xref: /freebsd/sys/netpfil/pf/pf.c (revision ac4fb06d096d6308b9522f454b68fbfc45bb8531)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Daniel Hartmeier
5  * Copyright (c) 2002 - 2008 Henning Brauer
6  * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  *    - Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *    - Redistributions in binary form must reproduce the above
16  *      copyright notice, this list of conditions and the following
17  *      disclaimer in the documentation and/or other materials provided
18  *      with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Effort sponsored in part by the Defense Advanced Research Projects
34  * Agency (DARPA) and Air Force Research Laboratory, Air Force
35  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36  *
37  *	$OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38  */
39 
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46 
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/random.h>
58 #include <sys/refcount.h>
59 #include <sys/sdt.h>
60 #include <sys/socket.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/ucred.h>
64 
65 #include <crypto/sha2/sha512.h>
66 
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_private.h>
70 #include <net/if_types.h>
71 #include <net/if_vlan_var.h>
72 #include <net/route.h>
73 #include <net/route/nhop.h>
74 #include <net/vnet.h>
75 
76 #include <net/pfil.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #include <net/if_pfsync.h>
80 
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_var.h>
83 #include <netinet/in_fib.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip_fw.h>
86 #include <netinet/ip_icmp.h>
87 #include <netinet/icmp_var.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 
97 /* dummynet */
98 #include <netinet/ip_dummynet.h>
99 #include <netinet/ip_fw.h>
100 #include <netpfil/ipfw/dn_heap.h>
101 #include <netpfil/ipfw/ip_fw_private.h>
102 #include <netpfil/ipfw/ip_dn_private.h>
103 
104 #ifdef INET6
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet6/in6_fib.h>
111 #include <netinet6/scope6_var.h>
112 #endif /* INET6 */
113 
114 #include <netinet/sctp_header.h>
115 #include <netinet/sctp_crc32.h>
116 
117 #include <netipsec/ah.h>
118 
119 #include <machine/in_cksum.h>
120 #include <security/mac/mac_framework.h>
121 
122 SDT_PROVIDER_DEFINE(pf);
123 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int");
124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
125     "struct pf_kstate *");
126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
127     "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
128     "struct pf_kstate *");
129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
130     "struct pfi_kkif *");
131 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
132     "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
133 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
134 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
135 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
136     "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
137 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
138 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
139 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
140     "struct pf_krule *", "struct mbuf *", "int");
141 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
142     "struct pf_sctp_source *");
143 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
144     "struct pf_kstate *", "struct pf_sctp_source *");
145 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int",
146     "int", "struct pf_pdesc *", "int");
147 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t");
148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *",
149     "int");
150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *",
151     "int");
152 
153 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
154     "struct mbuf *");
155 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
156 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
157     "int", "struct pf_keth_rule *", "char *");
158 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
159 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
160     "int", "struct pf_keth_rule *");
161 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
162 SDT_PROBE_DEFINE2(pf, , log, log, "int", "const char *");
163 
164 /*
165  * Global variables
166  */
167 
168 /* state tables */
169 VNET_DEFINE(struct pf_altqqueue,	 pf_altqs[4]);
170 VNET_DEFINE(struct pf_kpalist,		 pf_pabuf[3]);
171 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_active);
172 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_active);
173 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_inactive);
174 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_inactive);
175 VNET_DEFINE(struct pf_kstatus,		 pf_status);
176 
177 VNET_DEFINE(u_int32_t,			 ticket_altqs_active);
178 VNET_DEFINE(u_int32_t,			 ticket_altqs_inactive);
179 VNET_DEFINE(int,			 altqs_inactive_open);
180 VNET_DEFINE(u_int32_t,			 ticket_pabuf);
181 
182 static const int			 PF_HDR_LIMIT = 20;	/* arbitrary limit */
183 
184 VNET_DEFINE(SHA512_CTX,			 pf_tcp_secret_ctx);
185 #define	V_pf_tcp_secret_ctx		 VNET(pf_tcp_secret_ctx)
186 VNET_DEFINE(u_char,			 pf_tcp_secret[16]);
187 #define	V_pf_tcp_secret			 VNET(pf_tcp_secret)
188 VNET_DEFINE(int,			 pf_tcp_secret_init);
189 #define	V_pf_tcp_secret_init		 VNET(pf_tcp_secret_init)
190 VNET_DEFINE(int,			 pf_tcp_iss_off);
191 #define	V_pf_tcp_iss_off		 VNET(pf_tcp_iss_off)
192 VNET_DECLARE(int,			 pf_vnet_active);
193 #define	V_pf_vnet_active		 VNET(pf_vnet_active)
194 
195 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
196 #define V_pf_purge_idx	VNET(pf_purge_idx)
197 
198 #ifdef PF_WANT_32_TO_64_COUNTER
199 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
200 #define	V_pf_counter_periodic_iter	VNET(pf_counter_periodic_iter)
201 
202 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
203 VNET_DEFINE(size_t, pf_allrulecount);
204 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
205 #endif
206 
207 #define PF_SCTP_MAX_ENDPOINTS		8
208 
209 struct pf_sctp_endpoint;
210 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
211 struct pf_sctp_source {
212 	sa_family_t			af;
213 	struct pf_addr			addr;
214 	TAILQ_ENTRY(pf_sctp_source)	entry;
215 };
216 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
217 struct pf_sctp_endpoint
218 {
219 	uint32_t		 v_tag;
220 	struct pf_sctp_sources	 sources;
221 	RB_ENTRY(pf_sctp_endpoint)	entry;
222 };
223 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)224 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
225 {
226 	return (a->v_tag - b->v_tag);
227 }
228 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
229 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
230 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
231 #define V_pf_sctp_endpoints	VNET(pf_sctp_endpoints)
232 static struct mtx_padalign pf_sctp_endpoints_mtx;
233 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
234 #define	PF_SCTP_ENDPOINTS_LOCK()	mtx_lock(&pf_sctp_endpoints_mtx)
235 #define	PF_SCTP_ENDPOINTS_UNLOCK()	mtx_unlock(&pf_sctp_endpoints_mtx)
236 
237 /*
238  * Queue for pf_intr() sends.
239  */
240 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
241 struct pf_send_entry {
242 	STAILQ_ENTRY(pf_send_entry)	pfse_next;
243 	struct mbuf			*pfse_m;
244 	enum {
245 		PFSE_IP,
246 		PFSE_IP6,
247 		PFSE_ICMP,
248 		PFSE_ICMP6,
249 	}				pfse_type;
250 	struct {
251 		int		type;
252 		int		code;
253 		int		mtu;
254 	} icmpopts;
255 };
256 
257 STAILQ_HEAD(pf_send_head, pf_send_entry);
258 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
259 #define	V_pf_sendqueue	VNET(pf_sendqueue)
260 
261 static struct mtx_padalign pf_sendqueue_mtx;
262 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
263 #define	PF_SENDQ_LOCK()		mtx_lock(&pf_sendqueue_mtx)
264 #define	PF_SENDQ_UNLOCK()	mtx_unlock(&pf_sendqueue_mtx)
265 
266 /*
267  * Queue for pf_overload_task() tasks.
268  */
269 struct pf_overload_entry {
270 	SLIST_ENTRY(pf_overload_entry)	next;
271 	struct pf_addr  		addr;
272 	sa_family_t			af;
273 	uint8_t				dir;
274 	struct pf_krule  		*rule;
275 };
276 
277 SLIST_HEAD(pf_overload_head, pf_overload_entry);
278 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
279 #define V_pf_overloadqueue	VNET(pf_overloadqueue)
280 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
281 #define	V_pf_overloadtask	VNET(pf_overloadtask)
282 
283 static struct mtx_padalign pf_overloadqueue_mtx;
284 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
285     "pf overload/flush queue", MTX_DEF);
286 #define	PF_OVERLOADQ_LOCK()	mtx_lock(&pf_overloadqueue_mtx)
287 #define	PF_OVERLOADQ_UNLOCK()	mtx_unlock(&pf_overloadqueue_mtx)
288 
289 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
290 struct mtx_padalign pf_unlnkdrules_mtx;
291 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
292     MTX_DEF);
293 
294 struct sx pf_config_lock;
295 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
296 
297 struct mtx_padalign pf_table_stats_lock;
298 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
299     MTX_DEF);
300 
301 VNET_DEFINE_STATIC(uma_zone_t,	pf_sources_z);
302 #define	V_pf_sources_z	VNET(pf_sources_z)
303 uma_zone_t		pf_mtag_z;
304 VNET_DEFINE(uma_zone_t,	 pf_state_z);
305 VNET_DEFINE(uma_zone_t,	 pf_state_key_z);
306 VNET_DEFINE(uma_zone_t,	 pf_udp_mapping_z);
307 
308 VNET_DEFINE(struct unrhdr64, pf_stateid);
309 
310 static void		 pf_src_tree_remove_state(struct pf_kstate *);
311 static int		 pf_check_threshold(struct pf_kthreshold *);
312 
313 static void		 pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *,
314 			    struct pf_addr *, u_int16_t);
315 static int		 pf_modulate_sack(struct pf_pdesc *,
316 			    struct tcphdr *, struct pf_state_peer *);
317 int			 pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
318 			    u_int16_t *, u_int16_t *);
319 static void		 pf_change_icmp(struct pf_addr *, u_int16_t *,
320 			    struct pf_addr *, struct pf_addr *, u_int16_t,
321 			    u_int16_t *, u_int16_t *, u_int16_t *,
322 			    u_int16_t *, u_int8_t, sa_family_t);
323 int			 pf_change_icmp_af(struct mbuf *, int,
324 			    struct pf_pdesc *, struct pf_pdesc *,
325 			    struct pf_addr *, struct pf_addr *, sa_family_t,
326 			    sa_family_t);
327 int			 pf_translate_icmp_af(int, void *);
328 static void		 pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
329 			    int, sa_family_t, struct pf_krule *, int);
330 static void		 pf_detach_state(struct pf_kstate *);
331 static int		 pf_state_key_attach(struct pf_state_key *,
332 			    struct pf_state_key *, struct pf_kstate *);
333 static void		 pf_state_key_detach(struct pf_kstate *, int);
334 static int		 pf_state_key_ctor(void *, int, void *, int);
335 static u_int32_t	 pf_tcp_iss(struct pf_pdesc *);
336 static __inline void	 pf_dummynet_flag_remove(struct mbuf *m,
337 			    struct pf_mtag *pf_mtag);
338 static int		 pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
339 			    struct pf_krule *, struct mbuf **);
340 static int		 pf_dummynet_route(struct pf_pdesc *,
341 			    struct pf_kstate *, struct pf_krule *,
342 			    struct ifnet *, const struct sockaddr *, struct mbuf **);
343 static int		 pf_test_eth_rule(int, struct pfi_kkif *,
344 			    struct mbuf **);
345 static int		 pf_test_rule(struct pf_krule **, struct pf_kstate **,
346 			    struct pf_pdesc *, struct pf_krule **,
347 			    struct pf_kruleset **, u_short *, struct inpcb *,
348 			    struct pf_krule_slist *);
349 static int		 pf_create_state(struct pf_krule *,
350 			    struct pf_test_ctx *,
351 			    struct pf_kstate **, u_int16_t, u_int16_t,
352 			    struct pf_krule_slist *match_rules);
353 static int		 pf_state_key_addr_setup(struct pf_pdesc *,
354 			    struct pf_state_key_cmp *, int);
355 static int		 pf_tcp_track_full(struct pf_kstate *,
356 			    struct pf_pdesc *, u_short *, int *,
357 			    struct pf_state_peer *, struct pf_state_peer *,
358 			    u_int8_t, u_int8_t);
359 static int		 pf_tcp_track_sloppy(struct pf_kstate *,
360 			    struct pf_pdesc *, u_short *,
361 			    struct pf_state_peer *, struct pf_state_peer *,
362 			    u_int8_t, u_int8_t);
363 static int		 pf_test_state(struct pf_kstate **, struct pf_pdesc *,
364 			    u_short *);
365 int			 pf_icmp_state_lookup(struct pf_state_key_cmp *,
366 			    struct pf_pdesc *, struct pf_kstate **,
367 			    u_int16_t, u_int16_t, int, int *, int, int);
368 static int		 pf_test_state_icmp(struct pf_kstate **,
369 			    struct pf_pdesc *, u_short *);
370 static int		 pf_sctp_track(struct pf_kstate *, struct pf_pdesc *,
371 			    u_short *);
372 static void		 pf_sctp_multihome_detach_addr(const struct pf_kstate *);
373 static void		 pf_sctp_multihome_delayed(struct pf_pdesc *,
374 			    struct pfi_kkif *, struct pf_kstate *, int);
375 static u_int16_t	 pf_calc_mss(struct pf_addr *, sa_family_t,
376 				int, u_int16_t);
377 static int		 pf_check_proto_cksum(struct mbuf *, int, int,
378 			    u_int8_t, sa_family_t);
379 static int		 pf_walk_option(struct pf_pdesc *, struct ip *,
380 			    int, int, u_short *);
381 static int		 pf_walk_header(struct pf_pdesc *, struct ip *, u_short *);
382 #ifdef INET6
383 static int		 pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *,
384 			    int, int, u_short *);
385 static int		 pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *,
386 			    u_short *);
387 #endif
388 static void		 pf_print_state_parts(struct pf_kstate *,
389 			    struct pf_state_key *, struct pf_state_key *);
390 static int		 pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t,
391 			    bool);
392 static int		 pf_find_state(struct pf_pdesc *,
393 			    const struct pf_state_key_cmp *, struct pf_kstate **);
394 static bool		 pf_src_connlimit(struct pf_kstate *);
395 static int		 pf_match_rcvif(struct mbuf *, struct pf_krule *);
396 static void		 pf_counters_inc(int, struct pf_pdesc *,
397 			    struct pf_kstate *, struct pf_krule *,
398 			    struct pf_krule *, struct pf_krule_slist *);
399 static void		 pf_log_matches(struct pf_pdesc *, struct pf_krule *,
400 			    struct pf_krule *, struct pf_kruleset *,
401 			    struct pf_krule_slist *);
402 static void		 pf_overload_task(void *v, int pending);
403 static u_short		 pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX],
404 			    struct pf_srchash *[PF_SN_MAX], struct pf_krule *,
405 			    struct pf_addr *, sa_family_t, struct pf_addr *,
406 			    struct pfi_kkif *, sa_family_t, pf_sn_types_t);
407 static u_int		 pf_purge_expired_states(u_int, int);
408 static void		 pf_purge_unlinked_rules(void);
409 static int		 pf_mtag_uminit(void *, int, int);
410 static void		 pf_mtag_free(struct m_tag *);
411 static void		 pf_packet_rework_nat(struct pf_pdesc *, int,
412 			    struct pf_state_key *);
413 #ifdef INET
414 static int		 pf_route(struct pf_krule *,
415 			    struct ifnet *, struct pf_kstate *,
416 			    struct pf_pdesc *, struct inpcb *);
417 #endif /* INET */
418 #ifdef INET6
419 static void		 pf_change_a6(struct pf_addr *, u_int16_t *,
420 			    struct pf_addr *, u_int8_t);
421 static int		 pf_route6(struct pf_krule *,
422 			    struct ifnet *, struct pf_kstate *,
423 			    struct pf_pdesc *, struct inpcb *);
424 #endif /* INET6 */
425 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
426 
427 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
428 
429 extern int pf_end_threads;
430 extern struct proc *pf_purge_proc;
431 
432 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
433 
434 #define	PACKET_UNDO_NAT(_pd, _off, _s)					\
435 	do {								\
436 		struct pf_state_key *nk;				\
437 		if ((pd->dir) == PF_OUT)				\
438 			nk = (_s)->key[PF_SK_STACK];			\
439 		else							\
440 			nk = (_s)->key[PF_SK_WIRE];			\
441 		pf_packet_rework_nat(_pd, _off, nk);		\
442 	} while (0)
443 
444 #define	PACKET_LOOPED(pd)	((pd)->pf_mtag &&			\
445 				 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
446 
447 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)448 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
449 {
450 	struct pfi_kkif *k = pd->kif;
451 
452 	SDT_PROBE2(pf, ip, , bound_iface, st, k);
453 
454 	/* Floating unless otherwise specified. */
455 	if (! (st->rule->rule_flag & PFRULE_IFBOUND))
456 		return (V_pfi_all);
457 
458 	/*
459 	 * Initially set to all, because we don't know what interface we'll be
460 	 * sending this out when we create the state.
461 	 */
462 	if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN))
463 		return (V_pfi_all);
464 
465 	/*
466 	 * If this state is created based on another state (e.g. SCTP
467 	 * multihome) always set it floating initially. We can't know for sure
468 	 * what interface the actual traffic for this state will come in on.
469 	 */
470 	if (pd->related_rule)
471 		return (V_pfi_all);
472 
473 	/* Don't overrule the interface for states created on incoming packets. */
474 	if (st->direction == PF_IN)
475 		return (k);
476 
477 	/* No route-to, so don't overrule. */
478 	if (st->act.rt != PF_ROUTETO)
479 		return (k);
480 
481 	/* Bind to the route-to interface. */
482 	return (st->act.rt_kif);
483 }
484 
485 #define	STATE_INC_COUNTERS(s)						\
486 	do {								\
487 		struct pf_krule_item *mrm;				\
488 		counter_u64_add(s->rule->states_cur, 1);		\
489 		counter_u64_add(s->rule->states_tot, 1);		\
490 		if (s->anchor != NULL) {				\
491 			counter_u64_add(s->anchor->states_cur, 1);	\
492 			counter_u64_add(s->anchor->states_tot, 1);	\
493 		}							\
494 		if (s->nat_rule != NULL && s->nat_rule != s->rule) {	\
495 			counter_u64_add(s->nat_rule->states_cur, 1);	\
496 			counter_u64_add(s->nat_rule->states_tot, 1);	\
497 		}							\
498 		SLIST_FOREACH(mrm, &s->match_rules, entry) {		\
499 			if (s->nat_rule != mrm->r) {			\
500 				counter_u64_add(mrm->r->states_cur, 1);	\
501 				counter_u64_add(mrm->r->states_tot, 1);	\
502 			}						\
503 		}							\
504 	} while (0)
505 
506 #define	STATE_DEC_COUNTERS(s)						\
507 	do {								\
508 		struct pf_krule_item *mrm;				\
509 		counter_u64_add(s->rule->states_cur, -1);		\
510 		if (s->anchor != NULL)					\
511 			counter_u64_add(s->anchor->states_cur, -1);	\
512 		if (s->nat_rule != NULL && s->nat_rule != s->rule)	\
513 			counter_u64_add(s->nat_rule->states_cur, -1);	\
514 		SLIST_FOREACH(mrm, &s->match_rules, entry)		\
515 			if (s->nat_rule != mrm->r) {			\
516 				counter_u64_add(mrm->r->states_cur, -1);\
517 			}						\
518 	} while (0)
519 
520 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
521 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
522 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
523 VNET_DEFINE(struct pf_idhash *, pf_idhash);
524 VNET_DEFINE(struct pf_srchash *, pf_srchash);
525 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
526 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
527 
528 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
529     "pf(4)");
530 
531 VNET_DEFINE(u_long, pf_hashmask);
532 VNET_DEFINE(u_long, pf_srchashmask);
533 VNET_DEFINE(u_long, pf_udpendpointhashmask);
534 VNET_DEFINE_STATIC(u_long, pf_hashsize);
535 #define V_pf_hashsize	VNET(pf_hashsize)
536 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
537 #define V_pf_srchashsize	VNET(pf_srchashsize)
538 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
539 #define V_pf_udpendpointhashsize	VNET(pf_udpendpointhashsize)
540 u_long	pf_ioctl_maxcount = 65535;
541 
542 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
543     &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
544 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
545     &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
546 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
547     &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
548 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
549     &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
550 
551 VNET_DEFINE(void *, pf_swi_cookie);
552 VNET_DEFINE(struct intr_event *, pf_swi_ie);
553 
554 VNET_DEFINE(uint32_t, pf_hashseed);
555 #define	V_pf_hashseed	VNET(pf_hashseed)
556 
557 static void
pf_sctp_checksum(struct mbuf * m,int off)558 pf_sctp_checksum(struct mbuf *m, int off)
559 {
560 	uint32_t sum = 0;
561 
562 	/* Zero out the checksum, to enable recalculation. */
563 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
564 	    sizeof(sum), (caddr_t)&sum);
565 
566 	sum = sctp_calculate_cksum(m, off);
567 
568 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
569 	    sizeof(sum), (caddr_t)&sum);
570 }
571 
572 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)573 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
574 {
575 
576 	switch (af) {
577 #ifdef INET
578 	case AF_INET:
579 		if (a->addr32[0] > b->addr32[0])
580 			return (1);
581 		if (a->addr32[0] < b->addr32[0])
582 			return (-1);
583 		break;
584 #endif /* INET */
585 #ifdef INET6
586 	case AF_INET6:
587 		if (a->addr32[3] > b->addr32[3])
588 			return (1);
589 		if (a->addr32[3] < b->addr32[3])
590 			return (-1);
591 		if (a->addr32[2] > b->addr32[2])
592 			return (1);
593 		if (a->addr32[2] < b->addr32[2])
594 			return (-1);
595 		if (a->addr32[1] > b->addr32[1])
596 			return (1);
597 		if (a->addr32[1] < b->addr32[1])
598 			return (-1);
599 		if (a->addr32[0] > b->addr32[0])
600 			return (1);
601 		if (a->addr32[0] < b->addr32[0])
602 			return (-1);
603 		break;
604 #endif /* INET6 */
605 	default:
606 		unhandled_af(af);
607 	}
608 	return (0);
609 }
610 
611 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)612 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
613 {
614 	switch (af) {
615 #ifdef INET
616 	case AF_INET:
617 		return IN_LOOPBACK(ntohl(addr->v4.s_addr));
618 #endif /* INET */
619 	case AF_INET6:
620 		return IN6_IS_ADDR_LOOPBACK(&addr->v6);
621 	default:
622 		unhandled_af(af);
623 	}
624 }
625 
626 static void
pf_packet_rework_nat(struct pf_pdesc * pd,int off,struct pf_state_key * nk)627 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk)
628 {
629 
630 	switch (pd->virtual_proto) {
631 	case IPPROTO_TCP: {
632 		struct tcphdr *th = &pd->hdr.tcp;
633 
634 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
635 			pf_change_ap(pd, pd->src, &th->th_sport,
636 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
637 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
638 			pf_change_ap(pd, pd->dst, &th->th_dport,
639 			    &nk->addr[pd->didx], nk->port[pd->didx]);
640 		m_copyback(pd->m, off, sizeof(*th), (caddr_t)th);
641 		break;
642 	}
643 	case IPPROTO_UDP: {
644 		struct udphdr *uh = &pd->hdr.udp;
645 
646 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
647 			pf_change_ap(pd, pd->src, &uh->uh_sport,
648 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
649 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
650 			pf_change_ap(pd, pd->dst, &uh->uh_dport,
651 			    &nk->addr[pd->didx], nk->port[pd->didx]);
652 		m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh);
653 		break;
654 	}
655 	case IPPROTO_SCTP: {
656 		struct sctphdr *sh = &pd->hdr.sctp;
657 
658 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
659 			pf_change_ap(pd, pd->src, &sh->src_port,
660 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
661 		}
662 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
663 			pf_change_ap(pd, pd->dst, &sh->dest_port,
664 			    &nk->addr[pd->didx], nk->port[pd->didx]);
665 		}
666 
667 		break;
668 	}
669 	case IPPROTO_ICMP: {
670 		struct icmp *ih = &pd->hdr.icmp;
671 
672 		if (nk->port[pd->sidx] != ih->icmp_id) {
673 			pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
674 			    ih->icmp_cksum, ih->icmp_id,
675 			    nk->port[pd->sidx], 0);
676 			ih->icmp_id = nk->port[pd->sidx];
677 			pd->sport = &ih->icmp_id;
678 
679 			m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih);
680 		}
681 		/* FALLTHROUGH */
682 	}
683 	default:
684 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
685 			switch (pd->af) {
686 			case AF_INET:
687 				pf_change_a(&pd->src->v4.s_addr,
688 				    pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
689 				    0);
690 				break;
691 			case AF_INET6:
692 				pf_addrcpy(pd->src, &nk->addr[pd->sidx],
693 				    pd->af);
694 				break;
695 			default:
696 				unhandled_af(pd->af);
697 			}
698 		}
699 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
700 			switch (pd->af) {
701 			case AF_INET:
702 				pf_change_a(&pd->dst->v4.s_addr,
703 				    pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
704 				    0);
705 				break;
706 			case AF_INET6:
707 				pf_addrcpy(pd->dst, &nk->addr[pd->didx],
708 				    pd->af);
709 				break;
710 			default:
711 				unhandled_af(pd->af);
712 			}
713 		}
714 		break;
715 	}
716 }
717 
718 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)719 pf_hashkey(const struct pf_state_key *sk)
720 {
721 	uint32_t h;
722 
723 	h = murmur3_32_hash32((const uint32_t *)sk,
724 	    sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
725 	    V_pf_hashseed);
726 
727 	return (h & V_pf_hashmask);
728 }
729 
730 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)731 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
732 {
733 	uint32_t h;
734 
735 	switch (af) {
736 	case AF_INET:
737 		h = murmur3_32_hash32((uint32_t *)&addr->v4,
738 		    sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
739 		break;
740 	case AF_INET6:
741 		h = murmur3_32_hash32((uint32_t *)&addr->v6,
742 		    sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
743 		break;
744 	default:
745 		unhandled_af(af);
746 	}
747 
748 	return (h & V_pf_srchashmask);
749 }
750 
751 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)752 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
753 {
754 	uint32_t h;
755 
756 	h = murmur3_32_hash32((uint32_t *)endpoint,
757 	    sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
758 	    V_pf_hashseed);
759 	return (h & V_pf_udpendpointhashmask);
760 }
761 
762 #ifdef ALTQ
763 static int
pf_state_hash(struct pf_kstate * s)764 pf_state_hash(struct pf_kstate *s)
765 {
766 	u_int32_t hv = (intptr_t)s / sizeof(*s);
767 
768 	hv ^= crc32(&s->src, sizeof(s->src));
769 	hv ^= crc32(&s->dst, sizeof(s->dst));
770 	if (hv == 0)
771 		hv = 1;
772 	return (hv);
773 }
774 #endif /* ALTQ */
775 
776 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)777 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
778 {
779 	if (which == PF_PEER_DST || which == PF_PEER_BOTH)
780 		s->dst.state = newstate;
781 	if (which == PF_PEER_DST)
782 		return;
783 	if (s->src.state == newstate)
784 		return;
785 	if (s->creatorid == V_pf_status.hostid &&
786 	    s->key[PF_SK_STACK] != NULL &&
787 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
788 	    !(TCPS_HAVEESTABLISHED(s->src.state) ||
789 	    s->src.state == TCPS_CLOSED) &&
790 	    (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
791 		atomic_add_32(&V_pf_status.states_halfopen, -1);
792 
793 	s->src.state = newstate;
794 }
795 
796 bool
pf_init_threshold(struct pf_kthreshold * threshold,u_int32_t limit,u_int32_t seconds)797 pf_init_threshold(struct pf_kthreshold *threshold,
798     u_int32_t limit, u_int32_t seconds)
799 {
800 	threshold->limit = limit;
801 	threshold->seconds = seconds;
802 	threshold->cr = counter_rate_alloc(M_NOWAIT, seconds);
803 
804 	return (threshold->cr != NULL);
805 }
806 
807 static int
pf_check_threshold(struct pf_kthreshold * threshold)808 pf_check_threshold(struct pf_kthreshold *threshold)
809 {
810 	return (counter_ratecheck(threshold->cr, threshold->limit) < 0);
811 }
812 
813 static bool
pf_src_connlimit(struct pf_kstate * state)814 pf_src_connlimit(struct pf_kstate *state)
815 {
816 	struct pf_overload_entry	*pfoe;
817 	struct pf_ksrc_node		*src_node = state->sns[PF_SN_LIMIT];
818 	bool				 limited = false;
819 
820 	PF_STATE_LOCK_ASSERT(state);
821 	PF_SRC_NODE_LOCK(src_node);
822 
823 	src_node->conn++;
824 	state->src.tcp_est = 1;
825 
826 	if (state->rule->max_src_conn &&
827 	    state->rule->max_src_conn <
828 	    src_node->conn) {
829 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
830 		limited = true;
831 	}
832 
833 	if (state->rule->max_src_conn_rate.limit &&
834 	    pf_check_threshold(&src_node->conn_rate)) {
835 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
836 		limited = true;
837 	}
838 
839 	if (!limited)
840 		goto done;
841 
842 	/* Kill this state. */
843 	state->timeout = PFTM_PURGE;
844 	pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
845 
846 	if (state->rule->overload_tbl == NULL)
847 		goto done;
848 
849 	/* Schedule overloading and flushing task. */
850 	pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
851 	if (pfoe == NULL)
852 		goto done;  /* too bad :( */
853 
854 	bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
855 	pfoe->af = state->key[PF_SK_WIRE]->af;
856 	pfoe->rule = state->rule;
857 	pfoe->dir = state->direction;
858 	PF_OVERLOADQ_LOCK();
859 	SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
860 	PF_OVERLOADQ_UNLOCK();
861 	taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
862 
863 done:
864 	PF_SRC_NODE_UNLOCK(src_node);
865 	return (limited);
866 }
867 
868 static void
pf_overload_task(void * v,int pending)869 pf_overload_task(void *v, int pending)
870 {
871 	struct pf_overload_head queue;
872 	struct pfr_addr p;
873 	struct pf_overload_entry *pfoe, *pfoe1;
874 	uint32_t killed = 0;
875 
876 	CURVNET_SET((struct vnet *)v);
877 
878 	PF_OVERLOADQ_LOCK();
879 	queue = V_pf_overloadqueue;
880 	SLIST_INIT(&V_pf_overloadqueue);
881 	PF_OVERLOADQ_UNLOCK();
882 
883 	bzero(&p, sizeof(p));
884 	SLIST_FOREACH(pfoe, &queue, next) {
885 		counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
886 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
887 			printf("%s: blocking address ", __func__);
888 			pf_print_host(&pfoe->addr, 0, pfoe->af);
889 			printf("\n");
890 		}
891 
892 		p.pfra_af = pfoe->af;
893 		switch (pfoe->af) {
894 #ifdef INET
895 		case AF_INET:
896 			p.pfra_net = 32;
897 			p.pfra_ip4addr = pfoe->addr.v4;
898 			break;
899 #endif /* INET */
900 #ifdef INET6
901 		case AF_INET6:
902 			p.pfra_net = 128;
903 			p.pfra_ip6addr = pfoe->addr.v6;
904 			break;
905 #endif /* INET6 */
906 		default:
907 			unhandled_af(pfoe->af);
908 		}
909 
910 		PF_RULES_WLOCK();
911 		pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
912 		PF_RULES_WUNLOCK();
913 	}
914 
915 	/*
916 	 * Remove those entries, that don't need flushing.
917 	 */
918 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
919 		if (pfoe->rule->flush == 0) {
920 			SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
921 			free(pfoe, M_PFTEMP);
922 		} else
923 			counter_u64_add(
924 			    V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
925 
926 	/* If nothing to flush, return. */
927 	if (SLIST_EMPTY(&queue)) {
928 		CURVNET_RESTORE();
929 		return;
930 	}
931 
932 	for (int i = 0; i <= V_pf_hashmask; i++) {
933 		struct pf_idhash *ih = &V_pf_idhash[i];
934 		struct pf_state_key *sk;
935 		struct pf_kstate *s;
936 
937 		PF_HASHROW_LOCK(ih);
938 		LIST_FOREACH(s, &ih->states, entry) {
939 		    sk = s->key[PF_SK_WIRE];
940 		    SLIST_FOREACH(pfoe, &queue, next)
941 			if (sk->af == pfoe->af &&
942 			    ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
943 			    pfoe->rule == s->rule) &&
944 			    ((pfoe->dir == PF_OUT &&
945 			    PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
946 			    (pfoe->dir == PF_IN &&
947 			    PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
948 				s->timeout = PFTM_PURGE;
949 				pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
950 				killed++;
951 			}
952 		}
953 		PF_HASHROW_UNLOCK(ih);
954 	}
955 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
956 		free(pfoe, M_PFTEMP);
957 	if (V_pf_status.debug >= PF_DEBUG_MISC)
958 		printf("%s: %u states killed", __func__, killed);
959 
960 	CURVNET_RESTORE();
961 }
962 
963 /*
964  * On node found always returns locked. On not found its configurable.
965  */
966 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,pf_sn_types_t sn_type,bool returnlocked)967 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
968     struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked)
969 {
970 	struct pf_ksrc_node *n;
971 
972 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
973 
974 	*sh = &V_pf_srchash[pf_hashsrc(src, af)];
975 	PF_HASHROW_LOCK(*sh);
976 	LIST_FOREACH(n, &(*sh)->nodes, entry)
977 		if (n->rule == rule && n->af == af && n->type == sn_type &&
978 		    ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
979 		    (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
980 			break;
981 
982 	if (n == NULL && !returnlocked)
983 		PF_HASHROW_UNLOCK(*sh);
984 
985 	return (n);
986 }
987 
988 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)989 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
990 {
991 	struct pf_ksrc_node	*cur;
992 
993 	if ((*sn) == NULL)
994 		return (false);
995 
996 	KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
997 
998 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
999 	PF_HASHROW_LOCK(sh);
1000 	LIST_FOREACH(cur, &(sh->nodes), entry) {
1001 		if (cur == (*sn) &&
1002 		    cur->expire != 1) /* Ignore nodes being killed */
1003 			return (true);
1004 	}
1005 	PF_HASHROW_UNLOCK(sh);
1006 	(*sn) = NULL;
1007 	return (false);
1008 }
1009 
1010 void
pf_free_src_node(struct pf_ksrc_node * sn)1011 pf_free_src_node(struct pf_ksrc_node *sn)
1012 {
1013 
1014 	for (int i = 0; i < 2; i++) {
1015 		counter_u64_free(sn->bytes[i]);
1016 		counter_u64_free(sn->packets[i]);
1017 	}
1018 	counter_rate_free(sn->conn_rate.cr);
1019 	uma_zfree(V_pf_sources_z, sn);
1020 }
1021 
1022 static u_short
pf_insert_src_node(struct pf_ksrc_node * sns[PF_SN_MAX],struct pf_srchash * snhs[PF_SN_MAX],struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif,sa_family_t raf,pf_sn_types_t sn_type)1023 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX],
1024     struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule,
1025     struct pf_addr *src, sa_family_t af, struct pf_addr *raddr,
1026     struct pfi_kkif *rkif, sa_family_t raf, pf_sn_types_t sn_type)
1027 {
1028 	u_short			 reason = 0;
1029 	struct pf_krule		*r_track = rule;
1030 	struct pf_ksrc_node	**sn = &(sns[sn_type]);
1031 	struct pf_srchash	**sh = &(snhs[sn_type]);
1032 
1033 	KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL),
1034 	    ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__));
1035 
1036 	KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK),
1037 	    ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__));
1038 
1039 	/*
1040 	 * XXX: There could be a KASSERT for
1041 	 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR)
1042 	 * but we'd need to pass pool *only* for this KASSERT.
1043 	 */
1044 
1045 	if ( (rule->rule_flag & PFRULE_SRCTRACK) &&
1046 	    !(rule->rule_flag & PFRULE_RULESRCTRACK))
1047 		r_track = &V_pf_default_rule;
1048 
1049 	/*
1050 	 * Request the sh to always be locked, as we might insert a new sn.
1051 	 */
1052 	if (*sn == NULL)
1053 		*sn = pf_find_src_node(src, r_track, af, sh, sn_type, true);
1054 
1055 	if (*sn == NULL) {
1056 		PF_HASHROW_ASSERT(*sh);
1057 
1058 		if (sn_type == PF_SN_LIMIT && rule->max_src_nodes &&
1059 		    counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) {
1060 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1061 			reason = PFRES_SRCLIMIT;
1062 			goto done;
1063 		}
1064 
1065 		(*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1066 		if ((*sn) == NULL) {
1067 			reason = PFRES_MEMORY;
1068 			goto done;
1069 		}
1070 
1071 		for (int i = 0; i < 2; i++) {
1072 			(*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1073 			(*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1074 
1075 			if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1076 				pf_free_src_node(*sn);
1077 				reason = PFRES_MEMORY;
1078 				goto done;
1079 			}
1080 		}
1081 
1082 		if (sn_type == PF_SN_LIMIT)
1083 			if (! pf_init_threshold(&(*sn)->conn_rate,
1084 			    rule->max_src_conn_rate.limit,
1085 			    rule->max_src_conn_rate.seconds)) {
1086 				pf_free_src_node(*sn);
1087 				reason = PFRES_MEMORY;
1088 				goto done;
1089 			}
1090 
1091 		MPASS((*sn)->lock == NULL);
1092 		(*sn)->lock = &(*sh)->lock;
1093 
1094 		(*sn)->af = af;
1095 		(*sn)->rule = r_track;
1096 		pf_addrcpy(&(*sn)->addr, src, af);
1097 		if (raddr != NULL)
1098 			pf_addrcpy(&(*sn)->raddr, raddr, raf);
1099 		(*sn)->rkif = rkif;
1100 		(*sn)->raf = raf;
1101 		LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1102 		(*sn)->creation = time_uptime;
1103 		(*sn)->ruletype = rule->action;
1104 		(*sn)->type = sn_type;
1105 		counter_u64_add(r_track->src_nodes[sn_type], 1);
1106 		counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1107 	} else {
1108 		if (sn_type == PF_SN_LIMIT && rule->max_src_states &&
1109 		    (*sn)->states >= rule->max_src_states) {
1110 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1111 			    1);
1112 			reason = PFRES_SRCLIMIT;
1113 			goto done;
1114 		}
1115 	}
1116 done:
1117 	if (reason == 0)
1118 		(*sn)->states++;
1119 	else
1120 		(*sn) = NULL;
1121 
1122 	PF_HASHROW_UNLOCK(*sh);
1123 	return (reason);
1124 }
1125 
1126 void
pf_unlink_src_node(struct pf_ksrc_node * src)1127 pf_unlink_src_node(struct pf_ksrc_node *src)
1128 {
1129 	PF_SRC_NODE_LOCK_ASSERT(src);
1130 
1131 	LIST_REMOVE(src, entry);
1132 	if (src->rule)
1133 		counter_u64_add(src->rule->src_nodes[src->type], -1);
1134 }
1135 
1136 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1137 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1138 {
1139 	struct pf_ksrc_node *sn, *tmp;
1140 	u_int count = 0;
1141 
1142 	LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1143 		pf_free_src_node(sn);
1144 		count++;
1145 	}
1146 
1147 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1148 
1149 	return (count);
1150 }
1151 
1152 void
pf_mtag_initialize(void)1153 pf_mtag_initialize(void)
1154 {
1155 
1156 	pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1157 	    sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1158 	    UMA_ALIGN_PTR, 0);
1159 }
1160 
1161 /* Per-vnet data storage structures initialization. */
1162 void
pf_initialize(void)1163 pf_initialize(void)
1164 {
1165 	struct pf_keyhash	*kh;
1166 	struct pf_idhash	*ih;
1167 	struct pf_srchash	*sh;
1168 	struct pf_udpendpointhash	*uh;
1169 	u_int i;
1170 
1171 	if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1172 		V_pf_hashsize = PF_HASHSIZ;
1173 	if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1174 		V_pf_srchashsize = PF_SRCHASHSIZ;
1175 	if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1176 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1177 
1178 	V_pf_hashseed = arc4random();
1179 
1180 	/* States and state keys storage. */
1181 	V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1182 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1183 	V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1184 	uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1185 	uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1186 
1187 	V_pf_state_key_z = uma_zcreate("pf state keys",
1188 	    sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1189 	    UMA_ALIGN_PTR, 0);
1190 
1191 	V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1192 	    M_PFHASH, M_NOWAIT | M_ZERO);
1193 	V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1194 	    M_PFHASH, M_NOWAIT | M_ZERO);
1195 	if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1196 		printf("pf: Unable to allocate memory for "
1197 		    "state_hashsize %lu.\n", V_pf_hashsize);
1198 
1199 		free(V_pf_keyhash, M_PFHASH);
1200 		free(V_pf_idhash, M_PFHASH);
1201 
1202 		V_pf_hashsize = PF_HASHSIZ;
1203 		V_pf_keyhash = mallocarray(V_pf_hashsize,
1204 		    sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1205 		V_pf_idhash = mallocarray(V_pf_hashsize,
1206 		    sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1207 	}
1208 
1209 	V_pf_hashmask = V_pf_hashsize - 1;
1210 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1211 	    i++, kh++, ih++) {
1212 		mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1213 		mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1214 	}
1215 
1216 	/* Source nodes. */
1217 	V_pf_sources_z = uma_zcreate("pf source nodes",
1218 	    sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1219 	    0);
1220 	V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1221 	uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1222 	uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1223 
1224 	V_pf_srchash = mallocarray(V_pf_srchashsize,
1225 	    sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1226 	if (V_pf_srchash == NULL) {
1227 		printf("pf: Unable to allocate memory for "
1228 		    "source_hashsize %lu.\n", V_pf_srchashsize);
1229 
1230 		V_pf_srchashsize = PF_SRCHASHSIZ;
1231 		V_pf_srchash = mallocarray(V_pf_srchashsize,
1232 		    sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1233 	}
1234 
1235 	V_pf_srchashmask = V_pf_srchashsize - 1;
1236 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1237 		mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1238 
1239 
1240 	/* UDP endpoint mappings. */
1241 	V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1242 	    sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1243 	    UMA_ALIGN_PTR, 0);
1244 	V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1245 	    sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1246 	if (V_pf_udpendpointhash == NULL) {
1247 		printf("pf: Unable to allocate memory for "
1248 		    "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1249 
1250 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1251 		V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1252 		    sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1253 	}
1254 
1255 	V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1256 	for (i = 0, uh = V_pf_udpendpointhash;
1257 	    i <= V_pf_udpendpointhashmask;
1258 	    i++, uh++) {
1259 		mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1260 		    MTX_DEF | MTX_DUPOK);
1261 	}
1262 
1263 	/* Anchors */
1264 	V_pf_anchor_z = uma_zcreate("pf anchors",
1265 	    sizeof(struct pf_kanchor), NULL, NULL, NULL, NULL,
1266 	    UMA_ALIGN_PTR, 0);
1267 	V_pf_limits[PF_LIMIT_ANCHORS].zone = V_pf_anchor_z;
1268 	uma_zone_set_max(V_pf_anchor_z, PF_ANCHOR_HIWAT);
1269 	uma_zone_set_warning(V_pf_anchor_z, "PF anchor limit reached");
1270 
1271 	V_pf_eth_anchor_z = uma_zcreate("pf Ethernet anchors",
1272 	    sizeof(struct pf_keth_anchor), NULL, NULL, NULL, NULL,
1273 	    UMA_ALIGN_PTR, 0);
1274 	V_pf_limits[PF_LIMIT_ETH_ANCHORS].zone = V_pf_eth_anchor_z;
1275 	uma_zone_set_max(V_pf_eth_anchor_z, PF_ANCHOR_HIWAT);
1276 	uma_zone_set_warning(V_pf_eth_anchor_z, "PF Ethernet anchor limit reached");
1277 
1278 	/* ALTQ */
1279 	TAILQ_INIT(&V_pf_altqs[0]);
1280 	TAILQ_INIT(&V_pf_altqs[1]);
1281 	TAILQ_INIT(&V_pf_altqs[2]);
1282 	TAILQ_INIT(&V_pf_altqs[3]);
1283 	TAILQ_INIT(&V_pf_pabuf[0]);
1284 	TAILQ_INIT(&V_pf_pabuf[1]);
1285 	TAILQ_INIT(&V_pf_pabuf[2]);
1286 	V_pf_altqs_active = &V_pf_altqs[0];
1287 	V_pf_altq_ifs_active = &V_pf_altqs[1];
1288 	V_pf_altqs_inactive = &V_pf_altqs[2];
1289 	V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1290 
1291 	/* Send & overload+flush queues. */
1292 	STAILQ_INIT(&V_pf_sendqueue);
1293 	SLIST_INIT(&V_pf_overloadqueue);
1294 	TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1295 
1296 	/* Unlinked, but may be referenced rules. */
1297 	TAILQ_INIT(&V_pf_unlinked_rules);
1298 }
1299 
1300 void
pf_mtag_cleanup(void)1301 pf_mtag_cleanup(void)
1302 {
1303 
1304 	uma_zdestroy(pf_mtag_z);
1305 }
1306 
1307 void
pf_cleanup(void)1308 pf_cleanup(void)
1309 {
1310 	struct pf_keyhash	*kh;
1311 	struct pf_idhash	*ih;
1312 	struct pf_srchash	*sh;
1313 	struct pf_udpendpointhash	*uh;
1314 	struct pf_send_entry	*pfse, *next;
1315 	u_int i;
1316 
1317 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1318 	    i <= V_pf_hashmask;
1319 	    i++, kh++, ih++) {
1320 		KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1321 		    __func__));
1322 		KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1323 		    __func__));
1324 		mtx_destroy(&kh->lock);
1325 		mtx_destroy(&ih->lock);
1326 	}
1327 	free(V_pf_keyhash, M_PFHASH);
1328 	free(V_pf_idhash, M_PFHASH);
1329 
1330 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1331 		KASSERT(LIST_EMPTY(&sh->nodes),
1332 		    ("%s: source node hash not empty", __func__));
1333 		mtx_destroy(&sh->lock);
1334 	}
1335 	free(V_pf_srchash, M_PFHASH);
1336 
1337 	for (i = 0, uh = V_pf_udpendpointhash;
1338 	    i <= V_pf_udpendpointhashmask;
1339 	    i++, uh++) {
1340 		KASSERT(LIST_EMPTY(&uh->endpoints),
1341 		    ("%s: udp endpoint hash not empty", __func__));
1342 		mtx_destroy(&uh->lock);
1343 	}
1344 	free(V_pf_udpendpointhash, M_PFHASH);
1345 
1346 	STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1347 		m_freem(pfse->pfse_m);
1348 		free(pfse, M_PFTEMP);
1349 	}
1350 	MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1351 
1352 	uma_zdestroy(V_pf_sources_z);
1353 	uma_zdestroy(V_pf_state_z);
1354 	uma_zdestroy(V_pf_state_key_z);
1355 	uma_zdestroy(V_pf_udp_mapping_z);
1356 	uma_zdestroy(V_pf_anchor_z);
1357 	uma_zdestroy(V_pf_eth_anchor_z);
1358 }
1359 
1360 static int
pf_mtag_uminit(void * mem,int size,int how)1361 pf_mtag_uminit(void *mem, int size, int how)
1362 {
1363 	struct m_tag *t;
1364 
1365 	t = (struct m_tag *)mem;
1366 	t->m_tag_cookie = MTAG_ABI_COMPAT;
1367 	t->m_tag_id = PACKET_TAG_PF;
1368 	t->m_tag_len = sizeof(struct pf_mtag);
1369 	t->m_tag_free = pf_mtag_free;
1370 
1371 	return (0);
1372 }
1373 
1374 static void
pf_mtag_free(struct m_tag * t)1375 pf_mtag_free(struct m_tag *t)
1376 {
1377 
1378 	uma_zfree(pf_mtag_z, t);
1379 }
1380 
1381 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1382 pf_get_mtag(struct mbuf *m)
1383 {
1384 	struct m_tag *mtag;
1385 
1386 	if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1387 		return ((struct pf_mtag *)(mtag + 1));
1388 
1389 	mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1390 	if (mtag == NULL)
1391 		return (NULL);
1392 	bzero(mtag + 1, sizeof(struct pf_mtag));
1393 	m_tag_prepend(m, mtag);
1394 
1395 	return ((struct pf_mtag *)(mtag + 1));
1396 }
1397 
1398 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1399 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1400     struct pf_kstate *s)
1401 {
1402 	struct pf_keyhash	*khs, *khw, *kh;
1403 	struct pf_state_key	*sk, *cur;
1404 	struct pf_kstate	*si, *olds = NULL;
1405 	int idx;
1406 
1407 	NET_EPOCH_ASSERT();
1408 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1409 	KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1410 	KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1411 
1412 	/*
1413 	 * We need to lock hash slots of both keys. To avoid deadlock
1414 	 * we always lock the slot with lower address first. Unlock order
1415 	 * isn't important.
1416 	 *
1417 	 * We also need to lock ID hash slot before dropping key
1418 	 * locks. On success we return with ID hash slot locked.
1419 	 */
1420 
1421 	if (skw == sks) {
1422 		khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1423 		PF_HASHROW_LOCK(khs);
1424 	} else {
1425 		khs = &V_pf_keyhash[pf_hashkey(sks)];
1426 		khw = &V_pf_keyhash[pf_hashkey(skw)];
1427 		if (khs == khw) {
1428 			PF_HASHROW_LOCK(khs);
1429 		} else if (khs < khw) {
1430 			PF_HASHROW_LOCK(khs);
1431 			PF_HASHROW_LOCK(khw);
1432 		} else {
1433 			PF_HASHROW_LOCK(khw);
1434 			PF_HASHROW_LOCK(khs);
1435 		}
1436 	}
1437 
1438 #define	KEYS_UNLOCK()	do {			\
1439 	if (khs != khw) {			\
1440 		PF_HASHROW_UNLOCK(khs);		\
1441 		PF_HASHROW_UNLOCK(khw);		\
1442 	} else					\
1443 		PF_HASHROW_UNLOCK(khs);		\
1444 } while (0)
1445 
1446 	/*
1447 	 * First run: start with wire key.
1448 	 */
1449 	sk = skw;
1450 	kh = khw;
1451 	idx = PF_SK_WIRE;
1452 
1453 	MPASS(s->lock == NULL);
1454 	s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1455 
1456 keyattach:
1457 	LIST_FOREACH(cur, &kh->keys, entry)
1458 		if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1459 			break;
1460 
1461 	if (cur != NULL) {
1462 		/* Key exists. Check for same kif, if none, add to key. */
1463 		TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1464 			struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1465 
1466 			PF_HASHROW_LOCK(ih);
1467 			if (si->kif == s->kif &&
1468 			    ((si->key[PF_SK_WIRE]->af == sk->af &&
1469 			    si->direction == s->direction) ||
1470 			    (si->key[PF_SK_WIRE]->af !=
1471 			    si->key[PF_SK_STACK]->af &&
1472 			    sk->af == si->key[PF_SK_STACK]->af &&
1473 			    si->direction != s->direction))) {
1474 				bool reuse = false;
1475 
1476 				if (sk->proto == IPPROTO_TCP &&
1477 				    si->src.state >= TCPS_FIN_WAIT_2 &&
1478 				    si->dst.state >= TCPS_FIN_WAIT_2)
1479 					reuse = true;
1480 
1481 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
1482 					printf("pf: %s key attach "
1483 					    "%s on %s: ",
1484 					    (idx == PF_SK_WIRE) ?
1485 					    "wire" : "stack",
1486 					    reuse ? "reuse" : "failed",
1487 					    s->kif->pfik_name);
1488 					pf_print_state_parts(s,
1489 					    (idx == PF_SK_WIRE) ?
1490 					    sk : NULL,
1491 					    (idx == PF_SK_STACK) ?
1492 					    sk : NULL);
1493 					printf(", existing: ");
1494 					pf_print_state_parts(si,
1495 					    (idx == PF_SK_WIRE) ?
1496 					    sk : NULL,
1497 					    (idx == PF_SK_STACK) ?
1498 					    sk : NULL);
1499 					printf("\n");
1500 				}
1501 
1502 				if (reuse) {
1503 					/*
1504 					 * New state matches an old >FIN_WAIT_2
1505 					 * state. We can't drop key hash locks,
1506 					 * thus we can't unlink it properly.
