1 /*-
2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 *
11 *
12 * This code is derived from software contributed to Berkeley by
13 * The Mach Operating System project at Carnegie-Mellon University.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70 /*
71 * Page fault handling module.
72 */
73
74 #include <sys/cdefs.h>
75 #include "opt_ktrace.h"
76 #include "opt_vm.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/lock.h>
82 #include <sys/mman.h>
83 #include <sys/mutex.h>
84 #include <sys/pctrie.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/refcount.h>
88 #include <sys/resourcevar.h>
89 #include <sys/rwlock.h>
90 #include <sys/signalvar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysent.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_extern.h>
109 #include <vm/vm_reserv.h>
110
111 #define PFBAK 4
112 #define PFFOR 4
113
114 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT)
115
116 #define VM_FAULT_DONTNEED_MIN 1048576
117
118 struct faultstate {
119 /* Fault parameters. */
120 vm_offset_t vaddr;
121 vm_page_t *m_hold;
122 vm_prot_t fault_type;
123 vm_prot_t prot;
124 int fault_flags;
125 boolean_t wired;
126
127 /* Control state. */
128 struct timeval oom_start_time;
129 bool oom_started;
130 int nera;
131 bool can_read_lock;
132
133 /* Page reference for cow. */
134 vm_page_t m_cow;
135
136 /* Current object. */
137 vm_object_t object;
138 vm_pindex_t pindex;
139 vm_page_t m;
140
141 /* Top-level map object. */
142 vm_object_t first_object;
143 vm_pindex_t first_pindex;
144 vm_page_t first_m;
145
146 /* Map state. */
147 vm_map_t map;
148 vm_map_entry_t entry;
149 int map_generation;
150 bool lookup_still_valid;
151
152 /* Vnode if locked. */
153 struct vnode *vp;
154 };
155
156 /*
157 * Return codes for internal fault routines.
158 */
159 enum fault_status {
160 FAULT_SUCCESS = 10000, /* Return success to user. */
161 FAULT_FAILURE, /* Return failure to user. */
162 FAULT_CONTINUE, /* Continue faulting. */
163 FAULT_RESTART, /* Restart fault. */
164 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */
165 FAULT_HARD, /* Performed I/O. */
166 FAULT_SOFT, /* Found valid page. */
167 FAULT_PROTECTION_FAILURE, /* Invalid access. */
168 };
169
170 enum fault_next_status {
171 FAULT_NEXT_GOTOBJ = 1,
172 FAULT_NEXT_NOOBJ,
173 FAULT_NEXT_RESTART,
174 };
175
176 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
177 int ahead);
178 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
179 int backward, int forward, bool obj_locked);
180
181 static int vm_pfault_oom_attempts = 3;
182 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
183 &vm_pfault_oom_attempts, 0,
184 "Number of page allocation attempts in page fault handler before it "
185 "triggers OOM handling");
186
187 static int vm_pfault_oom_wait = 10;
188 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
189 &vm_pfault_oom_wait, 0,
190 "Number of seconds to wait for free pages before retrying "
191 "the page fault handler");
192
193 static inline void
vm_fault_page_release(vm_page_t * mp)194 vm_fault_page_release(vm_page_t *mp)
195 {
196 vm_page_t m;
197
198 m = *mp;
199 if (m != NULL) {
200 /*
201 * We are likely to loop around again and attempt to busy
202 * this page. Deactivating it leaves it available for
203 * pageout while optimizing fault restarts.
204 */
205 vm_page_deactivate(m);
206 vm_page_xunbusy(m);
207 *mp = NULL;
208 }
209 }
210
211 static inline void
vm_fault_page_free(vm_page_t * mp)212 vm_fault_page_free(vm_page_t *mp)
213 {
214 vm_page_t m;
215
216 m = *mp;
217 if (m != NULL) {
218 VM_OBJECT_ASSERT_WLOCKED(m->object);
219 if (!vm_page_wired(m))
220 vm_page_free(m);
221 else
222 vm_page_xunbusy(m);
223 *mp = NULL;
224 }
225 }
226
227 /*
228 * Return true if a vm_pager_get_pages() call is needed in order to check
229 * whether the pager might have a particular page, false if it can be determined
230 * immediately that the pager can not have a copy. For swap objects, this can
231 * be checked quickly.
232 */
233 static inline bool
vm_fault_object_needs_getpages(vm_object_t object)234 vm_fault_object_needs_getpages(vm_object_t object)
235 {
236 VM_OBJECT_ASSERT_LOCKED(object);
237
238 return ((object->flags & OBJ_SWAP) == 0 ||
239 !pctrie_is_empty(&object->un_pager.swp.swp_blks));
240 }
241
242 static inline void
vm_fault_unlock_map(struct faultstate * fs)243 vm_fault_unlock_map(struct faultstate *fs)
244 {
245
246 if (fs->lookup_still_valid) {
247 vm_map_lookup_done(fs->map, fs->entry);
248 fs->lookup_still_valid = false;
249 }
250 }
251
252 static void
vm_fault_unlock_vp(struct faultstate * fs)253 vm_fault_unlock_vp(struct faultstate *fs)
254 {
255
256 if (fs->vp != NULL) {
257 vput(fs->vp);
258 fs->vp = NULL;
259 }
260 }
261
262 static void
vm_fault_deallocate(struct faultstate * fs)263 vm_fault_deallocate(struct faultstate *fs)
264 {
265
266 vm_fault_page_release(&fs->m_cow);
267 vm_fault_page_release(&fs->m);
268 vm_object_pip_wakeup(fs->object);
269 if (fs->object != fs->first_object) {
270 VM_OBJECT_WLOCK(fs->first_object);
271 vm_fault_page_free(&fs->first_m);
272 VM_OBJECT_WUNLOCK(fs->first_object);
273 vm_object_pip_wakeup(fs->first_object);
274 }
275 vm_object_deallocate(fs->first_object);
276 vm_fault_unlock_map(fs);
277 vm_fault_unlock_vp(fs);
278 }
279
280 static void
vm_fault_unlock_and_deallocate(struct faultstate * fs)281 vm_fault_unlock_and_deallocate(struct faultstate *fs)
282 {
283
284 VM_OBJECT_UNLOCK(fs->object);
285 vm_fault_deallocate(fs);
286 }
287
288 static void
vm_fault_dirty(struct faultstate * fs,vm_page_t m)289 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
290 {
291 bool need_dirty;
292
293 if (((fs->prot & VM_PROT_WRITE) == 0 &&
294 (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
295 (m->oflags & VPO_UNMANAGED) != 0)
296 return;
297
298 VM_PAGE_OBJECT_BUSY_ASSERT(m);
299
300 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
301 (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
302 (fs->fault_flags & VM_FAULT_DIRTY) != 0;
303
304 vm_object_set_writeable_dirty(m->object);
305
306 /*
307 * If the fault is a write, we know that this page is being
308 * written NOW so dirty it explicitly to save on
309 * pmap_is_modified() calls later.
310 *
311 * Also, since the page is now dirty, we can possibly tell
312 * the pager to release any swap backing the page.
313 */
314 if (need_dirty && vm_page_set_dirty(m) == 0) {
315 /*
316 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
317 * if the page is already dirty to prevent data written with
318 * the expectation of being synced from not being synced.
319 * Likewise if this entry does not request NOSYNC then make
320 * sure the page isn't marked NOSYNC. Applications sharing
321 * data should use the same flags to avoid ping ponging.
322 */
323 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
324 vm_page_aflag_set(m, PGA_NOSYNC);
325 else
326 vm_page_aflag_clear(m, PGA_NOSYNC);
327 }
328
329 }
330
331 /*
332 * Unlocks fs.first_object and fs.map on success.
333 */
334 static enum fault_status
vm_fault_soft_fast(struct faultstate * fs)335 vm_fault_soft_fast(struct faultstate *fs)
336 {
337 vm_page_t m, m_map;
338 #if VM_NRESERVLEVEL > 0
339 vm_page_t m_super;
340 int flags;
341 #endif
342 int psind;
343 vm_offset_t vaddr;
344
345 MPASS(fs->vp == NULL);
346
347 /*
348 * If we fail, vast majority of the time it is because the page is not
349 * there to begin with. Opportunistically perform the lookup and
350 * subsequent checks without the object lock, revalidate later.
351 *
352 * Note: a busy page can be mapped for read|execute access.
353 */
354 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
355 if (m == NULL || !vm_page_all_valid(m) ||
356 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
357 VM_OBJECT_WLOCK(fs->first_object);
358 return (FAULT_FAILURE);
359 }
360
361 vaddr = fs->vaddr;
362
363 VM_OBJECT_RLOCK(fs->first_object);
364
365 /*
366 * Now that we stabilized the state, revalidate the page is in the shape
367 * we encountered above.
368 */
369
370 if (m->object != fs->first_object || m->pindex != fs->first_pindex)
371 goto fail;
372
373 vm_object_busy(fs->first_object);
374
375 if (!vm_page_all_valid(m) ||
376 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
377 goto fail_busy;
378
379 m_map = m;
380 psind = 0;
381 #if VM_NRESERVLEVEL > 0
382 if ((m->flags & PG_FICTITIOUS) == 0 &&
383 (m_super = vm_reserv_to_superpage(m)) != NULL) {
384 psind = m_super->psind;
385 KASSERT(psind > 0,
386 ("psind %d of m_super %p < 1", psind, m_super));
387 flags = PS_ALL_VALID;
388 if ((fs->prot & VM_PROT_WRITE) != 0) {
389 /*
390 * Create a superpage mapping allowing write access
391 * only if none of the constituent pages are busy and
392 * all of them are already dirty (except possibly for
393 * the page that was faulted on).
