
7923 		if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) {
7924 			MPASS(*state == NULL);
7925 			ret = pf_icmp_state_lookup(&key, pd, state,
7926 			    virtual_id, virtual_type,
7927 			    icmp_dir, &iidx, 1, 0);
7928 		}
7929 		if (ret >= 0) {
7930 			MPASS(*state == NULL);
7931 			return (ret);
7932 		}
7933 
7934 		(*state)->expire = pf_get_uptime();
7935 		(*state)->timeout = PFTM_ICMP_ERROR_REPLY;
7936 
7937 		/* translate source/destination address, if necessary */
7938 		if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7939 			struct pf_state_key	*nk;
7940 			int			 afto, sidx, didx;
7941 
7942 			if (PF_REVERSED_KEY(*state, pd->af))
7943 				nk = (*state)->key[pd->sidx];
7944 			else
7945 				nk = (*state)->key[pd->didx];
7946 
7947 			afto = pd->af != nk->af;
7948 
7949 			if (afto && (*state)->direction == PF_IN) {
7950 				sidx = pd->didx;
7951 				didx = pd->sidx;
7952 				iidx = !iidx;
7953 			} else {
7954 				sidx = pd->sidx;
7955 				didx = pd->didx;
7956 			}
7957 
7958 			switch (pd->af) {
7959 #ifdef INET
7960 			case AF_INET:
7961 #ifdef INET6
7962 				if (afto) {
7963 					if (pf_translate_icmp_af(AF_INET6,
7964 					    &pd->hdr.icmp))
7965 						return (PF_DROP);
7966 					pd->proto = IPPROTO_ICMPV6;
7967 				}
7968 #endif /* INET6 */
7969 				if (!afto &&
7970 				    PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
7971 					pf_change_a(&saddr->v4.s_addr,
7972 					    pd->ip_sum,
7973 					    nk->addr[sidx].v4.s_addr,
7974 					    0);
7975 
7976 				if (!afto && PF_ANEQ(pd->dst,
7977 				    &nk->addr[didx], AF_INET))
7978 					pf_change_a(&daddr->v4.s_addr,
7979 					    pd->ip_sum,
7980 					    nk->addr[didx].v4.s_addr, 0);
7981 
7982 				if (nk->port[iidx] !=
7983 				    pd->hdr.icmp.icmp_id) {
7984 					pd->hdr.icmp.icmp_cksum =
7985 					    pf_cksum_fixup(
7986 					    pd->hdr.icmp.icmp_cksum, icmpid,
7987 					    nk->port[iidx], 0);
7988 					pd->hdr.icmp.icmp_id =
7989 					    nk->port[iidx];
7990 				}
7991 
7992 				m_copyback(pd->m, pd->off, ICMP_MINLEN,
7993 				    (caddr_t )&pd->hdr.icmp);
7994 				break;
7995 #endif /* INET */
7996 #ifdef INET6
7997 			case AF_INET6:
7998 #ifdef INET
7999 				if (afto) {
8000 					if (pf_translate_icmp_af(AF_INET,
8001 					    &pd->hdr.icmp6))
8002 						return (PF_DROP);
8003 					pd->proto = IPPROTO_ICMP;
8004 				}
8005 #endif /* INET */
8006 				if (!afto &&
8007 				    PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
8008 					pf_change_a6(saddr,
8009 					    &pd->hdr.icmp6.icmp6_cksum,
8010 					    &nk->addr[sidx], 0);
8011 
8012 				if (!afto && PF_ANEQ(pd->dst,
8013 				    &nk->addr[didx], AF_INET6))
8014 					pf_change_a6(daddr,
8015 					    &pd->hdr.icmp6.icmp6_cksum,
8016 					    &nk->addr[didx], 0);
8017 
8018 				if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
8019 					pd->hdr.icmp6.icmp6_id =
8020 					    nk->port[iidx];
8021 
8022 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8023 				    (caddr_t )&pd->hdr.icmp6);
8024 				break;
8025 #endif /* INET6 */
8026 			}
8027 			if (afto) {
8028 				pf_addrcpy(&pd->nsaddr, &nk->addr[sidx],
8029 				    nk->af);
8030 				pf_addrcpy(&pd->ndaddr, &nk->addr[didx],
8031 				    nk->af);
8032 				pd->naf = nk->af;
8033 				return (PF_AFRT);
8034 			}
8035 		}
8036 		return (PF_PASS);
8037 
8038 	} else {
8039 		/*
8040 		 * ICMP error message in response to a TCP/UDP packet.
8041 		 * Extract the inner TCP/UDP header and search for that state.
8042 		 */
8043 
8044 		struct pf_pdesc	pd2;
8045 		bzero(&pd2, sizeof pd2);
8046 #ifdef INET
8047 		struct ip	h2;
8048 #endif /* INET */
8049 #ifdef INET6
8050 		struct ip6_hdr	h2_6;
8051 #endif /* INET6 */
8052 		int		ipoff2 = 0;
8053 
8054 		pd2.af = pd->af;
8055 		pd2.dir = pd->dir;
8056 		/* Payload packet is from the opposite direction. */
8057 		pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
8058 		pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
8059 		pd2.m = pd->m;
8060 		pd2.pf_mtag = pd->pf_mtag;
8061 		pd2.kif = pd->kif;
8062 		switch (pd->af) {
8063 #ifdef INET
8064 		case AF_INET:
8065 			/* offset of h2 in mbuf chain */
8066 			ipoff2 = pd->off + ICMP_MINLEN;
8067 
8068 			if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
8069 			    reason, pd2.af)) {
8070 				DPFPRINTF(PF_DEBUG_MISC,
8071 				    "pf: ICMP error message too short "
8072 				    "(ip)");
8073 				return (PF_DROP);
8074 			}
8075 			/*
8076 			 * ICMP error messages don't refer to non-first
8077 			 * fragments
8078 			 */
8079 			if (h2.ip_off & htons(IP_OFFMASK)) {
8080 				REASON_SET(reason, PFRES_FRAG);
8081 				return (PF_DROP);
8082 			}
8083 
8084 			/* offset of protocol header that follows h2 */
8085 			pd2.off = ipoff2;
8086 			if (pf_walk_header(&pd2, &h2, reason) != PF_PASS)
8087 				return (PF_DROP);
8088 
8089 			pd2.tot_len = ntohs(h2.ip_len);
8090 			pd2.ttl = h2.ip_ttl;
8091 			pd2.src = (struct pf_addr *)&h2.ip_src;
8092 			pd2.dst = (struct pf_addr *)&h2.ip_dst;
8093 			pd2.ip_sum = &h2.ip_sum;
8094 			break;
8095 #endif /* INET */
8096 #ifdef INET6
8097 		case AF_INET6:
8098 			ipoff2 = pd->off + sizeof(struct icmp6_hdr);
8099 
8100 			if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
8101 			    reason, pd2.af)) {
8102 				DPFPRINTF(PF_DEBUG_MISC,
8103 				    "pf: ICMP error message too short "
8104 				    "(ip6)");
8105 				return (PF_DROP);
8106 			}
8107 			pd2.off = ipoff2;
8108 			if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS)
8109 				return (PF_DROP);
8110 
8111 			pd2.tot_len = ntohs(h2_6.ip6_plen) +
8112 			    sizeof(struct ip6_hdr);
8113 			pd2.ttl = h2_6.ip6_hlim;
8114 			pd2.src = (struct pf_addr *)&h2_6.ip6_src;
8115 			pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
8116 			pd2.ip_sum = NULL;
8117 			break;
8118 #endif /* INET6 */
8119 		default:
8120 			unhandled_af(pd->af);
8121 		}
8122 
8123 		if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
8124 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
8125 				printf("pf: BAD ICMP %d:%d outer dst: ",
8126 				    icmptype, icmpcode);
8127 				pf_print_host(pd->src, 0, pd->af);
8128 				printf(" -> ");
8129 				pf_print_host(pd->dst, 0, pd->af);
8130 				printf(" inner src: ");
8131 				pf_print_host(pd2.src, 0, pd2.af);
8132 				printf(" -> ");
8133 				pf_print_host(pd2.dst, 0, pd2.af);
8134 				printf("\n");
8135 			}
8136 			REASON_SET(reason, PFRES_BADSTATE);
8137 			return (PF_DROP);
8138 		}
8139 
8140 		switch (pd2.proto) {
8141 		case IPPROTO_TCP: {
8142 			struct tcphdr		*th = &pd2.hdr.tcp;
8143 			u_int32_t		 seq;
8144 			struct pf_state_peer	*src, *dst;
8145 			u_int8_t		 dws;
8146 			int			 copyback = 0;
8147 			int			 action;
8148 
8149 			/*
8150 			 * Only the first 8 bytes of the TCP header can be
8151 			 * expected. Don't access any TCP header fields after
8152 			 * th_seq, an ackskew test is not possible.
8153 			 */
8154 			if (!pf_pull_hdr(pd->m, pd2.off, th, 8, reason,
8155 			    pd2.af)) {
8156 				DPFPRINTF(PF_DEBUG_MISC,
8157 				    "pf: ICMP error message too short "
8158 				    "(tcp)");
8159 				return (PF_DROP);
8160 			}
8161 			pd2.pcksum = &pd2.hdr.tcp.th_sum;
8162 
8163 			key.af = pd2.af;
8164 			key.proto = IPPROTO_TCP;
8165 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8166 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8167 			key.port[pd2.sidx] = th->th_sport;
8168 			key.port[pd2.didx] = th->th_dport;
8169 
8170 			action = pf_find_state(&pd2, &key, state);
8171 			if (action != PF_MATCH)
8172 				return (action);
8173 
8174 			if (pd->dir == (*state)->direction) {
8175 				if (PF_REVERSED_KEY(*state, pd->af)) {
8176 					src = &(*state)->src;
8177 					dst = &(*state)->dst;
8178 				} else {
8179 					src = &(*state)->dst;
8180 					dst = &(*state)->src;
8181 				}
8182 			} else {
8183 				if (PF_REVERSED_KEY(*state, pd->af)) {
8184 					src = &(*state)->dst;
8185 					dst = &(*state)->src;
8186 				} else {
8187 					src = &(*state)->src;
8188 					dst = &(*state)->dst;
8189 				}
8190 			}
8191 
8192 			if (src->wscale && dst->wscale)
8193 				dws = dst->wscale & PF_WSCALE_MASK;
8194 			else
8195 				dws = 0;
8196 
8197 			/* Demodulate sequence number */
8198 			seq = ntohl(th->th_seq) - src->seqdiff;
8199 			if (src->seqdiff) {
8200 				pf_change_a(&th->th_seq, icmpsum,
8201 				    htonl(seq), 0);
8202 				copyback = 1;
8203 			}
8204 
8205 			if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
8206 			    (!SEQ_GEQ(src->seqhi, seq) ||
8207 			    !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
8208 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
8209 					printf("pf: BAD ICMP %d:%d ",
8210 					    icmptype, icmpcode);
8211 					pf_print_host(pd->src, 0, pd->af);
8212 					printf(" -> ");
8213 					pf_print_host(pd->dst, 0, pd->af);
8214 					printf(" state: ");
8215 					pf_print_state(*state);
8216 					printf(" seq=%u\n", seq);
8217 				}
8218 				REASON_SET(reason, PFRES_BADSTATE);
8219 				return (PF_DROP);
8220 			} else {
8221 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
8222 					printf("pf: OK ICMP %d:%d ",
8223 					    icmptype, icmpcode);
8224 					pf_print_host(pd->src, 0, pd->af);
8225 					printf(" -> ");
8226 					pf_print_host(pd->dst, 0, pd->af);
8227 					printf(" state: ");
8228 					pf_print_state(*state);
8229 					printf(" seq=%u\n", seq);
8230 				}
8231 			}
8232 
8233 			/* translate source/destination address, if necessary */
8234 			if ((*state)->key[PF_SK_WIRE] !=
8235 			    (*state)->key[PF_SK_STACK]) {
8236 
8237 				struct pf_state_key	*nk;
8238 
8239 				if (PF_REVERSED_KEY(*state, pd->af))
8240 					nk = (*state)->key[pd->sidx];
8241 				else
8242 					nk = (*state)->key[pd->didx];
8243 
8244 #if defined(INET) && defined(INET6)
8245 				int		 afto, sidx, didx;
8246 
8247 				afto = pd->af != nk->af;
8248 
8249 				if (afto && (*state)->direction == PF_IN) {
8250 					sidx = pd2.didx;
8251 					didx = pd2.sidx;
8252 				} else {
8253 					sidx = pd2.sidx;
8254 					didx = pd2.didx;
8255 				}
8256 
8257 				if (afto) {
8258 					if (pf_translate_icmp_af(nk->af,
8259 					    &pd->hdr.icmp))
8260 						return (PF_DROP);
8261 					m_copyback(pd->m, pd->off,
8262 					    sizeof(struct icmp6_hdr),
8263 					    (c_caddr_t)&pd->hdr.icmp6);
8264 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8265 					    &pd2, &nk->addr[sidx],
8266 					    &nk->addr[didx], pd->af,
8267 					    nk->af))
8268 						return (PF_DROP);
8269 					pf_addrcpy(&pd->nsaddr,
8270 					    &nk->addr[pd2.sidx], nk->af);
8271 					pf_addrcpy(&pd->ndaddr,
8272 					    &nk->addr[pd2.didx], nk->af);
8273 					if (nk->af == AF_INET) {
8274 						pd->proto = IPPROTO_ICMP;
8275 					} else {
8276 						pd->proto = IPPROTO_ICMPV6;
8277 						/*
8278 						 * IPv4 becomes IPv6 so we must
8279 						 * copy IPv4 src addr to least
8280 						 * 32bits in IPv6 address to
8281 						 * keep traceroute/icmp
8282 						 * working.