1507 					 *
1508 					 * As a workaround we drop it into
1509 					 * TCPS_CLOSED state, schedule purge
1510 					 * ASAP and push it into the very end
1511 					 * of the slot TAILQ, so that it won't
1512 					 * conflict with our new state.
1513 					 */
1514 					pf_set_protostate(si, PF_PEER_BOTH,
1515 					    TCPS_CLOSED);
1516 					si->timeout = PFTM_PURGE;
1517 					olds = si;
1518 				} else {
1519 					s->timeout = PFTM_UNLINKED;
1520 					if (idx == PF_SK_STACK)
1521 						/*
1522 						 * Remove the wire key from
1523 						 * the hash. Other threads
1524 						 * can't be referencing it
1525 						 * because we still hold the
1526 						 * hash lock.
1527 						 */
1528 						pf_state_key_detach(s,
1529 						    PF_SK_WIRE);
1530 					PF_HASHROW_UNLOCK(ih);
1531 					KEYS_UNLOCK();
1532 					if (idx == PF_SK_WIRE)
1533 						/*
1534 						 * We've not inserted either key.
1535 						 * Free both.
1536 						 */
1537 						uma_zfree(V_pf_state_key_z, skw);
1538 					if (skw != sks)
1539 						uma_zfree(
1540 						    V_pf_state_key_z,
1541 						    sks);
1542 					return (EEXIST); /* collision! */
1543 				}
1544 			}
1545 			PF_HASHROW_UNLOCK(ih);
1546 		}
1547 		uma_zfree(V_pf_state_key_z, sk);
1548 		s->key[idx] = cur;
1549 	} else {
1550 		LIST_INSERT_HEAD(&kh->keys, sk, entry);
1551 		s->key[idx] = sk;
1552 	}
1553 
1554 stateattach:
1555 	/* List is sorted, if-bound states before floating. */
1556 	if (s->kif == V_pfi_all)
1557 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1558 	else
1559 		TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1560 
1561 	if (olds) {
1562 		TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1563 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1564 		    key_list[idx]);
1565 		olds = NULL;
1566 	}
1567 
1568 	/*
1569 	 * Attach done. See how should we (or should not?)
1570 	 * attach a second key.
1571 	 */
1572 	if (sks == skw) {
1573 		s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1574 		idx = PF_SK_STACK;
1575 		sks = NULL;
1576 		goto stateattach;
1577 	} else if (sks != NULL) {
1578 		/*
1579 		 * Continue attaching with stack key.
1580 		 */
1581 		sk = sks;
1582 		kh = khs;
1583 		idx = PF_SK_STACK;
1584 		sks = NULL;
1585 		goto keyattach;
1586 	}
1587 
1588 	PF_STATE_LOCK(s);
1589 	KEYS_UNLOCK();
1590 
1591 	KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1592 	    ("%s failure", __func__));
1593 
1594 	return (0);
1595 #undef	KEYS_UNLOCK
1596 }
1597 
1598 static void
pf_detach_state(struct pf_kstate * s)1599 pf_detach_state(struct pf_kstate *s)
1600 {
1601 	struct pf_state_key *sks = s->key[PF_SK_STACK];
1602 	struct pf_keyhash *kh;
1603 
1604 	NET_EPOCH_ASSERT();
1605 	MPASS(s->timeout >= PFTM_MAX);
1606 
1607 	pf_sctp_multihome_detach_addr(s);
1608 
1609 	if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1610 		V_pflow_export_state_ptr(s);
1611 
1612 	if (sks != NULL) {
1613 		kh = &V_pf_keyhash[pf_hashkey(sks)];
1614 		PF_HASHROW_LOCK(kh);
1615 		if (s->key[PF_SK_STACK] != NULL)
1616 			pf_state_key_detach(s, PF_SK_STACK);
1617 		/*
1618 		 * If both point to same key, then we are done.
1619 		 */
1620 		if (sks == s->key[PF_SK_WIRE]) {
1621 			pf_state_key_detach(s, PF_SK_WIRE);
1622 			PF_HASHROW_UNLOCK(kh);
1623 			return;
1624 		}
1625 		PF_HASHROW_UNLOCK(kh);
1626 	}
1627 
1628 	if (s->key[PF_SK_WIRE] != NULL) {
1629 		kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1630 		PF_HASHROW_LOCK(kh);
1631 		if (s->key[PF_SK_WIRE] != NULL)
1632 			pf_state_key_detach(s, PF_SK_WIRE);
1633 		PF_HASHROW_UNLOCK(kh);
1634 	}
1635 }
1636 
1637 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1638 pf_state_key_detach(struct pf_kstate *s, int idx)
1639 {
1640 	struct pf_state_key *sk = s->key[idx];
1641 #ifdef INVARIANTS
1642 	struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1643 
1644 	PF_HASHROW_ASSERT(kh);
1645 #endif /* INVARIANTS */
1646 	TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1647 	s->key[idx] = NULL;
1648 
1649 	if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1650 		LIST_REMOVE(sk, entry);
1651 		uma_zfree(V_pf_state_key_z, sk);
1652 	}
1653 }
1654 
1655 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1656 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1657 {
1658 	struct pf_state_key *sk = mem;
1659 
1660 	bzero(sk, sizeof(struct pf_state_key_cmp));
1661 	TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1662 	TAILQ_INIT(&sk->states[PF_SK_STACK]);
1663 
1664 	return (0);
1665 }
1666 
1667 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1668 pf_state_key_addr_setup(struct pf_pdesc *pd,
1669     struct pf_state_key_cmp *key, int multi)
1670 {
1671 	struct pf_addr *saddr = pd->src;
1672 	struct pf_addr *daddr = pd->dst;
1673 #ifdef INET6
1674 	struct nd_neighbor_solicit nd;
1675 	struct pf_addr *target;
1676 
1677 	if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1678 		goto copy;
1679 
1680 	switch (pd->hdr.icmp6.icmp6_type) {
1681 	case ND_NEIGHBOR_SOLICIT:
1682 		if (multi)
1683 			return (-1);
1684 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), NULL,
1685 		    pd->af))
1686 			return (-1);
1687 		target = (struct pf_addr *)&nd.nd_ns_target;
1688 		daddr = target;
1689 		break;
1690 	case ND_NEIGHBOR_ADVERT:
1691 		if (multi)
1692 			return (-1);
1693 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), NULL,
1694 		    pd->af))
1695 			return (-1);
1696 		target = (struct pf_addr *)&nd.nd_ns_target;
1697 		saddr = target;
1698 		if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1699 			key->addr[pd->didx].addr32[0] = 0;
1700 			key->addr[pd->didx].addr32[1] = 0;
1701 			key->addr[pd->didx].addr32[2] = 0;
1702 			key->addr[pd->didx].addr32[3] = 0;
1703 			daddr = NULL; /* overwritten */
1704 		}
1705 		break;
1706 	default:
1707 		if (multi) {
1708 			key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1709 			key->addr[pd->sidx].addr32[1] = 0;
1710 			key->addr[pd->sidx].addr32[2] = 0;
1711 			key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1712 			saddr = NULL; /* overwritten */
1713 		}
1714 	}
1715 copy:
1716 #endif /* INET6 */
1717 	if (saddr)
1718 		pf_addrcpy(&key->addr[pd->sidx], saddr, pd->af);
1719 	if (daddr)
1720 		pf_addrcpy(&key->addr[pd->didx], daddr, pd->af);
1721 
1722 	return (0);
1723 }
1724 
1725 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)1726 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
1727     struct pf_state_key **sk, struct pf_state_key **nk)
1728 {
1729 	*sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1730 	if (*sk == NULL)
1731 		return (ENOMEM);
1732 
1733 	if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
1734 	    0)) {
1735 		uma_zfree(V_pf_state_key_z, *sk);
1736 		*sk = NULL;
1737 		return (ENOMEM);
1738 	}
1739 
1740 	(*sk)->port[pd->sidx] = sport;
1741 	(*sk)->port[pd->didx] = dport;
1742 	(*sk)->proto = pd->proto;
1743 	(*sk)->af = pd->af;
1744 
1745 	*nk = pf_state_key_clone(*sk);
1746 	if (*nk == NULL) {
1747 		uma_zfree(V_pf_state_key_z, *sk);
1748 		*sk = NULL;
1749 		return (ENOMEM);
1750 	}
1751 
1752 	if (pd->af != pd->naf) {
1753 		(*sk)->port[pd->sidx] = pd->osport;
1754 		(*sk)->port[pd->didx] = pd->odport;
1755 
1756 		(*nk)->af = pd->naf;
1757 
1758 		/*
1759 		 * We're overwriting an address here, so potentially there's bits of an IPv6
1760 		 * address left in here. Clear that out first.
1761 		 */
1762 		bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
1763 		bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
1764 		if (pd->dir == PF_IN) {
1765 			pf_addrcpy(&(*nk)->addr[pd->didx], &pd->nsaddr,
1766 			    pd->naf);
1767 			pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->ndaddr,
1768 			    pd->naf);
1769 			(*nk)->port[pd->didx] = pd->nsport;
1770 			(*nk)->port[pd->sidx] = pd->ndport;
1771 		} else {
1772 			pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->nsaddr,
1773 			    pd->naf);
1774 			pf_addrcpy(&(*nk)->addr[pd->didx], &pd->ndaddr,
1775 			    pd->naf);
1776 			(*nk)->port[pd->sidx] = pd->nsport;
1777 			(*nk)->port[pd->didx] = pd->ndport;
1778 		}
1779 
1780 		switch (pd->proto) {
1781 		case IPPROTO_ICMP:
1782 			(*nk)->proto = IPPROTO_ICMPV6;
1783 			break;
1784 		case IPPROTO_ICMPV6:
1785 			(*nk)->proto = IPPROTO_ICMP;
1786 			break;
1787 		default:
1788 			(*nk)->proto = pd->proto;
1789 		}
1790 	}
1791 
1792 	return (0);
1793 }
1794 
1795 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1796 pf_state_key_clone(const struct pf_state_key *orig)
1797 {
1798 	struct pf_state_key *sk;
1799 
1800 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1801 	if (sk == NULL)
1802 		return (NULL);
1803 
1804 	bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1805 
1806 	return (sk);
1807 }
1808 
1809 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1810 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1811     struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1812 {
1813 	struct pf_idhash *ih;
1814 	struct pf_kstate *cur;
1815 	int error;
1816 
1817 	NET_EPOCH_ASSERT();
1818 
1819 	KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1820 	    ("%s: sks not pristine", __func__));
1821 	KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1822 	    ("%s: skw not pristine", __func__));
1823 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1824 
1825 	s->kif = kif;
1826 	s->orig_kif = orig_kif;
1827 
1828 	if (s->id == 0 && s->creatorid == 0) {
1829 		s->id = alloc_unr64(&V_pf_stateid);
1830 		s->id = htobe64(s->id);
1831 		s->creatorid = V_pf_status.hostid;
1832 	}
1833 
1834 	/* Returns with ID locked on success. */
1835 	if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1836 		return (error);
1837 	skw = sks = NULL;
1838 
1839 	ih = &V_pf_idhash[PF_IDHASH(s)];
1840 	PF_HASHROW_ASSERT(ih);
1841 	LIST_FOREACH(cur, &ih->states, entry)
1842 		if (cur->id == s->id && cur->creatorid == s->creatorid)
1843 			break;
1844 
1845 	if (cur != NULL) {
1846 		s->timeout = PFTM_UNLINKED;
1847 		PF_HASHROW_UNLOCK(ih);
1848 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1849 			printf("pf: state ID collision: "
1850 			    "id: %016llx creatorid: %08x\n",
1851 			    (unsigned long long)be64toh(s->id),
1852 			    ntohl(s->creatorid));
1853 		}
1854 		pf_detach_state(s);
1855 		return (EEXIST);
1856 	}
1857 	LIST_INSERT_HEAD(&ih->states, s, entry);
1858 	/* One for keys, one for ID hash. */
1859 	refcount_init(&s->refs, 2);
1860 
1861 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1862 	if (V_pfsync_insert_state_ptr != NULL)
1863 		V_pfsync_insert_state_ptr(s);
1864 
1865 	/* Returns locked. */
1866 	return (0);
1867 }
1868 
1869 /*
1870  * Find state by ID: returns with locked row on success.
1871  */
1872 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1873 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1874 {
1875 	struct pf_idhash *ih;
1876 	struct pf_kstate *s;
1877 
1878 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1879 
1880 	ih = &V_pf_idhash[PF_IDHASHID(id)];
1881 
1882 	PF_HASHROW_LOCK(ih);
1883 	LIST_FOREACH(s, &ih->states, entry)
1884 		if (s->id == id && s->creatorid == creatorid)
1885 			break;
1886 
1887 	if (s == NULL)
1888 		PF_HASHROW_UNLOCK(ih);
1889 
1890 	return (s);
1891 }
1892 
1893 /*
1894  * Find state by key.
1895  * Returns with ID hash slot locked on success.
1896  */
1897 static int
pf_find_state(struct pf_pdesc * pd,const struct pf_state_key_cmp * key,struct pf_kstate ** state)1898 pf_find_state(struct pf_pdesc *pd, const struct pf_state_key_cmp *key,
1899     struct pf_kstate **state)
1900 {
1901 	struct pf_keyhash	*kh;
1902 	struct pf_state_key	*sk;
1903 	struct pf_kstate	*s;
1904 	int idx;
1905 
1906 	*state = NULL;
1907 
1908 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1909 
1910 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1911 
1912 	PF_HASHROW_LOCK(kh);
1913 	LIST_FOREACH(sk, &kh->keys, entry)
1914 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1915 			break;
1916 	if (sk == NULL) {
1917 		PF_HASHROW_UNLOCK(kh);
1918 		return (PF_DROP);
1919 	}
1920 
1921 	idx = (pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1922 
1923 	/* List is sorted, if-bound states before floating ones. */
1924 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1925 		if (s->kif == V_pfi_all || s->kif == pd->kif ||
1926 		    s->orig_kif == pd->kif) {
1927 			PF_STATE_LOCK(s);
1928 			PF_HASHROW_UNLOCK(kh);
1929 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1930 				/*
1931 				 * State is either being processed by
1932 				 * pf_remove_state() in an other thread, or
1933 				 * is scheduled for immediate expiry.
1934 				 */
1935 				PF_STATE_UNLOCK(s);
1936 				SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1937 				    key, (pd->dir), pd, *state);
1938 				return (PF_DROP);
1939 			}
1940 			goto out;
1941 		}
1942 
1943 	/* Look through the other list, in case of AF-TO */
1944 	idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
1945 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1946 		if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
1947 			continue;
1948 		if (s->kif == V_pfi_all || s->kif == pd->kif ||
1949 		    s->orig_kif == pd->kif) {
1950 			PF_STATE_LOCK(s);
1951 			PF_HASHROW_UNLOCK(kh);
1952 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1953 				/*
1954 				 * State is either being processed by
1955 				 * pf_remove_state() in an other thread, or
1956 				 * is scheduled for immediate expiry.
1957 				 */
1958 				PF_STATE_UNLOCK(s);
1959 				SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1960 				    key, (pd->dir), pd, NULL);
1961 				return (PF_DROP);
1962 			}
1963 			goto out;
1964 		}
1965 	}
1966 
1967 	PF_HASHROW_UNLOCK(kh);
1968 
1969 out:
1970 	SDT_PROBE5(pf, ip, state, lookup, pd->kif, key, (pd->dir), pd, *state);
1971 
1972 	if (s == NULL || s->timeout == PFTM_PURGE) {
1973 		if (s)
1974 			PF_STATE_UNLOCK(s);
1975 		return (PF_DROP);
1976 	}
1977 
1978 	if ((s)->rule->pktrate.limit && pd->dir == (s)->direction) {
1979 		if (pf_check_threshold(&(s)->rule->pktrate)) {
1980 			PF_STATE_UNLOCK(s);
1981 			return (PF_DROP);
1982 		}
1983 	}
1984 	if (PACKET_LOOPED(pd)) {
1985 		PF_STATE_UNLOCK(s);
1986 		return (PF_PASS);
1987 	}
1988 
1989 	*state = s;
1990 
1991 	return (PF_MATCH);
1992 }
1993 
1994 /*
1995  * Returns with ID hash slot locked on success.
1996  */
1997 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1998 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1999 {
2000 	struct pf_keyhash	*kh;
2001 	struct pf_state_key	*sk;
2002 	struct pf_kstate	*s, *ret = NULL;
2003 	int			 idx, inout = 0;
2004 
2005 	if (more != NULL)
2006 		*more = 0;
2007 
2008 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
2009 
2010 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
2011 
2012 	PF_HASHROW_LOCK(kh);
2013 	LIST_FOREACH(sk, &kh->keys, entry)
2014 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
2015 			break;
2016 	if (sk == NULL) {
2017 		PF_HASHROW_UNLOCK(kh);
2018 		return (NULL);
2019 	}
2020 	switch (dir) {
2021 	case PF_IN:
2022 		idx = PF_SK_WIRE;
2023 		break;
2024 	case PF_OUT:
2025 		idx = PF_SK_STACK;
2026 		break;
2027 	case PF_INOUT:
2028 		idx = PF_SK_WIRE;
2029 		inout = 1;
2030 		break;
2031 	default:
2032 		panic("%s: dir %u", __func__, dir);
2033 	}
2034 second_run:
2035 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
2036 		if (more == NULL) {
2037 			PF_STATE_LOCK(s);
2038 			PF_HASHROW_UNLOCK(kh);
2039 			return (s);
2040 		}
2041 
2042 		if (ret)
2043 			(*more)++;
2044 		else {
2045 			ret = s;
2046 			PF_STATE_LOCK(s);
2047 		}
2048 	}
2049 	if (inout == 1) {
2050 		inout = 0;
2051 		idx = PF_SK_STACK;
2052 		goto second_run;
2053 	}
2054 	PF_HASHROW_UNLOCK(kh);
2055 
2056 	return (ret);
2057 }
2058 
2059 /*
2060  * FIXME
2061  * This routine is inefficient -- locks the state only to unlock immediately on
2062  * return.
2063  * It is racy -- after the state is unlocked nothing stops other threads from
2064  * removing it.
2065  */
2066 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)2067 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
2068 {
2069 	struct pf_kstate *s;
2070 
2071 	s = pf_find_state_all(key, dir, NULL);
2072 	if (s != NULL) {
2073 		PF_STATE_UNLOCK(s);
2074 		return (true);
2075 	}
2076 	return (false);
2077 }
2078 
2079 void
pf_state_peer_hton(const struct pf_state_peer * s,struct pf_state_peer_export * d)2080 pf_state_peer_hton(const struct pf_state_peer *s, struct pf_state_peer_export *d)
2081 {
2082 	d->seqlo = htonl(s->seqlo);
2083 	d->seqhi = htonl(s->seqhi);
2084 	d->seqdiff = htonl(s->seqdiff);
2085 	d->max_win = htons(s->max_win);
2086 	d->mss = htons(s->mss);
2087 	d->state = s->state;
2088 	d->wscale = s->wscale;
2089 	if (s->scrub) {
2090 		d->scrub.pfss_flags = htons(
2091 		    s->scrub->pfss_flags & PFSS_TIMESTAMP);
2092 		d->scrub.pfss_ttl = (s)->scrub->pfss_ttl;
2093 		d->scrub.pfss_ts_mod = htonl((s)->scrub->pfss_ts_mod);
2094 		d->scrub.scrub_flag = PF_SCRUB_FLAG_VALID;
2095 	}
2096 }
2097 
2098 void
pf_state_peer_ntoh(const struct pf_state_peer_export * s,struct pf_state_peer * d)2099 pf_state_peer_ntoh(const struct pf_state_peer_export *s, struct pf_state_peer *d)
2100 {
2101 	d->seqlo = ntohl(s->seqlo);
2102 	d->seqhi = ntohl(s->seqhi);
2103 	d->seqdiff = ntohl(s->seqdiff);
2104 	d->max_win = ntohs(s->max_win);
2105 	d->mss = ntohs(s->mss);
2106 	d->state = s->state;
2107 	d->wscale = s->wscale;
2108 	if (s->scrub.scrub_flag == PF_SCRUB_FLAG_VALID &&
2109 	    d->scrub != NULL) {
2110 		d->scrub->pfss_flags = ntohs(s->scrub.pfss_flags) &
2111 		    PFSS_TIMESTAMP;
2112 		d->scrub->pfss_ttl = s->scrub.pfss_ttl;
2113 		d->scrub->pfss_ts_mod = ntohl(s->scrub.pfss_ts_mod);
2114 	}
2115 }
2116 
2117 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)2118 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
2119     struct pf_addr *nat_addr, uint16_t nat_port)
2120 {
2121 	struct pf_udp_mapping *mapping;
2122 
2123 	mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
2124 	if (mapping == NULL)
2125 		return (NULL);
2126 	pf_addrcpy(&mapping->endpoints[0].addr, src_addr, af);
2127 	mapping->endpoints[0].port = src_port;
2128 	mapping->endpoints[0].af = af;
2129 	mapping->endpoints[0].mapping = mapping;
2130 	pf_addrcpy(&mapping->endpoints[1].addr, nat_addr, af);
2131 	mapping->endpoints[1].port = nat_port;
2132 	mapping->endpoints[1].af = af;
2133 	mapping->endpoints[1].mapping = mapping;
2134 	refcount_init(&mapping->refs, 1);
2135 	return (mapping);
2136 }
2137 
2138 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2139 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2140 {
2141 	struct pf_udpendpointhash *h0, *h1;
2142 	struct pf_udp_endpoint *endpoint;
2143 	int ret = EEXIST;
2144 
2145 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2146 	h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2147 	if (h0 == h1) {
2148 		PF_HASHROW_LOCK(h0);
2149 	} else if (h0 < h1) {
2150 		PF_HASHROW_LOCK(h0);
2151 		PF_HASHROW_LOCK(h1);
2152 	} else {
2153 		PF_HASHROW_LOCK(h1);
2154 		PF_HASHROW_LOCK(h0);
2155 	}
2156 
2157 	LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2158 		if (bcmp(endpoint, &mapping->endpoints[0],
2159 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2160 			break;
2161 	}
2162 	if (endpoint != NULL)
2163 		goto cleanup;
2164 	LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2165 		if (bcmp(endpoint, &mapping->endpoints[1],
2166 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2167 			break;
2168 	}
2169 	if (endpoint != NULL)
2170 		goto cleanup;
2171 	LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2172 	LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2173 	ret = 0;
2174 
2175 cleanup:
2176 	if (h0 != h1) {
2177 		PF_HASHROW_UNLOCK(h0);
2178 		PF_HASHROW_UNLOCK(h1);
2179 	} else {
2180 		PF_HASHROW_UNLOCK(h0);
2181 	}
2182 	return (ret);
2183 }
2184 
2185 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2186 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2187 {
2188 	/* refcount is synchronized on the source endpoint's row lock */
2189 	struct pf_udpendpointhash *h0, *h1;
2190 
2191 	if (mapping == NULL)
2192 		return;
2193 
2194 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2195 	PF_HASHROW_LOCK(h0);
2196 	if (refcount_release(&mapping->refs)) {
2197 		LIST_REMOVE(&mapping->endpoints[0], entry);
2198 		PF_HASHROW_UNLOCK(h0);
2199 		h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2200 		PF_HASHROW_LOCK(h1);
2201 		LIST_REMOVE(&mapping->endpoints[1], entry);
2202 		PF_HASHROW_UNLOCK(h1);
2203 
2204 		uma_zfree(V_pf_udp_mapping_z, mapping);
2205 	} else {
2206 			PF_HASHROW_UNLOCK(h0);
2207 	}
2208 }
2209 
2210 
2211 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2212 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2213 {
2214 	struct pf_udpendpointhash *uh;
2215 	struct pf_udp_endpoint *endpoint;
2216 
2217 	uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2218 
2219 	PF_HASHROW_LOCK(uh);
2220 	LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2221 		if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2222 			bcmp(endpoint, &endpoint->mapping->endpoints[0],
2223 			    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2224 			break;
2225 	}
2226 	if (endpoint == NULL) {
2227 		PF_HASHROW_UNLOCK(uh);
2228 		return (NULL);
2229 	}
2230 	refcount_acquire(&endpoint->mapping->refs);
2231 	PF_HASHROW_UNLOCK(uh);
2232 	return (endpoint->mapping);
2233 }
2234 /* END state table stuff */
2235 
2236 static void
pf_send(struct pf_send_entry * pfse)2237 pf_send(struct pf_send_entry *pfse)
2238 {
2239 
2240 	PF_SENDQ_LOCK();
2241 	STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2242 	PF_SENDQ_UNLOCK();
2243 	swi_sched(V_pf_swi_cookie, 0);
2244 }
2245 
2246 static bool
pf_isforlocal(struct mbuf * m,int af)2247 pf_isforlocal(struct mbuf *m, int af)
2248 {
2249 	switch (af) {
2250 #ifdef INET
2251 	case AF_INET: {
2252 		struct ip *ip = mtod(m, struct ip *);
2253 
2254 		return (in_localip(ip->ip_dst));
2255 	}
2256 #endif /* INET */
2257 #ifdef INET6
2258 	case AF_INET6: {
2259 		struct ip6_hdr *ip6;
2260 		struct in6_ifaddr *ia;
2261 		ip6 = mtod(m, struct ip6_hdr *);
2262 		ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2263 		if (ia == NULL)
2264 			return (false);
2265 		return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2266 	}
2267 #endif /* INET6 */
2268 	default:
2269 		unhandled_af(af);
2270 	}
2271 
2272 	return (false);
2273 }
2274 
2275 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,u_int16_t * virtual_id,u_int16_t * virtual_type)2276 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2277     int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type)
2278 {
2279 	/*
2280 	 * ICMP types marked with PF_OUT are typically responses to
2281 	 * PF_IN, and will match states in the opposite direction.
2282 	 * PF_IN ICMP types need to match a state with that type.
2283 	 */
2284 	*icmp_dir = PF_OUT;
2285 
2286 	/* Queries (and responses) */
2287 	switch (pd->af) {
2288 #ifdef INET
2289 	case AF_INET:
2290 		switch (type) {
2291 		case ICMP_ECHO:
2292 			*icmp_dir = PF_IN;
2293 			/* FALLTHROUGH */
2294 		case ICMP_ECHOREPLY:
2295 			*virtual_type = ICMP_ECHO;
2296 			*virtual_id = pd->hdr.icmp.icmp_id;
2297 			break;
2298 
2299 		case ICMP_TSTAMP:
2300 			*icmp_dir = PF_IN;
2301 			/* FALLTHROUGH */
2302 		case ICMP_TSTAMPREPLY:
2303 			*virtual_type = ICMP_TSTAMP;
2304 			*virtual_id = pd->hdr.icmp.icmp_id;
2305 			break;
2306 
2307 		case ICMP_IREQ:
2308 			*icmp_dir = PF_IN;
2309 			/* FALLTHROUGH */
2310 		case ICMP_IREQREPLY:
2311 			*virtual_type = ICMP_IREQ;
2312 			*virtual_id = pd->hdr.icmp.icmp_id;
2313 			break;
2314 
2315 		case ICMP_MASKREQ:
2316 			*icmp_dir = PF_IN;
2317 			/* FALLTHROUGH */
2318 		case ICMP_MASKREPLY:
2319 			*virtual_type = ICMP_MASKREQ;
2320 			*virtual_id = pd->hdr.icmp.icmp_id;
2321 			break;
2322 
2323 		case ICMP_IPV6_WHEREAREYOU:
2324 			*icmp_dir = PF_IN;
2325 			/* FALLTHROUGH */
2326 		case ICMP_IPV6_IAMHERE:
2327 			*virtual_type = ICMP_IPV6_WHEREAREYOU;
2328 			*virtual_id = 0; /* Nothing sane to match on! */
2329 			break;
2330 
2331 		case ICMP_MOBILE_REGREQUEST:
2332 			*icmp_dir = PF_IN;
2333 			/* FALLTHROUGH */
2334 		case ICMP_MOBILE_REGREPLY:
2335 			*virtual_type = ICMP_MOBILE_REGREQUEST;
2336 			*virtual_id = 0; /* Nothing sane to match on! */
2337 			break;
2338 
2339 		case ICMP_ROUTERSOLICIT:
2340 			*icmp_dir = PF_IN;
2341 			/* FALLTHROUGH */
2342 		case ICMP_ROUTERADVERT:
2343 			*virtual_type = ICMP_ROUTERSOLICIT;
2344 			*virtual_id = 0; /* Nothing sane to match on! */
2345 			break;
2346 
2347 		/* These ICMP types map to other connections */
2348 		case ICMP_UNREACH:
2349 		case ICMP_SOURCEQUENCH:
2350 		case ICMP_REDIRECT:
2351 		case ICMP_TIMXCEED:
2352 		case ICMP_PARAMPROB:
2353 			/* These will not be used, but set them anyway */
2354 			*icmp_dir = PF_IN;
2355 			*virtual_type = type;
2356 			*virtual_id = 0;
2357 			*virtual_type = htons(*virtual_type);
2358 			return (1);  /* These types match to another state */
2359 
2360 		/*
2361 		 * All remaining ICMP types get their own states,
2362 		 * and will only match in one direction.
2363 		 */
2364 		default:
2365 			*icmp_dir = PF_IN;
2366 			*virtual_type = type;
2367 			*virtual_id = 0;
2368 			break;
2369 		}
2370 		break;
2371 #endif /* INET */
2372 #ifdef INET6
2373 	case AF_INET6:
2374 		switch (type) {
2375 		case ICMP6_ECHO_REQUEST:
2376 			*icmp_dir = PF_IN;
2377 			/* FALLTHROUGH */
2378 		case ICMP6_ECHO_REPLY:
2379 			*virtual_type = ICMP6_ECHO_REQUEST;
2380 			*virtual_id = pd->hdr.icmp6.icmp6_id;
2381 			break;
2382 
2383 		case MLD_LISTENER_QUERY:
2384 		case MLD_LISTENER_REPORT: {
2385 			/*
2386 			 * Listener Report can be sent by clients
2387 			 * without an associated Listener Query.
2388 			 * In addition to that, when Report is sent as a
2389 			 * reply to a Query its source and destination
2390 			 * address are different.
2391 			 */
2392 			*icmp_dir = PF_IN;
2393 			*virtual_type = MLD_LISTENER_QUERY;
2394 			*virtual_id = 0;
2395 			break;
2396 		}
2397 		case MLD_MTRACE:
2398 			*icmp_dir = PF_IN;
2399 			/* FALLTHROUGH */
2400 		case MLD_MTRACE_RESP:
2401 			*virtual_type = MLD_MTRACE;
2402 			*virtual_id = 0; /* Nothing sane to match on! */
2403 			break;
2404 
2405 		case ND_NEIGHBOR_SOLICIT:
2406 			*icmp_dir = PF_IN;
2407 			/* FALLTHROUGH */
2408 		case ND_NEIGHBOR_ADVERT: {
2409 			*virtual_type = ND_NEIGHBOR_SOLICIT;
2410 			*virtual_id = 0;
2411 			break;
2412 		}
2413 
2414 		/*
2415 		 * These ICMP types map to other connections.
2416 		 * ND_REDIRECT can't be in this list because the triggering
2417 		 * packet header is optional.
2418 		 */
2419 		case ICMP6_DST_UNREACH:
2420 		case ICMP6_PACKET_TOO_BIG:
2421 		case ICMP6_TIME_EXCEEDED:
2422 		case ICMP6_PARAM_PROB:
2423 			/* These will not be used, but set them anyway */
2424 			*icmp_dir = PF_IN;
2425 			*virtual_type = type;
2426 			*virtual_id = 0;
2427 			*virtual_type = htons(*virtual_type);
2428 			return (1);  /* These types match to another state */
2429 		/*
2430 		 * All remaining ICMP6 types get their own states,
2431 		 * and will only match in one direction.
2432 		 */
2433 		default:
2434 			*icmp_dir = PF_IN;
2435 			*virtual_type = type;
2436 			*virtual_id = 0;
2437 			break;
2438 		}
2439 		break;
2440 #endif /* INET6 */
2441 	default:
2442 		unhandled_af(pd->af);
2443 	}
2444 	*virtual_type = htons(*virtual_type);
2445 	return (0);  /* These types match to their own state */
2446 }
2447 
2448 void
pf_intr(void * v)2449 pf_intr(void *v)
2450 {
2451 	struct epoch_tracker et;
2452 	struct pf_send_head queue;
2453 	struct pf_send_entry *pfse, *next;
2454 
2455 	CURVNET_SET((struct vnet *)v);
2456 
2457 	PF_SENDQ_LOCK();
2458 	queue = V_pf_sendqueue;
2459 	STAILQ_INIT(&V_pf_sendqueue);
2460 	PF_SENDQ_UNLOCK();
2461 
2462 	NET_EPOCH_ENTER(et);
2463 
2464 	STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2465 		switch (pfse->pfse_type) {
2466 #ifdef INET
2467 		case PFSE_IP: {
2468 			if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2469 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2470 				    ("%s: rcvif != loif", __func__));
2471 
2472 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2473 				pfse->pfse_m->m_pkthdr.csum_flags |=
2474 				    CSUM_IP_VALID | CSUM_IP_CHECKED |
2475 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2476 				pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2477 				ip_input(pfse->pfse_m);
2478 			} else {
2479 				ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2480 				    NULL);
2481 			}
2482 			break;
2483 		}
2484 		case PFSE_ICMP:
2485 			icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2486 			    pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2487 			break;
2488 #endif /* INET */
2489 #ifdef INET6
2490 		case PFSE_IP6:
2491 			if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2492 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2493 				    ("%s: rcvif != loif", __func__));
2494 
2495 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2496 				    M_LOOP;
2497 				pfse->pfse_m->m_pkthdr.csum_flags |=
2498 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2499 				pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2500 				ip6_input(pfse->pfse_m);
2501 			} else {
2502 				ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2503 				    NULL, NULL);
2504 			}
2505 			break;
2506 		case PFSE_ICMP6:
2507 			icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2508 			    pfse->icmpopts.code, pfse->icmpopts.mtu);
2509 			break;
2510 #endif /* INET6 */
2511 		default:
2512 			panic("%s: unknown type", __func__);
2513 		}
2514 		free(pfse, M_PFTEMP);
2515 	}
2516 	NET_EPOCH_EXIT(et);
2517 	CURVNET_RESTORE();
2518 }
2519 
2520 #define	pf_purge_thread_period	(hz / 10)
2521 
2522 #ifdef PF_WANT_32_TO_64_COUNTER
2523 static void
pf_status_counter_u64_periodic(void)2524 pf_status_counter_u64_periodic(void)
2525 {
2526 
2527 	PF_RULES_RASSERT();
2528 
2529 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2530 		return;
2531 	}
2532 
2533 	for (int i = 0; i < FCNT_MAX; i++) {
2534 		pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2535 	}
2536 }
2537 
2538 static void
pf_kif_counter_u64_periodic(void)2539 pf_kif_counter_u64_periodic(void)
2540 {
2541 	struct pfi_kkif *kif;
2542 	size_t r, run;
2543 
2544 	PF_RULES_RASSERT();
2545 
2546 	if (__predict_false(V_pf_allkifcount == 0)) {
2547 		return;
2548 	}
2549 
2550 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2551 		return;
2552 	}
2553 
2554 	run = V_pf_allkifcount / 10;
2555 	if (run < 5)
2556 		run = 5;
2557 
2558 	for (r = 0; r < run; r++) {
2559 		kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2560 		if (kif == NULL) {
2561 			LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2562 			LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2563 			break;
2564 		}
2565 
2566 		LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2567 		LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2568 
2569 		for (int i = 0; i < 2; i++) {
2570 			for (int j = 0; j < 2; j++) {
2571 				for (int k = 0; k < 2; k++) {
2572 					pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2573 					pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2574 				}
2575 			}
2576 		}
2577 	}
2578 }
2579 
2580 static void
pf_rule_counter_u64_periodic(void)2581 pf_rule_counter_u64_periodic(void)
2582 {
2583 	struct pf_krule *rule;
2584 	size_t r, run;
2585 
2586 	PF_RULES_RASSERT();
2587 
2588 	if (__predict_false(V_pf_allrulecount == 0)) {
2589 		return;
2590 	}
2591 
2592 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2593 		return;
2594 	}
2595 
2596 	run = V_pf_allrulecount / 10;
2597 	if (run < 5)
2598 		run = 5;
2599 
2600 	for (r = 0; r < run; r++) {
2601 		rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2602 		if (rule == NULL) {
2603 			LIST_REMOVE(V_pf_rulemarker, allrulelist);
2604 			LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2605 			break;
2606 		}
2607 
2608 		LIST_REMOVE(V_pf_rulemarker, allrulelist);
2609 		LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2610 
2611 		pf_counter_u64_periodic(&rule->evaluations);
2612 		for (int i = 0; i < 2; i++) {
2613 			pf_counter_u64_periodic(&rule->packets[i]);
2614 			pf_counter_u64_periodic(&rule->bytes[i]);
2615 		}
2616 	}
2617 }
2618 
2619 static void
pf_counter_u64_periodic_main(void)2620 pf_counter_u64_periodic_main(void)
2621 {
2622 	PF_RULES_RLOCK_TRACKER;
2623 
2624 	V_pf_counter_periodic_iter++;
2625 
2626 	PF_RULES_RLOCK();
2627 	pf_counter_u64_critical_enter();
2628 	pf_status_counter_u64_periodic();
2629 	pf_kif_counter_u64_periodic();
2630 	pf_rule_counter_u64_periodic();
2631 	pf_counter_u64_critical_exit();
2632 	PF_RULES_RUNLOCK();
2633 }
2634 #else
2635 #define	pf_counter_u64_periodic_main()	do { } while (0)
2636 #endif
2637 
2638 void
pf_purge_thread(void * unused __unused)2639 pf_purge_thread(void *unused __unused)
2640 {
2641 	struct epoch_tracker	 et;
2642 
2643 	VNET_ITERATOR_DECL(vnet_iter);
2644 
2645 	sx_xlock(&pf_end_lock);
2646 	while (pf_end_threads == 0) {
2647 		sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2648 
2649 		VNET_LIST_RLOCK();
2650 		NET_EPOCH_ENTER(et);
2651 		VNET_FOREACH(vnet_iter) {
2652 			CURVNET_SET(vnet_iter);
2653 
2654 			/* Wait until V_pf_default_rule is initialized. */
2655 			if (V_pf_vnet_active == 0) {
2656 				CURVNET_RESTORE();
2657 				continue;
2658 			}
2659 
2660 			pf_counter_u64_periodic_main();
2661 
2662 			/*
2663 			 *  Process 1/interval fraction of the state
2664 			 * table every run.
2665 			 */
2666 			V_pf_purge_idx =
2667 			    pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2668 			    (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2669 
2670 			/*
2671 			 * Purge other expired types every
2672 			 * PFTM_INTERVAL seconds.
2673 			 */
2674 			if (V_pf_purge_idx == 0) {
2675 				/*
2676 				 * Order is important:
2677 				 * - states and src nodes reference rules
2678 				 * - states and rules reference kifs
2679 				 */
2680 				pf_purge_expired_fragments();
2681 				pf_purge_expired_src_nodes();
2682 				pf_purge_unlinked_rules();
2683 				pfi_kkif_purge();
2684 			}
2685 			CURVNET_RESTORE();
2686 		}
2687 		NET_EPOCH_EXIT(et);
2688 		VNET_LIST_RUNLOCK();
2689 	}
2690 
2691 	pf_end_threads++;
2692 	sx_xunlock(&pf_end_lock);
2693 	kproc_exit(0);
2694 }
2695 
2696 void
pf_unload_vnet_purge(void)2697 pf_unload_vnet_purge(void)
2698 {
2699 
2700 	/*
2701 	 * To cleanse up all kifs and rules we need
2702 	 * two runs: first one clears reference flags,
2703 	 * then pf_purge_expired_states() doesn't
2704 	 * raise them, and then second run frees.
2705 	 */
2706 	pf_purge_unlinked_rules();
2707 	pfi_kkif_purge();
2708 
2709 	/*
2710 	 * Now purge everything.
2711 	 */
2712 	pf_purge_expired_states(0, V_pf_hashmask);
2713 	pf_purge_fragments(UINT_MAX);
2714 	pf_purge_expired_src_nodes();
2715 
2716 	/*
2717 	 * Now all kifs & rules should be unreferenced,
2718 	 * thus should be successfully freed.
2719 	 */
2720 	pf_purge_unlinked_rules();
2721 	pfi_kkif_purge();
2722 }
2723 
2724 u_int32_t
pf_state_expires(const struct pf_kstate * state)2725 pf_state_expires(const struct pf_kstate *state)
2726 {
2727 	u_int32_t	timeout;
2728 	u_int32_t	start;
2729 	u_int32_t	end;
2730 	u_int32_t	states;
2731 
2732 	/* handle all PFTM_* > PFTM_MAX here */
2733 	if (state->timeout == PFTM_PURGE)
2734 		return (time_uptime);
2735 	KASSERT(state->timeout != PFTM_UNLINKED,
2736 	    ("pf_state_expires: timeout == PFTM_UNLINKED"));
2737 	KASSERT((state->timeout < PFTM_MAX),
2738 	    ("pf_state_expires: timeout > PFTM_MAX"));
2739 	timeout = state->rule->timeout[state->timeout];
2740 	if (!timeout)
2741 		timeout = V_pf_default_rule.timeout[state->timeout];
2742 	start = state->rule->timeout[PFTM_ADAPTIVE_START];
2743 	if (start && state->rule != &V_pf_default_rule) {
2744 		end = state->rule->timeout[PFTM_ADAPTIVE_END];
2745 		states = counter_u64_fetch(state->rule->states_cur);
2746 	} else {
2747 		start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2748 		end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2749 		states = V_pf_status.states;
2750 	}
2751 	if (end && states > start && start < end) {
2752 		if (states < end) {
2753 			timeout = (u_int64_t)timeout * (end - states) /
2754 			    (end - start);
2755 			return ((state->expire / 1000) + timeout);
2756 		}
2757 		else
2758 			return (time_uptime);
2759 	}
2760 	return ((state->expire / 1000) + timeout);
2761 }
2762 
2763 void
pf_purge_expired_src_nodes(void)2764 pf_purge_expired_src_nodes(void)
2765 {
2766 	struct pf_ksrc_node_list	 freelist;
2767 	struct pf_srchash	*sh;
2768 	struct pf_ksrc_node	*cur, *next;
2769 	int i;
2770 
2771 	LIST_INIT(&freelist);
2772 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2773 	    PF_HASHROW_LOCK(sh);
2774 	    LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2775 		if (cur->states == 0 && cur->expire <= time_uptime) {
2776 			pf_unlink_src_node(cur);
2777 			LIST_INSERT_HEAD(&freelist, cur, entry);
2778 		} else if (cur->rule != NULL)
2779 			cur->rule->rule_ref |= PFRULE_REFS;
2780 	    PF_HASHROW_UNLOCK(sh);
2781 	}
2782 
2783 	pf_free_src_nodes(&freelist);
2784 
2785 	V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2786 }
2787 
2788 static void
pf_src_tree_remove_state(struct pf_kstate * s)2789 pf_src_tree_remove_state(struct pf_kstate *s)
2790 {
2791 	uint32_t timeout;
2792 
2793 	timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2794 	    s->rule->timeout[PFTM_SRC_NODE] :
2795 	    V_pf_default_rule.timeout[PFTM_SRC_NODE];
2796 
2797 	for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
2798 		if (s->sns[sn_type] == NULL)
2799 			continue;
2800 		PF_SRC_NODE_LOCK(s->sns[sn_type]);
2801 		if (sn_type == PF_SN_LIMIT && s->src.tcp_est)
2802 			--(s->sns[sn_type]->conn);
2803 		if (--(s->sns[sn_type]->states) == 0)
2804 			s->sns[sn_type]->expire = time_uptime + timeout;
2805 		PF_SRC_NODE_UNLOCK(s->sns[sn_type]);
2806 		s->sns[sn_type] = NULL;
2807 	}
2808 
2809 }
2810 
2811 /*
2812  * Unlink and potentilly free a state. Function may be
2813  * called with ID hash row locked, but always returns
2814  * unlocked, since it needs to go through key hash locking.
2815  */
2816 int
pf_remove_state(struct pf_kstate * s)2817 pf_remove_state(struct pf_kstate *s)
2818 {
2819 	struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2820 
2821 	NET_EPOCH_ASSERT();
2822 	PF_HASHROW_ASSERT(ih);
2823 
2824 	if (s->timeout == PFTM_UNLINKED) {
2825 		/*
2826 		 * State is being processed
2827 		 * by pf_remove_state() in
2828 		 * an other thread.
2829 		 */
2830 		PF_HASHROW_UNLOCK(ih);
2831 		return (0);	/* XXXGL: undefined actually */
2832 	}
2833 
2834 	if (s->src.state == PF_TCPS_PROXY_DST) {
2835 		/* XXX wire key the right one? */
2836 		pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2837 		    &s->key[PF_SK_WIRE]->addr[1],
2838 		    &s->key[PF_SK_WIRE]->addr[0],
2839 		    s->key[PF_SK_WIRE]->port[1],
2840 		    s->key[PF_SK_WIRE]->port[0],
2841 		    s->src.seqhi, s->src.seqlo + 1,
2842 		    TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2843 		    s->act.rtableid, NULL);
2844 	}
2845 
2846 	LIST_REMOVE(s, entry);
2847 	pf_src_tree_remove_state(s);
2848 
2849 	if (V_pfsync_delete_state_ptr != NULL)
2850 		V_pfsync_delete_state_ptr(s);
2851 
2852 	STATE_DEC_COUNTERS(s);
2853 
2854 	s->timeout = PFTM_UNLINKED;
2855 
2856 	/* Ensure we remove it from the list of halfopen states, if needed. */
2857 	if (s->key[PF_SK_STACK] != NULL &&
2858 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2859 		pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2860 
2861 	PF_HASHROW_UNLOCK(ih);
2862 
2863 	pf_detach_state(s);
2864 
2865 	pf_udp_mapping_release(s->udp_mapping);
2866 
2867 	/* pf_state_insert() initialises refs to 2 */
2868 	return (pf_release_staten(s, 2));
2869 }
2870 
2871 struct pf_kstate *
pf_alloc_state(int flags)2872 pf_alloc_state(int flags)
2873 {
2874 
2875 	return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2876 }
2877 
2878 static __inline void
pf_free_match_rules(struct pf_krule_slist * match_rules)2879 pf_free_match_rules(struct pf_krule_slist *match_rules) {
2880 	struct pf_krule_item	*ri;
2881 
2882 	while ((ri = SLIST_FIRST(match_rules))) {
2883 		SLIST_REMOVE_HEAD(match_rules, entry);
2884 		free(ri, M_PF_RULE_ITEM);
2885 	}
2886 }
2887 
2888 void
pf_free_state(struct pf_kstate * cur)2889 pf_free_state(struct pf_kstate *cur)
2890 {
2891 	KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2892 	KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2893 	    cur->timeout));
2894 
2895 	pf_free_match_rules(&(cur->match_rules));
2896 	pf_normalize_tcp_cleanup(cur);
2897 	uma_zfree(V_pf_state_z, cur);
2898 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2899 }
2900 
2901 /*
2902  * Called only from pf_purge_thread(), thus serialized.
2903  */
2904 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2905 pf_purge_expired_states(u_int i, int maxcheck)
2906 {
2907 	struct pf_idhash *ih;
2908 	struct pf_kstate *s;
2909 	struct pf_krule_item *mrm;
2910 	size_t count __unused;
2911 
2912 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2913 
2914 	/*
2915 	 * Go through hash and unlink states that expire now.
2916 	 */
2917 	while (maxcheck > 0) {
2918 		count = 0;
2919 		ih = &V_pf_idhash[i];
2920 
2921 		/* only take the lock if we expect to do work */
2922 		if (!LIST_EMPTY(&ih->states)) {
2923 relock:
2924 			PF_HASHROW_LOCK(ih);
2925 			LIST_FOREACH(s, &ih->states, entry) {
2926 				if (pf_state_expires(s) <= time_uptime) {
2927 					V_pf_status.states -=
2928 					    pf_remove_state(s);
2929 					goto relock;
2930 				}
2931 				s->rule->rule_ref |= PFRULE_REFS;
2932 				if (s->nat_rule != NULL)
2933 					s->nat_rule->rule_ref |= PFRULE_REFS;
2934 				if (s->anchor != NULL)
2935 					s->anchor->rule_ref |= PFRULE_REFS;
2936 				s->kif->pfik_flags |= PFI_IFLAG_REFS;
2937 				SLIST_FOREACH(mrm, &s->match_rules, entry)
2938 					mrm->r->rule_ref |= PFRULE_REFS;
2939 				if (s->act.rt_kif)
2940 					s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2941 				count++;
2942 			}
2943 			PF_HASHROW_UNLOCK(ih);
2944 		}
2945 
2946 		SDT_PROBE2(pf, purge, state, rowcount, i, count);
2947 
2948 		/* Return when we hit end of hash. */
2949 		if (++i > V_pf_hashmask) {
2950 			V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2951 			return (0);
2952 		}
2953 
2954 		maxcheck--;
2955 	}
2956 
2957 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2958 
2959 	return (i);
2960 }
2961 
2962 static void
pf_purge_unlinked_rules(void)2963 pf_purge_unlinked_rules(void)
2964 {
2965 	struct pf_krulequeue tmpq;
2966 	struct pf_krule *r, *r1;
2967 
2968 	/*
2969 	 * If we have overloading task pending, then we'd
2970 	 * better skip purging this time. There is a tiny
2971 	 * probability that overloading task references
2972 	 * an already unlinked rule.
2973 	 */
2974 	PF_OVERLOADQ_LOCK();
2975 	if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2976 		PF_OVERLOADQ_UNLOCK();
2977 		return;
2978 	}
2979 	PF_OVERLOADQ_UNLOCK();
2980 
2981 	/*
2982 	 * Do naive mark-and-sweep garbage collecting of old rules.
2983 	 * Reference flag is raised by pf_purge_expired_states()
2984 	 * and pf_purge_expired_src_nodes().
2985 	 *
2986 	 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2987 	 * use a temporary queue.