394 */
395 flags |= PS_NONE_BUSY;
396 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
397 flags |= PS_ALL_DIRTY;
398 }
399 while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start ||
400 roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end ||
401 (vaddr & (pagesizes[psind] - 1)) !=
402 (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) ||
403 !vm_page_ps_test(m_super, psind, flags, m) ||
404 !pmap_ps_enabled(fs->map->pmap)) {
405 psind--;
406 if (psind == 0)
407 break;
408 m_super += rounddown2(m - m_super,
409 atop(pagesizes[psind]));
410 KASSERT(m_super->psind >= psind,
411 ("psind %d of m_super %p < %d", m_super->psind,
412 m_super, psind));
413 }
414 if (psind > 0) {
415 m_map = m_super;
416 vaddr = rounddown2(vaddr, pagesizes[psind]);
417 /* Preset the modified bit for dirty superpages. */
418 if ((flags & PS_ALL_DIRTY) != 0)
419 fs->fault_type |= VM_PROT_WRITE;
420 }
421 }
422 #endif
423 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
424 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
425 KERN_SUCCESS)
426 goto fail_busy;
427 if (fs->m_hold != NULL) {
428 (*fs->m_hold) = m;
429 vm_page_wire(m);
430 }
431 if (psind == 0 && !fs->wired)
432 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
433 VM_OBJECT_RUNLOCK(fs->first_object);
434 vm_fault_dirty(fs, m);
435 vm_object_unbusy(fs->first_object);
436 vm_map_lookup_done(fs->map, fs->entry);
437 curthread->td_ru.ru_minflt++;
438 return (FAULT_SUCCESS);
439 fail_busy:
440 vm_object_unbusy(fs->first_object);
441 fail:
442 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
443 VM_OBJECT_RUNLOCK(fs->first_object);
444 VM_OBJECT_WLOCK(fs->first_object);
445 }
446 return (FAULT_FAILURE);
447 }
448
449 static void
vm_fault_restore_map_lock(struct faultstate * fs)450 vm_fault_restore_map_lock(struct faultstate *fs)
451 {
452
453 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
454 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
455
456 if (!vm_map_trylock_read(fs->map)) {
457 VM_OBJECT_WUNLOCK(fs->first_object);
458 vm_map_lock_read(fs->map);
459 VM_OBJECT_WLOCK(fs->first_object);
460 }
461 fs->lookup_still_valid = true;
462 }
463
464 static void
vm_fault_populate_check_page(vm_page_t m)465 vm_fault_populate_check_page(vm_page_t m)
466 {
467
468 /*
469 * Check each page to ensure that the pager is obeying the
470 * interface: the page must be installed in the object, fully
471 * valid, and exclusively busied.
472 */
473 MPASS(m != NULL);
474 MPASS(vm_page_all_valid(m));
475 MPASS(vm_page_xbusied(m));
476 }
477
478 static void
vm_fault_populate_cleanup(vm_object_t object,vm_pindex_t first,vm_pindex_t last)479 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
480 vm_pindex_t last)
481 {
482 vm_page_t m;
483 vm_pindex_t pidx;
484
485 VM_OBJECT_ASSERT_WLOCKED(object);
486 MPASS(first <= last);
487 for (pidx = first, m = vm_page_lookup(object, pidx);
488 pidx <= last; pidx++, m = TAILQ_NEXT(m, listq)) {
489 KASSERT(m != NULL && m->pindex == pidx,
490 ("%s: pindex mismatch", __func__));
491 vm_fault_populate_check_page(m);
492 vm_page_deactivate(m);
493 vm_page_xunbusy(m);
494 }
495 }
496
497 static enum fault_status
vm_fault_populate(struct faultstate * fs)498 vm_fault_populate(struct faultstate *fs)
499 {
500 vm_offset_t vaddr;
501 vm_page_t m;
502 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
503 int bdry_idx, i, npages, psind, rv;
504 enum fault_status res;
505
506 MPASS(fs->object == fs->first_object);
507 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
508 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
509 MPASS(fs->first_object->backing_object == NULL);
510 MPASS(fs->lookup_still_valid);
511
512 pager_first = OFF_TO_IDX(fs->entry->offset);
513 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
514 vm_fault_unlock_map(fs);
515 vm_fault_unlock_vp(fs);
516
517 res = FAULT_SUCCESS;
518
519 /*
520 * Call the pager (driver) populate() method.
521 *
522 * There is no guarantee that the method will be called again
523 * if the current fault is for read, and a future fault is
524 * for write. Report the entry's maximum allowed protection
525 * to the driver.
526 */
527 rv = vm_pager_populate(fs->first_object, fs->first_pindex,
528 fs->fault_type, fs->entry->max_protection, &pager_first,
529 &pager_last);
530
531 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
532 if (rv == VM_PAGER_BAD) {
533 /*
534 * VM_PAGER_BAD is the backdoor for a pager to request
535 * normal fault handling.
536 */
537 vm_fault_restore_map_lock(fs);
538 if (fs->map->timestamp != fs->map_generation)
539 return (FAULT_RESTART);
540 return (FAULT_CONTINUE);
541 }
542 if (rv != VM_PAGER_OK)
543 return (FAULT_FAILURE); /* AKA SIGSEGV */
544
545 /* Ensure that the driver is obeying the interface. */
546 MPASS(pager_first <= pager_last);
547 MPASS(fs->first_pindex <= pager_last);
548 MPASS(fs->first_pindex >= pager_first);
549 MPASS(pager_last < fs->first_object->size);
550
551 vm_fault_restore_map_lock(fs);
552 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
553 if (fs->map->timestamp != fs->map_generation) {
554 if (bdry_idx == 0) {
555 vm_fault_populate_cleanup(fs->first_object, pager_first,
556 pager_last);
557 } else {
558 m = vm_page_lookup(fs->first_object, pager_first);
559 if (m != fs->m)
560 vm_page_xunbusy(m);
561 }
562 return (FAULT_RESTART);
563 }
564
565 /*
566 * The map is unchanged after our last unlock. Process the fault.
567 *
568 * First, the special case of largepage mappings, where
569 * populate only busies the first page in superpage run.
570 */
571 if (bdry_idx != 0) {
572 KASSERT(PMAP_HAS_LARGEPAGES,
573 ("missing pmap support for large pages"));
574 m = vm_page_lookup(fs->first_object, pager_first);
575 vm_fault_populate_check_page(m);
576 VM_OBJECT_WUNLOCK(fs->first_object);
577 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
578 fs->entry->offset;
579 /* assert alignment for entry */
580 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
581 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
582 (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
583 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
584 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
585 ("unaligned superpage m %p %#jx", m,
586 (uintmax_t)VM_PAGE_TO_PHYS(m)));
587 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
588 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
589 PMAP_ENTER_LARGEPAGE, bdry_idx);
590 VM_OBJECT_WLOCK(fs->first_object);
591 vm_page_xunbusy(m);
592 if (rv != KERN_SUCCESS) {
593 res = FAULT_FAILURE;
594 goto out;
595 }
596 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
597 for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
598 vm_page_wire(m + i);
599 }
600 if (fs->m_hold != NULL) {
601 *fs->m_hold = m + (fs->first_pindex - pager_first);
602 vm_page_wire(*fs->m_hold);
603 }
604 goto out;
605 }
606
607 /*
608 * The range [pager_first, pager_last] that is given to the
609 * pager is only a hint. The pager may populate any range
610 * within the object that includes the requested page index.
611 * In case the pager expanded the range, clip it to fit into
612 * the map entry.
613 */
614 map_first = OFF_TO_IDX(fs->entry->offset);
615 if (map_first > pager_first) {
616 vm_fault_populate_cleanup(fs->first_object, pager_first,
617 map_first - 1);
618 pager_first = map_first;
619 }
620 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
621 if (map_last < pager_last) {
622 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
623 pager_last);
624 pager_last = map_last;
625 }
626 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
627 pidx <= pager_last;
628 pidx += npages, m = TAILQ_NEXT(&m[npages - 1], listq)) {
629 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
630 KASSERT(m != NULL && m->pindex == pidx,
631 ("%s: pindex mismatch", __func__));
632 psind = m->psind;
633 while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
634 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
635 !pmap_ps_enabled(fs->map->pmap)))
636 psind--;
637
638 npages = atop(pagesizes[psind]);
639 for (i = 0; i < npages; i++) {
640 vm_fault_populate_check_page(&m[i]);
641 vm_fault_dirty(fs, &m[i]);
642 }
643 VM_OBJECT_WUNLOCK(fs->first_object);
644 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
645 (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
646
647 /*
648 * pmap_enter() may fail for a superpage mapping if additional
649 * protection policies prevent the full mapping.
650 * For example, this will happen on amd64 if the entire
651 * address range does not share the same userspace protection
652 * key. Revert to single-page mappings if this happens.
