xref: /linux/fs/ext4/super.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static struct inode *ext4_get_journal_inode(struct super_block *sb,
85 					    unsigned int journal_inum);
86 static int ext4_validate_options(struct fs_context *fc);
87 static int ext4_check_opt_consistency(struct fs_context *fc,
88 				      struct super_block *sb);
89 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
90 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
91 static int ext4_get_tree(struct fs_context *fc);
92 static int ext4_reconfigure(struct fs_context *fc);
93 static void ext4_fc_free(struct fs_context *fc);
94 static int ext4_init_fs_context(struct fs_context *fc);
95 static void ext4_kill_sb(struct super_block *sb);
96 static const struct fs_parameter_spec ext4_param_specs[];
97 
98 /*
99  * Lock ordering
100  *
101  * page fault path:
102  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103  *   -> page lock -> i_data_sem (rw)
104  *
105  * buffered write path:
106  * sb_start_write -> i_mutex -> mmap_lock
107  * sb_start_write -> i_mutex -> transaction start -> page lock ->
108  *   i_data_sem (rw)
109  *
110  * truncate:
111  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112  *   page lock
113  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114  *   i_data_sem (rw)
115  *
116  * direct IO:
117  * sb_start_write -> i_mutex -> mmap_lock
118  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119  *
120  * writepages:
121  * transaction start -> page lock(s) -> i_data_sem (rw)
122  */
123 
124 static const struct fs_context_operations ext4_context_ops = {
125 	.parse_param	= ext4_parse_param,
126 	.get_tree	= ext4_get_tree,
127 	.reconfigure	= ext4_reconfigure,
128 	.free		= ext4_fc_free,
129 };
130 
131 
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 	.owner			= THIS_MODULE,
135 	.name			= "ext2",
136 	.init_fs_context	= ext4_init_fs_context,
137 	.parameters		= ext4_param_specs,
138 	.kill_sb		= ext4_kill_sb,
139 	.fs_flags		= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
144 #else
145 #define IS_EXT2_SB(sb) (0)
146 #endif
147 
148 
149 static struct file_system_type ext3_fs_type = {
150 	.owner			= THIS_MODULE,
151 	.name			= "ext3",
152 	.init_fs_context	= ext4_init_fs_context,
153 	.parameters		= ext4_param_specs,
154 	.kill_sb		= ext4_kill_sb,
155 	.fs_flags		= FS_REQUIRES_DEV,
156 };
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
160 
161 
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 				  bh_end_io_t *end_io, bool simu_fail)
164 {
165 	if (simu_fail) {
166 		clear_buffer_uptodate(bh);
167 		unlock_buffer(bh);
168 		return;
169 	}
170 
171 	/*
172 	 * buffer's verified bit is no longer valid after reading from
173 	 * disk again due to write out error, clear it to make sure we
174 	 * recheck the buffer contents.
175 	 */
176 	clear_buffer_verified(bh);
177 
178 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
179 	get_bh(bh);
180 	submit_bh(REQ_OP_READ | op_flags, bh);
181 }
182 
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)183 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
184 			 bh_end_io_t *end_io, bool simu_fail)
185 {
186 	BUG_ON(!buffer_locked(bh));
187 
188 	if (ext4_buffer_uptodate(bh)) {
189 		unlock_buffer(bh);
190 		return;
191 	}
192 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
193 }
194 
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)195 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
196 		 bh_end_io_t *end_io, bool simu_fail)
197 {
198 	BUG_ON(!buffer_locked(bh));
199 
200 	if (ext4_buffer_uptodate(bh)) {
201 		unlock_buffer(bh);
202 		return 0;
203 	}
204 
205 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
206 
207 	wait_on_buffer(bh);
208 	if (buffer_uptodate(bh))
209 		return 0;
210 	return -EIO;
211 }
212 
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)213 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
214 {
215 	lock_buffer(bh);
216 	if (!wait) {
217 		ext4_read_bh_nowait(bh, op_flags, NULL, false);
218 		return 0;
219 	}
220 	return ext4_read_bh(bh, op_flags, NULL, false);
221 }
222 
223 /*
224  * This works like __bread_gfp() except it uses ERR_PTR for error
225  * returns.  Currently with sb_bread it's impossible to distinguish
226  * between ENOMEM and EIO situations (since both result in a NULL
227  * return.
228  */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
230 					       sector_t block,
231 					       blk_opf_t op_flags, gfp_t gfp)
232 {
233 	struct buffer_head *bh;
234 	int ret;
235 
236 	bh = sb_getblk_gfp(sb, block, gfp);
237 	if (bh == NULL)
238 		return ERR_PTR(-ENOMEM);
239 	if (ext4_buffer_uptodate(bh))
240 		return bh;
241 
242 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
243 	if (ret) {
244 		put_bh(bh);
245 		return ERR_PTR(ret);
246 	}
247 	return bh;
248 }
249 
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
251 				   blk_opf_t op_flags)
252 {
253 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
254 			~__GFP_FS) | __GFP_MOVABLE;
255 
256 	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
257 }
258 
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)259 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
260 					    sector_t block)
261 {
262 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
263 			~__GFP_FS);
264 
265 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
266 }
267 
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)268 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
269 {
270 	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
271 			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
272 
273 	if (likely(bh)) {
274 		if (trylock_buffer(bh))
275 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
276 		brelse(bh);
277 	}
278 }
279 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)280 static int ext4_verify_csum_type(struct super_block *sb,
281 				 struct ext4_super_block *es)
282 {
283 	if (!ext4_has_feature_metadata_csum(sb))
284 		return 1;
285 
286 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
287 }
288 
ext4_superblock_csum(struct ext4_super_block * es)289 __le32 ext4_superblock_csum(struct ext4_super_block *es)
290 {
291 	int offset = offsetof(struct ext4_super_block, s_checksum);
292 	__u32 csum;
293 
294 	csum = ext4_chksum(~0, (char *)es, offset);
295 
296 	return cpu_to_le32(csum);
297 }
298 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)299 static int ext4_superblock_csum_verify(struct super_block *sb,
300 				       struct ext4_super_block *es)
301 {
302 	if (!ext4_has_feature_metadata_csum(sb))
303 		return 1;
304 
305 	return es->s_checksum == ext4_superblock_csum(es);
306 }
307 
ext4_superblock_csum_set(struct super_block * sb)308 void ext4_superblock_csum_set(struct super_block *sb)
309 {
310 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
311 
312 	if (!ext4_has_feature_metadata_csum(sb))
313 		return;
314 
315 	es->s_checksum = ext4_superblock_csum(es);
316 }
317 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)318 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
319 			       struct ext4_group_desc *bg)
320 {
321 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
322 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
323 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
324 }
325 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)326 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
327 			       struct ext4_group_desc *bg)
328 {
329 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
330 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
331 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
332 }
333 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)334 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
335 			      struct ext4_group_desc *bg)
336 {
337 	return le32_to_cpu(bg->bg_inode_table_lo) |
338 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
339 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
340 }
341 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)342 __u32 ext4_free_group_clusters(struct super_block *sb,
343 			       struct ext4_group_desc *bg)
344 {
345 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
346 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
347 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
348 }
349 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)350 __u32 ext4_free_inodes_count(struct super_block *sb,
351 			      struct ext4_group_desc *bg)
352 {
353 	return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
354 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
355 		 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
356 }
357 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)358 __u32 ext4_used_dirs_count(struct super_block *sb,
359 			      struct ext4_group_desc *bg)
360 {
361 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
362 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
363 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
364 }
365 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)366 __u32 ext4_itable_unused_count(struct super_block *sb,
367 			      struct ext4_group_desc *bg)
368 {
369 	return le16_to_cpu(bg->bg_itable_unused_lo) |
370 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
371 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
372 }
373 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)374 void ext4_block_bitmap_set(struct super_block *sb,
375 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
376 {
377 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
378 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
379 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
380 }
381 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)382 void ext4_inode_bitmap_set(struct super_block *sb,
383 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
384 {
385 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
386 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
387 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
388 }
389 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)390 void ext4_inode_table_set(struct super_block *sb,
391 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
392 {
393 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
394 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
395 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
396 }
397 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)398 void ext4_free_group_clusters_set(struct super_block *sb,
399 				  struct ext4_group_desc *bg, __u32 count)
400 {
401 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
402 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
403 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
404 }
405 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)406 void ext4_free_inodes_set(struct super_block *sb,
407 			  struct ext4_group_desc *bg, __u32 count)
408 {
409 	WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
410 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
411 		WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
412 }
413 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)414 void ext4_used_dirs_set(struct super_block *sb,
415 			  struct ext4_group_desc *bg, __u32 count)
416 {
417 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
418 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
419 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
420 }
421 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)422 void ext4_itable_unused_set(struct super_block *sb,
423 			  struct ext4_group_desc *bg, __u32 count)
424 {
425 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
426 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
427 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
428 }
429 
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)430 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
431 {
432 	now = clamp_val(now, 0, (1ull << 40) - 1);
433 
434 	*lo = cpu_to_le32(lower_32_bits(now));
435 	*hi = upper_32_bits(now);
436 }
437 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)438 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
439 {
440 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
441 }
442 #define ext4_update_tstamp(es, tstamp) \
443 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
444 			     ktime_get_real_seconds())
445 #define ext4_get_tstamp(es, tstamp) \
446 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
447 
448 /*
449  * The ext4_maybe_update_superblock() function checks and updates the
450  * superblock if needed.
451  *
452  * This function is designed to update the on-disk superblock only under
453  * certain conditions to prevent excessive disk writes and unnecessary
454  * waking of the disk from sleep. The superblock will be updated if:
455  * 1. More than sbi->s_sb_update_sec (def: 1 hour) has passed since the last
456  *    superblock update
457  * 2. More than sbi->s_sb_update_kb (def: 16MB) kbs have been written since the
458  *    last superblock update.