2988 	 */
2989 	TAILQ_INIT(&tmpq);
2990 	PF_UNLNKDRULES_LOCK();
2991 	TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2992 		if (!(r->rule_ref & PFRULE_REFS)) {
2993 			TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2994 			TAILQ_INSERT_TAIL(&tmpq, r, entries);
2995 		} else
2996 			r->rule_ref &= ~PFRULE_REFS;
2997 	}
2998 	PF_UNLNKDRULES_UNLOCK();
2999 
3000 	if (!TAILQ_EMPTY(&tmpq)) {
3001 		PF_CONFIG_LOCK();
3002 		PF_RULES_WLOCK();
3003 		TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
3004 			TAILQ_REMOVE(&tmpq, r, entries);
3005 			pf_free_rule(r);
3006 		}
3007 		PF_RULES_WUNLOCK();
3008 		PF_CONFIG_UNLOCK();
3009 	}
3010 }
3011 
3012 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)3013 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
3014 {
3015 	switch (af) {
3016 #ifdef INET
3017 	case AF_INET: {
3018 		u_int32_t a = ntohl(addr->addr32[0]);
3019 		printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
3020 		    (a>>8)&255, a&255);
3021 		if (p) {
3022 			p = ntohs(p);
3023 			printf(":%u", p);
3024 		}
3025 		break;
3026 	}
3027 #endif /* INET */
3028 #ifdef INET6
3029 	case AF_INET6: {
3030 		u_int16_t b;
3031 		u_int8_t i, curstart, curend, maxstart, maxend;
3032 		curstart = curend = maxstart = maxend = 255;
3033 		for (i = 0; i < 8; i++) {
3034 			if (!addr->addr16[i]) {
3035 				if (curstart == 255)
3036 					curstart = i;
3037 				curend = i;
3038 			} else {
3039 				if ((curend - curstart) >
3040 				    (maxend - maxstart)) {
3041 					maxstart = curstart;
3042 					maxend = curend;
3043 				}
3044 				curstart = curend = 255;
3045 			}
3046 		}
3047 		if ((curend - curstart) >
3048 		    (maxend - maxstart)) {
3049 			maxstart = curstart;
3050 			maxend = curend;
3051 		}
3052 		for (i = 0; i < 8; i++) {
3053 			if (i >= maxstart && i <= maxend) {
3054 				if (i == 0)
3055 					printf(":");
3056 				if (i == maxend)
3057 					printf(":");
3058 			} else {
3059 				b = ntohs(addr->addr16[i]);
3060 				printf("%x", b);
3061 				if (i < 7)
3062 					printf(":");
3063 			}
3064 		}
3065 		if (p) {
3066 			p = ntohs(p);
3067 			printf("[%u]", p);
3068 		}
3069 		break;
3070 	}
3071 #endif /* INET6 */
3072 	default:
3073 		unhandled_af(af);
3074 	}
3075 }
3076 
3077 void
pf_print_state(struct pf_kstate * s)3078 pf_print_state(struct pf_kstate *s)
3079 {
3080 	pf_print_state_parts(s, NULL, NULL);
3081 }
3082 
3083 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)3084 pf_print_state_parts(struct pf_kstate *s,
3085     struct pf_state_key *skwp, struct pf_state_key *sksp)
3086 {
3087 	struct pf_state_key *skw, *sks;
3088 	u_int8_t proto, dir;
3089 
3090 	/* Do our best to fill these, but they're skipped if NULL */
3091 	skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
3092 	sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
3093 	proto = skw ? skw->proto : (sks ? sks->proto : 0);
3094 	dir = s ? s->direction : 0;
3095 
3096 	switch (proto) {
3097 	case IPPROTO_IPV4:
3098 		printf("IPv4");
3099 		break;
3100 	case IPPROTO_IPV6:
3101 		printf("IPv6");
3102 		break;
3103 	case IPPROTO_TCP:
3104 		printf("TCP");
3105 		break;
3106 	case IPPROTO_UDP:
3107 		printf("UDP");
3108 		break;
3109 	case IPPROTO_ICMP:
3110 		printf("ICMP");
3111 		break;
3112 	case IPPROTO_ICMPV6:
3113 		printf("ICMPv6");
3114 		break;
3115 	default:
3116 		printf("%u", proto);
3117 		break;
3118 	}
3119 	switch (dir) {
3120 	case PF_IN:
3121 		printf(" in");
3122 		break;
3123 	case PF_OUT:
3124 		printf(" out");
3125 		break;
3126 	}
3127 	if (skw) {
3128 		printf(" wire: ");
3129 		pf_print_host(&skw->addr[0], skw->port[0], skw->af);
3130 		printf(" ");
3131 		pf_print_host(&skw->addr[1], skw->port[1], skw->af);
3132 	}
3133 	if (sks) {
3134 		printf(" stack: ");
3135 		if (sks != skw) {
3136 			pf_print_host(&sks->addr[0], sks->port[0], sks->af);
3137 			printf(" ");
3138 			pf_print_host(&sks->addr[1], sks->port[1], sks->af);
3139 		} else
3140 			printf("-");
3141 	}
3142 	if (s) {
3143 		if (proto == IPPROTO_TCP) {
3144 			printf(" [lo=%u high=%u win=%u modulator=%u",
3145 			    s->src.seqlo, s->src.seqhi,
3146 			    s->src.max_win, s->src.seqdiff);
3147 			if (s->src.wscale && s->dst.wscale)
3148 				printf(" wscale=%u",
3149 				    s->src.wscale & PF_WSCALE_MASK);
3150 			printf("]");
3151 			printf(" [lo=%u high=%u win=%u modulator=%u",
3152 			    s->dst.seqlo, s->dst.seqhi,
3153 			    s->dst.max_win, s->dst.seqdiff);
3154 			if (s->src.wscale && s->dst.wscale)
3155 				printf(" wscale=%u",
3156 				s->dst.wscale & PF_WSCALE_MASK);
3157 			printf("]");
3158 		}
3159 		printf(" %u:%u", s->src.state, s->dst.state);
3160 		if (s->rule)
3161 			printf(" @%d", s->rule->nr);
3162 	}
3163 }
3164 
3165 void
pf_print_flags(uint16_t f)3166 pf_print_flags(uint16_t f)
3167 {
3168 	if (f)
3169 		printf(" ");
3170 	if (f & TH_FIN)
3171 		printf("F");
3172 	if (f & TH_SYN)
3173 		printf("S");
3174 	if (f & TH_RST)
3175 		printf("R");
3176 	if (f & TH_PUSH)
3177 		printf("P");
3178 	if (f & TH_ACK)
3179 		printf("A");
3180 	if (f & TH_URG)
3181 		printf("U");
3182 	if (f & TH_ECE)
3183 		printf("E");
3184 	if (f & TH_CWR)
3185 		printf("W");
3186 	if (f & TH_AE)
3187 		printf("e");
3188 }
3189 
3190 #define	PF_SET_SKIP_STEPS(i)					\
3191 	do {							\
3192 		while (head[i] != cur) {			\
3193 			head[i]->skip[i] = cur;			\
3194 			head[i] = TAILQ_NEXT(head[i], entries);	\
3195 		}						\
3196 	} while (0)
3197 
3198 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3199 pf_calc_skip_steps(struct pf_krulequeue *rules)
3200 {
3201 	struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3202 	int i;
3203 
3204 	cur = TAILQ_FIRST(rules);
3205 	prev = cur;
3206 	for (i = 0; i < PF_SKIP_COUNT; ++i)
3207 		head[i] = cur;
3208 	while (cur != NULL) {
3209 		if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3210 			PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3211 		if (cur->direction != prev->direction)
3212 			PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3213 		if (cur->af != prev->af)
3214 			PF_SET_SKIP_STEPS(PF_SKIP_AF);
3215 		if (cur->proto != prev->proto)
3216 			PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3217 		if (cur->src.neg != prev->src.neg ||
3218 		    pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3219 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3220 		if (cur->dst.neg != prev->dst.neg ||
3221 		    pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3222 			PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3223 		if (cur->src.port[0] != prev->src.port[0] ||
3224 		    cur->src.port[1] != prev->src.port[1] ||
3225 		    cur->src.port_op != prev->src.port_op)
3226 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3227 		if (cur->dst.port[0] != prev->dst.port[0] ||
3228 		    cur->dst.port[1] != prev->dst.port[1] ||
3229 		    cur->dst.port_op != prev->dst.port_op)
3230 			PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3231 
3232 		prev = cur;
3233 		cur = TAILQ_NEXT(cur, entries);
3234 	}
3235 	for (i = 0; i < PF_SKIP_COUNT; ++i)
3236 		PF_SET_SKIP_STEPS(i);
3237 }
3238 
3239 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3240 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3241 {
3242 	if (aw1->type != aw2->type)
3243 		return (1);
3244 	switch (aw1->type) {
3245 	case PF_ADDR_ADDRMASK:
3246 	case PF_ADDR_RANGE:
3247 		if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3248 			return (1);
3249 		if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3250 			return (1);
3251 		return (0);
3252 	case PF_ADDR_DYNIFTL:
3253 		return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3254 	case PF_ADDR_NONE:
3255 	case PF_ADDR_NOROUTE:
3256 	case PF_ADDR_URPFFAILED:
3257 		return (0);
3258 	case PF_ADDR_TABLE:
3259 		return (aw1->p.tbl != aw2->p.tbl);
3260 	default:
3261 		printf("invalid address type: %d\n", aw1->type);
3262 		return (1);
3263 	}
3264 }
3265 
3266 /**
3267  * Checksum updates are a little complicated because the checksum in the TCP/UDP
3268  * header isn't always a full checksum. In some cases (i.e. output) it's a
3269  * pseudo-header checksum, which is a partial checksum over src/dst IP
3270  * addresses, protocol number and length.
3271  *
3272  * That means we have the following cases:
3273  *  * Input or forwarding: we don't have TSO, the checksum fields are full
3274  *  	checksums, we need to update the checksum whenever we change anything.
3275  *  * Output (i.e. the checksum is a pseudo-header checksum):
3276  *  	x The field being updated is src/dst address or affects the length of
3277  *  	the packet. We need to update the pseudo-header checksum (note that this
3278  *  	checksum is not ones' complement).
3279  *  	x Some other field is being modified (e.g. src/dst port numbers): We
3280  *  	don't have to update anything.
3281  **/
3282 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3283 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3284 {
3285 	u_int32_t x;
3286 
3287 	x = cksum + old - new;
3288 	x = (x + (x >> 16)) & 0xffff;
3289 
3290 	/* optimise: eliminate a branch when not udp */
3291 	if (udp && cksum == 0x0000)
3292 		return cksum;
3293 	if (udp && x == 0x0000)
3294 		x = 0xffff;
3295 
3296 	return (u_int16_t)(x);
3297 }
3298 
3299 static int
pf_patch_8(struct pf_pdesc * pd,u_int8_t * f,u_int8_t v,bool hi)3300 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi)
3301 {
3302 	int	 rewrite = 0;
3303 
3304 	if (*f != v) {
3305 		uint16_t old = htons(hi ? (*f << 8) : *f);
3306 		uint16_t new = htons(hi ? ( v << 8) :  v);
3307 
3308 		*f = v;
3309 
3310 		if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3311 		    CSUM_DELAY_DATA_IPV6)))
3312 			*pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new,
3313 			    pd->proto == IPPROTO_UDP);
3314 
3315 		rewrite = 1;
3316 	}
3317 
3318 	return (rewrite);
3319 }
3320 
3321 int
pf_patch_16(struct pf_pdesc * pd,void * f,u_int16_t v,bool hi)3322 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi)
3323 {
3324 	int rewrite = 0;
3325 	u_int8_t *fb = (u_int8_t *)f;
3326 	u_int8_t *vb = (u_int8_t *)&v;
3327 
3328 	rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3329 	rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3330 
3331 	return (rewrite);
3332 }
3333 
3334 int
pf_patch_32(struct pf_pdesc * pd,void * f,u_int32_t v,bool hi)3335 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi)
3336 {
3337 	int rewrite = 0;
3338 	u_int8_t *fb = (u_int8_t *)f;
3339 	u_int8_t *vb = (u_int8_t *)&v;
3340 
3341 	rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3342 	rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3343 	rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3344 	rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3345 
3346 	return (rewrite);
3347 }
3348 
3349 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3350 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3351         u_int16_t new, u_int8_t udp)
3352 {
3353 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3354 		return (cksum);
3355 
3356 	return (pf_cksum_fixup(cksum, old, new, udp));
3357 }
3358 
3359 static void
pf_change_ap(struct pf_pdesc * pd,struct pf_addr * a,u_int16_t * p,struct pf_addr * an,u_int16_t pn)3360 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p,
3361         struct pf_addr *an, u_int16_t pn)
3362 {
3363 	struct pf_addr	ao;
3364 	u_int16_t	po;
3365 	uint8_t		u = pd->virtual_proto == IPPROTO_UDP;
3366 
3367 	MPASS(pd->pcksum != NULL);
3368 	if (pd->af == AF_INET) {
3369 		MPASS(pd->ip_sum);
3370 	}
3371 
3372 	pf_addrcpy(&ao, a, pd->af);
3373 	if (pd->af == pd->naf)
3374 		pf_addrcpy(a, an, pd->af);
3375 
3376 	if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3377 		*pd->pcksum = ~*pd->pcksum;
3378 
3379 	if (p == NULL)  /* no port -> done. no cksum to worry about. */
3380 		return;
3381 	po = *p;
3382 	*p = pn;
3383 
3384 	switch (pd->af) {
3385 #ifdef INET
3386 	case AF_INET:
3387 		switch (pd->naf) {
3388 		case AF_INET:
3389 			*pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum,
3390 			    ao.addr16[0], an->addr16[0], 0),
3391 			    ao.addr16[1], an->addr16[1], 0);
3392 			*p = pn;
3393 
3394 			*pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3395 			    ao.addr16[0], an->addr16[0], u),
3396 			    ao.addr16[1], an->addr16[1], u);
3397 
3398 			*pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3399 			break;
3400 #ifdef INET6
3401 		case AF_INET6:
3402 			*pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3403 			   pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3404 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3405 			    ao.addr16[0], an->addr16[0], u),
3406 			    ao.addr16[1], an->addr16[1], u),
3407 			    0,            an->addr16[2], u),
3408 			    0,            an->addr16[3], u),
3409 			    0,            an->addr16[4], u),
3410 			    0,            an->addr16[5], u),
3411 			    0,            an->addr16[6], u),
3412 			    0,            an->addr16[7], u),
3413 			    po, pn, u);
3414 			break;
3415 #endif /* INET6 */
3416 		default:
3417 			unhandled_af(pd->naf);
3418 		}
3419 		break;
3420 #endif /* INET */
3421 #ifdef INET6
3422 	case AF_INET6:
3423 		switch (pd->naf) {
3424 #ifdef INET
3425 		case AF_INET:
3426 			*pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3427 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3428 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3429 			    ao.addr16[0], an->addr16[0], u),
3430 			    ao.addr16[1], an->addr16[1], u),
3431 			    ao.addr16[2], 0,             u),
3432 			    ao.addr16[3], 0,             u),
3433 			    ao.addr16[4], 0,             u),
3434 			    ao.addr16[5], 0,             u),
3435 			    ao.addr16[6], 0,             u),
3436 			    ao.addr16[7], 0,             u),
3437 			    po, pn, u);
3438 			break;
3439 #endif /* INET */
3440 		case AF_INET6:
3441 			*pd->pcksum  = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3442 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3443 			    pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3444 			    ao.addr16[0], an->addr16[0], u),
3445 			    ao.addr16[1], an->addr16[1], u),
3446 			    ao.addr16[2], an->addr16[2], u),
3447 			    ao.addr16[3], an->addr16[3], u),
3448 			    ao.addr16[4], an->addr16[4], u),
3449 			    ao.addr16[5], an->addr16[5], u),
3450 			    ao.addr16[6], an->addr16[6], u),
3451 			    ao.addr16[7], an->addr16[7], u);
3452 
3453 			*pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3454 			break;
3455 		default:
3456 			unhandled_af(pd->naf);
3457 		}
3458 		break;
3459 #endif /* INET6 */
3460 	default:
3461 		unhandled_af(pd->af);
3462 	}
3463 
3464 	if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3465 	    CSUM_DELAY_DATA_IPV6)) {
3466 		*pd->pcksum = ~*pd->pcksum;
3467 		if (! *pd->pcksum)
3468 			*pd->pcksum = 0xffff;
3469 	}
3470 }
3471 
3472 /* Changes a u_int32_t.  Uses a void * so there are no align restrictions */
3473 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3474 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3475 {
3476 	u_int32_t	ao;
3477 
3478 	memcpy(&ao, a, sizeof(ao));
3479 	memcpy(a, &an, sizeof(u_int32_t));
3480 	*c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3481 	    ao % 65536, an % 65536, u);
3482 }
3483 
3484 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3485 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3486 {
3487 	u_int32_t	ao;
3488 
3489 	memcpy(&ao, a, sizeof(ao));
3490 	memcpy(a, &an, sizeof(u_int32_t));
3491 
3492 	*c = pf_proto_cksum_fixup(m,
3493 	    pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3494 	    ao % 65536, an % 65536, udp);
3495 }
3496 
3497 #ifdef INET6
3498 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3499 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3500 {
3501 	struct pf_addr	ao;
3502 
3503 	pf_addrcpy(&ao, a, AF_INET6);
3504 	pf_addrcpy(a, an, AF_INET6);
3505 
3506 	*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3507 	    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3508 	    pf_cksum_fixup(pf_cksum_fixup(*c,
3509 	    ao.addr16[0], an->addr16[0], u),
3510 	    ao.addr16[1], an->addr16[1], u),
3511 	    ao.addr16[2], an->addr16[2], u),
3512 	    ao.addr16[3], an->addr16[3], u),
3513 	    ao.addr16[4], an->addr16[4], u),
3514 	    ao.addr16[5], an->addr16[5], u),
3515 	    ao.addr16[6], an->addr16[6], u),
3516 	    ao.addr16[7], an->addr16[7], u);
3517 }
3518 #endif /* INET6 */
3519 
3520 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3521 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3522     struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3523     u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3524 {
3525 	struct pf_addr	oia, ooa;
3526 
3527 	pf_addrcpy(&oia, ia, af);
3528 	if (oa)
3529 		pf_addrcpy(&ooa, oa, af);
3530 
3531 	/* Change inner protocol port, fix inner protocol checksum. */
3532 	if (ip != NULL) {
3533 		u_int16_t	oip = *ip;
3534 		u_int16_t	opc;
3535 
3536 		if (pc != NULL)
3537 			opc = *pc;
3538 		*ip = np;
3539 		if (pc != NULL)
3540 			*pc = pf_cksum_fixup(*pc, oip, *ip, u);
3541 		*ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3542 		if (pc != NULL)
3543 			*ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3544 	}
3545 	/* Change inner ip address, fix inner ip and icmp checksums. */
3546 	pf_addrcpy(ia, na, af);
3547 	switch (af) {
3548 #ifdef INET
3549 	case AF_INET: {
3550 		u_int16_t	 oh2c = *h2c;
3551 
3552 		*h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3553 		    oia.addr16[0], ia->addr16[0], 0),
3554 		    oia.addr16[1], ia->addr16[1], 0);
3555 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3556 		    oia.addr16[0], ia->addr16[0], 0),
3557 		    oia.addr16[1], ia->addr16[1], 0);
3558 		*ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3559 		break;
3560 	}
3561 #endif /* INET */
3562 #ifdef INET6
3563 	case AF_INET6:
3564 		*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3565 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3566 		    pf_cksum_fixup(pf_cksum_fixup(*ic,
3567 		    oia.addr16[0], ia->addr16[0], u),
3568 		    oia.addr16[1], ia->addr16[1], u),
3569 		    oia.addr16[2], ia->addr16[2], u),
3570 		    oia.addr16[3], ia->addr16[3], u),
3571 		    oia.addr16[4], ia->addr16[4], u),
3572 		    oia.addr16[5], ia->addr16[5], u),
3573 		    oia.addr16[6], ia->addr16[6], u),
3574 		    oia.addr16[7], ia->addr16[7], u);
3575 		break;
3576 #endif /* INET6 */
3577 	}
3578 	/* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3579 	if (oa) {
3580 		pf_addrcpy(oa, na, af);
3581 		switch (af) {
3582 #ifdef INET
3583 		case AF_INET:
3584 			*hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3585 			    ooa.addr16[0], oa->addr16[0], 0),
3586 			    ooa.addr16[1], oa->addr16[1], 0);
3587 			break;
3588 #endif /* INET */
3589 #ifdef INET6
3590 		case AF_INET6:
3591 			*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3592 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3593 			    pf_cksum_fixup(pf_cksum_fixup(*ic,
3594 			    ooa.addr16[0], oa->addr16[0], u),
3595 			    ooa.addr16[1], oa->addr16[1], u),
3596 			    ooa.addr16[2], oa->addr16[2], u),
3597 			    ooa.addr16[3], oa->addr16[3], u),
3598 			    ooa.addr16[4], oa->addr16[4], u),
3599 			    ooa.addr16[5], oa->addr16[5], u),
3600 			    ooa.addr16[6], oa->addr16[6], u),
3601 			    ooa.addr16[7], oa->addr16[7], u);
3602 			break;
3603 #endif /* INET6 */
3604 		}
3605 	}
3606 }
3607 
3608 static int
pf_translate_af(struct pf_pdesc * pd,struct pf_krule * r)3609 pf_translate_af(struct pf_pdesc *pd, struct pf_krule *r)
3610 {
3611 #if defined(INET) && defined(INET6)
3612 	struct mbuf		*mp;
3613 	struct ip		*ip4;
3614 	struct ip6_hdr		*ip6;
3615 	struct icmp6_hdr	*icmp;
3616 	struct m_tag		*mtag;
3617 	struct pf_fragment_tag	*ftag;
3618 	int			 hlen;
3619 
3620 	if (pd->ttl == 1) {
3621 		/* We'd generate an ICMP error. Do so now rather than after af translation. */
3622 		if (pd->af == AF_INET) {
3623 			pf_send_icmp(pd->m, ICMP_TIMXCEED,
3624 			    ICMP_TIMXCEED_INTRANS, 0, pd->af, r,
3625 			    pd->act.rtableid);
3626 		} else {
3627 			pf_send_icmp(pd->m, ICMP6_TIME_EXCEEDED,
3628 			    ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r,
3629 			    pd->act.rtableid);
3630 		}
3631 
3632 		return (-1);
3633 	}
3634 
3635 	hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3636 
3637 	/* trim the old header */
3638 	m_adj(pd->m, pd->off);
3639 
3640 	/* prepend a new one */
3641 	M_PREPEND(pd->m, hlen, M_NOWAIT);
3642 	if (pd->m == NULL)
3643 		return (-1);
3644 
3645 	switch (pd->naf) {
3646 	case AF_INET:
3647 		ip4 = mtod(pd->m, struct ip *);
3648 		bzero(ip4, hlen);
3649 		ip4->ip_v = IPVERSION;
3650 		ip4->ip_hl = hlen >> 2;
3651 		ip4->ip_tos = pd->tos;
3652 		ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3653 		ip_fillid(ip4, V_ip_random_id);
3654 		ip4->ip_ttl = pd->ttl;
3655 		ip4->ip_p = pd->proto;
3656 		ip4->ip_src = pd->nsaddr.v4;
3657 		ip4->ip_dst = pd->ndaddr.v4;
3658 		pd->src = (struct pf_addr *)&ip4->ip_src;
3659 		pd->dst = (struct pf_addr *)&ip4->ip_dst;
3660 		pd->off = sizeof(struct ip);
3661 		if (pd->m->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
3662 			pd->m->m_pkthdr.csum_flags &= ~CSUM_TCP_IPV6;
3663 			pd->m->m_pkthdr.csum_flags |= CSUM_TCP;
3664 		}
3665 		if (pd->m->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
3666 			pd->m->m_pkthdr.csum_flags &= ~CSUM_UDP_IPV6;
3667 			pd->m->m_pkthdr.csum_flags |= CSUM_UDP;
3668 		}
3669 		if (pd->m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
3670 			pd->m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
3671 			pd->m->m_pkthdr.csum_flags |= CSUM_SCTP;
3672 		}
3673 		break;
3674 	case AF_INET6:
3675 		ip6 = mtod(pd->m, struct ip6_hdr *);
3676 		bzero(ip6, hlen);
3677 		ip6->ip6_vfc = IPV6_VERSION;
3678 		ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
3679 		ip6->ip6_plen = htons(pd->tot_len - pd->off);
3680 		ip6->ip6_nxt = pd->proto;
3681 		if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
3682 			ip6->ip6_hlim = IPV6_DEFHLIM;
3683 		else
3684 			ip6->ip6_hlim = pd->ttl;
3685 		ip6->ip6_src = pd->nsaddr.v6;
3686 		ip6->ip6_dst = pd->ndaddr.v6;
3687 		pd->src = (struct pf_addr *)&ip6->ip6_src;
3688 		pd->dst = (struct pf_addr *)&ip6->ip6_dst;
3689 		pd->off = sizeof(struct ip6_hdr);
3690 		if (pd->m->m_pkthdr.csum_flags & CSUM_TCP) {
3691 			pd->m->m_pkthdr.csum_flags &= ~CSUM_TCP;
3692 			pd->m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
3693 		}
3694 		if (pd->m->m_pkthdr.csum_flags & CSUM_UDP) {
3695 			pd->m->m_pkthdr.csum_flags &= ~CSUM_UDP;
3696 			pd->m->m_pkthdr.csum_flags |= CSUM_UDP_IPV6;
3697 		}
3698 		if (pd->m->m_pkthdr.csum_flags & CSUM_SCTP) {
3699 			pd->m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
3700 			pd->m->m_pkthdr.csum_flags |= CSUM_SCTP_IPV6;
3701 		}
3702 
3703 		/*
3704 		 * If we're dealing with a reassembled packet we need to adjust
3705 		 * the header length from the IPv4 header size to IPv6 header
3706 		 * size.
3707 		 */
3708 		mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
3709 		if (mtag) {
3710 			ftag = (struct pf_fragment_tag *)(mtag + 1);
3711 			ftag->ft_hdrlen = sizeof(*ip6);
3712 			ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
3713 			    sizeof(struct ip) + sizeof(struct ip6_frag);
3714 		}
3715 		break;
3716 	default:
3717 		return (-1);
3718 	}
3719 
3720 	/* recalculate icmp/icmp6 checksums */
3721 	if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
3722 		int off;
3723 		if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
3724 		    NULL) {
3725 			pd->m = NULL;
3726 			return (-1);
3727 		}
3728 		icmp = (struct icmp6_hdr *)(mp->m_data + off);
3729 		icmp->icmp6_cksum = 0;
3730 		icmp->icmp6_cksum = pd->naf == AF_INET ?
3731 		    in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
3732 		    in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
3733 			ntohs(ip6->ip6_plen));
3734 	}
3735 #endif /* INET && INET6 */
3736 
3737 	return (0);
3738 }
3739 
3740 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)3741 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
3742     struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
3743     sa_family_t af, sa_family_t naf)
3744 {
3745 #if defined(INET) && defined(INET6)
3746 	struct mbuf	*n = NULL;
3747 	struct ip	*ip4;
3748 	struct ip6_hdr	*ip6;
3749 	int		 hlen, olen, mlen;
3750 
3751 	if (af == naf || (af != AF_INET && af != AF_INET6) ||
3752 	    (naf != AF_INET && naf != AF_INET6))
3753 		return (-1);
3754 
3755 	/* split the mbuf chain on the inner ip/ip6 header boundary */
3756 	if ((n = m_split(m, off, M_NOWAIT)) == NULL)
3757 		return (-1);
3758 
3759 	/* old header */
3760 	olen = pd2->off - off;
3761 	/* new header */
3762 	hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3763 
3764 	/* trim old header */
3765 	m_adj(n, olen);
3766 
3767 	/* prepend a new one */
3768 	M_PREPEND(n, hlen, M_NOWAIT);
3769 	if (n == NULL)
3770 		return (-1);
3771 
3772 	/* translate inner ip/ip6 header */
3773 	switch (naf) {
3774 	case AF_INET:
3775 		ip4 = mtod(n, struct ip *);
3776 		bzero(ip4, sizeof(*ip4));
3777 		ip4->ip_v = IPVERSION;
3778 		ip4->ip_hl = sizeof(*ip4) >> 2;
3779 		ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen);
3780 		ip_fillid(ip4, V_ip_random_id);
3781 		ip4->ip_off = htons(IP_DF);
3782 		ip4->ip_ttl = pd2->ttl;
3783 		if (pd2->proto == IPPROTO_ICMPV6)
3784 			ip4->ip_p = IPPROTO_ICMP;
3785 		else
3786 			ip4->ip_p = pd2->proto;
3787 		ip4->ip_src = src->v4;
3788 		ip4->ip_dst = dst->v4;
3789 		ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
3790 		break;
3791 	case AF_INET6:
3792 		ip6 = mtod(n, struct ip6_hdr *);
3793 		bzero(ip6, sizeof(*ip6));
3794 		ip6->ip6_vfc = IPV6_VERSION;
3795 		ip6->ip6_plen = htons(pd2->tot_len - olen);
3796 		if (pd2->proto == IPPROTO_ICMP)
3797 			ip6->ip6_nxt = IPPROTO_ICMPV6;
3798 		else
3799 			ip6->ip6_nxt = pd2->proto;
3800 		if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
3801 			ip6->ip6_hlim = IPV6_DEFHLIM;
3802 		else
3803 			ip6->ip6_hlim = pd2->ttl;
3804 		ip6->ip6_src = src->v6;
3805 		ip6->ip6_dst = dst->v6;
3806 		break;
3807 	default:
3808 		unhandled_af(naf);
3809 	}
3810 
3811 	/* adjust payload offset and total packet length */
3812 	pd2->off += hlen - olen;
3813 	pd->tot_len += hlen - olen;
3814 
3815 	/* merge modified inner packet with the original header */
3816 	mlen = n->m_pkthdr.len;
3817 	m_cat(m, n);
3818 	m->m_pkthdr.len += mlen;
3819 #endif /* INET && INET6 */
3820 
3821 	return (0);
3822 }
3823 
3824 #define PTR_IP(field)	(offsetof(struct ip, field))
3825 #define PTR_IP6(field)	(offsetof(struct ip6_hdr, field))
3826 
3827 int
pf_translate_icmp_af(int af,void * arg)3828 pf_translate_icmp_af(int af, void *arg)
3829 {
3830 #if defined(INET) && defined(INET6)
3831 	struct icmp		*icmp4;
3832 	struct icmp6_hdr	*icmp6;
3833 	u_int32_t		 mtu;
3834 	int32_t			 ptr = -1;
3835 	u_int8_t		 type;
3836 	u_int8_t		 code;
3837 
3838 	switch (af) {
3839 	case AF_INET:
3840 		icmp6 = arg;
3841 		type = icmp6->icmp6_type;
3842 		code = icmp6->icmp6_code;
3843 		mtu = ntohl(icmp6->icmp6_mtu);
3844 
3845 		switch (type) {
3846 		case ICMP6_ECHO_REQUEST:
3847 			type = ICMP_ECHO;
3848 			break;
3849 		case ICMP6_ECHO_REPLY:
3850 			type = ICMP_ECHOREPLY;
3851 			break;
3852 		case ICMP6_DST_UNREACH:
3853 			type = ICMP_UNREACH;
3854 			switch (code) {
3855 			case ICMP6_DST_UNREACH_NOROUTE:
3856 			case ICMP6_DST_UNREACH_BEYONDSCOPE:
3857 			case ICMP6_DST_UNREACH_ADDR:
3858 				code = ICMP_UNREACH_HOST;
3859 				break;
3860 			case ICMP6_DST_UNREACH_ADMIN:
3861 				code = ICMP_UNREACH_HOST_PROHIB;
3862 				break;
3863 			case ICMP6_DST_UNREACH_NOPORT:
3864 				code = ICMP_UNREACH_PORT;
3865 				break;
3866 			default:
3867 				return (-1);
3868 			}
3869 			break;
3870 		case ICMP6_PACKET_TOO_BIG:
3871 			type = ICMP_UNREACH;
3872 			code = ICMP_UNREACH_NEEDFRAG;
3873 			mtu -= 20;
3874 			break;
3875 		case ICMP6_TIME_EXCEEDED:
3876 			type = ICMP_TIMXCEED;
3877 			break;
3878 		case ICMP6_PARAM_PROB:
3879 			switch (code) {
3880 			case ICMP6_PARAMPROB_HEADER:
3881 				type = ICMP_PARAMPROB;
3882 				code = ICMP_PARAMPROB_ERRATPTR;
3883 				ptr = ntohl(icmp6->icmp6_pptr);
3884 
3885 				if (ptr == PTR_IP6(ip6_vfc))
3886 					; /* preserve */
3887 				else if (ptr == PTR_IP6(ip6_vfc) + 1)
3888 					ptr = PTR_IP(ip_tos);
3889 				else if (ptr == PTR_IP6(ip6_plen) ||
3890 				    ptr == PTR_IP6(ip6_plen) + 1)
3891 					ptr = PTR_IP(ip_len);
3892 				else if (ptr == PTR_IP6(ip6_nxt))
3893 					ptr = PTR_IP(ip_p);
3894 				else if (ptr == PTR_IP6(ip6_hlim))
3895 					ptr = PTR_IP(ip_ttl);
3896 				else if (ptr >= PTR_IP6(ip6_src) &&
3897 				    ptr < PTR_IP6(ip6_dst))
3898 					ptr = PTR_IP(ip_src);
3899 				else if (ptr >= PTR_IP6(ip6_dst) &&
3900 				    ptr < sizeof(struct ip6_hdr))
3901 					ptr = PTR_IP(ip_dst);
3902 				else {
3903 					return (-1);
3904 				}
3905 				break;
3906 			case ICMP6_PARAMPROB_NEXTHEADER:
3907 				type = ICMP_UNREACH;
3908 				code = ICMP_UNREACH_PROTOCOL;
3909 				break;
3910 			default:
3911 				return (-1);
3912 			}
3913 			break;
3914 		default:
3915 			return (-1);
3916 		}
3917 		if (icmp6->icmp6_type != type) {
3918 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3919 			    icmp6->icmp6_type, type, 0);
3920 			icmp6->icmp6_type = type;
3921 		}
3922 		if (icmp6->icmp6_code != code) {
3923 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3924 			    icmp6->icmp6_code, code, 0);
3925 			icmp6->icmp6_code = code;
3926 		}
3927 		if (icmp6->icmp6_mtu != htonl(mtu)) {
3928 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3929 			    htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
3930 			/* aligns well with a icmpv4 nextmtu */
3931 			icmp6->icmp6_mtu = htonl(mtu);
3932 		}
3933 		if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
3934 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3935 			    htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
3936 			/* icmpv4 pptr is a one most significant byte */
3937 			icmp6->icmp6_pptr = htonl(ptr << 24);
3938 		}
3939 		break;
3940 	case AF_INET6:
3941 		icmp4 = arg;
3942 		type = icmp4->icmp_type;
3943 		code = icmp4->icmp_code;
3944 		mtu = ntohs(icmp4->icmp_nextmtu);
3945 
3946 		switch (type) {
3947 		case ICMP_ECHO:
3948 			type = ICMP6_ECHO_REQUEST;
3949 			break;
3950 		case ICMP_ECHOREPLY:
3951 			type = ICMP6_ECHO_REPLY;
3952 			break;
3953 		case ICMP_UNREACH:
3954 			type = ICMP6_DST_UNREACH;
3955 			switch (code) {
3956 			case ICMP_UNREACH_NET:
3957 			case ICMP_UNREACH_HOST:
3958 			case ICMP_UNREACH_NET_UNKNOWN:
3959 			case ICMP_UNREACH_HOST_UNKNOWN:
3960 			case ICMP_UNREACH_ISOLATED:
3961 			case ICMP_UNREACH_TOSNET:
3962 			case ICMP_UNREACH_TOSHOST:
3963 				code = ICMP6_DST_UNREACH_NOROUTE;
3964 				break;
3965 			case ICMP_UNREACH_PORT:
3966 				code = ICMP6_DST_UNREACH_NOPORT;
3967 				break;
3968 			case ICMP_UNREACH_NET_PROHIB:
3969 			case ICMP_UNREACH_HOST_PROHIB:
3970 			case ICMP_UNREACH_FILTER_PROHIB:
3971 			case ICMP_UNREACH_PRECEDENCE_CUTOFF:
3972 				code = ICMP6_DST_UNREACH_ADMIN;
3973 				break;
3974 			case ICMP_UNREACH_PROTOCOL:
3975 				type = ICMP6_PARAM_PROB;
3976 				code = ICMP6_PARAMPROB_NEXTHEADER;
3977 				ptr = offsetof(struct ip6_hdr, ip6_nxt);
3978 				break;
3979 			case ICMP_UNREACH_NEEDFRAG:
3980 				type = ICMP6_PACKET_TOO_BIG;
3981 				code = 0;
3982 				mtu += 20;
3983 				break;
3984 			default:
3985 				return (-1);
3986 			}
3987 			break;
3988 		case ICMP_TIMXCEED:
3989 			type = ICMP6_TIME_EXCEEDED;
3990 			break;
3991 		case ICMP_PARAMPROB:
3992 			type = ICMP6_PARAM_PROB;
3993 			switch (code) {
3994 			case ICMP_PARAMPROB_ERRATPTR:
3995 				code = ICMP6_PARAMPROB_HEADER;
3996 				break;
3997 			case ICMP_PARAMPROB_LENGTH:
3998 				code = ICMP6_PARAMPROB_HEADER;
3999 				break;
4000 			default:
4001 				return (-1);
4002 			}
4003 
4004 			ptr = icmp4->icmp_pptr;
4005 			if (ptr == 0 || ptr == PTR_IP(ip_tos))
4006 				; /* preserve */
4007 			else if (ptr == PTR_IP(ip_len) ||
4008 			    ptr == PTR_IP(ip_len) + 1)
4009 				ptr = PTR_IP6(ip6_plen);
4010 			else if (ptr == PTR_IP(ip_ttl))
4011 				ptr = PTR_IP6(ip6_hlim);
4012 			else if (ptr == PTR_IP(ip_p))
4013 				ptr = PTR_IP6(ip6_nxt);
4014 			else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
4015 				ptr = PTR_IP6(ip6_src);
4016 			else if (ptr >= PTR_IP(ip_dst) &&
4017 			    ptr < sizeof(struct ip))
4018 				ptr = PTR_IP6(ip6_dst);
4019 			else {
4020 				return (-1);
4021 			}
4022 			break;
4023 		default:
4024 			return (-1);
4025 		}
4026 		if (icmp4->icmp_type != type) {
4027 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4028 			    icmp4->icmp_type, type, 0);
4029 			icmp4->icmp_type = type;
4030 		}
4031 		if (icmp4->icmp_code != code) {
4032 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4033 			    icmp4->icmp_code, code, 0);
4034 			icmp4->icmp_code = code;
4035 		}
4036 		if (icmp4->icmp_nextmtu != htons(mtu)) {
4037 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4038 			    icmp4->icmp_nextmtu, htons(mtu), 0);
4039 			icmp4->icmp_nextmtu = htons(mtu);
4040 		}
4041 		if (ptr >= 0 && icmp4->icmp_void != ptr) {
4042 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4043 			    htons(icmp4->icmp_pptr), htons(ptr), 0);
4044 			icmp4->icmp_void = htonl(ptr);
4045 		}
4046 		break;
4047 	default:
4048 		unhandled_af(af);
4049 	}
4050 #endif /* INET && INET6 */
4051 
4052 	return (0);
4053 }
4054 
4055 /*
4056  * Need to modulate the sequence numbers in the TCP SACK option
4057  * (credits to Krzysztof Pfaff for report and patch)
4058  */
4059 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)4060 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
4061     struct pf_state_peer *dst)
4062 {
4063 	struct sackblk	 sack;
4064 	int		 copyback = 0, i;
4065 	int		 olen, optsoff;
4066 	uint8_t		 opts[MAX_TCPOPTLEN], *opt, *eoh;
4067 
4068 	olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
4069 	optsoff = pd->off + sizeof(struct tcphdr);
4070 #define	TCPOLEN_MINSACK	(TCPOLEN_SACK + 2)
4071 	if (olen < TCPOLEN_MINSACK ||
4072 	    !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, pd->af))
4073 		return (0);
4074 
4075 	eoh = opts + olen;
4076 	opt = opts;
4077 	while ((opt = pf_find_tcpopt(opt, opts, olen,
4078 	    TCPOPT_SACK, TCPOLEN_MINSACK)) != NULL)
4079 	{
4080 		size_t safelen = MIN(opt[1], (eoh - opt));
4081 		for (i = 2; i + TCPOLEN_SACK <= safelen; i += TCPOLEN_SACK) {
4082 			size_t startoff = (opt + i) - opts;
4083 			memcpy(&sack, &opt[i], sizeof(sack));
4084 			pf_patch_32(pd, &sack.start,
4085 			    htonl(ntohl(sack.start) - dst->seqdiff),
4086 			    PF_ALGNMNT(startoff));
4087 			pf_patch_32(pd, &sack.end,
4088 			    htonl(ntohl(sack.end) - dst->seqdiff),
4089 			    PF_ALGNMNT(startoff + sizeof(sack.start)));
4090 			memcpy(&opt[i], &sack, sizeof(sack));
4091 		}
4092 		copyback = 1;
4093 		opt += opt[1];
4094 	}
4095 
4096 	if (copyback)
4097 		m_copyback(pd->m, optsoff, olen, (caddr_t)opts);
4098 
4099 	return (copyback);
4100 }
4101 
4102 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,u_int sack,int rtableid,u_short * reason)4103 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
4104     const struct pf_addr *saddr, const struct pf_addr *daddr,
4105     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4106     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4107     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack,
4108     int rtableid, u_short *reason)
4109 {
4110 	struct mbuf	*m;
4111 	int		 len, tlen;
4112 #ifdef INET
4113 	struct ip	*h = NULL;
4114 #endif /* INET */
4115 #ifdef INET6
4116 	struct ip6_hdr	*h6 = NULL;
4117 #endif /* INET6 */
4118 	struct tcphdr	*th;
4119 	char		*opt;
4120 	struct pf_mtag  *pf_mtag;
4121 
4122 	len = 0;
4123 	th = NULL;
4124 
4125 	/* maximum segment size tcp option */
4126 	tlen = sizeof(struct tcphdr);
4127 	if (mss)
4128 		tlen += 4;
4129 	if (sack)
4130 		tlen += 2;
4131 
4132 	switch (af) {
4133 #ifdef INET
4134 	case AF_INET:
4135 		len = sizeof(struct ip) + tlen;
4136 		break;
4137 #endif /* INET */
4138 #ifdef INET6
4139 	case AF_INET6:
4140 		len = sizeof(struct ip6_hdr) + tlen;
4141 		break;
4142 #endif /* INET6 */
4143 	default:
4144 		unhandled_af(af);
4145 	}
4146 
4147 	m = m_gethdr(M_NOWAIT, MT_DATA);
4148 	if (m == NULL) {
4149 		REASON_SET(reason, PFRES_MEMORY);
4150 		return (NULL);
4151 	}
4152 
4153 #ifdef MAC
4154 	mac_netinet_firewall_send(m);
4155 #endif
4156 	if ((pf_mtag = pf_get_mtag(m)) == NULL) {
4157 		REASON_SET(reason, PFRES_MEMORY);
4158 		m_freem(m);
4159 		return (NULL);
4160 	}
4161 	m->m_flags |= mbuf_flags;
4162 	pf_mtag->tag = mtag_tag;
4163 	pf_mtag->flags = mtag_flags;
4164 
4165 	if (rtableid >= 0)
4166 		M_SETFIB(m, rtableid);
4167 
4168 #ifdef ALTQ
4169 	if (r != NULL && r->qid) {
4170 		pf_mtag->qid = r->qid;
4171 
4172 		/* add hints for ecn */
4173 		pf_mtag->hdr = mtod(m, struct ip *);
4174 	}
4175 #endif /* ALTQ */
4176 	m->m_data += max_linkhdr;
4177 	m->m_pkthdr.len = m->m_len = len;
4178 	/* The rest of the stack assumes a rcvif, so provide one.
4179 	 * This is a locally generated packet, so .. close enough. */
4180 	m->m_pkthdr.rcvif = V_loif;
4181 	bzero(m->m_data, len);
4182 	switch (af) {
4183 #ifdef INET
4184 	case AF_INET:
4185 		m->m_pkthdr.csum_flags |= CSUM_TCP;
4186 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4187 
4188 		h = mtod(m, struct ip *);
4189 
4190 		h->ip_p = IPPROTO_TCP;
4191 		h->ip_len = htons(tlen);
4192 		h->ip_v = 4;
4193 		h->ip_hl = sizeof(*h) >> 2;
4194 		h->ip_tos = IPTOS_LOWDELAY;
4195 		h->ip_len = htons(len);
4196 		h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4197 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
4198 		h->ip_sum = 0;
4199 		h->ip_src.s_addr = saddr->v4.s_addr;
4200 		h->ip_dst.s_addr = daddr->v4.s_addr;
4201 
4202 		th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
4203 		th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr,
4204 		    htons(len - sizeof(struct ip) + IPPROTO_TCP));
4205 		break;
4206 #endif /* INET */
4207 #ifdef INET6
4208 	case AF_INET6:
4209 		m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
4210 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4211 
4212 		h6 = mtod(m, struct ip6_hdr *);
4213 
4214 		/* IP header fields included in the TCP checksum */
4215 		h6->ip6_nxt = IPPROTO_TCP;
4216 		h6->ip6_plen = htons(tlen);
4217 		h6->ip6_vfc |= IPV6_VERSION;
4218 		h6->ip6_hlim = V_ip6_defhlim;
4219 		memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
4220 		memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
4221 
4222 		th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4223 		th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr),
4224 		    IPPROTO_TCP, 0);
4225 		break;
4226 #endif /* INET6 */
4227 	}
4228 
4229 	/* TCP header */
4230 	th->th_sport = sport;
4231 	th->th_dport = dport;
4232 	th->th_seq = htonl(seq);
4233 	th->th_ack = htonl(ack);
4234 	th->th_off = tlen >> 2;
4235 	tcp_set_flags(th, tcp_flags);
4236 	th->th_win = htons(win);
4237 
4238 	opt = (char *)(th + 1);
4239 	if (mss) {
4240 		opt = (char *)(th + 1);
4241 		opt[0] = TCPOPT_MAXSEG;
4242 		opt[1] = 4;
4243 		mss = htons(mss);
4244 		memcpy((opt + 2), &mss, 2);
4245 		opt += 4;
4246 	}
4247 	if (sack) {
4248 		opt[0] = TCPOPT_SACK_PERMITTED;
4249 		opt[1] = 2;
4250 		opt += 2;
4251 	}
4252 
4253 	return (m);
4254 }
4255 
4256 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4257 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4258     uint8_t ttl, int rtableid)
4259 {
4260 	struct mbuf		*m;
4261 #ifdef INET
4262 	struct ip		*h = NULL;
4263 #endif /* INET */
4264 #ifdef INET6
4265 	struct ip6_hdr		*h6 = NULL;
4266 #endif /* INET6 */
4267 	struct sctphdr		*hdr;
4268 	struct sctp_chunkhdr	*chunk;
4269 	struct pf_send_entry	*pfse;
4270 	int			 off = 0;
4271 
4272 	MPASS(af == pd->af);
4273 
4274 	m = m_gethdr(M_NOWAIT, MT_DATA);
4275 	if (m == NULL)
4276 		return;
4277 
4278 	m->m_data += max_linkhdr;
4279 	m->m_flags |= M_SKIP_FIREWALL;
4280 	/* The rest of the stack assumes a rcvif, so provide one.
4281 	 * This is a locally generated packet, so .. close enough. */
4282 	m->m_pkthdr.rcvif = V_loif;
4283 
4284 	/* IPv4|6 header */
4285 	switch (af) {
4286 #ifdef INET
4287 	case AF_INET:
4288 		bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4289 
4290 		h = mtod(m, struct ip *);
4291 
4292 		/* IP header fields included in the TCP checksum */
4293 
4294 		h->ip_p = IPPROTO_SCTP;
4295 		h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4296 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
4297 		h->ip_src = pd->dst->v4;
4298 		h->ip_dst = pd->src->v4;
4299 
4300 		off += sizeof(struct ip);
4301 		break;
4302 #endif /* INET */
4303 #ifdef INET6
4304 	case AF_INET6:
4305 		bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4306 
4307 		h6 = mtod(m, struct ip6_hdr *);
4308 
4309 		/* IP header fields included in the TCP checksum */
4310 		h6->ip6_vfc |= IPV6_VERSION;
4311 		h6->ip6_nxt = IPPROTO_SCTP;
4312 		h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4313 		h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4314 		memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4315 		memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4316 
4317 		off += sizeof(struct ip6_hdr);
4318 		break;
4319 #endif /* INET6 */
4320 	default:
4321 		unhandled_af(af);
4322 	}
4323 
4324 	/* SCTP header */
4325 	hdr = mtodo(m, off);
4326 
4327 	hdr->src_port = pd->hdr.sctp.dest_port;
4328 	hdr->dest_port = pd->hdr.sctp.src_port;
4329 	hdr->v_tag = pd->sctp_initiate_tag;
4330 	hdr->checksum = 0;
4331 
4332 	/* Abort chunk. */
4333 	off += sizeof(struct sctphdr);
4334 	chunk = mtodo(m, off);
4335 
4336 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4337 	chunk->chunk_length = htons(sizeof(*chunk));
4338 
4339 	/* SCTP checksum */
4340 	off += sizeof(*chunk);
4341 	m->m_pkthdr.len = m->m_len = off;
4342 
4343 	pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4344 
4345 	if (rtableid >= 0)
4346 		M_SETFIB(m, rtableid);
4347 
4348 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4349 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4350 	if (pfse == NULL) {
4351 		m_freem(m);
4352 		return;
4353 	}
4354 
4355 	switch (af) {
4356 #ifdef INET
4357 	case AF_INET:
4358 		pfse->pfse_type = PFSE_IP;
4359 		break;
4360 #endif /* INET */
4361 #ifdef INET6
4362 	case AF_INET6:
4363 		pfse->pfse_type = PFSE_IP6;
4364 		break;
4365 #endif /* INET6 */
4366 	}
4367 
4368 	pfse->pfse_m = m;
4369 	pf_send(pfse);
4370 }
4371 
4372 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid,u_short * reason)4373 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4374     const struct pf_addr *saddr, const struct pf_addr *daddr,
4375     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4376     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4377     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid,
4378     u_short *reason)
4379 {
4380 	struct pf_send_entry *pfse;
4381 	struct mbuf	*m;
4382 
4383 	m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4384 	    win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid, reason);
4385 	if (m == NULL)
4386 		return;
4387 
4388 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4389 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4390 	if (pfse == NULL) {
4391 		m_freem(m);
4392 		REASON_SET(reason, PFRES_MEMORY);
4393 		return;
4394 	}
4395 
4396 	switch (af) {
4397 #ifdef INET
4398 	case AF_INET:
4399 		pfse->pfse_type = PFSE_IP;
4400 		break;
4401 #endif /* INET */
4402 #ifdef INET6
4403 	case AF_INET6:
4404 		pfse->pfse_type = PFSE_IP6;
4405 		break;
4406 #endif /* INET6 */
4407 	default:
4408 		unhandled_af(af);
4409 	}
4410 
4411 	pfse->pfse_m = m;
4412 	pf_send(pfse);
4413 }
4414 
4415 static void
pf_undo_nat(struct pf_krule * nr,struct pf_pdesc * pd,uint16_t bip_sum)4416 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum)
4417 {
4418 	/* undo NAT changes, if they have taken place */
4419 	if (nr != NULL) {
4420 		pf_addrcpy(pd->src, &pd->osrc, pd->af);
4421 		pf_addrcpy(pd->dst, &pd->odst, pd->af);
4422 		if (pd->sport)
4423 			*pd->sport = pd->osport;
4424 		if (pd->dport)
4425 			*pd->dport = pd->odport;
4426 		if (pd->ip_sum)
4427 			*pd->ip_sum = bip_sum;
4428 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4429 	}
4430 }
4431 
4432 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4433 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4434     struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum,
4435     u_short *reason, int rtableid)
4436 {
4437 	pf_undo_nat(nr, pd, bip_sum);
4438 
4439 	if (pd->proto == IPPROTO_TCP &&
4440 	    ((r->rule_flag & PFRULE_RETURNRST) ||
4441 	    (r->rule_flag & PFRULE_RETURN)) &&
4442 	    !(tcp_get_flags(th) & TH_RST)) {
4443 		u_int32_t	 ack = ntohl(th->th_seq) + pd->p_len;
4444 
4445 		if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4446 		    IPPROTO_TCP, pd->af))
4447 			REASON_SET(reason, PFRES_PROTCKSUM);
4448 		else {
4449 			if (tcp_get_flags(th) & TH_SYN)
4450 				ack++;
4451 			if (tcp_get_flags(th) & TH_FIN)
4452 				ack++;
4453 			pf_send_tcp(r, pd->af, pd->dst,
4454 			    pd->src, th->th_dport, th->th_sport,
4455 			    ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4456 			    r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid,
4457 			    reason);
4458 		}
4459 	} else if (pd->proto == IPPROTO_SCTP &&
4460 	    (r->rule_flag & PFRULE_RETURN)) {
4461 		pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4462 	} else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4463 		r->return_icmp)
4464 		pf_send_icmp(pd->m, r->return_icmp >> 8,
4465 			r->return_icmp & 255, 0, pd->af, r, rtableid);
4466 	else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4467 		r->return_icmp6)
4468 		pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4469 			r->return_icmp6 & 255, 0, pd->af, r, rtableid);
4470 }
4471 
4472 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4473 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4474 {
4475 	struct m_tag *mtag;
4476 	u_int8_t mpcp;
4477 
4478 	mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4479 	if (mtag == NULL)
4480 		return (0);
4481 
4482 	if (prio == PF_PRIO_ZERO)
4483 		prio = 0;
4484 
4485 	mpcp = *(uint8_t *)(mtag + 1);
4486 
4487 	return (mpcp == prio);
4488 }
4489 
4490 static int
pf_icmp_to_bandlim(uint8_t type)4491 pf_icmp_to_bandlim(uint8_t type)
4492 {
4493 	switch (type) {
4494 		case ICMP_ECHO:
4495 		case ICMP_ECHOREPLY:
4496 			return (BANDLIM_ICMP_ECHO);
4497 		case ICMP_TSTAMP:
4498 		case ICMP_TSTAMPREPLY:
4499 			return (BANDLIM_ICMP_TSTAMP);
4500 		case ICMP_UNREACH:
4501 		default:
4502 			return (BANDLIM_ICMP_UNREACH);
4503 	}
4504 }
4505 
4506 static void
pf_send_challenge_ack(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_state_peer * src,struct pf_state_peer * dst,u_short * reason)4507 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s,
4508     struct pf_state_peer *src, struct pf_state_peer *dst,
4509     u_short *reason)
4510 {
4511 	/*
4512 	 * We are sending challenge ACK as a response to SYN packet, which
4513 	 * matches existing state (modulo TCP window check). Therefore packet
4514 	 * must be sent on behalf of destination.