653 */
654 MPASS(rv == KERN_SUCCESS ||
655 (psind > 0 && rv == KERN_PROTECTION_FAILURE));
656 if (__predict_false(psind > 0 &&
657 rv == KERN_PROTECTION_FAILURE)) {
658 MPASS(!fs->wired);
659 for (i = 0; i < npages; i++) {
660 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
661 &m[i], fs->prot, fs->fault_type, 0);
662 MPASS(rv == KERN_SUCCESS);
663 }
664 }
665
666 VM_OBJECT_WLOCK(fs->first_object);
667 for (i = 0; i < npages; i++) {
668 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
669 m[i].pindex == fs->first_pindex)
670 vm_page_wire(&m[i]);
671 else
672 vm_page_activate(&m[i]);
673 if (fs->m_hold != NULL &&
674 m[i].pindex == fs->first_pindex) {
675 (*fs->m_hold) = &m[i];
676 vm_page_wire(&m[i]);
677 }
678 vm_page_xunbusy(&m[i]);
679 }
680 }
681 out:
682 curthread->td_ru.ru_majflt++;
683 return (res);
684 }
685
686 static int prot_fault_translation;
687 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
688 &prot_fault_translation, 0,
689 "Control signal to deliver on protection fault");
690
691 /* compat definition to keep common code for signal translation */
692 #define UCODE_PAGEFLT 12
693 #ifdef T_PAGEFLT
694 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
695 #endif
696
697 /*
698 * vm_fault_trap:
699 *
700 * Handle a page fault occurring at the given address,
701 * requiring the given permissions, in the map specified.
702 * If successful, the page is inserted into the
703 * associated physical map.
704 *
705 * NOTE: the given address should be truncated to the
706 * proper page address.
707 *
708 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
709 * a standard error specifying why the fault is fatal is returned.
710 *
711 * The map in question must be referenced, and remains so.
712 * Caller may hold no locks.
713 */
714 int
vm_fault_trap(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,int * signo,int * ucode)715 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
716 int fault_flags, int *signo, int *ucode)
717 {
718 int result;
719
720 MPASS(signo == NULL || ucode != NULL);
721 #ifdef KTRACE
722 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
723 ktrfault(vaddr, fault_type);
724 #endif
725 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
726 NULL);
727 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
728 result == KERN_INVALID_ADDRESS ||
729 result == KERN_RESOURCE_SHORTAGE ||
730 result == KERN_PROTECTION_FAILURE ||
731 result == KERN_OUT_OF_BOUNDS,
732 ("Unexpected Mach error %d from vm_fault()", result));
733 #ifdef KTRACE
734 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
735 ktrfaultend(result);
736 #endif
737 if (result != KERN_SUCCESS && signo != NULL) {
738 switch (result) {
739 case KERN_FAILURE:
740 case KERN_INVALID_ADDRESS:
741 *signo = SIGSEGV;
742 *ucode = SEGV_MAPERR;
743 break;
744 case KERN_RESOURCE_SHORTAGE:
745 *signo = SIGBUS;
746 *ucode = BUS_OOMERR;
747 break;
748 case KERN_OUT_OF_BOUNDS:
749 *signo = SIGBUS;
750 *ucode = BUS_OBJERR;
751 break;
752 case KERN_PROTECTION_FAILURE:
753 if (prot_fault_translation == 0) {
754 /*
755 * Autodetect. This check also covers
756 * the images without the ABI-tag ELF
757 * note.
758 */
759 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
760 curproc->p_osrel >= P_OSREL_SIGSEGV) {
761 *signo = SIGSEGV;
762 *ucode = SEGV_ACCERR;
763 } else {
764 *signo = SIGBUS;
765 *ucode = UCODE_PAGEFLT;
766 }
767 } else if (prot_fault_translation == 1) {
768 /* Always compat mode. */
769 *signo = SIGBUS;
770 *ucode = UCODE_PAGEFLT;
771 } else {
772 /* Always SIGSEGV mode. */
773 *signo = SIGSEGV;
774 *ucode = SEGV_ACCERR;
775 }
776 break;
777 default:
778 KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
779 result));
780 break;
781 }
782 }
783 return (result);
784 }
785
786 static bool
vm_fault_object_ensure_wlocked(struct faultstate * fs)787 vm_fault_object_ensure_wlocked(struct faultstate *fs)
788 {
789 if (fs->object == fs->first_object)
790 VM_OBJECT_ASSERT_WLOCKED(fs->object);
791
792 if (!fs->can_read_lock) {
793 VM_OBJECT_ASSERT_WLOCKED(fs->object);
794 return (true);
795 }
796
797 if (VM_OBJECT_WOWNED(fs->object))
798 return (true);
799
800 if (VM_OBJECT_TRYUPGRADE(fs->object))
801 return (true);
802
803 return (false);
804 }
805
806 static enum fault_status
vm_fault_lock_vnode(struct faultstate * fs,bool objlocked)807 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
808 {
809 struct vnode *vp;
810 int error, locked;
811
812 if (fs->object->type != OBJT_VNODE)
813 return (FAULT_CONTINUE);
814 vp = fs->object->handle;
815 if (vp == fs->vp) {
816 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
817 return (FAULT_CONTINUE);
818 }
819
820 /*
821 * Perform an unlock in case the desired vnode changed while
822 * the map was unlocked during a retry.
823 */
824 vm_fault_unlock_vp(fs);
825
826 locked = VOP_ISLOCKED(vp);
827 if (locked != LK_EXCLUSIVE)
828 locked = LK_SHARED;
829
830 /*
831 * We must not sleep acquiring the vnode lock while we have
832 * the page exclusive busied or the object's
833 * paging-in-progress count incremented. Otherwise, we could
834 * deadlock.
835 */
836 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
837 if (error == 0) {
838 fs->vp = vp;
839 return (FAULT_CONTINUE);
840 }
841
842 vhold(vp);
843 if (objlocked)
844 vm_fault_unlock_and_deallocate(fs);
845 else
846 vm_fault_deallocate(fs);
847 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
848 vdrop(vp);
849 fs->vp = vp;
850 KASSERT(error == 0, ("vm_fault: vget failed %d", error));
851 return (FAULT_RESTART);
852 }
853
854 /*
855 * Calculate the desired readahead. Handle drop-behind.
856 *
857 * Returns the number of readahead blocks to pass to the pager.
858 */
859 static int
vm_fault_readahead(struct faultstate * fs)860 vm_fault_readahead(struct faultstate *fs)
861 {
862 int era, nera;
863 u_char behavior;
864
865 KASSERT(fs->lookup_still_valid, ("map unlocked"));
866 era = fs->entry->read_ahead;
867 behavior = vm_map_entry_behavior(fs->entry);
868 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
869 nera = 0;
870 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
871 nera = VM_FAULT_READ_AHEAD_MAX;
872 if (fs->vaddr == fs->entry->next_read)
873 vm_fault_dontneed(fs, fs->vaddr, nera);
874 } else if (fs->vaddr == fs->entry->next_read) {
875 /*
876 * This is a sequential fault. Arithmetically
877 * increase the requested number of pages in
878 * the read-ahead window. The requested
879 * number of pages is "# of sequential faults
880 * x (read ahead min + 1) + read ahead min"
881 */
882 nera = VM_FAULT_READ_AHEAD_MIN;
883 if (era > 0) {
884 nera += era + 1;
885 if (nera > VM_FAULT_READ_AHEAD_MAX)
886 nera = VM_FAULT_READ_AHEAD_MAX;
887 }
888 if (era == VM_FAULT_READ_AHEAD_MAX)
889 vm_fault_dontneed(fs, fs->vaddr, nera);
890 } else {
891 /*
892 * This is a non-sequential fault.
893 */
894 nera = 0;
895 }
896 if (era != nera) {
897 /*
898 * A read lock on the map suffices to update
899 * the read ahead count safely.
900 */
901 fs->entry->read_ahead = nera;
902 }
903
904 return (nera);
905 }
906
907 static int
vm_fault_lookup(struct faultstate * fs)908 vm_fault_lookup(struct faultstate *fs)
909 {
910 int result;
911
912 KASSERT(!fs->lookup_still_valid,
913 ("vm_fault_lookup: Map already locked."));
914 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
915 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
916 &fs->first_pindex, &fs->prot, &fs->wired);
917 if (result != KERN_SUCCESS) {
918 vm_fault_unlock_vp(fs);
919 return (result);
920 }
921
922 fs->map_generation = fs->map->timestamp;
923
924 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
925 panic("%s: fault on nofault entry, addr: %#lx",
926 __func__, (u_long)fs->vaddr);
927 }
928
929 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
930 fs->entry->wiring_thread != curthread) {
931 vm_map_unlock_read(fs->map);
932 vm_map_lock(fs->map);
933 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
934 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
935 vm_fault_unlock_vp(fs);
936 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
937 vm_map_unlock_and_wait(fs->map, 0);
938 } else
939 vm_map_unlock(fs->map);
940 return (KERN_RESOURCE_SHORTAGE);
941 }
942
943 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
944
945 if (fs->wired)
946 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
947 else
948 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
949 ("!fs->wired && VM_FAULT_WIRE"));
950 fs->lookup_still_valid = true;
951
952 return (KERN_SUCCESS);
953 }
954
955 static int
vm_fault_relookup(struct faultstate * fs)956 vm_fault_relookup(struct faultstate *fs)
957 {
958 vm_object_t retry_object;
959 vm_pindex_t retry_pindex;
960 vm_prot_t retry_prot;
961 int result;
962
963 if (!vm_map_trylock_read(fs->map))
964 return (KERN_RESTART);
965
966 fs->lookup_still_valid = true;
967 if (fs->map->timestamp == fs->map_generation)
968 return (KERN_SUCCESS);
969
970 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
971 &fs->entry, &retry_object, &retry_pindex, &retry_prot,
972 &fs->wired);
973 if (result != KERN_SUCCESS) {
974 /*
975 * If retry of map lookup would have blocked then
976 * retry fault from start.