459  *
460  * @sb: The superblock
461  */
ext4_maybe_update_superblock(struct super_block * sb)462 static void ext4_maybe_update_superblock(struct super_block *sb)
463 {
464 	struct ext4_sb_info *sbi = EXT4_SB(sb);
465 	struct ext4_super_block *es = sbi->s_es;
466 	journal_t *journal = sbi->s_journal;
467 	time64_t now;
468 	__u64 last_update;
469 	__u64 lifetime_write_kbytes;
470 	__u64 diff_size;
471 
472 	if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
473 	    !(sb->s_flags & SB_ACTIVE) || !journal ||
474 	    journal->j_flags & JBD2_UNMOUNT)
475 		return;
476 
477 	now = ktime_get_real_seconds();
478 	last_update = ext4_get_tstamp(es, s_wtime);
479 
480 	if (likely(now - last_update < sbi->s_sb_update_sec))
481 		return;
482 
483 	lifetime_write_kbytes = sbi->s_kbytes_written +
484 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
485 		  sbi->s_sectors_written_start) >> 1);
486 
487 	/* Get the number of kilobytes not written to disk to account
488 	 * for statistics and compare with a multiple of 16 MB. This
489 	 * is used to determine when the next superblock commit should
490 	 * occur (i.e. not more often than once per 16MB if there was
491 	 * less written in an hour).
492 	 */
493 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
494 
495 	if (diff_size > sbi->s_sb_update_kb)
496 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
497 }
498 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)499 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
500 {
501 	struct super_block		*sb = journal->j_private;
502 
503 	BUG_ON(txn->t_state == T_FINISHED);
504 
505 	ext4_process_freed_data(sb, txn->t_tid);
506 	ext4_maybe_update_superblock(sb);
507 }
508 
ext4_journalled_writepage_needs_redirty(struct jbd2_inode * jinode,struct folio * folio)509 static bool ext4_journalled_writepage_needs_redirty(struct jbd2_inode *jinode,
510 		struct folio *folio)
511 {
512 	struct buffer_head *bh, *head;
513 	struct journal_head *jh;
514 
515 	bh = head = folio_buffers(folio);
516 	do {
517 		/*
518 		 * We have to redirty a page in these cases:
519 		 * 1) If buffer is dirty, it means the page was dirty because it
520 		 * contains a buffer that needs checkpointing. So the dirty bit
521 		 * needs to be preserved so that checkpointing writes the buffer
522 		 * properly.
523 		 * 2) If buffer is not part of the committing transaction
524 		 * (we may have just accidentally come across this buffer because
525 		 * inode range tracking is not exact) or if the currently running
526 		 * transaction already contains this buffer as well, dirty bit
527 		 * needs to be preserved so that the buffer gets writeprotected
528 		 * properly on running transaction's commit.
529 		 */
530 		jh = bh2jh(bh);
531 		if (buffer_dirty(bh) ||
532 		    (jh && (jh->b_transaction != jinode->i_transaction ||
533 			    jh->b_next_transaction)))
534 			return true;
535 	} while ((bh = bh->b_this_page) != head);
536 
537 	return false;
538 }
539 
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)540 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
541 {
542 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
543 	struct writeback_control wbc = {
544 		.sync_mode =  WB_SYNC_ALL,
545 		.nr_to_write = LONG_MAX,
546 		.range_start = jinode->i_dirty_start,
547 		.range_end = jinode->i_dirty_end,
548         };
549 	struct folio *folio = NULL;
550 	int error;
551 
552 	/*
553 	 * writeback_iter() already checks for dirty pages and calls
554 	 * folio_clear_dirty_for_io(), which we want to write protect the
555 	 * folios.
556 	 *
557 	 * However, we may have to redirty a folio sometimes.
558 	 */
559 	while ((folio = writeback_iter(mapping, &wbc, folio, &error))) {
560 		if (ext4_journalled_writepage_needs_redirty(jinode, folio))
561 			folio_redirty_for_writepage(&wbc, folio);
562 		folio_unlock(folio);
563 	}
564 
565 	return error;
566 }
567 
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)568 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
569 {
570 	int ret;
571 
572 	if (ext4_should_journal_data(jinode->i_vfs_inode))
573 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
574 	else
575 		ret = ext4_normal_submit_inode_data_buffers(jinode);
576 	return ret;
577 }
578 
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)579 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
580 {
581 	int ret = 0;
582 
583 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
584 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
585 
586 	return ret;
587 }
588 
system_going_down(void)589 static bool system_going_down(void)
590 {
591 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
592 		|| system_state == SYSTEM_RESTART;
593 }
594 
595 struct ext4_err_translation {
596 	int code;
597 	int errno;
598 };
599 
600 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
601 
602 static struct ext4_err_translation err_translation[] = {
603 	EXT4_ERR_TRANSLATE(EIO),
604 	EXT4_ERR_TRANSLATE(ENOMEM),
605 	EXT4_ERR_TRANSLATE(EFSBADCRC),
606 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
607 	EXT4_ERR_TRANSLATE(ENOSPC),
608 	EXT4_ERR_TRANSLATE(ENOKEY),
609 	EXT4_ERR_TRANSLATE(EROFS),
610 	EXT4_ERR_TRANSLATE(EFBIG),
611 	EXT4_ERR_TRANSLATE(EEXIST),
612 	EXT4_ERR_TRANSLATE(ERANGE),
613 	EXT4_ERR_TRANSLATE(EOVERFLOW),
614 	EXT4_ERR_TRANSLATE(EBUSY),
615 	EXT4_ERR_TRANSLATE(ENOTDIR),
616 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
617 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
618 	EXT4_ERR_TRANSLATE(EFAULT),
619 };
620 
ext4_errno_to_code(int errno)621 static int ext4_errno_to_code(int errno)
622 {
623 	int i;
624 
625 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
626 		if (err_translation[i].errno == errno)
627 			return err_translation[i].code;
628 	return EXT4_ERR_UNKNOWN;
629 }
630 
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)631 static void save_error_info(struct super_block *sb, int error,
632 			    __u32 ino, __u64 block,
633 			    const char *func, unsigned int line)
634 {
635 	struct ext4_sb_info *sbi = EXT4_SB(sb);
636 
637 	/* We default to EFSCORRUPTED error... */
638 	if (error == 0)
639 		error = EFSCORRUPTED;
640 
641 	spin_lock(&sbi->s_error_lock);
642 	sbi->s_add_error_count++;
643 	sbi->s_last_error_code = error;
644 	sbi->s_last_error_line = line;
645 	sbi->s_last_error_ino = ino;
646 	sbi->s_last_error_block = block;
647 	sbi->s_last_error_func = func;
648 	sbi->s_last_error_time = ktime_get_real_seconds();
649 	if (!sbi->s_first_error_time) {
650 		sbi->s_first_error_code = error;
651 		sbi->s_first_error_line = line;
652 		sbi->s_first_error_ino = ino;
653 		sbi->s_first_error_block = block;
654 		sbi->s_first_error_func = func;
655 		sbi->s_first_error_time = sbi->s_last_error_time;
656 	}
657 	spin_unlock(&sbi->s_error_lock);
658 }
659 
660 /* Deal with the reporting of failure conditions on a filesystem such as
661  * inconsistencies detected or read IO failures.
662  *
663  * On ext2, we can store the error state of the filesystem in the
664  * superblock.  That is not possible on ext4, because we may have other
665  * write ordering constraints on the superblock which prevent us from
666  * writing it out straight away; and given that the journal is about to
667  * be aborted, we can't rely on the current, or future, transactions to
668  * write out the superblock safely.
669  *
670  * We'll just use the jbd2_journal_abort() error code to record an error in
671  * the journal instead.  On recovery, the journal will complain about
672  * that error until we've noted it down and cleared it.
673  *
674  * If force_ro is set, we unconditionally force the filesystem into an
675  * ABORT|READONLY state, unless the error response on the fs has been set to
676  * panic in which case we take the easy way out and panic immediately. This is
677  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
678  * at a critical moment in log management.
679  */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)680 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
681 			      __u32 ino, __u64 block,
682 			      const char *func, unsigned int line)
683 {
684 	journal_t *journal = EXT4_SB(sb)->s_journal;
685 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
686 
687 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
688 	if (test_opt(sb, WARN_ON_ERROR))
689 		WARN_ON_ONCE(1);
690 
691 	if (!continue_fs && !ext4_emergency_ro(sb) && journal)
692 		jbd2_journal_abort(journal, -EIO);
693 
694 	if (!bdev_read_only(sb->s_bdev)) {
695 		save_error_info(sb, error, ino, block, func, line);
696 		/*
697 		 * In case the fs should keep running, we need to writeout
698 		 * superblock through the journal. Due to lock ordering
699 		 * constraints, it may not be safe to do it right here so we
700 		 * defer superblock flushing to a workqueue. We just need to be
701 		 * careful when the journal is already shutting down. If we get
702 		 * here in that case, just update the sb directly as the last
703 		 * transaction won't commit anyway.
704 		 */
705 		if (continue_fs && journal &&
706 		    !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
707 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
708 		else
709 			ext4_commit_super(sb);
710 	}
711 
712 	/*
713 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
714 	 * could panic during 'reboot -f' as the underlying device got already
715 	 * disabled.
716 	 */
717 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
718 		panic("EXT4-fs (device %s): panic forced after error\n",
719 			sb->s_id);
720 	}
721 
722 	if (ext4_emergency_ro(sb) || continue_fs)
723 		return;
724 
725 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
726 	/*
727 	 * We don't set SB_RDONLY because that requires sb->s_umount
728 	 * semaphore and setting it without proper remount procedure is
729 	 * confusing code such as freeze_super() leading to deadlocks
730 	 * and other problems.
