1 // SPDX-License-Identifier: 0BSD
2
3 ///////////////////////////////////////////////////////////////////////////////
4 //
5 /// \file stream_decoder_mt.c
6 /// \brief Multithreaded .xz Stream decoder
7 //
8 // Authors: Sebastian Andrzej Siewior
9 // Lasse Collin
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12
13 #include "common.h"
14 #include "block_decoder.h"
15 #include "stream_decoder.h"
16 #include "index.h"
17 #include "outqueue.h"
18
19
20 typedef enum {
21 /// Waiting for work.
22 /// Main thread may change this to THR_RUN or THR_EXIT.
23 THR_IDLE,
24
25 /// Decoding is in progress.
26 /// Main thread may change this to THR_IDLE or THR_EXIT.
27 /// The worker thread may change this to THR_IDLE.
28 THR_RUN,
29
30 /// The main thread wants the thread to exit.
31 THR_EXIT,
32
33 } worker_state;
34
35
36 typedef enum {
37 /// Partial updates (storing of worker thread progress
38 /// to lzma_outbuf) are disabled.
39 PARTIAL_DISABLED,
40
41 /// Main thread requests partial updates to be enabled but
42 /// no partial update has been done by the worker thread yet.
43 ///
44 /// Changing from PARTIAL_DISABLED to PARTIAL_START requires
45 /// use of the worker-thread mutex. Other transitions don't
46 /// need a mutex.
47 PARTIAL_START,
48
49 /// Partial updates are enabled and the worker thread has done
50 /// at least one partial update.
51 PARTIAL_ENABLED,
52
53 } partial_update_mode;
54
55
56 struct worker_thread {
57 /// Worker state is protected with our mutex.
58 worker_state state;
59
60 /// Input buffer that will contain the whole Block except Block Header.
61 uint8_t *in;
62
63 /// Amount of memory allocated for "in"
64 size_t in_size;
65
66 /// Number of bytes written to "in" by the main thread
67 size_t in_filled;
68
69 /// Number of bytes consumed from "in" by the worker thread.
70 size_t in_pos;
71
72 /// Amount of uncompressed data that has been decoded. This local
73 /// copy is needed because updating outbuf->pos requires locking
74 /// the main mutex (coder->mutex).
75 size_t out_pos;
76
77 /// Pointer to the main structure is needed to (1) lock the main
78 /// mutex (coder->mutex) when updating outbuf->pos and (2) when
79 /// putting this thread back to the stack of free threads.
80 struct lzma_stream_coder *coder;
81
82 /// The allocator is set by the main thread. Since a copy of the
83 /// pointer is kept here, the application must not change the
84 /// allocator before calling lzma_end().
85 const lzma_allocator *allocator;
86
87 /// Output queue buffer to which the uncompressed data is written.
88 lzma_outbuf *outbuf;
89
90 /// Amount of compressed data that has already been decompressed.
91 /// This is updated from in_pos when our mutex is locked.
92 /// This is size_t, not uint64_t, because per-thread progress
93 /// is limited to sizes of allocated buffers.
94 size_t progress_in;
95
96 /// Like progress_in but for uncompressed data.
97 size_t progress_out;
98
99 /// Updating outbuf->pos requires locking the main mutex
100 /// (coder->mutex). Since the main thread will only read output
101 /// from the oldest outbuf in the queue, only the worker thread
102 /// that is associated with the oldest outbuf needs to update its
103 /// outbuf->pos. This avoids useless mutex contention that would
104 /// happen if all worker threads were frequently locking the main
105 /// mutex to update their outbuf->pos.
106 ///
107 /// Only when partial_update is something else than PARTIAL_DISABLED,
108 /// this worker thread will update outbuf->pos after each call to
109 /// the Block decoder.
110 partial_update_mode partial_update;
111
112 /// Block decoder
113 lzma_next_coder block_decoder;
114
115 /// Thread-specific Block options are needed because the Block
116 /// decoder modifies the struct given to it at initialization.
117 lzma_block block_options;
118
119 /// Filter chain memory usage
120 uint64_t mem_filters;
121
122 /// Next structure in the stack of free worker threads.
123 struct worker_thread *next;
124
125 mythread_mutex mutex;
126 mythread_cond cond;
127
128 /// The ID of this thread is used to join the thread
129 /// when it's not needed anymore.
130 mythread thread_id;
131 };
132
133
134 struct lzma_stream_coder {
135 enum {
136 SEQ_STREAM_HEADER,
137 SEQ_BLOCK_HEADER,
138 SEQ_BLOCK_INIT,
139 SEQ_BLOCK_THR_INIT,
140 SEQ_BLOCK_THR_RUN,
141 SEQ_BLOCK_DIRECT_INIT,
142 SEQ_BLOCK_DIRECT_RUN,
143 SEQ_INDEX_WAIT_OUTPUT,
144 SEQ_INDEX_DECODE,
145 SEQ_STREAM_FOOTER,
146 SEQ_STREAM_PADDING,
147 SEQ_ERROR,
148 } sequence;
149
150 /// Block decoder
151 lzma_next_coder block_decoder;
152
153 /// Every Block Header will be decoded into this structure.
154 /// This is also used to initialize a Block decoder when in
155 /// direct mode. In threaded mode, a thread-specific copy will
156 /// be made for decoder initialization because the Block decoder
157 /// will modify the structure given to it.
158 lzma_block block_options;
159
160 /// Buffer to hold a filter chain for Block Header decoding and
161 /// initialization. These are freed after successful Block decoder
162 /// initialization or at stream_decoder_mt_end(). The thread-specific
163 /// copy of block_options won't hold a pointer to filters[] after
164 /// initialization.
165 lzma_filter filters[LZMA_FILTERS_MAX + 1];
166
167 /// Stream Flags from Stream Header
168 lzma_stream_flags stream_flags;
169
170 /// Index is hashed so that it can be compared to the sizes of Blocks
171 /// with O(1) memory usage.
172 lzma_index_hash *index_hash;
173
174
175 /// Maximum wait time if cannot use all the input and cannot
176 /// fill the output buffer. This is in milliseconds.
177 uint32_t timeout;
178
179
180 /// Error code from a worker thread.
181 ///
182 /// \note Use mutex.
183 lzma_ret thread_error;
184
185 /// Error code to return after pending output has been copied out. If
186 /// set in read_output_and_wait(), this is a mirror of thread_error.
187 /// If set in stream_decode_mt() then it's, for example, error that
188 /// occurred when decoding Block Header.
189 lzma_ret pending_error;
190
191 /// Number of threads that will be created at maximum.
192 uint32_t threads_max;
193
194 /// Number of thread structures that have been initialized from
195 /// "threads", and thus the number of worker threads actually
196 /// created so far.
197 uint32_t threads_initialized;
198
199 /// Array of allocated thread-specific structures. When no threads
200 /// are in use (direct mode) this is NULL. In threaded mode this
201 /// points to an array of threads_max number of worker_thread structs.
202 struct worker_thread *threads;
203
204 /// Stack of free threads. When a thread finishes, it puts itself
205 /// back into this stack. This starts as empty because threads
206 /// are created only when actually needed.
207 ///
208 /// \note Use mutex.
209 struct worker_thread *threads_free;
210
211 /// The most recent worker thread to which the main thread writes
212 /// the new input from the application.
213 struct worker_thread *thr;
214
215 /// Output buffer queue for decompressed data from the worker threads
216 ///
217 /// \note Use mutex with operations that need it.
218 lzma_outq outq;
219
220 mythread_mutex mutex;
221 mythread_cond cond;
222
223
224 /// Memory usage that will not be exceeded in multi-threaded mode.
225 /// Single-threaded mode can exceed this even by a large amount.
226 uint64_t memlimit_threading;
227
228 /// Memory usage limit that should never be exceeded.
229 /// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible
230 /// even in single-threaded mode without exceeding this limit.
231 uint64_t memlimit_stop;
232
233 /// Amount of memory in use by the direct mode decoder
234 /// (coder->block_decoder). In threaded mode this is 0.
235 uint64_t mem_direct_mode;
236
237 /// Amount of memory needed by the running worker threads.
238 /// This doesn't include the memory needed by the output buffer.
239 ///
240 /// \note Use mutex.
241 uint64_t mem_in_use;
242
243 /// Amount of memory used by the idle (cached) threads.
244 ///
245 /// \note Use mutex.
246 uint64_t mem_cached;
247
248
249 /// Amount of memory needed for the filter chain of the next Block.
250 uint64_t mem_next_filters;
251
252 /// Amount of memory needed for the thread-specific input buffer
253 /// for the next Block.
254 uint64_t mem_next_in;
255
256 /// Amount of memory actually needed to decode the next Block
257 /// in threaded mode. This is
258 /// mem_next_filters + mem_next_in + memory needed for lzma_outbuf.
259 uint64_t mem_next_block;
260
261
262 /// Amount of compressed data in Stream Header + Blocks that have
263 /// already been finished.
264 ///
265 /// \note Use mutex.
266 uint64_t progress_in;
267
268 /// Amount of uncompressed data in Blocks that have already
269 /// been finished.
270 ///
271 /// \note Use mutex.
272 uint64_t progress_out;
273
274
275 /// If true, LZMA_NO_CHECK is returned if the Stream has
276 /// no integrity check.
277 bool tell_no_check;
278
279 /// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has
280 /// an integrity check that isn't supported by this liblzma build.
281 bool tell_unsupported_check;
282
283 /// If true, LZMA_GET_CHECK is returned after decoding Stream Header.