977 */
978 if (result == KERN_FAILURE)
979 return (KERN_RESTART);
980 return (result);
981 }
982 if (retry_object != fs->first_object ||
983 retry_pindex != fs->first_pindex)
984 return (KERN_RESTART);
985
986 /*
987 * Check whether the protection has changed or the object has
988 * been copied while we left the map unlocked. Changing from
989 * read to write permission is OK - we leave the page
990 * write-protected, and catch the write fault. Changing from
991 * write to read permission means that we can't mark the page
992 * write-enabled after all.
993 */
994 fs->prot &= retry_prot;
995 fs->fault_type &= retry_prot;
996 if (fs->prot == 0)
997 return (KERN_RESTART);
998
999 /* Reassert because wired may have changed. */
1000 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
1001 ("!wired && VM_FAULT_WIRE"));
1002
1003 return (KERN_SUCCESS);
1004 }
1005
1006 static void
vm_fault_cow(struct faultstate * fs)1007 vm_fault_cow(struct faultstate *fs)
1008 {
1009 bool is_first_object_locked;
1010
1011 KASSERT(fs->object != fs->first_object,
1012 ("source and target COW objects are identical"));
1013
1014 /*
1015 * This allows pages to be virtually copied from a backing_object
1016 * into the first_object, where the backing object has no other
1017 * refs to it, and cannot gain any more refs. Instead of a bcopy,
1018 * we just move the page from the backing object to the first
1019 * object. Note that we must mark the page dirty in the first
1020 * object so that it will go out to swap when needed.
1021 */
1022 is_first_object_locked = false;
1023 if (
1024 /*
1025 * Only one shadow object and no other refs.
1026 */
1027 fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1028 /*
1029 * No other ways to look the object up
1030 */
1031 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
1032 /*
1033 * We don't chase down the shadow chain and we can acquire locks.
1034 */
1035 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
1036 fs->object == fs->first_object->backing_object &&
1037 VM_OBJECT_TRYWLOCK(fs->object)) {
1038 /*
1039 * Remove but keep xbusy for replace. fs->m is moved into
1040 * fs->first_object and left busy while fs->first_m is
1041 * conditionally freed.
1042 */
1043 vm_page_remove_xbusy(fs->m);
1044 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1045 fs->first_m);
1046 vm_page_dirty(fs->m);
1047 #if VM_NRESERVLEVEL > 0
1048 /*
1049 * Rename the reservation.
1050 */
1051 vm_reserv_rename(fs->m, fs->first_object, fs->object,
1052 OFF_TO_IDX(fs->first_object->backing_object_offset));
1053 #endif
1054 VM_OBJECT_WUNLOCK(fs->object);
1055 VM_OBJECT_WUNLOCK(fs->first_object);
1056 fs->first_m = fs->m;
1057 fs->m = NULL;
1058 VM_CNT_INC(v_cow_optim);
1059 } else {
1060 if (is_first_object_locked)
1061 VM_OBJECT_WUNLOCK(fs->first_object);
1062 /*
1063 * Oh, well, lets copy it.
1064 */
1065 pmap_copy_page(fs->m, fs->first_m);
1066 vm_page_valid(fs->first_m);
1067 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1068 vm_page_wire(fs->first_m);
1069 vm_page_unwire(fs->m, PQ_INACTIVE);
1070 }
1071 /*
1072 * Save the cow page to be released after
1073 * pmap_enter is complete.
1074 */
1075 fs->m_cow = fs->m;
1076 fs->m = NULL;
1077
1078 /*
1079 * Typically, the shadow object is either private to this
1080 * address space (OBJ_ONEMAPPING) or its pages are read only.
1081 * In the highly unusual case where the pages of a shadow object
1082 * are read/write shared between this and other address spaces,
1083 * we need to ensure that any pmap-level mappings to the
1084 * original, copy-on-write page from the backing object are
1085 * removed from those other address spaces.
1086 *
1087 * The flag check is racy, but this is tolerable: if
1088 * OBJ_ONEMAPPING is cleared after the check, the busy state
1089 * ensures that new mappings of m_cow can't be created.
1090 * pmap_enter() will replace an existing mapping in the current
1091 * address space. If OBJ_ONEMAPPING is set after the check,
1092 * removing mappings will at worse trigger some unnecessary page
1093 * faults.
1094 */
1095 vm_page_assert_xbusied(fs->m_cow);
1096 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1097 pmap_remove_all(fs->m_cow);
1098 }
1099
1100 vm_object_pip_wakeup(fs->object);
1101
1102 /*
1103 * Only use the new page below...
1104 */
1105 fs->object = fs->first_object;
1106 fs->pindex = fs->first_pindex;
1107 fs->m = fs->first_m;
1108 VM_CNT_INC(v_cow_faults);
1109 curthread->td_cow++;
1110 }
1111
1112 static enum fault_next_status
vm_fault_next(struct faultstate * fs)1113 vm_fault_next(struct faultstate *fs)
1114 {
1115 vm_object_t next_object;
1116
1117 if (fs->object == fs->first_object || !fs->can_read_lock)
1118 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1119 else
1120 VM_OBJECT_ASSERT_LOCKED(fs->object);
1121
1122 /*
1123 * The requested page does not exist at this object/
1124 * offset. Remove the invalid page from the object,
1125 * waking up anyone waiting for it, and continue on to
1126 * the next object. However, if this is the top-level
1127 * object, we must leave the busy page in place to
1128 * prevent another process from rushing past us, and
1129 * inserting the page in that object at the same time
1130 * that we are.
1131 */
1132 if (fs->object == fs->first_object) {
1133 fs->first_m = fs->m;
1134 fs->m = NULL;
1135 } else if (fs->m != NULL) {
1136 if (!vm_fault_object_ensure_wlocked(fs)) {
1137 fs->can_read_lock = false;
1138 vm_fault_unlock_and_deallocate(fs);
1139 return (FAULT_NEXT_RESTART);
1140 }
1141 vm_fault_page_free(&fs->m);
1142 }
1143
1144 /*
1145 * Move on to the next object. Lock the next object before
1146 * unlocking the current one.
1147 */
1148 next_object = fs->object->backing_object;
1149 if (next_object == NULL)
1150 return (FAULT_NEXT_NOOBJ);
1151 MPASS(fs->first_m != NULL);
1152 KASSERT(fs->object != next_object, ("object loop %p", next_object));
1153 if (fs->can_read_lock)
1154 VM_OBJECT_RLOCK(next_object);
1155 else
1156 VM_OBJECT_WLOCK(next_object);
1157 vm_object_pip_add(next_object, 1);
1158 if (fs->object != fs->first_object)
1159 vm_object_pip_wakeup(fs->object);
1160 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1161 VM_OBJECT_UNLOCK(fs->object);
1162 fs->object = next_object;
1163
1164 return (FAULT_NEXT_GOTOBJ);
1165 }
1166
1167 static void
vm_fault_zerofill(struct faultstate * fs)1168 vm_fault_zerofill(struct faultstate *fs)
1169 {
1170
1171 /*
1172 * If there's no object left, fill the page in the top
1173 * object with zeros.
1174 */
1175 if (fs->object != fs->first_object) {
1176 vm_object_pip_wakeup(fs->object);
1177 fs->object = fs->first_object;
1178 fs->pindex = fs->first_pindex;
1179 }
1180 MPASS(fs->first_m != NULL);
1181 MPASS(fs->m == NULL);
1182 fs->m = fs->first_m;
1183 fs->first_m = NULL;
1184
1185 /*
1186 * Zero the page if necessary and mark it valid.
1187 */
1188 if ((fs->m->flags & PG_ZERO) == 0) {
1189 pmap_zero_page(fs->m);
1190 } else {
1191 VM_CNT_INC(v_ozfod);
1192 }
1193 VM_CNT_INC(v_zfod);
1194 vm_page_valid(fs->m);
1195 }
1196
1197 /*
1198 * Initiate page fault after timeout. Returns true if caller should
1199 * do vm_waitpfault() after the call.
1200 */
1201 static bool
vm_fault_allocate_oom(struct faultstate * fs)1202 vm_fault_allocate_oom(struct faultstate *fs)
1203 {
1204 struct timeval now;
1205
1206 vm_fault_unlock_and_deallocate(fs);
1207 if (vm_pfault_oom_attempts < 0)
1208 return (true);
1209 if (!fs->oom_started) {
1210 fs->oom_started = true;
1211 getmicrotime(&fs->oom_start_time);
1212 return (true);
1213 }
1214
1215 getmicrotime(&now);
1216 timevalsub(&now, &fs->oom_start_time);
1217 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1218 return (true);
1219
1220 if (bootverbose)
1221 printf(
1222 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1223 curproc->p_pid, curproc->p_comm);
1224 vm_pageout_oom(VM_OOM_MEM_PF);
1225 fs->oom_started = false;
1226 return (false);
1227 }
1228
1229 /*
1230 * Allocate a page directly or via the object populate method.