8283 						 */
8284 						pd->nsaddr.addr32[3] =
8285 						    pd->src->addr32[0];
8286 					}
8287 					pd->naf = pd2.naf = nk->af;
8288 					pf_change_ap(&pd2, pd2.src, &th->th_sport,
8289 					    &nk->addr[pd2.sidx], nk->port[sidx]);
8290 					pf_change_ap(&pd2, pd2.dst, &th->th_dport,
8291 					    &nk->addr[pd2.didx], nk->port[didx]);
8292 					m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th);
8293 					return (PF_AFRT);
8294 				}
8295 #endif /* INET && INET6 */
8296 
8297 				if (PF_ANEQ(pd2.src,
8298 				    &nk->addr[pd2.sidx], pd2.af) ||
8299 				    nk->port[pd2.sidx] != th->th_sport)
8300 					pf_change_icmp(pd2.src, &th->th_sport,
8301 					    daddr, &nk->addr[pd2.sidx],
8302 					    nk->port[pd2.sidx], NULL,
8303 					    pd2.ip_sum, icmpsum,
8304 					    pd->ip_sum, 0, pd2.af);
8305 
8306 				if (PF_ANEQ(pd2.dst,
8307 				    &nk->addr[pd2.didx], pd2.af) ||
8308 				    nk->port[pd2.didx] != th->th_dport)
8309 					pf_change_icmp(pd2.dst, &th->th_dport,
8310 					    saddr, &nk->addr[pd2.didx],
8311 					    nk->port[pd2.didx], NULL,
8312 					    pd2.ip_sum, icmpsum,
8313 					    pd->ip_sum, 0, pd2.af);
8314 				copyback = 1;
8315 			}
8316 
8317 			if (copyback) {
8318 				switch (pd2.af) {
8319 #ifdef INET
8320 				case AF_INET:
8321 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8322 					    (caddr_t )&pd->hdr.icmp);
8323 					m_copyback(pd->m, ipoff2, sizeof(h2),
8324 					    (caddr_t )&h2);
8325 					break;
8326 #endif /* INET */
8327 #ifdef INET6
8328 				case AF_INET6:
8329 					m_copyback(pd->m, pd->off,
8330 					    sizeof(struct icmp6_hdr),
8331 					    (caddr_t )&pd->hdr.icmp6);
8332 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8333 					    (caddr_t )&h2_6);
8334 					break;
8335 #endif /* INET6 */
8336 				default:
8337 					unhandled_af(pd->af);
8338 				}
8339 				m_copyback(pd->m, pd2.off, 8, (caddr_t)th);
8340 			}
8341 
8342 			return (PF_PASS);
8343 			break;
8344 		}
8345 		case IPPROTO_UDP: {
8346 			struct udphdr		*uh = &pd2.hdr.udp;
8347 			int			 action;
8348 
8349 			if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh),
8350 			    reason, pd2.af)) {
8351 				DPFPRINTF(PF_DEBUG_MISC,
8352 				    "pf: ICMP error message too short "
8353 				    "(udp)");
8354 				return (PF_DROP);
8355 			}
8356 			pd2.pcksum = &pd2.hdr.udp.uh_sum;
8357 
8358 			key.af = pd2.af;
8359 			key.proto = IPPROTO_UDP;
8360 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8361 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8362 			key.port[pd2.sidx] = uh->uh_sport;
8363 			key.port[pd2.didx] = uh->uh_dport;
8364 
8365 			action = pf_find_state(&pd2, &key, state);
8366 			if (action != PF_MATCH)
8367 				return (action);
8368 
8369 			/* translate source/destination address, if necessary */
8370 			if ((*state)->key[PF_SK_WIRE] !=
8371 			    (*state)->key[PF_SK_STACK]) {
8372 				struct pf_state_key	*nk;
8373 
8374 				if (PF_REVERSED_KEY(*state, pd->af))
8375 					nk = (*state)->key[pd->sidx];
8376 				else
8377 					nk = (*state)->key[pd->didx];
8378 
8379 #if defined(INET) && defined(INET6)
8380 				int	 afto, sidx, didx;
8381 
8382 				afto = pd->af != nk->af;
8383 
8384 				if (afto && (*state)->direction == PF_IN) {
8385 					sidx = pd2.didx;
8386 					didx = pd2.sidx;
8387 				} else {
8388 					sidx = pd2.sidx;
8389 					didx = pd2.didx;
8390 				}
8391 
8392 				if (afto) {
8393 					if (pf_translate_icmp_af(nk->af,
8394 					    &pd->hdr.icmp))
8395 						return (PF_DROP);
8396 					m_copyback(pd->m, pd->off,
8397 					    sizeof(struct icmp6_hdr),
8398 					    (c_caddr_t)&pd->hdr.icmp6);
8399 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8400 					    &pd2, &nk->addr[sidx],
8401 					    &nk->addr[didx], pd->af,
8402 					    nk->af))
8403 						return (PF_DROP);
8404 					pf_addrcpy(&pd->nsaddr,
8405 					    &nk->addr[pd2.sidx], nk->af);
8406 					pf_addrcpy(&pd->ndaddr,
8407 					    &nk->addr[pd2.didx], nk->af);
8408 					if (nk->af == AF_INET) {
8409 						pd->proto = IPPROTO_ICMP;
8410 					} else {
8411 						pd->proto = IPPROTO_ICMPV6;
8412 						/*
8413 						 * IPv4 becomes IPv6 so we must
8414 						 * copy IPv4 src addr to least
8415 						 * 32bits in IPv6 address to
8416 						 * keep traceroute/icmp
8417 						 * working.
8418 						 */
8419 						pd->nsaddr.addr32[3] =
8420 						    pd->src->addr32[0];
8421 					}
8422 					pd->naf = pd2.naf = nk->af;
8423 					pf_change_ap(&pd2, pd2.src, &uh->uh_sport,
8424 					    &nk->addr[pd2.sidx], nk->port[sidx]);
8425 					pf_change_ap(&pd2, pd2.dst, &uh->uh_dport,
8426 					    &nk->addr[pd2.didx], nk->port[didx]);
8427 					m_copyback(pd2.m, pd2.off, sizeof(*uh),
8428 					    (c_caddr_t)uh);
8429 					return (PF_AFRT);
8430 				}
8431 #endif /* INET && INET6 */
8432 
8433 				if (PF_ANEQ(pd2.src,
8434 				    &nk->addr[pd2.sidx], pd2.af) ||
8435 				    nk->port[pd2.sidx] != uh->uh_sport)
8436 					pf_change_icmp(pd2.src, &uh->uh_sport,
8437 					    daddr, &nk->addr[pd2.sidx],
8438 					    nk->port[pd2.sidx], &uh->uh_sum,
8439 					    pd2.ip_sum, icmpsum,
8440 					    pd->ip_sum, 1, pd2.af);
8441 
8442 				if (PF_ANEQ(pd2.dst,
8443 				    &nk->addr[pd2.didx], pd2.af) ||
8444 				    nk->port[pd2.didx] != uh->uh_dport)
8445 					pf_change_icmp(pd2.dst, &uh->uh_dport,
8446 					    saddr, &nk->addr[pd2.didx],
8447 					    nk->port[pd2.didx], &uh->uh_sum,
8448 					    pd2.ip_sum, icmpsum,
8449 					    pd->ip_sum, 1, pd2.af);
8450 
8451 				switch (pd2.af) {
8452 #ifdef INET
8453 				case AF_INET:
8454 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8455 					    (caddr_t )&pd->hdr.icmp);
8456 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8457 					break;
8458 #endif /* INET */
8459 #ifdef INET6
8460 				case AF_INET6:
8461 					m_copyback(pd->m, pd->off,
8462 					    sizeof(struct icmp6_hdr),
8463 					    (caddr_t )&pd->hdr.icmp6);
8464 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8465 					    (caddr_t )&h2_6);
8466 					break;
8467 #endif /* INET6 */
8468 				}
8469 				m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh);
8470 			}
8471 			return (PF_PASS);
8472 			break;
8473 		}
8474 #ifdef INET
8475 		case IPPROTO_SCTP: {
8476 			struct sctphdr		*sh = &pd2.hdr.sctp;
8477 			struct pf_state_peer	*src;
8478 			int			 copyback = 0;
8479 			int			 action;
8480 
8481 			if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), reason,
8482 			    pd2.af)) {
8483 				DPFPRINTF(PF_DEBUG_MISC,
8484 				    "pf: ICMP error message too short "
8485 				    "(sctp)");
8486 				return (PF_DROP);
8487 			}
8488 			pd2.pcksum = &pd2.sctp_dummy_sum;
8489 
8490 			key.af = pd2.af;
8491 			key.proto = IPPROTO_SCTP;
8492 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8493 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8494 			key.port[pd2.sidx] = sh->src_port;
8495 			key.port[pd2.didx] = sh->dest_port;
8496 
8497 			action = pf_find_state(&pd2, &key, state);
8498 			if (action != PF_MATCH)
8499 				return (action);
8500 
8501 			if (pd->dir == (*state)->direction) {
8502 				if (PF_REVERSED_KEY(*state, pd->af))
8503 					src = &(*state)->src;
8504 				else
8505 					src = &(*state)->dst;
8506 			} else {
8507 				if (PF_REVERSED_KEY(*state, pd->af))
8508 					src = &(*state)->dst;
8509 				else
8510 					src = &(*state)->src;
8511 			}
8512 
8513 			if (src->scrub->pfss_v_tag != sh->v_tag) {
8514 				DPFPRINTF(PF_DEBUG_MISC,
8515 				    "pf: ICMP error message has incorrect "
8516 				    "SCTP v_tag");
8517 				return (PF_DROP);
8518 			}
8519 
8520 			/* translate source/destination address, if necessary */
8521 			if ((*state)->key[PF_SK_WIRE] !=
8522 			    (*state)->key[PF_SK_STACK]) {
8523 
8524 				struct pf_state_key	*nk;
8525 
8526 				if (PF_REVERSED_KEY(*state, pd->af))
8527 					nk = (*state)->key[pd->sidx];
8528 				else
8529 					nk = (*state)->key[pd->didx];
8530 
8531 #if defined(INET) && defined(INET6)
8532 				int	 afto, sidx, didx;
8533 
8534 				afto = pd->af != nk->af;
8535 
8536 				if (afto && (*state)->direction == PF_IN) {
8537 					sidx = pd2.didx;
8538 					didx = pd2.sidx;
8539 				} else {
8540 					sidx = pd2.sidx;
8541 					didx = pd2.didx;
8542 				}
8543 
8544 				if (afto) {
8545 					if (pf_translate_icmp_af(nk->af,
8546 					    &pd->hdr.icmp))
8547 						return (PF_DROP);
8548 					m_copyback(pd->m, pd->off,
8549 					    sizeof(struct icmp6_hdr),
8550 					    (c_caddr_t)&pd->hdr.icmp6);
8551 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8552 					    &pd2, &nk->addr[sidx],
8553 					    &nk->addr[didx], pd->af,
8554 					    nk->af))
8555 						return (PF_DROP);
8556 					sh->src_port = nk->port[sidx];
8557 					sh->dest_port = nk->port[didx];
8558 					m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh);
8559 					pf_addrcpy(&pd->nsaddr,
8560 					    &nk->addr[pd2.sidx], nk->af);
8561 					pf_addrcpy(&pd->ndaddr,
8562 					    &nk->addr[pd2.didx], nk->af);
8563 					if (nk->af == AF_INET) {
8564 						pd->proto = IPPROTO_ICMP;
8565 					} else {
8566 						pd->proto = IPPROTO_ICMPV6;
8567 						/*
8568 						 * IPv4 becomes IPv6 so we must
8569 						 * copy IPv4 src addr to least
8570 						 * 32bits in IPv6 address to
8571 						 * keep traceroute/icmp
8572 						 * working.
8573 						 */
8574 						pd->nsaddr.addr32[3] =
8575 						    pd->src->addr32[0];
8576 					}
8577 					pd->naf = nk->af;
8578 					return (PF_AFRT);
8579 				}
8580 #endif /* INET && INET6 */
8581 
8582 				if (PF_ANEQ(pd2.src,
8583 				    &nk->addr[pd2.sidx], pd2.af) ||
8584 				    nk->port[pd2.sidx] != sh->src_port)
8585 					pf_change_icmp(pd2.src, &sh->src_port,
8586 					    daddr, &nk->addr[pd2.sidx],
8587 					    nk->port[pd2.sidx], NULL,
8588 					    pd2.ip_sum, icmpsum,
8589 					    pd->ip_sum, 0, pd2.af);
8590 
8591 				if (PF_ANEQ(pd2.dst,
8592 				    &nk->addr[pd2.didx], pd2.af) ||
8593 				    nk->port[pd2.didx] != sh->dest_port)
8594 					pf_change_icmp(pd2.dst, &sh->dest_port,
8595 					    saddr, &nk->addr[pd2.didx],
8596 					    nk->port[pd2.didx], NULL,
8597 					    pd2.ip_sum, icmpsum,
8598 					    pd->ip_sum, 0, pd2.af);
8599 				copyback = 1;
8600 			}
8601 
8602 			if (copyback) {
8603 				switch (pd2.af) {
8604 #ifdef INET
8605 				case AF_INET:
8606 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8607 					    (caddr_t )&pd->hdr.icmp);
8608 					m_copyback(pd->m, ipoff2, sizeof(h2),
8609 					    (caddr_t )&h2);
8610 					break;
8611 #endif /* INET */
8612 #ifdef INET6
8613 				case AF_INET6:
8614 					m_copyback(pd->m, pd->off,
8615 					    sizeof(struct icmp6_hdr),
8616 					    (caddr_t )&pd->hdr.icmp6);
8617 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8618 					    (caddr_t )&h2_6);
8619 					break;
8620 #endif /* INET6 */
8621 				}
8622 				m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh);
8623 			}
8624 
8625 			return (PF_PASS);
8626 			break;
8627 		}
8628 		case IPPROTO_ICMP: {
8629 			struct icmp	*iih = &pd2.hdr.icmp;
8630 
8631 			if (pd2.af != AF_INET) {
8632 				REASON_SET(reason, PFRES_NORM);
8633 				return (PF_DROP);
8634 			}
8635 
8636 			if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
8637 			    reason, pd2.af)) {
8638 				DPFPRINTF(PF_DEBUG_MISC,
8639 				    "pf: ICMP error message too short i"
8640 				    "(icmp)");
8641 				return (PF_DROP);
8642 			}
8643 			pd2.pcksum = &pd2.hdr.icmp.icmp_cksum;
8644 
8645 			icmpid = iih->icmp_id;
8646 			pf_icmp_mapping(&pd2, iih->icmp_type,
8647 			    &icmp_dir, &virtual_id, &virtual_type);
8648 
8649 			ret = pf_icmp_state_lookup(&key, &pd2, state,
8650 			    virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8651 			if (ret >= 0) {
8652 				MPASS(*state == NULL);
8653 				return (ret);
8654 			}
8655 
8656 			/* translate source/destination address, if necessary */
8657 			if ((*state)->key[PF_SK_WIRE] !=
8658 			    (*state)->key[PF_SK_STACK]) {
8659 				struct pf_state_key	*nk;
8660 
8661 				if (PF_REVERSED_KEY(*state, pd->af))
8662 					nk = (*state)->key[pd->sidx];
8663 				else
8664 					nk = (*state)->key[pd->didx];
8665 
8666 #if defined(INET) && defined(INET6)
8667 				int	 afto, sidx, didx;
8668 
8669 				afto = pd->af != nk->af;
8670 
8671 				if (afto && (*state)->direction == PF_IN) {
8672 					sidx = pd2.didx;
8673 					didx = pd2.sidx;
8674 					iidx = !iidx;
8675 				} else {
8676 					sidx = pd2.sidx;
8677 					didx = pd2.didx;
8678 				}
8679 
8680 				if (afto) {
8681 					if (nk->af != AF_INET6)
8682 						return (PF_DROP);
8683 					if (pf_translate_icmp_af(nk->af,
8684 					    &pd->hdr.icmp))
8685 						return (PF_DROP);
8686 					m_copyback(pd->m, pd->off,
8687 					    sizeof(struct icmp6_hdr),
8688 					    (c_caddr_t)&pd->hdr.icmp6);
8689 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8690 					    &pd2, &nk->addr[sidx],
8691 					    &nk->addr[didx], pd->af,
8692 					    nk->af))
8693 						return (PF_DROP);
8694 					pd->proto = IPPROTO_ICMPV6;
8695 					if (pf_translate_icmp_af(nk->af, iih))
8696 						return (PF_DROP);
8697 					if (virtual_type == htons(ICMP_ECHO) &&
8698 					    nk->port[iidx] != iih->icmp_id)
8699 						iih->icmp_id = nk->port[iidx];
8700 					m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
8701 					    (c_caddr_t)iih);
8702 					pf_addrcpy(&pd->nsaddr,
8703 					    &nk->addr[pd2.sidx], nk->af);
8704 					pf_addrcpy(&pd->ndaddr,
8705 					    &nk->addr[pd2.didx], nk->af);
8706 					/*
8707 					 * IPv4 becomes IPv6 so we must copy
8708 					 * IPv4 src addr to least 32bits in
8709 					 * IPv6 address to keep traceroute
8710 					 * working.