284 bool tell_any_check;
285
286 /// If true, we will tell the Block decoder to skip calculating
287 /// and verifying the integrity check.
288 bool ignore_check;
289
290 /// If true, we will decode concatenated Streams that possibly have
291 /// Stream Padding between or after them. LZMA_STREAM_END is returned
292 /// once the application isn't giving us any new input (LZMA_FINISH),
293 /// and we aren't in the middle of a Stream, and possible
294 /// Stream Padding is a multiple of four bytes.
295 bool concatenated;
296
297 /// If true, we will return any errors immediately instead of first
298 /// producing all output before the location of the error.
299 bool fail_fast;
300
301
302 /// When decoding concatenated Streams, this is true as long as we
303 /// are decoding the first Stream. This is needed to avoid misleading
304 /// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic
305 /// bytes.
306 bool first_stream;
307
308 /// This is used to track if the previous call to stream_decode_mt()
309 /// had output space (*out_pos < out_size) and managed to fill the
310 /// output buffer (*out_pos == out_size). This may be set to true
311 /// in read_output_and_wait(). This is read and then reset to false
312 /// at the beginning of stream_decode_mt().
313 ///
314 /// This is needed to support applications that call lzma_code() in
315 /// such a way that more input is provided only when lzma_code()
316 /// didn't fill the output buffer completely. Basically, this makes
317 /// it easier to convert such applications from single-threaded
318 /// decoder to multi-threaded decoder.
319 bool out_was_filled;
320
321 /// Write position in buffer[] and position in Stream Padding
322 size_t pos;
323
324 /// Buffer to hold Stream Header, Block Header, and Stream Footer.
325 /// Block Header has biggest maximum size.
326 uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX];
327 };
328
329
330 /// Enables updating of outbuf->pos. This is a callback function that is
331 /// used with lzma_outq_enable_partial_output().
332 static void
worker_enable_partial_update(void * thr_ptr)333 worker_enable_partial_update(void *thr_ptr)
334 {
335 struct worker_thread *thr = thr_ptr;
336
337 mythread_sync(thr->mutex) {
338 thr->partial_update = PARTIAL_START;
339 mythread_cond_signal(&thr->cond);
340 }
341 }
342
343
344 static MYTHREAD_RET_TYPE
worker_decoder(void * thr_ptr)345 worker_decoder(void *thr_ptr)
346 {
347 struct worker_thread *thr = thr_ptr;
348 size_t in_filled;
349 partial_update_mode partial_update;
350 lzma_ret ret;
351
352 next_loop_lock:
353
354 mythread_mutex_lock(&thr->mutex);
355 next_loop_unlocked:
356
357 if (thr->state == THR_IDLE) {
358 mythread_cond_wait(&thr->cond, &thr->mutex);
359 goto next_loop_unlocked;
360 }
361
362 if (thr->state == THR_EXIT) {
363 mythread_mutex_unlock(&thr->mutex);
364
365 lzma_free(thr->in, thr->allocator);
366 lzma_next_end(&thr->block_decoder, thr->allocator);
367
368 mythread_mutex_destroy(&thr->mutex);
369 mythread_cond_destroy(&thr->cond);
370
371 return MYTHREAD_RET_VALUE;
372 }
373
374 assert(thr->state == THR_RUN);
375
376 // Update progress info for get_progress().
377 thr->progress_in = thr->in_pos;
378 thr->progress_out = thr->out_pos;
379
380 // If we don't have any new input, wait for a signal from the main
381 // thread except if partial output has just been enabled. In that
382 // case we will do one normal run so that the partial output info
383 // gets passed to the main thread. The call to block_decoder.code()
384 // is useless but harmless as it can occur only once per Block.
385 in_filled = thr->in_filled;
386 partial_update = thr->partial_update;
387
388 if (in_filled == thr->in_pos && partial_update != PARTIAL_START) {
389 mythread_cond_wait(&thr->cond, &thr->mutex);
390 goto next_loop_unlocked;
391 }
392
393 mythread_mutex_unlock(&thr->mutex);
394
395 // Pass the input in small chunks to the Block decoder.
396 // This way we react reasonably fast if we are told to stop/exit,
397 // and (when partial update is enabled) we tell about our progress
398 // to the main thread frequently enough.
399 const size_t chunk_size = 16384;
400 if ((in_filled - thr->in_pos) > chunk_size)
401 in_filled = thr->in_pos + chunk_size;
402
403 ret = thr->block_decoder.code(
404 thr->block_decoder.coder, thr->allocator,
405 thr->in, &thr->in_pos, in_filled,
406 thr->outbuf->buf, &thr->out_pos,
407 thr->outbuf->allocated, LZMA_RUN);
408
409 if (ret == LZMA_OK) {
410 if (partial_update != PARTIAL_DISABLED) {
411 // The main thread uses thr->mutex to change from
412 // PARTIAL_DISABLED to PARTIAL_START. The main thread
413 // doesn't care about this variable after that so we
414 // can safely change it here to PARTIAL_ENABLED
415 // without a mutex.
416 thr->partial_update = PARTIAL_ENABLED;
417
418 // The main thread is reading decompressed data
419 // from thr->outbuf. Tell the main thread about
420 // our progress.
421 //
422 // NOTE: It's possible that we consumed input without
423 // producing any new output so it's possible that
424 // only in_pos has changed. In case of PARTIAL_START
425 // it is possible that neither in_pos nor out_pos has
426 // changed.
427 mythread_sync(thr->coder->mutex) {
428 thr->outbuf->pos = thr->out_pos;
429 thr->outbuf->decoder_in_pos = thr->in_pos;
430 mythread_cond_signal(&thr->coder->cond);
431 }
432 }
433
434 goto next_loop_lock;
435 }
436
437 // Either we finished successfully (LZMA_STREAM_END) or an error
438 // occurred.
439 //
440 // The sizes are in the Block Header and the Block decoder
441 // checks that they match, thus we know these:
442 assert(ret != LZMA_STREAM_END || thr->in_pos == thr->in_size);
443 assert(ret != LZMA_STREAM_END
444 || thr->out_pos == thr->block_options.uncompressed_size);
445
446 mythread_sync(thr->mutex) {
447 // Block decoder ensures this, but do a sanity check anyway
448 // because thr->in_filled < thr->in_size means that the main
449 // thread is still writing to thr->in.
450 if (ret == LZMA_STREAM_END && thr->in_filled != thr->in_size) {
451 assert(0);
452 ret = LZMA_PROG_ERROR;
453 }
454
455 if (thr->state != THR_EXIT)
456 thr->state = THR_IDLE;
457 }
458
459 // Free the input buffer. Don't update in_size as we need
460 // it later to update thr->coder->mem_in_use.
461 //
462 // This step is skipped if an error occurred because the main thread
463 // might still be writing to thr->in. The memory will be freed after
464 // threads_end() sets thr->state = THR_EXIT.
465 if (ret == LZMA_STREAM_END) {
466 lzma_free(thr->in, thr->allocator);
467 thr->in = NULL;
468 }
469
470 mythread_sync(thr->coder->mutex) {
471 // Move our progress info to the main thread.
472 thr->coder->progress_in += thr->in_pos;
473 thr->coder->progress_out += thr->out_pos;
474 thr->progress_in = 0;
475 thr->progress_out = 0;
476
477 // Mark the outbuf as finished.
478 thr->outbuf->pos = thr->out_pos;
479 thr->outbuf->decoder_in_pos = thr->in_pos;
480 thr->outbuf->finished = true;
481 thr->outbuf->finish_ret = ret;
482 thr->outbuf = NULL;
483
484 // If an error occurred, tell it to the main thread.
485 if (ret != LZMA_STREAM_END
486 && thr->coder->thread_error == LZMA_OK)
487 thr->coder->thread_error = ret;
488
489 // Return the worker thread to the stack of available
490 // threads only if no errors occurred.
491 if (ret == LZMA_STREAM_END) {
492 // Update memory usage counters.
493 thr->coder->mem_in_use -= thr->in_size;
494 thr->coder->mem_in_use -= thr->mem_filters;
495 thr->coder->mem_cached += thr->mem_filters;
496
497 // Put this thread to the stack of free threads.
498 thr->next = thr->coder->threads_free;
499 thr->coder->threads_free = thr;
500 }
501
502 mythread_cond_signal(&thr->coder->cond);
503 }
504
505 goto next_loop_lock;
506 }
507
508
509 /// Tells the worker threads to exit and waits for them to terminate.
510 static void
threads_end(struct lzma_stream_coder * coder,const lzma_allocator * allocator)511 threads_end(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
512 {
513 for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
514 mythread_sync(coder->threads[i].mutex) {
515 coder->threads[i].state = THR_EXIT;
516 mythread_cond_signal(&coder->threads[i].cond);
517 }
518 }
519
520 for (uint32_t i = 0; i < coder->threads_initialized; ++i)
521 mythread_join(coder->threads[i].thread_id);
522
523 lzma_free(coder->threads, allocator);
524 coder->threads_initialized = 0;
525 coder->threads = NULL;
526 coder->threads_free = NULL;
527
528 // The threads don't update these when they exit. Do it here.
529 coder->mem_in_use = 0;
530 coder->mem_cached = 0;
531
532 return;
533 }
534
535
536 /// Tell worker threads to stop without doing any cleaning up.
537 /// The clean up will be done when threads_exit() is called;
538 /// it's not possible to reuse the threads after threads_stop().
539 ///
540 /// This is called before returning an unrecoverable error code
541 /// to the application. It would be waste of processor time
542 /// to keep the threads running in such a situation.