4515 	 *
4516 	 * We expect sender to remain either silent, or send RST packet
4517 	 * so both, firewall and remote peer, can purge dead state from
4518 	 * memory.
4519 	 */
4520 	pf_send_tcp(s->rule, pd->af, pd->dst, pd->src,
4521 	    pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo,
4522 	    src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0,
4523 	    s->rule->rtableid, reason);
4524 }
4525 
4526 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,int mtu,sa_family_t af,struct pf_krule * r,int rtableid)4527 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, int mtu,
4528     sa_family_t af, struct pf_krule *r, int rtableid)
4529 {
4530 	struct pf_send_entry *pfse;
4531 	struct mbuf *m0;
4532 	struct pf_mtag *pf_mtag;
4533 
4534 	/* ICMP packet rate limitation. */
4535 	switch (af) {
4536 #ifdef INET6
4537 	case AF_INET6:
4538 		if (icmp6_ratelimit(NULL, type, code))
4539 			return;
4540 		break;
4541 #endif /* INET6 */
4542 #ifdef INET
4543 	case AF_INET:
4544 		if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4545 			return;
4546 		break;
4547 #endif /* INET */
4548 	}
4549 
4550 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4551 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4552 	if (pfse == NULL)
4553 		return;
4554 
4555 	if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4556 		free(pfse, M_PFTEMP);
4557 		return;
4558 	}
4559 
4560 	if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4561 		free(pfse, M_PFTEMP);
4562 		return;
4563 	}
4564 	/* XXX: revisit */
4565 	m0->m_flags |= M_SKIP_FIREWALL;
4566 
4567 	if (rtableid >= 0)
4568 		M_SETFIB(m0, rtableid);
4569 
4570 #ifdef ALTQ
4571 	if (r->qid) {
4572 		pf_mtag->qid = r->qid;
4573 		/* add hints for ecn */
4574 		pf_mtag->hdr = mtod(m0, struct ip *);
4575 	}
4576 #endif /* ALTQ */
4577 
4578 	switch (af) {
4579 #ifdef INET
4580 	case AF_INET:
4581 		pfse->pfse_type = PFSE_ICMP;
4582 		break;
4583 #endif /* INET */
4584 #ifdef INET6
4585 	case AF_INET6:
4586 		pfse->pfse_type = PFSE_ICMP6;
4587 		break;
4588 #endif /* INET6 */
4589 	}
4590 	pfse->pfse_m = m0;
4591 	pfse->icmpopts.type = type;
4592 	pfse->icmpopts.code = code;
4593 	pfse->icmpopts.mtu = mtu;
4594 	pf_send(pfse);
4595 }
4596 
4597 /*
4598  * Return ((n = 0) == (a = b [with mask m]))
4599  * Note: n != 0 => returns (a != b [with mask m])
4600  */
4601 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4602 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4603     const struct pf_addr *b, sa_family_t af)
4604 {
4605 	switch (af) {
4606 #ifdef INET
4607 	case AF_INET:
4608 		if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4609 			return (n == 0);
4610 		break;
4611 #endif /* INET */
4612 #ifdef INET6
4613 	case AF_INET6:
4614 		if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4615 			return (n == 0);
4616 		break;
4617 #endif /* INET6 */
4618 	}
4619 
4620 	return (n != 0);
4621 }
4622 
4623 /*
4624  * Return 1 if b <= a <= e, otherwise return 0.
4625  */
4626 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4627 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4628     const struct pf_addr *a, sa_family_t af)
4629 {
4630 	switch (af) {
4631 #ifdef INET
4632 	case AF_INET:
4633 		if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4634 		    (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4635 			return (0);
4636 		break;
4637 #endif /* INET */
4638 #ifdef INET6
4639 	case AF_INET6: {
4640 		int	i;
4641 
4642 		/* check a >= b */
4643 		for (i = 0; i < 4; ++i)
4644 			if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4645 				break;
4646 			else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4647 				return (0);
4648 		/* check a <= e */
4649 		for (i = 0; i < 4; ++i)
4650 			if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4651 				break;
4652 			else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4653 				return (0);
4654 		break;
4655 	}
4656 #endif /* INET6 */
4657 	}
4658 	return (1);
4659 }
4660 
4661 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)4662 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
4663 {
4664 	switch (op) {
4665 	case PF_OP_IRG:
4666 		return ((p > a1) && (p < a2));
4667 	case PF_OP_XRG:
4668 		return ((p < a1) || (p > a2));
4669 	case PF_OP_RRG:
4670 		return ((p >= a1) && (p <= a2));
4671 	case PF_OP_EQ:
4672 		return (p == a1);
4673 	case PF_OP_NE:
4674 		return (p != a1);
4675 	case PF_OP_LT:
4676 		return (p < a1);
4677 	case PF_OP_LE:
4678 		return (p <= a1);
4679 	case PF_OP_GT:
4680 		return (p > a1);
4681 	case PF_OP_GE:
4682 		return (p >= a1);
4683 	}
4684 	return (0); /* never reached */
4685 }
4686 
4687 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)4688 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
4689 {
4690 	return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p)));
4691 }
4692 
4693 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)4694 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
4695 {
4696 	if (u == -1 && op != PF_OP_EQ && op != PF_OP_NE)
4697 		return (0);
4698 	return (pf_match(op, a1, a2, u));
4699 }
4700 
4701 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)4702 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
4703 {
4704 	if (g == -1 && op != PF_OP_EQ && op != PF_OP_NE)
4705 		return (0);
4706 	return (pf_match(op, a1, a2, g));
4707 }
4708 
4709 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)4710 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
4711 {
4712 	if (*tag == -1)
4713 		*tag = mtag;
4714 
4715 	return ((!r->match_tag_not && r->match_tag == *tag) ||
4716 	    (r->match_tag_not && r->match_tag != *tag));
4717 }
4718 
4719 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)4720 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
4721 {
4722 	struct ifnet *ifp = m->m_pkthdr.rcvif;
4723 	struct pfi_kkif *kif;
4724 
4725 	if (ifp == NULL)
4726 		return (0);
4727 
4728 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
4729 
4730 	if (kif == NULL) {
4731 		DPFPRINTF(PF_DEBUG_URGENT,
4732 		    "%s: kif == NULL, @%d via %s", __func__, r->nr,
4733 			r->rcv_ifname);
4734 		return (0);
4735 	}
4736 
4737 	return (pfi_kkif_match(r->rcv_kif, kif));
4738 }
4739 
4740 int
pf_tag_packet(struct pf_pdesc * pd,int tag)4741 pf_tag_packet(struct pf_pdesc *pd, int tag)
4742 {
4743 
4744 	KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4745 
4746 	if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4747 		return (ENOMEM);
4748 
4749 	pd->pf_mtag->tag = tag;
4750 
4751 	return (0);
4752 }
4753 
4754 /*
4755  * XXX: We rely on malloc(9) returning pointer aligned addresses.
4756  */
4757 #define	PF_ANCHORSTACK_MATCH	0x00000001
4758 #define	PF_ANCHORSTACK_MASK	(PF_ANCHORSTACK_MATCH)
4759 
4760 #define	PF_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4761 #define	PF_ANCHOR_RULE(f)	(struct pf_krule *)			\
4762 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4763 #define	PF_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 			\
4764 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
4765 } while (0)
4766 
4767 enum pf_test_status
pf_step_into_anchor(struct pf_test_ctx * ctx,struct pf_krule * r,struct pf_krule_slist * match_rules)4768 pf_step_into_anchor(struct pf_test_ctx *ctx, struct pf_krule *r,
4769     struct pf_krule_slist *match_rules)
4770 {
4771 	enum pf_test_status	rv;
4772 
4773 	PF_RULES_RASSERT();
4774 
4775 	if (ctx->depth >= PF_ANCHOR_STACK_MAX) {
4776 		printf("%s: anchor stack overflow on %s\n",
4777 		    __func__, r->anchor->name);
4778 		return (PF_TEST_FAIL);
4779 	}
4780 
4781 	ctx->depth++;
4782 
4783 	if (r->anchor_wildcard) {
4784 		struct pf_kanchor *child;
4785 		rv = PF_TEST_OK;
4786 		RB_FOREACH(child, pf_kanchor_node, &r->anchor->children) {
4787 			rv = pf_match_rule(ctx, &child->ruleset, match_rules);
4788 			if ((rv == PF_TEST_QUICK) || (rv == PF_TEST_FAIL)) {
4789 				/*
4790 				 * we either hit a rule with quick action
4791 				 * (more likely), or hit some runtime
4792 				 * error (e.g. pool_get() failure).
4793 				 */
4794 				break;
4795 			}
4796 		}
4797 	} else {
4798 		rv = pf_match_rule(ctx, &r->anchor->ruleset, match_rules);
4799 		/*
4800 		 * Unless errors occured, stop iff any rule matched
4801 		 * within quick anchors.
4802 		 */
4803 		if (rv != PF_TEST_FAIL && r->quick == PF_TEST_QUICK &&
4804 		    *ctx->am == r)
4805 			rv = PF_TEST_QUICK;
4806 	}
4807 
4808 	ctx->depth--;
4809 
4810 	return (rv);
4811 }
4812 
4813 struct pf_keth_anchor_stackframe {
4814 	struct pf_keth_ruleset	*rs;
4815 	struct pf_keth_rule	*r;	/* XXX: + match bit */
4816 	struct pf_keth_anchor	*child;
4817 };
4818 
4819 #define	PF_ETH_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4820 #define	PF_ETH_ANCHOR_RULE(f)	(struct pf_keth_rule *)			\
4821 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4822 #define	PF_ETH_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 		\
4823 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
4824 } while (0)
4825 
4826 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4827 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4828     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4829     struct pf_keth_rule **a, int *match)
4830 {
4831 	struct pf_keth_anchor_stackframe	*f;
4832 
4833 	NET_EPOCH_ASSERT();
4834 
4835 	if (match)
4836 		*match = 0;
4837 	if (*depth >= PF_ANCHOR_STACK_MAX) {
4838 		printf("%s: anchor stack overflow on %s\n",
4839 		    __func__, (*r)->anchor->name);
4840 		*r = TAILQ_NEXT(*r, entries);
4841 		return;
4842 	} else if (*depth == 0 && a != NULL)
4843 		*a = *r;
4844 	f = stack + (*depth)++;
4845 	f->rs = *rs;
4846 	f->r = *r;
4847 	if ((*r)->anchor_wildcard) {
4848 		struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4849 
4850 		if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4851 			*r = NULL;
4852 			return;
4853 		}
4854 		*rs = &f->child->ruleset;
4855 	} else {
4856 		f->child = NULL;
4857 		*rs = &(*r)->anchor->ruleset;
4858 	}
4859 	*r = TAILQ_FIRST((*rs)->active.rules);
4860 }
4861 
4862 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4863 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4864     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4865     struct pf_keth_rule **a, int *match)
4866 {
4867 	struct pf_keth_anchor_stackframe	*f;
4868 	struct pf_keth_rule *fr;
4869 	int quick = 0;
4870 
4871 	NET_EPOCH_ASSERT();
4872 
4873 	do {
4874 		if (*depth <= 0)
4875 			break;
4876 		f = stack + *depth - 1;
4877 		fr = PF_ETH_ANCHOR_RULE(f);
4878 		if (f->child != NULL) {
4879 			/*
4880 			 * This block traverses through
4881 			 * a wildcard anchor.
4882 			 */
4883 			if (match != NULL && *match) {
4884 				/*
4885 				 * If any of "*" matched, then
4886 				 * "foo/ *" matched, mark frame
4887 				 * appropriately.
4888 				 */
4889 				PF_ETH_ANCHOR_SET_MATCH(f);
4890 				*match = 0;
4891 			}
4892 			f->child = RB_NEXT(pf_keth_anchor_node,
4893 			    &fr->anchor->children, f->child);
4894 			if (f->child != NULL) {
4895 				*rs = &f->child->ruleset;
4896 				*r = TAILQ_FIRST((*rs)->active.rules);
4897 				if (*r == NULL)
4898 					continue;
4899 				else
4900 					break;
4901 			}
4902 		}
4903 		(*depth)--;
4904 		if (*depth == 0 && a != NULL)
4905 			*a = NULL;
4906 		*rs = f->rs;
4907 		if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4908 			quick = fr->quick;
4909 		*r = TAILQ_NEXT(fr, entries);
4910 	} while (*r == NULL);
4911 
4912 	return (quick);
4913 }
4914 
4915 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4916 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4917     struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4918 {
4919 	switch (af) {
4920 #ifdef INET
4921 	case AF_INET:
4922 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4923 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4924 		break;
4925 #endif /* INET */
4926 #ifdef INET6
4927 	case AF_INET6:
4928 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4929 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4930 		naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4931 		((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4932 		naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4933 		((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4934 		naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4935 		((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4936 		break;
4937 #endif /* INET6 */
4938 	}
4939 }
4940 
4941 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4942 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4943 {
4944 	switch (af) {
4945 #ifdef INET
4946 	case AF_INET:
4947 		addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4948 		break;
4949 #endif /* INET */
4950 #ifdef INET6
4951 	case AF_INET6:
4952 		if (addr->addr32[3] == 0xffffffff) {
4953 			addr->addr32[3] = 0;
4954 			if (addr->addr32[2] == 0xffffffff) {
4955 				addr->addr32[2] = 0;
4956 				if (addr->addr32[1] == 0xffffffff) {
4957 					addr->addr32[1] = 0;
4958 					addr->addr32[0] =
4959 					    htonl(ntohl(addr->addr32[0]) + 1);
4960 				} else
4961 					addr->addr32[1] =
4962 					    htonl(ntohl(addr->addr32[1]) + 1);
4963 			} else
4964 				addr->addr32[2] =
4965 				    htonl(ntohl(addr->addr32[2]) + 1);
4966 		} else
4967 			addr->addr32[3] =
4968 			    htonl(ntohl(addr->addr32[3]) + 1);
4969 		break;
4970 #endif /* INET6 */
4971 	}
4972 }
4973 
4974 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4975 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4976 {
4977 	/*
4978 	 * Modern rules use the same flags in rules as they do in states.
4979 	 */
4980 	a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4981 	    PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4982 
4983 	/*
4984 	 * Old-style scrub rules have different flags which need to be translated.
4985 	 */
4986 	if (r->rule_flag & PFRULE_RANDOMID)
4987 		a->flags |= PFSTATE_RANDOMID;
4988 	if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4989 		a->flags |= PFSTATE_SETTOS;
4990 		a->set_tos = r->set_tos;
4991 	}
4992 
4993 	if (r->qid)
4994 		a->qid = r->qid;
4995 	if (r->pqid)
4996 		a->pqid = r->pqid;
4997 	if (r->rtableid >= 0)
4998 		a->rtableid = r->rtableid;
4999 	a->log |= r->log;
5000 	if (r->min_ttl)
5001 		a->min_ttl = r->min_ttl;
5002 	if (r->max_mss)
5003 		a->max_mss = r->max_mss;
5004 	if (r->dnpipe)
5005 		a->dnpipe = r->dnpipe;
5006 	if (r->dnrpipe)
5007 		a->dnrpipe = r->dnrpipe;
5008 	if (r->dnpipe || r->dnrpipe) {
5009 		if (r->free_flags & PFRULE_DN_IS_PIPE)
5010 			a->flags |= PFSTATE_DN_IS_PIPE;
5011 		else
5012 			a->flags &= ~PFSTATE_DN_IS_PIPE;
5013 	}
5014 	if (r->scrub_flags & PFSTATE_SETPRIO) {
5015 		a->set_prio[0] = r->set_prio[0];
5016 		a->set_prio[1] = r->set_prio[1];
5017 	}
5018 	if (r->allow_opts)
5019 		a->allow_opts = r->allow_opts;
5020 	if (r->max_pkt_size)
5021 		a->max_pkt_size = r->max_pkt_size;
5022 }
5023 
5024 int
pf_socket_lookup(struct pf_pdesc * pd)5025 pf_socket_lookup(struct pf_pdesc *pd)
5026 {
5027 	struct pf_addr		*saddr, *daddr;
5028 	u_int16_t		 sport, dport;
5029 	struct inpcbinfo	*pi;
5030 	struct inpcb		*inp;
5031 
5032 	pd->lookup.uid = -1;
5033 	pd->lookup.gid = -1;
5034 
5035 	switch (pd->proto) {
5036 	case IPPROTO_TCP:
5037 		sport = pd->hdr.tcp.th_sport;
5038 		dport = pd->hdr.tcp.th_dport;
5039 		pi = &V_tcbinfo;
5040 		break;
5041 	case IPPROTO_UDP:
5042 		sport = pd->hdr.udp.uh_sport;
5043 		dport = pd->hdr.udp.uh_dport;
5044 		pi = &V_udbinfo;
5045 		break;
5046 	default:
5047 		return (-1);
5048 	}
5049 	if (pd->dir == PF_IN) {
5050 		saddr = pd->src;
5051 		daddr = pd->dst;
5052 	} else {
5053 		u_int16_t	p;
5054 
5055 		p = sport;
5056 		sport = dport;
5057 		dport = p;
5058 		saddr = pd->dst;
5059 		daddr = pd->src;
5060 	}
5061 	switch (pd->af) {
5062 #ifdef INET
5063 	case AF_INET:
5064 		inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
5065 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
5066 		if (inp == NULL) {
5067 			inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
5068 			   daddr->v4, dport, INPLOOKUP_WILDCARD |
5069 			   INPLOOKUP_RLOCKPCB, NULL, pd->m);
5070 			if (inp == NULL)
5071 				return (-1);
5072 		}
5073 		break;
5074 #endif /* INET */
5075 #ifdef INET6
5076 	case AF_INET6:
5077 		inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
5078 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
5079 		if (inp == NULL) {
5080 			inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
5081 			    &daddr->v6, dport, INPLOOKUP_WILDCARD |
5082 			    INPLOOKUP_RLOCKPCB, NULL, pd->m);
5083 			if (inp == NULL)
5084 				return (-1);
5085 		}
5086 		break;
5087 #endif /* INET6 */
5088 	default:
5089 		unhandled_af(pd->af);
5090 	}
5091 	INP_RLOCK_ASSERT(inp);
5092 	pd->lookup.uid = inp->inp_cred->cr_uid;
5093 	pd->lookup.gid = inp->inp_cred->cr_gid;
5094 	INP_RUNLOCK(inp);
5095 
5096 	return (1);
5097 }
5098 
5099 /* post: r  => (r[0] == type /\ r[1] >= min_typelen >= 2  "validity"
5100  *                      /\ (eoh - r) >= min_typelen >= 2  "safety"  )
5101  *
5102  * warning: r + r[1] may exceed opts bounds for r[1] > min_typelen
5103  */
5104 uint8_t*
pf_find_tcpopt(u_int8_t * opt,u_int8_t * opts,size_t hlen,u_int8_t type,u_int8_t min_typelen)5105 pf_find_tcpopt(u_int8_t *opt, u_int8_t *opts, size_t hlen, u_int8_t type,
5106     u_int8_t min_typelen)
5107 {
5108 	uint8_t	*eoh = opts + hlen;
5109 
5110 	if (min_typelen < 2)
5111 		return (NULL);
5112 
5113 	while ((eoh - opt) >= min_typelen) {
5114 		switch (*opt) {
5115 		case TCPOPT_EOL:
5116 			/* FALLTHROUGH - Workaround the failure of some
5117 			 systems to NOP-pad their bzero'd option buffers,
5118 			 producing spurious EOLs */
5119 		case TCPOPT_NOP:
5120 			opt++;
5121 			continue;
5122 		default:
5123 		if (opt[0] == type &&
5124 			    opt[1] >= min_typelen)
5125 			return (opt);
5126 		}
5127 
5128 		opt += MAX(opt[1], 2); /* evade infinite loops */
5129 	}
5130 
5131 	return (NULL);
5132 }
5133 
5134 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)5135 pf_get_wscale(struct pf_pdesc *pd)
5136 {
5137 	int	 olen;
5138 	uint8_t	 opts[MAX_TCPOPTLEN], *opt;
5139 	uint8_t	 wscale = 0;
5140 
5141 	olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5142 	if (olen < TCPOLEN_WINDOW || !pf_pull_hdr(pd->m,
5143 	    pd->off + sizeof(struct tcphdr), opts, olen, NULL, pd->af))
5144 		return (0);
5145 
5146 	opt = opts;
5147 	while ((opt = pf_find_tcpopt(opt, opts, olen,
5148 		    TCPOPT_WINDOW, TCPOLEN_WINDOW)) != NULL) {
5149 		wscale = opt[2];
5150 		wscale = MIN(wscale, TCP_MAX_WINSHIFT);
5151 		wscale |= PF_WSCALE_FLAG;
5152 
5153 		opt += opt[1];
5154 	}
5155 
5156 	return (wscale);
5157 }
5158 
5159 u_int16_t
pf_get_mss(struct pf_pdesc * pd)5160 pf_get_mss(struct pf_pdesc *pd)
5161 {
5162 	int		 olen;
5163 	uint8_t		 opts[MAX_TCPOPTLEN], *opt;
5164 	u_int16_t	 mss = V_tcp_mssdflt;
5165 
5166 	olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5167 	if (olen < TCPOLEN_MAXSEG || !pf_pull_hdr(pd->m,
5168 	    pd->off + sizeof(struct tcphdr), opts, olen, NULL, pd->af))
5169 		return (0);
5170 
5171 	opt = opts;
5172 	while ((opt = pf_find_tcpopt(opt, opts, olen,
5173 	    TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) {
5174 		memcpy(&mss, (opt + 2), 2);
5175 		mss = ntohs(mss);
5176 		opt += opt[1];
5177 	}
5178 
5179 	return (mss);
5180 }
5181 
5182 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5183 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5184 {
5185 	struct nhop_object *nh;
5186 #ifdef INET6
5187 	struct in6_addr		dst6;
5188 	uint32_t		scopeid;
5189 #endif /* INET6 */
5190 	int			 hlen = 0;
5191 	uint16_t		 mss = 0;
5192 
5193 	NET_EPOCH_ASSERT();
5194 
5195 	switch (af) {
5196 #ifdef INET
5197 	case AF_INET:
5198 		hlen = sizeof(struct ip);
5199 		nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5200 		if (nh != NULL)
5201 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5202 		break;
5203 #endif /* INET */
5204 #ifdef INET6
5205 	case AF_INET6:
5206 		hlen = sizeof(struct ip6_hdr);
5207 		in6_splitscope(&addr->v6, &dst6, &scopeid);
5208 		nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5209 		if (nh != NULL)
5210 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5211 		break;
5212 #endif /* INET6 */
5213 	}
5214 
5215 	mss = max(V_tcp_mssdflt, mss);
5216 	mss = min(mss, offer);
5217 	mss = max(mss, 64);		/* sanity - at least max opt space */
5218 	return (mss);
5219 }
5220 
5221 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5222 pf_tcp_iss(struct pf_pdesc *pd)
5223 {
5224 	SHA512_CTX ctx;
5225 	union {
5226 		uint8_t bytes[SHA512_DIGEST_LENGTH];
5227 		uint32_t words[1];
5228 	} digest;
5229 
5230 	if (V_pf_tcp_secret_init == 0) {
5231 		arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5232 		SHA512_Init(&V_pf_tcp_secret_ctx);
5233 		SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5234 		    sizeof(V_pf_tcp_secret));
5235 		V_pf_tcp_secret_init = 1;
5236 	}
5237 
5238 	ctx = V_pf_tcp_secret_ctx;
5239 
5240 	SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short));
5241 	SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short));
5242 	switch (pd->af) {
5243 	case AF_INET6:
5244 		SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr));
5245 		SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr));
5246 		break;
5247 	case AF_INET:
5248 		SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr));
5249 		SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr));
5250 		break;
5251 	}
5252 	SHA512_Final(digest.bytes, &ctx);
5253 	V_pf_tcp_iss_off += 4096;
5254 #define	ISN_RANDOM_INCREMENT (4096 - 1)
5255 	return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5256 	    V_pf_tcp_iss_off);
5257 #undef	ISN_RANDOM_INCREMENT
5258 }
5259 
5260 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5261 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5262 {
5263 	bool match = true;
5264 
5265 	/* Always matches if not set */
5266 	if (! r->isset)
5267 		return (!r->neg);
5268 
5269 	for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5270 		if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5271 			match = false;
5272 			break;
5273 		}
5274 	}
5275 
5276 	return (match ^ r->neg);
5277 }
5278 
5279 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5280 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5281 {
5282 	if (*tag == -1)
5283 		*tag = mtag;
5284 
5285 	return ((!r->match_tag_not && r->match_tag == *tag) ||
5286 	    (r->match_tag_not && r->match_tag != *tag));
5287 }
5288 
5289 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5290 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5291 {
5292 	/* If we don't have the interface drop the packet. */
5293 	if (ifp == NULL) {
5294 		m_freem(m);
5295 		return;
5296 	}
5297 
5298 	switch (ifp->if_type) {
5299 	case IFT_ETHER:
5300 	case IFT_XETHER:
5301 	case IFT_L2VLAN:
5302 	case IFT_BRIDGE:
5303 	case IFT_IEEE8023ADLAG:
5304 		break;
5305 	default:
5306 		m_freem(m);
5307 		return;
5308 	}
5309 
5310 	ifp->if_transmit(ifp, m);
5311 }
5312 
5313 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5314 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5315 {
5316 #ifdef INET
5317 	struct ip ip;
5318 #endif /* INET */
5319 #ifdef INET6
5320 	struct ip6_hdr ip6;
5321 #endif /* INET6 */
5322 	struct mbuf *m = *m0;
5323 	struct ether_header *e;
5324 	struct pf_keth_rule *r, *rm, *a = NULL;
5325 	struct pf_keth_ruleset *ruleset = NULL;
5326 	struct pf_mtag *mtag;
5327 	struct pf_keth_ruleq *rules;
5328 	struct pf_addr *src = NULL, *dst = NULL;
5329 	struct pfi_kkif *bridge_to;
5330 	sa_family_t af = 0;
5331 	uint16_t proto;
5332 	int asd = 0, match = 0;
5333 	int tag = -1;
5334 	uint8_t action;
5335 	struct pf_keth_anchor_stackframe	anchor_stack[PF_ANCHOR_STACK_MAX];
5336 
5337 	MPASS(kif->pfik_ifp->if_vnet == curvnet);
5338 	NET_EPOCH_ASSERT();
5339 
5340 	PF_RULES_RLOCK_TRACKER;
5341 
5342 	SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5343 
5344 	mtag = pf_find_mtag(m);
5345 	if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5346 		/* Dummynet re-injects packets after they've
5347 		 * completed their delay. We've already
5348 		 * processed them, so pass unconditionally. */
5349 
5350 		/* But only once. We may see the packet multiple times (e.g.
5351 		 * PFIL_IN/PFIL_OUT). */
5352 		pf_dummynet_flag_remove(m, mtag);
5353 
5354 		return (PF_PASS);
5355 	}
5356 
5357 	if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5358 	    (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5359 		DPFPRINTF(PF_DEBUG_URGENT,
5360 		    "%s: m_len < sizeof(struct ether_header)"
5361 		     ", pullup failed", __func__);
5362 		return (PF_DROP);
5363 	}
5364 	e = mtod(m, struct ether_header *);
5365 	proto = ntohs(e->ether_type);
5366 
5367 	switch (proto) {
5368 #ifdef INET
5369 	case ETHERTYPE_IP: {
5370 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
5371 		    sizeof(ip)))
5372 			return (PF_DROP);
5373 
5374 		af = AF_INET;
5375 		m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5376 		    (caddr_t)&ip);
5377 		src = (struct pf_addr *)&ip.ip_src;
5378 		dst = (struct pf_addr *)&ip.ip_dst;
5379 		break;
5380 	}
5381 #endif /* INET */
5382 #ifdef INET6
5383 	case ETHERTYPE_IPV6: {
5384 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
5385 		    sizeof(ip6)))
5386 			return (PF_DROP);
5387 
5388 		af = AF_INET6;
5389 		m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5390 		    (caddr_t)&ip6);
5391 		src = (struct pf_addr *)&ip6.ip6_src;
5392 		dst = (struct pf_addr *)&ip6.ip6_dst;
5393 		break;
5394 	}
5395 #endif /* INET6 */
5396 	}
5397 
5398 	PF_RULES_RLOCK();
5399 
5400 	ruleset = V_pf_keth;
5401 	rules = atomic_load_ptr(&ruleset->active.rules);
5402 	for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) {
5403 		counter_u64_add(r->evaluations, 1);
5404 		SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5405 
5406 		if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5407 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5408 			    "kif");
5409 			r = r->skip[PFE_SKIP_IFP].ptr;
5410 		}
5411 		else if (r->direction && r->direction != dir) {
5412 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5413 			    "dir");
5414 			r = r->skip[PFE_SKIP_DIR].ptr;
5415 		}
5416 		else if (r->proto && r->proto != proto) {
5417 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5418 			    "proto");
5419 			r = r->skip[PFE_SKIP_PROTO].ptr;
5420 		}
5421 		else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5422 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5423 			    "src");
5424 			r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5425 		}
5426 		else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5427 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5428 			    "dst");
5429 			r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5430 		}
5431 		else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5432 		    r->ipsrc.neg, kif, M_GETFIB(m))) {
5433 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5434 			    "ip_src");
5435 			r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5436 		}
5437 		else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5438 		    r->ipdst.neg, kif, M_GETFIB(m))) {
5439 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5440 			    "ip_dst");
5441 			r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5442 		}
5443 		else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5444 		    mtag ? mtag->tag : 0)) {
5445 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5446 			    "match_tag");
5447 			r = TAILQ_NEXT(r, entries);
5448 		}
5449 		else {
5450 			if (r->tag)
5451 				tag = r->tag;
5452 			if (r->anchor == NULL) {
5453 				/* Rule matches */
5454 				rm = r;
5455 
5456 				SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5457 
5458 				if (r->quick)
5459 					break;
5460 
5461 				r = TAILQ_NEXT(r, entries);
5462 			} else {
5463 				pf_step_into_keth_anchor(anchor_stack, &asd,
5464 				    &ruleset, &r, &a, &match);
5465 			}
5466 		}
5467 		if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5468 		    &ruleset, &r, &a, &match))
5469 			break;
5470 	}
5471 
5472 	r = rm;
5473 
5474 	SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5475 
5476 	/* Default to pass. */
5477 	if (r == NULL) {
5478 		PF_RULES_RUNLOCK();
5479 		return (PF_PASS);
5480 	}
5481 
5482 	/* Execute action. */
5483 	counter_u64_add(r->packets[dir == PF_OUT], 1);
5484 	counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5485 	pf_update_timestamp(r);
5486 
5487 	/* Shortcut. Don't tag if we're just going to drop anyway. */
5488 	if (r->action == PF_DROP) {
5489 		PF_RULES_RUNLOCK();
5490 		return (PF_DROP);
5491 	}
5492 
5493 	if (tag > 0) {
5494 		if (mtag == NULL)
5495 			mtag = pf_get_mtag(m);
5496 		if (mtag == NULL) {
5497 			PF_RULES_RUNLOCK();
5498 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5499 			return (PF_DROP);
5500 		}
5501 		mtag->tag = tag;
5502 	}
5503 
5504 	if (r->qid != 0) {
5505 		if (mtag == NULL)
5506 			mtag = pf_get_mtag(m);
5507 		if (mtag == NULL) {
5508 			PF_RULES_RUNLOCK();
5509 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5510 			return (PF_DROP);
5511 		}
5512 		mtag->qid = r->qid;
5513 	}
5514 
5515 	action = r->action;
5516 	bridge_to = r->bridge_to;
5517 
5518 	/* Dummynet */
5519 	if (r->dnpipe) {
5520 		struct ip_fw_args dnflow;
5521 
5522 		/* Drop packet if dummynet is not loaded. */
5523 		if (ip_dn_io_ptr == NULL) {
5524 			PF_RULES_RUNLOCK();
5525 			m_freem(m);
5526 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5527 			return (PF_DROP);
5528 		}
5529 		if (mtag == NULL)
5530 			mtag = pf_get_mtag(m);
5531 		if (mtag == NULL) {
5532 			PF_RULES_RUNLOCK();
5533 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5534 			return (PF_DROP);
5535 		}
5536 
5537 		bzero(&dnflow, sizeof(dnflow));
5538 
5539 		/* We don't have port numbers here, so we set 0.  That means
5540 		 * that we'll be somewhat limited in distinguishing flows (i.e.
5541 		 * only based on IP addresses, not based on port numbers), but
5542 		 * it's better than nothing. */
5543 		dnflow.f_id.dst_port = 0;
5544 		dnflow.f_id.src_port = 0;
5545 		dnflow.f_id.proto = 0;
5546 
5547 		dnflow.rule.info = r->dnpipe;
5548 		dnflow.rule.info |= IPFW_IS_DUMMYNET;
5549 		if (r->dnflags & PFRULE_DN_IS_PIPE)
5550 			dnflow.rule.info |= IPFW_IS_PIPE;
5551 
5552 		dnflow.f_id.extra = dnflow.rule.info;
5553 
5554 		dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5555 		dnflow.flags |= IPFW_ARGS_ETHER;
5556 		dnflow.ifp = kif->pfik_ifp;
5557 
5558 		switch (af) {
5559 		case AF_INET:
5560 			dnflow.f_id.addr_type = 4;
5561 			dnflow.f_id.src_ip = src->v4.s_addr;
5562 			dnflow.f_id.dst_ip = dst->v4.s_addr;
5563 			break;
5564 		case AF_INET6:
5565 			dnflow.flags |= IPFW_ARGS_IP6;
5566 			dnflow.f_id.addr_type = 6;
5567 			dnflow.f_id.src_ip6 = src->v6;
5568 			dnflow.f_id.dst_ip6 = dst->v6;
5569 			break;
5570 		}
5571 
5572 		PF_RULES_RUNLOCK();
5573 
5574 		mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5575 		ip_dn_io_ptr(m0, &dnflow);
5576 		if (*m0 != NULL)
5577 			pf_dummynet_flag_remove(m, mtag);
5578 	} else {
5579 		PF_RULES_RUNLOCK();
5580 	}
5581 
5582 	if (action == PF_PASS && bridge_to) {
5583 		pf_bridge_to(bridge_to->pfik_ifp, *m0);
5584 		*m0 = NULL; /* We've eaten the packet. */
5585 	}
5586 
5587 	return (action);
5588 }
5589 
5590 #define PF_TEST_ATTRIB(t, a)		\
5591 	if (t) {			\
5592 		r = a;			\
5593 		continue;		\
5594 	} else do {			\
5595 	} while (0)
5596 
5597 static __inline u_short
pf_rule_apply_nat(struct pf_test_ctx * ctx,struct pf_krule * r)5598 pf_rule_apply_nat(struct pf_test_ctx *ctx, struct pf_krule *r)
5599 {
5600 	struct pf_pdesc	*pd = ctx->pd;
5601 	u_short		 transerror;
5602 	u_int8_t	 nat_action;
5603 
5604 	if (r->rule_flag & PFRULE_AFTO) {
5605 		/* Don't translate if there was an old style NAT rule */
5606 		if (ctx->nr != NULL)
5607 			return (PFRES_TRANSLATE);
5608 
5609 		/* pass af-to rules, unsupported on match rules */
5610 		KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__));
5611 		/* XXX I can imagine scenarios where we have both NAT and RDR source tracking */
5612 		ctx->nat_pool = &(r->nat);
5613 		ctx->nr = r;
5614 		pd->naf = r->naf;
5615 		if (pf_get_transaddr_af(ctx->nr, pd) == -1) {
5616 			return (PFRES_TRANSLATE);
5617 		}
5618 		return (PFRES_MATCH);
5619 	} else if (r->rdr.cur || r->nat.cur) {
5620 		/* Don't translate if there was an old style NAT rule */
5621 		if (ctx->nr != NULL)
5622 			return (PFRES_TRANSLATE);
5623 
5624 		/* match/pass nat-to/rdr-to rules */
5625 		ctx->nr = r;
5626 		if (r->nat.cur) {
5627 			nat_action = PF_NAT;
5628 			ctx->nat_pool = &(r->nat);
5629 		} else {
5630 			nat_action = PF_RDR;
5631 			ctx->nat_pool = &(r->rdr);
5632 		}
5633 
5634 		transerror = pf_get_transaddr(ctx, ctx->nr,
5635 		    nat_action, ctx->nat_pool);
5636 		if (transerror == PFRES_MATCH) {
5637 			ctx->rewrite += pf_translate_compat(ctx);
5638 			return(PFRES_MATCH);
5639 		}
5640 		return (transerror);
5641 	}
5642 
5643 	return (PFRES_MAX);
5644 }
5645 
5646 enum pf_test_status
pf_match_rule(struct pf_test_ctx * ctx,struct pf_kruleset * ruleset,struct pf_krule_slist * match_rules)5647 pf_match_rule(struct pf_test_ctx *ctx, struct pf_kruleset *ruleset,
5648     struct pf_krule_slist *match_rules)
5649 {
5650 	struct pf_krule_item	*ri, *rt;
5651 	struct pf_krule		*r;
5652 	struct pf_krule		*save_a;
5653 	struct pf_kruleset	*save_aruleset;
5654 	struct pf_pdesc		*pd = ctx->pd;
5655 	u_short			 transerror;
5656 
5657 	r = TAILQ_FIRST(ruleset->rules[PF_RULESET_FILTER].active.ptr);
5658 	while (r != NULL) {
5659 		if (ctx->pd->related_rule) {
5660 			*ctx->rm = ctx->pd->related_rule;
5661 			break;
5662 		}
5663 		PF_TEST_ATTRIB(r->rule_flag & PFRULE_EXPIRED,
5664 		    TAILQ_NEXT(r, entries));
5665 		/* Don't count expired rule evaluations. */
5666 		pf_counter_u64_add(&r->evaluations, 1);
5667 		PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5668 			r->skip[PF_SKIP_IFP]);
5669 		PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5670 			r->skip[PF_SKIP_DIR]);
5671 		PF_TEST_ATTRIB(r->af && r->af != pd->af,
5672 			r->skip[PF_SKIP_AF]);
5673 		PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5674 			r->skip[PF_SKIP_PROTO]);
5675 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
5676 		    r->src.neg, pd->kif, M_GETFIB(pd->m)),
5677 			r->skip[PF_SKIP_SRC_ADDR]);
5678 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
5679 		    r->dst.neg, NULL, M_GETFIB(pd->m)),
5680 			r->skip[PF_SKIP_DST_ADDR]);
5681 		switch (pd->virtual_proto) {
5682 		case PF_VPROTO_FRAGMENT:
5683 			/* tcp/udp only. port_op always 0 in other cases */
5684 			PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5685 				TAILQ_NEXT(r, entries));
5686 			PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5687 				TAILQ_NEXT(r, entries));
5688 			/* icmp only. type/code always 0 in other cases */
5689 			PF_TEST_ATTRIB((r->type || r->code),
5690 				TAILQ_NEXT(r, entries));
5691 			/* tcp/udp only. {uid|gid}.op always 0 in other cases */
5692 			PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5693 				TAILQ_NEXT(r, entries));
5694 			break;
5695 
5696 		case IPPROTO_TCP:
5697 			PF_TEST_ATTRIB((r->flagset & tcp_get_flags(ctx->th))
5698 			    != r->flags,
5699 				TAILQ_NEXT(r, entries));
5700 			/* FALLTHROUGH */
5701 		case IPPROTO_SCTP:
5702 		case IPPROTO_UDP:
5703 			/* tcp/udp only. port_op always 0 in other cases */
5704 			PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5705 			    r->src.port[0], r->src.port[1], pd->nsport),
5706 				r->skip[PF_SKIP_SRC_PORT]);
5707 			/* tcp/udp only. port_op always 0 in other cases */
5708 			PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5709 			    r->dst.port[0], r->dst.port[1], pd->ndport),
5710 				r->skip[PF_SKIP_DST_PORT]);
5711 			/* tcp/udp only. uid.op always 0 in other cases */
5712 			PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5713 			    pf_socket_lookup(pd), 1)) &&
5714 			    !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5715 			    pd->lookup.uid),
5716 				TAILQ_NEXT(r, entries));
5717 			/* tcp/udp only. gid.op always 0 in other cases */
5718 			PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5719 			    pf_socket_lookup(pd), 1)) &&
5720 			    !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5721 			    pd->lookup.gid),
5722 				TAILQ_NEXT(r, entries));
5723 			break;
5724 
5725 		case IPPROTO_ICMP:
5726 		case IPPROTO_ICMPV6:
5727 			/* icmp only. type always 0 in other cases */
5728 			PF_TEST_ATTRIB(r->type && r->type != ctx->icmptype + 1,
5729 				TAILQ_NEXT(r, entries));
5730 			/* icmp only. type always 0 in other cases */
5731 			PF_TEST_ATTRIB(r->code && r->code != ctx->icmpcode + 1,
5732 				TAILQ_NEXT(r, entries));
5733 			break;
5734 
5735 		default:
5736 			break;
5737 		}
5738 		PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5739 			TAILQ_NEXT(r, entries));
5740 		PF_TEST_ATTRIB(r->prio &&
5741 		    !pf_match_ieee8021q_pcp(r->prio, pd->m),
5742 			TAILQ_NEXT(r, entries));
5743 		PF_TEST_ATTRIB(r->prob &&
5744 		    r->prob <= arc4random(),
5745 			TAILQ_NEXT(r, entries));
5746 		PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r,
5747 		    &ctx->tag, pd->pf_mtag ? pd->pf_mtag->tag : 0),
5748 			TAILQ_NEXT(r, entries));
5749 		PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) ==
5750 		   r->rcvifnot),
5751 			TAILQ_NEXT(r, entries));
5752 		PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5753 		    pd->virtual_proto != PF_VPROTO_FRAGMENT),
5754 			TAILQ_NEXT(r, entries));
5755 		PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5756 		    (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5757 		    pf_osfp_fingerprint(pd, ctx->th),
5758 		    r->os_fingerprint)),
5759 			TAILQ_NEXT(r, entries));
5760 		/* must be last! */
5761 		if (r->pktrate.limit) {
5762 			PF_TEST_ATTRIB((pf_check_threshold(&r->pktrate)),
5763 			    TAILQ_NEXT(r, entries));
5764 		}
5765 		/* FALLTHROUGH */
5766 		if (r->tag)
5767 			ctx->tag = r->tag;
5768 		if (r->anchor == NULL) {
5769 
5770 			if (r->rule_flag & PFRULE_ONCE) {
5771 				uint32_t	rule_flag;
5772 
5773 				rule_flag = r->rule_flag;
5774 				if ((rule_flag & PFRULE_EXPIRED) == 0 &&
5775 				    atomic_cmpset_int(&r->rule_flag, rule_flag,
5776 				    rule_flag | PFRULE_EXPIRED)) {
5777 					r->exptime = time_uptime;
5778 				} else {
5779 					r = TAILQ_NEXT(r, entries);
5780 					continue;
5781 				}
5782 			}
5783 
5784 			if (r->action == PF_MATCH) {
5785 				/*
5786 				 * Apply translations before increasing counters,
5787 				 * in case it fails.
5788 				 */
5789 				transerror = pf_rule_apply_nat(ctx, r);
5790 				switch (transerror) {
5791 				case PFRES_MATCH:
5792 					/* Translation action found in rule and applied successfully */
5793 				case PFRES_MAX:
5794 					/* No translation action found in rule */
5795 					break;
5796 				default:
5797 					/* Translation action found in rule but failed to apply */
5798 					REASON_SET(&ctx->reason, transerror);
5799 					return (PF_TEST_FAIL);
5800 				}
5801 				ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5802 				if (ri == NULL) {
5803 					REASON_SET(&ctx->reason, PFRES_MEMORY);
5804 					return (PF_TEST_FAIL);
5805 				}
5806 				ri->r = r;
5807 
5808 				if (SLIST_EMPTY(match_rules)) {
5809 					SLIST_INSERT_HEAD(match_rules, ri, entry);
5810 				} else {
5811 					SLIST_INSERT_AFTER(rt, ri, entry);
5812 				}
5813 				rt = ri;
5814 
5815 				pf_rule_to_actions(r, &pd->act);
5816 				if (r->log)
5817 					PFLOG_PACKET(r->action, PFRES_MATCH, r,
5818 					    ctx->a, ruleset, pd, 1, NULL);
5819 			} else {
5820 				/*
5821 				 * found matching r
5822 				 */
5823 				*ctx->rm = r;
5824 				/*
5825 				 * anchor, with ruleset, where r belongs to
5826 				 */
5827 				*ctx->am = ctx->a;
5828 				/*
5829 				 * ruleset where r belongs to
5830 				 */
5831 				*ctx->rsm = ruleset;
5832 				/*
5833 				 * ruleset, where anchor belongs to.
5834 				 */
5835 				ctx->arsm = ctx->aruleset;
5836 			}
5837 			if (pd->act.log & PF_LOG_MATCHES)
5838 				pf_log_matches(pd, r, ctx->a, ruleset, match_rules);
5839 			if (r->quick) {
5840 				ctx->test_status = PF_TEST_QUICK;
5841 				break;
5842 			}
5843 		} else {
5844 			save_a = ctx->a;
5845 			save_aruleset = ctx->aruleset;
5846 
5847 			ctx->a = r;			/* remember anchor */
5848 			ctx->aruleset = ruleset;	/* and its ruleset */
5849 			if (ctx->a->quick)
5850 				ctx->test_status = PF_TEST_QUICK;
5851 			/*
5852 			 * Note: we don't need to restore if we are not going
5853 			 * to continue with ruleset evaluation.
5854 			 */
5855 			if (pf_step_into_anchor(ctx, r, match_rules) != PF_TEST_OK) {
5856 				break;
5857 			}
5858 			ctx->a = save_a;
5859 			ctx->aruleset = save_aruleset;
5860 		}
5861 		r = TAILQ_NEXT(r, entries);
5862 	}
5863 
5864 
5865 	return (ctx->test_status);
5866 }
5867 
5868 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,u_short * reason,struct inpcb * inp,struct pf_krule_slist * match_rules)5869 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
5870     struct pf_pdesc *pd, struct pf_krule **am,
5871     struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp,
5872     struct pf_krule_slist *match_rules)
5873 {
5874 	struct pf_krule		*r = NULL;
5875 	struct pf_kruleset	*ruleset = NULL;
5876 	struct pf_test_ctx	 ctx;
5877 	u_short			 transerror;
5878 	int			 action = PF_PASS;
5879 	u_int16_t		 bproto_sum = 0, bip_sum = 0;
5880 	enum pf_test_status	 rv;
5881 
5882 	PF_RULES_RASSERT();
5883 
5884 	bzero(&ctx, sizeof(ctx));
5885 	ctx.tag = -1;
5886 	ctx.pd = pd;
5887 	ctx.rm = rm;
5888 	ctx.am = am;
5889 	ctx.rsm = rsm;
5890 	ctx.th = &pd->hdr.tcp;
5891 	ctx.reason = *reason;
5892 
5893 	pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
5894 	pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
5895 
5896 	if (inp != NULL) {
5897 		INP_LOCK_ASSERT(inp);
5898 		pd->lookup.uid = inp->inp_cred->cr_uid;
5899 		pd->lookup.gid = inp->inp_cred->cr_gid;
5900 		pd->lookup.done = 1;
5901 	}
5902 
5903 	if (pd->ip_sum)
5904 		bip_sum = *pd->ip_sum;
5905 
5906 	switch (pd->virtual_proto) {
5907 	case IPPROTO_TCP:
5908 		bproto_sum = ctx.th->th_sum;
5909 		pd->nsport = ctx.th->th_sport;
5910 		pd->ndport = ctx.th->th_dport;
5911 		break;
5912 	case IPPROTO_UDP:
5913 		bproto_sum = pd->hdr.udp.uh_sum;
5914 		pd->nsport = pd->hdr.udp.uh_sport;
5915 		pd->ndport = pd->hdr.udp.uh_dport;
5916 		break;
5917 	case IPPROTO_SCTP:
5918 		pd->nsport = pd->hdr.sctp.src_port;
5919 		pd->ndport = pd->hdr.sctp.dest_port;
5920 		break;
5921 #ifdef INET
5922 	case IPPROTO_ICMP:
5923 		MPASS(pd->af == AF_INET);
5924 		ctx.icmptype = pd->hdr.icmp.icmp_type;
5925 		ctx.icmpcode = pd->hdr.icmp.icmp_code;
5926 		ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5927 		    &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5928 		if (ctx.icmp_dir == PF_IN) {
5929 			pd->nsport = ctx.virtual_id;
5930 			pd->ndport = ctx.virtual_type;
5931 		} else {
5932 			pd->nsport = ctx.virtual_type;
5933 			pd->ndport = ctx.virtual_id;
5934 		}
5935 		break;
5936 #endif /* INET */
5937 #ifdef INET6
5938 	case IPPROTO_ICMPV6:
5939 		MPASS(pd->af == AF_INET6);
5940 		ctx.icmptype = pd->hdr.icmp6.icmp6_type;
5941 		ctx.icmpcode = pd->hdr.icmp6.icmp6_code;
5942 		ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5943 		    &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5944 		if (ctx.icmp_dir == PF_IN) {
5945 			pd->nsport = ctx.virtual_id;
5946 			pd->ndport = ctx.virtual_type;
5947 		} else {
5948 			pd->nsport = ctx.virtual_type;
5949 			pd->ndport = ctx.virtual_id;
5950 		}
5951 
5952 		break;
5953 #endif /* INET6 */
5954 	default:
5955 		pd->nsport = pd->ndport = 0;
5956 		break;
5957 	}
5958 	pd->osport = pd->nsport;
5959 	pd->odport = pd->ndport;
5960 
5961 	/* check packet for BINAT/NAT/RDR */
5962 	transerror = pf_get_translation(&ctx);
5963 	switch (transerror) {
5964 	default:
5965 		/* A translation error occurred. */
5966 		REASON_SET(&ctx.reason, transerror);
5967 		goto cleanup;
5968 	case PFRES_MAX:
5969 		/* No match. */
5970 		break;
5971 	case PFRES_MATCH:
5972 		KASSERT(ctx.sk != NULL, ("%s: null sk", __func__));
5973 		KASSERT(ctx.nk != NULL, ("%s: null nk", __func__));
5974 		if (ctx.nr->log) {
5975 			PFLOG_PACKET(ctx.nr->action, PFRES_MATCH, ctx.nr, ctx.a,
5976 			    ruleset, pd, 1, NULL);
5977 		}
5978 
5979 		ctx.rewrite += pf_translate_compat(&ctx);
5980 		ctx.nat_pool = &(ctx.nr->rdr);
5981 	}
5982 
5983 	*ctx.rm = &V_pf_default_rule;
5984 	if (ctx.nr && ctx.nr->natpass) {
5985 		r = ctx.nr;
5986 		ruleset = *ctx.rsm;
5987 	} else {
5988 		ruleset = &pf_main_ruleset;
5989 		rv = pf_match_rule(&ctx, ruleset, match_rules);
5990 		if (rv == PF_TEST_FAIL) {
5991 			/*
5992 			 * Reason has been set in pf_match_rule() already.