8711 					 */
8712 					pd->nsaddr.addr32[3] =
8713 					    pd->src->addr32[0];
8714 					pd->naf = nk->af;
8715 					return (PF_AFRT);
8716 				}
8717 #endif /* INET && INET6 */
8718 
8719 				if (PF_ANEQ(pd2.src,
8720 				    &nk->addr[pd2.sidx], pd2.af) ||
8721 				    (virtual_type == htons(ICMP_ECHO) &&
8722 				    nk->port[iidx] != iih->icmp_id))
8723 					pf_change_icmp(pd2.src,
8724 					    (virtual_type == htons(ICMP_ECHO)) ?
8725 					    &iih->icmp_id : NULL,
8726 					    daddr, &nk->addr[pd2.sidx],
8727 					    (virtual_type == htons(ICMP_ECHO)) ?
8728 					    nk->port[iidx] : 0, NULL,
8729 					    pd2.ip_sum, icmpsum,
8730 					    pd->ip_sum, 0, AF_INET);
8731 
8732 				if (PF_ANEQ(pd2.dst,
8733 				    &nk->addr[pd2.didx], pd2.af))
8734 					pf_change_icmp(pd2.dst, NULL, NULL,
8735 					    &nk->addr[pd2.didx], 0, NULL,
8736 					    pd2.ip_sum, icmpsum, pd->ip_sum, 0,
8737 					    AF_INET);
8738 
8739 				m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
8740 				m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8741 				m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
8742 			}
8743 			return (PF_PASS);
8744 			break;
8745 		}
8746 #endif /* INET */
8747 #ifdef INET6
8748 		case IPPROTO_ICMPV6: {
8749 			struct icmp6_hdr	*iih = &pd2.hdr.icmp6;
8750 
8751 			if (pd2.af != AF_INET6) {
8752 				REASON_SET(reason, PFRES_NORM);
8753 				return (PF_DROP);
8754 			}
8755 
8756 			if (!pf_pull_hdr(pd->m, pd2.off, iih,
8757 			    sizeof(struct icmp6_hdr), reason, pd2.af)) {
8758 				DPFPRINTF(PF_DEBUG_MISC,
8759 				    "pf: ICMP error message too short "
8760 				    "(icmp6)");
8761 				return (PF_DROP);
8762 			}
8763 			pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum;
8764 
8765 			pf_icmp_mapping(&pd2, iih->icmp6_type,
8766 			    &icmp_dir, &virtual_id, &virtual_type);
8767 
8768 			ret = pf_icmp_state_lookup(&key, &pd2, state,
8769 			    virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8770 			/* IPv6? try matching a multicast address */
8771 			if (ret == PF_DROP && pd2.af == AF_INET6 &&
8772 			    icmp_dir == PF_OUT) {
8773 				MPASS(*state == NULL);
8774 				ret = pf_icmp_state_lookup(&key, &pd2,
8775 				    state, virtual_id, virtual_type,
8776 				    icmp_dir, &iidx, 1, 1);
8777 			}
8778 			if (ret >= 0) {
8779 				MPASS(*state == NULL);
8780 				return (ret);
8781 			}
8782 
8783 			/* translate source/destination address, if necessary */
8784 			if ((*state)->key[PF_SK_WIRE] !=
8785 			    (*state)->key[PF_SK_STACK]) {
8786 				struct pf_state_key	*nk;
8787 
8788 				if (PF_REVERSED_KEY(*state, pd->af))
8789 					nk = (*state)->key[pd->sidx];
8790 				else
8791 					nk = (*state)->key[pd->didx];
8792 
8793 #if defined(INET) && defined(INET6)
8794 				int	 afto, sidx, didx;
8795 
8796 				afto = pd->af != nk->af;
8797 
8798 				if (afto && (*state)->direction == PF_IN) {
8799 					sidx = pd2.didx;
8800 					didx = pd2.sidx;
8801 					iidx = !iidx;
8802 				} else {
8803 					sidx = pd2.sidx;
8804 					didx = pd2.didx;
8805 				}
8806 
8807 				if (afto) {
8808 					if (nk->af != AF_INET)
8809 						return (PF_DROP);
8810 					if (pf_translate_icmp_af(nk->af,
8811 					    &pd->hdr.icmp))
8812 						return (PF_DROP);
8813 					m_copyback(pd->m, pd->off,
8814 					    sizeof(struct icmp6_hdr),
8815 					    (c_caddr_t)&pd->hdr.icmp6);
8816 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8817 					    &pd2, &nk->addr[sidx],
8818 					    &nk->addr[didx], pd->af,
8819 					    nk->af))
8820 						return (PF_DROP);
8821 					pd->proto = IPPROTO_ICMP;
8822 					if (pf_translate_icmp_af(nk->af, iih))
8823 						return (PF_DROP);
8824 					if (virtual_type ==
8825 					    htons(ICMP6_ECHO_REQUEST) &&
8826 					    nk->port[iidx] != iih->icmp6_id)
8827 						iih->icmp6_id = nk->port[iidx];
8828 					m_copyback(pd2.m, pd2.off,
8829 					    sizeof(struct icmp6_hdr), (c_caddr_t)iih);
8830 					pf_addrcpy(&pd->nsaddr,
8831 					    &nk->addr[pd2.sidx], nk->af);
8832 					pf_addrcpy(&pd->ndaddr,
8833 					    &nk->addr[pd2.didx], nk->af);
8834 					pd->naf = nk->af;
8835 					return (PF_AFRT);
8836 				}
8837 #endif /* INET && INET6 */
8838 
8839 				if (PF_ANEQ(pd2.src,
8840 				    &nk->addr[pd2.sidx], pd2.af) ||
8841 				    ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
8842 				    nk->port[pd2.sidx] != iih->icmp6_id))
8843 					pf_change_icmp(pd2.src,
8844 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
8845 					    ? &iih->icmp6_id : NULL,
8846 					    daddr, &nk->addr[pd2.sidx],
8847 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
8848 					    ? nk->port[iidx] : 0, NULL,
8849 					    pd2.ip_sum, icmpsum,
8850 					    pd->ip_sum, 0, AF_INET6);
8851 
8852 				if (PF_ANEQ(pd2.dst,
8853 				    &nk->addr[pd2.didx], pd2.af))
8854 					pf_change_icmp(pd2.dst, NULL, NULL,
8855 					    &nk->addr[pd2.didx], 0, NULL,
8856 					    pd2.ip_sum, icmpsum,
8857 					    pd->ip_sum, 0, AF_INET6);
8858 
8859 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8860 				    (caddr_t)&pd->hdr.icmp6);
8861 				m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
8862 				m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
8863 				    (caddr_t)iih);
8864 			}
8865 			return (PF_PASS);
8866 			break;
8867 		}
8868 #endif /* INET6 */
8869 		default: {
8870 			int	action;
8871 
8872 			/*
8873 			 * Placeholder value, so future calls to pf_change_ap()
8874 			 * don't try to update a NULL checksum pointer.
8875 			 */
8876 			pd->pcksum = &pd->sctp_dummy_sum;
8877 			key.af = pd2.af;
8878 			key.proto = pd2.proto;
8879 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8880 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8881 			key.port[0] = key.port[1] = 0;
8882 
8883 			action = pf_find_state(&pd2, &key, state);
8884 			if (action != PF_MATCH)
8885 				return (action);
8886 
8887 			/* translate source/destination address, if necessary */
8888 			if ((*state)->key[PF_SK_WIRE] !=
8889 			    (*state)->key[PF_SK_STACK]) {
8890 				struct pf_state_key *nk =
8891 				    (*state)->key[pd->didx];
8892 
8893 				if (PF_ANEQ(pd2.src,
8894 				    &nk->addr[pd2.sidx], pd2.af))
8895 					pf_change_icmp(pd2.src, NULL, daddr,
8896 					    &nk->addr[pd2.sidx], 0, NULL,
8897 					    pd2.ip_sum, icmpsum,
8898 					    pd->ip_sum, 0, pd2.af);
8899 
8900 				if (PF_ANEQ(pd2.dst,
8901 				    &nk->addr[pd2.didx], pd2.af))
8902 					pf_change_icmp(pd2.dst, NULL, saddr,
8903 					    &nk->addr[pd2.didx], 0, NULL,
8904 					    pd2.ip_sum, icmpsum,
8905 					    pd->ip_sum, 0, pd2.af);
8906 
8907 				switch (pd2.af) {
8908 #ifdef INET
8909 				case AF_INET:
8910 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8911 					    (caddr_t)&pd->hdr.icmp);
8912 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8913 					break;
8914 #endif /* INET */
8915 #ifdef INET6
8916 				case AF_INET6:
8917 					m_copyback(pd->m, pd->off,
8918 					    sizeof(struct icmp6_hdr),
8919 					    (caddr_t )&pd->hdr.icmp6);
8920 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8921 					    (caddr_t )&h2_6);
8922 					break;
8923 #endif /* INET6 */
8924 				}
8925 			}
8926 			return (PF_PASS);
8927 			break;
8928 		}
8929 		}
8930 	}
8931 }
8932 
8933 /*
8934  * ipoff and off are measured from the start of the mbuf chain.
8935  * h must be at "ipoff" on the mbuf chain.
8936  */
8937 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * reasonp,sa_family_t af)8938 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
8939     u_short *reasonp, sa_family_t af)
8940 {
8941 	int iplen = 0;
8942 	switch (af) {
8943 #ifdef INET
8944 	case AF_INET: {
8945 		const struct ip	*h = mtod(m, struct ip *);
8946 		u_int16_t	 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
8947 
8948 		if (fragoff) {
8949 			REASON_SET(reasonp, PFRES_FRAG);
8950 			return (NULL);
8951 		}
8952 		iplen = ntohs(h->ip_len);
8953 		break;
8954 	}
8955 #endif /* INET */
8956 #ifdef INET6
8957 	case AF_INET6: {
8958 		const struct ip6_hdr	*h = mtod(m, struct ip6_hdr *);
8959 
8960 		iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
8961 		break;
8962 	}
8963 #endif /* INET6 */
8964 	}
8965 	if (m->m_pkthdr.len < off + len || iplen < off + len) {
8966 		REASON_SET(reasonp, PFRES_SHORT);
8967 		return (NULL);
8968 	}
8969 	m_copydata(m, off, len, p);
8970 	return (p);
8971 }
8972 
8973 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)8974 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
8975     int rtableid)
8976 {
8977 	struct ifnet		*ifp;
8978 
8979 	/*
8980 	 * Skip check for addresses with embedded interface scope,
8981 	 * as they would always match anyway.
8982 	 */
8983 	if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
8984 		return (1);
8985 
8986 	if (af != AF_INET && af != AF_INET6)
8987 		return (0);
8988 
8989 	if (kif == V_pfi_all)
8990 		return (1);
8991 
8992 	/* Skip checks for ipsec interfaces */
8993 	if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
8994 		return (1);
8995 
8996 	ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
8997 
8998 	switch (af) {
8999 #ifdef INET6
9000 	case AF_INET6:
9001 		return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
9002 		    ifp));
9003 #endif /* INET6 */
9004 #ifdef INET
9005 	case AF_INET:
9006 		return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
9007 		    ifp));
9008 #endif /* INET */
9009 	}
9010 
9011 	return (0);
9012 }
9013 
9014 #ifdef INET
9015 static int
pf_route(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9016 pf_route(struct pf_krule *r, struct ifnet *oifp,
9017     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9018 {
9019 	struct mbuf		*m0, *m1, *md;
9020 	struct route_in6	 ro;
9021 	union sockaddr_union	 rt_gw;
9022 	const union sockaddr_union	*gw = (const union sockaddr_union *)&ro.ro_dst;
9023 	union sockaddr_union	*dst;
9024 	struct ip		*ip;
9025 	struct ifnet		*ifp = NULL;
9026 	int			 error = 0;
9027 	uint16_t		 ip_len, ip_off;
9028 	uint16_t		 tmp;
9029 	int			 r_dir;
9030 	bool			 skip_test = false;
9031 	int			 action = PF_PASS;
9032 
9033 	KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
9034 
9035 	SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp);
9036 
9037 	if (s) {
9038 		r_dir = s->direction;
9039 	} else {
9040 		r_dir = r->direction;
9041 	}
9042 
9043 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9044 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9045 	    __func__));
9046 
9047 	if ((pd->pf_mtag == NULL &&
9048 	    ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9049 	    pd->pf_mtag->routed++ > 3) {
9050 		m0 = pd->m;
9051 		pd->m = NULL;
9052 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9053 		action = PF_DROP;
9054 		goto bad_locked;
9055 	}
9056 
9057 	if (pd->act.rt_kif != NULL)
9058 		ifp = pd->act.rt_kif->pfik_ifp;
9059 
9060 	if (pd->act.rt == PF_DUPTO) {
9061 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9062 			if (s != NULL) {
9063 				PF_STATE_UNLOCK(s);
9064 			}
9065 			if (ifp == oifp) {
9066 				/* When the 2nd interface is not skipped */
9067 				return (action);
9068 			} else {
9069 				m0 = pd->m;
9070 				pd->m = NULL;
9071 				SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9072 				action = PF_DROP;
9073 				goto bad;
9074 			}
9075 		} else {
9076 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9077 			if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9078 				if (s)
9079 					PF_STATE_UNLOCK(s);
9080 				return (action);
9081 			}
9082 		}
9083 	} else {
9084 		if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9085 			if (pd->af == pd->naf) {
9086 				pf_dummynet(pd, s, r, &pd->m);
9087 				if (s)
9088 					PF_STATE_UNLOCK(s);
9089 				return (action);
9090 			} else {
9091 				if (r_dir == PF_IN) {
9092 					skip_test = true;
9093 				}
9094 			}
9095 		}
9096 
9097 		/*
9098 		 * If we're actually doing route-to and af-to and are in the
9099 		 * reply direction.