1231 */
1232 static enum fault_status
vm_fault_allocate(struct faultstate * fs)1233 vm_fault_allocate(struct faultstate *fs)
1234 {
1235 struct domainset *dset;
1236 enum fault_status res;
1237
1238 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1239 res = vm_fault_lock_vnode(fs, true);
1240 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1241 if (res == FAULT_RESTART)
1242 return (res);
1243 }
1244
1245 if (fs->pindex >= fs->object->size) {
1246 vm_fault_unlock_and_deallocate(fs);
1247 return (FAULT_OUT_OF_BOUNDS);
1248 }
1249
1250 if (fs->object == fs->first_object &&
1251 (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1252 fs->first_object->shadow_count == 0) {
1253 res = vm_fault_populate(fs);
1254 switch (res) {
1255 case FAULT_SUCCESS:
1256 case FAULT_FAILURE:
1257 case FAULT_RESTART:
1258 vm_fault_unlock_and_deallocate(fs);
1259 return (res);
1260 case FAULT_CONTINUE:
1261 /*
1262 * Pager's populate() method
1263 * returned VM_PAGER_BAD.
1264 */
1265 break;
1266 default:
1267 panic("inconsistent return codes");
1268 }
1269 }
1270
1271 /*
1272 * Allocate a new page for this object/offset pair.
1273 *
1274 * If the process has a fatal signal pending, prioritize the allocation
1275 * with the expectation that the process will exit shortly and free some
1276 * pages. In particular, the signal may have been posted by the page
1277 * daemon in an attempt to resolve an out-of-memory condition.
1278 *
1279 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED
1280 * might be not observed here, and allocation fails, causing a restart
1281 * and new reading of the p_flag.
1282 */
1283 dset = fs->object->domain.dr_policy;
1284 if (dset == NULL)
1285 dset = curthread->td_domain.dr_policy;
1286 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1287 #if VM_NRESERVLEVEL > 0
1288 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1289 #endif
1290 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1291 vm_fault_unlock_and_deallocate(fs);
1292 return (FAULT_FAILURE);
1293 }
1294 fs->m = vm_page_alloc(fs->object, fs->pindex,
1295 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0);
1296 }
1297 if (fs->m == NULL) {
1298 if (vm_fault_allocate_oom(fs))
1299 vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1300 return (FAULT_RESTART);
1301 }
1302 fs->oom_started = false;
1303
1304 return (FAULT_CONTINUE);
1305 }
1306
1307 /*
1308 * Call the pager to retrieve the page if there is a chance
1309 * that the pager has it, and potentially retrieve additional
1310 * pages at the same time.
1311 */
1312 static enum fault_status
vm_fault_getpages(struct faultstate * fs,int * behindp,int * aheadp)1313 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1314 {
1315 vm_offset_t e_end, e_start;
1316 int ahead, behind, cluster_offset, rv;
1317 enum fault_status status;
1318 u_char behavior;
1319
1320 /*
1321 * Prepare for unlocking the map. Save the map
1322 * entry's start and end addresses, which are used to
1323 * optimize the size of the pager operation below.
1324 * Even if the map entry's addresses change after
1325 * unlocking the map, using the saved addresses is
1326 * safe.
1327 */
1328 e_start = fs->entry->start;
1329 e_end = fs->entry->end;
1330 behavior = vm_map_entry_behavior(fs->entry);
1331
1332 /*
1333 * If the pager for the current object might have
1334 * the page, then determine the number of additional
1335 * pages to read and potentially reprioritize
1336 * previously read pages for earlier reclamation.
1337 * These operations should only be performed once per
1338 * page fault. Even if the current pager doesn't
1339 * have the page, the number of additional pages to
1340 * read will apply to subsequent objects in the
1341 * shadow chain.
1342 */
1343 if (fs->nera == -1 && !P_KILLED(curproc))
1344 fs->nera = vm_fault_readahead(fs);
1345
1346 /*
1347 * Release the map lock before locking the vnode or
1348 * sleeping in the pager. (If the current object has
1349 * a shadow, then an earlier iteration of this loop
1350 * may have already unlocked the map.)
1351 */
1352 vm_fault_unlock_map(fs);
1353
1354 status = vm_fault_lock_vnode(fs, false);
1355 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1356 if (status == FAULT_RESTART)
1357 return (status);
1358 KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map),
1359 ("vm_fault: vnode-backed object mapped by system map"));
1360
1361 /*
1362 * Page in the requested page and hint the pager,
1363 * that it may bring up surrounding pages.
1364 */
1365 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1366 P_KILLED(curproc)) {
1367 behind = 0;
1368 ahead = 0;
1369 } else {
1370 /* Is this a sequential fault? */
1371 if (fs->nera > 0) {
1372 behind = 0;
1373 ahead = fs->nera;
1374 } else {
1375 /*
1376 * Request a cluster of pages that is
1377 * aligned to a VM_FAULT_READ_DEFAULT
1378 * page offset boundary within the
1379 * object. Alignment to a page offset
1380 * boundary is more likely to coincide
1381 * with the underlying file system
1382 * block than alignment to a virtual
1383 * address boundary.
1384 */
1385 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1386 behind = ulmin(cluster_offset,
1387 atop(fs->vaddr - e_start));
1388 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1389 }
1390 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1391 }
1392 *behindp = behind;
1393 *aheadp = ahead;
1394 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1395 if (rv == VM_PAGER_OK)
1396 return (FAULT_HARD);
1397 if (rv == VM_PAGER_ERROR)
1398 printf("vm_fault: pager read error, pid %d (%s)\n",
1399 curproc->p_pid, curproc->p_comm);
1400 /*
1401 * If an I/O error occurred or the requested page was
1402 * outside the range of the pager, clean up and return
1403 * an error.
1404 */
1405 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1406 VM_OBJECT_WLOCK(fs->object);
1407 vm_fault_page_free(&fs->m);
1408 vm_fault_unlock_and_deallocate(fs);
1409 return (FAULT_OUT_OF_BOUNDS);
1410 }
1411 KASSERT(rv == VM_PAGER_FAIL,
1412 ("%s: unexpected pager error %d", __func__, rv));
1413 return (FAULT_CONTINUE);
1414 }
1415
1416 /*
1417 * Wait/Retry if the page is busy. We have to do this if the page is
1418 * either exclusive or shared busy because the vm_pager may be using
1419 * read busy for pageouts (and even pageins if it is the vnode pager),
1420 * and we could end up trying to pagein and pageout the same page
1421 * simultaneously.
1422 *
1423 * We can theoretically allow the busy case on a read fault if the page
1424 * is marked valid, but since such pages are typically already pmap'd,
1425 * putting that special case in might be more effort then it is worth.
1426 * We cannot under any circumstances mess around with a shared busied
1427 * page except, perhaps, to pmap it.
1428 */
1429 static void
vm_fault_busy_sleep(struct faultstate * fs)1430 vm_fault_busy_sleep(struct faultstate *fs)
1431 {
1432 /*
1433 * Reference the page before unlocking and
1434 * sleeping so that the page daemon is less
1435 * likely to reclaim it.
1436 */
1437 vm_page_aflag_set(fs->m, PGA_REFERENCED);
1438 if (fs->object != fs->first_object) {
1439 vm_fault_page_release(&fs->first_m);
1440 vm_object_pip_wakeup(fs->first_object);
1441 }
1442 vm_object_pip_wakeup(fs->object);
1443 vm_fault_unlock_map(fs);
1444 if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1445 !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1446 VM_OBJECT_UNLOCK(fs->object);
1447 VM_CNT_INC(v_intrans);
1448 vm_object_deallocate(fs->first_object);
1449 }
1450
1451 /*
1452 * Handle page lookup, populate, allocate, page-in for the current
1453 * object.
1454 *
1455 * The object is locked on entry and will remain locked with a return
1456 * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1457 * Otherwise, the object will be unlocked upon return.
1458 */
1459 static enum fault_status
vm_fault_object(struct faultstate * fs,int * behindp,int * aheadp)1460 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1461 {
1462 enum fault_status res;
1463 bool dead;
1464
1465 if (fs->object == fs->first_object || !fs->can_read_lock)
1466 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1467 else
1468 VM_OBJECT_ASSERT_LOCKED(fs->object);
1469
1470 /*
1471 * If the object is marked for imminent termination, we retry
1472 * here, since the collapse pass has raced with us. Otherwise,
1473 * if we see terminally dead object, return fail.
1474 */
1475 if ((fs->object->flags & OBJ_DEAD) != 0) {
1476 dead = fs->object->type == OBJT_DEAD;
1477 vm_fault_unlock_and_deallocate(fs);
1478 if (dead)
1479 return (FAULT_PROTECTION_FAILURE);
1480 pause("vmf_de", 1);
1481 return (FAULT_RESTART);
1482 }
1483
1484 /*
1485 * See if the page is resident.
1486 */
1487 fs->m = vm_page_lookup(fs->object, fs->pindex);
1488 if (fs->m != NULL) {
1489 if (!vm_page_tryxbusy(fs->m)) {
1490 vm_fault_busy_sleep(fs);
1491 return (FAULT_RESTART);
1492 }
1493
1494 /*
1495 * The page is marked busy for other processes and the
1496 * pagedaemon. If it is still completely valid we are
1497 * done.
1498 */
1499 if (vm_page_all_valid(fs->m)) {
1500 VM_OBJECT_UNLOCK(fs->object);
1501 return (FAULT_SOFT);
1502 }
1503 }
1504
1505 /*
1506 * Page is not resident. If the pager might contain the page
1507 * or this is the beginning of the search, allocate a new
1508 * page.