731 	 */
732 	set_bit(EXT4_FLAGS_EMERGENCY_RO, &EXT4_SB(sb)->s_ext4_flags);
733 }
734 
update_super_work(struct work_struct * work)735 static void update_super_work(struct work_struct *work)
736 {
737 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
738 						s_sb_upd_work);
739 	journal_t *journal = sbi->s_journal;
740 	handle_t *handle;
741 
742 	/*
743 	 * If the journal is still running, we have to write out superblock
744 	 * through the journal to avoid collisions of other journalled sb
745 	 * updates.
746 	 *
747 	 * We use directly jbd2 functions here to avoid recursing back into
748 	 * ext4 error handling code during handling of previous errors.
749 	 */
750 	if (!ext4_emergency_state(sbi->s_sb) &&
751 	    !sb_rdonly(sbi->s_sb) && journal) {
752 		struct buffer_head *sbh = sbi->s_sbh;
753 		bool call_notify_err = false;
754 
755 		handle = jbd2_journal_start(journal, 1);
756 		if (IS_ERR(handle))
757 			goto write_directly;
758 		if (jbd2_journal_get_write_access(handle, sbh)) {
759 			jbd2_journal_stop(handle);
760 			goto write_directly;
761 		}
762 
763 		if (sbi->s_add_error_count > 0)
764 			call_notify_err = true;
765 
766 		ext4_update_super(sbi->s_sb);
767 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
768 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
769 				 "superblock detected");
770 			clear_buffer_write_io_error(sbh);
771 			set_buffer_uptodate(sbh);
772 		}
773 
774 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
775 			jbd2_journal_stop(handle);
776 			goto write_directly;
777 		}
778 		jbd2_journal_stop(handle);
779 
780 		if (call_notify_err)
781 			ext4_notify_error_sysfs(sbi);
782 
783 		return;
784 	}
785 write_directly:
786 	/*
787 	 * Write through journal failed. Write sb directly to get error info
788 	 * out and hope for the best.
789 	 */
790 	ext4_commit_super(sbi->s_sb);
791 	ext4_notify_error_sysfs(sbi);
792 }
793 
794 #define ext4_error_ratelimit(sb)					\
795 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
796 			     "EXT4-fs error")
797 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)798 void __ext4_error(struct super_block *sb, const char *function,
799 		  unsigned int line, bool force_ro, int error, __u64 block,
800 		  const char *fmt, ...)
801 {
802 	struct va_format vaf;
803 	va_list args;
804 
805 	if (unlikely(ext4_emergency_state(sb)))
806 		return;
807 
808 	trace_ext4_error(sb, function, line);
809 	if (ext4_error_ratelimit(sb)) {
810 		va_start(args, fmt);
811 		vaf.fmt = fmt;
812 		vaf.va = &args;
813 		printk(KERN_CRIT
814 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
815 		       sb->s_id, function, line, current->comm, &vaf);
816 		va_end(args);
817 	}
818 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
819 
820 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
821 }
822 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)823 void __ext4_error_inode(struct inode *inode, const char *function,
824 			unsigned int line, ext4_fsblk_t block, int error,
825 			const char *fmt, ...)
826 {
827 	va_list args;
828 	struct va_format vaf;
829 
830 	if (unlikely(ext4_emergency_state(inode->i_sb)))
831 		return;
832 
833 	trace_ext4_error(inode->i_sb, function, line);
834 	if (ext4_error_ratelimit(inode->i_sb)) {
835 		va_start(args, fmt);
836 		vaf.fmt = fmt;
837 		vaf.va = &args;
838 		if (block)
839 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
840 			       "inode #%lu: block %llu: comm %s: %pV\n",
841 			       inode->i_sb->s_id, function, line, inode->i_ino,
842 			       block, current->comm, &vaf);
843 		else
844 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
845 			       "inode #%lu: comm %s: %pV\n",
846 			       inode->i_sb->s_id, function, line, inode->i_ino,
847 			       current->comm, &vaf);
848 		va_end(args);
849 	}
850 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
851 
852 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
853 			  function, line);
854 }
855 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)856 void __ext4_error_file(struct file *file, const char *function,
857 		       unsigned int line, ext4_fsblk_t block,
858 		       const char *fmt, ...)
859 {
860 	va_list args;
861 	struct va_format vaf;
862 	struct inode *inode = file_inode(file);
863 	char pathname[80], *path;
864 
865 	if (unlikely(ext4_emergency_state(inode->i_sb)))
866 		return;
867 
868 	trace_ext4_error(inode->i_sb, function, line);
869 	if (ext4_error_ratelimit(inode->i_sb)) {
870 		path = file_path(file, pathname, sizeof(pathname));
871 		if (IS_ERR(path))
872 			path = "(unknown)";
873 		va_start(args, fmt);
874 		vaf.fmt = fmt;
875 		vaf.va = &args;
876 		if (block)
877 			printk(KERN_CRIT
878 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
879 			       "block %llu: comm %s: path %s: %pV\n",
880 			       inode->i_sb->s_id, function, line, inode->i_ino,
881 			       block, current->comm, path, &vaf);
882 		else
883 			printk(KERN_CRIT
884 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
885 			       "comm %s: path %s: %pV\n",
886 			       inode->i_sb->s_id, function, line, inode->i_ino,
887 			       current->comm, path, &vaf);
888 		va_end(args);
889 	}
890 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
891 
892 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
893 			  function, line);
894 }
895 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])896 const char *ext4_decode_error(struct super_block *sb, int errno,
897 			      char nbuf[16])
898 {
899 	char *errstr = NULL;
900 
901 	switch (errno) {
902 	case -EFSCORRUPTED:
903 		errstr = "Corrupt filesystem";
904 		break;
905 	case -EFSBADCRC:
906 		errstr = "Filesystem failed CRC";
907 		break;
908 	case -EIO:
909 		errstr = "IO failure";
910 		break;
911 	case -ENOMEM:
912 		errstr = "Out of memory";
913 		break;
914 	case -EROFS:
915 		if (!sb || (EXT4_SB(sb)->s_journal &&
916 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
917 			errstr = "Journal has aborted";
918 		else
919 			errstr = "Readonly filesystem";
920 		break;
921 	default:
922 		/* If the caller passed in an extra buffer for unknown
923 		 * errors, textualise them now.  Else we just return
924 		 * NULL. */
925 		if (nbuf) {
926 			/* Check for truncated error codes... */
927 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
928 				errstr = nbuf;
929 		}
930 		break;
931 	}
932 
933 	return errstr;
934 }
935 
936 /* __ext4_std_error decodes expected errors from journaling functions
937  * automatically and invokes the appropriate error response.  */
938 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)939 void __ext4_std_error(struct super_block *sb, const char *function,
940 		      unsigned int line, int errno)
941 {
942 	char nbuf[16];
943 	const char *errstr;
944 
945 	if (unlikely(ext4_emergency_state(sb)))
946 		return;
947 
948 	/* Special case: if the error is EROFS, and we're not already
949 	 * inside a transaction, then there's really no point in logging
950 	 * an error. */
951 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
952 		return;
953 
954 	if (ext4_error_ratelimit(sb)) {
955 		errstr = ext4_decode_error(sb, errno, nbuf);
956 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
957 		       sb->s_id, function, line, errstr);
958 	}
959 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
960 
961 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
962 }
963 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)964 void __ext4_msg(struct super_block *sb,
965 		const char *prefix, const char *fmt, ...)
966 {
967 	struct va_format vaf;
968 	va_list args;
969 
970 	if (sb) {
971 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
972 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
973 				  "EXT4-fs"))
974 			return;
975 	}
976 
977 	va_start(args, fmt);
978 	vaf.fmt = fmt;
979 	vaf.va = &args;
980 	if (sb)
981 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
982 	else
983 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
984 	va_end(args);
985 }
986 
ext4_warning_ratelimit(struct super_block * sb)987 static int ext4_warning_ratelimit(struct super_block *sb)
988 {
989 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
990 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
991 			    "EXT4-fs warning");
992 }
993 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)994 void __ext4_warning(struct super_block *sb, const char *function,
995 		    unsigned int line, const char *fmt, ...)
996 {
997 	struct va_format vaf;
998 	va_list args;
999 
1000 	if (!ext4_warning_ratelimit(sb))
1001 		return;
1002 
1003 	va_start(args, fmt);
1004 	vaf.fmt = fmt;
1005 	vaf.va = &args;
1006 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1007 	       sb->s_id, function, line, &vaf);
1008 	va_end(args);
1009 }
1010 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1011 void __ext4_warning_inode(const struct inode *inode, const char *function,
1012 			  unsigned int line, const char *fmt, ...)
1013 {
1014 	struct va_format vaf;
1015 	va_list args;
1016 
1017 	if (!ext4_warning_ratelimit(inode->i_sb))
1018 		return;
1019 
1020 	va_start(args, fmt);
1021 	vaf.fmt = fmt;
1022 	vaf.va = &args;
1023 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1024 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1025 	       function, line, inode->i_ino, current->comm, &vaf);
1026 	va_end(args);
1027 }
1028 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1029 void __ext4_grp_locked_error(const char *function, unsigned int line,
1030 			     struct super_block *sb, ext4_group_t grp,
1031 			     unsigned long ino, ext4_fsblk_t block,
1032 			     const char *fmt, ...)