9100 		 */
9101 		if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9102 		    pd->af != pd->naf) {
9103 			if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) {
9104 				/* Un-set ifp so we do a plain route lookup. */
9105 				ifp = NULL;
9106 			}
9107 			if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) {
9108 				/* Un-set ifp so we do a plain route lookup. */
9109 				ifp = NULL;
9110 			}
9111 		}
9112 		m0 = pd->m;
9113 	}
9114 
9115 	ip = mtod(m0, struct ip *);
9116 
9117 	bzero(&ro, sizeof(ro));
9118 	dst = (union sockaddr_union *)&ro.ro_dst;
9119 	dst->sin.sin_family = AF_INET;
9120 	dst->sin.sin_len = sizeof(struct sockaddr_in);
9121 	dst->sin.sin_addr = ip->ip_dst;
9122 	if (ifp) { /* Only needed in forward direction and route-to */
9123 		bzero(&rt_gw, sizeof(rt_gw));
9124 		ro.ro_flags |= RT_HAS_GW;
9125 		gw = &rt_gw;
9126 		switch (pd->act.rt_af) {
9127 #ifdef INET
9128 		case AF_INET:
9129 			rt_gw.sin.sin_family = AF_INET;
9130 			rt_gw.sin.sin_len = sizeof(struct sockaddr_in);
9131 			rt_gw.sin.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
9132 			break;
9133 #endif /* INET */
9134 #ifdef INET6
9135 		case AF_INET6:
9136 			rt_gw.sin6.sin6_family = AF_INET6;
9137 			rt_gw.sin6.sin6_len = sizeof(struct sockaddr_in6);
9138 			pf_addrcpy((struct pf_addr *)&rt_gw.sin6.sin6_addr,
9139 			    &pd->act.rt_addr, AF_INET6);
9140 			break;
9141 #endif /* INET6 */
9142 		default:
9143 			/* Normal af-to without route-to */
9144 			break;
9145 		}
9146 	}
9147 
9148 	if (pd->dir == PF_IN) {
9149 		if (ip->ip_ttl <= IPTTLDEC) {
9150 			if (r->rt != PF_DUPTO)
9151 				pf_send_icmp(m0, ICMP_TIMXCEED,
9152 				    ICMP_TIMXCEED_INTRANS, 0, pd->af, r,
9153 				    pd->act.rtableid);
9154 			action = PF_DROP;
9155 			goto bad_locked;
9156 		}
9157 		ip->ip_ttl -= IPTTLDEC;
9158 	}
9159 
9160 	if (s != NULL) {
9161 		if (ifp == NULL && (pd->af != pd->naf)) {
9162 			/* We're in the AFTO case. Do a route lookup. */
9163 			const struct nhop_object *nh;
9164 			nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0);
9165 			if (nh) {
9166 				ifp = nh->nh_ifp;
9167 
9168 				/* Use the gateway if needed. */
9169 				if (nh->nh_flags & NHF_GATEWAY) {
9170 					gw = (const union sockaddr_union *)&nh->gw_sa;
9171 					ro.ro_flags |= RT_HAS_GW;
9172 				} else {
9173 					dst->sin.sin_addr = ip->ip_dst;
9174 				}
9175 
9176 				/*
9177 				 * Bind to the correct interface if we're
9178 				 * if-bound. We don't know which interface
9179 				 * that will be until here, so we've inserted
9180 				 * the state on V_pf_all. Fix that now.
9181 				 */
9182 				if (s->kif == V_pfi_all && ifp != NULL &&
9183 				    r->rule_flag & PFRULE_IFBOUND)
9184 					s->kif = ifp->if_pf_kif;
9185 			}
9186 		}
9187 
9188 		if (r->rule_flag & PFRULE_IFBOUND &&
9189 		    pd->act.rt == PF_REPLYTO &&
9190 		    s->kif == V_pfi_all) {
9191 			s->kif = pd->act.rt_kif;
9192 			s->orig_kif = oifp->if_pf_kif;
9193 		}
9194 
9195 		PF_STATE_UNLOCK(s);
9196 	}
9197 
9198 	/* It must have been either set from rt_af or from fib4_lookup */
9199 	KASSERT(gw->sin.sin_family != 0, ("%s: gw address family undetermined", __func__));
9200 
9201 	if (ifp == NULL) {
9202 		m0 = pd->m;
9203 		pd->m = NULL;
9204 		action = PF_DROP;
9205 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9206 		goto bad;
9207 	}
9208 
9209 	if (r->rt == PF_DUPTO)
9210 		skip_test = true;
9211 
9212 	if (pd->dir == PF_IN && !skip_test) {
9213 		if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
9214 		    &pd->act) != PF_PASS) {
9215 			action = PF_DROP;
9216 			SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9217 			goto bad;
9218 		} else if (m0 == NULL) {
9219 			action = PF_DROP;
9220 			SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9221 			goto done;
9222 		}
9223 		if (m0->m_len < sizeof(struct ip)) {
9224 			DPFPRINTF(PF_DEBUG_URGENT,
9225 			    "%s: m0->m_len < sizeof(struct ip)", __func__);
9226 			SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9227 			action = PF_DROP;
9228 			goto bad;
9229 		}
9230 		ip = mtod(m0, struct ip *);
9231 	}
9232 
9233 	if (ifp->if_flags & IFF_LOOPBACK)
9234 		m0->m_flags |= M_SKIP_FIREWALL;
9235 
9236 	ip_len = ntohs(ip->ip_len);
9237 	ip_off = ntohs(ip->ip_off);
9238 
9239 	/* Copied from FreeBSD 10.0-CURRENT ip_output. */
9240 	m0->m_pkthdr.csum_flags |= CSUM_IP;
9241 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
9242 		in_delayed_cksum(m0);
9243 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
9244 	}
9245 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
9246 		pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
9247 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
9248 	}
9249 
9250 	if (pd->dir == PF_IN) {
9251 		/*
9252 		 * Make sure dummynet gets the correct direction, in case it needs to
9253 		 * re-inject later.
9254 		 */
9255 		pd->dir = PF_OUT;
9256 
9257 		/*
9258 		 * The following processing is actually the rest of the inbound processing, even
9259 		 * though we've marked it as outbound (so we don't look through dummynet) and it
9260 		 * happens after the outbound processing (pf_test(PF_OUT) above).
9261 		 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9262 		 * conclusion about what direction it's processing, and we can't fix it or it
9263 		 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9264 		 * decision will pick the right pipe, and everything will mostly work as expected.
9265 		 */
9266 		tmp = pd->act.dnrpipe;
9267 		pd->act.dnrpipe = pd->act.dnpipe;
9268 		pd->act.dnpipe = tmp;
9269 	}
9270 
9271 	/*
9272 	 * If small enough for interface, or the interface will take
9273 	 * care of the fragmentation for us, we can just send directly.
9274 	 */
9275 	if (ip_len <= ifp->if_mtu ||
9276 	    (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
9277 		ip->ip_sum = 0;
9278 		if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
9279 			ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
9280 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
9281 		}
9282 		m_clrprotoflags(m0);	/* Avoid confusing lower layers. */
9283 
9284 		md = m0;
9285 		error = pf_dummynet_route(pd, s, r, ifp,
9286 		    (const struct sockaddr *)gw, &md);
9287 		if (md != NULL) {
9288 			error = (*ifp->if_output)(ifp, md,
9289 			    (const struct sockaddr *)gw, (struct route *)&ro);
9290 			SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9291 		}
9292 		goto done;
9293 	}
9294 
9295 	/* Balk when DF bit is set or the interface didn't support TSO. */
9296 	if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
9297 		error = EMSGSIZE;
9298 		KMOD_IPSTAT_INC(ips_cantfrag);
9299 		if (pd->act.rt != PF_DUPTO) {
9300 			if (s && s->nat_rule != NULL) {
9301 				MPASS(m0 == pd->m);
9302 				PACKET_UNDO_NAT(pd,
9303 				    (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
9304 				    s);
9305 			}
9306 
9307 			pf_send_icmp(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
9308 			   ifp->if_mtu, pd->af, r, pd->act.rtableid);
9309 		}
9310 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9311 		action = PF_DROP;
9312 		goto bad;
9313 	}
9314 
9315 	error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
9316 	if (error) {
9317 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9318 		action = PF_DROP;
9319 		goto bad;
9320 	}
9321 
9322 	for (; m0; m0 = m1) {
9323 		m1 = m0->m_nextpkt;
9324 		m0->m_nextpkt = NULL;
9325 		if (error == 0) {
9326 			m_clrprotoflags(m0);
9327 			md = m0;
9328 			pd->pf_mtag = pf_find_mtag(md);
9329 			error = pf_dummynet_route(pd, s, r, ifp,
9330 			    (const struct sockaddr *)gw, &md);
9331 			if (md != NULL) {
9332 				error = (*ifp->if_output)(ifp, md,
9333 				    (const struct sockaddr *)gw,
9334 				    (struct route *)&ro);
9335 				SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9336 			}
9337 		} else
9338 			m_freem(m0);
9339 	}
9340 
9341 	if (error == 0)
9342 		KMOD_IPSTAT_INC(ips_fragmented);
9343 
9344 done:
9345 	if (pd->act.rt != PF_DUPTO)
9346 		pd->m = NULL;
9347 	else
9348 		action = PF_PASS;
9349 	return (action);
9350 
9351 bad_locked:
9352 	if (s)
9353 		PF_STATE_UNLOCK(s);
9354 bad:
9355 	m_freem(m0);
9356 	goto done;
9357 }
9358 #endif /* INET */
9359 
9360 #ifdef INET6
9361 static int
pf_route6(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9362 pf_route6(struct pf_krule *r, struct ifnet *oifp,
9363     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9364 {
9365 	struct mbuf		*m0, *md;
9366 	struct m_tag		*mtag;
9367 	struct sockaddr_in6	dst;
9368 	struct ip6_hdr		*ip6;
9369 	struct ifnet		*ifp = NULL;
9370 	int			 r_dir;
9371 	bool			 skip_test = false;
9372 	int			 action = PF_PASS;
9373 
9374 	KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
9375 
9376 	SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp);
9377 
9378 	if (s) {
9379 		r_dir = s->direction;
9380 	} else {
9381 		r_dir = r->direction;
9382 	}
9383 
9384 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9385 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9386 	    __func__));
9387 
9388 	if ((pd->pf_mtag == NULL &&
9389 	    ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9390 	    pd->pf_mtag->routed++ > 3) {
9391 		m0 = pd->m;
9392 		pd->m = NULL;
9393 		action = PF_DROP;
9394 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9395 		goto bad_locked;
9396 	}
9397 
9398 	if (pd->act.rt_kif != NULL)
9399 		ifp = pd->act.rt_kif->pfik_ifp;
9400 
9401 	if (pd->act.rt == PF_DUPTO) {
9402 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9403 			if (s != NULL) {
9404 				PF_STATE_UNLOCK(s);
9405 			}
9406 			if (ifp == oifp) {
9407 				/* When the 2nd interface is not skipped */
9408 				return (action);
9409 			} else {
9410 				m0 = pd->m;
9411 				pd->m = NULL;
9412 				action = PF_DROP;
9413 				SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9414 				goto bad;
9415 			}
9416 		} else {
9417 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9418 			if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9419 				if (s)
9420 					PF_STATE_UNLOCK(s);
9421 				return (action);
9422 			}
9423 		}
9424 	} else {
9425 		if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9426 			if (pd->af == pd->naf) {
9427 				pf_dummynet(pd, s, r, &pd->m);
9428 				if (s)
9429 					PF_STATE_UNLOCK(s);
9430 				return (action);
9431 			} else {
9432 				if (r_dir == PF_IN) {
9433 					skip_test = true;
9434 				}
9435 			}
9436 		}
9437 
9438 		/*
9439 		 * If we're actually doing route-to and af-to and are in the
9440 		 * reply direction.
9441 		 */
9442 		if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9443 		    pd->af != pd->naf) {
9444 			if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) {
9445 				/* Un-set ifp so we do a plain route lookup. */
9446 				ifp = NULL;
9447 			}
9448 			if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) {
9449 				/* Un-set ifp so we do a plain route lookup. */
9450 				ifp = NULL;
9451 			}
9452 		}
9453 		m0 = pd->m;
9454 	}
9455 
9456 	ip6 = mtod(m0, struct ip6_hdr *);
9457 
9458 	bzero(&dst, sizeof(dst));
9459 	dst.sin6_family = AF_INET6;
9460 	dst.sin6_len = sizeof(dst);
9461 	pf_addrcpy((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr,
9462 	    AF_INET6);
9463 
9464 	if (pd->dir == PF_IN) {
9465 		if (ip6->ip6_hlim <= IPV6_HLIMDEC) {
9466 			if (r->rt != PF_DUPTO)
9467 				pf_send_icmp(m0, ICMP6_TIME_EXCEEDED,
9468 				    ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r,
9469 				    pd->act.rtableid);
9470 			action = PF_DROP;
9471 			goto bad_locked;
9472 		}
9473 		ip6->ip6_hlim -= IPV6_HLIMDEC;
9474 	}
9475 
9476 	if (s != NULL) {
9477 		if (ifp == NULL && (pd->af != pd->naf)) {
9478 			const struct nhop_object *nh;
9479 			nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0);
9480 			if (nh) {
9481 				ifp = nh->nh_ifp;
9482 
9483 				/* Use the gateway if needed. */
9484 				if (nh->nh_flags & NHF_GATEWAY)
9485 					bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr,
9486 					    sizeof(dst.sin6_addr));
9487 				else
9488 					dst.sin6_addr = ip6->ip6_dst;
9489 
9490 				/*
9491 				 * Bind to the correct interface if we're
9492 				 * if-bound. We don't know which interface
9493 				 * that will be until here, so we've inserted
9494 				 * the state on V_pf_all. Fix that now.
9495 				 */
9496 				if (s->kif == V_pfi_all && ifp != NULL &&
9497 				    r->rule_flag & PFRULE_IFBOUND)
9498 					s->kif = ifp->if_pf_kif;
9499 			}
9500 		}
9501 
9502 		if (r->rule_flag & PFRULE_IFBOUND &&
9503 		    pd->act.rt == PF_REPLYTO &&
9504 		    s->kif == V_pfi_all) {
9505 			s->kif = pd->act.rt_kif;
9506 			s->orig_kif = oifp->if_pf_kif;
9507 		}
9508 
9509 		PF_STATE_UNLOCK(s);
9510 	}
9511 
9512 	if (pd->af != pd->naf) {
9513 		struct udphdr *uh = &pd->hdr.udp;
9514 
9515 		if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
9516 			uh->uh_sum = in6_cksum_pseudo(ip6,
9517 			    ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
9518 			m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
9519 		}
9520 	}
9521 
9522 	if (ifp == NULL) {
9523 		m0 = pd->m;
9524 		pd->m = NULL;
9525 		action = PF_DROP;
9526 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9527 		goto bad;
9528 	}
9529 
9530 	if (r->rt == PF_DUPTO)
9531 		skip_test = true;
9532 
9533 	if (pd->dir == PF_IN && !skip_test) {
9534 		if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
9535 		    ifp, &m0, inp, &pd->act) != PF_PASS) {
9536 			action = PF_DROP;
9537 			SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9538 			goto bad;
9539 		} else if (m0 == NULL) {
9540 			action = PF_DROP;
9541 			SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9542 			goto done;
9543 		}
9544 		if (m0->m_len < sizeof(struct ip6_hdr)) {
9545 			DPFPRINTF(PF_DEBUG_URGENT,
9546 			    "%s: m0->m_len < sizeof(struct ip6_hdr)",
9547 			    __func__);
9548 			action = PF_DROP;
9549 			SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9550 			goto bad;
9551 		}
9552 		ip6 = mtod(m0, struct ip6_hdr *);
9553 	}
9554 
9555 	if (ifp->if_flags & IFF_LOOPBACK)
9556 		m0->m_flags |= M_SKIP_FIREWALL;
9557 
9558 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
9559 	    ~ifp->if_hwassist) {
9560 		uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
9561 		in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
9562 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
9563 	}
9564 
9565 	if (pd->dir == PF_IN) {
9566 		uint16_t	 tmp;
9567 		/*
9568 		 * Make sure dummynet gets the correct direction, in case it needs to
9569 		 * re-inject later.
9570 		 */
9571 		pd->dir = PF_OUT;
9572 
9573 		/*
9574 		 * The following processing is actually the rest of the inbound processing, even
9575 		 * though we've marked it as outbound (so we don't look through dummynet) and it
9576 		 * happens after the outbound processing (pf_test(PF_OUT) above).
9577 		 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9578 		 * conclusion about what direction it's processing, and we can't fix it or it
9579 		 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9580 		 * decision will pick the right pipe, and everything will mostly work as expected.
9581 		 */
9582 		tmp = pd->act.dnrpipe;
9583 		pd->act.dnrpipe = pd->act.dnpipe;
9584 		pd->act.dnpipe = tmp;
9585 	}
9586 
9587 	/*
9588 	 * If the packet is too large for the outgoing interface,
9589 	 * send back an icmp6 error.