543 static void
threads_stop(struct lzma_stream_coder * coder)544 threads_stop(struct lzma_stream_coder *coder)
545 {
546 for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
547 // The threads that are in the THR_RUN state will stop
548 // when they check the state the next time. There's no
549 // need to signal coder->threads[i].cond.
550 mythread_sync(coder->threads[i].mutex) {
551 coder->threads[i].state = THR_IDLE;
552 }
553 }
554
555 return;
556 }
557
558
559 /// Initialize a new worker_thread structure and create a new thread.
560 static lzma_ret
initialize_new_thread(struct lzma_stream_coder * coder,const lzma_allocator * allocator)561 initialize_new_thread(struct lzma_stream_coder *coder,
562 const lzma_allocator *allocator)
563 {
564 // Allocate the coder->threads array if needed. It's done here instead
565 // of when initializing the decoder because we don't need this if we
566 // use the direct mode (we may even free coder->threads in the middle
567 // of the file if we switch from threaded to direct mode).
568 if (coder->threads == NULL) {
569 coder->threads = lzma_alloc(
570 coder->threads_max * sizeof(struct worker_thread),
571 allocator);
572
573 if (coder->threads == NULL)
574 return LZMA_MEM_ERROR;
575 }
576
577 // Pick a free structure.
578 assert(coder->threads_initialized < coder->threads_max);
579 struct worker_thread *thr
580 = &coder->threads[coder->threads_initialized];
581
582 if (mythread_mutex_init(&thr->mutex))
583 goto error_mutex;
584
585 if (mythread_cond_init(&thr->cond))
586 goto error_cond;
587
588 thr->state = THR_IDLE;
589 thr->in = NULL;
590 thr->in_size = 0;
591 thr->allocator = allocator;
592 thr->coder = coder;
593 thr->outbuf = NULL;
594 thr->block_decoder = LZMA_NEXT_CODER_INIT;
595 thr->mem_filters = 0;
596
597 if (mythread_create(&thr->thread_id, worker_decoder, thr))
598 goto error_thread;
599
600 ++coder->threads_initialized;
601 coder->thr = thr;
602
603 return LZMA_OK;
604
605 error_thread:
606 mythread_cond_destroy(&thr->cond);
607
608 error_cond:
609 mythread_mutex_destroy(&thr->mutex);
610
611 error_mutex:
612 return LZMA_MEM_ERROR;
613 }
614
615
616 static lzma_ret
get_thread(struct lzma_stream_coder * coder,const lzma_allocator * allocator)617 get_thread(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
618 {
619 // If there is a free structure on the stack, use it.
620 mythread_sync(coder->mutex) {
621 if (coder->threads_free != NULL) {
622 coder->thr = coder->threads_free;
623 coder->threads_free = coder->threads_free->next;
624
625 // The thread is no longer in the cache so subtract
626 // it from the cached memory usage. Don't add it
627 // to mem_in_use though; the caller will handle it
628 // since it knows how much memory it will actually
629 // use (the filter chain might change).
630 coder->mem_cached -= coder->thr->mem_filters;
631 }
632 }
633
634 if (coder->thr == NULL) {
635 assert(coder->threads_initialized < coder->threads_max);
636
637 // Initialize a new thread.
638 return_if_error(initialize_new_thread(coder, allocator));
639 }
640
641 coder->thr->in_filled = 0;
642 coder->thr->in_pos = 0;
643 coder->thr->out_pos = 0;
644
645 coder->thr->progress_in = 0;
646 coder->thr->progress_out = 0;
647
648 coder->thr->partial_update = PARTIAL_DISABLED;
649
650 return LZMA_OK;
651 }
652
653
654 static lzma_ret
read_output_and_wait(struct lzma_stream_coder * coder,const lzma_allocator * allocator,uint8_t * restrict out,size_t * restrict out_pos,size_t out_size,bool * input_is_possible,bool waiting_allowed,mythread_condtime * wait_abs,bool * has_blocked)655 read_output_and_wait(struct lzma_stream_coder *coder,
656 const lzma_allocator *allocator,
657 uint8_t *restrict out, size_t *restrict out_pos,
658 size_t out_size,
659 bool *input_is_possible,
660 bool waiting_allowed,
661 mythread_condtime *wait_abs, bool *has_blocked)
662 {
663 lzma_ret ret = LZMA_OK;
664
665 mythread_sync(coder->mutex) {
666 do {
667 // Get as much output from the queue as is possible
668 // without blocking.
669 const size_t out_start = *out_pos;
670 do {
671 ret = lzma_outq_read(&coder->outq, allocator,
672 out, out_pos, out_size,
673 NULL, NULL);
674
675 // If a Block was finished, tell the worker
676 // thread of the next Block (if it is still
677 // running) to start telling the main thread
678 // when new output is available.
679 if (ret == LZMA_STREAM_END)
680 lzma_outq_enable_partial_output(
681 &coder->outq,
682 &worker_enable_partial_update);
683
684 // Loop until a Block wasn't finished.
685 // It's important to loop around even if
686 // *out_pos == out_size because there could
687 // be an empty Block that will return
688 // LZMA_STREAM_END without needing any
689 // output space.
690 } while (ret == LZMA_STREAM_END);
691
692 // Check if lzma_outq_read reported an error from
693 // the Block decoder.
694 if (ret != LZMA_OK)
695 break;
696
697 // If the output buffer is now full but it wasn't full
698 // when this function was called, set out_was_filled.
699 // This way the next call to stream_decode_mt() knows
700 // that some output was produced and no output space
701 // remained in the previous call to stream_decode_mt().
702 if (*out_pos == out_size && *out_pos != out_start)
703 coder->out_was_filled = true;
704
705 // Check if any thread has indicated an error.
706 if (coder->thread_error != LZMA_OK) {
707 // If LZMA_FAIL_FAST was used, report errors
708 // from worker threads immediately.
709 if (coder->fail_fast) {
710 ret = coder->thread_error;
711 break;
712 }
713
714 // Otherwise set pending_error. The value we
715 // set here will not actually get used other
716 // than working as a flag that an error has
717 // occurred. This is because in SEQ_ERROR
718 // all output before the error will be read
719 // first by calling this function, and once we
720 // reach the location of the (first) error the
721 // error code from the above lzma_outq_read()
722 // will be returned to the application.
723 //
724 // Use LZMA_PROG_ERROR since the value should
725 // never leak to the application. It's
726 // possible that pending_error has already
727 // been set but that doesn't matter: if we get
728 // here, pending_error only works as a flag.
729 coder->pending_error = LZMA_PROG_ERROR;
730 }
731
732 // Check if decoding of the next Block can be started.
733 // The memusage of the active threads must be low
734 // enough, there must be a free buffer slot in the
735 // output queue, and there must be a free thread
736 // (that can be either created or an existing one
737 // reused).
738 //
739 // NOTE: This is checked after reading the output
740 // above because reading the output can free a slot in
741 // the output queue and also reduce active memusage.
742 //
743 // NOTE: If output queue is empty, then input will
744 // always be possible.
745 if (input_is_possible != NULL
746 && coder->memlimit_threading
747 - coder->mem_in_use
748 - coder->outq.mem_in_use
749 >= coder->mem_next_block
750 && lzma_outq_has_buf(&coder->outq)
751 && (coder->threads_initialized
752 < coder->threads_max
753 || coder->threads_free
754 != NULL)) {
755 *input_is_possible = true;
756 break;
757 }
758
759 // If the caller doesn't want us to block, return now.
760 if (!waiting_allowed)
761 break;
762
763 // This check is needed only when input_is_possible
764 // is NULL. We must return if we aren't waiting for
765 // input to become possible and there is no more
766 // output coming from the queue.
767 if (lzma_outq_is_empty(&coder->outq)) {
768 assert(input_is_possible == NULL);
769 break;
770 }
771
772 // If there is more data available from the queue,
773 // our out buffer must be full and we need to return
774 // so that the application can provide more output
775 // space.
776 //
777 // NOTE: In general lzma_outq_is_readable() can return
778 // true also when there are no more bytes available.
779 // This can happen when a Block has finished without
780 // providing any new output. We know that this is not
781 // the case because in the beginning of this loop we
782 // tried to read as much as possible even when we had
783 // no output space left and the mutex has been locked
784 // all the time (so worker threads cannot have changed
785 // anything). Thus there must be actual pending output
786 // in the queue.
787 if (lzma_outq_is_readable(&coder->outq)) {
788 assert(*out_pos == out_size);
789 break;
790 }
791
792 // If the application stops providing more input
793 // in the middle of a Block, there will eventually
794 // be one worker thread left that is stuck waiting for
795 // more input (that might never arrive) and a matching
796 // outbuf which the worker thread cannot finish due
797 // to lack of input. We must detect this situation,
798 // otherwise we would end up waiting indefinitely
799 // (if no timeout is in use) or keep returning
800 // LZMA_TIMED_OUT while making no progress. Thus, the
801 // application would never get LZMA_BUF_ERROR from
802 // lzma_code() which would tell the application that
803 // no more progress is possible. No LZMA_BUF_ERROR
804 // means that, for example, truncated .xz files could
805 // cause an infinite loop.
806 //
807 // A worker thread doing partial updates will
808 // store not only the output position in outbuf->pos
809 // but also the matching input position in
810 // outbuf->decoder_in_pos. Here we check if that
811 // input position matches the amount of input that
812 // the worker thread has been given (in_filled).
813 // If so, we must return and not wait as no more
814 // output will be coming without first getting more
815 // input to the worker thread. If the application
816 // keeps calling lzma_code() without providing more
817 // input, it will eventually get LZMA_BUF_ERROR.