1033 __releases(bitlock)
1034 __acquires(bitlock)
1035 {
1036 	struct va_format vaf;
1037 	va_list args;
1038 
1039 	if (unlikely(ext4_emergency_state(sb)))
1040 		return;
1041 
1042 	trace_ext4_error(sb, function, line);
1043 	if (ext4_error_ratelimit(sb)) {
1044 		va_start(args, fmt);
1045 		vaf.fmt = fmt;
1046 		vaf.va = &args;
1047 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1048 		       sb->s_id, function, line, grp);
1049 		if (ino)
1050 			printk(KERN_CONT "inode %lu: ", ino);
1051 		if (block)
1052 			printk(KERN_CONT "block %llu:",
1053 			       (unsigned long long) block);
1054 		printk(KERN_CONT "%pV\n", &vaf);
1055 		va_end(args);
1056 	}
1057 
1058 	if (test_opt(sb, ERRORS_CONT)) {
1059 		if (test_opt(sb, WARN_ON_ERROR))
1060 			WARN_ON_ONCE(1);
1061 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1062 		if (!bdev_read_only(sb->s_bdev)) {
1063 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1064 					line);
1065 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1066 		}
1067 		return;
1068 	}
1069 	ext4_unlock_group(sb, grp);
1070 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1071 	/*
1072 	 * We only get here in the ERRORS_RO case; relocking the group
1073 	 * may be dangerous, but nothing bad will happen since the
1074 	 * filesystem will have already been marked read/only and the
1075 	 * journal has been aborted.  We return 1 as a hint to callers
1076 	 * who might what to use the return value from
1077 	 * ext4_grp_locked_error() to distinguish between the
1078 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1079 	 * aggressively from the ext4 function in question, with a
1080 	 * more appropriate error code.
1081 	 */
1082 	ext4_lock_group(sb, grp);
1083 	return;
1084 }
1085 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1086 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1087 				     ext4_group_t group,
1088 				     unsigned int flags)
1089 {
1090 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1091 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1092 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1093 	int ret;
1094 
1095 	if (!grp || !gdp)
1096 		return;
1097 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1098 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1099 					    &grp->bb_state);
1100 		if (!ret)
1101 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1102 					   grp->bb_free);
1103 	}
1104 
1105 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1106 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1107 					    &grp->bb_state);
1108 		if (!ret && gdp) {
1109 			int count;
1110 
1111 			count = ext4_free_inodes_count(sb, gdp);
1112 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1113 					   count);
1114 		}
1115 	}
1116 }
1117 
ext4_update_dynamic_rev(struct super_block * sb)1118 void ext4_update_dynamic_rev(struct super_block *sb)
1119 {
1120 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1121 
1122 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1123 		return;
1124 
1125 	ext4_warning(sb,
1126 		     "updating to rev %d because of new feature flag, "
1127 		     "running e2fsck is recommended",
1128 		     EXT4_DYNAMIC_REV);
1129 
1130 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1131 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1132 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1133 	/* leave es->s_feature_*compat flags alone */
1134 	/* es->s_uuid will be set by e2fsck if empty */
1135 
1136 	/*
1137 	 * The rest of the superblock fields should be zero, and if not it
1138 	 * means they are likely already in use, so leave them alone.  We
1139 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1140 	 */
1141 }
1142 
orphan_list_entry(struct list_head * l)1143 static inline struct inode *orphan_list_entry(struct list_head *l)
1144 {
1145 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1146 }
1147 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1148 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1149 {
1150 	struct list_head *l;
1151 
1152 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1153 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1154 
1155 	printk(KERN_ERR "sb_info orphan list:\n");
1156 	list_for_each(l, &sbi->s_orphan) {
1157 		struct inode *inode = orphan_list_entry(l);
1158 		printk(KERN_ERR "  "
1159 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1160 		       inode->i_sb->s_id, inode->i_ino, inode,
1161 		       inode->i_mode, inode->i_nlink,
1162 		       NEXT_ORPHAN(inode));
1163 	}
1164 }
1165 
1166 #ifdef CONFIG_QUOTA
1167 static int ext4_quota_off(struct super_block *sb, int type);
1168 
ext4_quotas_off(struct super_block * sb,int type)1169 static inline void ext4_quotas_off(struct super_block *sb, int type)
1170 {
1171 	BUG_ON(type > EXT4_MAXQUOTAS);
1172 
1173 	/* Use our quota_off function to clear inode flags etc. */
1174 	for (type--; type >= 0; type--)
1175 		ext4_quota_off(sb, type);
1176 }
1177 
1178 /*
1179  * This is a helper function which is used in the mount/remount
1180  * codepaths (which holds s_umount) to fetch the quota file name.
1181  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1182 static inline char *get_qf_name(struct super_block *sb,
1183 				struct ext4_sb_info *sbi,
1184 				int type)
1185 {
1186 	return rcu_dereference_protected(sbi->s_qf_names[type],
1187 					 lockdep_is_held(&sb->s_umount));
1188 }
1189 #else
ext4_quotas_off(struct super_block * sb,int type)1190 static inline void ext4_quotas_off(struct super_block *sb, int type)
1191 {
1192 }
1193 #endif
1194 
ext4_percpu_param_init(struct ext4_sb_info * sbi)1195 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1196 {
1197 	ext4_fsblk_t block;
1198 	int err;
1199 
1200 	block = ext4_count_free_clusters(sbi->s_sb);
1201 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1202 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1203 				  GFP_KERNEL);
1204 	if (!err) {
1205 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1206 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1207 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1208 					  GFP_KERNEL);
1209 	}
1210 	if (!err)
1211 		err = percpu_counter_init(&sbi->s_dirs_counter,
1212 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1213 	if (!err)
1214 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1215 					  GFP_KERNEL);
1216 	if (!err)
1217 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1218 					  GFP_KERNEL);
1219 	if (!err)
1220 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1221 
1222 	if (err)
1223 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1224 
1225 	return err;
1226 }
1227 
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1228 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1229 {
1230 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1231 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1232 	percpu_counter_destroy(&sbi->s_dirs_counter);
1233 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1234 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1235 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1236 }
1237 
ext4_group_desc_free(struct ext4_sb_info * sbi)1238 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1239 {
1240 	struct buffer_head **group_desc;
1241 	int i;
1242 
1243 	rcu_read_lock();
1244 	group_desc = rcu_dereference(sbi->s_group_desc);
1245 	for (i = 0; i < sbi->s_gdb_count; i++)
1246 		brelse(group_desc[i]);
1247 	kvfree(group_desc);
1248 	rcu_read_unlock();
1249 }
1250 
ext4_flex_groups_free(struct ext4_sb_info * sbi)1251 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1252 {
1253 	struct flex_groups **flex_groups;
1254 	int i;
1255 
1256 	rcu_read_lock();
1257 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1258 	if (flex_groups) {
1259 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1260 			kvfree(flex_groups[i]);
1261 		kvfree(flex_groups);
1262 	}
1263 	rcu_read_unlock();
1264 }
1265 
ext4_put_super(struct super_block * sb)1266 static void ext4_put_super(struct super_block *sb)
1267 {
1268 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1269 	struct ext4_super_block *es = sbi->s_es;
1270 	int aborted = 0;
1271 	int err;
1272 
1273 	/*
1274 	 * Unregister sysfs before destroying jbd2 journal.
1275 	 * Since we could still access attr_journal_task attribute via sysfs
1276 	 * path which could have sbi->s_journal->j_task as NULL
1277 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1278 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1279 	 * read metadata verify failed then will queue error work.
1280 	 * update_super_work will call start_this_handle may trigger
1281 	 * BUG_ON.
1282 	 */
1283 	ext4_unregister_sysfs(sb);
1284 
1285 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1286 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1287 			 &sb->s_uuid);
1288 
1289 	ext4_unregister_li_request(sb);
1290 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1291 
1292 	destroy_workqueue(sbi->rsv_conversion_wq);
1293 	ext4_release_orphan_info(sb);
1294 
1295 	if (sbi->s_journal) {
1296 		aborted = is_journal_aborted(sbi->s_journal);
1297 		err = ext4_journal_destroy(sbi, sbi->s_journal);
1298 		if ((err < 0) && !aborted) {
1299 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1300 		}
1301 	} else
1302 		flush_work(&sbi->s_sb_upd_work);
1303 
1304 	ext4_es_unregister_shrinker(sbi);
1305 	timer_shutdown_sync(&sbi->s_err_report);
1306 	ext4_release_system_zone(sb);
1307 	ext4_mb_release(sb);
1308 	ext4_ext_release(sb);
1309 
1310 	if (!ext4_emergency_state(sb) && !sb_rdonly(sb)) {
1311 		if (!aborted) {
1312 			ext4_clear_feature_journal_needs_recovery(sb);
1313 			ext4_clear_feature_orphan_present(sb);
1314 			es->s_state = cpu_to_le16(sbi->s_mount_state);
1315 		}
1316 		ext4_commit_super(sb);
1317 	}
1318 
1319 	ext4_group_desc_free(sbi);
1320 	ext4_flex_groups_free(sbi);
1321 
1322 	WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1323 		     percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1324 	ext4_percpu_param_destroy(sbi);
1325 #ifdef CONFIG_QUOTA
1326 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1327 		kfree(get_qf_name(sb, sbi, i));
1328 #endif
1329 
1330 	/* Debugging code just in case the in-memory inode orphan list
1331 	 * isn't empty.  The on-disk one can be non-empty if we've
1332 	 * detected an error and taken the fs readonly, but the
1333 	 * in-memory list had better be clean by this point. */
1334 	if (!list_empty(&sbi->s_orphan))
1335 		dump_orphan_list(sb, sbi);
1336 	ASSERT(list_empty(&sbi->s_orphan));
1337 
1338 	sync_blockdev(sb->s_bdev);
1339 	invalidate_bdev(sb->s_bdev);
1340 	if (sbi->s_journal_bdev_file) {
1341 		/*
1342 		 * Invalidate the journal device's buffers.  We don't want them
1343 		 * floating about in memory - the physical journal device may
1344 		 * hotswapped, and it breaks the `ro-after' testing code.
1345 		 */
1346 		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1347 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1348 	}
1349 
1350 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1351 	sbi->s_ea_inode_cache = NULL;
1352 
1353 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1354 	sbi->s_ea_block_cache = NULL;
1355 
1356 	ext4_stop_mmpd(sbi);
1357 
1358 	brelse(sbi->s_sbh);
1359 	sb->s_fs_info = NULL;
1360 	/*
1361 	 * Now that we are completely done shutting down the
1362 	 * superblock, we need to actually destroy the kobject.