9590 	 */
9591 	if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
9592 		dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
9593 	mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
9594 	if (mtag != NULL) {
9595 		int ret __sdt_used;
9596 		ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
9597 		SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9598 		goto done;
9599 	}
9600 
9601 	if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
9602 		md = m0;
9603 		pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9604 		if (md != NULL) {
9605 			int ret __sdt_used;
9606 			ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
9607 			SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9608 		}
9609 	}
9610 	else {
9611 		in6_ifstat_inc(ifp, ifs6_in_toobig);
9612 		if (pd->act.rt != PF_DUPTO) {
9613 			if (s && s->nat_rule != NULL) {
9614 				MPASS(m0 == pd->m);
9615 				PACKET_UNDO_NAT(pd,
9616 				    ((caddr_t)ip6 - m0->m_data) +
9617 				    sizeof(struct ip6_hdr), s);
9618 			}
9619 
9620 			if (r->rt != PF_DUPTO)
9621 				pf_send_icmp(m0, ICMP6_PACKET_TOO_BIG, 0,
9622 				    ifp->if_mtu, pd->af, r, pd->act.rtableid);
9623 		}
9624 		action = PF_DROP;
9625 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9626 		goto bad;
9627 	}
9628 
9629 done:
9630 	if (pd->act.rt != PF_DUPTO)
9631 		pd->m = NULL;
9632 	else
9633 		action = PF_PASS;
9634 	return (action);
9635 
9636 bad_locked:
9637 	if (s)
9638 		PF_STATE_UNLOCK(s);
9639 bad:
9640 	m_freem(m0);
9641 	goto done;
9642 }
9643 #endif /* INET6 */
9644 
9645 /*
9646  * FreeBSD supports cksum offloads for the following drivers.
9647  *  em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
9648  *
9649  * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
9650  *  network driver performed cksum including pseudo header, need to verify
9651  *   csum_data
9652  * CSUM_DATA_VALID :
9653  *  network driver performed cksum, needs to additional pseudo header
9654  *  cksum computation with partial csum_data(i.e. lack of H/W support for
9655  *  pseudo header, for instance sk(4) and possibly gem(4))
9656  *
9657  * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
9658  * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
9659  * TCP/UDP layer.
9660  * Also, set csum_data to 0xffff to force cksum validation.
9661  */
9662 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)9663 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
9664 {
9665 	u_int16_t sum = 0;
9666 	int hw_assist = 0;
9667 	struct ip *ip;
9668 
9669 	if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
9670 		return (1);
9671 	if (m->m_pkthdr.len < off + len)
9672 		return (1);
9673 
9674 	switch (p) {
9675 	case IPPROTO_TCP:
9676 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9677 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9678 				sum = m->m_pkthdr.csum_data;
9679 			} else {
9680 				ip = mtod(m, struct ip *);
9681 				sum = in_pseudo(ip->ip_src.s_addr,
9682 				ip->ip_dst.s_addr, htonl((u_short)len +
9683 				m->m_pkthdr.csum_data + IPPROTO_TCP));
9684 			}
9685 			sum ^= 0xffff;
9686 			++hw_assist;
9687 		}
9688 		break;
9689 	case IPPROTO_UDP:
9690 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9691 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9692 				sum = m->m_pkthdr.csum_data;
9693 			} else {
9694 				ip = mtod(m, struct ip *);
9695 				sum = in_pseudo(ip->ip_src.s_addr,
9696 				ip->ip_dst.s_addr, htonl((u_short)len +
9697 				m->m_pkthdr.csum_data + IPPROTO_UDP));
9698 			}
9699 			sum ^= 0xffff;
9700 			++hw_assist;
9701 		}
9702 		break;
9703 	case IPPROTO_ICMP:
9704 #ifdef INET6
9705 	case IPPROTO_ICMPV6:
9706 #endif /* INET6 */
9707 		break;
9708 	default:
9709 		return (1);
9710 	}
9711 
9712 	if (!hw_assist) {
9713 		switch (af) {
9714 		case AF_INET:
9715 			if (m->m_len < sizeof(struct ip))
9716 				return (1);
9717 			sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len);
9718 			break;
9719 #ifdef INET6
9720 		case AF_INET6:
9721 			if (m->m_len < sizeof(struct ip6_hdr))
9722 				return (1);
9723 			sum = in6_cksum(m, p, off, len);
9724 			break;
9725 #endif /* INET6 */
9726 		}
9727 	}
9728 	if (sum) {
9729 		switch (p) {
9730 		case IPPROTO_TCP:
9731 		    {
9732 			KMOD_TCPSTAT_INC(tcps_rcvbadsum);
9733 			break;
9734 		    }
9735 		case IPPROTO_UDP:
9736 		    {
9737 			KMOD_UDPSTAT_INC(udps_badsum);
9738 			break;
9739 		    }
9740 #ifdef INET
9741 		case IPPROTO_ICMP:
9742 		    {
9743 			KMOD_ICMPSTAT_INC(icps_checksum);
9744 			break;
9745 		    }
9746 #endif
9747 #ifdef INET6
9748 		case IPPROTO_ICMPV6:
9749 		    {
9750 			KMOD_ICMP6STAT_INC(icp6s_checksum);
9751 			break;
9752 		    }
9753 #endif /* INET6 */
9754 		}
9755 		return (1);
9756 	} else {
9757 		if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
9758 			m->m_pkthdr.csum_flags |=
9759 			    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
9760 			m->m_pkthdr.csum_data = 0xffff;
9761 		}
9762 	}
9763 	return (0);
9764 }
9765 
9766 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)9767 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
9768     const struct pf_kstate *s, struct ip_fw_args *dnflow)
9769 {
9770 	int dndir = r->direction;
9771 
9772 	if (s && dndir == PF_INOUT) {
9773 		dndir = s->direction;
9774 	} else if (dndir == PF_INOUT) {
9775 		/* Assume primary direction. Happens when we've set dnpipe in
9776 		 * the ethernet level code. */
9777 		dndir = pd->dir;
9778 	}
9779 
9780 	if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
9781 		return (false);
9782 
9783 	memset(dnflow, 0, sizeof(*dnflow));
9784 
9785 	if (pd->dport != NULL)
9786 		dnflow->f_id.dst_port = ntohs(*pd->dport);
9787 	if (pd->sport != NULL)
9788 		dnflow->f_id.src_port = ntohs(*pd->sport);
9789 
9790 	if (pd->dir == PF_IN)
9791 		dnflow->flags |= IPFW_ARGS_IN;
9792 	else
9793 		dnflow->flags |= IPFW_ARGS_OUT;
9794 
9795 	if (pd->dir != dndir && pd->act.dnrpipe) {
9796 		dnflow->rule.info = pd->act.dnrpipe;
9797 	}
9798 	else if (pd->dir == dndir && pd->act.dnpipe) {
9799 		dnflow->rule.info = pd->act.dnpipe;
9800 	}
9801 	else {
9802 		return (false);
9803 	}
9804 
9805 	dnflow->rule.info |= IPFW_IS_DUMMYNET;
9806 	if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
9807 		dnflow->rule.info |= IPFW_IS_PIPE;
9808 
9809 	dnflow->f_id.proto = pd->proto;
9810 	dnflow->f_id.extra = dnflow->rule.info;
9811 	switch (pd->naf) {
9812 	case AF_INET:
9813 		dnflow->f_id.addr_type = 4;
9814 		dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
9815 		dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
9816 		break;
9817 	case AF_INET6:
9818 		dnflow->flags |= IPFW_ARGS_IP6;
9819 		dnflow->f_id.addr_type = 6;
9820 		dnflow->f_id.src_ip6 = pd->src->v6;
9821 		dnflow->f_id.dst_ip6 = pd->dst->v6;
9822 		break;
9823 	}
9824 
9825 	return (true);
9826 }
9827 
9828 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)9829 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9830     struct inpcb *inp)
9831 {
9832 	struct pfi_kkif		*kif;
9833 	struct mbuf		*m = *m0;
9834 
9835 	M_ASSERTPKTHDR(m);
9836 	MPASS(ifp->if_vnet == curvnet);
9837 	NET_EPOCH_ASSERT();
9838 
9839 	if (!V_pf_status.running)
9840 		return (PF_PASS);
9841 
9842 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
9843 
9844 	if (kif == NULL) {
9845 		DPFPRINTF(PF_DEBUG_URGENT,
9846 		    "%s: kif == NULL, if_xname %s", __func__, ifp->if_xname);
9847 		return (PF_DROP);
9848 	}
9849 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
9850 		return (PF_PASS);
9851 
9852 	if (m->m_flags & M_SKIP_FIREWALL)
9853 		return (PF_PASS);
9854 
9855 	if (__predict_false(! M_WRITABLE(*m0))) {
9856 		m = *m0 = m_unshare(*m0, M_NOWAIT);
9857 		if (*m0 == NULL)
9858 			return (PF_DROP);
9859 	}
9860 
9861 	/* Stateless! */
9862 	return (pf_test_eth_rule(dir, kif, m0));
9863 }
9864 
9865 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)9866 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
9867 {
9868 	struct m_tag *mtag;
9869 
9870 	pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
9871 
9872 	/* dummynet adds this tag, but pf does not need it,
9873 	 * and keeping it creates unexpected behavior,
9874 	 * e.g. in case of divert(4) usage right after dummynet. */
9875 	mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
9876 	if (mtag != NULL)
9877 		m_tag_delete(m, mtag);
9878 }
9879 
9880 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)9881 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
9882     struct pf_krule *r, struct mbuf **m0)
9883 {
9884 	return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
9885 }
9886 
9887 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,const struct sockaddr * sa,struct mbuf ** m0)9888 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
9889     struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa,
9890     struct mbuf **m0)
9891 {
9892 	struct ip_fw_args dnflow;
9893 
9894 	NET_EPOCH_ASSERT();
9895 
9896 	if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
9897 		return (0);
9898 
9899 	if (ip_dn_io_ptr == NULL) {
9900 		m_freem(*m0);
9901 		*m0 = NULL;
9902 		return (ENOMEM);
9903 	}
9904 
9905 	if (pd->pf_mtag == NULL &&
9906 	    ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
9907 		m_freem(*m0);
9908 		*m0 = NULL;
9909 		return (ENOMEM);
9910 	}
9911 
9912 	if (ifp != NULL) {
9913 		pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
9914 
9915 		pd->pf_mtag->if_index = ifp->if_index;
9916 		pd->pf_mtag->if_idxgen = ifp->if_idxgen;
9917 
9918 		MPASS(sa != NULL);
9919 
9920 		switch (sa->sa_family) {
9921 		case AF_INET:
9922 			memcpy(&pd->pf_mtag->dst, sa,
9923 			    sizeof(struct sockaddr_in));
9924 			break;
9925 		case AF_INET6:
9926 			memcpy(&pd->pf_mtag->dst, sa,
9927 			    sizeof(struct sockaddr_in6));
9928 			break;
9929 		}
9930 	}
9931 
9932 	if (s != NULL && s->nat_rule != NULL &&
9933 	    s->nat_rule->action == PF_RDR &&
9934 	    (
9935 #ifdef INET
9936 	    (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
9937 #endif /* INET */
9938 	    (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
9939 		/*
9940 		 * If we're redirecting to loopback mark this packet
9941 		 * as being local. Otherwise it might get dropped
9942 		 * if dummynet re-injects.