1509 */
1510 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1511 fs->object == fs->first_object)) {
1512 if (!vm_fault_object_ensure_wlocked(fs)) {
1513 fs->can_read_lock = false;
1514 vm_fault_unlock_and_deallocate(fs);
1515 return (FAULT_RESTART);
1516 }
1517 res = vm_fault_allocate(fs);
1518 if (res != FAULT_CONTINUE)
1519 return (res);
1520 }
1521
1522 /*
1523 * Check to see if the pager can possibly satisfy this fault.
1524 * If not, skip to the next object without dropping the lock to
1525 * preserve atomicity of shadow faults.
1526 */
1527 if (vm_fault_object_needs_getpages(fs->object)) {
1528 /*
1529 * At this point, we have either allocated a new page
1530 * or found an existing page that is only partially
1531 * valid.
1532 *
1533 * We hold a reference on the current object and the
1534 * page is exclusive busied. The exclusive busy
1535 * prevents simultaneous faults and collapses while
1536 * the object lock is dropped.
1537 */
1538 VM_OBJECT_UNLOCK(fs->object);
1539 res = vm_fault_getpages(fs, behindp, aheadp);
1540 if (res == FAULT_CONTINUE)
1541 VM_OBJECT_WLOCK(fs->object);
1542 } else {
1543 res = FAULT_CONTINUE;
1544 }
1545 return (res);
1546 }
1547
1548 int
vm_fault(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,vm_page_t * m_hold)1549 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1550 int fault_flags, vm_page_t *m_hold)
1551 {
1552 struct faultstate fs;
1553 int ahead, behind, faultcount, rv;
1554 enum fault_status res;
1555 enum fault_next_status res_next;
1556 bool hardfault;
1557
1558 VM_CNT_INC(v_vm_faults);
1559
1560 if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1561 return (KERN_PROTECTION_FAILURE);
1562
1563 fs.vp = NULL;
1564 fs.vaddr = vaddr;
1565 fs.m_hold = m_hold;
1566 fs.fault_flags = fault_flags;
1567 fs.map = map;
1568 fs.lookup_still_valid = false;
1569 fs.oom_started = false;
1570 fs.nera = -1;
1571 fs.can_read_lock = true;
1572 faultcount = 0;
1573 hardfault = false;
1574
1575 RetryFault:
1576 fs.fault_type = fault_type;
1577
1578 /*
1579 * Find the backing store object and offset into it to begin the
1580 * search.
1581 */
1582 rv = vm_fault_lookup(&fs);
1583 if (rv != KERN_SUCCESS) {
1584 if (rv == KERN_RESOURCE_SHORTAGE)
1585 goto RetryFault;
1586 return (rv);
1587 }
1588
1589 /*
1590 * Try to avoid lock contention on the top-level object through
1591 * special-case handling of some types of page faults, specifically,
1592 * those that are mapping an existing page from the top-level object.
1593 * Under this condition, a read lock on the object suffices, allowing
1594 * multiple page faults of a similar type to run in parallel.
1595 */
1596 if (fs.vp == NULL /* avoid locked vnode leak */ &&
1597 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1598 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1599 res = vm_fault_soft_fast(&fs);
1600 if (res == FAULT_SUCCESS) {
1601 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1602 return (KERN_SUCCESS);
1603 }
1604 VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1605 } else {
1606 VM_OBJECT_WLOCK(fs.first_object);
1607 }
1608
1609 /*
1610 * Make a reference to this object to prevent its disposal while we
1611 * are messing with it. Once we have the reference, the map is free
1612 * to be diddled. Since objects reference their shadows (and copies),
1613 * they will stay around as well.
1614 *
1615 * Bump the paging-in-progress count to prevent size changes (e.g.
1616 * truncation operations) during I/O.
1617 */
1618 vm_object_reference_locked(fs.first_object);
1619 vm_object_pip_add(fs.first_object, 1);
1620
1621 fs.m_cow = fs.m = fs.first_m = NULL;
1622
1623 /*
1624 * Search for the page at object/offset.
1625 */
1626 fs.object = fs.first_object;
1627 fs.pindex = fs.first_pindex;
1628
1629 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1630 res = vm_fault_allocate(&fs);
1631 switch (res) {
1632 case FAULT_RESTART:
1633 goto RetryFault;
1634 case FAULT_SUCCESS:
1635 return (KERN_SUCCESS);
1636 case FAULT_FAILURE:
1637 return (KERN_FAILURE);
1638 case FAULT_OUT_OF_BOUNDS:
1639 return (KERN_OUT_OF_BOUNDS);
1640 case FAULT_CONTINUE:
1641 break;
1642 default:
1643 panic("vm_fault: Unhandled status %d", res);
1644 }
1645 }
1646
1647 while (TRUE) {
1648 KASSERT(fs.m == NULL,
1649 ("page still set %p at loop start", fs.m));
1650
1651 res = vm_fault_object(&fs, &behind, &ahead);
1652 switch (res) {
1653 case FAULT_SOFT:
1654 goto found;
1655 case FAULT_HARD:
1656 faultcount = behind + 1 + ahead;
1657 hardfault = true;
1658 goto found;
1659 case FAULT_RESTART:
1660 goto RetryFault;
1661 case FAULT_SUCCESS:
1662 return (KERN_SUCCESS);
1663 case FAULT_FAILURE:
1664 return (KERN_FAILURE);
1665 case FAULT_OUT_OF_BOUNDS:
1666 return (KERN_OUT_OF_BOUNDS);
1667 case FAULT_PROTECTION_FAILURE:
1668 return (KERN_PROTECTION_FAILURE);
1669 case FAULT_CONTINUE:
1670 break;
1671 default:
1672 panic("vm_fault: Unhandled status %d", res);
1673 }
1674
1675 /*
1676 * The page was not found in the current object. Try to
1677 * traverse into a backing object or zero fill if none is
1678 * found.
1679 */
1680 res_next = vm_fault_next(&fs);
1681 if (res_next == FAULT_NEXT_RESTART)
1682 goto RetryFault;
1683 else if (res_next == FAULT_NEXT_GOTOBJ)
1684 continue;
1685 MPASS(res_next == FAULT_NEXT_NOOBJ);
1686 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1687 if (fs.first_object == fs.object)
1688 vm_fault_page_free(&fs.first_m);
1689 vm_fault_unlock_and_deallocate(&fs);
1690 return (KERN_OUT_OF_BOUNDS);
1691 }
1692 VM_OBJECT_UNLOCK(fs.object);
1693 vm_fault_zerofill(&fs);
1694 /* Don't try to prefault neighboring pages. */
1695 faultcount = 1;
1696 break;
1697 }
1698
1699 found:
1700 /*
1701 * A valid page has been found and exclusively busied. The
1702 * object lock must no longer be held.
1703 */
1704 vm_page_assert_xbusied(fs.m);
1705 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1706
1707 /*
1708 * If the page is being written, but isn't already owned by the
1709 * top-level object, we have to copy it into a new page owned by the
1710 * top-level object.
1711 */
1712 if (fs.object != fs.first_object) {
1713 /*
1714 * We only really need to copy if we want to write it.
1715 */
1716 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1717 vm_fault_cow(&fs);
1718 /*
1719 * We only try to prefault read-only mappings to the
1720 * neighboring pages when this copy-on-write fault is
1721 * a hard fault. In other cases, trying to prefault
1722 * is typically wasted effort.
1723 */
1724 if (faultcount == 0)
1725 faultcount = 1;
1726
1727 } else {
1728 fs.prot &= ~VM_PROT_WRITE;
1729 }
1730 }
1731
1732 /*
1733 * We must verify that the maps have not changed since our last
1734 * lookup.
1735 */
1736 if (!fs.lookup_still_valid) {
1737 rv = vm_fault_relookup(&fs);
1738 if (rv != KERN_SUCCESS) {
1739 vm_fault_deallocate(&fs);
1740 if (rv == KERN_RESTART)
1741 goto RetryFault;
1742 return (rv);
1743 }
1744 }
1745 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1746
1747 /*
1748 * If the page was filled by a pager, save the virtual address that
1749 * should be faulted on next under a sequential access pattern to the
1750 * map entry. A read lock on the map suffices to update this address
1751 * safely.
1752 */
1753 if (hardfault)
1754 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1755
1756 /*
1757 * Page must be completely valid or it is not fit to
1758 * map into user space. vm_pager_get_pages() ensures this.
1759 */
1760 vm_page_assert_xbusied(fs.m);
1761 KASSERT(vm_page_all_valid(fs.m),
1762 ("vm_fault: page %p partially invalid", fs.m));
1763
1764 vm_fault_dirty(&fs, fs.m);
1765
1766 /*
1767 * Put this page into the physical map. We had to do the unlock above
1768 * because pmap_enter() may sleep. We don't put the page
1769 * back on the active queue until later so that the pageout daemon
1770 * won't find it (yet).
1771 */
1772 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1773 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1774 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1775 fs.wired == 0)
1776 vm_fault_prefault(&fs, vaddr,
1777 faultcount > 0 ? behind : PFBAK,
1778 faultcount > 0 ? ahead : PFFOR, false);
1779
1780 /*
1781 * If the page is not wired down, then put it where the pageout daemon
1782 * can find it.