5993 			 */
5994 			goto cleanup;
5995 		}
5996 
5997 		r = *ctx.rm;			/* matching rule */
5998 		ctx.a = *ctx.am;		/* rule that defines an anchor containing 'r' */
5999 		ruleset = *ctx.rsm;		/* ruleset of the anchor defined by the rule 'a' */
6000 		ctx.aruleset = ctx.arsm;	/* ruleset of the 'a' rule itself */
6001 
6002 		/* apply actions for last matching pass/block rule */
6003 		pf_rule_to_actions(r, &pd->act);
6004 		transerror = pf_rule_apply_nat(&ctx, r);
6005 		switch (transerror) {
6006 		case PFRES_MATCH:
6007 			/* Translation action found in rule and applied successfully */
6008 		case PFRES_MAX:
6009 			/* No translation action found in rule */
6010 			break;
6011 		default:
6012 			/* Translation action found in rule but failed to apply */
6013 			REASON_SET(&ctx.reason, transerror);
6014 			goto cleanup;
6015 		}
6016 	}
6017 
6018 	REASON_SET(&ctx.reason, PFRES_MATCH);
6019 
6020 	if (r->log) {
6021 		if (ctx.rewrite)
6022 			m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6023 		PFLOG_PACKET(r->action, ctx.reason, r, ctx.a, ruleset, pd, 1, NULL);
6024 	}
6025 	if (pd->act.log & PF_LOG_MATCHES)
6026 		pf_log_matches(pd, r, ctx.a, ruleset, match_rules);
6027 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
6028 	   (r->action == PF_DROP) &&
6029 	    ((r->rule_flag & PFRULE_RETURNRST) ||
6030 	    (r->rule_flag & PFRULE_RETURNICMP) ||
6031 	    (r->rule_flag & PFRULE_RETURN))) {
6032 		pf_return(r, ctx.nr, pd, ctx.th, bproto_sum,
6033 		    bip_sum, &ctx.reason, r->rtableid);
6034 	}
6035 
6036 	if (r->action == PF_DROP)
6037 		goto cleanup;
6038 
6039 	if (ctx.tag > 0 && pf_tag_packet(pd, ctx.tag)) {
6040 		REASON_SET(&ctx.reason, PFRES_MEMORY);
6041 		goto cleanup;
6042 	}
6043 	if (pd->act.rtableid >= 0)
6044 		M_SETFIB(pd->m, pd->act.rtableid);
6045 
6046 	if (r->rt) {
6047 		/*
6048 		 * Set act.rt here instead of in pf_rule_to_actions() because
6049 		 * it is applied only from the last pass rule. For rules
6050 		 * with the prefer-ipv6-nexthop option act.rt_af is a hint
6051 		 * about AF of the forwarded packet and might be changed.
6052 		 */
6053 		pd->act.rt = r->rt;
6054 		if (r->rt == PF_REPLYTO)
6055 			pd->act.rt_af = pd->af;
6056 		else
6057 			pd->act.rt_af = pd->naf;
6058 		if ((transerror = pf_map_addr_sn(pd->af, r, pd->src,
6059 		    &pd->act.rt_addr, &pd->act.rt_af, &pd->act.rt_kif, NULL,
6060 		    &(r->route), PF_SN_ROUTE)) != PFRES_MATCH) {
6061 			REASON_SET(&ctx.reason, transerror);
6062 			goto cleanup;
6063 		}
6064 	}
6065 
6066 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
6067 	   (!ctx.state_icmp && (r->keep_state || ctx.nr != NULL ||
6068 	    (pd->flags & PFDESC_TCP_NORM)))) {
6069 		bool nat64;
6070 
6071 		action = pf_create_state(r, &ctx, sm, bproto_sum, bip_sum,
6072 		    match_rules);
6073 		ctx.sk = ctx.nk = NULL;
6074 		if (action != PF_PASS) {
6075 			pf_udp_mapping_release(ctx.udp_mapping);
6076 			if (r->log || (ctx.nr != NULL && ctx.nr->log) ||
6077 			    ctx.reason == PFRES_MEMORY)
6078 				pd->act.log |= PF_LOG_FORCE;
6079 			if (action == PF_DROP &&
6080 			    (r->rule_flag & PFRULE_RETURN))
6081 				pf_return(r, ctx.nr, pd, ctx.th,
6082 				    bproto_sum, bip_sum, &ctx.reason,
6083 				    pd->act.rtableid);
6084 			*reason = ctx.reason;
6085 			return (action);
6086 		}
6087 
6088 		nat64 = pd->af != pd->naf;
6089 		if (nat64) {
6090 			int			 ret;
6091 
6092 			if (ctx.sk == NULL)
6093 				ctx.sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
6094 			if (ctx.nk == NULL)
6095 				ctx.nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
6096 
6097 			if (pd->dir == PF_IN) {
6098 				ret = pf_translate(pd, &ctx.sk->addr[pd->didx],
6099 				    ctx.sk->port[pd->didx], &ctx.sk->addr[pd->sidx],
6100 				    ctx.sk->port[pd->sidx], ctx.virtual_type,
6101 				    ctx.icmp_dir);
6102 			} else {
6103 				ret = pf_translate(pd, &ctx.sk->addr[pd->sidx],
6104 				    ctx.sk->port[pd->sidx], &ctx.sk->addr[pd->didx],
6105 				    ctx.sk->port[pd->didx], ctx.virtual_type,
6106 				    ctx.icmp_dir);
6107 			}
6108 
6109 			if (ret < 0)
6110 				goto cleanup;
6111 
6112 			ctx.rewrite += ret;
6113 
6114 			if (ctx.rewrite && ctx.sk->af != ctx.nk->af)
6115 				action = PF_AFRT;
6116 		}
6117 	} else {
6118 		uma_zfree(V_pf_state_key_z, ctx.sk);
6119 		uma_zfree(V_pf_state_key_z, ctx.nk);
6120 		ctx.sk = ctx.nk = NULL;
6121 		pf_udp_mapping_release(ctx.udp_mapping);
6122 	}
6123 
6124 	/* copy back packet headers if we performed NAT operations */
6125 	if (ctx.rewrite)
6126 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6127 
6128 	if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
6129 	    pd->dir == PF_OUT &&
6130 	    V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) {
6131 		/*
6132 		 * We want the state created, but we dont
6133 		 * want to send this in case a partner
6134 		 * firewall has to know about it to allow
6135 		 * replies through it.
6136 		 */
6137 		*reason = ctx.reason;
6138 		return (PF_DEFER);
6139 	}
6140 
6141 	*reason = ctx.reason;
6142 	return (action);
6143 
6144 cleanup:
6145 	uma_zfree(V_pf_state_key_z, ctx.sk);
6146 	uma_zfree(V_pf_state_key_z, ctx.nk);
6147 	pf_udp_mapping_release(ctx.udp_mapping);
6148 	*reason = ctx.reason;
6149 
6150 	return (PF_DROP);
6151 }
6152 
6153 static int
pf_create_state(struct pf_krule * r,struct pf_test_ctx * ctx,struct pf_kstate ** sm,u_int16_t bproto_sum,u_int16_t bip_sum,struct pf_krule_slist * match_rules)6154 pf_create_state(struct pf_krule *r, struct pf_test_ctx *ctx,
6155     struct pf_kstate **sm, u_int16_t bproto_sum, u_int16_t bip_sum,
6156     struct pf_krule_slist *match_rules)
6157 {
6158 	struct pf_pdesc		*pd = ctx->pd;
6159 	struct pf_kstate	*s = NULL;
6160 	struct pf_ksrc_node	*sns[PF_SN_MAX] = { NULL };
6161 	/*
6162 	 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same
6163 	 *        but for PF_SN_NAT it is different. Don't try optimizing it,
6164 	 *        just store all 3 hashes.
6165 	 */
6166 	struct pf_srchash	*snhs[PF_SN_MAX] = { NULL };
6167 	struct tcphdr		*th = &pd->hdr.tcp;
6168 	u_int16_t		 mss = V_tcp_mssdflt;
6169 	u_short			 sn_reason;
6170 
6171 	/* check maximums */
6172 	if (r->max_states &&
6173 	    (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6174 		counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6175 		REASON_SET(&ctx->reason, PFRES_MAXSTATES);
6176 		goto csfailed;
6177 	}
6178 	/* src node for limits */
6179 	if ((r->rule_flag & PFRULE_SRCTRACK) &&
6180 	    (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af,
6181 	    NULL, NULL, pd->af, PF_SN_LIMIT)) != 0) {
6182 		REASON_SET(&ctx->reason, sn_reason);
6183 		goto csfailed;
6184 	}
6185 	/* src node for route-to rule */
6186 	if (r->rt) {
6187 		if ((r->route.opts & PF_POOL_STICKYADDR) &&
6188 		    (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src,
6189 		    pd->af, &pd->act.rt_addr, pd->act.rt_kif, pd->act.rt_af,
6190 		    PF_SN_ROUTE)) != 0) {
6191 			REASON_SET(&ctx->reason, sn_reason);
6192 			goto csfailed;
6193 		}
6194 	}
6195 	/* src node for translation rule */
6196 	if (ctx->nr != NULL) {
6197 		KASSERT(ctx->nat_pool != NULL, ("%s: nat_pool is NULL", __func__));
6198 		/*
6199 		 * The NAT addresses are chosen during ruleset parsing.
6200 		 * The new afto code stores post-nat addresses in nsaddr.
6201 		 * The old nat code (also used for new nat-to rules) creates
6202 		 * state keys and stores addresses in them.
6203 		 */
6204 		if ((ctx->nat_pool->opts & PF_POOL_STICKYADDR) &&
6205 		    (sn_reason = pf_insert_src_node(sns, snhs, ctx->nr,
6206 		    ctx->sk ? &(ctx->sk->addr[pd->sidx]) : pd->src, pd->af,
6207 		    ctx->nk ? &(ctx->nk->addr[1]) : &(pd->nsaddr), NULL,
6208 		    pd->naf, PF_SN_NAT)) != 0 ) {
6209 			REASON_SET(&ctx->reason, sn_reason);
6210 			goto csfailed;
6211 		}
6212 	}
6213 	s = pf_alloc_state(M_NOWAIT);
6214 	if (s == NULL) {
6215 		REASON_SET(&ctx->reason, PFRES_MEMORY);
6216 		goto csfailed;
6217 	}
6218 	s->rule = r;
6219 	s->nat_rule = ctx->nr;
6220 	s->anchor = ctx->a;
6221 	s->match_rules = *match_rules;
6222 	memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6223 
6224 	if (pd->act.allow_opts)
6225 		s->state_flags |= PFSTATE_ALLOWOPTS;
6226 	if (r->rule_flag & PFRULE_STATESLOPPY)
6227 		s->state_flags |= PFSTATE_SLOPPY;
6228 	if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6229 		s->state_flags |= PFSTATE_SCRUB_TCP;
6230 	if ((r->rule_flag & PFRULE_PFLOW) ||
6231 	    (ctx->nr != NULL && ctx->nr->rule_flag & PFRULE_PFLOW))
6232 		s->state_flags |= PFSTATE_PFLOW;
6233 
6234 	s->act.log = pd->act.log & PF_LOG_ALL;
6235 	s->sync_state = PFSYNC_S_NONE;
6236 	s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6237 
6238 	if (ctx->nr != NULL)
6239 		s->act.log |= ctx->nr->log & PF_LOG_ALL;
6240 	switch (pd->proto) {
6241 	case IPPROTO_TCP:
6242 		s->src.seqlo = ntohl(th->th_seq);
6243 		s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6244 		if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6245 		    r->keep_state == PF_STATE_MODULATE) {
6246 			/* Generate sequence number modulator */
6247 			if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6248 			    0)
6249 				s->src.seqdiff = 1;
6250 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6251 			    htonl(s->src.seqlo + s->src.seqdiff), 0);
6252 			ctx->rewrite = 1;
6253 		} else
6254 			s->src.seqdiff = 0;
6255 		if (tcp_get_flags(th) & TH_SYN) {
6256 			s->src.seqhi++;
6257 			s->src.wscale = pf_get_wscale(pd);
6258 		}
6259 		s->src.max_win = MAX(ntohs(th->th_win), 1);
6260 		if (s->src.wscale & PF_WSCALE_MASK) {
6261 			/* Remove scale factor from initial window */
6262 			int win = s->src.max_win;
6263 			win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6264 			s->src.max_win = (win - 1) >>
6265 			    (s->src.wscale & PF_WSCALE_MASK);
6266 		}
6267 		if (tcp_get_flags(th) & TH_FIN)
6268 			s->src.seqhi++;
6269 		s->dst.seqhi = 1;
6270 		s->dst.max_win = 1;
6271 		pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6272 		pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6273 		s->timeout = PFTM_TCP_FIRST_PACKET;
6274 		atomic_add_32(&V_pf_status.states_halfopen, 1);
6275 		break;
6276 	case IPPROTO_UDP:
6277 		pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6278 		pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6279 		s->timeout = PFTM_UDP_FIRST_PACKET;
6280 		break;
6281 	case IPPROTO_SCTP:
6282 		pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6283 		pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6284 		s->timeout = PFTM_SCTP_FIRST_PACKET;
6285 		break;
6286 	case IPPROTO_ICMP:
6287 #ifdef INET6
6288 	case IPPROTO_ICMPV6:
6289 #endif /* INET6 */
6290 		s->timeout = PFTM_ICMP_FIRST_PACKET;
6291 		break;
6292 	default:
6293 		pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6294 		pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6295 		s->timeout = PFTM_OTHER_FIRST_PACKET;
6296 	}
6297 
6298 	s->creation = s->expire = pf_get_uptime();
6299 
6300 	if (pd->proto == IPPROTO_TCP) {
6301 		if (s->state_flags & PFSTATE_SCRUB_TCP &&
6302 		    pf_normalize_tcp_init(pd, th, &s->src)) {
6303 			REASON_SET(&ctx->reason, PFRES_MEMORY);
6304 			goto csfailed;
6305 		}
6306 		if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6307 		    pf_normalize_tcp_stateful(pd, &ctx->reason, th, s,
6308 		    &s->src, &s->dst, &ctx->rewrite)) {
6309 			/* This really shouldn't happen!!! */
6310 			DPFPRINTF(PF_DEBUG_URGENT,
6311 			    "%s: tcp normalize failed on first "
6312 			     "pkt", __func__);
6313 			goto csfailed;
6314 		}
6315 	} else if (pd->proto == IPPROTO_SCTP) {
6316 		if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6317 			goto csfailed;
6318 		if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6319 			goto csfailed;
6320 	}
6321 	s->direction = pd->dir;
6322 
6323 	/*
6324 	 * sk/nk could already been setup by pf_get_translation().
6325 	 */
6326 	if (ctx->sk == NULL && ctx->nk == NULL) {
6327 		MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6328 		MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6329 		if (pf_state_key_setup(pd, pd->nsport, pd->ndport,
6330 		    &ctx->sk, &ctx->nk)) {
6331 			goto csfailed;
6332 		}
6333 	} else
6334 		KASSERT((ctx->sk != NULL && ctx->nk != NULL), ("%s: nr %p sk %p, nk %p",
6335 		    __func__, ctx->nr, ctx->sk, ctx->nk));
6336 
6337 	/* Swap sk/nk for PF_OUT. */
6338 	if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6339 	    (pd->dir == PF_IN) ? ctx->sk : ctx->nk,
6340 	    (pd->dir == PF_IN) ? ctx->nk : ctx->sk, s)) {
6341 		REASON_SET(&ctx->reason, PFRES_STATEINS);
6342 		goto drop;
6343 	} else
6344 		*sm = s;
6345 	ctx->sk = ctx->nk = NULL;
6346 
6347 	STATE_INC_COUNTERS(s);
6348 
6349 	/*
6350 	 * Lock order is important: first state, then source node.
6351 	 */
6352 	for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6353 		if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6354 			s->sns[sn_type] = sns[sn_type];
6355 			PF_HASHROW_UNLOCK(snhs[sn_type]);
6356 		}
6357 	}
6358 
6359 	if (ctx->tag > 0)
6360 		s->tag = ctx->tag;
6361 	if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6362 	    TH_SYN && r->keep_state == PF_STATE_SYNPROXY && pd->dir == PF_IN) {
6363 		pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6364 		pf_undo_nat(ctx->nr, pd, bip_sum);
6365 		s->src.seqhi = arc4random();
6366 		/* Find mss option */
6367 		int rtid = M_GETFIB(pd->m);
6368 		mss = pf_get_mss(pd);
6369 		mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6370 		mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6371 		s->src.mss = mss;
6372 		pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6373 		    th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6374 		    TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6375 		    pd->act.rtableid, &ctx->reason);
6376 		REASON_SET(&ctx->reason, PFRES_SYNPROXY);
6377 		return (PF_SYNPROXY_DROP);
6378 	}
6379 
6380 	s->udp_mapping = ctx->udp_mapping;
6381 
6382 	return (PF_PASS);
6383 
6384 csfailed:
6385 	uma_zfree(V_pf_state_key_z, ctx->sk);
6386 	uma_zfree(V_pf_state_key_z, ctx->nk);
6387 
6388 	for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6389 		if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6390 			if (--sns[sn_type]->states == 0 &&
6391 			    sns[sn_type]->expire == 0) {
6392 				pf_unlink_src_node(sns[sn_type]);
6393 				pf_free_src_node(sns[sn_type]);
6394 				counter_u64_add(
6395 				    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6396 			}
6397 			PF_HASHROW_UNLOCK(snhs[sn_type]);
6398 		}
6399 	}
6400 
6401 drop:
6402 	if (s != NULL) {
6403 		pf_src_tree_remove_state(s);
6404 		s->timeout = PFTM_UNLINKED;
6405 		pf_free_state(s);
6406 	}
6407 
6408 	return (PF_DROP);
6409 }
6410 
6411 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)6412 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
6413     struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
6414     int icmp_dir)
6415 {
6416 	/*
6417 	 * pf_translate() implements OpenBSD's "new" NAT approach.
6418 	 * We don't follow it, because it involves a breaking syntax change
6419 	 * (removing nat/rdr rules, moving it into regular pf rules.)
6420 	 * It also moves NAT processing to be done after normal rules evaluation
6421 	 * whereas in FreeBSD that's done before rules processing.
6422 	 *
6423 	 * We adopt the function only for nat64, and keep other NAT processing
6424 	 * before rules processing.
6425 	 */
6426 	int	rewrite = 0;
6427 	int	afto = pd->af != pd->naf;
6428 
6429 	MPASS(afto);
6430 
6431 	switch (pd->proto) {
6432 	case IPPROTO_TCP:
6433 	case IPPROTO_UDP:
6434 	case IPPROTO_SCTP:
6435 		if (afto || *pd->sport != sport) {
6436 			pf_change_ap(pd, pd->src, pd->sport,
6437 			    saddr, sport);
6438 			rewrite = 1;
6439 		}
6440 		if (afto || *pd->dport != dport) {
6441 			pf_change_ap(pd, pd->dst, pd->dport,
6442 			    daddr, dport);
6443 			rewrite = 1;
6444 		}
6445 		break;
6446 
6447 #ifdef INET
6448 	case IPPROTO_ICMP:
6449 		/* pf_translate() is also used when logging invalid packets */
6450 		if (pd->af != AF_INET)
6451 			return (0);
6452 
6453 		if (afto) {
6454 			if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
6455 				return (-1);
6456 			pd->proto = IPPROTO_ICMPV6;
6457 			rewrite = 1;
6458 		}
6459 		if (virtual_type == htons(ICMP_ECHO)) {
6460 			u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
6461 
6462 			if (icmpid != pd->hdr.icmp.icmp_id) {
6463 				pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6464 				    pd->hdr.icmp.icmp_cksum,
6465 				    pd->hdr.icmp.icmp_id, icmpid, 0);
6466 				pd->hdr.icmp.icmp_id = icmpid;
6467 				/* XXX TODO copyback. */
6468 				rewrite = 1;
6469 			}
6470 		}
6471 		break;
6472 #endif /* INET */
6473 
6474 #ifdef INET6
6475 	case IPPROTO_ICMPV6:
6476 		/* pf_translate() is also used when logging invalid packets */
6477 		if (pd->af != AF_INET6)
6478 			return (0);
6479 
6480 		if (afto) {
6481 			/* ip_sum will be recalculated in pf_translate_af */
6482 			if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
6483 				return (0);
6484 			pd->proto = IPPROTO_ICMP;
6485 			rewrite = 1;
6486 		}
6487 		break;
6488 #endif /* INET6 */
6489 
6490 	default:
6491 		break;
6492 	}
6493 
6494 	return (rewrite);
6495 }
6496 
6497 int
pf_translate_compat(struct pf_test_ctx * ctx)6498 pf_translate_compat(struct pf_test_ctx *ctx)
6499 {
6500 	struct pf_pdesc		*pd = ctx->pd;
6501 	struct pf_state_key	*nk = ctx->nk;
6502 	struct tcphdr		*th = &pd->hdr.tcp;
6503 	int 			 rewrite = 0;
6504 
6505 	KASSERT(ctx->sk != NULL, ("%s: null sk", __func__));
6506 	KASSERT(ctx->nk != NULL, ("%s: null nk", __func__));
6507 
6508 	switch (pd->virtual_proto) {
6509 	case IPPROTO_TCP:
6510 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6511 		    nk->port[pd->sidx] != pd->nsport) {
6512 			pf_change_ap(pd, pd->src, &th->th_sport,
6513 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
6514 			pd->sport = &th->th_sport;
6515 			pd->nsport = th->th_sport;
6516 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6517 		}
6518 
6519 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6520 		    nk->port[pd->didx] != pd->ndport) {
6521 			pf_change_ap(pd, pd->dst, &th->th_dport,
6522 			    &nk->addr[pd->didx], nk->port[pd->didx]);
6523 			pd->dport = &th->th_dport;
6524 			pd->ndport = th->th_dport;
6525 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6526 		}
6527 		rewrite++;
6528 		break;
6529 	case IPPROTO_UDP:
6530 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6531 		    nk->port[pd->sidx] != pd->nsport) {
6532 			pf_change_ap(pd, pd->src,
6533 			    &pd->hdr.udp.uh_sport,
6534 			    &nk->addr[pd->sidx],
6535 			    nk->port[pd->sidx]);
6536 			pd->sport = &pd->hdr.udp.uh_sport;
6537 			pd->nsport = pd->hdr.udp.uh_sport;
6538 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6539 		}
6540 
6541 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6542 		    nk->port[pd->didx] != pd->ndport) {
6543 			pf_change_ap(pd, pd->dst,
6544 			    &pd->hdr.udp.uh_dport,
6545 			    &nk->addr[pd->didx],
6546 			    nk->port[pd->didx]);
6547 			pd->dport = &pd->hdr.udp.uh_dport;
6548 			pd->ndport = pd->hdr.udp.uh_dport;
6549 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6550 		}
6551 		rewrite++;
6552 		break;
6553 	case IPPROTO_SCTP: {
6554 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6555 		    nk->port[pd->sidx] != pd->nsport) {
6556 			pf_change_ap(pd, pd->src,
6557 			    &pd->hdr.sctp.src_port,
6558 			    &nk->addr[pd->sidx],
6559 			    nk->port[pd->sidx]);
6560 			pd->sport = &pd->hdr.sctp.src_port;
6561 			pd->nsport = pd->hdr.sctp.src_port;
6562 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6563 		}
6564 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6565 		    nk->port[pd->didx] != pd->ndport) {
6566 			pf_change_ap(pd, pd->dst,
6567 			    &pd->hdr.sctp.dest_port,
6568 			    &nk->addr[pd->didx],
6569 			    nk->port[pd->didx]);
6570 			pd->dport = &pd->hdr.sctp.dest_port;
6571 			pd->ndport = pd->hdr.sctp.dest_port;
6572 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6573 		}
6574 		break;
6575 	}
6576 #ifdef INET
6577 	case IPPROTO_ICMP:
6578 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
6579 			pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
6580 			    nk->addr[pd->sidx].v4.s_addr, 0);
6581 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6582 		}
6583 
6584 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
6585 			pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
6586 			    nk->addr[pd->didx].v4.s_addr, 0);
6587 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6588 		}
6589 
6590 		if (ctx->virtual_type == htons(ICMP_ECHO) &&
6591 		    nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
6592 			pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6593 			    pd->hdr.icmp.icmp_cksum, pd->nsport,
6594 			    nk->port[pd->sidx], 0);
6595 			pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
6596 			pd->sport = &pd->hdr.icmp.icmp_id;
6597 		}
6598 		m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
6599 		break;
6600 #endif /* INET */
6601 #ifdef INET6
6602 	case IPPROTO_ICMPV6:
6603 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
6604 			pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
6605 			    &nk->addr[pd->sidx], 0);
6606 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6607 		}
6608 
6609 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
6610 			pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
6611 			    &nk->addr[pd->didx], 0);
6612 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6613 		}
6614 		rewrite++;
6615 		break;
6616 #endif /* INET */
6617 	default:
6618 		switch (pd->af) {
6619 #ifdef INET
6620 		case AF_INET:
6621 			if (PF_ANEQ(&pd->nsaddr,
6622 				&nk->addr[pd->sidx], AF_INET)) {
6623 				pf_change_a(&pd->src->v4.s_addr,
6624 				    pd->ip_sum,
6625 				    nk->addr[pd->sidx].v4.s_addr, 0);
6626 				pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6627 			}
6628 
6629 			if (PF_ANEQ(&pd->ndaddr,
6630 				&nk->addr[pd->didx], AF_INET)) {
6631 				pf_change_a(&pd->dst->v4.s_addr,
6632 				    pd->ip_sum,
6633 				    nk->addr[pd->didx].v4.s_addr, 0);
6634 				pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6635 			}
6636 			break;
6637 #endif /* INET */
6638 #ifdef INET6
6639 		case AF_INET6:
6640 			if (PF_ANEQ(&pd->nsaddr,
6641 				&nk->addr[pd->sidx], AF_INET6)) {
6642 				pf_addrcpy(&pd->nsaddr, &nk->addr[pd->sidx],
6643 				    pd->af);
6644 				pf_addrcpy(pd->src, &nk->addr[pd->sidx], pd->af);
6645 			}
6646 
6647 			if (PF_ANEQ(&pd->ndaddr,
6648 				&nk->addr[pd->didx], AF_INET6)) {
6649 				pf_addrcpy(&pd->ndaddr, &nk->addr[pd->didx],
6650 				    pd->af);
6651 				pf_addrcpy(pd->dst, &nk->addr[pd->didx],
6652 				    pd->af);
6653 			}
6654 			break;
6655 #endif /* INET6 */
6656 		}
6657 		break;
6658 	}
6659 	return (rewrite);
6660 }
6661 
6662 static int
pf_tcp_track_full(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,int * copyback,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6663 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd,
6664     u_short *reason, int *copyback, struct pf_state_peer *src,
6665     struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst)
6666 {
6667 	struct tcphdr		*th = &pd->hdr.tcp;
6668 	u_int16_t		 win = ntohs(th->th_win);
6669 	u_int32_t		 ack, end, data_end, seq, orig_seq;
6670 	u_int8_t		 sws, dws;
6671 	int			 ackskew;
6672 
6673 	if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
6674 		sws = src->wscale & PF_WSCALE_MASK;
6675 		dws = dst->wscale & PF_WSCALE_MASK;
6676 	} else
6677 		sws = dws = 0;
6678 
6679 	/*
6680 	 * Sequence tracking algorithm from Guido van Rooij's paper:
6681 	 *   http://www.madison-gurkha.com/publications/tcp_filtering/
6682 	 *	tcp_filtering.ps
6683 	 */
6684 
6685 	orig_seq = seq = ntohl(th->th_seq);
6686 	if (src->seqlo == 0) {
6687 		/* First packet from this end. Set its state */
6688 
6689 		if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
6690 		    src->scrub == NULL) {
6691 			if (pf_normalize_tcp_init(pd, th, src)) {
6692 				REASON_SET(reason, PFRES_MEMORY);
6693 				return (PF_DROP);
6694 			}
6695 		}
6696 
6697 		/* Deferred generation of sequence number modulator */
6698 		if (dst->seqdiff && !src->seqdiff) {
6699 			/* use random iss for the TCP server */
6700 			while ((src->seqdiff = arc4random() - seq) == 0)
6701 				;
6702 			ack = ntohl(th->th_ack) - dst->seqdiff;
6703 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6704 			    src->seqdiff), 0);
6705 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6706 			*copyback = 1;
6707 		} else {
6708 			ack = ntohl(th->th_ack);
6709 		}
6710 
6711 		end = seq + pd->p_len;
6712 		if (tcp_get_flags(th) & TH_SYN) {
6713 			end++;
6714 			if (dst->wscale & PF_WSCALE_FLAG) {
6715 				src->wscale = pf_get_wscale(pd);
6716 				if (src->wscale & PF_WSCALE_FLAG) {
6717 					/* Remove scale factor from initial
6718 					 * window */
6719 					sws = src->wscale & PF_WSCALE_MASK;
6720 					win = ((u_int32_t)win + (1 << sws) - 1)
6721 					    >> sws;
6722 					dws = dst->wscale & PF_WSCALE_MASK;
6723 				} else {
6724 					/* fixup other window */
6725 					dst->max_win = MIN(TCP_MAXWIN,
6726 					    (u_int32_t)dst->max_win <<
6727 					    (dst->wscale & PF_WSCALE_MASK));
6728 					/* in case of a retrans SYN|ACK */
6729 					dst->wscale = 0;
6730 				}
6731 			}
6732 		}
6733 		data_end = end;
6734 		if (tcp_get_flags(th) & TH_FIN)
6735 			end++;
6736 
6737 		src->seqlo = seq;
6738 		if (src->state < TCPS_SYN_SENT)
6739 			pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6740 
6741 		/*
6742 		 * May need to slide the window (seqhi may have been set by
6743 		 * the crappy stack check or if we picked up the connection
6744 		 * after establishment)
6745 		 */
6746 		if (src->seqhi == 1 ||
6747 		    SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
6748 			src->seqhi = end + MAX(1, dst->max_win << dws);
6749 		if (win > src->max_win)
6750 			src->max_win = win;
6751 
6752 	} else {
6753 		ack = ntohl(th->th_ack) - dst->seqdiff;
6754 		if (src->seqdiff) {
6755 			/* Modulate sequence numbers */
6756 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6757 			    src->seqdiff), 0);
6758 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6759 			*copyback = 1;
6760 		}
6761 		end = seq + pd->p_len;
6762 		if (tcp_get_flags(th) & TH_SYN)
6763 			end++;
6764 		data_end = end;
6765 		if (tcp_get_flags(th) & TH_FIN)
6766 			end++;
6767 	}
6768 
6769 	if ((tcp_get_flags(th) & TH_ACK) == 0) {
6770 		/* Let it pass through the ack skew check */
6771 		ack = dst->seqlo;
6772 	} else if ((ack == 0 &&
6773 	    (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
6774 	    /* broken tcp stacks do not set ack */
6775 	    (dst->state < TCPS_SYN_SENT)) {
6776 		/*
6777 		 * Many stacks (ours included) will set the ACK number in an
6778 		 * FIN|ACK if the SYN times out -- no sequence to ACK.
6779 		 */
6780 		ack = dst->seqlo;
6781 	}
6782 
6783 	if (seq == end) {
6784 		/* Ease sequencing restrictions on no data packets */
6785 		seq = src->seqlo;
6786 		data_end = end = seq;
6787 	}
6788 
6789 	ackskew = dst->seqlo - ack;
6790 
6791 	/*
6792 	 * Need to demodulate the sequence numbers in any TCP SACK options
6793 	 * (Selective ACK). We could optionally validate the SACK values
6794 	 * against the current ACK window, either forwards or backwards, but
6795 	 * I'm not confident that SACK has been implemented properly
6796 	 * everywhere. It wouldn't surprise me if several stacks accidentally
6797 	 * SACK too far backwards of previously ACKed data. There really aren't
6798 	 * any security implications of bad SACKing unless the target stack
6799 	 * doesn't validate the option length correctly. Someone trying to
6800 	 * spoof into a TCP connection won't bother blindly sending SACK
6801 	 * options anyway.
6802 	 */
6803 	if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
6804 		if (pf_modulate_sack(pd, th, dst))
6805 			*copyback = 1;
6806 	}
6807 
6808 #define	MAXACKWINDOW (0xffff + 1500)	/* 1500 is an arbitrary fudge factor */
6809 	if (SEQ_GEQ(src->seqhi, data_end) &&
6810 	    /* Last octet inside other's window space */
6811 	    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
6812 	    /* Retrans: not more than one window back */
6813 	    (ackskew >= -MAXACKWINDOW) &&
6814 	    /* Acking not more than one reassembled fragment backwards */
6815 	    (ackskew <= (MAXACKWINDOW << sws)) &&
6816 	    /* Acking not more than one window forward */
6817 	    ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
6818 	    (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) ||
6819 	    /* Require an exact/+1 sequence match on resets when possible */
6820 	    (SEQ_GEQ(orig_seq, src->seqlo - (dst->max_win << dws)) &&
6821 	    SEQ_LEQ(orig_seq, src->seqlo + 1) && ackskew == 0 &&
6822 	    (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)))) {
6823 		/* Allow resets to match sequence window if ack is perfect match */
6824 
6825 		if (dst->scrub || src->scrub) {
6826 			if (pf_normalize_tcp_stateful(pd, reason, th,
6827 			    state, src, dst, copyback))
6828 				return (PF_DROP);
6829 		}
6830 
6831 		/* update max window */
6832 		if (src->max_win < win)
6833 			src->max_win = win;
6834 		/* synchronize sequencing */
6835 		if (SEQ_GT(end, src->seqlo))
6836 			src->seqlo = end;
6837 		/* slide the window of what the other end can send */
6838 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6839 			dst->seqhi = ack + MAX((win << sws), 1);
6840 
6841 		/* update states */
6842 		if (tcp_get_flags(th) & TH_SYN)
6843 			if (src->state < TCPS_SYN_SENT)
6844 				pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6845 		if (tcp_get_flags(th) & TH_FIN)
6846 			if (src->state < TCPS_CLOSING)
6847 				pf_set_protostate(state, psrc, TCPS_CLOSING);
6848 		if (tcp_get_flags(th) & TH_ACK) {
6849 			if (dst->state == TCPS_SYN_SENT) {
6850 				pf_set_protostate(state, pdst,
6851 				    TCPS_ESTABLISHED);
6852 				if (src->state == TCPS_ESTABLISHED &&
6853 				    state->sns[PF_SN_LIMIT] != NULL &&
6854 				    pf_src_connlimit(state)) {
6855 					REASON_SET(reason, PFRES_SRCLIMIT);
6856 					return (PF_DROP);
6857 				}
6858 			} else if (dst->state == TCPS_CLOSING)
6859 				pf_set_protostate(state, pdst,
6860 				    TCPS_FIN_WAIT_2);
6861 		}
6862 		if (tcp_get_flags(th) & TH_RST)
6863 			pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6864 
6865 		/* update expire time */
6866 		state->expire = pf_get_uptime();
6867 		if (src->state >= TCPS_FIN_WAIT_2 &&
6868 		    dst->state >= TCPS_FIN_WAIT_2)
6869 			state->timeout = PFTM_TCP_CLOSED;
6870 		else if (src->state >= TCPS_CLOSING &&
6871 		    dst->state >= TCPS_CLOSING)
6872 			state->timeout = PFTM_TCP_FIN_WAIT;
6873 		else if (src->state < TCPS_ESTABLISHED ||
6874 		    dst->state < TCPS_ESTABLISHED)
6875 			state->timeout = PFTM_TCP_OPENING;
6876 		else if (src->state >= TCPS_CLOSING ||
6877 		    dst->state >= TCPS_CLOSING)
6878 			state->timeout = PFTM_TCP_CLOSING;
6879 		else
6880 			state->timeout = PFTM_TCP_ESTABLISHED;
6881 
6882 		/* Fall through to PASS packet */
6883 
6884 	} else if ((dst->state < TCPS_SYN_SENT ||
6885 		dst->state >= TCPS_FIN_WAIT_2 ||
6886 		src->state >= TCPS_FIN_WAIT_2) &&
6887 	    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
6888 	    /* Within a window forward of the originating packet */
6889 	    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
6890 	    /* Within a window backward of the originating packet */
6891 
6892 		/*
6893 		 * This currently handles three situations:
6894 		 *  1) Stupid stacks will shotgun SYNs before their peer
6895 		 *     replies.
6896 		 *  2) When PF catches an already established stream (the
6897 		 *     firewall rebooted, the state table was flushed, routes
6898 		 *     changed...)
6899 		 *  3) Packets get funky immediately after the connection
6900 		 *     closes (this should catch Solaris spurious ACK|FINs
6901 		 *     that web servers like to spew after a close)
6902 		 *
6903 		 * This must be a little more careful than the above code
6904 		 * since packet floods will also be caught here. We don't
6905 		 * update the TTL here to mitigate the damage of a packet
6906 		 * flood and so the same code can handle awkward establishment
6907 		 * and a loosened connection close.
6908 		 * In the establishment case, a correct peer response will
6909 		 * validate the connection, go through the normal state code
6910 		 * and keep updating the state TTL.
6911 		 */
6912 
6913 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
6914 			printf("pf: loose state match: ");
6915 			pf_print_state(state);
6916 			pf_print_flags(tcp_get_flags(th));
6917 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6918 			    "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
6919 			    pd->p_len, ackskew, (unsigned long long)state->packets[0],
6920 			    (unsigned long long)state->packets[1],
6921 			    pd->dir == PF_IN ? "in" : "out",
6922 			    pd->dir == state->direction ? "fwd" : "rev");
6923 		}
6924 
6925 		if (dst->scrub || src->scrub) {
6926 			if (pf_normalize_tcp_stateful(pd, reason, th,
6927 			    state, src, dst, copyback))
6928 				return (PF_DROP);
6929 		}
6930 
6931 		/* update max window */
6932 		if (src->max_win < win)
6933 			src->max_win = win;
6934 		/* synchronize sequencing */
6935 		if (SEQ_GT(end, src->seqlo))
6936 			src->seqlo = end;
6937 		/* slide the window of what the other end can send */
6938 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6939 			dst->seqhi = ack + MAX((win << sws), 1);
6940 
6941 		/*
6942 		 * Cannot set dst->seqhi here since this could be a shotgunned
6943 		 * SYN and not an already established connection.
6944 		 */
6945 
6946 		if (tcp_get_flags(th) & TH_FIN)
6947 			if (src->state < TCPS_CLOSING)
6948 				pf_set_protostate(state, psrc, TCPS_CLOSING);
6949 		if (tcp_get_flags(th) & TH_RST)
6950 			pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6951 
6952 		/* Fall through to PASS packet */
6953 
6954 	} else {
6955 		if (state->dst.state == TCPS_SYN_SENT &&
6956 		    state->src.state == TCPS_SYN_SENT) {
6957 			/* Send RST for state mismatches during handshake */
6958 			if (!(tcp_get_flags(th) & TH_RST))
6959 				pf_send_tcp(state->rule, pd->af,
6960 				    pd->dst, pd->src, th->th_dport,
6961 				    th->th_sport, ntohl(th->th_ack), 0,
6962 				    TH_RST, 0, 0,
6963 				    state->rule->return_ttl, M_SKIP_FIREWALL,
6964 				    0, 0, state->act.rtableid, reason);
6965 			src->seqlo = 0;
6966 			src->seqhi = 1;
6967 			src->max_win = 1;
6968 		} else if (V_pf_status.debug >= PF_DEBUG_MISC) {
6969 			printf("pf: BAD state: ");
6970 			pf_print_state(state);
6971 			pf_print_flags(tcp_get_flags(th));
6972 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6973 			    "pkts=%llu:%llu dir=%s,%s\n",
6974 			    seq, orig_seq, ack, pd->p_len, ackskew,
6975 			    (unsigned long long)state->packets[0],
6976 			    (unsigned long long)state->packets[1],
6977 			    pd->dir == PF_IN ? "in" : "out",
6978 			    pd->dir == state->direction ? "fwd" : "rev");
6979 			printf("pf: State failure on: %c %c %c %c | %c %c\n",
6980 			    SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
6981 			    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
6982 			    ' ': '2',
6983 			    (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
6984 			    (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
6985 			    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
6986 			    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
6987 		}
6988 		REASON_SET(reason, PFRES_BADSTATE);
6989 		return (PF_DROP);
6990 	}
6991 
6992 	return (PF_PASS);
6993 }
6994 
6995 static int
pf_tcp_track_sloppy(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6996 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd,
6997     u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst,
6998     u_int8_t psrc, u_int8_t pdst)
6999 {
7000 	struct tcphdr		*th = &pd->hdr.tcp;
7001 
7002 	if (tcp_get_flags(th) & TH_SYN)
7003 		if (src->state < TCPS_SYN_SENT)
7004 			pf_set_protostate(state, psrc, TCPS_SYN_SENT);
7005 	if (tcp_get_flags(th) & TH_FIN)
7006 		if (src->state < TCPS_CLOSING)
7007 			pf_set_protostate(state, psrc, TCPS_CLOSING);
7008 	if (tcp_get_flags(th) & TH_ACK) {
7009 		if (dst->state == TCPS_SYN_SENT) {
7010 			pf_set_protostate(state, pdst, TCPS_ESTABLISHED);
7011 			if (src->state == TCPS_ESTABLISHED &&
7012 			    state->sns[PF_SN_LIMIT] != NULL &&
7013 			    pf_src_connlimit(state)) {
7014 				REASON_SET(reason, PFRES_SRCLIMIT);
7015 				return (PF_DROP);
7016 			}
7017 		} else if (dst->state == TCPS_CLOSING) {
7018 			pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2);
7019 		} else if (src->state == TCPS_SYN_SENT &&
7020 		    dst->state < TCPS_SYN_SENT) {
7021 			/*
7022 			 * Handle a special sloppy case where we only see one
7023 			 * half of the connection. If there is a ACK after
7024 			 * the initial SYN without ever seeing a packet from
7025 			 * the destination, set the connection to established.
7026 			 */
7027 			pf_set_protostate(state, PF_PEER_BOTH,
7028 			    TCPS_ESTABLISHED);
7029 			dst->state = src->state = TCPS_ESTABLISHED;
7030 			if (state->sns[PF_SN_LIMIT] != NULL &&
7031 			    pf_src_connlimit(state)) {
7032 				REASON_SET(reason, PFRES_SRCLIMIT);
7033 				return (PF_DROP);
7034 			}
7035 		} else if (src->state == TCPS_CLOSING &&
7036 		    dst->state == TCPS_ESTABLISHED &&
7037 		    dst->seqlo == 0) {
7038 			/*
7039 			 * Handle the closing of half connections where we
7040 			 * don't see the full bidirectional FIN/ACK+ACK
7041 			 * handshake.
7042 			 */
7043 			pf_set_protostate(state, pdst, TCPS_CLOSING);
7044 		}
7045 	}
7046 	if (tcp_get_flags(th) & TH_RST)
7047 		pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
7048 
7049 	/* update expire time */
7050 	state->expire = pf_get_uptime();
7051 	if (src->state >= TCPS_FIN_WAIT_2 &&
7052 	    dst->state >= TCPS_FIN_WAIT_2)
7053 		state->timeout = PFTM_TCP_CLOSED;
7054 	else if (src->state >= TCPS_CLOSING &&
7055 	    dst->state >= TCPS_CLOSING)
7056 		state->timeout = PFTM_TCP_FIN_WAIT;
7057 	else if (src->state < TCPS_ESTABLISHED ||
7058 	    dst->state < TCPS_ESTABLISHED)
7059 		state->timeout = PFTM_TCP_OPENING;
7060 	else if (src->state >= TCPS_CLOSING ||
7061 	    dst->state >= TCPS_CLOSING)
7062 		state->timeout = PFTM_TCP_CLOSING;
7063 	else
7064 		state->timeout = PFTM_TCP_ESTABLISHED;
7065 
7066 	return (PF_PASS);
7067 }
7068 
7069 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate * state,u_short * reason)7070 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason)
7071 {
7072 	struct pf_state_key	*sk = state->key[pd->didx];
7073 	struct tcphdr		*th = &pd->hdr.tcp;
7074 
7075 	if (state->src.state == PF_TCPS_PROXY_SRC) {
7076 		if (pd->dir != state->direction) {
7077 			REASON_SET(reason, PFRES_SYNPROXY);
7078 			return (PF_SYNPROXY_DROP);
7079 		}
7080 		if (tcp_get_flags(th) & TH_SYN) {
7081 			if (ntohl(th->th_seq) != state->src.seqlo) {
7082 				REASON_SET(reason, PFRES_SYNPROXY);
7083 				return (PF_DROP);
7084 			}
7085 			pf_send_tcp(state->rule, pd->af, pd->dst,
7086 			    pd->src, th->th_dport, th->th_sport,
7087 			    state->src.seqhi, ntohl(th->th_seq) + 1,
7088 			    TH_SYN|TH_ACK, 0, state->src.mss, 0,
7089 			    M_SKIP_FIREWALL, 0, 0, state->act.rtableid,
7090 			    reason);
7091 			REASON_SET(reason, PFRES_SYNPROXY);
7092 			return (PF_SYNPROXY_DROP);
7093 		} else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
7094 		    (ntohl(th->th_ack) != state->src.seqhi + 1) ||
7095 		    (ntohl(th->th_seq) != state->src.seqlo + 1)) {
7096 			REASON_SET(reason, PFRES_SYNPROXY);
7097 			return (PF_DROP);
7098 		} else if (state->sns[PF_SN_LIMIT] != NULL &&
7099 		    pf_src_connlimit(state)) {
7100 			REASON_SET(reason, PFRES_SRCLIMIT);
7101 			return (PF_DROP);
7102 		} else
7103 			pf_set_protostate(state, PF_PEER_SRC,
7104 			    PF_TCPS_PROXY_DST);
7105 	}
7106 	if (state->src.state == PF_TCPS_PROXY_DST) {
7107 		if (pd->dir == state->direction) {
7108 			if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
7109 			    (ntohl(th->th_ack) != state->src.seqhi + 1) ||
7110 			    (ntohl(th->th_seq) != state->src.seqlo + 1)) {
7111 				REASON_SET(reason, PFRES_SYNPROXY);
7112 				return (PF_DROP);
7113 			}
7114 			state->src.max_win = MAX(ntohs(th->th_win), 1);
7115 			if (state->dst.seqhi == 1)
7116 				state->dst.seqhi = arc4random();
7117 			pf_send_tcp(state->rule, pd->af,
7118 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
7119 			    sk->port[pd->sidx], sk->port[pd->didx],
7120 			    state->dst.seqhi, 0, TH_SYN, 0,
7121 			    state->src.mss, 0,
7122 			    state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
7123 			    state->tag, 0, state->act.rtableid,
7124 			    reason);
7125 			REASON_SET(reason, PFRES_SYNPROXY);
7126 			return (PF_SYNPROXY_DROP);
7127 		} else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
7128 		    (TH_SYN|TH_ACK)) ||
7129 		    (ntohl(th->th_ack) != state->dst.seqhi + 1)) {
7130 			REASON_SET(reason, PFRES_SYNPROXY);
7131 			return (PF_DROP);
7132 		} else {
7133 			state->dst.max_win = MAX(ntohs(th->th_win), 1);
7134 			state->dst.seqlo = ntohl(th->th_seq);
7135 			pf_send_tcp(state->rule, pd->af, pd->dst,
7136 			    pd->src, th->th_dport, th->th_sport,
7137 			    ntohl(th->th_ack), ntohl(th->th_seq) + 1,
7138 			    TH_ACK, state->src.max_win, 0, 0, 0,
7139 			    state->tag, 0, state->act.rtableid,
7140 			    reason);
7141 			pf_send_tcp(state->rule, pd->af,
7142 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
7143 			    sk->port[pd->sidx], sk->port[pd->didx],
7144 			    state->src.seqhi + 1, state->src.seqlo + 1,
7145 			    TH_ACK, state->dst.max_win, 0, 0,
7146 			    M_SKIP_FIREWALL, 0, 0, state->act.rtableid,
7147 			    reason);
7148 			state->src.seqdiff = state->dst.seqhi -
7149 			    state->src.seqlo;
7150 			state->dst.seqdiff = state->src.seqhi -
7151 			    state->dst.seqlo;
7152 			state->src.seqhi = state->src.seqlo +
7153 			    state->dst.max_win;
7154 			state->dst.seqhi = state->dst.seqlo +
7155 			    state->src.max_win;
7156 			state->src.wscale = state->dst.wscale = 0;
7157 			pf_set_protostate(state, PF_PEER_BOTH,
7158 			    TCPS_ESTABLISHED);
7159 			REASON_SET(reason, PFRES_SYNPROXY);
7160 			return (PF_SYNPROXY_DROP);
7161 		}
7162 	}
7163 
7164 	return (PF_PASS);
7165 }
7166 
7167 static int
pf_test_state(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7168 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
7169 {
7170 	struct pf_state_key_cmp	 key;
7171 	int			 copyback = 0;
7172 	struct pf_state_peer	*src, *dst;
7173 	uint8_t			 psrc, pdst;
7174 	int			 action;
7175 
7176 	bzero(&key, sizeof(key));
7177 	key.af = pd->af;
7178 	key.proto = pd->virtual_proto;
7179 	pf_addrcpy(&key.addr[pd->sidx], pd->src, key.af);
7180 	pf_addrcpy(&key.addr[pd->didx], pd->dst, key.af);
7181 	key.port[pd->sidx] = pd->osport;
7182 	key.port[pd->didx] = pd->odport;
7183 
7184 	action = pf_find_state(pd, &key, state);
7185 	if (action != PF_MATCH)
7186 		return (action);
7187 
7188 	action = PF_PASS;
7189 	if (pd->dir == (*state)->direction) {
7190 		if (PF_REVERSED_KEY(*state, pd->af)) {
7191 			src = &(*state)->dst;
7192 			dst = &(*state)->src;
7193 			psrc = PF_PEER_DST;
7194 			pdst = PF_PEER_SRC;
7195 		} else {
7196 			src = &(*state)->src;
7197 			dst = &(*state)->dst;
7198 			psrc = PF_PEER_SRC;
7199 			pdst = PF_PEER_DST;
7200 		}
7201 	} else {
7202 		if (PF_REVERSED_KEY(*state, pd->af)) {
7203 			src = &(*state)->src;
7204 			dst = &(*state)->dst;
7205 			psrc = PF_PEER_SRC;
7206 			pdst = PF_PEER_DST;
7207 		} else {
7208 			src = &(*state)->dst;
7209 			dst = &(*state)->src;
7210 			psrc = PF_PEER_DST;
7211 			pdst = PF_PEER_SRC;
7212 		}
7213 	}
7214 
7215 	switch (pd->virtual_proto) {
7216 	case IPPROTO_TCP: {
7217 		struct tcphdr		*th = &pd->hdr.tcp;
7218 
7219 		if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS)
7220 			return (action);
7221 		if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) ||
7222 		    ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK &&
7223 		    pf_syncookie_check(pd) && pd->dir == PF_IN)) {
7224 			if ((*state)->src.state >= TCPS_FIN_WAIT_2 &&
7225 			    (*state)->dst.state >= TCPS_FIN_WAIT_2) {
7226 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
7227 					printf("pf: state reuse ");
7228 					pf_print_state(*state);
7229 					pf_print_flags(tcp_get_flags(th));
7230 					printf("\n");
7231 				}
7232 				/* XXX make sure it's the same direction ?? */
7233 				pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
7234 				pf_remove_state(*state);
7235 				*state = NULL;
7236 				return (PF_DROP);
7237 			} else if ((*state)->src.state >= TCPS_ESTABLISHED &&
7238 			    (*state)->dst.state >= TCPS_ESTABLISHED) {
7239 				/*
7240 				 * SYN matches existing state???