9943 		 */
9944 		(*m0)->m_pkthdr.rcvif = V_loif;
9945 	}
9946 
9947 	if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
9948 		pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
9949 		pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
9950 		ip_dn_io_ptr(m0, &dnflow);
9951 		if (*m0 != NULL) {
9952 			pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9953 			pf_dummynet_flag_remove(*m0, pd->pf_mtag);
9954 		}
9955 	}
9956 
9957 	return (0);
9958 }
9959 
9960 static int
pf_walk_option(struct pf_pdesc * pd,struct ip * h,int off,int end,u_short * reason)9961 pf_walk_option(struct pf_pdesc *pd, struct ip *h, int off, int end,
9962     u_short *reason)
9963 {
9964 	uint8_t type, length, opts[15 * 4 - sizeof(struct ip)];
9965 
9966 	/* IP header in payload of ICMP packet may be too short */
9967 	if (pd->m->m_pkthdr.len < end) {
9968 		DPFPRINTF(PF_DEBUG_MISC, "IP option too short");
9969 		REASON_SET(reason, PFRES_SHORT);
9970 		return (PF_DROP);
9971 	}
9972 
9973 	MPASS(end - off <= sizeof(opts));
9974 	m_copydata(pd->m, off, end - off, opts);
9975 	end -= off;
9976 	off = 0;
9977 
9978 	while (off < end) {
9979 		type = opts[off];
9980 		if (type == IPOPT_EOL)
9981 			break;
9982 		if (type == IPOPT_NOP) {
9983 			off++;
9984 			continue;
9985 		}
9986 		if (off + 2 > end) {
9987 			DPFPRINTF(PF_DEBUG_MISC, "IP length opt");
9988 			REASON_SET(reason, PFRES_IPOPTIONS);
9989 			return (PF_DROP);
9990 		}
9991 		length = opts[off + 1];
9992 		if (length < 2) {
9993 			DPFPRINTF(PF_DEBUG_MISC, "IP short opt");
9994 			REASON_SET(reason, PFRES_IPOPTIONS);
9995 			return (PF_DROP);
9996 		}
9997 		if (off + length > end) {
9998 			DPFPRINTF(PF_DEBUG_MISC, "IP long opt");
9999 			REASON_SET(reason, PFRES_IPOPTIONS);
10000 			return (PF_DROP);
10001 		}
10002 		switch (type) {
10003 		case IPOPT_RA:
10004 			pd->badopts |= PF_OPT_ROUTER_ALERT;
10005 			break;
10006 		default:
10007 			pd->badopts |= PF_OPT_OTHER;
10008 			break;
10009 		}
10010 		off += length;
10011 	}
10012 
10013 	return (PF_PASS);
10014 }
10015 
10016 static int
pf_walk_header(struct pf_pdesc * pd,struct ip * h,u_short * reason)10017 pf_walk_header(struct pf_pdesc *pd, struct ip *h, u_short *reason)
10018 {
10019 	struct ah	 ext;
10020 	u_int32_t	 hlen, end;
10021 	int		 hdr_cnt;
10022 
10023 	hlen = h->ip_hl << 2;
10024 	if (hlen < sizeof(struct ip) || hlen > ntohs(h->ip_len)) {
10025 		REASON_SET(reason, PFRES_SHORT);
10026 		return (PF_DROP);
10027 	}
10028 	if (hlen != sizeof(struct ip)) {
10029 		if (pf_walk_option(pd, h, pd->off + sizeof(struct ip),
10030 		    pd->off + hlen, reason) != PF_PASS)
10031 			return (PF_DROP);
10032 		/* header options which contain only padding is fishy */
10033 		if (pd->badopts == 0)
10034 			pd->badopts |= PF_OPT_OTHER;
10035 	}
10036 	end = pd->off + ntohs(h->ip_len);
10037 	pd->off += hlen;
10038 	pd->proto = h->ip_p;
10039 	/* IGMP packets have router alert options, allow them */
10040 	if (pd->proto == IPPROTO_IGMP) {
10041 		/*
10042 		 * According to RFC 1112 ttl must be set to 1 in all IGMP
10043 		 * packets sent to 224.0.0.1
10044 		 */
10045 		if ((h->ip_ttl != 1) &&
10046 		    (h->ip_dst.s_addr == INADDR_ALLHOSTS_GROUP)) {
10047 			DPFPRINTF(PF_DEBUG_MISC, "Invalid IGMP");
10048 			REASON_SET(reason, PFRES_IPOPTIONS);
10049 			return (PF_DROP);
10050 		}
10051 		pd->badopts &= ~PF_OPT_ROUTER_ALERT;
10052 	}
10053 	/* stop walking over non initial fragments */
10054 	if ((h->ip_off & htons(IP_OFFMASK)) != 0)
10055 		return (PF_PASS);
10056 	for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
10057 		switch (pd->proto) {
10058 		case IPPROTO_AH:
10059 			/* fragments may be short */
10060 			if ((h->ip_off & htons(IP_MF | IP_OFFMASK)) != 0 &&
10061 			    end < pd->off + sizeof(ext))
10062 				return (PF_PASS);
10063 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10064 				reason, AF_INET)) {
10065 				DPFPRINTF(PF_DEBUG_MISC, "IP short exthdr");
10066 				return (PF_DROP);
10067 			}
10068 			pd->off += (ext.ah_len + 2) * 4;
10069 			pd->proto = ext.ah_nxt;
10070 			break;
10071 		default:
10072 			return (PF_PASS);
10073 		}
10074 	}
10075 	DPFPRINTF(PF_DEBUG_MISC, "IPv4 nested authentication header limit");
10076 	REASON_SET(reason, PFRES_IPOPTIONS);
10077 	return (PF_DROP);
10078 }
10079 
10080 #ifdef INET6
10081 static int
pf_walk_option6(struct pf_pdesc * pd,struct ip6_hdr * h,int off,int end,u_short * reason)10082 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end,
10083     u_short *reason)
10084 {
10085 	struct ip6_opt		 opt;
10086 	struct ip6_opt_jumbo	 jumbo;
10087 
10088 	while (off < end) {
10089 		if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type,
10090 		    sizeof(opt.ip6o_type), reason, AF_INET6)) {
10091 			DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt type");
10092 			return (PF_DROP);
10093 		}
10094 		if (opt.ip6o_type == IP6OPT_PAD1) {
10095 			off++;
10096 			continue;
10097 		}
10098 		if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt),
10099 		    reason, AF_INET6)) {
10100 			DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt");
10101 			return (PF_DROP);
10102 		}
10103 		if (off + sizeof(opt) + opt.ip6o_len > end) {
10104 			DPFPRINTF(PF_DEBUG_MISC, "IPv6 long opt");
10105 			REASON_SET(reason, PFRES_IPOPTIONS);
10106 			return (PF_DROP);
10107 		}
10108 		switch (opt.ip6o_type) {
10109 		case IP6OPT_PADN:
10110 			break;
10111 		case IP6OPT_JUMBO:
10112 			pd->badopts |= PF_OPT_JUMBO;
10113 			if (pd->jumbolen != 0) {
10114 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple jumbo");
10115 				REASON_SET(reason, PFRES_IPOPTIONS);
10116 				return (PF_DROP);
10117 			}
10118 			if (ntohs(h->ip6_plen) != 0) {
10119 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 bad jumbo plen");
10120 				REASON_SET(reason, PFRES_IPOPTIONS);
10121 				return (PF_DROP);
10122 			}
10123 			if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo),
10124 				reason, AF_INET6)) {
10125 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbo");
10126 				return (PF_DROP);
10127 			}
10128 			memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len,
10129 			    sizeof(pd->jumbolen));
10130 			pd->jumbolen = ntohl(pd->jumbolen);
10131 			if (pd->jumbolen < IPV6_MAXPACKET) {
10132 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbolen");
10133 				REASON_SET(reason, PFRES_IPOPTIONS);
10134 				return (PF_DROP);
10135 			}
10136 			break;
10137 		case IP6OPT_ROUTER_ALERT:
10138 			pd->badopts |= PF_OPT_ROUTER_ALERT;
10139 			break;
10140 		default:
10141 			pd->badopts |= PF_OPT_OTHER;
10142 			break;
10143 		}
10144 		off += sizeof(opt) + opt.ip6o_len;
10145 	}
10146 
10147 	return (PF_PASS);
10148 }
10149 
10150 int
pf_walk_header6(struct pf_pdesc * pd,struct ip6_hdr * h,u_short * reason)10151 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason)
10152 {
10153 	struct ip6_frag		 frag;
10154 	struct ip6_ext		 ext;
10155 	struct icmp6_hdr	 icmp6;
10156 	struct ip6_rthdr	 rthdr;
10157 	uint32_t		 end;
10158 	int			 hdr_cnt, fraghdr_cnt = 0, rthdr_cnt = 0;
10159 
10160 	pd->off += sizeof(struct ip6_hdr);
10161 	end = pd->off + ntohs(h->ip6_plen);
10162 	pd->fragoff = pd->extoff = pd->jumbolen = 0;
10163 	pd->proto = h->ip6_nxt;
10164 	for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
10165 		switch (pd->proto) {
10166 		case IPPROTO_ROUTING:
10167 		case IPPROTO_DSTOPTS:
10168 			pd->badopts |= PF_OPT_OTHER;
10169 			break;
10170 		case IPPROTO_HOPOPTS:
10171 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10172 			    reason, AF_INET6)) {
10173 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr");
10174 				return (PF_DROP);
10175 			}
10176 			if (pf_walk_option6(pd, h, pd->off + sizeof(ext),
10177 				pd->off + (ext.ip6e_len + 1) * 8,
10178 				reason) != PF_PASS)
10179 				return (PF_DROP);
10180 			/* option header which contains only padding is fishy */
10181 			if (pd->badopts == 0)
10182 				pd->badopts |= PF_OPT_OTHER;
10183 			break;
10184 		}
10185 		switch (pd->proto) {
10186 		case IPPROTO_FRAGMENT:
10187 			if (fraghdr_cnt++) {
10188 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple fragment");
10189 				REASON_SET(reason, PFRES_FRAG);
10190 				return (PF_DROP);
10191 			}
10192 			/* jumbo payload packets cannot be fragmented */
10193 			if (pd->jumbolen != 0) {
10194 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 fragmented jumbo");
10195 				REASON_SET(reason, PFRES_FRAG);
10196 				return (PF_DROP);
10197 			}
10198 			if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag),
10199 			    reason, AF_INET6)) {
10200 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short fragment");
10201 				return (PF_DROP);
10202 			}
10203 			/* stop walking over non initial fragments */
10204 			if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) {
10205 				pd->fragoff = pd->off;
10206 				return (PF_PASS);
10207 			}
10208 			/* RFC6946:  reassemble only non atomic fragments */
10209 			if (frag.ip6f_offlg & IP6F_MORE_FRAG)
10210 				pd->fragoff = pd->off;
10211 			pd->off += sizeof(frag);
10212 			pd->proto = frag.ip6f_nxt;
10213 			break;
10214 		case IPPROTO_ROUTING:
10215 			if (rthdr_cnt++) {
10216 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple rthdr");
10217 				REASON_SET(reason, PFRES_IPOPTIONS);
10218 				return (PF_DROP);
10219 			}
10220 			/* fragments may be short */
10221 			if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) {
10222 				pd->off = pd->fragoff;
10223 				pd->proto = IPPROTO_FRAGMENT;
10224 				return (PF_PASS);
10225 			}
10226 			if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr),
10227 			    reason, AF_INET6)) {
10228 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short rthdr");
10229 				return (PF_DROP);
10230 			}
10231 			if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
10232 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 rthdr0");
10233 				REASON_SET(reason, PFRES_IPOPTIONS);
10234 				return (PF_DROP);
10235 			}
10236 			/* FALLTHROUGH */
10237 		case IPPROTO_HOPOPTS:
10238 			/* RFC2460 4.1:  Hop-by-Hop only after IPv6 header */
10239 			if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 0) {
10240 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 hopopts not first");
10241 				REASON_SET(reason, PFRES_IPOPTIONS);
10242 				return (PF_DROP);
10243 			}
10244 			/* FALLTHROUGH */
10245 		case IPPROTO_AH:
10246 		case IPPROTO_DSTOPTS:
10247 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10248 			    reason, AF_INET6)) {
10249 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr");
10250 				return (PF_DROP);
10251 			}
10252 			/* fragments may be short */
10253 			if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) {
10254 				pd->off = pd->fragoff;
10255 				pd->proto = IPPROTO_FRAGMENT;
10256 				return (PF_PASS);
10257 			}
10258 			/* reassembly needs the ext header before the frag */
10259 			if (pd->fragoff == 0)
10260 				pd->extoff = pd->off;
10261 			if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0 &&
10262 			    ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) {
10263 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 missing jumbo");
10264 				REASON_SET(reason, PFRES_IPOPTIONS);
10265 				return (PF_DROP);
10266 			}
10267 			if (pd->proto == IPPROTO_AH)
10268 				pd->off += (ext.ip6e_len + 2) * 4;
10269 			else
10270 				pd->off += (ext.ip6e_len + 1) * 8;
10271 			pd->proto = ext.ip6e_nxt;
10272 			break;
10273 		case IPPROTO_ICMPV6:
10274 			/* fragments may be short, ignore inner header then */
10275 			if (pd->fragoff != 0 && end < pd->off + sizeof(icmp6)) {
10276 				pd->off = pd->fragoff;
10277 				pd->proto = IPPROTO_FRAGMENT;
10278 				return (PF_PASS);
10279 			}
10280 			if (!pf_pull_hdr(pd->m, pd->off, &icmp6, sizeof(icmp6),
10281 				reason, AF_INET6)) {
10282 				DPFPRINTF(PF_DEBUG_MISC,
10283 				    "IPv6 short icmp6hdr");
10284 				return (PF_DROP);
10285 			}
10286 			/* ICMP multicast packets have router alert options */
10287 			switch (icmp6.icmp6_type) {
10288 			case MLD_LISTENER_QUERY:
10289 			case MLD_LISTENER_REPORT:
10290 			case MLD_LISTENER_DONE:
10291 			case MLDV2_LISTENER_REPORT:
10292 				/*
10293 				 * According to RFC 2710 all MLD messages are
10294 				 * sent with hop-limit (ttl) set to 1, and link
10295 				 * local source address.  If either one is
10296 				 * missing then MLD message is invalid and
10297 				 * should be discarded.
10298 				 */
10299 				if ((h->ip6_hlim != 1) ||
10300 				    !IN6_IS_ADDR_LINKLOCAL(&h->ip6_src)) {
10301 					DPFPRINTF(PF_DEBUG_MISC, "Invalid MLD");
10302 					REASON_SET(reason, PFRES_IPOPTIONS);
10303 					return (PF_DROP);
10304 				}
10305 				pd->badopts &= ~PF_OPT_ROUTER_ALERT;
10306 				break;
10307 			}
10308 			return (PF_PASS);
10309 		case IPPROTO_TCP:
10310 		case IPPROTO_UDP:
10311 		case IPPROTO_SCTP:
10312 			/* fragments may be short, ignore inner header then */
10313 			if (pd->fragoff != 0 && end < pd->off +
10314 			    (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) :
10315 			    pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) :
10316 			    pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) :
10317 			    sizeof(struct icmp6_hdr))) {
10318 				pd->off = pd->fragoff;
10319 				pd->proto = IPPROTO_FRAGMENT;
10320 			}
10321 			/* FALLTHROUGH */
10322 		default:
10323 			return (PF_PASS);
10324 		}
10325 	}
10326 	DPFPRINTF(PF_DEBUG_MISC, "IPv6 nested extension header limit");
10327 	REASON_SET(reason, PFRES_IPOPTIONS);
10328 	return (PF_DROP);
10329 }
10330 #endif /* INET6 */
10331 
10332 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)10333 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
10334 {
10335 	memset(pd, 0, sizeof(*pd));
10336 	pd->pf_mtag = pf_find_mtag(m);
10337 	pd->m = m;
10338 }
10339 
10340 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)10341 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
10342     u_short *action, u_short *reason, struct pfi_kkif *kif,
10343     struct pf_rule_actions *default_actions)
10344 {
10345 	pd->dir = dir;
10346 	pd->kif = kif;
10347 	pd->m = *m0;
10348 	pd->sidx = (dir == PF_IN) ? 0 : 1;
10349 	pd->didx = (dir == PF_IN) ? 1 : 0;
10350 	pd->af = pd->naf = af;
10351 
10352 	PF_RULES_ASSERT();
10353 
10354 	TAILQ_INIT(&pd->sctp_multihome_jobs);
10355 	if (default_actions != NULL)
10356 		memcpy(&pd->act, default_actions, sizeof(pd->act));
10357 
10358 	if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
10359 		pd->act.dnpipe = pd->pf_mtag->dnpipe;
10360 		pd->act.flags = pd->pf_mtag->dnflags;
10361 	}
10362 
10363 	switch (af) {
10364 #ifdef INET
10365 	case AF_INET: {
10366 		struct ip *h;
10367 
10368 		if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
10369 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
10370 			DPFPRINTF(PF_DEBUG_URGENT,
10371 			    "%s: m_len < sizeof(struct ip), pullup failed",
10372 			    __func__);
10373 			*action = PF_DROP;
10374 			REASON_SET(reason, PFRES_SHORT);
10375 			return (-1);
10376 		}
10377 
10378 		h = mtod(pd->m, struct ip *);
10379 		if (pd->m->m_pkthdr.len < ntohs(h->ip_len)) {
10380 			*action = PF_DROP;
10381 			REASON_SET(reason, PFRES_SHORT);
10382 			return (-1);
10383 		}
10384 
10385 		if (pf_normalize_ip(reason, pd) != PF_PASS) {
10386 			/* We do IP header normalization and packet reassembly here */
10387 			*m0 = pd->m;
10388 			*action = PF_DROP;
10389 			return (-1);
10390 		}
10391 		*m0 = pd->m;
10392 		h = mtod(pd->m, struct ip *);
10393 
10394 		if (pf_walk_header(pd, h, reason) != PF_PASS) {
10395 			*action = PF_DROP;
10396 			return (-1);
10397 		}
10398 
10399 		pd->src = (struct pf_addr *)&h->ip_src;
10400 		pd->dst = (struct pf_addr *)&h->ip_dst;
10401 		pf_addrcpy(&pd->osrc, pd->src, af);
10402 		pf_addrcpy(&pd->odst, pd->dst, af);
10403 		pd->ip_sum = &h->ip_sum;
10404 		pd->tos = h->ip_tos & ~IPTOS_ECN_MASK;
10405 		pd->ttl = h->ip_ttl;
10406 		pd->tot_len = ntohs(h->ip_len);
10407 		pd->act.rtableid = -1;
10408 		pd->df = h->ip_off & htons(IP_DF);
10409 		pd->virtual_proto = (h->ip_off & htons(IP_MF | IP_OFFMASK)) ?
10410 		    PF_VPROTO_FRAGMENT : pd->proto;
10411 
10412 		break;
10413 	}
10414 #endif /* INET */
10415 #ifdef INET6
10416 	case AF_INET6: {
10417 		struct ip6_hdr *h;
10418 
10419 		if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
10420 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
10421 			DPFPRINTF(PF_DEBUG_URGENT,
10422 			    "%s: m_len < sizeof(struct ip6_hdr)"
10423 			     ", pullup failed", __func__);
10424 			*action = PF_DROP;
10425 			REASON_SET(reason, PFRES_SHORT);
10426 			return (-1);
10427 		}
10428 
10429 		h = mtod(pd->m, struct ip6_hdr *);
10430 		if (pd->m->m_pkthdr.len <
10431 		    sizeof(struct ip6_hdr) + ntohs(h->ip6_plen)) {
10432 			*action = PF_DROP;
10433 			REASON_SET(reason, PFRES_SHORT);
10434 			return (-1);
10435 		}
10436 
10437 		/*
10438 		 * we do not support jumbogram.  if we keep going, zero ip6_plen
10439 		 * will do something bad, so drop the packet for now.