818 //
819 // NOTE: We can read partial_update and in_filled
820 // without thr->mutex as only the main thread
821 // modifies these variables. decoder_in_pos requires
822 // coder->mutex which we are already holding.
823 if (coder->thr != NULL && coder->thr->partial_update
824 != PARTIAL_DISABLED) {
825 // There is exactly one outbuf in the queue.
826 assert(coder->thr->outbuf == coder->outq.head);
827 assert(coder->thr->outbuf == coder->outq.tail);
828
829 if (coder->thr->outbuf->decoder_in_pos
830 == coder->thr->in_filled)
831 break;
832 }
833
834 // Wait for input or output to become possible.
835 if (coder->timeout != 0) {
836 // See the comment in stream_encoder_mt.c
837 // about why mythread_condtime_set() is used
838 // like this.
839 //
840 // FIXME?
841 // In contrast to the encoder, this calls
842 // _condtime_set while the mutex is locked.
843 if (!*has_blocked) {
844 *has_blocked = true;
845 mythread_condtime_set(wait_abs,
846 &coder->cond,
847 coder->timeout);
848 }
849
850 if (mythread_cond_timedwait(&coder->cond,
851 &coder->mutex,
852 wait_abs) != 0) {
853 ret = LZMA_TIMED_OUT;
854 break;
855 }
856 } else {
857 mythread_cond_wait(&coder->cond,
858 &coder->mutex);
859 }
860 } while (ret == LZMA_OK);
861 }
862
863 // If we are returning an error, then the application cannot get
864 // more output from us and thus keeping the threads running is
865 // useless and waste of CPU time.
866 if (ret != LZMA_OK && ret != LZMA_TIMED_OUT)
867 threads_stop(coder);
868
869 return ret;
870 }
871
872
873 static lzma_ret
decode_block_header(struct lzma_stream_coder * coder,const lzma_allocator * allocator,const uint8_t * restrict in,size_t * restrict in_pos,size_t in_size)874 decode_block_header(struct lzma_stream_coder *coder,
875 const lzma_allocator *allocator, const uint8_t *restrict in,
876 size_t *restrict in_pos, size_t in_size)
877 {
878 if (*in_pos >= in_size)
879 return LZMA_OK;
880
881 if (coder->pos == 0) {
882 // Detect if it's Index.
883 if (in[*in_pos] == INDEX_INDICATOR)
884 return LZMA_INDEX_DETECTED;
885
886 // Calculate the size of the Block Header. Note that
887 // Block Header decoder wants to see this byte too
888 // so don't advance *in_pos.
889 coder->block_options.header_size
890 = lzma_block_header_size_decode(
891 in[*in_pos]);
892 }
893
894 // Copy the Block Header to the internal buffer.
895 lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
896 coder->block_options.header_size);
897
898 // Return if we didn't get the whole Block Header yet.
899 if (coder->pos < coder->block_options.header_size)
900 return LZMA_OK;
901
902 coder->pos = 0;
903
904 // Version 1 is needed to support the .ignore_check option.
905 coder->block_options.version = 1;
906
907 // Block Header decoder will initialize all members of this array
908 // so we don't need to do it here.
909 coder->block_options.filters = coder->filters;
910
911 // Decode the Block Header.
912 return_if_error(lzma_block_header_decode(&coder->block_options,
913 allocator, coder->buffer));
914
915 // If LZMA_IGNORE_CHECK was used, this flag needs to be set.
916 // It has to be set after lzma_block_header_decode() because
917 // it always resets this to false.
918 coder->block_options.ignore_check = coder->ignore_check;
919
920 // coder->block_options is ready now.
921 return LZMA_STREAM_END;
922 }
923
924
925 /// Get the size of the Compressed Data + Block Padding + Check.
926 static size_t
comp_blk_size(const struct lzma_stream_coder * coder)927 comp_blk_size(const struct lzma_stream_coder *coder)
928 {
929 return vli_ceil4(coder->block_options.compressed_size)
930 + lzma_check_size(coder->stream_flags.check);
931 }
932
933
934 /// Returns true if the size (compressed or uncompressed) is such that
935 /// threaded decompression cannot be used. Sizes that are too big compared
936 /// to SIZE_MAX must be rejected to avoid integer overflows and truncations
937 /// when lzma_vli is assigned to a size_t.
938 static bool
is_direct_mode_needed(lzma_vli size)939 is_direct_mode_needed(lzma_vli size)
940 {
941 return size == LZMA_VLI_UNKNOWN || size > SIZE_MAX / 3;
942 }
943
944
945 static lzma_ret
stream_decoder_reset(struct lzma_stream_coder * coder,const lzma_allocator * allocator)946 stream_decoder_reset(struct lzma_stream_coder *coder,
947 const lzma_allocator *allocator)
948 {
949 // Initialize the Index hash used to verify the Index.
950 coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator);
951 if (coder->index_hash == NULL)
952 return LZMA_MEM_ERROR;
953
954 // Reset the rest of the variables.
955 coder->sequence = SEQ_STREAM_HEADER;
956 coder->pos = 0;
957
958 return LZMA_OK;
959 }
960
961
962 static lzma_ret
stream_decode_mt(void * coder_ptr,const lzma_allocator * allocator,const uint8_t * restrict in,size_t * restrict in_pos,size_t in_size,uint8_t * restrict out,size_t * restrict out_pos,size_t out_size,lzma_action action)963 stream_decode_mt(void *coder_ptr, const lzma_allocator *allocator,
964 const uint8_t *restrict in, size_t *restrict in_pos,
965 size_t in_size,
966 uint8_t *restrict out, size_t *restrict out_pos,
967 size_t out_size, lzma_action action)
968 {
969 struct lzma_stream_coder *coder = coder_ptr;
970
971 mythread_condtime wait_abs;
972 bool has_blocked = false;
973
974 // Determine if in SEQ_BLOCK_HEADER and SEQ_BLOCK_THR_RUN we should
975 // tell read_output_and_wait() to wait until it can fill the output
976 // buffer (or a timeout occurs). Two conditions must be met:
977 //
978 // (1) If the caller provided no new input. The reason for this
979 // can be, for example, the end of the file or that there is
980 // a pause in the input stream and more input is available
981 // a little later. In this situation we should wait for output
982 // because otherwise we would end up in a busy-waiting loop where
983 // we make no progress and the application just calls us again
984 // without providing any new input. This would then result in
985 // LZMA_BUF_ERROR even though more output would be available
986 // once the worker threads decode more data.
987 //
988 // (2) Even if (1) is true, we will not wait if the previous call to
989 // this function managed to produce some output and the output
990 // buffer became full. This is for compatibility with applications
991 // that call lzma_code() in such a way that new input is provided
992 // only when the output buffer didn't become full. Without this
993 // trick such applications would have bad performance (bad
994 // parallelization due to decoder not getting input fast enough).
995 //
996 // NOTE: Such loops might require that timeout is disabled (0)
997 // if they assume that output-not-full implies that all input has
998 // been consumed. If and only if timeout is enabled, we may return
999 // when output isn't full *and* not all input has been consumed.
1000 //
1001 // However, if LZMA_FINISH is used, the above is ignored and we always
1002 // wait (timeout can still cause us to return) because we know that
1003 // we won't get any more input. This matters if the input file is
1004 // truncated and we are doing single-shot decoding, that is,
1005 // timeout = 0 and LZMA_FINISH is used on the first call to
1006 // lzma_code() and the output buffer is known to be big enough
1007 // to hold all uncompressed data:
1008 //
1009 // - If LZMA_FINISH wasn't handled specially, we could return
1010 // LZMA_OK before providing all output that is possible with the
1011 // truncated input. The rest would be available if lzma_code() was
1012 // called again but then it's not single-shot decoding anymore.
1013 //
1014 // - By handling LZMA_FINISH specially here, the first call will
1015 // produce all the output, matching the behavior of the
1016 // single-threaded decoder.
1017 //
1018 // So it's a very specific corner case but also easy to avoid. Note
1019 // that this special handling of LZMA_FINISH has no effect for
1020 // single-shot decoding when the input file is valid (not truncated);
1021 // premature LZMA_OK wouldn't be possible as long as timeout = 0.
1022 const bool waiting_allowed = action == LZMA_FINISH
1023 || (*in_pos == in_size && !coder->out_was_filled);
1024 coder->out_was_filled = false;
1025
1026 while (true)
1027 switch (coder->sequence) {
1028 case SEQ_STREAM_HEADER: {
1029 // Copy the Stream Header to the internal buffer.
1030 const size_t in_old = *in_pos;
1031 lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
1032 LZMA_STREAM_HEADER_SIZE);
1033 coder->progress_in += *in_pos - in_old;
1034
1035 // Return if we didn't get the whole Stream Header yet.
1036 if (coder->pos < LZMA_STREAM_HEADER_SIZE)
1037 return LZMA_OK;
1038
1039 coder->pos = 0;
1040
1041 // Decode the Stream Header.
1042 const lzma_ret ret = lzma_stream_header_decode(
1043 &coder->stream_flags, coder->buffer);
1044 if (ret != LZMA_OK)
1045 return ret == LZMA_FORMAT_ERROR && !coder->first_stream
1046 ? LZMA_DATA_ERROR : ret;
1047
1048 // If we are decoding concatenated Streams, and the later
1049 // Streams have invalid Header Magic Bytes, we give
1050 // LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR.
1051 coder->first_stream = false;
1052
1053 // Copy the type of the Check so that Block Header and Block
1054 // decoders see it.