1363 	 */
1364 	kobject_put(&sbi->s_kobj);
1365 	wait_for_completion(&sbi->s_kobj_unregister);
1366 	kfree(sbi->s_blockgroup_lock);
1367 	fs_put_dax(sbi->s_daxdev, NULL);
1368 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1369 #if IS_ENABLED(CONFIG_UNICODE)
1370 	utf8_unload(sb->s_encoding);
1371 #endif
1372 	kfree(sbi);
1373 }
1374 
1375 static struct kmem_cache *ext4_inode_cachep;
1376 
1377 /*
1378  * Called inside transaction, so use GFP_NOFS
1379  */
ext4_alloc_inode(struct super_block * sb)1380 static struct inode *ext4_alloc_inode(struct super_block *sb)
1381 {
1382 	struct ext4_inode_info *ei;
1383 
1384 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1385 	if (!ei)
1386 		return NULL;
1387 
1388 	inode_set_iversion(&ei->vfs_inode, 1);
1389 	ei->i_flags = 0;
1390 	spin_lock_init(&ei->i_raw_lock);
1391 	ei->i_prealloc_node = RB_ROOT;
1392 	atomic_set(&ei->i_prealloc_active, 0);
1393 	rwlock_init(&ei->i_prealloc_lock);
1394 	ext4_es_init_tree(&ei->i_es_tree);
1395 	rwlock_init(&ei->i_es_lock);
1396 	INIT_LIST_HEAD(&ei->i_es_list);
1397 	ei->i_es_all_nr = 0;
1398 	ei->i_es_shk_nr = 0;
1399 	ei->i_es_shrink_lblk = 0;
1400 	ei->i_reserved_data_blocks = 0;
1401 	spin_lock_init(&(ei->i_block_reservation_lock));
1402 	ext4_init_pending_tree(&ei->i_pending_tree);
1403 #ifdef CONFIG_QUOTA
1404 	ei->i_reserved_quota = 0;
1405 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1406 #endif
1407 	ei->jinode = NULL;
1408 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1409 	spin_lock_init(&ei->i_completed_io_lock);
1410 	ei->i_sync_tid = 0;
1411 	ei->i_datasync_tid = 0;
1412 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1413 	ext4_fc_init_inode(&ei->vfs_inode);
1414 	spin_lock_init(&ei->i_fc_lock);
1415 	return &ei->vfs_inode;
1416 }
1417 
ext4_drop_inode(struct inode * inode)1418 static int ext4_drop_inode(struct inode *inode)
1419 {
1420 	int drop = generic_drop_inode(inode);
1421 
1422 	if (!drop)
1423 		drop = fscrypt_drop_inode(inode);
1424 
1425 	trace_ext4_drop_inode(inode, drop);
1426 	return drop;
1427 }
1428 
ext4_free_in_core_inode(struct inode * inode)1429 static void ext4_free_in_core_inode(struct inode *inode)
1430 {
1431 	fscrypt_free_inode(inode);
1432 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1433 		pr_warn("%s: inode %ld still in fc list",
1434 			__func__, inode->i_ino);
1435 	}
1436 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1437 }
1438 
ext4_destroy_inode(struct inode * inode)1439 static void ext4_destroy_inode(struct inode *inode)
1440 {
1441 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1442 		ext4_msg(inode->i_sb, KERN_ERR,
1443 			 "Inode %lu (%p): orphan list check failed!",
1444 			 inode->i_ino, EXT4_I(inode));
1445 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1446 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1447 				true);
1448 		dump_stack();
1449 	}
1450 
1451 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1452 	    WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1453 		ext4_msg(inode->i_sb, KERN_ERR,
1454 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1455 			 inode->i_ino, EXT4_I(inode),
1456 			 EXT4_I(inode)->i_reserved_data_blocks);
1457 }
1458 
ext4_shutdown(struct super_block * sb)1459 static void ext4_shutdown(struct super_block *sb)
1460 {
1461        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1462 }
1463 
init_once(void * foo)1464 static void init_once(void *foo)
1465 {
1466 	struct ext4_inode_info *ei = foo;
1467 
1468 	INIT_LIST_HEAD(&ei->i_orphan);
1469 	init_rwsem(&ei->xattr_sem);
1470 	init_rwsem(&ei->i_data_sem);
1471 	inode_init_once(&ei->vfs_inode);
1472 	ext4_fc_init_inode(&ei->vfs_inode);
1473 }
1474 
init_inodecache(void)1475 static int __init init_inodecache(void)
1476 {
1477 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1478 				sizeof(struct ext4_inode_info), 0,
1479 				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1480 				offsetof(struct ext4_inode_info, i_data),
1481 				sizeof_field(struct ext4_inode_info, i_data),
1482 				init_once);
1483 	if (ext4_inode_cachep == NULL)
1484 		return -ENOMEM;
1485 	return 0;
1486 }
1487 
destroy_inodecache(void)1488 static void destroy_inodecache(void)
1489 {
1490 	/*
1491 	 * Make sure all delayed rcu free inodes are flushed before we
1492 	 * destroy cache.
1493 	 */
1494 	rcu_barrier();
1495 	kmem_cache_destroy(ext4_inode_cachep);
1496 }
1497 
ext4_clear_inode(struct inode * inode)1498 void ext4_clear_inode(struct inode *inode)
1499 {
1500 	ext4_fc_del(inode);
1501 	invalidate_inode_buffers(inode);
1502 	clear_inode(inode);
1503 	ext4_discard_preallocations(inode);
1504 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1505 	dquot_drop(inode);
1506 	if (EXT4_I(inode)->jinode) {
1507 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1508 					       EXT4_I(inode)->jinode);
1509 		jbd2_free_inode(EXT4_I(inode)->jinode);
1510 		EXT4_I(inode)->jinode = NULL;
1511 	}
1512 	fscrypt_put_encryption_info(inode);
1513 	fsverity_cleanup_inode(inode);
1514 }
1515 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1516 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1517 					u64 ino, u32 generation)
1518 {
1519 	struct inode *inode;
1520 
1521 	/*
1522 	 * Currently we don't know the generation for parent directory, so
1523 	 * a generation of 0 means "accept any"
1524 	 */
1525 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1526 	if (IS_ERR(inode))
1527 		return ERR_CAST(inode);
1528 	if (generation && inode->i_generation != generation) {
1529 		iput(inode);
1530 		return ERR_PTR(-ESTALE);
1531 	}
1532 
1533 	return inode;
1534 }
1535 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1536 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1537 					int fh_len, int fh_type)
1538 {
1539 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1540 				    ext4_nfs_get_inode);
1541 }
1542 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1543 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1544 					int fh_len, int fh_type)
1545 {
1546 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1547 				    ext4_nfs_get_inode);
1548 }
1549 
ext4_nfs_commit_metadata(struct inode * inode)1550 static int ext4_nfs_commit_metadata(struct inode *inode)
1551 {
1552 	struct writeback_control wbc = {
1553 		.sync_mode = WB_SYNC_ALL
1554 	};
1555 
1556 	trace_ext4_nfs_commit_metadata(inode);
1557 	return ext4_write_inode(inode, &wbc);
1558 }
1559 
1560 #ifdef CONFIG_QUOTA
1561 static const char * const quotatypes[] = INITQFNAMES;
1562 #define QTYPE2NAME(t) (quotatypes[t])
1563 
1564 static int ext4_write_dquot(struct dquot *dquot);
1565 static int ext4_acquire_dquot(struct dquot *dquot);
1566 static int ext4_release_dquot(struct dquot *dquot);
1567 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1568 static int ext4_write_info(struct super_block *sb, int type);
1569 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1570 			 const struct path *path);
1571 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1572 			       size_t len, loff_t off);
1573 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1574 				const char *data, size_t len, loff_t off);
1575 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1576 			     unsigned int flags);
1577 
ext4_get_dquots(struct inode * inode)1578 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1579 {
1580 	return EXT4_I(inode)->i_dquot;
1581 }
1582 
1583 static const struct dquot_operations ext4_quota_operations = {
1584 	.get_reserved_space	= ext4_get_reserved_space,
1585 	.write_dquot		= ext4_write_dquot,
1586 	.acquire_dquot		= ext4_acquire_dquot,
1587 	.release_dquot		= ext4_release_dquot,
1588 	.mark_dirty		= ext4_mark_dquot_dirty,
1589 	.write_info		= ext4_write_info,
1590 	.alloc_dquot		= dquot_alloc,
1591 	.destroy_dquot		= dquot_destroy,
1592 	.get_projid		= ext4_get_projid,
1593 	.get_inode_usage	= ext4_get_inode_usage,
1594 	.get_next_id		= dquot_get_next_id,
1595 };
1596 
1597 static const struct quotactl_ops ext4_qctl_operations = {
1598 	.quota_on	= ext4_quota_on,
1599 	.quota_off	= ext4_quota_off,
1600 	.quota_sync	= dquot_quota_sync,
1601 	.get_state	= dquot_get_state,
1602 	.set_info	= dquot_set_dqinfo,
1603 	.get_dqblk	= dquot_get_dqblk,
1604 	.set_dqblk	= dquot_set_dqblk,
1605 	.get_nextdqblk	= dquot_get_next_dqblk,
1606 };
1607 #endif
1608 
1609 static const struct super_operations ext4_sops = {
1610 	.alloc_inode	= ext4_alloc_inode,
1611 	.free_inode	= ext4_free_in_core_inode,
1612 	.destroy_inode	= ext4_destroy_inode,
1613 	.write_inode	= ext4_write_inode,
1614 	.dirty_inode	= ext4_dirty_inode,
1615 	.drop_inode	= ext4_drop_inode,
1616 	.evict_inode	= ext4_evict_inode,
1617 	.put_super	= ext4_put_super,
1618 	.sync_fs	= ext4_sync_fs,
1619 	.freeze_fs	= ext4_freeze,
1620 	.unfreeze_fs	= ext4_unfreeze,
1621 	.statfs		= ext4_statfs,
1622 	.show_options	= ext4_show_options,
1623 	.shutdown	= ext4_shutdown,
1624 #ifdef CONFIG_QUOTA
1625 	.quota_read	= ext4_quota_read,
1626 	.quota_write	= ext4_quota_write,
1627 	.get_dquots	= ext4_get_dquots,
1628 #endif
1629 };
1630 
1631 static const struct export_operations ext4_export_ops = {
1632 	.encode_fh = generic_encode_ino32_fh,
1633 	.fh_to_dentry = ext4_fh_to_dentry,
1634 	.fh_to_parent = ext4_fh_to_parent,
1635 	.get_parent = ext4_get_parent,
1636 	.commit_metadata = ext4_nfs_commit_metadata,
1637 };
1638 
1639 enum {
1640 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1641 	Opt_resgid, Opt_resuid, Opt_sb,
1642 	Opt_nouid32, Opt_debug, Opt_removed,
1643 	Opt_user_xattr, Opt_acl,
1644 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1645 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1646 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1647 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1648 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1649 	Opt_inlinecrypt,
1650 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1651 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1652 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1653 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1654 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1655 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1656 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1657 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1658 	Opt_dioread_nolock, Opt_dioread_lock,
1659 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1660 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1661 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1662 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1663 #ifdef CONFIG_EXT4_DEBUG
1664 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1665 #endif
1666 };
1667 
1668 static const struct constant_table ext4_param_errors[] = {
1669 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1670 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1671 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1672 	{}
1673 };
1674 
1675 static const struct constant_table ext4_param_data[] = {
1676 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1677 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1678 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1679 	{}
1680 };
1681 
1682 static const struct constant_table ext4_param_data_err[] = {
1683 	{"abort",	Opt_data_err_abort},
1684 	{"ignore",	Opt_data_err_ignore},
1685 	{}
1686 };
1687 
1688 static const struct constant_table ext4_param_jqfmt[] = {
1689 	{"vfsold",	QFMT_VFS_OLD},
1690 	{"vfsv0",	QFMT_VFS_V0},
1691 	{"vfsv1",	QFMT_VFS_V1},
1692 	{}
1693 };
1694 
1695 static const struct constant_table ext4_param_dax[] = {
1696 	{"always",	Opt_dax_always},
1697 	{"inode",	Opt_dax_inode},
1698 	{"never",	Opt_dax_never},
1699 	{}
1700 };
1701 
1702 /*
1703  * Mount option specification
1704  * We don't use fsparam_flag_no because of the way we set the
1705  * options and the way we show them in _ext4_show_options(). To
1706  * keep the changes to a minimum, let's keep the negative options
1707  * separate for now.