10440 		 */
10441 		if (htons(h->ip6_plen) == 0) {
10442 			*action = PF_DROP;
10443 			return (-1);
10444 		}
10445 
10446 		if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10447 			*action = PF_DROP;
10448 			return (-1);
10449 		}
10450 
10451 		h = mtod(pd->m, struct ip6_hdr *);
10452 		pd->src = (struct pf_addr *)&h->ip6_src;
10453 		pd->dst = (struct pf_addr *)&h->ip6_dst;
10454 		pf_addrcpy(&pd->osrc, pd->src, af);
10455 		pf_addrcpy(&pd->odst, pd->dst, af);
10456 		pd->ip_sum = NULL;
10457 		pd->tos = IPV6_DSCP(h);
10458 		pd->ttl = h->ip6_hlim;
10459 		pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
10460 		pd->act.rtableid = -1;
10461 
10462 		pd->virtual_proto = (pd->fragoff != 0) ?
10463 		    PF_VPROTO_FRAGMENT : pd->proto;
10464 
10465 		/* We do IP header normalization and packet reassembly here */
10466 		if (pf_normalize_ip6(pd->fragoff, reason, pd) !=
10467 		    PF_PASS) {
10468 			*m0 = pd->m;
10469 			*action = PF_DROP;
10470 			return (-1);
10471 		}
10472 		*m0 = pd->m;
10473 		if (pd->m == NULL) {
10474 			/* packet sits in reassembly queue, no error */
10475 			*action = PF_PASS;
10476 			return (-1);
10477 		}
10478 
10479 		/* Update pointers into the packet. */
10480 		h = mtod(pd->m, struct ip6_hdr *);
10481 		pd->src = (struct pf_addr *)&h->ip6_src;
10482 		pd->dst = (struct pf_addr *)&h->ip6_dst;
10483 
10484 		pd->off = 0;
10485 
10486 		if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10487 			*action = PF_DROP;
10488 			return (-1);
10489 		}
10490 
10491 		if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) {
10492 			/*
10493 			 * Reassembly may have changed the next protocol from
10494 			 * fragment to something else, so update.
10495 			 */
10496 			pd->virtual_proto = pd->proto;
10497 			MPASS(pd->fragoff == 0);
10498 		}
10499 
10500 		if (pd->fragoff != 0)
10501 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
10502 
10503 		break;
10504 	}
10505 #endif /* INET6 */
10506 	default:
10507 		panic("pf_setup_pdesc called with illegal af %u", af);
10508 	}
10509 
10510 	switch (pd->virtual_proto) {
10511 	case IPPROTO_TCP: {
10512 		struct tcphdr *th = &pd->hdr.tcp;
10513 
10514 		if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th),
10515 			reason, af)) {
10516 			*action = PF_DROP;
10517 			REASON_SET(reason, PFRES_SHORT);
10518 			return (-1);
10519 		}
10520 		pd->hdrlen = sizeof(*th);
10521 		pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
10522 		pd->sport = &th->th_sport;
10523 		pd->dport = &th->th_dport;
10524 		pd->pcksum = &th->th_sum;
10525 		break;
10526 	}
10527 	case IPPROTO_UDP: {
10528 		struct udphdr *uh = &pd->hdr.udp;
10529 
10530 		if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh),
10531 			reason, af)) {
10532 			*action = PF_DROP;
10533 			REASON_SET(reason, PFRES_SHORT);
10534 			return (-1);
10535 		}
10536 		pd->hdrlen = sizeof(*uh);
10537 		if (uh->uh_dport == 0 ||
10538 		    ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
10539 		    ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
10540 			*action = PF_DROP;
10541 			REASON_SET(reason, PFRES_SHORT);
10542 			return (-1);
10543 		}
10544 		pd->sport = &uh->uh_sport;
10545 		pd->dport = &uh->uh_dport;
10546 		pd->pcksum = &uh->uh_sum;
10547 		break;
10548 	}
10549 	case IPPROTO_SCTP: {
10550 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
10551 		    reason, af)) {
10552 			*action = PF_DROP;
10553 			REASON_SET(reason, PFRES_SHORT);
10554 			return (-1);
10555 		}
10556 		pd->hdrlen = sizeof(pd->hdr.sctp);
10557 		pd->p_len = pd->tot_len - pd->off;
10558 
10559 		pd->sport = &pd->hdr.sctp.src_port;
10560 		pd->dport = &pd->hdr.sctp.dest_port;
10561 		if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
10562 			*action = PF_DROP;
10563 			REASON_SET(reason, PFRES_SHORT);
10564 			return (-1);
10565 		}
10566 		if (pf_scan_sctp(pd) != PF_PASS) {
10567 			*action = PF_DROP;
10568 			REASON_SET(reason, PFRES_SHORT);
10569 			return (-1);
10570 		}
10571 		/*
10572 		 * Placeholder. The SCTP checksum is 32-bits, but
10573 		 * pf_test_state() expects to update a 16-bit checksum.
10574 		 * Provide a dummy value which we'll subsequently ignore.
10575 		 */
10576 		pd->pcksum = &pd->sctp_dummy_sum;
10577 		break;
10578 	}
10579 	case IPPROTO_ICMP: {
10580 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
10581 			reason, af)) {
10582 			*action = PF_DROP;
10583 			REASON_SET(reason, PFRES_SHORT);
10584 			return (-1);
10585 		}
10586 		pd->pcksum = &pd->hdr.icmp.icmp_cksum;
10587 		pd->hdrlen = ICMP_MINLEN;
10588 		break;
10589 	}
10590 #ifdef INET6
10591 	case IPPROTO_ICMPV6: {
10592 		size_t icmp_hlen = sizeof(struct icmp6_hdr);
10593 
10594 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10595 			reason, af)) {
10596 			*action = PF_DROP;
10597 			REASON_SET(reason, PFRES_SHORT);
10598 			return (-1);
10599 		}
10600 		/* ICMP headers we look further into to match state */
10601 		switch (pd->hdr.icmp6.icmp6_type) {
10602 		case MLD_LISTENER_QUERY:
10603 		case MLD_LISTENER_REPORT:
10604 			icmp_hlen = sizeof(struct mld_hdr);
10605 			break;
10606 		case ND_NEIGHBOR_SOLICIT:
10607 		case ND_NEIGHBOR_ADVERT:
10608 			icmp_hlen = sizeof(struct nd_neighbor_solicit);
10609 			/* FALLTHROUGH */
10610 		case ND_ROUTER_SOLICIT:
10611 		case ND_ROUTER_ADVERT:
10612 		case ND_REDIRECT:
10613 			if (pd->ttl != 255) {
10614 				REASON_SET(reason, PFRES_NORM);
10615 				return (PF_DROP);
10616 			}
10617 			break;
10618 		}
10619 		if (icmp_hlen > sizeof(struct icmp6_hdr) &&
10620 		    !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10621 			reason, af)) {
10622 			*action = PF_DROP;
10623 			REASON_SET(reason, PFRES_SHORT);
10624 			return (-1);
10625 		}
10626 		pd->hdrlen = icmp_hlen;
10627 		pd->pcksum = &pd->hdr.icmp6.icmp6_cksum;
10628 		break;
10629 	}
10630 #endif /* INET6 */
10631 	default:
10632 		/*
10633 		 * Placeholder value, so future calls to pf_change_ap() don't
10634 		 * try to update a NULL checksum pointer.
10635 		*/
10636 		pd->pcksum = &pd->sctp_dummy_sum;
10637 		break;
10638 	}
10639 
10640 	if (pd->sport)
10641 		pd->osport = pd->nsport = *pd->sport;
10642 	if (pd->dport)
10643 		pd->odport = pd->ndport = *pd->dport;
10644 
10645 	MPASS(pd->pcksum != NULL);
10646 
10647 	return (0);
10648 }
10649 
10650 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a)10651 pf_counters_inc(int action, struct pf_pdesc *pd,
10652     struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
10653 {
10654 	struct pf_krule		*tr;
10655 	int			 dir = pd->dir;
10656 	int			 dirndx;
10657 
10658 	pf_counter_u64_critical_enter();
10659 	pf_counter_u64_add_protected(
10660 	    &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10661 	    pd->tot_len);
10662 	pf_counter_u64_add_protected(
10663 	    &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10664 	    1);
10665 
10666 	if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) {
10667 		dirndx = (dir == PF_OUT);
10668 		pf_counter_u64_add_protected(&r->packets[dirndx], 1);
10669 		pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
10670 		pf_update_timestamp(r);
10671 
10672 		if (a != NULL) {
10673 			pf_counter_u64_add_protected(&a->packets[dirndx], 1);
10674 			pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
10675 		}
10676 		if (s != NULL) {
10677 			struct pf_krule_item	*ri;
10678 
10679 			if (s->nat_rule != NULL) {
10680 				pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
10681 				    1);
10682 				pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
10683 				    pd->tot_len);
10684 			}
10685 			/*
10686 			 * Source nodes are accessed unlocked here.
10687 			 * But since we are operating with stateful tracking
10688 			 * and the state is locked, those SNs could not have
10689 			 * been freed.
10690 			 */
10691 			for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
10692 				if (s->sns[sn_type] != NULL) {
10693 					counter_u64_add(
10694 					    s->sns[sn_type]->packets[dirndx],
10695 					    1);
10696 					counter_u64_add(
10697 					    s->sns[sn_type]->bytes[dirndx],
10698 					    pd->tot_len);
10699 				}
10700 			}
10701 			dirndx = (dir == s->direction) ? 0 : 1;
10702 			s->packets[dirndx]++;
10703 			s->bytes[dirndx] += pd->tot_len;
10704 
10705 			SLIST_FOREACH(ri, &s->match_rules, entry) {
10706 				pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
10707 				pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
10708 
10709 				if (ri->r->src.addr.type == PF_ADDR_TABLE)
10710 					pfr_update_stats(ri->r->src.addr.p.tbl,
10711 					    (s == NULL) ? pd->src :
10712 					    &s->key[(s->direction == PF_IN)]->
10713 						addr[(s->direction == PF_OUT)],
10714 					    pd->af, pd->tot_len, dir == PF_OUT,
10715 					    r->action == PF_PASS, ri->r->src.neg);
10716 				if (ri->r->dst.addr.type == PF_ADDR_TABLE)
10717 					pfr_update_stats(ri->r->dst.addr.p.tbl,
10718 					    (s == NULL) ? pd->dst :
10719 					    &s->key[(s->direction == PF_IN)]->
10720 						addr[(s->direction == PF_IN)],
10721 					    pd->af, pd->tot_len, dir == PF_OUT,
10722 					    r->action == PF_PASS, ri->r->dst.neg);
10723 			}
10724 		}
10725 
10726 		tr = r;
10727 		if (s != NULL && s->nat_rule != NULL &&
10728 		    r == &V_pf_default_rule)
10729 			tr = s->nat_rule;
10730 
10731 		if (tr->src.addr.type == PF_ADDR_TABLE)
10732 			pfr_update_stats(tr->src.addr.p.tbl,
10733 			    (s == NULL) ? pd->src :
10734 			    &s->key[(s->direction == PF_IN)]->
10735 				addr[(s->direction == PF_OUT)],
10736 			    pd->af, pd->tot_len, dir == PF_OUT,
10737 			    r->action == PF_PASS, tr->src.neg);
10738 		if (tr->dst.addr.type == PF_ADDR_TABLE)
10739 			pfr_update_stats(tr->dst.addr.p.tbl,
10740 			    (s == NULL) ? pd->dst :
10741 			    &s->key[(s->direction == PF_IN)]->
10742 				addr[(s->direction == PF_IN)],
10743 			    pd->af, pd->tot_len, dir == PF_OUT,
10744 			    r->action == PF_PASS, tr->dst.neg);
10745 	}
10746 	pf_counter_u64_critical_exit();
10747 }
10748 static void
pf_log_matches(struct pf_pdesc * pd,struct pf_krule * rm,struct pf_krule * am,struct pf_kruleset * ruleset,struct pf_krule_slist * matchrules)10749 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm,
10750     struct pf_krule *am, struct pf_kruleset *ruleset,
10751     struct pf_krule_slist *matchrules)
10752 {
10753 	struct pf_krule_item	*ri;
10754 
10755 	/* if this is the log(matches) rule, packet has been logged already */
10756 	if (rm->log & PF_LOG_MATCHES)
10757 		return;
10758 
10759 	SLIST_FOREACH(ri, matchrules, entry)
10760 		if (ri->r->log & PF_LOG_MATCHES)
10761 			PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am,
10762 			    ruleset, pd, 1, ri->r);
10763 }
10764 
10765 #if defined(INET) || defined(INET6)
10766 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)10767 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10768     struct inpcb *inp, struct pf_rule_actions *default_actions)
10769 {
10770 	struct pfi_kkif		*kif;
10771 	u_short			 action, reason = 0;
10772 	struct m_tag		*mtag;
10773 	struct pf_krule		*a = NULL, *r = &V_pf_default_rule;
10774 	struct pf_kstate	*s = NULL;
10775 	struct pf_kruleset	*ruleset = NULL;
10776 	struct pf_pdesc		 pd;
10777 	int			 use_2nd_queue = 0;
10778 	uint16_t		 tag;
10779 
10780 	PF_RULES_RLOCK_TRACKER;
10781 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
10782 	M_ASSERTPKTHDR(*m0);
10783 	NET_EPOCH_ASSERT();
10784 
10785 	if (!V_pf_status.running)
10786 		return (PF_PASS);
10787 
10788 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
10789 
10790 	if (__predict_false(kif == NULL)) {
10791 		DPFPRINTF(PF_DEBUG_URGENT,
10792 		    "%s: kif == NULL, if_xname %s",
10793 		    __func__, ifp->if_xname);
10794 		return (PF_DROP);
10795 	}
10796 	if (kif->pfik_flags & PFI_IFLAG_SKIP) {
10797 		return (PF_PASS);
10798 	}
10799 
10800 	if ((*m0)->m_flags & M_SKIP_FIREWALL) {
10801 		return (PF_PASS);
10802 	}
10803 
10804 	if (__predict_false(! M_WRITABLE(*m0))) {
10805 		*m0 = m_unshare(*m0, M_NOWAIT);
10806 		if (*m0 == NULL) {
10807 			return (PF_DROP);
10808 		}
10809 	}
10810 
10811 	pf_init_pdesc(&pd, *m0);
10812 
10813 	if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
10814 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10815 
10816 		ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
10817 		    pd.pf_mtag->if_idxgen);
10818 		if (ifp == NULL || ifp->if_flags & IFF_DYING) {
10819 			m_freem(*m0);
10820 			*m0 = NULL;
10821 			return (PF_PASS);
10822 		}
10823 		(ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
10824 		*m0 = NULL;
10825 		return (PF_PASS);
10826 	}
10827 
10828 	if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
10829 	    pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
10830 		/* Dummynet re-injects packets after they've
10831 		 * completed their delay. We've already
10832 		 * processed them, so pass unconditionally. */
10833 
10834 		/* But only once. We may see the packet multiple times (e.g.