1055 coder->block_options.check = coder->stream_flags.check;
1056
1057 // Even if we return LZMA_*_CHECK below, we want
1058 // to continue from Block Header decoding.
1059 coder->sequence = SEQ_BLOCK_HEADER;
1060
1061 // Detect if there's no integrity check or if it is
1062 // unsupported if those were requested by the application.
1063 if (coder->tell_no_check && coder->stream_flags.check
1064 == LZMA_CHECK_NONE)
1065 return LZMA_NO_CHECK;
1066
1067 if (coder->tell_unsupported_check
1068 && !lzma_check_is_supported(
1069 coder->stream_flags.check))
1070 return LZMA_UNSUPPORTED_CHECK;
1071
1072 if (coder->tell_any_check)
1073 return LZMA_GET_CHECK;
1074
1075 FALLTHROUGH;
1076 }
1077
1078 case SEQ_BLOCK_HEADER: {
1079 const size_t in_old = *in_pos;
1080 const lzma_ret ret = decode_block_header(coder, allocator,
1081 in, in_pos, in_size);
1082 coder->progress_in += *in_pos - in_old;
1083
1084 if (ret == LZMA_OK) {
1085 // We didn't decode the whole Block Header yet.
1086 //
1087 // Read output from the queue before returning. This
1088 // is important because it is possible that the
1089 // application doesn't have any new input available
1090 // immediately. If we didn't try to copy output from
1091 // the output queue here, lzma_code() could end up
1092 // returning LZMA_BUF_ERROR even though queued output
1093 // is available.
1094 //
1095 // If the lzma_code() call provided at least one input
1096 // byte, only copy as much data from the output queue
1097 // as is available immediately. This way the
1098 // application will be able to provide more input
1099 // without a delay.
1100 //
1101 // On the other hand, if lzma_code() was called with
1102 // an empty input buffer(*), treat it specially: try
1103 // to fill the output buffer even if it requires
1104 // waiting for the worker threads to provide output
1105 // (timeout, if specified, can still cause us to
1106 // return).
1107 //
1108 // - This way the application will be able to get all
1109 // data that can be decoded from the input provided
1110 // so far.
1111 //
1112 // - We avoid both premature LZMA_BUF_ERROR and
1113 // busy-waiting where the application repeatedly
1114 // calls lzma_code() which immediately returns
1115 // LZMA_OK without providing new data.
1116 //
1117 // - If the queue becomes empty, we won't wait
1118 // anything and will return LZMA_OK immediately
1119 // (coder->timeout is completely ignored).
1120 //
1121 // (*) See the comment at the beginning of this
1122 // function how waiting_allowed is determined
1123 // and why there is an exception to the rule
1124 // of "called with an empty input buffer".
1125 assert(*in_pos == in_size);
1126
1127 // If LZMA_FINISH was used we know that we won't get
1128 // more input, so the file must be truncated if we
1129 // get here. If worker threads don't detect any
1130 // errors, eventually there will be no more output
1131 // while we keep returning LZMA_OK which gets
1132 // converted to LZMA_BUF_ERROR in lzma_code().
1133 //
1134 // If fail-fast is enabled then we will return
1135 // immediately using LZMA_DATA_ERROR instead of
1136 // LZMA_OK or LZMA_BUF_ERROR. Rationale for the
1137 // error code:
1138 //
1139 // - Worker threads may have a large amount of
1140 // not-yet-decoded input data and we don't
1141 // know for sure if all data is valid. Bad
1142 // data there would result in LZMA_DATA_ERROR
1143 // when fail-fast isn't used.
1144 //
1145 // - Immediate LZMA_BUF_ERROR would be a bit weird
1146 // considering the older liblzma code. lzma_code()
1147 // even has an assertion to prevent coders from
1148 // returning LZMA_BUF_ERROR directly.
1149 //
1150 // The downside of this is that with fail-fast apps
1151 // cannot always distinguish between corrupt and
1152 // truncated files.
1153 if (action == LZMA_FINISH && coder->fail_fast) {
1154 // We won't produce any more output. Stop
1155 // the unfinished worker threads so they
1156 // won't waste CPU time.
1157 threads_stop(coder);
1158 return LZMA_DATA_ERROR;
1159 }
1160
1161 // read_output_and_wait() will call threads_stop()
1162 // if needed so with that we can use return_if_error.
1163 return_if_error(read_output_and_wait(coder, allocator,
1164 out, out_pos, out_size,
1165 NULL, waiting_allowed,
1166 &wait_abs, &has_blocked));
1167
1168 if (coder->pending_error != LZMA_OK) {
1169 coder->sequence = SEQ_ERROR;
1170 break;
1171 }
1172
1173 return LZMA_OK;
1174 }
1175
1176 if (ret == LZMA_INDEX_DETECTED) {
1177 coder->sequence = SEQ_INDEX_WAIT_OUTPUT;
1178 break;
1179 }
1180
1181 // See if an error occurred.
1182 if (ret != LZMA_STREAM_END) {
1183 // NOTE: Here and in all other places where
1184 // pending_error is set, it may overwrite the value
1185 // (LZMA_PROG_ERROR) set by read_output_and_wait().
1186 // That function might overwrite value set here too.
1187 // These are fine because when read_output_and_wait()
1188 // sets pending_error, it actually works as a flag
1189 // variable only ("some error has occurred") and the
1190 // actual value of pending_error is not used in
1191 // SEQ_ERROR. In such cases SEQ_ERROR will eventually
1192 // get the correct error code from the return value of
1193 // a later read_output_and_wait() call.
1194 coder->pending_error = ret;
1195 coder->sequence = SEQ_ERROR;
1196 break;
1197 }
1198
1199 // Calculate the memory usage of the filters / Block decoder.
1200 coder->mem_next_filters = lzma_raw_decoder_memusage(
1201 coder->filters);
1202
1203 if (coder->mem_next_filters == UINT64_MAX) {
1204 // One or more unknown Filter IDs.
1205 coder->pending_error = LZMA_OPTIONS_ERROR;
1206 coder->sequence = SEQ_ERROR;
1207 break;
1208 }
1209
1210 coder->sequence = SEQ_BLOCK_INIT;
1211 FALLTHROUGH;
1212 }
1213
1214 case SEQ_BLOCK_INIT: {
1215 // Check if decoding is possible at all with the current
1216 // memlimit_stop which we must never exceed.
1217 //
1218 // This needs to be the first thing in SEQ_BLOCK_INIT
1219 // to make it possible to restart decoding after increasing
1220 // memlimit_stop with lzma_memlimit_set().
1221 if (coder->mem_next_filters > coder->memlimit_stop) {
1222 // Flush pending output before returning
1223 // LZMA_MEMLIMIT_ERROR. If the application doesn't
1224 // want to increase the limit, at least it will get
1225 // all the output possible so far.
1226 return_if_error(read_output_and_wait(coder, allocator,
1227 out, out_pos, out_size,
1228 NULL, true, &wait_abs, &has_blocked));
1229
1230 if (!lzma_outq_is_empty(&coder->outq))
1231 return LZMA_OK;
1232
1233 return LZMA_MEMLIMIT_ERROR;
1234 }
1235
1236 // Check if the size information is available in Block Header.
1237 // If it is, check if the sizes are small enough that we don't
1238 // need to worry *too* much about integer overflows later in
1239 // the code. If these conditions are not met, we must use the
1240 // single-threaded direct mode.
1241 if (is_direct_mode_needed(coder->block_options.compressed_size)
1242 || is_direct_mode_needed(
1243 coder->block_options.uncompressed_size)) {
1244 coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1245 break;
1246 }
1247
1248 // Calculate the amount of memory needed for the input and
1249 // output buffers in threaded mode.
1250 //
1251 // These cannot overflow because we already checked that
1252 // the sizes are small enough using is_direct_mode_needed().
1253 coder->mem_next_in = comp_blk_size(coder);
1254 const uint64_t mem_buffers = coder->mem_next_in
1255 + lzma_outq_outbuf_memusage(
1256 coder->block_options.uncompressed_size);
1257
1258 // Add the amount needed by the filters.
1259 // Avoid integer overflows.
1260 if (UINT64_MAX - mem_buffers < coder->mem_next_filters) {
1261 // Use direct mode if the memusage would overflow.
1262 // This is a theoretical case that shouldn't happen
1263 // in practice unless the input file is weird (broken
1264 // or malicious).
1265 coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1266 break;
1267 }
1268
1269 // Amount of memory needed to decode this Block in
1270 // threaded mode:
1271 coder->mem_next_block = coder->mem_next_filters + mem_buffers;
1272
1273 // If this alone would exceed memlimit_threading, then we must
1274 // use the single-threaded direct mode.
1275 if (coder->mem_next_block > coder->memlimit_threading) {
1276 coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1277 break;
1278 }
1279
1280 // Use the threaded mode. Free the direct mode decoder in
1281 // case it has been initialized.
1282 lzma_next_end(&coder->block_decoder, allocator);
1283 coder->mem_direct_mode = 0;
1284
1285 // Since we already know what the sizes are supposed to be,
1286 // we can already add them to the Index hash. The Block
1287 // decoder will verify the values while decoding.
1288 const lzma_ret ret = lzma_index_hash_append(coder->index_hash,
1289 lzma_block_unpadded_size(
1290 &coder->block_options),
1291 coder->block_options.uncompressed_size);
1292 if (ret != LZMA_OK) {
1293 coder->pending_error = ret;
1294 coder->sequence = SEQ_ERROR;
1295 break;
1296 }
1297
1298 coder->sequence = SEQ_BLOCK_THR_INIT;
1299 FALLTHROUGH;
1300 }
1301
1302 case SEQ_BLOCK_THR_INIT: {
1303 // We need to wait for a multiple conditions to become true
1304 // until we can initialize the Block decoder and let a worker
1305 // thread decode it:
1306 //
1307 // - Wait for the memory usage of the active threads to drop
1308 // so that starting the decoding of this Block won't make
1309 // us go over memlimit_threading.