7241 				 * Typically happens when sender boots up after
7242 				 * sudden panic. Certain protocols (NFSv3) are
7243 				 * always using same port numbers. Challenge
7244 				 * ACK enables all parties (firewall and peers)
7245 				 * to get in sync again.
7246 				 */
7247 				pf_send_challenge_ack(pd, *state, src, dst, reason);
7248 				return (PF_DROP);
7249 			}
7250 		}
7251 		if ((*state)->state_flags & PFSTATE_SLOPPY) {
7252 			if (pf_tcp_track_sloppy(*state, pd, reason, src, dst,
7253 			    psrc, pdst) == PF_DROP)
7254 				return (PF_DROP);
7255 		} else {
7256 			int	 ret;
7257 
7258 			ret = pf_tcp_track_full(*state, pd, reason,
7259 			    &copyback, src, dst, psrc, pdst);
7260 			if (ret == PF_DROP)
7261 				return (PF_DROP);
7262 		}
7263 		break;
7264 	}
7265 	case IPPROTO_UDP:
7266 		/* update states */
7267 		if (src->state < PFUDPS_SINGLE)
7268 			pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7269 		if (dst->state == PFUDPS_SINGLE)
7270 			pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7271 
7272 		/* update expire time */
7273 		(*state)->expire = pf_get_uptime();
7274 		if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7275 			(*state)->timeout = PFTM_UDP_MULTIPLE;
7276 		else
7277 			(*state)->timeout = PFTM_UDP_SINGLE;
7278 		break;
7279 	case IPPROTO_SCTP:
7280 		if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7281 		    (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7282 		    pd->sctp_flags & PFDESC_SCTP_INIT) {
7283 			pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7284 			pf_remove_state(*state);
7285 			*state = NULL;
7286 			return (PF_DROP);
7287 		}
7288 
7289 		if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7290 			return (PF_DROP);
7291 
7292 		/* Track state. */
7293 		if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7294 			if (src->state < SCTP_COOKIE_WAIT) {
7295 				pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7296 				(*state)->timeout = PFTM_SCTP_OPENING;
7297 			}
7298 		}
7299 		if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7300 			MPASS(dst->scrub != NULL);
7301 			if (dst->scrub->pfss_v_tag == 0)
7302 				dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7303 		}
7304 
7305 		/*
7306 		 * Bind to the correct interface if we're if-bound. For multihomed
7307 		 * extra associations we don't know which interface that will be until
7308 		 * here, so we've inserted the state on V_pf_all. Fix that now.
7309 		 */
7310 		if ((*state)->kif == V_pfi_all &&
7311 		    (*state)->rule->rule_flag & PFRULE_IFBOUND)
7312 			(*state)->kif = pd->kif;
7313 
7314 		if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7315 			if (src->state < SCTP_ESTABLISHED) {
7316 				pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7317 				(*state)->timeout = PFTM_SCTP_ESTABLISHED;
7318 			}
7319 		}
7320 		if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7321 		    PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7322 			if (src->state < SCTP_SHUTDOWN_PENDING) {
7323 				pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7324 				(*state)->timeout = PFTM_SCTP_CLOSING;
7325 			}
7326 		}
7327 		if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7328 			pf_set_protostate(*state, psrc, SCTP_CLOSED);
7329 			(*state)->timeout = PFTM_SCTP_CLOSED;
7330 		}
7331 
7332 		(*state)->expire = pf_get_uptime();
7333 		break;
7334 	default:
7335 		/* update states */
7336 		if (src->state < PFOTHERS_SINGLE)
7337 			pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7338 		if (dst->state == PFOTHERS_SINGLE)
7339 			pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7340 
7341 		/* update expire time */
7342 		(*state)->expire = pf_get_uptime();
7343 		if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7344 			(*state)->timeout = PFTM_OTHER_MULTIPLE;
7345 		else
7346 			(*state)->timeout = PFTM_OTHER_SINGLE;
7347 		break;
7348 	}
7349 
7350 	/* translate source/destination address, if necessary */
7351 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7352 		struct pf_state_key	*nk;
7353 		int			 afto, sidx, didx;
7354 
7355 		if (PF_REVERSED_KEY(*state, pd->af))
7356 			nk = (*state)->key[pd->sidx];
7357 		else
7358 			nk = (*state)->key[pd->didx];
7359 
7360 		afto = pd->af != nk->af;
7361 
7362 		if (afto && (*state)->direction == PF_IN) {
7363 			sidx = pd->didx;
7364 			didx = pd->sidx;
7365 		} else {
7366 			sidx = pd->sidx;
7367 			didx = pd->didx;
7368 		}
7369 
7370 		if (afto) {
7371 			pf_addrcpy(&pd->nsaddr, &nk->addr[sidx], nk->af);
7372 			pf_addrcpy(&pd->ndaddr, &nk->addr[didx], nk->af);
7373 			pd->naf = nk->af;
7374 			action = PF_AFRT;
7375 		}
7376 
7377 		if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7378 		    nk->port[sidx] != pd->osport)
7379 			pf_change_ap(pd, pd->src, pd->sport,
7380 			    &nk->addr[sidx], nk->port[sidx]);
7381 
7382 		if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7383 		    nk->port[didx] != pd->odport)
7384 			pf_change_ap(pd, pd->dst, pd->dport,
7385 			    &nk->addr[didx], nk->port[didx]);
7386 
7387 		copyback = 1;
7388 	}
7389 
7390 	if (copyback && pd->hdrlen > 0)
7391 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
7392 
7393 	return (action);
7394 }
7395 
7396 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)7397 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
7398     u_short *reason)
7399 {
7400 	struct pf_state_peer	*src;
7401 	if (pd->dir == state->direction) {
7402 		if (PF_REVERSED_KEY(state, pd->af))
7403 			src = &state->dst;
7404 		else
7405 			src = &state->src;
7406 	} else {
7407 		if (PF_REVERSED_KEY(state, pd->af))
7408 			src = &state->src;
7409 		else
7410 			src = &state->dst;
7411 	}
7412 
7413 	if (src->scrub != NULL) {
7414 		/*
7415 		 * Allow tags to be updated, in case of retransmission of
7416 		 * INIT/INIT_ACK chunks.
7417 		 **/
7418 		if (src->state <= SCTP_COOKIE_WAIT)
7419 			src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
7420 		else  if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
7421 			return (PF_DROP);
7422 	}
7423 
7424 	return (PF_PASS);
7425 }
7426 
7427 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)7428 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
7429 {
7430 	struct pf_sctp_endpoint key;
7431 	struct pf_sctp_endpoint *ep;
7432 	struct pf_state_key *sks = s->key[PF_SK_STACK];
7433 	struct pf_sctp_source *i, *tmp;
7434 
7435 	if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
7436 		return;
7437 
7438 	PF_SCTP_ENDPOINTS_LOCK();
7439 
7440 	key.v_tag = s->dst.scrub->pfss_v_tag;
7441 	ep  = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7442 	if (ep != NULL) {
7443 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7444 			if (pf_addr_cmp(&i->addr,
7445 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
7446 			    s->key[PF_SK_WIRE]->af) == 0) {
7447 				SDT_PROBE3(pf, sctp, multihome, remove,
7448 				    key.v_tag, s, i);
7449 				TAILQ_REMOVE(&ep->sources, i, entry);
7450 				free(i, M_PFTEMP);
7451 				break;
7452 			}
7453 		}
7454 
7455 		if (TAILQ_EMPTY(&ep->sources)) {
7456 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7457 			free(ep, M_PFTEMP);
7458 		}
7459 	}
7460 
7461 	/* Other direction. */
7462 	key.v_tag = s->src.scrub->pfss_v_tag;
7463 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7464 	if (ep != NULL) {
7465 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7466 			if (pf_addr_cmp(&i->addr,
7467 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
7468 			    s->key[PF_SK_WIRE]->af) == 0) {
7469 				SDT_PROBE3(pf, sctp, multihome, remove,
7470 				    key.v_tag, s, i);
7471 				TAILQ_REMOVE(&ep->sources, i, entry);
7472 				free(i, M_PFTEMP);
7473 				break;
7474 			}
7475 		}
7476 
7477 		if (TAILQ_EMPTY(&ep->sources)) {
7478 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7479 			free(ep, M_PFTEMP);
7480 		}
7481 	}
7482 
7483 	PF_SCTP_ENDPOINTS_UNLOCK();
7484 }
7485 
7486 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)7487 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
7488 {
7489 	struct pf_sctp_endpoint key = {
7490 		.v_tag = v_tag,
7491 	};
7492 	struct pf_sctp_source *i;
7493 	struct pf_sctp_endpoint *ep;
7494 	int count;
7495 
7496 	PF_SCTP_ENDPOINTS_LOCK();
7497 
7498 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7499 	if (ep == NULL) {
7500 		ep = malloc(sizeof(struct pf_sctp_endpoint),
7501 		    M_PFTEMP, M_NOWAIT);
7502 		if (ep == NULL) {
7503 			PF_SCTP_ENDPOINTS_UNLOCK();
7504 			return;
7505 		}
7506 
7507 		ep->v_tag = v_tag;
7508 		TAILQ_INIT(&ep->sources);
7509 		RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7510 	}
7511 
7512 	/* Avoid inserting duplicates. */
7513 	count = 0;
7514 	TAILQ_FOREACH(i, &ep->sources, entry) {
7515 		count++;
7516 		if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
7517 			PF_SCTP_ENDPOINTS_UNLOCK();
7518 			return;
7519 		}
7520 	}
7521 
7522 	/* Limit the number of addresses per endpoint. */
7523 	if (count >= PF_SCTP_MAX_ENDPOINTS) {
7524 		PF_SCTP_ENDPOINTS_UNLOCK();
7525 		return;
7526 	}
7527 
7528 	i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
7529 	if (i == NULL) {
7530 		PF_SCTP_ENDPOINTS_UNLOCK();
7531 		return;
7532 	}
7533 
7534 	i->af = pd->af;
7535 	memcpy(&i->addr, a, sizeof(*a));
7536 	TAILQ_INSERT_TAIL(&ep->sources, i, entry);
7537 	SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
7538 
7539 	PF_SCTP_ENDPOINTS_UNLOCK();
7540 }
7541 
7542 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)7543 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
7544     struct pf_kstate *s, int action)
7545 {
7546 	struct pf_krule_slist		 match_rules;
7547 	struct pf_sctp_multihome_job	*j, *tmp;
7548 	struct pf_sctp_source		*i;
7549 	int			 ret;
7550 	struct pf_kstate	*sm = NULL;
7551 	struct pf_krule		*ra = NULL;
7552 	struct pf_krule		*r = &V_pf_default_rule;
7553 	struct pf_kruleset	*rs = NULL;
7554 	u_short			 reason;
7555 	bool do_extra = true;
7556 
7557 	PF_RULES_RLOCK_TRACKER;
7558 
7559 again:
7560 	TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
7561 		if (s == NULL || action != PF_PASS)
7562 			goto free;
7563 
7564 		/* Confirm we don't recurse here. */
7565 		MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
7566 
7567 		switch (j->op) {
7568 		case  SCTP_ADD_IP_ADDRESS: {
7569 			uint32_t v_tag = pd->sctp_initiate_tag;
7570 
7571 			if (v_tag == 0) {
7572 				if (s->direction == pd->dir)
7573 					v_tag = s->src.scrub->pfss_v_tag;
7574 				else
7575 					v_tag = s->dst.scrub->pfss_v_tag;
7576 			}
7577 
7578 			/*
7579 			 * Avoid duplicating states. We'll already have
7580 			 * created a state based on the source address of
7581 			 * the packet, but SCTP endpoints may also list this
7582 			 * address again in the INIT(_ACK) parameters.
7583 			 */
7584 			if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
7585 				break;
7586 			}
7587 
7588 			j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
7589 			PF_RULES_RLOCK();
7590 			sm = NULL;
7591 			if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) {
7592 				j->pd.related_rule = s->rule;
7593 			}
7594 			SLIST_INIT(&match_rules);
7595 			ret = pf_test_rule(&r, &sm,
7596 			    &j->pd, &ra, &rs, &reason, NULL, &match_rules);
7597 			/*
7598 			 * Nothing to do about match rules, the processed
7599 			 * packet has already increased the counters.
7600 			 */
7601 			pf_free_match_rules(&match_rules);
7602 			PF_RULES_RUNLOCK();
7603 			SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
7604 			if (ret != PF_DROP && sm != NULL) {
7605 				/* Inherit v_tag values. */
7606 				if (sm->direction == s->direction) {
7607 					sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7608 					sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7609 				} else {
7610 					sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7611 					sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7612 				}
7613 				PF_STATE_UNLOCK(sm);
7614 			} else {
7615 				/* If we try duplicate inserts? */
7616 				break;
7617 			}
7618 
7619 			/* Only add the address if we've actually allowed the state. */
7620 			pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
7621 
7622 			if (! do_extra) {
7623 				break;
7624 			}
7625 			/*
7626 			 * We need to do this for each of our source addresses.
7627 			 * Find those based on the verification tag.
7628 			 */
7629 			struct pf_sctp_endpoint key = {
7630 				.v_tag = pd->hdr.sctp.v_tag,
7631 			};
7632 			struct pf_sctp_endpoint *ep;
7633 
7634 			PF_SCTP_ENDPOINTS_LOCK();
7635 			ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7636 			if (ep == NULL) {
7637 				PF_SCTP_ENDPOINTS_UNLOCK();
7638 				break;
7639 			}
7640 			MPASS(ep != NULL);
7641 
7642 			TAILQ_FOREACH(i, &ep->sources, entry) {
7643 				struct pf_sctp_multihome_job *nj;
7644 
7645 				/* SCTP can intermingle IPv4 and IPv6. */
7646 				if (i->af != pd->af)
7647 					continue;
7648 
7649 				nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
7650 				if (! nj) {
7651 					continue;
7652 				}
7653 				memcpy(&nj->pd, &j->pd, sizeof(j->pd));
7654 				memcpy(&nj->src, &j->src, sizeof(nj->src));
7655 				nj->pd.src = &nj->src;
7656 				// New destination address!
7657 				memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
7658 				nj->pd.dst = &nj->dst;
7659 				nj->pd.m = j->pd.m;
7660 				nj->op = j->op;
7661 
7662 				MPASS(nj->pd.pcksum);
7663 				TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
7664 			}
7665 			PF_SCTP_ENDPOINTS_UNLOCK();
7666 
7667 			break;
7668 		}
7669 		case SCTP_DEL_IP_ADDRESS: {
7670 			struct pf_state_key_cmp key;
7671 			uint8_t psrc;
7672 			int action;
7673 
7674 			bzero(&key, sizeof(key));
7675 			key.af = j->pd.af;
7676 			key.proto = IPPROTO_SCTP;
7677 			if (j->pd.dir == PF_IN)	{	/* wire side, straight */
7678 				pf_addrcpy(&key.addr[0], j->pd.src, key.af);
7679 				pf_addrcpy(&key.addr[1], j->pd.dst, key.af);
7680 				key.port[0] = j->pd.hdr.sctp.src_port;
7681 				key.port[1] = j->pd.hdr.sctp.dest_port;
7682 			} else {			/* stack side, reverse */
7683 				pf_addrcpy(&key.addr[1], j->pd.src, key.af);
7684 				pf_addrcpy(&key.addr[0], j->pd.dst, key.af);
7685 				key.port[1] = j->pd.hdr.sctp.src_port;
7686 				key.port[0] = j->pd.hdr.sctp.dest_port;
7687 			}
7688 
7689 			action = pf_find_state(&j->pd, &key, &sm);
7690 			if (action == PF_MATCH) {
7691 				PF_STATE_LOCK_ASSERT(sm);
7692 				if (j->pd.dir == sm->direction) {
7693 					psrc = PF_PEER_SRC;
7694 				} else {
7695 					psrc = PF_PEER_DST;
7696 				}
7697 				pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
7698 				sm->timeout = PFTM_SCTP_CLOSING;
7699 				PF_STATE_UNLOCK(sm);
7700 			}
7701 			break;
7702 		default:
7703 			panic("Unknown op %#x", j->op);
7704 		}
7705 	}
7706 
7707 	free:
7708 		TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
7709 		free(j, M_PFTEMP);
7710 	}
7711 
7712 	/* We may have inserted extra work while processing the list. */
7713 	if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
7714 		do_extra = false;
7715 		goto again;
7716 	}
7717 }
7718 
7719 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)7720 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
7721 {
7722 	int			 off = 0;
7723 	struct pf_sctp_multihome_job	*job;
7724 
7725 	SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op);
7726 
7727 	while (off < len) {
7728 		struct sctp_paramhdr h;
7729 
7730 		if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL,
7731 		    pd->af))
7732 			return (PF_DROP);
7733 
7734 		/* Parameters are at least 4 bytes. */
7735 		if (ntohs(h.param_length) < 4)
7736 			return (PF_DROP);
7737 
7738 		SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type),
7739 		    ntohs(h.param_length));
7740 
7741 		switch (ntohs(h.param_type)) {
7742 		case  SCTP_IPV4_ADDRESS: {
7743 			struct in_addr t;
7744 
7745 			if (ntohs(h.param_length) !=
7746 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
7747 				return (PF_DROP);
7748 
7749 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7750 			    NULL, pd->af))
7751 				return (PF_DROP);
7752 
7753 			if (in_nullhost(t))
7754 				t.s_addr = pd->src->v4.s_addr;
7755 
7756 			/*
7757 			 * We hold the state lock (idhash) here, which means
7758 			 * that we can't acquire the keyhash, or we'll get a
7759 			 * LOR (and potentially double-lock things too). We also
7760 			 * can't release the state lock here, so instead we'll
7761 			 * enqueue this for async handling.
7762 			 * There's a relatively small race here, in that a
7763 			 * packet using the new addresses could arrive already,
7764 			 * but that's just though luck for it.
7765 			 */
7766 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7767 			if (! job)
7768 				return (PF_DROP);
7769 
7770 			SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op);
7771 
7772 			memcpy(&job->pd, pd, sizeof(*pd));
7773 
7774 			// New source address!
7775 			memcpy(&job->src, &t, sizeof(t));
7776 			job->pd.src = &job->src;
7777 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
7778 			job->pd.dst = &job->dst;
7779 			job->pd.m = pd->m;
7780 			job->op = op;
7781 
7782 			MPASS(job->pd.pcksum);
7783 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7784 			break;
7785 		}
7786 #ifdef INET6
7787 		case SCTP_IPV6_ADDRESS: {
7788 			struct in6_addr t;
7789 
7790 			if (ntohs(h.param_length) !=
7791 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
7792 				return (PF_DROP);
7793 
7794 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7795 			    NULL, pd->af))
7796 				return (PF_DROP);
7797 			if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
7798 				break;
7799 			if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
7800 				memcpy(&t, &pd->src->v6, sizeof(t));
7801 
7802 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7803 			if (! job)
7804 				return (PF_DROP);
7805 
7806 			SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op);
7807 
7808 			memcpy(&job->pd, pd, sizeof(*pd));
7809 			memcpy(&job->src, &t, sizeof(t));
7810 			job->pd.src = &job->src;
7811 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
7812 			job->pd.dst = &job->dst;
7813 			job->pd.m = pd->m;
7814 			job->op = op;
7815 
7816 			MPASS(job->pd.pcksum);
7817 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7818 			break;
7819 		}
7820 #endif /* INET6 */
7821 		case SCTP_ADD_IP_ADDRESS: {
7822 			int ret;
7823 			struct sctp_asconf_paramhdr ah;
7824 
7825 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7826 			    NULL, pd->af))
7827 				return (PF_DROP);
7828 
7829 			ret = pf_multihome_scan(start + off + sizeof(ah),
7830 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
7831 			    SCTP_ADD_IP_ADDRESS);
7832 			if (ret != PF_PASS)
7833 				return (ret);
7834 			break;
7835 		}
7836 		case SCTP_DEL_IP_ADDRESS: {
7837 			int ret;
7838 			struct sctp_asconf_paramhdr ah;
7839 
7840 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7841 			    NULL, pd->af))
7842 				return (PF_DROP);
7843 			ret = pf_multihome_scan(start + off + sizeof(ah),
7844 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
7845 			    SCTP_DEL_IP_ADDRESS);
7846 			if (ret != PF_PASS)
7847 				return (ret);
7848 			break;
7849 		}
7850 		default:
7851 			break;
7852 		}
7853 
7854 		off += roundup(ntohs(h.param_length), 4);
7855 	}
7856 
7857 	return (PF_PASS);
7858 }
7859 
7860 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)7861 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
7862 {
7863 	start += sizeof(struct sctp_init_chunk);
7864 	len -= sizeof(struct sctp_init_chunk);
7865 
7866 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7867 }
7868 
7869 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)7870 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
7871 {
7872 	start += sizeof(struct sctp_asconf_chunk);
7873 	len -= sizeof(struct sctp_asconf_chunk);
7874 
7875 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7876 }
7877 
7878 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)7879 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
7880     struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir,
7881     int *iidx, int multi, int inner)
7882 {
7883 	int	 action, direction = pd->dir;
7884 
7885 	key->af = pd->af;
7886 	key->proto = pd->proto;
7887 	if (icmp_dir == PF_IN) {
7888 		*iidx = pd->sidx;
7889 		key->port[pd->sidx] = icmpid;
7890 		key->port[pd->didx] = type;
7891 	} else {
7892 		*iidx = pd->didx;
7893 		key->port[pd->sidx] = type;
7894 		key->port[pd->didx] = icmpid;
7895 	}
7896 	if (pf_state_key_addr_setup(pd, key, multi))
7897 		return (PF_DROP);
7898 
7899 	action = pf_find_state(pd, key, state);
7900 	if (action != PF_MATCH)
7901 		return (action);
7902 
7903 	if ((*state)->state_flags & PFSTATE_SLOPPY)
7904 		return (-1);
7905 
7906 	/* Is this ICMP message flowing in right direction? */
7907 	if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af)
7908 		direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ?
7909 		    PF_IN : PF_OUT;
7910 	else
7911 		direction = (*state)->direction;
7912 	if ((*state)->rule->type &&
7913 	    (((!inner && direction == pd->dir) ||
7914 	    (inner && direction != pd->dir)) ?
7915 	    PF_IN : PF_OUT) != icmp_dir) {
7916 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
7917 			printf("pf: icmp type %d in wrong direction (%d): ",
7918 			    ntohs(type), icmp_dir);
7919 			pf_print_state(*state);
7920 			printf("\n");
7921 		}
7922 		PF_STATE_UNLOCK(*state);
7923 		*state = NULL;
7924 		return (PF_DROP);
7925 	}
7926 	return (-1);
7927 }
7928 
7929 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7930 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
7931     u_short *reason)
7932 {
7933 	struct pf_addr  *saddr = pd->src, *daddr = pd->dst;
7934 	u_int16_t	*icmpsum, virtual_id, virtual_type;
7935 	u_int8_t	 icmptype, icmpcode;
7936 	int		 icmp_dir, iidx, ret;
7937 	struct pf_state_key_cmp key;
7938 #ifdef INET
7939 	u_int16_t	 icmpid;
7940 #endif /* INET*/
7941 
7942 	MPASS(*state == NULL);
7943 
7944 	bzero(&key, sizeof(key));
7945 	switch (pd->proto) {
7946 #ifdef INET
7947 	case IPPROTO_ICMP:
7948 		icmptype = pd->hdr.icmp.icmp_type;
7949 		icmpcode = pd->hdr.icmp.icmp_code;
7950 		icmpid = pd->hdr.icmp.icmp_id;
7951 		icmpsum = &pd->hdr.icmp.icmp_cksum;
7952 		break;
7953 #endif /* INET */
7954 #ifdef INET6
7955 	case IPPROTO_ICMPV6:
7956 		icmptype = pd->hdr.icmp6.icmp6_type;
7957 		icmpcode = pd->hdr.icmp6.icmp6_code;
7958 #ifdef INET
7959 		icmpid = pd->hdr.icmp6.icmp6_id;
7960 #endif /* INET */
7961 		icmpsum = &pd->hdr.icmp6.icmp6_cksum;
7962 		break;
7963 #endif /* INET6 */
7964 	default:
7965 		panic("unhandled proto %d", pd->proto);
7966 	}
7967 
7968 	if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id,
7969 	    &virtual_type) == 0) {
7970 		/*
7971 		 * ICMP query/reply message not related to a TCP/UDP/SCTP
7972 		 * packet. Search for an ICMP state.
7973 		 */
7974 		ret = pf_icmp_state_lookup(&key, pd, state, virtual_id,
7975 		    virtual_type, icmp_dir, &iidx, 0, 0);
7976 		/* IPv6? try matching a multicast address */
7977 		if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) {
7978 			MPASS(*state == NULL);
7979 			ret = pf_icmp_state_lookup(&key, pd, state,
7980 			    virtual_id, virtual_type,
7981 			    icmp_dir, &iidx, 1, 0);
7982 		}
7983 		if (ret >= 0) {
7984 			MPASS(*state == NULL);
7985 			return (ret);
7986 		}
7987 
7988 		(*state)->expire = pf_get_uptime();
7989 		(*state)->timeout = PFTM_ICMP_ERROR_REPLY;
7990 
7991 		/* translate source/destination address, if necessary */
7992 		if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7993 			struct pf_state_key	*nk;
7994 			int			 afto, sidx, didx;
7995 
7996 			if (PF_REVERSED_KEY(*state, pd->af))
7997 				nk = (*state)->key[pd->sidx];
7998 			else
7999 				nk = (*state)->key[pd->didx];
8000 
8001 			afto = pd->af != nk->af;
8002 
8003 			if (afto && (*state)->direction == PF_IN) {
8004 				sidx = pd->didx;
8005 				didx = pd->sidx;
8006 				iidx = !iidx;
8007 			} else {
8008 				sidx = pd->sidx;
8009 				didx = pd->didx;
8010 			}
8011 
8012 			switch (pd->af) {
8013 #ifdef INET
8014 			case AF_INET:
8015 #ifdef INET6
8016 				if (afto) {
8017 					if (pf_translate_icmp_af(AF_INET6,
8018 					    &pd->hdr.icmp))
8019 						return (PF_DROP);
8020 					pd->proto = IPPROTO_ICMPV6;
8021 				}
8022 #endif /* INET6 */
8023 				if (!afto &&
8024 				    PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
8025 					pf_change_a(&saddr->v4.s_addr,
8026 					    pd->ip_sum,
8027 					    nk->addr[sidx].v4.s_addr,
8028 					    0);
8029 
8030 				if (!afto && PF_ANEQ(pd->dst,
8031 				    &nk->addr[didx], AF_INET))
8032 					pf_change_a(&daddr->v4.s_addr,
8033 					    pd->ip_sum,
8034 					    nk->addr[didx].v4.s_addr, 0);
8035 
8036 				if (nk->port[iidx] !=
8037 				    pd->hdr.icmp.icmp_id) {
8038 					pd->hdr.icmp.icmp_cksum =
8039 					    pf_cksum_fixup(
8040 					    pd->hdr.icmp.icmp_cksum, icmpid,
8041 					    nk->port[iidx], 0);
8042 					pd->hdr.icmp.icmp_id =
8043 					    nk->port[iidx];
8044 				}
8045 
8046 				m_copyback(pd->m, pd->off, ICMP_MINLEN,
8047 				    (caddr_t )&pd->hdr.icmp);
8048 				break;
8049 #endif /* INET */
8050 #ifdef INET6
8051 			case AF_INET6:
8052 #ifdef INET
8053 				if (afto) {
8054 					if (pf_translate_icmp_af(AF_INET,
8055 					    &pd->hdr.icmp6))
8056 						return (PF_DROP);
8057 					pd->proto = IPPROTO_ICMP;
8058 				}
8059 #endif /* INET */
8060 				if (!afto &&
8061 				    PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
8062 					pf_change_a6(saddr,
8063 					    &pd->hdr.icmp6.icmp6_cksum,
8064 					    &nk->addr[sidx], 0);
8065 
8066 				if (!afto && PF_ANEQ(pd->dst,
8067 				    &nk->addr[didx], AF_INET6))
8068 					pf_change_a6(daddr,
8069 					    &pd->hdr.icmp6.icmp6_cksum,
8070 					    &nk->addr[didx], 0);
8071 
8072 				if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
8073 					pd->hdr.icmp6.icmp6_id =
8074 					    nk->port[iidx];
8075 
8076 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8077 				    (caddr_t )&pd->hdr.icmp6);
8078 				break;
8079 #endif /* INET6 */
8080 			}
8081 			if (afto) {
8082 				pf_addrcpy(&pd->nsaddr, &nk->addr[sidx],
8083 				    nk->af);
8084 				pf_addrcpy(&pd->ndaddr, &nk->addr[didx],
8085 				    nk->af);
8086 				pd->naf = nk->af;
8087 				return (PF_AFRT);
8088 			}
8089 		}
8090 		return (PF_PASS);
8091 
8092 	} else {
8093 		/*
8094 		 * ICMP error message in response to a TCP/UDP packet.
8095 		 * Extract the inner TCP/UDP header and search for that state.
8096 		 */
8097 
8098 		struct pf_pdesc	pd2;
8099 		bzero(&pd2, sizeof pd2);
8100 #ifdef INET
8101 		struct ip	h2;
8102 #endif /* INET */
8103 #ifdef INET6
8104 		struct ip6_hdr	h2_6;
8105 #endif /* INET6 */
8106 		int		ipoff2 = 0;
8107 
8108 		pd2.af = pd->af;
8109 		pd2.dir = pd->dir;
8110 		/* Payload packet is from the opposite direction. */
8111 		pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
8112 		pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
8113 		pd2.m = pd->m;
8114 		pd2.pf_mtag = pd->pf_mtag;
8115 		pd2.kif = pd->kif;
8116 		switch (pd->af) {
8117 #ifdef INET
8118 		case AF_INET:
8119 			/* offset of h2 in mbuf chain */
8120 			ipoff2 = pd->off + ICMP_MINLEN;
8121 
8122 			if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
8123 			    reason, pd2.af)) {
8124 				DPFPRINTF(PF_DEBUG_MISC,
8125 				    "pf: ICMP error message too short "
8126 				    "(ip)");
8127 				return (PF_DROP);
8128 			}
8129 			/*
8130 			 * ICMP error messages don't refer to non-first
8131 			 * fragments
8132 			 */
8133 			if (h2.ip_off & htons(IP_OFFMASK)) {
8134 				REASON_SET(reason, PFRES_FRAG);
8135 				return (PF_DROP);
8136 			}
8137 
8138 			/* offset of protocol header that follows h2 */
8139 			pd2.off = ipoff2;
8140 			if (pf_walk_header(&pd2, &h2, reason) != PF_PASS)
8141 				return (PF_DROP);
8142 
8143 			pd2.tot_len = ntohs(h2.ip_len);
8144 			pd2.ttl = h2.ip_ttl;
8145 			pd2.src = (struct pf_addr *)&h2.ip_src;
8146 			pd2.dst = (struct pf_addr *)&h2.ip_dst;
8147 			pd2.ip_sum = &h2.ip_sum;
8148 			break;
8149 #endif /* INET */
8150 #ifdef INET6
8151 		case AF_INET6:
8152 			ipoff2 = pd->off + sizeof(struct icmp6_hdr);
8153 
8154 			if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
8155 			    reason, pd2.af)) {
8156 				DPFPRINTF(PF_DEBUG_MISC,
8157 				    "pf: ICMP error message too short "
8158 				    "(ip6)");
8159 				return (PF_DROP);
8160 			}
8161 			pd2.off = ipoff2;
8162 			if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS)
8163 				return (PF_DROP);
8164 
8165 			pd2.tot_len = ntohs(h2_6.ip6_plen) +
8166 			    sizeof(struct ip6_hdr);
8167 			pd2.ttl = h2_6.ip6_hlim;
8168 			pd2.src = (struct pf_addr *)&h2_6.ip6_src;
8169 			pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
8170 			pd2.ip_sum = NULL;
8171 			break;
8172 #endif /* INET6 */
8173 		default:
8174 			unhandled_af(pd->af);
8175 		}
8176 
8177 		if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
8178 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
8179 				printf("pf: BAD ICMP %d:%d outer dst: ",
8180 				    icmptype, icmpcode);
8181 				pf_print_host(pd->src, 0, pd->af);
8182 				printf(" -> ");
8183 				pf_print_host(pd->dst, 0, pd->af);
8184 				printf(" inner src: ");
8185 				pf_print_host(pd2.src, 0, pd2.af);
8186 				printf(" -> ");
8187 				pf_print_host(pd2.dst, 0, pd2.af);
8188 				printf("\n");
8189 			}
8190 			REASON_SET(reason, PFRES_BADSTATE);
8191 			return (PF_DROP);
8192 		}
8193 
8194 		switch (pd2.proto) {
8195 		case IPPROTO_TCP: {
8196 			struct tcphdr		*th = &pd2.hdr.tcp;
8197 			u_int32_t		 seq;
8198 			struct pf_state_peer	*src, *dst;
8199 			u_int8_t		 dws;
8200 			int			 copyback = 0;
8201 			int			 action;
8202 
8203 			/*
8204 			 * Only the first 8 bytes of the TCP header can be
8205 			 * expected. Don't access any TCP header fields after
8206 			 * th_seq, an ackskew test is not possible.
8207 			 */
8208 			if (!pf_pull_hdr(pd->m, pd2.off, th, 8, reason,
8209 			    pd2.af)) {
8210 				DPFPRINTF(PF_DEBUG_MISC,
8211 				    "pf: ICMP error message too short "
8212 				    "(tcp)");
8213 				return (PF_DROP);
8214 			}
8215 			pd2.pcksum = &pd2.hdr.tcp.th_sum;
8216 
8217 			key.af = pd2.af;
8218 			key.proto = IPPROTO_TCP;
8219 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8220 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8221 			key.port[pd2.sidx] = th->th_sport;
8222 			key.port[pd2.didx] = th->th_dport;
8223 
8224 			action = pf_find_state(&pd2, &key, state);
8225 			if (action != PF_MATCH)
8226 				return (action);
8227 
8228 			if (pd->dir == (*state)->direction) {
8229 				if (PF_REVERSED_KEY(*state, pd->af)) {
8230 					src = &(*state)->src;
8231 					dst = &(*state)->dst;
8232 				} else {
8233 					src = &(*state)->dst;
8234 					dst = &(*state)->src;
8235 				}
8236 			} else {
8237 				if (PF_REVERSED_KEY(*state, pd->af)) {
8238 					src = &(*state)->dst;
8239 					dst = &(*state)->src;
8240 				} else {
8241 					src = &(*state)->src;
8242 					dst = &(*state)->dst;
8243 				}
8244 			}
8245 
8246 			if (src->wscale && dst->wscale)
8247 				dws = dst->wscale & PF_WSCALE_MASK;
8248 			else
8249 				dws = 0;
8250 
8251 			/* Demodulate sequence number */
8252 			seq = ntohl(th->th_seq) - src->seqdiff;
8253 			if (src->seqdiff) {
8254 				pf_change_a(&th->th_seq, icmpsum,
8255 				    htonl(seq), 0);
8256 				copyback = 1;
8257 			}
8258 
8259 			if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
8260 			    (!SEQ_GEQ(src->seqhi, seq) ||
8261 			    !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
8262 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
8263 					printf("pf: BAD ICMP %d:%d ",
8264 					    icmptype, icmpcode);
8265 					pf_print_host(pd->src, 0, pd->af);
8266 					printf(" -> ");
8267 					pf_print_host(pd->dst, 0, pd->af);
8268 					printf(" state: ");
8269 					pf_print_state(*state);
8270 					printf(" seq=%u\n", seq);
8271 				}
8272 				REASON_SET(reason, PFRES_BADSTATE);
8273 				return (PF_DROP);
8274 			} else {
8275 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
8276 					printf("pf: OK ICMP %d:%d ",
8277 					    icmptype, icmpcode);
8278 					pf_print_host(pd->src, 0, pd->af);
8279 					printf(" -> ");
8280 					pf_print_host(pd->dst, 0, pd->af);
8281 					printf(" state: ");
8282 					pf_print_state(*state);
8283 					printf(" seq=%u\n", seq);
8284 				}
8285 			}
8286 
8287 			/* translate source/destination address, if necessary */
8288 			if ((*state)->key[PF_SK_WIRE] !=
8289 			    (*state)->key[PF_SK_STACK]) {
8290 
8291 				struct pf_state_key	*nk;
8292 
8293 				if (PF_REVERSED_KEY(*state, pd->af))
8294 					nk = (*state)->key[pd->sidx];
8295 				else
8296 					nk = (*state)->key[pd->didx];
8297 
8298 #if defined(INET) && defined(INET6)
8299 				int		 afto, sidx, didx;
8300 
8301 				afto = pd->af != nk->af;
8302 
8303 				if (afto && (*state)->direction == PF_IN) {
8304 					sidx = pd2.didx;
8305 					didx = pd2.sidx;
8306 				} else {
8307 					sidx = pd2.sidx;
8308 					didx = pd2.didx;
8309 				}
8310 
8311 				if (afto) {
8312 					if (pf_translate_icmp_af(nk->af,
8313 					    &pd->hdr.icmp))
8314 						return (PF_DROP);
8315 					m_copyback(pd->m, pd->off,
8316 					    sizeof(struct icmp6_hdr),
8317 					    (c_caddr_t)&pd->hdr.icmp6);
8318 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8319 					    &pd2, &nk->addr[sidx],
8320 					    &nk->addr[didx], pd->af,
8321 					    nk->af))
8322 						return (PF_DROP);
8323 					pf_addrcpy(&pd->nsaddr,
8324 					    &nk->addr[pd2.sidx], nk->af);
8325 					pf_addrcpy(&pd->ndaddr,
8326 					    &nk->addr[pd2.didx], nk->af);
8327 					if (nk->af == AF_INET) {
8328 						pd->proto = IPPROTO_ICMP;
8329 					} else {
8330 						pd->proto = IPPROTO_ICMPV6;
8331 						/*
8332 						 * IPv4 becomes IPv6 so we must
8333 						 * copy IPv4 src addr to least
8334 						 * 32bits in IPv6 address to
8335 						 * keep traceroute/icmp
8336 						 * working.
8337 						 */
8338 						pd->nsaddr.addr32[3] =
8339 						    pd->src->addr32[0];
8340 					}
8341 					pd->naf = pd2.naf = nk->af;
8342 					pf_change_ap(&pd2, pd2.src, &th->th_sport,
8343 					    &nk->addr[pd2.sidx], nk->port[sidx]);
8344 					pf_change_ap(&pd2, pd2.dst, &th->th_dport,
8345 					    &nk->addr[pd2.didx], nk->port[didx]);
8346 					m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th);
8347 					return (PF_AFRT);
8348 				}
8349 #endif /* INET && INET6 */
8350 
8351 				if (PF_ANEQ(pd2.src,
8352 				    &nk->addr[pd2.sidx], pd2.af) ||
8353 				    nk->port[pd2.sidx] != th->th_sport)
8354 					pf_change_icmp(pd2.src, &th->th_sport,
8355 					    daddr, &nk->addr[pd2.sidx],
8356 					    nk->port[pd2.sidx], NULL,
8357 					    pd2.ip_sum, icmpsum,
8358 					    pd->ip_sum, 0, pd2.af);
8359 
8360 				if (PF_ANEQ(pd2.dst,
8361 				    &nk->addr[pd2.didx], pd2.af) ||
8362 				    nk->port[pd2.didx] != th->th_dport)
8363 					pf_change_icmp(pd2.dst, &th->th_dport,
8364 					    saddr, &nk->addr[pd2.didx],
8365 					    nk->port[pd2.didx], NULL,
8366 					    pd2.ip_sum, icmpsum,
8367 					    pd->ip_sum, 0, pd2.af);
8368 				copyback = 1;
8369 			}
8370 
8371 			if (copyback) {
8372 				switch (pd2.af) {
8373 #ifdef INET
8374 				case AF_INET:
8375 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8376 					    (caddr_t )&pd->hdr.icmp);
8377 					m_copyback(pd->m, ipoff2, sizeof(h2),
8378 					    (caddr_t )&h2);
8379 					break;
8380 #endif /* INET */
8381 #ifdef INET6
8382 				case AF_INET6:
8383 					m_copyback(pd->m, pd->off,
8384 					    sizeof(struct icmp6_hdr),
8385 					    (caddr_t )&pd->hdr.icmp6);
8386 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8387 					    (caddr_t )&h2_6);
8388 					break;
8389 #endif /* INET6 */
8390 				default:
8391 					unhandled_af(pd->af);
8392 				}
8393 				m_copyback(pd->m, pd2.off, 8, (caddr_t)th);
8394 			}
8395 
8396 			return (PF_PASS);
8397 			break;
8398 		}
8399 		case IPPROTO_UDP: {
8400 			struct udphdr		*uh = &pd2.hdr.udp;
8401 			int			 action;
8402 
8403 			if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh),
8404 			    reason, pd2.af)) {
8405 				DPFPRINTF(PF_DEBUG_MISC,
8406 				    "pf: ICMP error message too short "
8407 				    "(udp)");
8408 				return (PF_DROP);
8409 			}
8410 			pd2.pcksum = &pd2.hdr.udp.uh_sum;
8411 
8412 			key.af = pd2.af;
8413 			key.proto = IPPROTO_UDP;
8414 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8415 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8416 			key.port[pd2.sidx] = uh->uh_sport;
8417 			key.port[pd2.didx] = uh->uh_dport;
8418 
8419 			action = pf_find_state(&pd2, &key, state);
8420 			if (action != PF_MATCH)
8421 				return (action);
8422 
8423 			/* translate source/destination address, if necessary */
8424 			if ((*state)->key[PF_SK_WIRE] !=
8425 			    (*state)->key[PF_SK_STACK]) {
8426 				struct pf_state_key	*nk;
8427 
8428 				if (PF_REVERSED_KEY(*state, pd->af))
8429 					nk = (*state)->key[pd->sidx];
8430 				else
8431 					nk = (*state)->key[pd->didx];
8432 
8433 #if defined(INET) && defined(INET6)
8434 				int	 afto, sidx, didx;
8435 
8436 				afto = pd->af != nk->af;
8437 
8438 				if (afto && (*state)->direction == PF_IN) {
8439 					sidx = pd2.didx;
8440 					didx = pd2.sidx;
8441 				} else {
8442 					sidx = pd2.sidx;
8443 					didx = pd2.didx;
8444 				}
8445 
8446 				if (afto) {
8447 					if (pf_translate_icmp_af(nk->af,
8448 					    &pd->hdr.icmp))
8449 						return (PF_DROP);
8450 					m_copyback(pd->m, pd->off,
8451 					    sizeof(struct icmp6_hdr),
8452 					    (c_caddr_t)&pd->hdr.icmp6);
8453 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8454 					    &pd2, &nk->addr[sidx],
8455 					    &nk->addr[didx], pd->af,
8456 					    nk->af))
8457 						return (PF_DROP);
8458 					pf_addrcpy(&pd->nsaddr,
8459 					    &nk->addr[pd2.sidx], nk->af);
8460 					pf_addrcpy(&pd->ndaddr,
8461 					    &nk->addr[pd2.didx], nk->af);
8462 					if (nk->af == AF_INET) {
8463 						pd->proto = IPPROTO_ICMP;
8464 					} else {
8465 						pd->proto = IPPROTO_ICMPV6;
8466 						/*
8467 						 * IPv4 becomes IPv6 so we must
8468 						 * copy IPv4 src addr to least
8469 						 * 32bits in IPv6 address to
8470 						 * keep traceroute/icmp
8471 						 * working.
8472 						 */
8473 						pd->nsaddr.addr32[3] =
8474 						    pd->src->addr32[0];
8475 					}
8476 					pd->naf = pd2.naf = nk->af;
8477 					pf_change_ap(&pd2, pd2.src, &uh->uh_sport,
8478 					    &nk->addr[pd2.sidx], nk->port[sidx]);
8479 					pf_change_ap(&pd2, pd2.dst, &uh->uh_dport,
8480 					    &nk->addr[pd2.didx], nk->port[didx]);
8481 					m_copyback(pd2.m, pd2.off, sizeof(*uh),
8482 					    (c_caddr_t)uh);
8483 					return (PF_AFRT);
8484 				}
8485 #endif /* INET && INET6 */
8486 
8487 				if (PF_ANEQ(pd2.src,
8488 				    &nk->addr[pd2.sidx], pd2.af) ||
8489 				    nk->port[pd2.sidx] != uh->uh_sport)
8490 					pf_change_icmp(pd2.src, &uh->uh_sport,
8491 					    daddr, &nk->addr[pd2.sidx],
8492 					    nk->port[pd2.sidx], &uh->uh_sum,
8493 					    pd2.ip_sum, icmpsum,
8494 					    pd->ip_sum, 1, pd2.af);
8495 
8496 				if (PF_ANEQ(pd2.dst,
8497 				    &nk->addr[pd2.didx], pd2.af) ||
8498 				    nk->port[pd2.didx] != uh->uh_dport)
8499 					pf_change_icmp(pd2.dst, &uh->uh_dport,
8500 					    saddr, &nk->addr[pd2.didx],
8501 					    nk->port[pd2.didx], &uh->uh_sum,
8502 					    pd2.ip_sum, icmpsum,
8503 					    pd->ip_sum, 1, pd2.af);
8504 
8505 				switch (pd2.af) {
8506 #ifdef INET
8507 				case AF_INET:
8508 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8509 					    (caddr_t )&pd->hdr.icmp);
8510 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8511 					break;
8512 #endif /* INET */
8513 #ifdef INET6
8514 				case AF_INET6:
8515 					m_copyback(pd->m, pd->off,
8516 					    sizeof(struct icmp6_hdr),
8517 					    (caddr_t )&pd->hdr.icmp6);
8518 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8519 					    (caddr_t )&h2_6);
8520 					break;
8521 #endif /* INET6 */
8522 				}
8523 				m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh);
8524 			}
8525 			return (PF_PASS);
8526 			break;
8527 		}
8528 #ifdef INET
8529 		case IPPROTO_SCTP: {
8530 			struct sctphdr		*sh = &pd2.hdr.sctp;
8531 			struct pf_state_peer	*src;
8532 			int			 copyback = 0;
8533 			int			 action;
8534 
8535 			if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), reason,
8536 			    pd2.af)) {
8537 				DPFPRINTF(PF_DEBUG_MISC,
8538 				    "pf: ICMP error message too short "
8539 				    "(sctp)");
8540 				return (PF_DROP);
8541 			}
8542 			pd2.pcksum = &pd2.sctp_dummy_sum;
8543 
8544 			key.af = pd2.af;
8545 			key.proto = IPPROTO_SCTP;
8546 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8547 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8548 			key.port[pd2.sidx] = sh->src_port;
8549 			key.port[pd2.didx] = sh->dest_port;
8550 
8551 			action = pf_find_state(&pd2, &key, state);
8552 			if (action != PF_MATCH)
8553 				return (action);
8554 
8555 			if (pd->dir == (*state)->direction) {
8556 				if (PF_REVERSED_KEY(*state, pd->af))
8557 					src = &(*state)->src;
8558 				else
8559 					src = &(*state)->dst;
8560 			} else {
8561 				if (PF_REVERSED_KEY(*state, pd->af))
8562 					src = &(*state)->dst;
8563 				else
8564 					src = &(*state)->src;
8565 			}
8566 
8567 			if (src->scrub->pfss_v_tag != sh->v_tag) {
8568 				DPFPRINTF(PF_DEBUG_MISC,
8569 				    "pf: ICMP error message has incorrect "
8570 				    "SCTP v_tag");
8571 				return (PF_DROP);
8572 			}
8573 
8574 			/* translate source/destination address, if necessary */
8575 			if ((*state)->key[PF_SK_WIRE] !=
8576 			    (*state)->key[PF_SK_STACK]) {
8577 
8578 				struct pf_state_key	*nk;
8579 
8580 				if (PF_REVERSED_KEY(*state, pd->af))
8581 					nk = (*state)->key[pd->sidx];
8582 				else
8583 					nk = (*state)->key[pd->didx];
8584 
8585 #if defined(INET) && defined(INET6)
8586 				int	 afto, sidx, didx;
8587 
8588 				afto = pd->af != nk->af;
8589 
8590 				if (afto && (*state)->direction == PF_IN) {
8591 					sidx = pd2.didx;
8592 					didx = pd2.sidx;
8593 				} else {
8594 					sidx = pd2.sidx;
8595 					didx = pd2.didx;
8596 				}
8597 
8598 				if (afto) {
8599 					if (pf_translate_icmp_af(nk->af,
8600 					    &pd->hdr.icmp))
8601 						return (PF_DROP);
8602 					m_copyback(pd->m, pd->off,
8603 					    sizeof(struct icmp6_hdr),
8604 					    (c_caddr_t)&pd->hdr.icmp6);
8605 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8606 					    &pd2, &nk->addr[sidx],
8607 					    &nk->addr[didx], pd->af,
8608 					    nk->af))
8609 						return (PF_DROP);
8610 					sh->src_port = nk->port[sidx];
8611 					sh->dest_port = nk->port[didx];
8612 					m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh);
8613 					pf_addrcpy(&pd->nsaddr,
8614 					    &nk->addr[pd2.sidx], nk->af);
8615 					pf_addrcpy(&pd->ndaddr,
8616 					    &nk->addr[pd2.didx], nk->af);
8617 					if (nk->af == AF_INET) {
8618 						pd->proto = IPPROTO_ICMP;
8619 					} else {
8620 						pd->proto = IPPROTO_ICMPV6;
8621 						/*
8622 						 * IPv4 becomes IPv6 so we must
8623 						 * copy IPv4 src addr to least
8624 						 * 32bits in IPv6 address to
8625 						 * keep traceroute/icmp
8626 						 * working.