10835 		 * PFIL_IN/PFIL_OUT). */
10836 		pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
10837 
10838 		return (PF_PASS);
10839 	}
10840 
10841 	PF_RULES_RLOCK();
10842 
10843 	if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
10844 		kif, default_actions) == -1) {
10845 		if (action != PF_PASS)
10846 			pd.act.log |= PF_LOG_FORCE;
10847 		goto done;
10848 	}
10849 
10850 #ifdef INET
10851 	if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD &&
10852 	    pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) {
10853 		PF_RULES_RUNLOCK();
10854 		icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
10855 			0, ifp->if_mtu);
10856 		*m0 = NULL;
10857 		return (PF_DROP);
10858 	}
10859 #endif /* INET */
10860 #ifdef INET6
10861 	/*
10862 	 * If we end up changing IP addresses (e.g. binat) the stack may get
10863 	 * confused and fail to send the icmp6 packet too big error. Just send
10864 	 * it here, before we do any NAT.
10865 	 */
10866 	if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
10867 	    IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
10868 		PF_RULES_RUNLOCK();
10869 		icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
10870 		*m0 = NULL;
10871 		return (PF_DROP);
10872 	}
10873 #endif /* INET6 */
10874 
10875 	if (__predict_false(ip_divert_ptr != NULL) &&
10876 	    ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
10877 		struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
10878 		if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
10879 		    (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
10880 			if (pd.pf_mtag == NULL &&
10881 			    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10882 				action = PF_DROP;
10883 				goto done;
10884 			}
10885 			pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
10886 		}
10887 		if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
10888 			pd.m->m_flags |= M_FASTFWD_OURS;
10889 			pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10890 		}
10891 		m_tag_delete(pd.m, mtag);
10892 
10893 		mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
10894 		if (mtag != NULL)
10895 			m_tag_delete(pd.m, mtag);
10896 	}
10897 
10898 	switch (pd.virtual_proto) {
10899 	case PF_VPROTO_FRAGMENT:
10900 		/*
10901 		 * handle fragments that aren't reassembled by
10902 		 * normalization
10903 		 */
10904 		if (kif == NULL || r == NULL) /* pflog */
10905 			action = PF_DROP;
10906 		else
10907 			action = pf_test_rule(&r, &s, &pd, &a,
10908 			    &ruleset, &reason, inp);
10909 		if (action != PF_PASS)
10910 			REASON_SET(&reason, PFRES_FRAG);
10911 		break;
10912 
10913 	case IPPROTO_TCP: {
10914 		/* Respond to SYN with a syncookie. */
10915 		if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
10916 		    pd.dir == PF_IN && pf_synflood_check(&pd)) {
10917 			pf_syncookie_send(&pd, &reason);
10918 			action = PF_DROP;
10919 			break;
10920 		}
10921 
10922 		if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
10923 			use_2nd_queue = 1;
10924 		action = pf_normalize_tcp(&pd);
10925 		if (action == PF_DROP)
10926 			break;
10927 		action = pf_test_state(&s, &pd, &reason);
10928 		if (action == PF_PASS || action == PF_AFRT) {
10929 			if (V_pfsync_update_state_ptr != NULL)
10930 				V_pfsync_update_state_ptr(s);
10931 			r = s->rule;
10932 			a = s->anchor;
10933 		} else if (s == NULL) {
10934 			/* Validate remote SYN|ACK, re-create original SYN if
10935 			 * valid. */
10936 			if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
10937 			    TH_ACK && pf_syncookie_validate(&pd) &&
10938 			    pd.dir == PF_IN) {
10939 				struct mbuf *msyn;
10940 
10941 				msyn = pf_syncookie_recreate_syn(&pd, &reason);
10942 				if (msyn == NULL) {
10943 					action = PF_DROP;
10944 					break;
10945 				}
10946 
10947 				action = pf_test(af, dir, pflags, ifp, &msyn, inp,
10948 				    &pd.act);
10949 				m_freem(msyn);
10950 				if (action != PF_PASS)
10951 					break;
10952 
10953 				action = pf_test_state(&s, &pd, &reason);
10954 				if (action != PF_PASS || s == NULL) {
10955 					action = PF_DROP;
10956 					break;
10957 				}
10958 
10959 				s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
10960 				s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
10961 				pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
10962 				action = pf_synproxy(&pd, s, &reason);
10963 				break;
10964 			} else {
10965 				action = pf_test_rule(&r, &s, &pd,
10966 				    &a, &ruleset, &reason, inp);
10967 			}
10968 		}
10969 		break;
10970 	}
10971 
10972 	case IPPROTO_SCTP:
10973 		action = pf_normalize_sctp(&pd);
10974 		if (action == PF_DROP)
10975 			break;
10976 		/* fallthrough */
10977 	case IPPROTO_UDP:
10978 	default:
10979 		action = pf_test_state(&s, &pd, &reason);
10980 		if (action == PF_PASS || action == PF_AFRT) {
10981 			if (V_pfsync_update_state_ptr != NULL)
10982 				V_pfsync_update_state_ptr(s);
10983 			r = s->rule;
10984 			a = s->anchor;
10985 		} else if (s == NULL) {
10986 			action = pf_test_rule(&r, &s,
10987 			    &pd, &a, &ruleset, &reason, inp);
10988 		}
10989 		break;
10990 
10991 	case IPPROTO_ICMP:
10992 	case IPPROTO_ICMPV6: {
10993 		if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
10994 			action = PF_DROP;
10995 			REASON_SET(&reason, PFRES_NORM);
10996 			DPFPRINTF(PF_DEBUG_MISC,
10997 			    "dropping IPv6 packet with ICMPv4 payload");
10998 			break;
10999 		}
11000 		if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
11001 			action = PF_DROP;
11002 			REASON_SET(&reason, PFRES_NORM);
11003 			DPFPRINTF(PF_DEBUG_MISC,
11004 			    "pf: dropping IPv4 packet with ICMPv6 payload");
11005 			break;
11006 		}
11007 		action = pf_test_state_icmp(&s, &pd, &reason);
11008 		if (action == PF_PASS || action == PF_AFRT) {
11009 			if (V_pfsync_update_state_ptr != NULL)
11010 				V_pfsync_update_state_ptr(s);
11011 			r = s->rule;
11012 			a = s->anchor;
11013 		} else if (s == NULL)
11014 			action = pf_test_rule(&r, &s, &pd,
11015 			    &a, &ruleset, &reason, inp);
11016 		break;
11017 	}
11018 
11019 	}
11020 
11021 done:
11022 	PF_RULES_RUNLOCK();
11023 
11024 	if (pd.m == NULL)
11025 		goto eat_pkt;
11026 
11027 	if (s)
11028 		memcpy(&pd.act, &s->act, sizeof(s->act));
11029 
11030 	if (action == PF_PASS && pd.badopts != 0 && !pd.act.allow_opts) {
11031 		action = PF_DROP;
11032 		REASON_SET(&reason, PFRES_IPOPTIONS);
11033 		pd.act.log = PF_LOG_FORCE;
11034 		DPFPRINTF(PF_DEBUG_MISC,
11035 		    "pf: dropping packet with dangerous headers");
11036 	}
11037 
11038 	if (pd.act.max_pkt_size && pd.act.max_pkt_size &&
11039 	    pd.tot_len > pd.act.max_pkt_size) {
11040 		action = PF_DROP;
11041 		REASON_SET(&reason, PFRES_NORM);
11042 		pd.act.log = PF_LOG_FORCE;
11043 		DPFPRINTF(PF_DEBUG_MISC,
11044 		    "pf: dropping overly long packet");
11045 	}
11046 
11047 	if (s) {
11048 		uint8_t log = pd.act.log;
11049 		memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
11050 		pd.act.log |= log;
11051 		tag = s->tag;
11052 	} else {
11053 		tag = r->tag;
11054 	}
11055 
11056 	if (tag > 0 && pf_tag_packet(&pd, tag)) {
11057 		action = PF_DROP;
11058 		REASON_SET(&reason, PFRES_MEMORY);
11059 	}
11060 
11061 	pf_scrub(&pd);
11062 	if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
11063 		pf_normalize_mss(&pd);
11064 
11065 	if (pd.act.rtableid >= 0)
11066 		M_SETFIB(pd.m, pd.act.rtableid);
11067 
11068 	if (pd.act.flags & PFSTATE_SETPRIO) {
11069 		if (pd.tos & IPTOS_LOWDELAY)
11070 			use_2nd_queue = 1;
11071 		if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
11072 			action = PF_DROP;
11073 			REASON_SET(&reason, PFRES_MEMORY);
11074 			pd.act.log = PF_LOG_FORCE;
11075 			DPFPRINTF(PF_DEBUG_MISC,
11076 			    "pf: failed to allocate 802.1q mtag");
11077 		}
11078 	}
11079 
11080 #ifdef ALTQ
11081 	if (action == PF_PASS && pd.act.qid) {
11082 		if (pd.pf_mtag == NULL &&
11083 		    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11084 			action = PF_DROP;
11085 			REASON_SET(&reason, PFRES_MEMORY);
11086 		} else {
11087 			if (s != NULL)
11088 				pd.pf_mtag->qid_hash = pf_state_hash(s);
11089 			if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
11090 				pd.pf_mtag->qid = pd.act.pqid;
11091 			else
11092 				pd.pf_mtag->qid = pd.act.qid;
11093 			/* Add hints for ecn. */
11094 			pd.pf_mtag->hdr = mtod(pd.m, void *);
11095 		}
11096 	}
11097 #endif /* ALTQ */
11098 
11099 	/*
11100 	 * connections redirected to loopback should not match sockets
11101 	 * bound specifically to loopback due to security implications,
11102 	 * see tcp_input() and in_pcblookup_listen().
11103 	 */
11104 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
11105 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
11106 	    (s->nat_rule->action == PF_RDR ||
11107 	    s->nat_rule->action == PF_BINAT) &&
11108 	    pf_is_loopback(af, pd.dst))
11109 		pd.m->m_flags |= M_SKIP_FIREWALL;
11110 
11111 	if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
11112 	    action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
11113 		mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
11114 		    sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
11115 		if (mtag != NULL) {
11116 			((struct pf_divert_mtag *)(mtag+1))->port =
11117 			    ntohs(r->divert.port);
11118 			((struct pf_divert_mtag *)(mtag+1))->idir =
11119 			    (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
11120 			    PF_DIVERT_MTAG_DIR_OUT;
11121 
11122 			if (s)
11123 				PF_STATE_UNLOCK(s);
11124 
11125 			m_tag_prepend(pd.m, mtag);
11126 			if (pd.m->m_flags & M_FASTFWD_OURS) {
11127 				if (pd.pf_mtag == NULL &&
11128 				    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11129 					action = PF_DROP;
11130 					REASON_SET(&reason, PFRES_MEMORY);
11131 					pd.act.log = PF_LOG_FORCE;
11132 					DPFPRINTF(PF_DEBUG_MISC,
11133 					    "pf: failed to allocate tag");
11134 				} else {
11135 					pd.pf_mtag->flags |=
11136 					    PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
11137 					pd.m->m_flags &= ~M_FASTFWD_OURS;
11138 				}
11139 			}
11140 			ip_divert_ptr(*m0, dir == PF_IN);
11141 			*m0 = NULL;
11142 
11143 			return (action);
11144 		} else {
11145 			/* XXX: ipfw has the same behaviour! */
11146 			action = PF_DROP;
11147 			REASON_SET(&reason, PFRES_MEMORY);
11148 			pd.act.log = PF_LOG_FORCE;
11149 			DPFPRINTF(PF_DEBUG_MISC,
11150 			    "pf: failed to allocate divert tag");
11151 		}
11152 	}
11153 	/* XXX: Anybody working on it?! */
11154 	if (af == AF_INET6 && r->divert.port)
11155 		printf("pf: divert(9) is not supported for IPv6\n");
11156 
11157 	/* this flag will need revising if the pkt is forwarded */
11158 	if (pd.pf_mtag)
11159 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
11160 
11161 	if (pd.act.log) {
11162 		struct pf_krule		*lr;
11163 		struct pf_krule_item	*ri;
11164 
11165 		if (s != NULL && s->nat_rule != NULL &&
11166 		    s->nat_rule->log & PF_LOG_ALL)
11167 			lr = s->nat_rule;
11168 		else
11169 			lr = r;
11170 
11171 		if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
11172 			PFLOG_PACKET(action, reason, lr, a,
11173 			    ruleset, &pd, (s == NULL), NULL);
11174 		if (s) {
11175 			SLIST_FOREACH(ri, &s->match_rules, entry)
11176 				if (ri->r->log & PF_LOG_ALL)
11177 					PFLOG_PACKET(action,
11178 					    reason, ri->r, a, ruleset, &pd, 0, NULL);
11179 		}
11180 	}
11181 
11182 	pf_counters_inc(action, &pd, s, r, a);
11183 
11184 	switch (action) {
11185 	case PF_SYNPROXY_DROP:
11186 		m_freem(*m0);
11187 	case PF_DEFER:
11188 		*m0 = NULL;
11189 		action = PF_PASS;
11190 		break;
11191 	case PF_DROP:
11192 		m_freem(*m0);
11193 		*m0 = NULL;
11194 		break;
11195 	case PF_AFRT:
11196 		if (pf_translate_af(&pd)) {
11197 			*m0 = pd.m;
11198 			action = PF_DROP;
11199 			break;
11200 		}
11201 #ifdef INET
11202 		if (pd.naf == AF_INET) {
11203 			action = pf_route(r, kif->pfik_ifp, s, &pd,
11204 			    inp);
11205 		}
11206 #endif /* INET */
11207 #ifdef INET6
11208 		if (pd.naf == AF_INET6) {
11209 			action = pf_route6(r, kif->pfik_ifp, s, &pd,
11210 			    inp);
11211 }
11212 #endif /* INET6 */
11213 		*m0 = pd.m;
11214 		goto out;
11215 		break;
11216 	default:
11217 		if (pd.act.rt) {
11218 			switch (af) {
11219 #ifdef INET
11220 			case AF_INET:
11221 				/* pf_route() returns unlocked. */
11222 				action = pf_route(r, kif->pfik_ifp, s, &pd,
11223 				    inp);
11224 				break;
11225 #endif /* INET */
11226 #ifdef INET6
11227 			case AF_INET6:
11228 				/* pf_route6() returns unlocked. */
11229 				action = pf_route6(r, kif->pfik_ifp, s, &pd,
11230 				    inp);
11231 				break;
11232 #endif /* INET6 */
11233 			}
11234 			*m0 = pd.m;
11235 			goto out;
11236 		}
11237 		if (pf_dummynet(&pd, s, r, m0) != 0) {
11238 			action = PF_DROP;
11239 			REASON_SET(&reason, PFRES_MEMORY);
11240 		}
11241 		break;
11242 	}
11243 
11244 eat_pkt:
11245 	SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
11246 
11247 	if (s && action != PF_DROP) {
11248 		if (!s->if_index_in && dir == PF_IN)
11249 			s->if_index_in = ifp->if_index;
11250 		else if (!s->if_index_out && dir == PF_OUT)
11251 			s->if_index_out = ifp->if_index;
11252 	}
11253 
11254 	if (s)
11255 		PF_STATE_UNLOCK(s);
11256 
11257 out:
11258 #ifdef INET6
11259 	/* If reassembled packet passed, create new fragments. */
11260 	if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
11261 	    (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
11262 	    (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
11263 		action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
11264 #endif /* INET6 */
11265 
11266 	pf_sctp_multihome_delayed(&pd, kif, s, action);
11267 
11268 	return (action);
11269 }
11270 #endif /* INET || INET6 */
11271