1310 //
1311 // - Wait for at least one free output queue slot.
1312 //
1313 // - Wait for a free worker thread.
1314 //
1315 // While we wait, we must copy decompressed data to the out
1316 // buffer and catch possible decoder errors.
1317 //
1318 // read_output_and_wait() does all the above.
1319 bool block_can_start = false;
1320
1321 return_if_error(read_output_and_wait(coder, allocator,
1322 out, out_pos, out_size,
1323 &block_can_start, true,
1324 &wait_abs, &has_blocked));
1325
1326 if (coder->pending_error != LZMA_OK) {
1327 coder->sequence = SEQ_ERROR;
1328 break;
1329 }
1330
1331 if (!block_can_start) {
1332 // It's not a timeout because return_if_error handles
1333 // it already. Output queue cannot be empty either
1334 // because in that case block_can_start would have
1335 // been true. Thus the output buffer must be full and
1336 // the queue isn't empty.
1337 assert(*out_pos == out_size);
1338 assert(!lzma_outq_is_empty(&coder->outq));
1339 return LZMA_OK;
1340 }
1341
1342 // We know that we can start decoding this Block without
1343 // exceeding memlimit_threading. However, to stay below
1344 // memlimit_threading may require freeing some of the
1345 // cached memory.
1346 //
1347 // Get a local copy of variables that require locking the
1348 // mutex. It is fine if the worker threads modify the real
1349 // values after we read these as those changes can only be
1350 // towards more favorable conditions (less memory in use,
1351 // more in cache).
1352 //
1353 // These are initialized to silence warnings.
1354 uint64_t mem_in_use = 0;
1355 uint64_t mem_cached = 0;
1356 struct worker_thread *thr = NULL;
1357
1358 mythread_sync(coder->mutex) {
1359 mem_in_use = coder->mem_in_use;
1360 mem_cached = coder->mem_cached;
1361 thr = coder->threads_free;
1362 }
1363
1364 // The maximum amount of memory that can be held by other
1365 // threads and cached buffers while allowing us to start
1366 // decoding the next Block.
1367 const uint64_t mem_max = coder->memlimit_threading
1368 - coder->mem_next_block;
1369
1370 // If the existing allocations are so large that starting
1371 // to decode this Block might exceed memlimit_threads,
1372 // try to free memory from the output queue cache first.
1373 //
1374 // NOTE: This math assumes the worst case. It's possible
1375 // that the limit wouldn't be exceeded if the existing cached
1376 // allocations are reused.
1377 if (mem_in_use + mem_cached + coder->outq.mem_allocated
1378 > mem_max) {
1379 // Clear the outq cache except leave one buffer in
1380 // the cache if its size is correct. That way we
1381 // don't free and almost immediately reallocate
1382 // an identical buffer.
1383 lzma_outq_clear_cache2(&coder->outq, allocator,
1384 coder->block_options.uncompressed_size);
1385 }
1386
1387 // If there is at least one worker_thread in the cache and
1388 // the existing allocations are so large that starting to
1389 // decode this Block might exceed memlimit_threads, free
1390 // memory by freeing cached Block decoders.
1391 //
1392 // NOTE: The comparison is different here than above.
1393 // Here we don't care about cached buffers in outq anymore
1394 // and only look at memory actually in use. This is because
1395 // if there is something in outq cache, it's a single buffer
1396 // that can be used as is. We ensured this in the above
1397 // if-block.
1398 uint64_t mem_freed = 0;
1399 if (thr != NULL && mem_in_use + mem_cached
1400 + coder->outq.mem_in_use > mem_max) {
1401 // Don't free the first Block decoder if its memory
1402 // usage isn't greater than what this Block will need.
1403 // Typically the same filter chain is used for all
1404 // Blocks so this way the allocations can be reused
1405 // when get_thread() picks the first worker_thread
1406 // from the cache.
1407 if (thr->mem_filters <= coder->mem_next_filters)
1408 thr = thr->next;
1409
1410 while (thr != NULL) {
1411 lzma_next_end(&thr->block_decoder, allocator);
1412 mem_freed += thr->mem_filters;
1413 thr->mem_filters = 0;
1414 thr = thr->next;
1415 }
1416 }
1417
1418 // Update the memory usage counters. Note that coder->mem_*
1419 // may have changed since we read them so we must subtract
1420 // or add the changes.
1421 mythread_sync(coder->mutex) {
1422 coder->mem_cached -= mem_freed;
1423
1424 // Memory needed for the filters and the input buffer.
1425 // The output queue takes care of its own counter so
1426 // we don't touch it here.
1427 //
1428 // NOTE: After this, coder->mem_in_use +
1429 // coder->mem_cached might count the same thing twice.
1430 // If so, this will get corrected in get_thread() when
1431 // a worker_thread is picked from coder->free_threads
1432 // and its memory usage is subtracted from mem_cached.
1433 coder->mem_in_use += coder->mem_next_in
1434 + coder->mem_next_filters;
1435 }
1436
1437 // Allocate memory for the output buffer in the output queue.
1438 lzma_ret ret = lzma_outq_prealloc_buf(
1439 &coder->outq, allocator,
1440 coder->block_options.uncompressed_size);
1441 if (ret != LZMA_OK) {
1442 threads_stop(coder);
1443 return ret;
1444 }
1445
1446 // Set up coder->thr.
1447 ret = get_thread(coder, allocator);
1448 if (ret != LZMA_OK) {
1449 threads_stop(coder);
1450 return ret;
1451 }
1452
1453 // The new Block decoder memory usage is already counted in
1454 // coder->mem_in_use. Store it in the thread too.
1455 coder->thr->mem_filters = coder->mem_next_filters;
1456
1457 // Initialize the Block decoder.
1458 coder->thr->block_options = coder->block_options;
1459 ret = lzma_block_decoder_init(
1460 &coder->thr->block_decoder, allocator,
1461 &coder->thr->block_options);
1462
1463 // Free the allocated filter options since they are needed
1464 // only to initialize the Block decoder.
1465 lzma_filters_free(coder->filters, allocator);
1466 coder->thr->block_options.filters = NULL;
1467
1468 // Check if memory usage calculation and Block encoder
1469 // initialization succeeded.
1470 if (ret != LZMA_OK) {
1471 coder->pending_error = ret;
1472 coder->sequence = SEQ_ERROR;
1473 break;
1474 }
1475
1476 // Allocate the input buffer.
1477 coder->thr->in_size = coder->mem_next_in;
1478 coder->thr->in = lzma_alloc(coder->thr->in_size, allocator);
1479 if (coder->thr->in == NULL) {
1480 threads_stop(coder);
1481 return LZMA_MEM_ERROR;
1482 }
1483
1484 // Get the preallocated output buffer.
1485 coder->thr->outbuf = lzma_outq_get_buf(
1486 &coder->outq, coder->thr);
1487
1488 // Start the decoder.
1489 mythread_sync(coder->thr->mutex) {
1490 assert(coder->thr->state == THR_IDLE);
1491 coder->thr->state = THR_RUN;
1492 mythread_cond_signal(&coder->thr->cond);
1493 }
1494
1495 // Enable output from the thread that holds the oldest output
1496 // buffer in the output queue (if such a thread exists).
1497 mythread_sync(coder->mutex) {
1498 lzma_outq_enable_partial_output(&coder->outq,
1499 &worker_enable_partial_update);
1500 }
1501
1502 coder->sequence = SEQ_BLOCK_THR_RUN;
1503 FALLTHROUGH;
1504 }
1505
1506 case SEQ_BLOCK_THR_RUN: {
1507 if (action == LZMA_FINISH && coder->fail_fast) {
1508 // We know that we won't get more input and that
1509 // the caller wants fail-fast behavior. If we see
1510 // that we don't have enough input to finish this
1511 // Block, return LZMA_DATA_ERROR immediately.
1512 // See SEQ_BLOCK_HEADER for the error code rationale.
1513 const size_t in_avail = in_size - *in_pos;
1514 const size_t in_needed = coder->thr->in_size
1515 - coder->thr->in_filled;
1516 if (in_avail < in_needed) {
1517 threads_stop(coder);
1518 return LZMA_DATA_ERROR;
1519 }
1520 }
1521
1522 // Copy input to the worker thread.
1523 size_t cur_in_filled = coder->thr->in_filled;
1524 lzma_bufcpy(in, in_pos, in_size, coder->thr->in,
1525 &cur_in_filled, coder->thr->in_size);
1526
1527 // Tell the thread how much we copied.
1528 mythread_sync(coder->thr->mutex) {
1529 coder->thr->in_filled = cur_in_filled;
1530
1531 // NOTE: Most of the time we are copying input faster
1532 // than the thread can decode so most of the time
1533 // calling mythread_cond_signal() is useless but
1534 // we cannot make it conditional because thr->in_pos
1535 // is updated without a mutex. And the overhead should
1536 // be very much negligible anyway.