1708  */
1709 static const struct fs_parameter_spec ext4_param_specs[] = {
1710 	fsparam_flag	("bsddf",		Opt_bsd_df),
1711 	fsparam_flag	("minixdf",		Opt_minix_df),
1712 	fsparam_flag	("grpid",		Opt_grpid),
1713 	fsparam_flag	("bsdgroups",		Opt_grpid),
1714 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1715 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1716 	fsparam_gid	("resgid",		Opt_resgid),
1717 	fsparam_uid	("resuid",		Opt_resuid),
1718 	fsparam_u32	("sb",			Opt_sb),
1719 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1720 	fsparam_flag	("nouid32",		Opt_nouid32),
1721 	fsparam_flag	("debug",		Opt_debug),
1722 	fsparam_flag	("oldalloc",		Opt_removed),
1723 	fsparam_flag	("orlov",		Opt_removed),
1724 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1725 	fsparam_flag	("acl",			Opt_acl),
1726 	fsparam_flag	("norecovery",		Opt_noload),
1727 	fsparam_flag	("noload",		Opt_noload),
1728 	fsparam_flag	("bh",			Opt_removed),
1729 	fsparam_flag	("nobh",		Opt_removed),
1730 	fsparam_u32	("commit",		Opt_commit),
1731 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1732 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1733 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1734 	fsparam_bdev	("journal_path",	Opt_journal_path),
1735 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1736 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1737 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1738 	fsparam_flag	("abort",		Opt_abort),
1739 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1740 	fsparam_enum	("data_err",		Opt_data_err,
1741 						ext4_param_data_err),
1742 	fsparam_string_empty
1743 			("usrjquota",		Opt_usrjquota),
1744 	fsparam_string_empty
1745 			("grpjquota",		Opt_grpjquota),
1746 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1747 	fsparam_flag	("grpquota",		Opt_grpquota),
1748 	fsparam_flag	("quota",		Opt_quota),
1749 	fsparam_flag	("noquota",		Opt_noquota),
1750 	fsparam_flag	("usrquota",		Opt_usrquota),
1751 	fsparam_flag	("prjquota",		Opt_prjquota),
1752 	fsparam_flag	("barrier",		Opt_barrier),
1753 	fsparam_u32	("barrier",		Opt_barrier),
1754 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1755 	fsparam_flag	("i_version",		Opt_removed),
1756 	fsparam_flag	("dax",			Opt_dax),
1757 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1758 	fsparam_u32	("stripe",		Opt_stripe),
1759 	fsparam_flag	("delalloc",		Opt_delalloc),
1760 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1761 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1762 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1763 	fsparam_u32	("debug_want_extra_isize",
1764 						Opt_debug_want_extra_isize),
1765 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1766 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1767 	fsparam_flag	("block_validity",	Opt_block_validity),
1768 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1769 	fsparam_u32	("inode_readahead_blks",
1770 						Opt_inode_readahead_blks),
1771 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1772 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1773 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1774 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1775 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1776 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1777 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1778 	fsparam_flag	("discard",		Opt_discard),
1779 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1780 	fsparam_u32	("init_itable",		Opt_init_itable),
1781 	fsparam_flag	("init_itable",		Opt_init_itable),
1782 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1783 #ifdef CONFIG_EXT4_DEBUG
1784 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1785 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1786 #endif
1787 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1788 	fsparam_flag	("test_dummy_encryption",
1789 						Opt_test_dummy_encryption),
1790 	fsparam_string	("test_dummy_encryption",
1791 						Opt_test_dummy_encryption),
1792 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1793 	fsparam_flag	("nombcache",		Opt_nombcache),
1794 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1795 	fsparam_flag	("prefetch_block_bitmaps",
1796 						Opt_removed),
1797 	fsparam_flag	("no_prefetch_block_bitmaps",
1798 						Opt_no_prefetch_block_bitmaps),
1799 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1800 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1801 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1802 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1803 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1804 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1805 	{}
1806 };
1807 
1808 
1809 #define MOPT_SET	0x0001
1810 #define MOPT_CLEAR	0x0002
1811 #define MOPT_NOSUPPORT	0x0004
1812 #define MOPT_EXPLICIT	0x0008
1813 #ifdef CONFIG_QUOTA
1814 #define MOPT_Q		0
1815 #define MOPT_QFMT	0x0010
1816 #else
1817 #define MOPT_Q		MOPT_NOSUPPORT
1818 #define MOPT_QFMT	MOPT_NOSUPPORT
1819 #endif
1820 #define MOPT_NO_EXT2	0x0020
1821 #define MOPT_NO_EXT3	0x0040
1822 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1823 #define MOPT_SKIP	0x0080
1824 #define	MOPT_2		0x0100
1825 
1826 static const struct mount_opts {
1827 	int	token;
1828 	int	mount_opt;
1829 	int	flags;
1830 } ext4_mount_opts[] = {
1831 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1832 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1833 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1834 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1835 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1836 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1837 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1838 	 MOPT_EXT4_ONLY | MOPT_SET},
1839 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1840 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1841 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1842 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1843 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1844 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1845 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1846 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1847 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1848 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1849 	{Opt_commit, 0, MOPT_NO_EXT2},
1850 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1851 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1852 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1853 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1854 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1855 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1856 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1857 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1858 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1859 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1860 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1861 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1862 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1863 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1864 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1865 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1866 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1867 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1868 	{Opt_data, 0, MOPT_NO_EXT2},
1869 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1870 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1871 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1872 #else
1873 	{Opt_acl, 0, MOPT_NOSUPPORT},
1874 #endif
1875 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1876 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1877 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1878 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1879 							MOPT_SET | MOPT_Q},
1880 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1881 							MOPT_SET | MOPT_Q},
1882 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1883 							MOPT_SET | MOPT_Q},
1884 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1885 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1886 							MOPT_CLEAR | MOPT_Q},
1887 	{Opt_usrjquota, 0, MOPT_Q},
1888 	{Opt_grpjquota, 0, MOPT_Q},
1889 	{Opt_jqfmt, 0, MOPT_QFMT},
1890 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1891 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1892 	 MOPT_SET},
1893 #ifdef CONFIG_EXT4_DEBUG
1894 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1895 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1896 #endif
1897 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1898 	{Opt_err, 0, 0}
1899 };
1900 
1901 #if IS_ENABLED(CONFIG_UNICODE)
1902 static const struct ext4_sb_encodings {
1903 	__u16 magic;
1904 	char *name;
1905 	unsigned int version;
1906 } ext4_sb_encoding_map[] = {
1907 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1908 };
1909 
1910 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1911 ext4_sb_read_encoding(const struct ext4_super_block *es)
1912 {
1913 	__u16 magic = le16_to_cpu(es->s_encoding);
1914 	int i;
1915 
1916 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1917 		if (magic == ext4_sb_encoding_map[i].magic)
1918 			return &ext4_sb_encoding_map[i];
1919 
1920 	return NULL;
1921 }
1922 #endif
1923 
1924 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1925 #define EXT4_SPEC_JQFMT				(1 <<  1)
1926 #define EXT4_SPEC_DATAJ				(1 <<  2)
1927 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1928 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1929 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1930 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1931 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1932 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1933 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1934 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1935 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1936 #define EXT4_SPEC_s_stripe			(1 << 13)
1937 #define EXT4_SPEC_s_resuid			(1 << 14)
1938 #define EXT4_SPEC_s_resgid			(1 << 15)
1939 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1940 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1941 #define EXT4_SPEC_s_sb_block			(1 << 18)
1942 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1943 
1944 struct ext4_fs_context {
1945 	char		*s_qf_names[EXT4_MAXQUOTAS];
1946 	struct fscrypt_dummy_policy dummy_enc_policy;
1947 	int		s_jquota_fmt;	/* Format of quota to use */
1948 #ifdef CONFIG_EXT4_DEBUG
1949 	int s_fc_debug_max_replay;
1950 #endif
1951 	unsigned short	qname_spec;
1952 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1953 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1954 	unsigned long	journal_devnum;
1955 	unsigned long	s_commit_interval;
1956 	unsigned long	s_stripe;
1957 	unsigned int	s_inode_readahead_blks;
1958 	unsigned int	s_want_extra_isize;
1959 	unsigned int	s_li_wait_mult;
1960 	unsigned int	s_max_dir_size_kb;
1961 	unsigned int	journal_ioprio;
1962 	unsigned int	vals_s_mount_opt;
1963 	unsigned int	mask_s_mount_opt;
1964 	unsigned int	vals_s_mount_opt2;
1965 	unsigned int	mask_s_mount_opt2;
1966 	unsigned int	opt_flags;	/* MOPT flags */
1967 	unsigned int	spec;
1968 	u32		s_max_batch_time;
1969 	u32		s_min_batch_time;
1970 	kuid_t		s_resuid;
1971 	kgid_t		s_resgid;
1972 	ext4_fsblk_t	s_sb_block;
1973 };
1974 
ext4_fc_free(struct fs_context * fc)1975 static void ext4_fc_free(struct fs_context *fc)
1976 {
1977 	struct ext4_fs_context *ctx = fc->fs_private;
1978 	int i;
1979 
1980 	if (!ctx)
1981 		return;
1982 
1983 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1984 		kfree(ctx->s_qf_names[i]);
1985 
1986 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1987 	kfree(ctx);
1988 }
1989 
ext4_init_fs_context(struct fs_context * fc)1990 int ext4_init_fs_context(struct fs_context *fc)
1991 {
1992 	struct ext4_fs_context *ctx;
1993 
1994 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1995 	if (!ctx)
1996 		return -ENOMEM;
1997 
1998 	fc->fs_private = ctx;
1999 	fc->ops = &ext4_context_ops;
2000 
2001 	return 0;
2002 }
2003 
2004 #ifdef CONFIG_QUOTA
2005 /*
2006  * Note the name of the specified quota file.