8627 						 */
8628 						pd->nsaddr.addr32[3] =
8629 						    pd->src->addr32[0];
8630 					}
8631 					pd->naf = nk->af;
8632 					return (PF_AFRT);
8633 				}
8634 #endif /* INET && INET6 */
8635 
8636 				if (PF_ANEQ(pd2.src,
8637 				    &nk->addr[pd2.sidx], pd2.af) ||
8638 				    nk->port[pd2.sidx] != sh->src_port)
8639 					pf_change_icmp(pd2.src, &sh->src_port,
8640 					    daddr, &nk->addr[pd2.sidx],
8641 					    nk->port[pd2.sidx], NULL,
8642 					    pd2.ip_sum, icmpsum,
8643 					    pd->ip_sum, 0, pd2.af);
8644 
8645 				if (PF_ANEQ(pd2.dst,
8646 				    &nk->addr[pd2.didx], pd2.af) ||
8647 				    nk->port[pd2.didx] != sh->dest_port)
8648 					pf_change_icmp(pd2.dst, &sh->dest_port,
8649 					    saddr, &nk->addr[pd2.didx],
8650 					    nk->port[pd2.didx], NULL,
8651 					    pd2.ip_sum, icmpsum,
8652 					    pd->ip_sum, 0, pd2.af);
8653 				copyback = 1;
8654 			}
8655 
8656 			if (copyback) {
8657 				switch (pd2.af) {
8658 #ifdef INET
8659 				case AF_INET:
8660 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8661 					    (caddr_t )&pd->hdr.icmp);
8662 					m_copyback(pd->m, ipoff2, sizeof(h2),
8663 					    (caddr_t )&h2);
8664 					break;
8665 #endif /* INET */
8666 #ifdef INET6
8667 				case AF_INET6:
8668 					m_copyback(pd->m, pd->off,
8669 					    sizeof(struct icmp6_hdr),
8670 					    (caddr_t )&pd->hdr.icmp6);
8671 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8672 					    (caddr_t )&h2_6);
8673 					break;
8674 #endif /* INET6 */
8675 				}
8676 				m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh);
8677 			}
8678 
8679 			return (PF_PASS);
8680 			break;
8681 		}
8682 		case IPPROTO_ICMP: {
8683 			struct icmp	*iih = &pd2.hdr.icmp;
8684 
8685 			if (pd2.af != AF_INET) {
8686 				REASON_SET(reason, PFRES_NORM);
8687 				return (PF_DROP);
8688 			}
8689 
8690 			if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
8691 			    reason, pd2.af)) {
8692 				DPFPRINTF(PF_DEBUG_MISC,
8693 				    "pf: ICMP error message too short i"
8694 				    "(icmp)");
8695 				return (PF_DROP);
8696 			}
8697 			pd2.pcksum = &pd2.hdr.icmp.icmp_cksum;
8698 
8699 			icmpid = iih->icmp_id;
8700 			pf_icmp_mapping(&pd2, iih->icmp_type,
8701 			    &icmp_dir, &virtual_id, &virtual_type);
8702 
8703 			ret = pf_icmp_state_lookup(&key, &pd2, state,
8704 			    virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8705 			if (ret >= 0) {
8706 				MPASS(*state == NULL);
8707 				return (ret);
8708 			}
8709 
8710 			/* translate source/destination address, if necessary */
8711 			if ((*state)->key[PF_SK_WIRE] !=
8712 			    (*state)->key[PF_SK_STACK]) {
8713 				struct pf_state_key	*nk;
8714 
8715 				if (PF_REVERSED_KEY(*state, pd->af))
8716 					nk = (*state)->key[pd->sidx];
8717 				else
8718 					nk = (*state)->key[pd->didx];
8719 
8720 #if defined(INET) && defined(INET6)
8721 				int	 afto, sidx, didx;
8722 
8723 				afto = pd->af != nk->af;
8724 
8725 				if (afto && (*state)->direction == PF_IN) {
8726 					sidx = pd2.didx;
8727 					didx = pd2.sidx;
8728 					iidx = !iidx;
8729 				} else {
8730 					sidx = pd2.sidx;
8731 					didx = pd2.didx;
8732 				}
8733 
8734 				if (afto) {
8735 					if (nk->af != AF_INET6)
8736 						return (PF_DROP);
8737 					if (pf_translate_icmp_af(nk->af,
8738 					    &pd->hdr.icmp))
8739 						return (PF_DROP);
8740 					m_copyback(pd->m, pd->off,
8741 					    sizeof(struct icmp6_hdr),
8742 					    (c_caddr_t)&pd->hdr.icmp6);
8743 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8744 					    &pd2, &nk->addr[sidx],
8745 					    &nk->addr[didx], pd->af,
8746 					    nk->af))
8747 						return (PF_DROP);
8748 					pd->proto = IPPROTO_ICMPV6;
8749 					if (pf_translate_icmp_af(nk->af, iih))
8750 						return (PF_DROP);
8751 					if (virtual_type == htons(ICMP_ECHO) &&
8752 					    nk->port[iidx] != iih->icmp_id)
8753 						iih->icmp_id = nk->port[iidx];
8754 					m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
8755 					    (c_caddr_t)iih);
8756 					pf_addrcpy(&pd->nsaddr,
8757 					    &nk->addr[pd2.sidx], nk->af);
8758 					pf_addrcpy(&pd->ndaddr,
8759 					    &nk->addr[pd2.didx], nk->af);
8760 					/*
8761 					 * IPv4 becomes IPv6 so we must copy
8762 					 * IPv4 src addr to least 32bits in
8763 					 * IPv6 address to keep traceroute
8764 					 * working.
8765 					 */
8766 					pd->nsaddr.addr32[3] =
8767 					    pd->src->addr32[0];
8768 					pd->naf = nk->af;
8769 					return (PF_AFRT);
8770 				}
8771 #endif /* INET && INET6 */
8772 
8773 				if (PF_ANEQ(pd2.src,
8774 				    &nk->addr[pd2.sidx], pd2.af) ||
8775 				    (virtual_type == htons(ICMP_ECHO) &&
8776 				    nk->port[iidx] != iih->icmp_id))
8777 					pf_change_icmp(pd2.src,
8778 					    (virtual_type == htons(ICMP_ECHO)) ?
8779 					    &iih->icmp_id : NULL,
8780 					    daddr, &nk->addr[pd2.sidx],
8781 					    (virtual_type == htons(ICMP_ECHO)) ?
8782 					    nk->port[iidx] : 0, NULL,
8783 					    pd2.ip_sum, icmpsum,
8784 					    pd->ip_sum, 0, AF_INET);
8785 
8786 				if (PF_ANEQ(pd2.dst,
8787 				    &nk->addr[pd2.didx], pd2.af))
8788 					pf_change_icmp(pd2.dst, NULL, NULL,
8789 					    &nk->addr[pd2.didx], 0, NULL,
8790 					    pd2.ip_sum, icmpsum, pd->ip_sum, 0,
8791 					    AF_INET);
8792 
8793 				m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
8794 				m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8795 				m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
8796 			}
8797 			return (PF_PASS);
8798 			break;
8799 		}
8800 #endif /* INET */
8801 #ifdef INET6
8802 		case IPPROTO_ICMPV6: {
8803 			struct icmp6_hdr	*iih = &pd2.hdr.icmp6;
8804 
8805 			if (pd2.af != AF_INET6) {
8806 				REASON_SET(reason, PFRES_NORM);
8807 				return (PF_DROP);
8808 			}
8809 
8810 			if (!pf_pull_hdr(pd->m, pd2.off, iih,
8811 			    sizeof(struct icmp6_hdr), reason, pd2.af)) {
8812 				DPFPRINTF(PF_DEBUG_MISC,
8813 				    "pf: ICMP error message too short "
8814 				    "(icmp6)");
8815 				return (PF_DROP);
8816 			}
8817 			pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum;
8818 
8819 			pf_icmp_mapping(&pd2, iih->icmp6_type,
8820 			    &icmp_dir, &virtual_id, &virtual_type);
8821 
8822 			ret = pf_icmp_state_lookup(&key, &pd2, state,
8823 			    virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8824 			/* IPv6? try matching a multicast address */
8825 			if (ret == PF_DROP && pd2.af == AF_INET6 &&
8826 			    icmp_dir == PF_OUT) {
8827 				MPASS(*state == NULL);
8828 				ret = pf_icmp_state_lookup(&key, &pd2,
8829 				    state, virtual_id, virtual_type,
8830 				    icmp_dir, &iidx, 1, 1);
8831 			}
8832 			if (ret >= 0) {
8833 				MPASS(*state == NULL);
8834 				return (ret);
8835 			}
8836 
8837 			/* translate source/destination address, if necessary */
8838 			if ((*state)->key[PF_SK_WIRE] !=
8839 			    (*state)->key[PF_SK_STACK]) {
8840 				struct pf_state_key	*nk;
8841 
8842 				if (PF_REVERSED_KEY(*state, pd->af))
8843 					nk = (*state)->key[pd->sidx];
8844 				else
8845 					nk = (*state)->key[pd->didx];
8846 
8847 #if defined(INET) && defined(INET6)
8848 				int	 afto, sidx, didx;
8849 
8850 				afto = pd->af != nk->af;
8851 
8852 				if (afto && (*state)->direction == PF_IN) {
8853 					sidx = pd2.didx;
8854 					didx = pd2.sidx;
8855 					iidx = !iidx;
8856 				} else {
8857 					sidx = pd2.sidx;
8858 					didx = pd2.didx;
8859 				}
8860 
8861 				if (afto) {
8862 					if (nk->af != AF_INET)
8863 						return (PF_DROP);
8864 					if (pf_translate_icmp_af(nk->af,
8865 					    &pd->hdr.icmp))
8866 						return (PF_DROP);
8867 					m_copyback(pd->m, pd->off,
8868 					    sizeof(struct icmp6_hdr),
8869 					    (c_caddr_t)&pd->hdr.icmp6);
8870 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8871 					    &pd2, &nk->addr[sidx],
8872 					    &nk->addr[didx], pd->af,
8873 					    nk->af))
8874 						return (PF_DROP);
8875 					pd->proto = IPPROTO_ICMP;
8876 					if (pf_translate_icmp_af(nk->af, iih))
8877 						return (PF_DROP);
8878 					if (virtual_type ==
8879 					    htons(ICMP6_ECHO_REQUEST) &&
8880 					    nk->port[iidx] != iih->icmp6_id)
8881 						iih->icmp6_id = nk->port[iidx];
8882 					m_copyback(pd2.m, pd2.off,
8883 					    sizeof(struct icmp6_hdr), (c_caddr_t)iih);
8884 					pf_addrcpy(&pd->nsaddr,
8885 					    &nk->addr[pd2.sidx], nk->af);
8886 					pf_addrcpy(&pd->ndaddr,
8887 					    &nk->addr[pd2.didx], nk->af);
8888 					pd->naf = nk->af;
8889 					return (PF_AFRT);
8890 				}
8891 #endif /* INET && INET6 */
8892 
8893 				if (PF_ANEQ(pd2.src,
8894 				    &nk->addr[pd2.sidx], pd2.af) ||
8895 				    ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
8896 				    nk->port[pd2.sidx] != iih->icmp6_id))
8897 					pf_change_icmp(pd2.src,
8898 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
8899 					    ? &iih->icmp6_id : NULL,
8900 					    daddr, &nk->addr[pd2.sidx],
8901 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
8902 					    ? nk->port[iidx] : 0, NULL,
8903 					    pd2.ip_sum, icmpsum,
8904 					    pd->ip_sum, 0, AF_INET6);
8905 
8906 				if (PF_ANEQ(pd2.dst,
8907 				    &nk->addr[pd2.didx], pd2.af))
8908 					pf_change_icmp(pd2.dst, NULL, NULL,
8909 					    &nk->addr[pd2.didx], 0, NULL,
8910 					    pd2.ip_sum, icmpsum,
8911 					    pd->ip_sum, 0, AF_INET6);
8912 
8913 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8914 				    (caddr_t)&pd->hdr.icmp6);
8915 				m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
8916 				m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
8917 				    (caddr_t)iih);
8918 			}
8919 			return (PF_PASS);
8920 			break;
8921 		}
8922 #endif /* INET6 */
8923 		default: {
8924 			int	action;
8925 
8926 			/*
8927 			 * Placeholder value, so future calls to pf_change_ap()
8928 			 * don't try to update a NULL checksum pointer.
8929 			 */
8930 			pd->pcksum = &pd->sctp_dummy_sum;
8931 			key.af = pd2.af;
8932 			key.proto = pd2.proto;
8933 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8934 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8935 			key.port[0] = key.port[1] = 0;
8936 
8937 			action = pf_find_state(&pd2, &key, state);
8938 			if (action != PF_MATCH)
8939 				return (action);
8940 
8941 			/* translate source/destination address, if necessary */
8942 			if ((*state)->key[PF_SK_WIRE] !=
8943 			    (*state)->key[PF_SK_STACK]) {
8944 				struct pf_state_key *nk =
8945 				    (*state)->key[pd->didx];
8946 
8947 				if (PF_ANEQ(pd2.src,
8948 				    &nk->addr[pd2.sidx], pd2.af))
8949 					pf_change_icmp(pd2.src, NULL, daddr,
8950 					    &nk->addr[pd2.sidx], 0, NULL,
8951 					    pd2.ip_sum, icmpsum,
8952 					    pd->ip_sum, 0, pd2.af);
8953 
8954 				if (PF_ANEQ(pd2.dst,
8955 				    &nk->addr[pd2.didx], pd2.af))
8956 					pf_change_icmp(pd2.dst, NULL, saddr,
8957 					    &nk->addr[pd2.didx], 0, NULL,
8958 					    pd2.ip_sum, icmpsum,
8959 					    pd->ip_sum, 0, pd2.af);
8960 
8961 				switch (pd2.af) {
8962 #ifdef INET
8963 				case AF_INET:
8964 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8965 					    (caddr_t)&pd->hdr.icmp);
8966 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8967 					break;
8968 #endif /* INET */
8969 #ifdef INET6
8970 				case AF_INET6:
8971 					m_copyback(pd->m, pd->off,
8972 					    sizeof(struct icmp6_hdr),
8973 					    (caddr_t )&pd->hdr.icmp6);
8974 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8975 					    (caddr_t )&h2_6);
8976 					break;
8977 #endif /* INET6 */
8978 				}
8979 			}
8980 			return (PF_PASS);
8981 			break;
8982 		}
8983 		}
8984 	}
8985 }
8986 
8987 /*
8988  * ipoff and off are measured from the start of the mbuf chain.
8989  * h must be at "ipoff" on the mbuf chain.
8990  */
8991 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * reasonp,sa_family_t af)8992 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
8993     u_short *reasonp, sa_family_t af)
8994 {
8995 	int iplen = 0;
8996 	switch (af) {
8997 #ifdef INET
8998 	case AF_INET: {
8999 		const struct ip	*h = mtod(m, struct ip *);
9000 		u_int16_t	 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
9001 
9002 		if (fragoff) {
9003 			REASON_SET(reasonp, PFRES_FRAG);
9004 			return (NULL);
9005 		}
9006 		iplen = ntohs(h->ip_len);
9007 		break;
9008 	}
9009 #endif /* INET */
9010 #ifdef INET6
9011 	case AF_INET6: {
9012 		const struct ip6_hdr	*h = mtod(m, struct ip6_hdr *);
9013 
9014 		iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
9015 		break;
9016 	}
9017 #endif /* INET6 */
9018 	}
9019 	if (m->m_pkthdr.len < off + len || iplen < off + len) {
9020 		REASON_SET(reasonp, PFRES_SHORT);
9021 		return (NULL);
9022 	}
9023 	m_copydata(m, off, len, p);
9024 	return (p);
9025 }
9026 
9027 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)9028 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
9029     int rtableid)
9030 {
9031 	struct ifnet		*ifp;
9032 
9033 	/*
9034 	 * Skip check for addresses with embedded interface scope,
9035 	 * as they would always match anyway.
9036 	 */
9037 	if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
9038 		return (1);
9039 
9040 	if (af != AF_INET && af != AF_INET6)
9041 		return (0);
9042 
9043 	if (kif == V_pfi_all)
9044 		return (1);
9045 
9046 	/* Skip checks for ipsec interfaces */
9047 	if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
9048 		return (1);
9049 
9050 	ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
9051 
9052 	switch (af) {
9053 #ifdef INET6
9054 	case AF_INET6:
9055 		return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
9056 		    ifp));
9057 #endif /* INET6 */
9058 #ifdef INET
9059 	case AF_INET:
9060 		return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
9061 		    ifp));
9062 #endif /* INET */
9063 	}
9064 
9065 	return (0);
9066 }
9067 
9068 #ifdef INET
9069 static int
pf_route(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9070 pf_route(struct pf_krule *r, struct ifnet *oifp,
9071     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9072 {
9073 	struct mbuf		*m0, *m1, *md;
9074 	struct route_in6	 ro;
9075 	union sockaddr_union	 rt_gw;
9076 	const union sockaddr_union	*gw = (const union sockaddr_union *)&ro.ro_dst;
9077 	union sockaddr_union	*dst;
9078 	struct ip		*ip;
9079 	struct ifnet		*ifp = NULL;
9080 	int			 error = 0;
9081 	uint16_t		 ip_len, ip_off;
9082 	uint16_t		 tmp;
9083 	int			 r_dir;
9084 	bool			 skip_test = false;
9085 	int			 action = PF_PASS;
9086 
9087 	KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
9088 
9089 	SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp);
9090 
9091 	if (s) {
9092 		r_dir = s->direction;
9093 	} else {
9094 		r_dir = r->direction;
9095 	}
9096 
9097 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9098 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9099 	    __func__));
9100 
9101 	if ((pd->pf_mtag == NULL &&
9102 	    ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9103 	    pd->pf_mtag->routed++ > 3) {
9104 		m0 = pd->m;
9105 		pd->m = NULL;
9106 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9107 		action = PF_DROP;
9108 		goto bad_locked;
9109 	}
9110 
9111 	if (pd->act.rt_kif != NULL)
9112 		ifp = pd->act.rt_kif->pfik_ifp;
9113 
9114 	if (pd->act.rt == PF_DUPTO) {
9115 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9116 			if (s != NULL) {
9117 				PF_STATE_UNLOCK(s);
9118 			}
9119 			if (ifp == oifp) {
9120 				/* When the 2nd interface is not skipped */
9121 				return (action);
9122 			} else {
9123 				m0 = pd->m;
9124 				pd->m = NULL;
9125 				SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9126 				action = PF_DROP;
9127 				goto bad;
9128 			}
9129 		} else {
9130 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9131 			if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9132 				if (s)
9133 					PF_STATE_UNLOCK(s);
9134 				return (action);
9135 			}
9136 		}
9137 	} else {
9138 		if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9139 			if (pd->af == pd->naf) {
9140 				pf_dummynet(pd, s, r, &pd->m);
9141 				if (s)
9142 					PF_STATE_UNLOCK(s);
9143 				return (action);
9144 			} else {
9145 				if (r_dir == PF_IN) {
9146 					skip_test = true;
9147 				}
9148 			}
9149 		}
9150 
9151 		/*
9152 		 * If we're actually doing route-to and af-to and are in the
9153 		 * reply direction.
9154 		 */
9155 		if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9156 		    pd->af != pd->naf) {
9157 			if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) {
9158 				/* Un-set ifp so we do a plain route lookup. */
9159 				ifp = NULL;
9160 			}
9161 			if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) {
9162 				/* Un-set ifp so we do a plain route lookup. */
9163 				ifp = NULL;
9164 			}
9165 		}
9166 		m0 = pd->m;
9167 	}
9168 
9169 	ip = mtod(m0, struct ip *);
9170 
9171 	bzero(&ro, sizeof(ro));
9172 	dst = (union sockaddr_union *)&ro.ro_dst;
9173 	dst->sin.sin_family = AF_INET;
9174 	dst->sin.sin_len = sizeof(struct sockaddr_in);
9175 	dst->sin.sin_addr = ip->ip_dst;
9176 	if (ifp) { /* Only needed in forward direction and route-to */
9177 		bzero(&rt_gw, sizeof(rt_gw));
9178 		ro.ro_flags |= RT_HAS_GW;
9179 		gw = &rt_gw;
9180 		switch (pd->act.rt_af) {
9181 #ifdef INET
9182 		case AF_INET:
9183 			rt_gw.sin.sin_family = AF_INET;
9184 			rt_gw.sin.sin_len = sizeof(struct sockaddr_in);
9185 			rt_gw.sin.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
9186 			break;
9187 #endif /* INET */
9188 #ifdef INET6
9189 		case AF_INET6:
9190 			rt_gw.sin6.sin6_family = AF_INET6;
9191 			rt_gw.sin6.sin6_len = sizeof(struct sockaddr_in6);
9192 			pf_addrcpy((struct pf_addr *)&rt_gw.sin6.sin6_addr,
9193 			    &pd->act.rt_addr, AF_INET6);
9194 			break;
9195 #endif /* INET6 */
9196 		default:
9197 			/* Normal af-to without route-to */
9198 			break;
9199 		}
9200 	}
9201 
9202 	if (pd->dir == PF_IN) {
9203 		if (ip->ip_ttl <= IPTTLDEC) {
9204 			if (r->rt != PF_DUPTO && pd->naf == pd->af)
9205 				pf_send_icmp(m0, ICMP_TIMXCEED,
9206 				    ICMP_TIMXCEED_INTRANS, 0, pd->af, r,
9207 				    pd->act.rtableid);
9208 			action = PF_DROP;
9209 			goto bad_locked;
9210 		}
9211 		ip->ip_ttl -= IPTTLDEC;
9212 	}
9213 
9214 	if (s != NULL) {
9215 		if (ifp == NULL && (pd->af != pd->naf)) {
9216 			/* We're in the AFTO case. Do a route lookup. */
9217 			const struct nhop_object *nh;
9218 			nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0);
9219 			if (nh) {
9220 				ifp = nh->nh_ifp;
9221 
9222 				/* Use the gateway if needed. */
9223 				if (nh->nh_flags & NHF_GATEWAY) {
9224 					gw = (const union sockaddr_union *)&nh->gw_sa;
9225 					ro.ro_flags |= RT_HAS_GW;
9226 				} else {
9227 					dst->sin.sin_addr = ip->ip_dst;
9228 				}
9229 			}
9230 		}
9231 		PF_STATE_UNLOCK(s);
9232 	}
9233 
9234 	/* It must have been either set from rt_af or from fib4_lookup */
9235 	KASSERT(gw->sin.sin_family != 0, ("%s: gw address family undetermined", __func__));
9236 
9237 	if (ifp == NULL) {
9238 		m0 = pd->m;
9239 		pd->m = NULL;
9240 		action = PF_DROP;
9241 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9242 		goto bad;
9243 	}
9244 
9245 	/*
9246 	 * Bind to the correct interface if we're if-bound. We don't know which
9247 	 * interface that will be until here, so we've inserted the state
9248 	 * on V_pf_all. Fix that now.
9249 	 */
9250 	if (s != NULL && s->kif == V_pfi_all && r->rule_flag & PFRULE_IFBOUND) {
9251 		/* Verify that we're here because of BOUND_IFACE */
9252 		MPASS(r->rt == PF_REPLYTO || (pd->af != pd->naf && s->direction == PF_IN));
9253 		s->kif = ifp->if_pf_kif;
9254 		if (pd->act.rt == PF_REPLYTO) {
9255 			s->orig_kif = oifp->if_pf_kif;
9256 		}
9257 	}
9258 
9259 	if (r->rt == PF_DUPTO || (pd->af != pd->naf && s->direction == PF_IN))
9260 		skip_test = true;
9261 
9262 	if (pd->dir == PF_IN) {
9263 		if (skip_test) {
9264 			struct pfi_kkif *out_kif = (struct pfi_kkif *)ifp->if_pf_kif;
9265 			MPASS(s != NULL);
9266 			pf_counter_u64_critical_enter();
9267 			pf_counter_u64_add_protected(
9268 			    &out_kif->pfik_bytes[pd->naf == AF_INET6][1]
9269 			    [action != PF_PASS && action != PF_AFRT], pd->tot_len);
9270 			pf_counter_u64_add_protected(
9271 			    &out_kif->pfik_packets[pd->naf == AF_INET6][1]
9272 			    [action != PF_PASS && action != PF_AFRT], 1);
9273 			pf_counter_u64_critical_exit();
9274 		} else {
9275 			if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
9276 			    &pd->act) != PF_PASS) {
9277 				action = PF_DROP;
9278 				SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9279 				goto bad;
9280 			} else if (m0 == NULL) {
9281 				action = PF_DROP;
9282 				SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9283 				goto done;
9284 			}
9285 			if (m0->m_len < sizeof(struct ip)) {
9286 				DPFPRINTF(PF_DEBUG_URGENT,
9287 				    "%s: m0->m_len < sizeof(struct ip)", __func__);
9288 				SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9289 				action = PF_DROP;
9290 				goto bad;
9291 			}
9292 			ip = mtod(m0, struct ip *);
9293 		}
9294 	}
9295 
9296 	if (ifp->if_flags & IFF_LOOPBACK)
9297 		m0->m_flags |= M_SKIP_FIREWALL;
9298 
9299 	ip_len = ntohs(ip->ip_len);
9300 	ip_off = ntohs(ip->ip_off);
9301 
9302 	/* Copied from FreeBSD 10.0-CURRENT ip_output. */
9303 	m0->m_pkthdr.csum_flags |= CSUM_IP;
9304 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
9305 		in_delayed_cksum(m0);
9306 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
9307 	}
9308 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
9309 		pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
9310 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
9311 	}
9312 
9313 	if (pd->dir == PF_IN) {
9314 		/*
9315 		 * Make sure dummynet gets the correct direction, in case it needs to
9316 		 * re-inject later.
9317 		 */
9318 		pd->dir = PF_OUT;
9319 
9320 		/*
9321 		 * The following processing is actually the rest of the inbound processing, even
9322 		 * though we've marked it as outbound (so we don't look through dummynet) and it
9323 		 * happens after the outbound processing (pf_test(PF_OUT) above).
9324 		 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9325 		 * conclusion about what direction it's processing, and we can't fix it or it
9326 		 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9327 		 * decision will pick the right pipe, and everything will mostly work as expected.
9328 		 */
9329 		tmp = pd->act.dnrpipe;
9330 		pd->act.dnrpipe = pd->act.dnpipe;
9331 		pd->act.dnpipe = tmp;
9332 	}
9333 
9334 	/*
9335 	 * If small enough for interface, or the interface will take
9336 	 * care of the fragmentation for us, we can just send directly.
9337 	 */
9338 	if (ip_len <= ifp->if_mtu ||
9339 	    (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
9340 		ip->ip_sum = 0;
9341 		if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
9342 			ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
9343 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
9344 		}
9345 		m_clrprotoflags(m0);	/* Avoid confusing lower layers. */
9346 
9347 		md = m0;
9348 		error = pf_dummynet_route(pd, s, r, ifp,
9349 		    (const struct sockaddr *)gw, &md);
9350 		if (md != NULL) {
9351 			error = (*ifp->if_output)(ifp, md,
9352 			    (const struct sockaddr *)gw, (struct route *)&ro);
9353 			SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9354 		}
9355 		goto done;
9356 	}
9357 
9358 	/* Balk when DF bit is set or the interface didn't support TSO. */
9359 	if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
9360 		error = EMSGSIZE;
9361 		KMOD_IPSTAT_INC(ips_cantfrag);
9362 		if (pd->act.rt != PF_DUPTO) {
9363 			if (s && s->nat_rule != NULL) {
9364 				MPASS(m0 == pd->m);
9365 				PACKET_UNDO_NAT(pd,
9366 				    (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
9367 				    s);
9368 			}
9369 
9370 			pf_send_icmp(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
9371 			   ifp->if_mtu, pd->af, r, pd->act.rtableid);
9372 		}
9373 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9374 		action = PF_DROP;
9375 		goto bad;
9376 	}
9377 
9378 	error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
9379 	if (error) {
9380 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9381 		action = PF_DROP;
9382 		goto bad;
9383 	}
9384 
9385 	for (; m0; m0 = m1) {
9386 		m1 = m0->m_nextpkt;
9387 		m0->m_nextpkt = NULL;
9388 		if (error == 0) {
9389 			m_clrprotoflags(m0);
9390 			md = m0;
9391 			pd->pf_mtag = pf_find_mtag(md);
9392 			error = pf_dummynet_route(pd, s, r, ifp,
9393 			    (const struct sockaddr *)gw, &md);
9394 			if (md != NULL) {
9395 				error = (*ifp->if_output)(ifp, md,
9396 				    (const struct sockaddr *)gw,
9397 				    (struct route *)&ro);
9398 				SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9399 			}
9400 		} else
9401 			m_freem(m0);
9402 	}
9403 
9404 	if (error == 0)
9405 		KMOD_IPSTAT_INC(ips_fragmented);
9406 
9407 done:
9408 	if (pd->act.rt != PF_DUPTO)
9409 		pd->m = NULL;
9410 	else
9411 		action = PF_PASS;
9412 	return (action);
9413 
9414 bad_locked:
9415 	if (s)
9416 		PF_STATE_UNLOCK(s);
9417 bad:
9418 	m_freem(m0);
9419 	goto done;
9420 }
9421 #endif /* INET */
9422 
9423 #ifdef INET6
9424 static int
pf_route6(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9425 pf_route6(struct pf_krule *r, struct ifnet *oifp,
9426     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9427 {
9428 	struct mbuf		*m0, *md;
9429 	struct m_tag		*mtag;
9430 	struct sockaddr_in6	dst;
9431 	struct ip6_hdr		*ip6;
9432 	struct ifnet		*ifp = NULL;
9433 	int			 r_dir;
9434 	bool			 skip_test = false;
9435 	int			 action = PF_PASS;
9436 
9437 	KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
9438 
9439 	SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp);
9440 
9441 	if (s) {
9442 		r_dir = s->direction;
9443 	} else {
9444 		r_dir = r->direction;
9445 	}
9446 
9447 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9448 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9449 	    __func__));
9450 
9451 	if ((pd->pf_mtag == NULL &&
9452 	    ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9453 	    pd->pf_mtag->routed++ > 3) {
9454 		m0 = pd->m;
9455 		pd->m = NULL;
9456 		action = PF_DROP;
9457 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9458 		goto bad_locked;
9459 	}
9460 
9461 	if (pd->act.rt_kif != NULL)
9462 		ifp = pd->act.rt_kif->pfik_ifp;
9463 
9464 	if (pd->act.rt == PF_DUPTO) {
9465 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9466 			if (s != NULL) {
9467 				PF_STATE_UNLOCK(s);
9468 			}
9469 			if (ifp == oifp) {
9470 				/* When the 2nd interface is not skipped */
9471 				return (action);
9472 			} else {
9473 				m0 = pd->m;
9474 				pd->m = NULL;
9475 				action = PF_DROP;
9476 				SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9477 				goto bad;
9478 			}
9479 		} else {
9480 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9481 			if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9482 				if (s)
9483 					PF_STATE_UNLOCK(s);
9484 				return (action);
9485 			}
9486 		}
9487 	} else {
9488 		if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9489 			if (pd->af == pd->naf) {
9490 				pf_dummynet(pd, s, r, &pd->m);
9491 				if (s)
9492 					PF_STATE_UNLOCK(s);
9493 				return (action);
9494 			} else {
9495 				if (r_dir == PF_IN) {
9496 					skip_test = true;
9497 				}
9498 			}
9499 		}
9500 
9501 		/*
9502 		 * If we're actually doing route-to and af-to and are in the
9503 		 * reply direction.
9504 		 */
9505 		if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9506 		    pd->af != pd->naf) {
9507 			if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) {
9508 				/* Un-set ifp so we do a plain route lookup. */
9509 				ifp = NULL;
9510 			}
9511 			if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) {
9512 				/* Un-set ifp so we do a plain route lookup. */
9513 				ifp = NULL;
9514 			}
9515 		}
9516 		m0 = pd->m;
9517 	}
9518 
9519 	ip6 = mtod(m0, struct ip6_hdr *);
9520 
9521 	bzero(&dst, sizeof(dst));
9522 	dst.sin6_family = AF_INET6;
9523 	dst.sin6_len = sizeof(dst);
9524 	pf_addrcpy((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr,
9525 	    AF_INET6);
9526 
9527 	if (pd->dir == PF_IN) {
9528 		if (ip6->ip6_hlim <= IPV6_HLIMDEC) {
9529 			if (r->rt != PF_DUPTO && pd->naf == pd->af)
9530 				pf_send_icmp(m0, ICMP6_TIME_EXCEEDED,
9531 				    ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r,
9532 				    pd->act.rtableid);
9533 			action = PF_DROP;
9534 			goto bad_locked;
9535 		}
9536 		ip6->ip6_hlim -= IPV6_HLIMDEC;
9537 	}
9538 
9539 	if (s != NULL) {
9540 		if (ifp == NULL && (pd->af != pd->naf)) {
9541 			const struct nhop_object *nh;
9542 			nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0);
9543 			if (nh) {
9544 				ifp = nh->nh_ifp;
9545 
9546 				/* Use the gateway if needed. */
9547 				if (nh->nh_flags & NHF_GATEWAY)
9548 					bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr,
9549 					    sizeof(dst.sin6_addr));
9550 				else
9551 					dst.sin6_addr = ip6->ip6_dst;
9552 			}
9553 		}
9554 		PF_STATE_UNLOCK(s);
9555 	}
9556 
9557 	if (pd->af != pd->naf) {
9558 		struct udphdr *uh = &pd->hdr.udp;
9559 
9560 		if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
9561 			uh->uh_sum = in6_cksum_pseudo(ip6,
9562 			    ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
9563 			m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
9564 		}
9565 	}
9566 
9567 	if (ifp == NULL) {
9568 		m0 = pd->m;
9569 		pd->m = NULL;
9570 		action = PF_DROP;
9571 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9572 		goto bad;
9573 	}
9574 
9575 	/*
9576 	 * Bind to the correct interface if we're if-bound. We don't know which
9577 	 * interface that will be until here, so we've inserted the state
9578 	 * on V_pf_all. Fix that now.
9579 	 */
9580 	if (s != NULL && s->kif == V_pfi_all && r->rule_flag & PFRULE_IFBOUND) {
9581 		/* Verify that we're here because of BOUND_IFACE */
9582 		MPASS(r->rt == PF_REPLYTO || (pd->af != pd->naf && s->direction == PF_IN));
9583 		s->kif = ifp->if_pf_kif;
9584 		if (pd->act.rt == PF_REPLYTO) {
9585 			s->orig_kif = oifp->if_pf_kif;
9586 		}
9587 	}
9588 
9589 	if (r->rt == PF_DUPTO || (pd->af != pd->naf && s->direction == PF_IN))
9590 		skip_test = true;
9591 
9592 	if (pd->dir == PF_IN) {
9593 		if (skip_test) {
9594 			struct pfi_kkif *out_kif = (struct pfi_kkif *)ifp->if_pf_kif;
9595 			MPASS(s != NULL);
9596 			pf_counter_u64_critical_enter();
9597 			pf_counter_u64_add_protected(
9598 			    &out_kif->pfik_bytes[pd->naf == AF_INET6][1]
9599 			    [action != PF_PASS && action != PF_AFRT], pd->tot_len);
9600 			pf_counter_u64_add_protected(
9601 			    &out_kif->pfik_packets[pd->naf == AF_INET6][1]
9602 			    [action != PF_PASS && action != PF_AFRT], 1);
9603 			pf_counter_u64_critical_exit();
9604 		} else {
9605 			if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
9606 			    ifp, &m0, inp, &pd->act) != PF_PASS) {
9607 				action = PF_DROP;
9608 				SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9609 				goto bad;
9610 			} else if (m0 == NULL) {
9611 				action = PF_DROP;
9612 				SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9613 				goto done;
9614 			}
9615 			if (m0->m_len < sizeof(struct ip6_hdr)) {
9616 				DPFPRINTF(PF_DEBUG_URGENT,
9617 				    "%s: m0->m_len < sizeof(struct ip6_hdr)",
9618 				    __func__);
9619 				action = PF_DROP;
9620 				SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9621 				goto bad;
9622 			}
9623 			ip6 = mtod(m0, struct ip6_hdr *);
9624 		}
9625 	}
9626 
9627 	if (ifp->if_flags & IFF_LOOPBACK)
9628 		m0->m_flags |= M_SKIP_FIREWALL;
9629 
9630 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
9631 	    ~ifp->if_hwassist) {
9632 		uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
9633 		in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
9634 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
9635 	}
9636 
9637 	if (pd->dir == PF_IN) {
9638 		uint16_t	 tmp;
9639 		/*
9640 		 * Make sure dummynet gets the correct direction, in case it needs to
9641 		 * re-inject later.
9642 		 */
9643 		pd->dir = PF_OUT;
9644 
9645 		/*
9646 		 * The following processing is actually the rest of the inbound processing, even
9647 		 * though we've marked it as outbound (so we don't look through dummynet) and it
9648 		 * happens after the outbound processing (pf_test(PF_OUT) above).
9649 		 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9650 		 * conclusion about what direction it's processing, and we can't fix it or it
9651 		 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9652 		 * decision will pick the right pipe, and everything will mostly work as expected.
9653 		 */
9654 		tmp = pd->act.dnrpipe;
9655 		pd->act.dnrpipe = pd->act.dnpipe;
9656 		pd->act.dnpipe = tmp;
9657 	}
9658 
9659 	/*
9660 	 * If the packet is too large for the outgoing interface,
9661 	 * send back an icmp6 error.
9662 	 */
9663 	if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
9664 		dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
9665 	mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
9666 	if (mtag != NULL) {
9667 		int ret __sdt_used;
9668 		ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
9669 		SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9670 		goto done;
9671 	}
9672 
9673 	if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
9674 		md = m0;
9675 		pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9676 		if (md != NULL) {
9677 			int ret __sdt_used;
9678 			ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
9679 			SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9680 		}
9681 	}
9682 	else {
9683 		in6_ifstat_inc(ifp, ifs6_in_toobig);
9684 		if (pd->act.rt != PF_DUPTO) {
9685 			if (s && s->nat_rule != NULL) {
9686 				MPASS(m0 == pd->m);
9687 				PACKET_UNDO_NAT(pd,
9688 				    ((caddr_t)ip6 - m0->m_data) +
9689 				    sizeof(struct ip6_hdr), s);
9690 			}
9691 
9692 			if (r->rt != PF_DUPTO)
9693 				pf_send_icmp(m0, ICMP6_PACKET_TOO_BIG, 0,
9694 				    ifp->if_mtu, pd->af, r, pd->act.rtableid);
9695 		}
9696 		action = PF_DROP;
9697 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9698 		goto bad;
9699 	}
9700 
9701 done:
9702 	if (pd->act.rt != PF_DUPTO)
9703 		pd->m = NULL;
9704 	else
9705 		action = PF_PASS;
9706 	return (action);
9707 
9708 bad_locked:
9709 	if (s)
9710 		PF_STATE_UNLOCK(s);
9711 bad:
9712 	m_freem(m0);
9713 	goto done;
9714 }
9715 #endif /* INET6 */
9716 
9717 /*
9718  * FreeBSD supports cksum offloads for the following drivers.
9719  *  em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
9720  *
9721  * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
9722  *  network driver performed cksum including pseudo header, need to verify
9723  *   csum_data
9724  * CSUM_DATA_VALID :
9725  *  network driver performed cksum, needs to additional pseudo header
9726  *  cksum computation with partial csum_data(i.e. lack of H/W support for
9727  *  pseudo header, for instance sk(4) and possibly gem(4))
9728  *
9729  * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
9730  * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
9731  * TCP/UDP layer.
9732  * Also, set csum_data to 0xffff to force cksum validation.
9733  */
9734 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)9735 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
9736 {
9737 	u_int16_t sum = 0;
9738 	int hw_assist = 0;
9739 	struct ip *ip;
9740 
9741 	if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
9742 		return (1);
9743 	if (m->m_pkthdr.len < off + len)
9744 		return (1);
9745 
9746 	switch (p) {
9747 	case IPPROTO_TCP:
9748 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9749 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9750 				sum = m->m_pkthdr.csum_data;
9751 			} else {
9752 				ip = mtod(m, struct ip *);
9753 				sum = in_pseudo(ip->ip_src.s_addr,
9754 				ip->ip_dst.s_addr, htonl((u_short)len +
9755 				m->m_pkthdr.csum_data + IPPROTO_TCP));
9756 			}
9757 			sum ^= 0xffff;
9758 			++hw_assist;
9759 		}
9760 		break;
9761 	case IPPROTO_UDP:
9762 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9763 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9764 				sum = m->m_pkthdr.csum_data;
9765 			} else {
9766 				ip = mtod(m, struct ip *);
9767 				sum = in_pseudo(ip->ip_src.s_addr,
9768 				ip->ip_dst.s_addr, htonl((u_short)len +
9769 				m->m_pkthdr.csum_data + IPPROTO_UDP));
9770 			}
9771 			sum ^= 0xffff;
9772 			++hw_assist;
9773 		}
9774 		break;
9775 	case IPPROTO_ICMP:
9776 #ifdef INET6
9777 	case IPPROTO_ICMPV6:
9778 #endif /* INET6 */
9779 		break;
9780 	default:
9781 		return (1);
9782 	}
9783 
9784 	if (!hw_assist) {
9785 		switch (af) {
9786 		case AF_INET:
9787 			if (m->m_len < sizeof(struct ip))
9788 				return (1);
9789 			sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len);
9790 			break;
9791 #ifdef INET6
9792 		case AF_INET6:
9793 			if (m->m_len < sizeof(struct ip6_hdr))
9794 				return (1);
9795 			sum = in6_cksum(m, p, off, len);
9796 			break;
9797 #endif /* INET6 */
9798 		}
9799 	}
9800 	if (sum) {
9801 		switch (p) {
9802 		case IPPROTO_TCP:
9803 		    {
9804 			KMOD_TCPSTAT_INC(tcps_rcvbadsum);
9805 			break;
9806 		    }
9807 		case IPPROTO_UDP:
9808 		    {
9809 			KMOD_UDPSTAT_INC(udps_badsum);
9810 			break;
9811 		    }
9812 #ifdef INET
9813 		case IPPROTO_ICMP:
9814 		    {
9815 			KMOD_ICMPSTAT_INC(icps_checksum);
9816 			break;
9817 		    }
9818 #endif
9819 #ifdef INET6
9820 		case IPPROTO_ICMPV6:
9821 		    {
9822 			KMOD_ICMP6STAT_INC(icp6s_checksum);
9823 			break;
9824 		    }
9825 #endif /* INET6 */
9826 		}
9827 		return (1);
9828 	} else {
9829 		if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
9830 			m->m_pkthdr.csum_flags |=
9831 			    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
9832 			m->m_pkthdr.csum_data = 0xffff;
9833 		}
9834 	}
9835 	return (0);
9836 }
9837 
9838 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)9839 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
9840     const struct pf_kstate *s, struct ip_fw_args *dnflow)
9841 {
9842 	int dndir = r->direction;
9843 	sa_family_t af  = pd->naf;
9844 
9845 	if (s && dndir == PF_INOUT) {
9846 		dndir = s->direction;
9847 	} else if (dndir == PF_INOUT) {
9848 		/* Assume primary direction. Happens when we've set dnpipe in
9849 		 * the ethernet level code. */
9850 		dndir = pd->dir;
9851 	}
9852 
9853 	if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
9854 		return (false);
9855 
9856 	memset(dnflow, 0, sizeof(*dnflow));
9857 
9858 	if (pd->dport != NULL)
9859 		dnflow->f_id.dst_port = ntohs(*pd->dport);
9860 	if (pd->sport != NULL)
9861 		dnflow->f_id.src_port = ntohs(*pd->sport);
9862 
9863 	if (pd->dir == PF_IN)
9864 		dnflow->flags |= IPFW_ARGS_IN;
9865 	else
9866 		dnflow->flags |= IPFW_ARGS_OUT;
9867 
9868 	if (pd->dir != dndir && pd->act.dnrpipe) {
9869 		dnflow->rule.info = pd->act.dnrpipe;
9870 	}
9871 	else if (pd->dir == dndir && pd->act.dnpipe) {
9872 		dnflow->rule.info = pd->act.dnpipe;
9873 	}
9874 	else {
9875 		return (false);
9876 	}
9877 
9878 	dnflow->rule.info |= IPFW_IS_DUMMYNET;
9879 	if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
9880 		dnflow->rule.info |= IPFW_IS_PIPE;
9881 
9882 	dnflow->f_id.proto = pd->proto;
9883 	dnflow->f_id.extra = dnflow->rule.info;
9884 	if (s)
9885 		af = s->key[PF_SK_STACK]->af;
9886 
9887 	switch (af) {
9888 	case AF_INET:
9889 		dnflow->f_id.addr_type = 4;
9890 		if (s) {
9891 			dnflow->f_id.src_ip = htonl(
9892 			    s->key[PF_SK_STACK]->addr[pd->sidx].v4.s_addr);
9893 			dnflow->f_id.dst_ip = htonl(
9894 			    s->key[PF_SK_STACK]->addr[pd->didx].v4.s_addr);
9895 		} else {
9896 			dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
9897 			dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
9898 		}
9899 		break;
9900 	case AF_INET6:
9901 		dnflow->f_id.addr_type = 6;
9902 
9903 		if (s) {
9904 			dnflow->f_id.src_ip6 =
9905 			    s->key[PF_SK_STACK]->addr[pd->sidx].v6;
9906 			dnflow->f_id.dst_ip6 =
9907 			    s->key[PF_SK_STACK]->addr[pd->didx].v6;
9908 		} else {
9909 			dnflow->f_id.src_ip6 = pd->src->v6;
9910 			dnflow->f_id.dst_ip6 = pd->dst->v6;
9911 		}
9912 		break;
9913 	}
9914 
9915 	/*
9916 	 * Separate this out, because while we pass the pre-NAT addresses to
9917 	 * dummynet we want the post-nat address family in case of nat64.
9918 	 * Dummynet may call ip_output/ip6_output itself, and we need it to
9919 	 * call the correct one.
9920 	 */
9921 	if (pd->naf == AF_INET6)
9922 		dnflow->flags |= IPFW_ARGS_IP6;
9923 
9924 	return (true);
9925 }
9926 
9927 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)9928 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9929     struct inpcb *inp)
9930 {
9931 	struct pfi_kkif		*kif;
9932 	struct mbuf		*m = *m0;
9933 
9934 	M_ASSERTPKTHDR(m);
9935 	MPASS(ifp->if_vnet == curvnet);
9936 	NET_EPOCH_ASSERT();
9937 
9938 	if (!V_pf_status.running)
9939 		return (PF_PASS);
9940 
9941 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
9942 
9943 	if (kif == NULL) {
9944 		DPFPRINTF(PF_DEBUG_URGENT,
9945 		    "%s: kif == NULL, if_xname %s", __func__, ifp->if_xname);
9946 		return (PF_DROP);
9947 	}
9948 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
9949 		return (PF_PASS);
9950 
9951 	if (m->m_flags & M_SKIP_FIREWALL)
9952 		return (PF_PASS);
9953 
9954 	if (__predict_false(! M_WRITABLE(*m0))) {
9955 		m = *m0 = m_unshare(*m0, M_NOWAIT);
9956 		if (*m0 == NULL)
9957 			return (PF_DROP);
9958 	}
9959 
9960 	/* Stateless! */
9961 	return (pf_test_eth_rule(dir, kif, m0));
9962 }
9963 
9964 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)9965 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
9966 {
9967 	struct m_tag *mtag;
9968 
9969 	pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
9970 
9971 	/* dummynet adds this tag, but pf does not need it,
9972 	 * and keeping it creates unexpected behavior,
9973 	 * e.g. in case of divert(4) usage right after dummynet. */
9974 	mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
9975 	if (mtag != NULL)
9976 		m_tag_delete(m, mtag);
9977 }
9978 
9979 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)9980 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
9981     struct pf_krule *r, struct mbuf **m0)
9982 {
9983 	return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
9984 }
9985 
9986 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,const struct sockaddr * sa,struct mbuf ** m0)9987 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
9988     struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa,
9989     struct mbuf **m0)
9990 {
9991 	struct ip_fw_args dnflow;
9992 
9993 	NET_EPOCH_ASSERT();
9994 
9995 	if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
9996 		return (0);
9997 
9998 	if (ip_dn_io_ptr == NULL) {
9999 		m_freem(*m0);
10000 		*m0 = NULL;
10001 		return (ENOMEM);
10002 	}
10003 
10004 	if (pd->pf_mtag == NULL &&
10005 	    ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
10006 		m_freem(*m0);
10007 		*m0 = NULL;
10008 		return (ENOMEM);
10009 	}
10010 
10011 	if (ifp != NULL) {
10012 		pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
10013 
10014 		pd->pf_mtag->if_index = ifp->if_index;
10015 		pd->pf_mtag->if_idxgen = ifp->if_idxgen;
10016 
10017 		MPASS(sa != NULL);
10018 
10019 		switch (sa->sa_family) {
10020 		case AF_INET:
10021 			memcpy(&pd->pf_mtag->dst, sa,
10022 			    sizeof(struct sockaddr_in));
10023 			break;
10024 		case AF_INET6:
10025 			memcpy(&pd->pf_mtag->dst, sa,
10026 			    sizeof(struct sockaddr_in6));
10027 			break;
10028 		}
10029 	}
10030 
10031 	if (s != NULL && s->nat_rule != NULL &&
10032 	    s->nat_rule->action == PF_RDR &&
10033 	    (
10034 #ifdef INET
10035 	    (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
10036 #endif /* INET */
10037 	    (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
10038 		/*
10039 		 * If we're redirecting to loopback mark this packet
10040 		 * as being local. Otherwise it might get dropped
10041 		 * if dummynet re-injects.