1537 mythread_cond_signal(&coder->thr->cond);
1538 }
1539
1540 // Read output from the output queue. Just like in
1541 // SEQ_BLOCK_HEADER, we wait to fill the output buffer
1542 // only if waiting_allowed was set to true in the beginning
1543 // of this function (see the comment there) and there is
1544 // no input available. In SEQ_BLOCK_HEADER, there is never
1545 // input available when read_output_and_wait() is called,
1546 // but here there can be when LZMA_FINISH is used, thus we
1547 // need to check if *in_pos == in_size. Otherwise we would
1548 // wait here instead of using the available input to start
1549 // a new thread.
1550 return_if_error(read_output_and_wait(coder, allocator,
1551 out, out_pos, out_size,
1552 NULL,
1553 waiting_allowed && *in_pos == in_size,
1554 &wait_abs, &has_blocked));
1555
1556 if (coder->pending_error != LZMA_OK) {
1557 coder->sequence = SEQ_ERROR;
1558 break;
1559 }
1560
1561 // Return if the input didn't contain the whole Block.
1562 //
1563 // NOTE: When we updated coder->thr->in_filled a few lines
1564 // above, the worker thread might by now have finished its
1565 // work and returned itself back to the stack of free threads.
1566 if (coder->thr->in_filled < coder->thr->in_size) {
1567 assert(*in_pos == in_size);
1568 return LZMA_OK;
1569 }
1570
1571 // The whole Block has been copied to the thread-specific
1572 // buffer. Continue from the next Block Header or Index.
1573 coder->thr = NULL;
1574 coder->sequence = SEQ_BLOCK_HEADER;
1575 break;
1576 }
1577
1578 case SEQ_BLOCK_DIRECT_INIT: {
1579 // Wait for the threads to finish and that all decoded data
1580 // has been copied to the output. That is, wait until the
1581 // output queue becomes empty.
1582 //
1583 // NOTE: No need to check for coder->pending_error as
1584 // we aren't consuming any input until the queue is empty
1585 // and if there is a pending error, read_output_and_wait()
1586 // will eventually return it before the queue is empty.
1587 return_if_error(read_output_and_wait(coder, allocator,
1588 out, out_pos, out_size,
1589 NULL, true, &wait_abs, &has_blocked));
1590 if (!lzma_outq_is_empty(&coder->outq))
1591 return LZMA_OK;
1592
1593 // Free the cached output buffers.
1594 lzma_outq_clear_cache(&coder->outq, allocator);
1595
1596 // Get rid of the worker threads, including the coder->threads
1597 // array.
1598 threads_end(coder, allocator);
1599
1600 // Initialize the Block decoder.
1601 const lzma_ret ret = lzma_block_decoder_init(
1602 &coder->block_decoder, allocator,
1603 &coder->block_options);
1604
1605 // Free the allocated filter options since they are needed
1606 // only to initialize the Block decoder.
1607 lzma_filters_free(coder->filters, allocator);
1608 coder->block_options.filters = NULL;
1609
1610 // Check if Block decoder initialization succeeded.
1611 if (ret != LZMA_OK)
1612 return ret;
1613
1614 // Make the memory usage visible to _memconfig().
1615 coder->mem_direct_mode = coder->mem_next_filters;
1616
1617 coder->sequence = SEQ_BLOCK_DIRECT_RUN;
1618 FALLTHROUGH;
1619 }
1620
1621 case SEQ_BLOCK_DIRECT_RUN: {
1622 const size_t in_old = *in_pos;
1623 const size_t out_old = *out_pos;
1624 const lzma_ret ret = coder->block_decoder.code(
1625 coder->block_decoder.coder, allocator,
1626 in, in_pos, in_size, out, out_pos, out_size,
1627 action);
1628 coder->progress_in += *in_pos - in_old;
1629 coder->progress_out += *out_pos - out_old;
1630
1631 if (ret != LZMA_STREAM_END)
1632 return ret;
1633
1634 // Block decoded successfully. Add the new size pair to
1635 // the Index hash.
1636 return_if_error(lzma_index_hash_append(coder->index_hash,
1637 lzma_block_unpadded_size(
1638 &coder->block_options),
1639 coder->block_options.uncompressed_size));
1640
1641 coder->sequence = SEQ_BLOCK_HEADER;
1642 break;
1643 }
1644
1645 case SEQ_INDEX_WAIT_OUTPUT:
1646 // Flush the output from all worker threads so that we can
1647 // decode the Index without thinking about threading.
1648 return_if_error(read_output_and_wait(coder, allocator,
1649 out, out_pos, out_size,
1650 NULL, true, &wait_abs, &has_blocked));
1651
1652 if (!lzma_outq_is_empty(&coder->outq))
1653 return LZMA_OK;
1654
1655 coder->sequence = SEQ_INDEX_DECODE;
1656 FALLTHROUGH;
1657
1658 case SEQ_INDEX_DECODE: {
1659 // If we don't have any input, don't call
1660 // lzma_index_hash_decode() since it would return
1661 // LZMA_BUF_ERROR, which we must not do here.
1662 if (*in_pos >= in_size)
1663 return LZMA_OK;
1664
1665 // Decode the Index and compare it to the hash calculated
1666 // from the sizes of the Blocks (if any).
1667 const size_t in_old = *in_pos;
1668 const lzma_ret ret = lzma_index_hash_decode(coder->index_hash,
1669 in, in_pos, in_size);
1670 coder->progress_in += *in_pos - in_old;
1671 if (ret != LZMA_STREAM_END)
1672 return ret;
1673
1674 coder->sequence = SEQ_STREAM_FOOTER;
1675 FALLTHROUGH;
1676 }
1677
1678 case SEQ_STREAM_FOOTER: {
1679 // Copy the Stream Footer to the internal buffer.
1680 const size_t in_old = *in_pos;
1681 lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
1682 LZMA_STREAM_HEADER_SIZE);
1683 coder->progress_in += *in_pos - in_old;
1684
1685 // Return if we didn't get the whole Stream Footer yet.
1686 if (coder->pos < LZMA_STREAM_HEADER_SIZE)
1687 return LZMA_OK;
1688
1689 coder->pos = 0;
1690
1691 // Decode the Stream Footer. The decoder gives
1692 // LZMA_FORMAT_ERROR if the magic bytes don't match,
1693 // so convert that return code to LZMA_DATA_ERROR.
1694 lzma_stream_flags footer_flags;
1695 const lzma_ret ret = lzma_stream_footer_decode(
1696 &footer_flags, coder->buffer);
1697 if (ret != LZMA_OK)
1698 return ret == LZMA_FORMAT_ERROR
1699 ? LZMA_DATA_ERROR : ret;
1700
1701 // Check that Index Size stored in the Stream Footer matches
1702 // the real size of the Index field.
1703 if (lzma_index_hash_size(coder->index_hash)
1704 != footer_flags.backward_size)
1705 return LZMA_DATA_ERROR;
1706
1707 // Compare that the Stream Flags fields are identical in
1708 // both Stream Header and Stream Footer.
1709 return_if_error(lzma_stream_flags_compare(
1710 &coder->stream_flags, &footer_flags));
1711
1712 if (!coder->concatenated)
1713 return LZMA_STREAM_END;
1714
1715 coder->sequence = SEQ_STREAM_PADDING;
1716 FALLTHROUGH;
1717 }
1718
1719 case SEQ_STREAM_PADDING:
1720 assert(coder->concatenated);
1721
1722 // Skip over possible Stream Padding.
1723 while (true) {
1724 if (*in_pos >= in_size) {
1725 // Unless LZMA_FINISH was used, we cannot
1726 // know if there's more input coming later.
1727 if (action != LZMA_FINISH)
1728 return LZMA_OK;
1729
1730 // Stream Padding must be a multiple of
1731 // four bytes.
1732 return coder->pos == 0
1733 ? LZMA_STREAM_END
1734 : LZMA_DATA_ERROR;
1735 }
1736
1737 // If the byte is not zero, it probably indicates
1738 // beginning of a new Stream (or the file is corrupt).
1739 if (in[*in_pos] != 0x00)
1740 break;
1741
1742 ++*in_pos;
1743 ++coder->progress_in;
1744 coder->pos = (coder->pos + 1) & 3;
1745 }
1746
1747 // Stream Padding must be a multiple of four bytes (empty
1748 // Stream Padding is OK).
1749 if (coder->pos != 0) {
1750 ++*in_pos;
1751 ++coder->progress_in;
1752 return LZMA_DATA_ERROR;
1753 }
1754
1755 // Prepare to decode the next Stream.
1756 return_if_error(stream_decoder_reset(coder, allocator));
1757 break;
1758
1759 case SEQ_ERROR:
1760 if (!coder->fail_fast) {
1761 // Let the application get all data before the point
1762 // where the error was detected. This matches the
1763 // behavior of single-threaded use.
1764 //
1765 // FIXME? Some errors (LZMA_MEM_ERROR) don't get here,
1766 // they are returned immediately. Thus in rare cases
1767 // the output will be less than in the single-threaded
1768 // mode. Maybe this doesn't matter much in practice.
1769 return_if_error(read_output_and_wait(coder, allocator,
1770 out, out_pos, out_size,
1771 NULL, true, &wait_abs, &has_blocked));
1772
1773 // We get here only if the error happened in the main
1774 // thread, for example, unsupported Block Header.
1775 if (!lzma_outq_is_empty(&coder->outq))
1776 return LZMA_OK;
1777 }
1778
1779 // We only get here if no errors were detected by the worker
1780 // threads. Errors from worker threads would have already been
1781 // returned by the call to read_output_and_wait() above.