1783 */
1784 if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1785 vm_page_wire(fs.m);
1786 else
1787 vm_page_activate(fs.m);
1788 if (fs.m_hold != NULL) {
1789 (*fs.m_hold) = fs.m;
1790 vm_page_wire(fs.m);
1791 }
1792 vm_page_xunbusy(fs.m);
1793 fs.m = NULL;
1794
1795 /*
1796 * Unlock everything, and return
1797 */
1798 vm_fault_deallocate(&fs);
1799 if (hardfault) {
1800 VM_CNT_INC(v_io_faults);
1801 curthread->td_ru.ru_majflt++;
1802 #ifdef RACCT
1803 if (racct_enable && fs.object->type == OBJT_VNODE) {
1804 PROC_LOCK(curproc);
1805 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1806 racct_add_force(curproc, RACCT_WRITEBPS,
1807 PAGE_SIZE + behind * PAGE_SIZE);
1808 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1809 } else {
1810 racct_add_force(curproc, RACCT_READBPS,
1811 PAGE_SIZE + ahead * PAGE_SIZE);
1812 racct_add_force(curproc, RACCT_READIOPS, 1);
1813 }
1814 PROC_UNLOCK(curproc);
1815 }
1816 #endif
1817 } else
1818 curthread->td_ru.ru_minflt++;
1819
1820 return (KERN_SUCCESS);
1821 }
1822
1823 /*
1824 * Speed up the reclamation of pages that precede the faulting pindex within
1825 * the first object of the shadow chain. Essentially, perform the equivalent
1826 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1827 * the faulting pindex by the cluster size when the pages read by vm_fault()
1828 * cross a cluster-size boundary. The cluster size is the greater of the
1829 * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1830 *
1831 * When "fs->first_object" is a shadow object, the pages in the backing object
1832 * that precede the faulting pindex are deactivated by vm_fault(). So, this
1833 * function must only be concerned with pages in the first object.
1834 */
1835 static void
vm_fault_dontneed(const struct faultstate * fs,vm_offset_t vaddr,int ahead)1836 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1837 {
1838 vm_map_entry_t entry;
1839 vm_object_t first_object;
1840 vm_offset_t end, start;
1841 vm_page_t m, m_next;
1842 vm_pindex_t pend, pstart;
1843 vm_size_t size;
1844
1845 VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1846 first_object = fs->first_object;
1847 /* Neither fictitious nor unmanaged pages can be reclaimed. */
1848 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1849 VM_OBJECT_RLOCK(first_object);
1850 size = VM_FAULT_DONTNEED_MIN;
1851 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1852 size = pagesizes[1];
1853 end = rounddown2(vaddr, size);
1854 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1855 (entry = fs->entry)->start < end) {
1856 if (end - entry->start < size)
1857 start = entry->start;
1858 else
1859 start = end - size;
1860 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1861 pstart = OFF_TO_IDX(entry->offset) + atop(start -
1862 entry->start);
1863 m_next = vm_page_find_least(first_object, pstart);
1864 pend = OFF_TO_IDX(entry->offset) + atop(end -
1865 entry->start);
1866 while ((m = m_next) != NULL && m->pindex < pend) {
1867 m_next = TAILQ_NEXT(m, listq);
1868 if (!vm_page_all_valid(m) ||
1869 vm_page_busied(m))
1870 continue;
1871
1872 /*
1873 * Don't clear PGA_REFERENCED, since it would
1874 * likely represent a reference by a different
1875 * process.
1876 *
1877 * Typically, at this point, prefetched pages
1878 * are still in the inactive queue. Only
1879 * pages that triggered page faults are in the
1880 * active queue. The test for whether the page
1881 * is in the inactive queue is racy; in the
1882 * worst case we will requeue the page
1883 * unnecessarily.
1884 */
1885 if (!vm_page_inactive(m))
1886 vm_page_deactivate(m);
1887 }
1888 }
1889 VM_OBJECT_RUNLOCK(first_object);
1890 }
1891 }
1892
1893 /*
1894 * vm_fault_prefault provides a quick way of clustering
1895 * pagefaults into a processes address space. It is a "cousin"
1896 * of vm_map_pmap_enter, except it runs at page fault time instead
1897 * of mmap time.
1898 */
1899 static void
vm_fault_prefault(const struct faultstate * fs,vm_offset_t addra,int backward,int forward,bool obj_locked)1900 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1901 int backward, int forward, bool obj_locked)
1902 {
1903 pmap_t pmap;
1904 vm_map_entry_t entry;
1905 vm_object_t backing_object, lobject;
1906 vm_offset_t addr, starta;
1907 vm_pindex_t pindex;
1908 vm_page_t m;
1909 vm_prot_t prot;
1910 int i;
1911
1912 pmap = fs->map->pmap;
1913 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1914 return;
1915
1916 entry = fs->entry;
1917
1918 if (addra < backward * PAGE_SIZE) {
1919 starta = entry->start;
1920 } else {
1921 starta = addra - backward * PAGE_SIZE;
1922 if (starta < entry->start)
1923 starta = entry->start;
1924 }
1925 prot = entry->protection;
1926
1927 /*
1928 * If pmap_enter() has enabled write access on a nearby mapping, then
1929 * don't attempt promotion, because it will fail.
1930 */
1931 if ((fs->prot & VM_PROT_WRITE) != 0)
1932 prot |= VM_PROT_NO_PROMOTE;
1933
1934 /*
1935 * Generate the sequence of virtual addresses that are candidates for
1936 * prefaulting in an outward spiral from the faulting virtual address,
1937 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra
1938 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1939 * If the candidate address doesn't have a backing physical page, then
1940 * the loop immediately terminates.
1941 */
1942 for (i = 0; i < 2 * imax(backward, forward); i++) {
1943 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1944 PAGE_SIZE);
1945 if (addr > addra + forward * PAGE_SIZE)
1946 addr = 0;
1947
1948 if (addr < starta || addr >= entry->end)
1949 continue;
1950
1951 if (!pmap_is_prefaultable(pmap, addr))
1952 continue;
1953
1954 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1955 lobject = entry->object.vm_object;
1956 if (!obj_locked)
1957 VM_OBJECT_RLOCK(lobject);
1958 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1959 !vm_fault_object_needs_getpages(lobject) &&
1960 (backing_object = lobject->backing_object) != NULL) {
1961 KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1962 0, ("vm_fault_prefault: unaligned object offset"));
1963 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1964 VM_OBJECT_RLOCK(backing_object);
1965 if (!obj_locked || lobject != entry->object.vm_object)
1966 VM_OBJECT_RUNLOCK(lobject);
1967 lobject = backing_object;
1968 }
1969 if (m == NULL) {
1970 if (!obj_locked || lobject != entry->object.vm_object)
1971 VM_OBJECT_RUNLOCK(lobject);
1972 break;
1973 }
1974 if (vm_page_all_valid(m) &&
1975 (m->flags & PG_FICTITIOUS) == 0)
1976 pmap_enter_quick(pmap, addr, m, prot);
1977 if (!obj_locked || lobject != entry->object.vm_object)
1978 VM_OBJECT_RUNLOCK(lobject);
1979 }
1980 }
1981
1982 /*
1983 * Hold each of the physical pages that are mapped by the specified range of
1984 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1985 * and allow the specified types of access, "prot". If all of the implied
1986 * pages are successfully held, then the number of held pages is returned
1987 * together with pointers to those pages in the array "ma". However, if any
1988 * of the pages cannot be held, -1 is returned.
1989 */
1990 int
vm_fault_quick_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count)1991 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1992 vm_prot_t prot, vm_page_t *ma, int max_count)
1993 {
1994 vm_offset_t end, va;
1995 vm_page_t *mp;
1996 int count;
1997 boolean_t pmap_failed;
1998
1999 if (len == 0)
2000 return (0);
2001 end = round_page(addr + len);
2002 addr = trunc_page(addr);
2003
2004 if (!vm_map_range_valid(map, addr, end))
2005 return (-1);
2006
2007 if (atop(end - addr) > max_count)
2008 panic("vm_fault_quick_hold_pages: count > max_count");
2009 count = atop(end - addr);
2010
2011 /*
2012 * Most likely, the physical pages are resident in the pmap, so it is
2013 * faster to try pmap_extract_and_hold() first.
2014 */
2015 pmap_failed = FALSE;
2016 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2017 *mp = pmap_extract_and_hold(map->pmap, va, prot);
2018 if (*mp == NULL)
2019 pmap_failed = TRUE;
2020 else if ((prot & VM_PROT_WRITE) != 0 &&
2021 (*mp)->dirty != VM_PAGE_BITS_ALL) {
2022 /*
2023 * Explicitly dirty the physical page. Otherwise, the
2024 * caller's changes may go unnoticed because they are
2025 * performed through an unmanaged mapping or by a DMA
2026 * operation.
2027 *
2028 * The object lock is not held here.
2029 * See vm_page_clear_dirty_mask().
2030 */
2031 vm_page_dirty(*mp);
2032 }
2033 }
2034 if (pmap_failed) {
2035 /*
2036 * One or more pages could not be held by the pmap. Either no
2037 * page was mapped at the specified virtual address or that
2038 * mapping had insufficient permissions. Attempt to fault in
2039 * and hold these pages.