10042 		 */
10043 		(*m0)->m_pkthdr.rcvif = V_loif;
10044 	}
10045 
10046 	if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
10047 		pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
10048 		pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
10049 		ip_dn_io_ptr(m0, &dnflow);
10050 		if (*m0 != NULL) {
10051 			pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10052 			pf_dummynet_flag_remove(*m0, pd->pf_mtag);
10053 		}
10054 	}
10055 
10056 	return (0);
10057 }
10058 
10059 static int
pf_walk_option(struct pf_pdesc * pd,struct ip * h,int off,int end,u_short * reason)10060 pf_walk_option(struct pf_pdesc *pd, struct ip *h, int off, int end,
10061     u_short *reason)
10062 {
10063 	uint8_t type, length, opts[15 * 4 - sizeof(struct ip)];
10064 
10065 	/* IP header in payload of ICMP packet may be too short */
10066 	if (pd->m->m_pkthdr.len < end) {
10067 		DPFPRINTF(PF_DEBUG_MISC, "IP option too short");
10068 		REASON_SET(reason, PFRES_SHORT);
10069 		return (PF_DROP);
10070 	}
10071 
10072 	MPASS(end - off <= sizeof(opts));
10073 	m_copydata(pd->m, off, end - off, opts);
10074 	end -= off;
10075 	off = 0;
10076 
10077 	while (off < end) {
10078 		type = opts[off];
10079 		if (type == IPOPT_EOL)
10080 			break;
10081 		if (type == IPOPT_NOP) {
10082 			off++;
10083 			continue;
10084 		}
10085 		if (off + 2 > end) {
10086 			DPFPRINTF(PF_DEBUG_MISC, "IP length opt");
10087 			REASON_SET(reason, PFRES_IPOPTIONS);
10088 			return (PF_DROP);
10089 		}
10090 		length = opts[off + 1];
10091 		if (length < 2) {
10092 			DPFPRINTF(PF_DEBUG_MISC, "IP short opt");
10093 			REASON_SET(reason, PFRES_IPOPTIONS);
10094 			return (PF_DROP);
10095 		}
10096 		if (off + length > end) {
10097 			DPFPRINTF(PF_DEBUG_MISC, "IP long opt");
10098 			REASON_SET(reason, PFRES_IPOPTIONS);
10099 			return (PF_DROP);
10100 		}
10101 		switch (type) {
10102 		case IPOPT_RA:
10103 			pd->badopts |= PF_OPT_ROUTER_ALERT;
10104 			break;
10105 		default:
10106 			pd->badopts |= PF_OPT_OTHER;
10107 			break;
10108 		}
10109 		off += length;
10110 	}
10111 
10112 	return (PF_PASS);
10113 }
10114 
10115 static int
pf_walk_header(struct pf_pdesc * pd,struct ip * h,u_short * reason)10116 pf_walk_header(struct pf_pdesc *pd, struct ip *h, u_short *reason)
10117 {
10118 	struct ah	 ext;
10119 	u_int32_t	 hlen, end;
10120 	int		 hdr_cnt;
10121 
10122 	hlen = h->ip_hl << 2;
10123 	if (hlen < sizeof(struct ip) || hlen > ntohs(h->ip_len)) {
10124 		REASON_SET(reason, PFRES_SHORT);
10125 		return (PF_DROP);
10126 	}
10127 	if (hlen != sizeof(struct ip)) {
10128 		if (pf_walk_option(pd, h, pd->off + sizeof(struct ip),
10129 		    pd->off + hlen, reason) != PF_PASS)
10130 			return (PF_DROP);
10131 		/* header options which contain only padding is fishy */
10132 		if (pd->badopts == 0)
10133 			pd->badopts |= PF_OPT_OTHER;
10134 	}
10135 	end = pd->off + ntohs(h->ip_len);
10136 	pd->off += hlen;
10137 	pd->proto = h->ip_p;
10138 	/* IGMP packets have router alert options, allow them */
10139 	if (pd->proto == IPPROTO_IGMP) {
10140 		/*
10141 		 * According to RFC 1112 ttl must be set to 1 in all IGMP
10142 		 * packets sent to 224.0.0.1
10143 		 */
10144 		if ((h->ip_ttl != 1) &&
10145 		    (h->ip_dst.s_addr == INADDR_ALLHOSTS_GROUP)) {
10146 			DPFPRINTF(PF_DEBUG_MISC, "Invalid IGMP");
10147 			REASON_SET(reason, PFRES_IPOPTIONS);
10148 			return (PF_DROP);
10149 		}
10150 		pd->badopts &= ~PF_OPT_ROUTER_ALERT;
10151 	}
10152 	/* stop walking over non initial fragments */
10153 	if ((h->ip_off & htons(IP_OFFMASK)) != 0)
10154 		return (PF_PASS);
10155 	for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
10156 		switch (pd->proto) {
10157 		case IPPROTO_AH:
10158 			/* fragments may be short */
10159 			if ((h->ip_off & htons(IP_MF | IP_OFFMASK)) != 0 &&
10160 			    end < pd->off + sizeof(ext))
10161 				return (PF_PASS);
10162 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10163 				reason, AF_INET)) {
10164 				DPFPRINTF(PF_DEBUG_MISC, "IP short exthdr");
10165 				return (PF_DROP);
10166 			}
10167 			pd->off += (ext.ah_len + 2) * 4;
10168 			pd->proto = ext.ah_nxt;
10169 			break;
10170 		default:
10171 			return (PF_PASS);
10172 		}
10173 	}
10174 	DPFPRINTF(PF_DEBUG_MISC, "IPv4 nested authentication header limit");
10175 	REASON_SET(reason, PFRES_IPOPTIONS);
10176 	return (PF_DROP);
10177 }
10178 
10179 #ifdef INET6
10180 static int
pf_walk_option6(struct pf_pdesc * pd,struct ip6_hdr * h,int off,int end,u_short * reason)10181 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end,
10182     u_short *reason)
10183 {
10184 	struct ip6_opt		 opt;
10185 	struct ip6_opt_jumbo	 jumbo;
10186 
10187 	while (off < end) {
10188 		if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type,
10189 		    sizeof(opt.ip6o_type), reason, AF_INET6)) {
10190 			DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt type");
10191 			return (PF_DROP);
10192 		}
10193 		if (opt.ip6o_type == IP6OPT_PAD1) {
10194 			off++;
10195 			continue;
10196 		}
10197 		if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt),
10198 		    reason, AF_INET6)) {
10199 			DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt");
10200 			return (PF_DROP);
10201 		}
10202 		if (off + sizeof(opt) + opt.ip6o_len > end) {
10203 			DPFPRINTF(PF_DEBUG_MISC, "IPv6 long opt");
10204 			REASON_SET(reason, PFRES_IPOPTIONS);
10205 			return (PF_DROP);
10206 		}
10207 		switch (opt.ip6o_type) {
10208 		case IP6OPT_PADN:
10209 			break;
10210 		case IP6OPT_JUMBO:
10211 			pd->badopts |= PF_OPT_JUMBO;
10212 			if (pd->jumbolen != 0) {
10213 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple jumbo");
10214 				REASON_SET(reason, PFRES_IPOPTIONS);
10215 				return (PF_DROP);
10216 			}
10217 			if (ntohs(h->ip6_plen) != 0) {
10218 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 bad jumbo plen");
10219 				REASON_SET(reason, PFRES_IPOPTIONS);
10220 				return (PF_DROP);
10221 			}
10222 			if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo),
10223 				reason, AF_INET6)) {
10224 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbo");
10225 				return (PF_DROP);
10226 			}
10227 			memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len,
10228 			    sizeof(pd->jumbolen));
10229 			pd->jumbolen = ntohl(pd->jumbolen);
10230 			if (pd->jumbolen < IPV6_MAXPACKET) {
10231 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbolen");
10232 				REASON_SET(reason, PFRES_IPOPTIONS);
10233 				return (PF_DROP);
10234 			}
10235 			break;
10236 		case IP6OPT_ROUTER_ALERT:
10237 			pd->badopts |= PF_OPT_ROUTER_ALERT;
10238 			break;
10239 		default:
10240 			pd->badopts |= PF_OPT_OTHER;
10241 			break;
10242 		}
10243 		off += sizeof(opt) + opt.ip6o_len;
10244 	}
10245 
10246 	return (PF_PASS);
10247 }
10248 
10249 int
pf_walk_header6(struct pf_pdesc * pd,struct ip6_hdr * h,u_short * reason)10250 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason)
10251 {
10252 	struct ip6_frag		 frag;
10253 	struct ip6_ext		 ext;
10254 	struct icmp6_hdr	 icmp6;
10255 	struct ip6_rthdr	 rthdr;
10256 	uint32_t		 end;
10257 	int			 hdr_cnt, fraghdr_cnt = 0, rthdr_cnt = 0;
10258 
10259 	pd->off += sizeof(struct ip6_hdr);
10260 	end = pd->off + ntohs(h->ip6_plen);
10261 	pd->fragoff = pd->extoff = pd->jumbolen = 0;
10262 	pd->proto = h->ip6_nxt;
10263 	for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
10264 		switch (pd->proto) {
10265 		case IPPROTO_ROUTING:
10266 		case IPPROTO_DSTOPTS:
10267 			pd->badopts |= PF_OPT_OTHER;
10268 			break;
10269 		case IPPROTO_HOPOPTS:
10270 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10271 			    reason, AF_INET6)) {
10272 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr");
10273 				return (PF_DROP);
10274 			}
10275 			if (pf_walk_option6(pd, h, pd->off + sizeof(ext),
10276 				pd->off + (ext.ip6e_len + 1) * 8,
10277 				reason) != PF_PASS)
10278 				return (PF_DROP);
10279 			/* option header which contains only padding is fishy */
10280 			if (pd->badopts == 0)
10281 				pd->badopts |= PF_OPT_OTHER;
10282 			break;
10283 		}
10284 		switch (pd->proto) {
10285 		case IPPROTO_FRAGMENT:
10286 			if (fraghdr_cnt++) {
10287 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple fragment");
10288 				REASON_SET(reason, PFRES_FRAG);
10289 				return (PF_DROP);
10290 			}
10291 			/* jumbo payload packets cannot be fragmented */
10292 			if (pd->jumbolen != 0) {
10293 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 fragmented jumbo");
10294 				REASON_SET(reason, PFRES_FRAG);
10295 				return (PF_DROP);
10296 			}
10297 			if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag),
10298 			    reason, AF_INET6)) {
10299 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short fragment");
10300 				return (PF_DROP);
10301 			}
10302 			/* stop walking over non initial fragments */
10303 			if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) {
10304 				pd->fragoff = pd->off;
10305 				return (PF_PASS);
10306 			}
10307 			/* RFC6946:  reassemble only non atomic fragments */
10308 			if (frag.ip6f_offlg & IP6F_MORE_FRAG)
10309 				pd->fragoff = pd->off;
10310 			pd->off += sizeof(frag);
10311 			pd->proto = frag.ip6f_nxt;
10312 			break;
10313 		case IPPROTO_ROUTING:
10314 			if (rthdr_cnt++) {
10315 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple rthdr");
10316 				REASON_SET(reason, PFRES_IPOPTIONS);
10317 				return (PF_DROP);
10318 			}
10319 			/* fragments may be short */
10320 			if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) {
10321 				pd->off = pd->fragoff;
10322 				pd->proto = IPPROTO_FRAGMENT;
10323 				return (PF_PASS);
10324 			}
10325 			if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr),
10326 			    reason, AF_INET6)) {
10327 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short rthdr");
10328 				return (PF_DROP);
10329 			}
10330 			if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
10331 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 rthdr0");
10332 				REASON_SET(reason, PFRES_IPOPTIONS);
10333 				return (PF_DROP);
10334 			}
10335 			/* FALLTHROUGH */
10336 		case IPPROTO_HOPOPTS:
10337 			/* RFC2460 4.1:  Hop-by-Hop only after IPv6 header */
10338 			if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 0) {
10339 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 hopopts not first");
10340 				REASON_SET(reason, PFRES_IPOPTIONS);
10341 				return (PF_DROP);
10342 			}
10343 			/* FALLTHROUGH */
10344 		case IPPROTO_AH:
10345 		case IPPROTO_DSTOPTS:
10346 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10347 			    reason, AF_INET6)) {
10348 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr");
10349 				return (PF_DROP);
10350 			}
10351 			/* fragments may be short */
10352 			if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) {
10353 				pd->off = pd->fragoff;
10354 				pd->proto = IPPROTO_FRAGMENT;
10355 				return (PF_PASS);
10356 			}
10357 			/* reassembly needs the ext header before the frag */
10358 			if (pd->fragoff == 0)
10359 				pd->extoff = pd->off;
10360 			if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0 &&
10361 			    ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) {
10362 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 missing jumbo");
10363 				REASON_SET(reason, PFRES_IPOPTIONS);
10364 				return (PF_DROP);
10365 			}
10366 			if (pd->proto == IPPROTO_AH)
10367 				pd->off += (ext.ip6e_len + 2) * 4;
10368 			else
10369 				pd->off += (ext.ip6e_len + 1) * 8;
10370 			pd->proto = ext.ip6e_nxt;
10371 			break;
10372 		case IPPROTO_ICMPV6:
10373 			/* fragments may be short, ignore inner header then */
10374 			if (pd->fragoff != 0 && end < pd->off + sizeof(icmp6)) {
10375 				pd->off = pd->fragoff;
10376 				pd->proto = IPPROTO_FRAGMENT;
10377 				return (PF_PASS);
10378 			}
10379 			if (!pf_pull_hdr(pd->m, pd->off, &icmp6, sizeof(icmp6),
10380 				reason, AF_INET6)) {
10381 				DPFPRINTF(PF_DEBUG_MISC,
10382 				    "IPv6 short icmp6hdr");
10383 				return (PF_DROP);
10384 			}
10385 			/* ICMP multicast packets have router alert options */
10386 			switch (icmp6.icmp6_type) {
10387 			case MLD_LISTENER_QUERY:
10388 			case MLD_LISTENER_REPORT:
10389 			case MLD_LISTENER_DONE:
10390 			case MLDV2_LISTENER_REPORT:
10391 				/*
10392 				 * According to RFC 2710 all MLD messages are
10393 				 * sent with hop-limit (ttl) set to 1, and link
10394 				 * local source address.  If either one is
10395 				 * missing then MLD message is invalid and
10396 				 * should be discarded.
10397 				 */
10398 				if ((h->ip6_hlim != 1) ||
10399 				    !IN6_IS_ADDR_LINKLOCAL(&h->ip6_src)) {
10400 					DPFPRINTF(PF_DEBUG_MISC, "Invalid MLD");
10401 					REASON_SET(reason, PFRES_IPOPTIONS);
10402 					return (PF_DROP);
10403 				}
10404 				pd->badopts &= ~PF_OPT_ROUTER_ALERT;
10405 				break;
10406 			}
10407 			return (PF_PASS);
10408 		case IPPROTO_TCP:
10409 		case IPPROTO_UDP:
10410 		case IPPROTO_SCTP:
10411 			/* fragments may be short, ignore inner header then */
10412 			if (pd->fragoff != 0 && end < pd->off +
10413 			    (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) :
10414 			    pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) :
10415 			    pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) :
10416 			    sizeof(struct icmp6_hdr))) {
10417 				pd->off = pd->fragoff;
10418 				pd->proto = IPPROTO_FRAGMENT;
10419 			}
10420 			/* FALLTHROUGH */
10421 		default:
10422 			return (PF_PASS);
10423 		}
10424 	}
10425 	DPFPRINTF(PF_DEBUG_MISC, "IPv6 nested extension header limit");
10426 	REASON_SET(reason, PFRES_IPOPTIONS);
10427 	return (PF_DROP);
10428 }
10429 #endif /* INET6 */
10430 
10431 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)10432 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
10433 {
10434 	memset(pd, 0, sizeof(*pd));
10435 	pd->pf_mtag = pf_find_mtag(m);
10436 	pd->m = m;
10437 }
10438 
10439 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)10440 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
10441     u_short *action, u_short *reason, struct pfi_kkif *kif,
10442     struct pf_rule_actions *default_actions)
10443 {
10444 	pd->dir = dir;
10445 	pd->kif = kif;
10446 	pd->m = *m0;
10447 	pd->sidx = (dir == PF_IN) ? 0 : 1;
10448 	pd->didx = (dir == PF_IN) ? 1 : 0;
10449 	pd->af = pd->naf = af;
10450 
10451 	PF_RULES_ASSERT();
10452 
10453 	TAILQ_INIT(&pd->sctp_multihome_jobs);
10454 	if (default_actions != NULL)
10455 		memcpy(&pd->act, default_actions, sizeof(pd->act));
10456 
10457 	if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
10458 		pd->act.dnpipe = pd->pf_mtag->dnpipe;
10459 		pd->act.flags = pd->pf_mtag->dnflags;
10460 	}
10461 
10462 	switch (af) {
10463 #ifdef INET
10464 	case AF_INET: {
10465 		struct ip *h;
10466 
10467 		if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
10468 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
10469 			DPFPRINTF(PF_DEBUG_URGENT,
10470 			    "%s: m_len < sizeof(struct ip), pullup failed",
10471 			    __func__);
10472 			*action = PF_DROP;
10473 			REASON_SET(reason, PFRES_SHORT);
10474 			return (PF_DROP);
10475 		}
10476 
10477 		h = mtod(pd->m, struct ip *);
10478 		if (pd->m->m_pkthdr.len < ntohs(h->ip_len)) {
10479 			*action = PF_DROP;
10480 			REASON_SET(reason, PFRES_SHORT);
10481 			return (PF_DROP);
10482 		}
10483 
10484 		if (pf_normalize_ip(reason, pd) != PF_PASS) {
10485 			/* We do IP header normalization and packet reassembly here */
10486 			*m0 = pd->m;
10487 			*action = PF_DROP;
10488 			return (PF_DROP);
10489 		}
10490 		*m0 = pd->m;
10491 		h = mtod(pd->m, struct ip *);
10492 
10493 		if (pf_walk_header(pd, h, reason) != PF_PASS) {
10494 			*action = PF_DROP;
10495 			return (PF_DROP);
10496 		}
10497 
10498 		pd->src = (struct pf_addr *)&h->ip_src;
10499 		pd->dst = (struct pf_addr *)&h->ip_dst;
10500 		pf_addrcpy(&pd->osrc, pd->src, af);
10501 		pf_addrcpy(&pd->odst, pd->dst, af);
10502 		pd->ip_sum = &h->ip_sum;
10503 		pd->tos = h->ip_tos & ~IPTOS_ECN_MASK;
10504 		pd->ttl = h->ip_ttl;
10505 		pd->tot_len = ntohs(h->ip_len);
10506 		pd->act.rtableid = -1;
10507 		pd->df = h->ip_off & htons(IP_DF);
10508 		pd->virtual_proto = (h->ip_off & htons(IP_MF | IP_OFFMASK)) ?
10509 		    PF_VPROTO_FRAGMENT : pd->proto;
10510 
10511 		break;
10512 	}
10513 #endif /* INET */
10514 #ifdef INET6
10515 	case AF_INET6: {
10516 		struct ip6_hdr *h;
10517 
10518 		if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
10519 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
10520 			DPFPRINTF(PF_DEBUG_URGENT,
10521 			    "%s: m_len < sizeof(struct ip6_hdr)"
10522 			     ", pullup failed", __func__);
10523 			*action = PF_DROP;
10524 			REASON_SET(reason, PFRES_SHORT);
10525 			return (PF_DROP);
10526 		}
10527 
10528 		h = mtod(pd->m, struct ip6_hdr *);
10529 		if (pd->m->m_pkthdr.len <
10530 		    sizeof(struct ip6_hdr) + ntohs(h->ip6_plen)) {
10531 			*action = PF_DROP;
10532 			REASON_SET(reason, PFRES_SHORT);
10533 			return (PF_DROP);
10534 		}
10535 
10536 		/*
10537 		 * we do not support jumbogram.  if we keep going, zero ip6_plen
10538 		 * will do something bad, so drop the packet for now.
10539 		 */
10540 		if (htons(h->ip6_plen) == 0) {
10541 			*action = PF_DROP;
10542 			return (PF_DROP);
10543 		}
10544 
10545 		if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10546 			*action = PF_DROP;
10547 			return (PF_DROP);
10548 		}
10549 
10550 		h = mtod(pd->m, struct ip6_hdr *);
10551 		pd->src = (struct pf_addr *)&h->ip6_src;
10552 		pd->dst = (struct pf_addr *)&h->ip6_dst;
10553 		pf_addrcpy(&pd->osrc, pd->src, af);
10554 		pf_addrcpy(&pd->odst, pd->dst, af);
10555 		pd->ip_sum = NULL;
10556 		pd->tos = IPV6_DSCP(h);
10557 		pd->ttl = h->ip6_hlim;
10558 		pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
10559 		pd->act.rtableid = -1;
10560 
10561 		pd->virtual_proto = (pd->fragoff != 0) ?
10562 		    PF_VPROTO_FRAGMENT : pd->proto;
10563 
10564 		/* We do IP header normalization and packet reassembly here */
10565 		if (pf_normalize_ip6(pd->fragoff, reason, pd) !=
10566 		    PF_PASS) {
10567 			*m0 = pd->m;
10568 			*action = PF_DROP;
10569 			return (PF_DROP);
10570 		}
10571 		*m0 = pd->m;
10572 		if (pd->m == NULL) {
10573 			/* packet sits in reassembly queue, no error */
10574 			*action = PF_PASS;
10575 			return (PF_DROP);
10576 		}
10577 
10578 		/* Update pointers into the packet. */
10579 		h = mtod(pd->m, struct ip6_hdr *);
10580 		pd->src = (struct pf_addr *)&h->ip6_src;
10581 		pd->dst = (struct pf_addr *)&h->ip6_dst;
10582 
10583 		pd->off = 0;
10584 
10585 		if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10586 			*action = PF_DROP;
10587 			return (PF_DROP);
10588 		}
10589 
10590 		if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) {
10591 			/*
10592 			 * Reassembly may have changed the next protocol from
10593 			 * fragment to something else, so update.
10594 			 */
10595 			pd->virtual_proto = pd->proto;
10596 			MPASS(pd->fragoff == 0);
10597 		}
10598 
10599 		if (pd->fragoff != 0)
10600 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
10601 
10602 		break;
10603 	}
10604 #endif /* INET6 */
10605 	default:
10606 		panic("pf_setup_pdesc called with illegal af %u", af);
10607 	}
10608 
10609 	switch (pd->virtual_proto) {
10610 	case IPPROTO_TCP: {
10611 		struct tcphdr *th = &pd->hdr.tcp;
10612 
10613 		if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th),
10614 			reason, af)) {
10615 			*action = PF_DROP;
10616 			REASON_SET(reason, PFRES_SHORT);
10617 			return (PF_DROP);
10618 		}
10619 		pd->hdrlen = sizeof(*th);
10620 		pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
10621 		pd->sport = &th->th_sport;
10622 		pd->dport = &th->th_dport;
10623 		pd->pcksum = &th->th_sum;
10624 		break;
10625 	}
10626 	case IPPROTO_UDP: {
10627 		struct udphdr *uh = &pd->hdr.udp;
10628 
10629 		if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh),
10630 			reason, af)) {
10631 			*action = PF_DROP;
10632 			REASON_SET(reason, PFRES_SHORT);
10633 			return (PF_DROP);
10634 		}
10635 		pd->hdrlen = sizeof(*uh);
10636 		if (uh->uh_dport == 0 ||
10637 		    ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
10638 		    ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
10639 			*action = PF_DROP;
10640 			REASON_SET(reason, PFRES_SHORT);
10641 			return (PF_DROP);
10642 		}
10643 		pd->sport = &uh->uh_sport;
10644 		pd->dport = &uh->uh_dport;
10645 		pd->pcksum = &uh->uh_sum;
10646 		break;
10647 	}
10648 	case IPPROTO_SCTP: {
10649 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
10650 		    reason, af)) {
10651 			*action = PF_DROP;
10652 			REASON_SET(reason, PFRES_SHORT);
10653 			return (PF_DROP);
10654 		}
10655 		pd->hdrlen = sizeof(pd->hdr.sctp);
10656 		pd->p_len = pd->tot_len - pd->off;
10657 
10658 		pd->sport = &pd->hdr.sctp.src_port;
10659 		pd->dport = &pd->hdr.sctp.dest_port;
10660 		if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
10661 			*action = PF_DROP;
10662 			REASON_SET(reason, PFRES_SHORT);
10663 			return (PF_DROP);
10664 		}
10665 
10666 		/*
10667 		 * Placeholder. The SCTP checksum is 32-bits, but
10668 		 * pf_test_state() expects to update a 16-bit checksum.
10669 		 * Provide a dummy value which we'll subsequently ignore.
10670 		 * Do this before pf_scan_sctp() so any jobs we enqueue
10671 		 * have a pcksum set.
10672 		 */
10673 		pd->pcksum = &pd->sctp_dummy_sum;
10674 
10675 		if (pf_scan_sctp(pd) != PF_PASS) {
10676 			*action = PF_DROP;
10677 			REASON_SET(reason, PFRES_SHORT);
10678 			return (PF_DROP);
10679 		}
10680 		break;
10681 	}
10682 	case IPPROTO_ICMP: {
10683 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
10684 			reason, af)) {
10685 			*action = PF_DROP;
10686 			REASON_SET(reason, PFRES_SHORT);
10687 			return (PF_DROP);
10688 		}
10689 		pd->pcksum = &pd->hdr.icmp.icmp_cksum;
10690 		pd->hdrlen = ICMP_MINLEN;
10691 		break;
10692 	}
10693 #ifdef INET6
10694 	case IPPROTO_ICMPV6: {
10695 		size_t icmp_hlen = sizeof(struct icmp6_hdr);
10696 
10697 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10698 			reason, af)) {
10699 			*action = PF_DROP;
10700 			REASON_SET(reason, PFRES_SHORT);
10701 			return (PF_DROP);
10702 		}
10703 		/* ICMP headers we look further into to match state */
10704 		switch (pd->hdr.icmp6.icmp6_type) {
10705 		case MLD_LISTENER_QUERY:
10706 		case MLD_LISTENER_REPORT:
10707 			icmp_hlen = sizeof(struct mld_hdr);
10708 			break;
10709 		case ND_NEIGHBOR_SOLICIT:
10710 		case ND_NEIGHBOR_ADVERT:
10711 			icmp_hlen = sizeof(struct nd_neighbor_solicit);
10712 			/* FALLTHROUGH */
10713 		case ND_ROUTER_SOLICIT:
10714 		case ND_ROUTER_ADVERT:
10715 		case ND_REDIRECT:
10716 			if (pd->ttl != 255) {
10717 				REASON_SET(reason, PFRES_NORM);
10718 				return (PF_DROP);
10719 			}
10720 			break;
10721 		}
10722 		if (icmp_hlen > sizeof(struct icmp6_hdr) &&
10723 		    !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10724 			reason, af)) {
10725 			*action = PF_DROP;
10726 			REASON_SET(reason, PFRES_SHORT);
10727 			return (PF_DROP);
10728 		}
10729 		pd->hdrlen = icmp_hlen;
10730 		pd->pcksum = &pd->hdr.icmp6.icmp6_cksum;
10731 		break;
10732 	}
10733 #endif /* INET6 */
10734 	default:
10735 		/*
10736 		 * Placeholder value, so future calls to pf_change_ap() don't
10737 		 * try to update a NULL checksum pointer.
10738 		*/
10739 		pd->pcksum = &pd->sctp_dummy_sum;
10740 		break;
10741 	}
10742 
10743 	if (pd->sport)
10744 		pd->osport = pd->nsport = *pd->sport;
10745 	if (pd->dport)
10746 		pd->odport = pd->ndport = *pd->dport;
10747 
10748 	MPASS(pd->pcksum != NULL);
10749 
10750 	return (PF_PASS);
10751 }
10752 
10753 static __inline void
pf_rule_counters_inc(struct pf_pdesc * pd,struct pf_krule * r,int dir_out,int op_pass,sa_family_t af,struct pf_addr * src_host,struct pf_addr * dst_host)10754 pf_rule_counters_inc(struct pf_pdesc *pd, struct pf_krule *r, int dir_out,
10755     int op_pass, sa_family_t af, struct pf_addr *src_host,
10756     struct pf_addr *dst_host)
10757 {
10758 	pf_counter_u64_add_protected(&(r->packets[dir_out]), 1);
10759 	pf_counter_u64_add_protected(&(r->bytes[dir_out]), pd->tot_len);
10760 	pf_update_timestamp(r);
10761 
10762 	if (r->src.addr.type == PF_ADDR_TABLE)
10763 		pfr_update_stats(r->src.addr.p.tbl, src_host, af,
10764 		    pd->tot_len, dir_out, op_pass, r->src.neg);
10765 	if (r->dst.addr.type == PF_ADDR_TABLE)
10766 		pfr_update_stats(r->dst.addr.p.tbl, dst_host, af,
10767 		    pd->tot_len, dir_out, op_pass, r->dst.neg);
10768 }
10769 
10770 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a,struct pf_krule_slist * match_rules)10771 pf_counters_inc(int action, struct pf_pdesc *pd, struct pf_kstate *s,
10772     struct pf_krule *r, struct pf_krule *a, struct pf_krule_slist *match_rules)
10773 {
10774 	struct pf_krule_slist	*mr = match_rules;
10775 	struct pf_krule_item	*ri;
10776 	struct pf_krule		*nr = NULL;
10777 	struct pf_addr		*src_host = pd->src;
10778 	struct pf_addr		*dst_host = pd->dst;
10779 	struct pf_state_key	*key;
10780 	int			 dir_out = (pd->dir == PF_OUT);
10781 	int			 op_r_pass = (r->action == PF_PASS);
10782 	int			 op_pass = (action == PF_PASS || action == PF_AFRT);
10783 	int			 s_dir_in, s_dir_out, s_dir_rev;
10784 	sa_family_t		 af = pd->af;
10785 
10786 	pf_counter_u64_critical_enter();
10787 
10788 	/*
10789 	 * Set AF for interface counters, it will be later overwritten for
10790 	 * rule and state counters with value from proper state key.
10791 	 */
10792 	if (action == PF_AFRT) {
10793 		MPASS(s != NULL);
10794 		if (s->direction == PF_OUT && dir_out)
10795 			af = pd->naf;
10796 	}
10797 
10798 	pf_counter_u64_add_protected(
10799 	    &pd->kif->pfik_bytes[af == AF_INET6][dir_out][!op_pass],
10800 	    pd->tot_len);
10801 	pf_counter_u64_add_protected(
10802 	    &pd->kif->pfik_packets[af == AF_INET6][dir_out][!op_pass],
10803 	    1);
10804 
10805 	/* If the rule has failed to apply, don't increase its counters */
10806 	if (!(op_pass || r->action == PF_DROP)) {
10807 		pf_counter_u64_critical_exit();
10808 		return;
10809 	}
10810 
10811 	if (s != NULL) {
10812 		PF_STATE_LOCK_ASSERT(s);
10813 		mr = &(s->match_rules);
10814 
10815 		/*
10816 		 * For af-to on the inbound direction we can determine
10817 		 * the direction of passing packet only by checking direction
10818 		 * of AF translation. The af-to in "in" direction covers both
10819 		 * the inbound and the outbound side of state tracking,
10820 		 * so pd->dir is always PF_IN. We set dir_out and s_dir_rev
10821 		 * in a way to count packets as if the state was outbound,
10822 		 * because pfctl -ss shows the state with "->", as if it was
10823 		 * oubound.
10824 		 */
10825 		if (action == PF_AFRT && s->direction == PF_IN) {
10826 			dir_out = (pd->naf == s->rule->naf);
10827 			s_dir_in = 1;
10828 			s_dir_out = 0;
10829 			s_dir_rev = (pd->naf == s->rule->af);
10830 		} else {
10831 			dir_out = (pd->dir == PF_OUT);
10832 			s_dir_in = (s->direction == PF_IN);
10833 			s_dir_out = (s->direction == PF_OUT);
10834 			s_dir_rev = (pd->dir != s->direction);
10835 		}
10836 
10837 		/* pd->tot_len is a problematic with af-to rules. Sure, we can
10838 		 * agree that it's the post-af-to packet length that was
10839 		 * forwarded through a state, but what about tables which match
10840 		 * on pre-af-to addresses? We don't have access the the original
10841 		 * packet length anymore.
10842 		 */
10843 		s->packets[s_dir_rev]++;
10844 		s->bytes[s_dir_rev] += pd->tot_len;
10845 
10846 		/*
10847 		 * Source nodes are accessed unlocked here. But since we are
10848 		 * operating with stateful tracking and the state is locked,
10849 		 * those SNs could not have been freed.
10850 		 */
10851 		for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
10852 			if (s->sns[sn_type] != NULL) {
10853 				counter_u64_add(
10854 				    s->sns[sn_type]->packets[dir_out],
10855 				    1);
10856 				counter_u64_add(
10857 				    s->sns[sn_type]->bytes[dir_out],
10858 				    pd->tot_len);
10859 			}
10860 		}
10861 
10862 		/* Start with pre-NAT addresses */
10863 		key = s->key[(s->direction == PF_OUT)];
10864 		src_host = &(key->addr[s_dir_out]);
10865 		dst_host = &(key->addr[s_dir_in]);
10866 		af = key->af;
10867 		if (s->nat_rule) {
10868 			/* Old-style NAT rules */
10869 			if (s->nat_rule->action == PF_NAT ||
10870 			    s->nat_rule->action == PF_RDR ||
10871 			    s->nat_rule->action == PF_BINAT) {
10872 				nr = s->nat_rule;
10873 				pf_rule_counters_inc(pd, s->nat_rule, dir_out,
10874 				    op_r_pass, af, src_host, dst_host);
10875 				/* Use post-NAT addresses from now on */
10876 				key = s->key[s_dir_in];
10877 				src_host = &(key->addr[s_dir_out]);
10878 				dst_host = &(key->addr[s_dir_in]);
10879 				af = key->af;
10880 			}
10881 		}
10882 	}
10883 
10884 	SLIST_FOREACH(ri, mr, entry) {
10885 		pf_rule_counters_inc(pd, ri->r, dir_out, op_r_pass, af,
10886 		    src_host, dst_host);
10887 		if (s && s->nat_rule == ri->r) {
10888 			/* Use post-NAT addresses after a match NAT rule */
10889 			key = s->key[s_dir_in];
10890 			src_host = &(key->addr[s_dir_out]);
10891 			dst_host = &(key->addr[s_dir_in]);
10892 			af = key->af;
10893 		}
10894 	}
10895 
10896 	if (s == NULL) {
10897 		pf_free_match_rules(mr);
10898 	}
10899 
10900 	if (a != NULL) {
10901 		pf_rule_counters_inc(pd, a, dir_out, op_r_pass, af,
10902 		    src_host, dst_host);
10903 	}
10904 
10905 	if (r != nr) {
10906 		pf_rule_counters_inc(pd, r, dir_out, op_r_pass, af,
10907 		    src_host, dst_host);
10908 	}
10909 
10910 	pf_counter_u64_critical_exit();
10911 }
10912 
10913 static void
pf_log_matches(struct pf_pdesc * pd,struct pf_krule * rm,struct pf_krule * am,struct pf_kruleset * ruleset,struct pf_krule_slist * match_rules)10914 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm,
10915     struct pf_krule *am, struct pf_kruleset *ruleset,
10916     struct pf_krule_slist *match_rules)
10917 {
10918 	struct pf_krule_item	*ri;
10919 
10920 	/* if this is the log(matches) rule, packet has been logged already */
10921 	if (rm->log & PF_LOG_MATCHES)
10922 		return;
10923 
10924 	SLIST_FOREACH(ri, match_rules, entry)
10925 		if (ri->r->log & PF_LOG_MATCHES)
10926 			PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am,
10927 			    ruleset, pd, 1, ri->r);
10928 }
10929 
10930 #if defined(INET) || defined(INET6)
10931 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)10932 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10933     struct inpcb *inp, struct pf_rule_actions *default_actions)
10934 {
10935 	struct pfi_kkif		*kif;
10936 	u_short			 action, reason = 0;
10937 	struct m_tag		*mtag;
10938 	struct pf_krule		*a = NULL, *r = &V_pf_default_rule;
10939 	struct pf_kstate	*s = NULL;
10940 	struct pf_kruleset	*ruleset = NULL;
10941 	struct pf_krule_item	*ri;
10942 	struct pf_krule_slist	 match_rules;
10943 	struct pf_pdesc		 pd;
10944 	int			 use_2nd_queue = 0;
10945 	uint16_t		 tag;
10946 
10947 	PF_RULES_RLOCK_TRACKER;
10948 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
10949 	M_ASSERTPKTHDR(*m0);
10950 	NET_EPOCH_ASSERT();
10951 
10952 	if (!V_pf_status.running)
10953 		return (PF_PASS);
10954 
10955 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
10956 
10957 	if (__predict_false(kif == NULL)) {
10958 		DPFPRINTF(PF_DEBUG_URGENT,
10959 		    "%s: kif == NULL, if_xname %s",
10960 		    __func__, ifp->if_xname);
10961 		return (PF_DROP);
10962 	}
10963 	if (kif->pfik_flags & PFI_IFLAG_SKIP) {
10964 		return (PF_PASS);
10965 	}
10966 
10967 	if ((*m0)->m_flags & M_SKIP_FIREWALL) {
10968 		return (PF_PASS);
10969 	}
10970 
10971 	if (__predict_false(! M_WRITABLE(*m0))) {
10972 		*m0 = m_unshare(*m0, M_NOWAIT);
10973 		if (*m0 == NULL) {
10974 			return (PF_DROP);
10975 		}
10976 	}
10977 
10978 	pf_init_pdesc(&pd, *m0);
10979 	SLIST_INIT(&match_rules);
10980 
10981 	if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
10982 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10983 
10984 		ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
10985 		    pd.pf_mtag->if_idxgen);
10986 		if (ifp == NULL || ifp->if_flags & IFF_DYING) {
10987 			m_freem(*m0);
10988 			*m0 = NULL;
10989 			return (PF_PASS);
10990 		}
10991 		(ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
10992 		*m0 = NULL;
10993 		return (PF_PASS);
10994 	}
10995 
10996 	if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
10997 	    pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
10998 		/* Dummynet re-injects packets after they've
10999 		 * completed their delay. We've already
11000 		 * processed them, so pass unconditionally. */
11001 
11002 		/* But only once. We may see the packet multiple times (e.g.
11003 		 * PFIL_IN/PFIL_OUT). */
11004 		pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
11005 
11006 		return (PF_PASS);
11007 	}
11008 
11009 	PF_RULES_RLOCK();
11010 
11011 	if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
11012 		kif, default_actions) != PF_PASS) {
11013 		if (action != PF_PASS)
11014 			pd.act.log |= PF_LOG_FORCE;
11015 		goto done;
11016 	}
11017 
11018 #ifdef INET
11019 	if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD &&
11020 	    pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) {
11021 		PF_RULES_RUNLOCK();
11022 		icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
11023 			0, ifp->if_mtu);
11024 		*m0 = NULL;
11025 		return (PF_DROP);
11026 	}
11027 #endif /* INET */
11028 #ifdef INET6
11029 	/*
11030 	 * If we end up changing IP addresses (e.g. binat) the stack may get
11031 	 * confused and fail to send the icmp6 packet too big error. Just send
11032 	 * it here, before we do any NAT.
11033 	 */
11034 	if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
11035 	    IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
11036 		PF_RULES_RUNLOCK();
11037 		icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
11038 		*m0 = NULL;
11039 		return (PF_DROP);
11040 	}
11041 #endif /* INET6 */
11042 
11043 	if (__predict_false(ip_divert_ptr != NULL) &&
11044 	    ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
11045 		struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
11046 		if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
11047 		    (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
11048 			if (pd.pf_mtag == NULL &&
11049 			    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11050 				action = PF_DROP;
11051 				goto done;
11052 			}
11053 			pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
11054 		}
11055 		if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
11056 			pd.m->m_flags |= M_FASTFWD_OURS;
11057 			pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
11058 		}
11059 		m_tag_delete(pd.m, mtag);
11060 
11061 		mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
11062 		if (mtag != NULL)
11063 			m_tag_delete(pd.m, mtag);
11064 	}
11065 
11066 	switch (pd.virtual_proto) {
11067 	case PF_VPROTO_FRAGMENT:
11068 		/*
11069 		 * handle fragments that aren't reassembled by
11070 		 * normalization
11071 		 */
11072 		if (kif == NULL || r == NULL) /* pflog */
11073 			action = PF_DROP;
11074 		else
11075 			action = pf_test_rule(&r, &s, &pd, &a,
11076 			    &ruleset, &reason, inp, &match_rules);
11077 		if (action != PF_PASS)
11078 			REASON_SET(&reason, PFRES_FRAG);
11079 		break;
11080 
11081 	case IPPROTO_TCP: {
11082 		/* Respond to SYN with a syncookie. */
11083 		if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
11084 		    pd.dir == PF_IN && pf_synflood_check(&pd)) {
11085 			pf_syncookie_send(&pd, &reason);
11086 			action = PF_DROP;
11087 			break;
11088 		}
11089 
11090 		if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
11091 			use_2nd_queue = 1;
11092 		action = pf_normalize_tcp(&pd);
11093 		if (action == PF_DROP)
11094 			break;
11095 		action = pf_test_state(&s, &pd, &reason);
11096 		if (action == PF_PASS || action == PF_AFRT) {
11097 			if (s != NULL) {
11098 				if (V_pfsync_update_state_ptr != NULL)
11099 					V_pfsync_update_state_ptr(s);
11100 				r = s->rule;
11101 				a = s->anchor;
11102 			}
11103 		} else if (s == NULL) {
11104 			/* Validate remote SYN|ACK, re-create original SYN if
11105 			 * valid. */
11106 			if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
11107 			    TH_ACK && pf_syncookie_validate(&pd) &&
11108 			    pd.dir == PF_IN) {
11109 				struct mbuf *msyn;
11110 
11111 				msyn = pf_syncookie_recreate_syn(&pd, &reason);
11112 				if (msyn == NULL) {
11113 					action = PF_DROP;
11114 					break;
11115 				}
11116 
11117 				action = pf_test(af, dir, pflags, ifp, &msyn, inp,
11118 				    &pd.act);
11119 				m_freem(msyn);
11120 				if (action != PF_PASS)
11121 					break;
11122 
11123 				action = pf_test_state(&s, &pd, &reason);
11124 				if (action != PF_PASS || s == NULL) {
11125 					action = PF_DROP;
11126 					break;
11127 				}
11128 
11129 				s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
11130 				s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
11131 				pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
11132 				action = pf_synproxy(&pd, s, &reason);
11133 				break;
11134 			} else {
11135 				action = pf_test_rule(&r, &s, &pd,
11136 				    &a, &ruleset, &reason, inp, &match_rules);
11137 			}
11138 		}
11139 		break;
11140 	}
11141 
11142 	case IPPROTO_SCTP:
11143 		action = pf_normalize_sctp(&pd);
11144 		if (action == PF_DROP)
11145 			break;
11146 		/* fallthrough */
11147 	case IPPROTO_UDP:
11148 	default:
11149 		action = pf_test_state(&s, &pd, &reason);
11150 		if (action == PF_PASS || action == PF_AFRT) {
11151 			if (s != NULL) {
11152 				if (V_pfsync_update_state_ptr != NULL)
11153 					V_pfsync_update_state_ptr(s);
11154 				r = s->rule;
11155 				a = s->anchor;
11156 			}
11157 		} else if (s == NULL) {
11158 			action = pf_test_rule(&r, &s,
11159 			    &pd, &a, &ruleset, &reason, inp, &match_rules);
11160 		}
11161 		break;
11162 
11163 	case IPPROTO_ICMP:
11164 	case IPPROTO_ICMPV6: {
11165 		if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
11166 			action = PF_DROP;
11167 			REASON_SET(&reason, PFRES_NORM);
11168 			DPFPRINTF(PF_DEBUG_MISC,
11169 			    "dropping IPv6 packet with ICMPv4 payload");
11170 			break;
11171 		}
11172 		if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
11173 			action = PF_DROP;
11174 			REASON_SET(&reason, PFRES_NORM);
11175 			DPFPRINTF(PF_DEBUG_MISC,
11176 			    "pf: dropping IPv4 packet with ICMPv6 payload");
11177 			break;
11178 		}
11179 		action = pf_test_state_icmp(&s, &pd, &reason);
11180 		if (action == PF_PASS || action == PF_AFRT) {
11181 			if (V_pfsync_update_state_ptr != NULL)
11182 				V_pfsync_update_state_ptr(s);
11183 			r = s->rule;
11184 			a = s->anchor;
11185 		} else if (s == NULL)
11186 			action = pf_test_rule(&r, &s, &pd,
11187 			    &a, &ruleset, &reason, inp, &match_rules);
11188 		break;
11189 	}
11190 
11191 	}
11192 
11193 done:
11194 	PF_RULES_RUNLOCK();
11195 
11196 	/* if packet sits in reassembly queue, return without error */
11197 	if (pd.m == NULL) {
11198 		pf_free_match_rules(&match_rules);
11199 		goto eat_pkt;
11200 	}
11201 
11202 	if (s)
11203 		memcpy(&pd.act, &s->act, sizeof(s->act));
11204 
11205 	if (action == PF_PASS && pd.badopts != 0 && !pd.act.allow_opts) {
11206 		action = PF_DROP;
11207 		REASON_SET(&reason, PFRES_IPOPTIONS);
11208 		pd.act.log = PF_LOG_FORCE;
11209 		DPFPRINTF(PF_DEBUG_MISC,
11210 		    "pf: dropping packet with dangerous headers");
11211 	}
11212 
11213 	if (pd.act.max_pkt_size && pd.act.max_pkt_size &&
11214 	    pd.tot_len > pd.act.max_pkt_size) {
11215 		action = PF_DROP;
11216 		REASON_SET(&reason, PFRES_NORM);
11217 		pd.act.log = PF_LOG_FORCE;
11218 		DPFPRINTF(PF_DEBUG_MISC,
11219 		    "pf: dropping overly long packet");
11220 	}
11221 
11222 	if (s) {
11223 		uint8_t log = pd.act.log;
11224 		memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
11225 		pd.act.log |= log;
11226 		tag = s->tag;
11227 	} else {
11228 		tag = r->tag;
11229 	}
11230 
11231 	if (tag > 0 && pf_tag_packet(&pd, tag)) {
11232 		action = PF_DROP;
11233 		REASON_SET(&reason, PFRES_MEMORY);
11234 	}
11235 
11236 	pf_scrub(&pd);
11237 	if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
11238 		pf_normalize_mss(&pd);
11239 
11240 	if (pd.act.rtableid >= 0)
11241 		M_SETFIB(pd.m, pd.act.rtableid);
11242 
11243 	if (pd.act.flags & PFSTATE_SETPRIO) {
11244 		if (pd.tos & IPTOS_LOWDELAY)
11245 			use_2nd_queue = 1;
11246 		if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
11247 			action = PF_DROP;
11248 			REASON_SET(&reason, PFRES_MEMORY);
11249 			pd.act.log = PF_LOG_FORCE;
11250 			DPFPRINTF(PF_DEBUG_MISC,
11251 			    "pf: failed to allocate 802.1q mtag");
11252 		}
11253 	}
11254 
11255 #ifdef ALTQ
11256 	if (action == PF_PASS && pd.act.qid) {
11257 		if (pd.pf_mtag == NULL &&
11258 		    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11259 			action = PF_DROP;
11260 			REASON_SET(&reason, PFRES_MEMORY);
11261 		} else {
11262 			if (s != NULL)
11263 				pd.pf_mtag->qid_hash = pf_state_hash(s);
11264 			if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
11265 				pd.pf_mtag->qid = pd.act.pqid;
11266 			else
11267 				pd.pf_mtag->qid = pd.act.qid;
11268 			/* Add hints for ecn. */
11269 			pd.pf_mtag->hdr = mtod(pd.m, void *);
11270 		}
11271 	}
11272 #endif /* ALTQ */
11273 
11274 	/*
11275 	 * connections redirected to loopback should not match sockets
11276 	 * bound specifically to loopback due to security implications,
11277 	 * see tcp_input() and in_pcblookup_listen().
11278 	 */
11279 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
11280 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
11281 	    (s->nat_rule->action == PF_RDR ||
11282 	    s->nat_rule->action == PF_BINAT) &&
11283 	    pf_is_loopback(af, pd.dst))
11284 		pd.m->m_flags |= M_SKIP_FIREWALL;
11285 
11286 	if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
11287 	    action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
11288 		mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
11289 		    sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
11290 		if (mtag != NULL) {
11291 			((struct pf_divert_mtag *)(mtag+1))->port =
11292 			    ntohs(r->divert.port);
11293 			((struct pf_divert_mtag *)(mtag+1))->idir =
11294 			    (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
11295 			    PF_DIVERT_MTAG_DIR_OUT;
11296 
11297 			pf_counters_inc(action, &pd, s, r, a, &match_rules);
11298 
11299 			if (s)
11300 				PF_STATE_UNLOCK(s);
11301 
11302 			m_tag_prepend(pd.m, mtag);
11303 			if (pd.m->m_flags & M_FASTFWD_OURS) {
11304 				if (pd.pf_mtag == NULL &&
11305 				    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11306 					action = PF_DROP;
11307 					REASON_SET(&reason, PFRES_MEMORY);
11308 					pd.act.log = PF_LOG_FORCE;
11309 					DPFPRINTF(PF_DEBUG_MISC,
11310 					    "pf: failed to allocate tag");
11311 				} else {
11312 					pd.pf_mtag->flags |=
11313 					    PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
11314 					pd.m->m_flags &= ~M_FASTFWD_OURS;
11315 				}
11316 			}
11317 			ip_divert_ptr(*m0, dir == PF_IN);
11318 			*m0 = NULL;
11319 
11320 			return (action);
11321 		} else {
11322 			/* XXX: ipfw has the same behaviour! */
11323 			action = PF_DROP;
11324 			REASON_SET(&reason, PFRES_MEMORY);
11325 			pd.act.log = PF_LOG_FORCE;
11326 			DPFPRINTF(PF_DEBUG_MISC,
11327 			    "pf: failed to allocate divert tag");
11328 		}
11329 	}
11330 	/* XXX: Anybody working on it?! */
11331 	if (af == AF_INET6 && r->divert.port)
11332 		printf("pf: divert(9) is not supported for IPv6\n");
11333 
11334 	/* this flag will need revising if the pkt is forwarded */
11335 	if (pd.pf_mtag)
11336 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
11337 
11338 	if (pd.act.log) {
11339 		struct pf_krule		*lr;
11340 
11341 		if (s != NULL && s->nat_rule != NULL &&
11342 		    s->nat_rule->log & PF_LOG_ALL)
11343 			lr = s->nat_rule;
11344 		else
11345 			lr = r;
11346 
11347 		if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
11348 			PFLOG_PACKET(action, reason, lr, a,
11349 			    ruleset, &pd, (s == NULL), NULL);
11350 		if (s) {
11351 			SLIST_FOREACH(ri, &s->match_rules, entry)
11352 				if (ri->r->log & PF_LOG_ALL)
11353 					PFLOG_PACKET(action,
11354 					    reason, ri->r, a, ruleset, &pd, 0, NULL);
11355 		}
11356 	}
11357 
11358 	pf_counters_inc(action, &pd, s, r, a, &match_rules);
11359 
11360 	switch (action) {
11361 	case PF_SYNPROXY_DROP:
11362 		m_freem(*m0);
11363 	case PF_DEFER:
11364 		*m0 = NULL;
11365 		action = PF_PASS;
11366 		break;
11367 	case PF_DROP:
11368 		m_freem(*m0);
11369 		*m0 = NULL;
11370 		break;
11371 	case PF_AFRT:
11372 		if (pf_translate_af(&pd, r)) {
11373 			*m0 = pd.m;
11374 			action = PF_DROP;
11375 			break;
11376 		}
11377 #ifdef INET
11378 		if (pd.naf == AF_INET) {
11379 			action = pf_route(r, kif->pfik_ifp, s, &pd,
11380 			    inp);
11381 		}
11382 #endif /* INET */
11383 #ifdef INET6
11384 		if (pd.naf == AF_INET6) {
11385 			action = pf_route6(r, kif->pfik_ifp, s, &pd,
11386 			    inp);
11387 }
11388 #endif /* INET6 */
11389 		*m0 = pd.m;
11390 		goto out;
11391 		break;
11392 	default:
11393 		if (pd.act.rt) {
11394 			switch (af) {
11395 #ifdef INET
11396 			case AF_INET:
11397 				/* pf_route() returns unlocked. */
11398 				action = pf_route(r, kif->pfik_ifp, s, &pd,
11399 				    inp);
11400 				break;
11401 #endif /* INET */
11402 #ifdef INET6
11403 			case AF_INET6:
11404 				/* pf_route6() returns unlocked. */
11405 				action = pf_route6(r, kif->pfik_ifp, s, &pd,
11406 				    inp);
11407 				break;
11408 #endif /* INET6 */
11409 			}
11410 			*m0 = pd.m;
11411 			goto out;
11412 		}
11413 		if (pf_dummynet(&pd, s, r, m0) != 0) {
11414 			action = PF_DROP;
11415 			REASON_SET(&reason, PFRES_MEMORY);
11416 		}
11417 		break;
11418 	}
11419 
11420 eat_pkt:
11421 	SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
11422 
11423 	if (s && action != PF_DROP) {
11424 		if (!s->if_index_in && dir == PF_IN)
11425 			s->if_index_in = ifp->if_index;
11426 		else if (!s->if_index_out && dir == PF_OUT)
11427 			s->if_index_out = ifp->if_index;
11428 	}
11429 
11430 	if (s)
11431 		PF_STATE_UNLOCK(s);
11432 
11433 out:
11434 #ifdef INET6
11435 	/* If reassembled packet passed, create new fragments. */
11436 	if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
11437 	    (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
11438 	    (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
11439 		action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
11440 #endif /* INET6 */
11441 
11442 	pf_sctp_multihome_delayed(&pd, kif, s, action);
11443 
11444 	return (action);
11445 }
11446 #endif /* INET || INET6 */
11447