1782 return coder->pending_error;
1783
1784 default:
1785 assert(0);
1786 return LZMA_PROG_ERROR;
1787 }
1788
1789 // Never reached
1790 }
1791
1792
1793 static void
stream_decoder_mt_end(void * coder_ptr,const lzma_allocator * allocator)1794 stream_decoder_mt_end(void *coder_ptr, const lzma_allocator *allocator)
1795 {
1796 struct lzma_stream_coder *coder = coder_ptr;
1797
1798 threads_end(coder, allocator);
1799 lzma_outq_end(&coder->outq, allocator);
1800
1801 lzma_next_end(&coder->block_decoder, allocator);
1802 lzma_filters_free(coder->filters, allocator);
1803 lzma_index_hash_end(coder->index_hash, allocator);
1804
1805 lzma_free(coder, allocator);
1806 return;
1807 }
1808
1809
1810 static lzma_check
stream_decoder_mt_get_check(const void * coder_ptr)1811 stream_decoder_mt_get_check(const void *coder_ptr)
1812 {
1813 const struct lzma_stream_coder *coder = coder_ptr;
1814 return coder->stream_flags.check;
1815 }
1816
1817
1818 static lzma_ret
stream_decoder_mt_memconfig(void * coder_ptr,uint64_t * memusage,uint64_t * old_memlimit,uint64_t new_memlimit)1819 stream_decoder_mt_memconfig(void *coder_ptr, uint64_t *memusage,
1820 uint64_t *old_memlimit, uint64_t new_memlimit)
1821 {
1822 // NOTE: This function gets/sets memlimit_stop. For now,
1823 // memlimit_threading cannot be modified after initialization.
1824 //
1825 // *memusage will include cached memory too. Excluding cached memory
1826 // would be misleading and it wouldn't help the applications to
1827 // know how much memory is actually needed to decompress the file
1828 // because the higher the number of threads and the memlimits are
1829 // the more memory the decoder may use.
1830 //
1831 // Setting a new limit includes the cached memory too and too low
1832 // limits will be rejected. Alternative could be to free the cached
1833 // memory immediately if that helps to bring the limit down but
1834 // the current way is the simplest. It's unlikely that limit needs
1835 // to be lowered in the middle of a file anyway; the typical reason
1836 // to want a new limit is to increase after LZMA_MEMLIMIT_ERROR
1837 // and even such use isn't common.
1838 struct lzma_stream_coder *coder = coder_ptr;
1839
1840 mythread_sync(coder->mutex) {
1841 *memusage = coder->mem_direct_mode
1842 + coder->mem_in_use
1843 + coder->mem_cached
1844 + coder->outq.mem_allocated;
1845 }
1846
1847 // If no filter chains are allocated, *memusage may be zero.
1848 // Always return at least LZMA_MEMUSAGE_BASE.
1849 if (*memusage < LZMA_MEMUSAGE_BASE)
1850 *memusage = LZMA_MEMUSAGE_BASE;
1851
1852 *old_memlimit = coder->memlimit_stop;
1853
1854 if (new_memlimit != 0) {
1855 if (new_memlimit < *memusage)
1856 return LZMA_MEMLIMIT_ERROR;
1857
1858 coder->memlimit_stop = new_memlimit;
1859 }
1860
1861 return LZMA_OK;
1862 }
1863
1864
1865 static void
stream_decoder_mt_get_progress(void * coder_ptr,uint64_t * progress_in,uint64_t * progress_out)1866 stream_decoder_mt_get_progress(void *coder_ptr,
1867 uint64_t *progress_in, uint64_t *progress_out)
1868 {
1869 struct lzma_stream_coder *coder = coder_ptr;
1870
1871 // Lock coder->mutex to prevent finishing threads from moving their
1872 // progress info from the worker_thread structure to lzma_stream_coder.
1873 mythread_sync(coder->mutex) {
1874 *progress_in = coder->progress_in;
1875 *progress_out = coder->progress_out;
1876
1877 for (size_t i = 0; i < coder->threads_initialized; ++i) {
1878 mythread_sync(coder->threads[i].mutex) {
1879 *progress_in += coder->threads[i].progress_in;
1880 *progress_out += coder->threads[i]
1881 .progress_out;
1882 }
1883 }
1884 }
1885
1886 return;
1887 }
1888
1889
1890 static lzma_ret
stream_decoder_mt_init(lzma_next_coder * next,const lzma_allocator * allocator,const lzma_mt * options)1891 stream_decoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator,
1892 const lzma_mt *options)
1893 {
1894 struct lzma_stream_coder *coder;
1895
1896 if (options->threads == 0 || options->threads > LZMA_THREADS_MAX)
1897 return LZMA_OPTIONS_ERROR;
1898
1899 if (options->flags & ~LZMA_SUPPORTED_FLAGS)
1900 return LZMA_OPTIONS_ERROR;
1901
1902 lzma_next_coder_init(&stream_decoder_mt_init, next, allocator);
1903
1904 coder = next->coder;
1905 if (!coder) {
1906 coder = lzma_alloc(sizeof(struct lzma_stream_coder), allocator);
1907 if (coder == NULL)
1908 return LZMA_MEM_ERROR;
1909
1910 next->coder = coder;
1911
1912 if (mythread_mutex_init(&coder->mutex)) {
1913 lzma_free(coder, allocator);
1914 return LZMA_MEM_ERROR;
1915 }
1916
1917 if (mythread_cond_init(&coder->cond)) {
1918 mythread_mutex_destroy(&coder->mutex);
1919 lzma_free(coder, allocator);
1920 return LZMA_MEM_ERROR;
1921 }
1922
1923 next->code = &stream_decode_mt;
1924 next->end = &stream_decoder_mt_end;
1925 next->get_check = &stream_decoder_mt_get_check;
1926 next->memconfig = &stream_decoder_mt_memconfig;
1927 next->get_progress = &stream_decoder_mt_get_progress;
1928
1929 coder->filters[0].id = LZMA_VLI_UNKNOWN;
1930 memzero(&coder->outq, sizeof(coder->outq));
1931
1932 coder->block_decoder = LZMA_NEXT_CODER_INIT;
1933 coder->mem_direct_mode = 0;
1934
1935 coder->index_hash = NULL;
1936 coder->threads = NULL;
1937 coder->threads_free = NULL;
1938 coder->threads_initialized = 0;
1939 }
1940
1941 // Cleanup old filter chain if one remains after unfinished decoding
1942 // of a previous Stream.
1943 lzma_filters_free(coder->filters, allocator);
1944
1945 // By allocating threads from scratch we can start memory-usage
1946 // accounting from scratch, too. Changes in filter and block sizes may
1947 // affect number of threads.
1948 //
1949 // Reusing threads doesn't seem worth it. Unlike the single-threaded
1950 // decoder, with some types of input file combinations reusing
1951 // could leave quite a lot of memory allocated but unused (first
1952 // file could allocate a lot, the next files could use fewer
1953 // threads and some of the allocations from the first file would not
1954 // get freed unless memlimit_threading forces us to clear caches).
1955 //
1956 // NOTE: The direct mode decoder isn't freed here if one exists.
1957 // It will be reused or freed as needed in the main loop.
1958 threads_end(coder, allocator);
1959
1960 // All memusage counters start at 0 (including mem_direct_mode).
1961 // The little extra that is needed for the structs in this file
1962 // get accounted well enough by the filter chain memory usage
1963 // which adds LZMA_MEMUSAGE_BASE for each chain. However,
1964 // stream_decoder_mt_memconfig() has to handle this specially so that
1965 // it will never return less than LZMA_MEMUSAGE_BASE as memory usage.
1966 coder->mem_in_use = 0;
1967 coder->mem_cached = 0;
1968 coder->mem_next_block = 0;
1969
1970 coder->progress_in = 0;
1971 coder->progress_out = 0;
1972
1973 coder->sequence = SEQ_STREAM_HEADER;
1974 coder->thread_error = LZMA_OK;
1975 coder->pending_error = LZMA_OK;
1976 coder->thr = NULL;
1977
1978 coder->timeout = options->timeout;
1979
1980 coder->memlimit_threading = my_max(1, options->memlimit_threading);
1981 coder->memlimit_stop = my_max(1, options->memlimit_stop);
1982 if (coder->memlimit_threading > coder->memlimit_stop)
1983 coder->memlimit_threading = coder->memlimit_stop;
1984
1985 coder->tell_no_check = (options->flags & LZMA_TELL_NO_CHECK) != 0;
1986 coder->tell_unsupported_check
1987 = (options->flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0;
1988 coder->tell_any_check = (options->flags & LZMA_TELL_ANY_CHECK) != 0;
1989 coder->ignore_check = (options->flags & LZMA_IGNORE_CHECK) != 0;
1990 coder->concatenated = (options->flags & LZMA_CONCATENATED) != 0;
1991 coder->fail_fast = (options->flags & LZMA_FAIL_FAST) != 0;
1992
1993 coder->first_stream = true;
1994 coder->out_was_filled = false;
1995 coder->pos = 0;
1996
1997 coder->threads_max = options->threads;
1998
1999 return_if_error(lzma_outq_init(&coder->outq, allocator,
2000 coder->threads_max));
2001
2002 return stream_decoder_reset(coder, allocator);
2003 }
2004
2005
2006 extern LZMA_API(lzma_ret)
lzma_stream_decoder_mt(lzma_stream * strm,const lzma_mt * options)2007 lzma_stream_decoder_mt(lzma_stream *strm, const lzma_mt *options)
2008 {
2009 lzma_next_strm_init(stream_decoder_mt_init, strm, options);
2010
2011 strm->internal->supported_actions[LZMA_RUN] = true;
2012 strm->internal->supported_actions[LZMA_FINISH] = true;
2013
2014 return LZMA_OK;
2015 }
2016