2040 *
2041 * If vm_fault_disable_pagefaults() was called,
2042 * i.e., TDP_NOFAULTING is set, we must not sleep nor
2043 * acquire MD VM locks, which means we must not call
2044 * vm_fault(). Some (out of tree) callers mark
2045 * too wide a code area with vm_fault_disable_pagefaults()
2046 * already, use the VM_PROT_QUICK_NOFAULT flag to request
2047 * the proper behaviour explicitly.
2048 */
2049 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2050 (curthread->td_pflags & TDP_NOFAULTING) != 0)
2051 goto error;
2052 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
2053 if (*mp == NULL && vm_fault(map, va, prot,
2054 VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
2055 goto error;
2056 }
2057 return (count);
2058 error:
2059 for (mp = ma; mp < ma + count; mp++)
2060 if (*mp != NULL)
2061 vm_page_unwire(*mp, PQ_INACTIVE);
2062 return (-1);
2063 }
2064
2065 /*
2066 * Routine:
2067 * vm_fault_copy_entry
2068 * Function:
2069 * Create new object backing dst_entry with private copy of all
2070 * underlying pages. When src_entry is equal to dst_entry, function
2071 * implements COW for wired-down map entry. Otherwise, it forks
2072 * wired entry into dst_map.
2073 *
2074 * In/out conditions:
2075 * The source and destination maps must be locked for write.
2076 * The source map entry must be wired down (or be a sharing map
2077 * entry corresponding to a main map entry that is wired down).
2078 */
2079 void
vm_fault_copy_entry(vm_map_t dst_map,vm_map_t src_map __unused,vm_map_entry_t dst_entry,vm_map_entry_t src_entry,vm_ooffset_t * fork_charge)2080 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2081 vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2082 vm_ooffset_t *fork_charge)
2083 {
2084 vm_object_t backing_object, dst_object, object, src_object;
2085 vm_pindex_t dst_pindex, pindex, src_pindex;
2086 vm_prot_t access, prot;
2087 vm_offset_t vaddr;
2088 vm_page_t dst_m, mpred;
2089 vm_page_t src_m;
2090 bool upgrade;
2091
2092 upgrade = src_entry == dst_entry;
2093 KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2094 ("vm_fault_copy_entry: vm_object not NULL"));
2095
2096 /*
2097 * If not an upgrade, then enter the mappings in the pmap as
2098 * read and/or execute accesses. Otherwise, enter them as
2099 * write accesses.
2100 *
2101 * A writeable large page mapping is only created if all of
2102 * the constituent small page mappings are modified. Marking
2103 * PTEs as modified on inception allows promotion to happen
2104 * without taking potentially large number of soft faults.
2105 */
2106 access = prot = dst_entry->protection;
2107 if (!upgrade)
2108 access &= ~VM_PROT_WRITE;
2109
2110 src_object = src_entry->object.vm_object;
2111 src_pindex = OFF_TO_IDX(src_entry->offset);
2112
2113 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2114 dst_object = src_object;
2115 vm_object_reference(dst_object);
2116 } else {
2117 /*
2118 * Create the top-level object for the destination entry.
2119 * Doesn't actually shadow anything - we copy the pages
2120 * directly.
2121 */
2122 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2123 dst_entry->start), NULL, NULL, 0);
2124 #if VM_NRESERVLEVEL > 0
2125 dst_object->flags |= OBJ_COLORED;
2126 dst_object->pg_color = atop(dst_entry->start);
2127 #endif
2128 dst_object->domain = src_object->domain;
2129 dst_object->charge = dst_entry->end - dst_entry->start;
2130
2131 dst_entry->object.vm_object = dst_object;
2132 dst_entry->offset = 0;
2133 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2134 }
2135
2136 VM_OBJECT_WLOCK(dst_object);
2137 if (fork_charge != NULL) {
2138 KASSERT(dst_entry->cred == NULL,
2139 ("vm_fault_copy_entry: leaked swp charge"));
2140 dst_object->cred = curthread->td_ucred;
2141 crhold(dst_object->cred);
2142 *fork_charge += dst_object->charge;
2143 } else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2144 dst_object->cred == NULL) {
2145 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2146 dst_entry));
2147 dst_object->cred = dst_entry->cred;
2148 dst_entry->cred = NULL;
2149 }
2150
2151 /*
2152 * Loop through all of the virtual pages within the entry's
2153 * range, copying each page from the source object to the
2154 * destination object. Since the source is wired, those pages
2155 * must exist. In contrast, the destination is pageable.
2156 * Since the destination object doesn't share any backing storage
2157 * with the source object, all of its pages must be dirtied,
2158 * regardless of whether they can be written.
2159 */
2160 mpred = (src_object == dst_object) ?
2161 vm_page_mpred(src_object, src_pindex) : NULL;
2162 for (vaddr = dst_entry->start, dst_pindex = 0;
2163 vaddr < dst_entry->end;
2164 vaddr += PAGE_SIZE, dst_pindex++, mpred = dst_m) {
2165 again:
2166 /*
2167 * Find the page in the source object, and copy it in.
2168 * Because the source is wired down, the page will be
2169 * in memory.
2170 */
2171 if (src_object != dst_object)
2172 VM_OBJECT_RLOCK(src_object);
2173 object = src_object;
2174 pindex = src_pindex + dst_pindex;
2175 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2176 (backing_object = object->backing_object) != NULL) {
2177 /*
2178 * Unless the source mapping is read-only or
2179 * it is presently being upgraded from
2180 * read-only, the first object in the shadow
2181 * chain should provide all of the pages. In
2182 * other words, this loop body should never be
2183 * executed when the source mapping is already
2184 * read/write.
2185 */
2186 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2187 upgrade,
2188 ("vm_fault_copy_entry: main object missing page"));
2189
2190 VM_OBJECT_RLOCK(backing_object);
2191 pindex += OFF_TO_IDX(object->backing_object_offset);
2192 if (object != dst_object)
2193 VM_OBJECT_RUNLOCK(object);
2194 object = backing_object;
2195 }
2196 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2197
2198 if (object != dst_object) {
2199 /*
2200 * Allocate a page in the destination object.
2201 */
2202 dst_m = vm_page_alloc_after(dst_object, (src_object ==
2203 dst_object ? src_pindex : 0) + dst_pindex,
2204 VM_ALLOC_NORMAL, mpred);
2205 if (dst_m == NULL) {
2206 VM_OBJECT_WUNLOCK(dst_object);
2207 VM_OBJECT_RUNLOCK(object);
2208 vm_wait(dst_object);
2209 VM_OBJECT_WLOCK(dst_object);
2210 goto again;
2211 }
2212
2213 /*
2214 * See the comment in vm_fault_cow().
2215 */
2216 if (src_object == dst_object &&
2217 (object->flags & OBJ_ONEMAPPING) == 0)
2218 pmap_remove_all(src_m);
2219 pmap_copy_page(src_m, dst_m);
2220
2221 /*
2222 * The object lock does not guarantee that "src_m" will
2223 * transition from invalid to valid, but it does ensure
2224 * that "src_m" will not transition from valid to
2225 * invalid.
2226 */
2227 dst_m->dirty = dst_m->valid = src_m->valid;
2228 VM_OBJECT_RUNLOCK(object);
2229 } else {
2230 dst_m = src_m;
2231 if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2232 goto again;
2233 if (dst_m->pindex >= dst_object->size) {
2234 /*
2235 * We are upgrading. Index can occur
2236 * out of bounds if the object type is
2237 * vnode and the file was truncated.
2238 */
2239 vm_page_xunbusy(dst_m);
2240 break;
2241 }
2242 }
2243
2244 /*
2245 * Enter it in the pmap. If a wired, copy-on-write
2246 * mapping is being replaced by a write-enabled
2247 * mapping, then wire that new mapping.
2248 *
2249 * The page can be invalid if the user called
2250 * msync(MS_INVALIDATE) or truncated the backing vnode
2251 * or shared memory object. In this case, do not
2252 * insert it into pmap, but still do the copy so that
2253 * all copies of the wired map entry have similar
2254 * backing pages.
2255 */
2256 if (vm_page_all_valid(dst_m)) {
2257 VM_OBJECT_WUNLOCK(dst_object);
2258 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2259 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2260 VM_OBJECT_WLOCK(dst_object);
2261 }
2262
2263 /*
2264 * Mark it no longer busy, and put it on the active list.
2265 */
2266 if (upgrade) {
2267 if (src_m != dst_m) {
2268 vm_page_unwire(src_m, PQ_INACTIVE);
2269 vm_page_wire(dst_m);
2270 } else {
2271 KASSERT(vm_page_wired(dst_m),
2272 ("dst_m %p is not wired", dst_m));
2273 }
2274 } else {
2275 vm_page_activate(dst_m);
2276 }
2277 vm_page_xunbusy(dst_m);
2278 }
2279 VM_OBJECT_WUNLOCK(dst_object);
2280 if (upgrade) {
2281 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2282 vm_object_deallocate(src_object);
2283 }
2284 }
2285
2286 /*
2287 * Block entry into the machine-independent layer's page fault handler by
2288 * the calling thread. Subsequent calls to vm_fault() by that thread will
2289 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of
2290 * spurious page faults.
2291 */
2292 int
vm_fault_disable_pagefaults(void)2293 vm_fault_disable_pagefaults(void)
2294 {
2295
2296 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2297 }
2298
2299 void
vm_fault_enable_pagefaults(int save)2300 vm_fault_enable_pagefaults(int save)
2301 {
2302
2303 curthread_pflags_restore(save);
2304 }
2305