2007  */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2008 static int note_qf_name(struct fs_context *fc, int qtype,
2009 		       struct fs_parameter *param)
2010 {
2011 	struct ext4_fs_context *ctx = fc->fs_private;
2012 	char *qname;
2013 
2014 	if (param->size < 1) {
2015 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2016 		return -EINVAL;
2017 	}
2018 	if (strchr(param->string, '/')) {
2019 		ext4_msg(NULL, KERN_ERR,
2020 			 "quotafile must be on filesystem root");
2021 		return -EINVAL;
2022 	}
2023 	if (ctx->s_qf_names[qtype]) {
2024 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2025 			ext4_msg(NULL, KERN_ERR,
2026 				 "%s quota file already specified",
2027 				 QTYPE2NAME(qtype));
2028 			return -EINVAL;
2029 		}
2030 		return 0;
2031 	}
2032 
2033 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2034 	if (!qname) {
2035 		ext4_msg(NULL, KERN_ERR,
2036 			 "Not enough memory for storing quotafile name");
2037 		return -ENOMEM;
2038 	}
2039 	ctx->s_qf_names[qtype] = qname;
2040 	ctx->qname_spec |= 1 << qtype;
2041 	ctx->spec |= EXT4_SPEC_JQUOTA;
2042 	return 0;
2043 }
2044 
2045 /*
2046  * Clear the name of the specified quota file.
2047  */
unnote_qf_name(struct fs_context * fc,int qtype)2048 static int unnote_qf_name(struct fs_context *fc, int qtype)
2049 {
2050 	struct ext4_fs_context *ctx = fc->fs_private;
2051 
2052 	kfree(ctx->s_qf_names[qtype]);
2053 
2054 	ctx->s_qf_names[qtype] = NULL;
2055 	ctx->qname_spec |= 1 << qtype;
2056 	ctx->spec |= EXT4_SPEC_JQUOTA;
2057 	return 0;
2058 }
2059 #endif
2060 
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2061 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2062 					    struct ext4_fs_context *ctx)
2063 {
2064 	int err;
2065 
2066 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2067 		ext4_msg(NULL, KERN_WARNING,
2068 			 "test_dummy_encryption option not supported");
2069 		return -EINVAL;
2070 	}
2071 	err = fscrypt_parse_test_dummy_encryption(param,
2072 						  &ctx->dummy_enc_policy);
2073 	if (err == -EINVAL) {
2074 		ext4_msg(NULL, KERN_WARNING,
2075 			 "Value of option \"%s\" is unrecognized", param->key);
2076 	} else if (err == -EEXIST) {
2077 		ext4_msg(NULL, KERN_WARNING,
2078 			 "Conflicting test_dummy_encryption options");
2079 		return -EINVAL;
2080 	}
2081 	return err;
2082 }
2083 
2084 #define EXT4_SET_CTX(name)						\
2085 static inline __maybe_unused						\
2086 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2087 {									\
2088 	ctx->mask_s_##name |= flag;					\
2089 	ctx->vals_s_##name |= flag;					\
2090 }
2091 
2092 #define EXT4_CLEAR_CTX(name)						\
2093 static inline __maybe_unused						\
2094 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2095 {									\
2096 	ctx->mask_s_##name |= flag;					\
2097 	ctx->vals_s_##name &= ~flag;					\
2098 }
2099 
2100 #define EXT4_TEST_CTX(name)						\
2101 static inline unsigned long						\
2102 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2103 {									\
2104 	return (ctx->vals_s_##name & flag);				\
2105 }
2106 
2107 EXT4_SET_CTX(flags); /* set only */
2108 EXT4_SET_CTX(mount_opt);
2109 EXT4_CLEAR_CTX(mount_opt);
2110 EXT4_TEST_CTX(mount_opt);
2111 EXT4_SET_CTX(mount_opt2);
2112 EXT4_CLEAR_CTX(mount_opt2);
2113 EXT4_TEST_CTX(mount_opt2);
2114 
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2115 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2116 {
2117 	struct ext4_fs_context *ctx = fc->fs_private;
2118 	struct fs_parse_result result;
2119 	const struct mount_opts *m;
2120 	int is_remount;
2121 	int token;
2122 
2123 	token = fs_parse(fc, ext4_param_specs, param, &result);
2124 	if (token < 0)
2125 		return token;
2126 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2127 
2128 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2129 		if (token == m->token)
2130 			break;
2131 
2132 	ctx->opt_flags |= m->flags;
2133 
2134 	if (m->flags & MOPT_EXPLICIT) {
2135 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2136 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2137 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2138 			ctx_set_mount_opt2(ctx,
2139 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2140 		} else
2141 			return -EINVAL;
2142 	}
2143 
2144 	if (m->flags & MOPT_NOSUPPORT) {
2145 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2146 			 param->key);
2147 		return 0;
2148 	}
2149 
2150 	switch (token) {
2151 #ifdef CONFIG_QUOTA
2152 	case Opt_usrjquota:
2153 		if (!*param->string)
2154 			return unnote_qf_name(fc, USRQUOTA);
2155 		else
2156 			return note_qf_name(fc, USRQUOTA, param);
2157 	case Opt_grpjquota:
2158 		if (!*param->string)
2159 			return unnote_qf_name(fc, GRPQUOTA);
2160 		else
2161 			return note_qf_name(fc, GRPQUOTA, param);
2162 #endif
2163 	case Opt_sb:
2164 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2165 			ext4_msg(NULL, KERN_WARNING,
2166 				 "Ignoring %s option on remount", param->key);
2167 		} else {
2168 			ctx->s_sb_block = result.uint_32;
2169 			ctx->spec |= EXT4_SPEC_s_sb_block;
2170 		}
2171 		return 0;
2172 	case Opt_removed:
2173 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2174 			 param->key);
2175 		return 0;
2176 	case Opt_inlinecrypt:
2177 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2178 		ctx_set_flags(ctx, SB_INLINECRYPT);
2179 #else
2180 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2181 #endif
2182 		return 0;
2183 	case Opt_errors:
2184 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2185 		ctx_set_mount_opt(ctx, result.uint_32);
2186 		return 0;
2187 #ifdef CONFIG_QUOTA
2188 	case Opt_jqfmt:
2189 		ctx->s_jquota_fmt = result.uint_32;
2190 		ctx->spec |= EXT4_SPEC_JQFMT;
2191 		return 0;
2192 #endif
2193 	case Opt_data:
2194 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2195 		ctx_set_mount_opt(ctx, result.uint_32);
2196 		ctx->spec |= EXT4_SPEC_DATAJ;
2197 		return 0;
2198 	case Opt_commit:
2199 		if (result.uint_32 == 0)
2200 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2201 		else if (result.uint_32 > INT_MAX / HZ) {
2202 			ext4_msg(NULL, KERN_ERR,
2203 				 "Invalid commit interval %d, "
2204 				 "must be smaller than %d",
2205 				 result.uint_32, INT_MAX / HZ);
2206 			return -EINVAL;
2207 		}
2208 		ctx->s_commit_interval = HZ * result.uint_32;
2209 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2210 		return 0;
2211 	case Opt_debug_want_extra_isize:
2212 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2213 			ext4_msg(NULL, KERN_ERR,
2214 				 "Invalid want_extra_isize %d", result.uint_32);
2215 			return -EINVAL;
2216 		}
2217 		ctx->s_want_extra_isize = result.uint_32;
2218 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2219 		return 0;
2220 	case Opt_max_batch_time:
2221 		ctx->s_max_batch_time = result.uint_32;
2222 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2223 		return 0;
2224 	case Opt_min_batch_time:
2225 		ctx->s_min_batch_time = result.uint_32;
2226 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2227 		return 0;
2228 	case Opt_inode_readahead_blks:
2229 		if (result.uint_32 &&
2230 		    (result.uint_32 > (1 << 30) ||
2231 		     !is_power_of_2(result.uint_32))) {
2232 			ext4_msg(NULL, KERN_ERR,
2233 				 "EXT4-fs: inode_readahead_blks must be "
2234 				 "0 or a power of 2 smaller than 2^31");
2235 			return -EINVAL;
2236 		}
2237 		ctx->s_inode_readahead_blks = result.uint_32;
2238 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2239 		return 0;
2240 	case Opt_init_itable:
2241 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2242 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2243 		if (param->type == fs_value_is_string)
2244 			ctx->s_li_wait_mult = result.uint_32;
2245 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2246 		return 0;
2247 	case Opt_max_dir_size_kb:
2248 		ctx->s_max_dir_size_kb = result.uint_32;
2249 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2250 		return 0;
2251 #ifdef CONFIG_EXT4_DEBUG
2252 	case Opt_fc_debug_max_replay:
2253 		ctx->s_fc_debug_max_replay = result.uint_32;
2254 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2255 		return 0;
2256 #endif
2257 	case Opt_stripe:
2258 		ctx->s_stripe = result.uint_32;
2259 		ctx->spec |= EXT4_SPEC_s_stripe;
2260 		return 0;
2261 	case Opt_resuid:
2262 		ctx->s_resuid = result.uid;
2263 		ctx->spec |= EXT4_SPEC_s_resuid;
2264 		return 0;
2265 	case Opt_resgid:
2266 		ctx->s_resgid = result.gid;
2267 		ctx->spec |= EXT4_SPEC_s_resgid;
2268 		return 0;
2269 	case Opt_journal_dev:
2270 		if (is_remount) {
2271 			ext4_msg(NULL, KERN_ERR,
2272 				 "Cannot specify journal on remount");
2273 			return -EINVAL;
2274 		}
2275 		ctx->journal_devnum = result.uint_32;
2276 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2277 		return 0;
2278 	case Opt_journal_path:
2279 	{
2280 		struct inode *journal_inode;
2281 		struct path path;
2282 		int error;
2283 
2284 		if (is_remount) {
2285 			ext4_msg(NULL, KERN_ERR,
2286 				 "Cannot specify journal on remount");
2287 			return -EINVAL;
2288 		}
2289 
2290 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2291 		if (error) {
2292 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2293 				 "journal device path");
2294 			return -EINVAL;
2295 		}
2296 
2297 		journal_inode = d_inode(path.dentry);
2298 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2299 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2300 		path_put(&path);
2301 		return 0;
2302 	}
2303 	case Opt_journal_ioprio:
2304 		if (result.uint_32 > 7) {
2305 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2306 				 " (must be 0-7)");
2307 			return -EINVAL;
2308 		}
2309 		ctx->journal_ioprio =
2310 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2311 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2312 		return 0;
2313 	case Opt_test_dummy_encryption:
2314 		return ext4_parse_test_dummy_encryption(param, ctx);
2315 	case Opt_dax:
2316 	case Opt_dax_type:
2317 #ifdef CONFIG_FS_DAX
2318 	{
2319 		int type = (token == Opt_dax) ?
2320 			   Opt_dax : result.uint_32;
2321 
2322 		switch (type) {
2323 		case Opt_dax:
2324 		case Opt_dax_always:
2325 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2326 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2327 			break;
2328 		case Opt_dax_never:
2329 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2330 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2331 			break;
2332 		case Opt_dax_inode:
2333 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2334 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2335 			/* Strictly for printing options */
2336 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2337 			break;
2338 		}
2339 		return 0;
2340 	}
2341 #else
2342 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2343 		return -EINVAL;
2344 #endif
2345 	case Opt_data_err:
2346 		if (result.uint_32 == Opt_data_err_abort)
2347 			ctx_set_mount_opt(ctx, m->mount_opt);
2348 		else if (result.uint_32 == Opt_data_err_ignore)
2349 			ctx_clear_mount_opt(ctx, m->mount_opt);
2350 		return 0;
2351 	case Opt_mb_optimize_scan:
2352 		if (result.int_32 == 1) {
2353 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2354 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2355 		} else if (result.int_32 == 0) {
2356 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2357 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2358 		} else {
2359 			ext4_msg(NULL, KERN_WARNING,
2360 				 "mb_optimize_scan should be set to 0 or 1.");
2361 			return -EINVAL;
2362 		}
2363 		return 0;
2364 	}
2365 
2366 	/*
2367 	 * At this point we should only be getting options requiring MOPT_SET,
2368 	 * or MOPT_CLEAR. Anything else is a bug
2369 	 */
2370 	if (m->token == Opt_err) {
2371 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2372 			 param->key);
2373 		WARN_ON(1);
2374 		return -EINVAL;
2375 	}
2376 
2377 	else {
2378 		unsigned int set = 0;
2379 
2380 		if ((param->type == fs_value_is_flag) ||
2381 		    result.uint_32 > 0)
2382 			set = 1;
2383 
2384 		if (m->flags & MOPT_CLEAR)
2385 			set = !set;
2386 		else if (unlikely(!(m->flags & MOPT_SET))) {
2387 			ext4_msg(NULL, KERN_WARNING,
2388 				 "buggy handling of option %s",
2389 				 param->key);
2390 			WARN_ON(1);
2391 			return -EINVAL;
2392 		}
2393 		if (m->flags & MOPT_2) {
2394 			if (set != 0)
2395 				ctx_set_mount_opt2(ctx, m->mount_opt);
2396 			else
2397 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2398 		} else {
2399 			if (set != 0)
2400 				ctx_set_mount_opt(ctx, m->mount_opt);
2401 			else
2402 				ctx_clear_mount_opt(ctx, m->mount_opt);
2403 		}
2404 	}
2405 
2406 	return 0;
2407 }
2408 
parse_options(struct fs_context * fc,char * options)2409 static int parse_options(struct fs_context *fc, char *options)
2410 {
2411 	struct fs_parameter param;
2412 	int ret;
2413 	char *key;
2414 
2415 	if (!options)
2416 		return 0;
2417 
2418 	while ((key = strsep(&options, ",")) != NULL) {
2419 		if (*key) {
2420 			size_t v_len = 0;
2421 			char *value = strchr(key, '=');
2422 
2423 			param.type = fs_value_is_flag;
2424 			param.string = NULL;
2425 
2426 			if (value) {
2427 				if (value == key)
2428 					continue;
2429 
2430 				*value++ = 0;
2431 				v_len = strlen(value);
2432 				param.string = kmemdup_nul(value, v_len,
2433 							   GFP_KERNEL);
2434 				if (!param.string)
2435 					return -ENOMEM;
2436 				param.type = fs_value_is_string;
2437 			}
2438 
2439 			param.key = key;
2440 			param.size = v_len;
2441 
2442 			ret = ext4_parse_param(fc, &param);
2443 			kfree(param.string);
2444 			if (ret < 0)
2445 				return ret;
2446 		}
2447 	}
2448 
2449 	ret = ext4_validate_options(fc);
2450 	if (ret < 0)
2451 		return ret;
2452 
2453 	return 0;
2454 }
2455 
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2456 static int parse_apply_sb_mount_options(struct super_block *sb,
2457 					struct ext4_fs_context *m_ctx)
2458 {
2459 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2460 	char *s_mount_opts = NULL;
2461 	struct ext4_fs_context *s_ctx = NULL;
2462 	struct fs_context *fc = NULL;
2463 	int ret = -ENOMEM;
2464 
2465 	if (!sbi->s_es->s_mount_opts[0])
2466 		return 0;
2467 
2468 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2469 				sizeof(sbi->s_es->s_mount_opts),
2470 				GFP_KERNEL);
2471 	if (!s_mount_opts)
2472 		return ret;
2473 
2474 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2475 	if (!fc)
2476 		goto out_free;
2477 
2478 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2479 	if (!s_ctx)
2480 		goto out_free;
2481 
2482 	fc->fs_private = s_ctx;
2483 	fc->s_fs_info = sbi;
2484 
2485 	ret = parse_options(fc, s_mount_opts);
2486 	if (ret < 0)
2487 		goto parse_failed;
2488 
2489 	ret = ext4_check_opt_consistency(fc, sb);
2490 	if (ret < 0) {
2491 parse_failed:
2492 		ext4_msg(sb, KERN_WARNING,
2493 			 "failed to parse options in superblock: %s",
2494 			 s_mount_opts);
2495 		ret = 0;
2496 		goto out_free;
2497 	}
2498 
2499 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2500 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2501 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2502 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2503 
2504 	ext4_apply_options(fc, sb);
2505 	ret = 0;
2506 
2507 out_free:
2508 	if (fc) {
2509 		ext4_fc_free(fc);
2510 		kfree(fc);
2511 	}
2512 	kfree(s_mount_opts);
2513 	return ret;
2514 }
2515 
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2516 static void ext4_apply_quota_options(struct fs_context *fc,
2517 				     struct super_block *sb)
2518 {
2519 #ifdef CONFIG_QUOTA
2520 	bool quota_feature = ext4_has_feature_quota(sb);
2521 	struct ext4_fs_context *ctx = fc->fs_private;
2522 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2523 	char *qname;
2524 	int i;
2525 
2526 	if (quota_feature)
2527 		return;
2528 
2529 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2530 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2531 			if (!(ctx->qname_spec & (1 << i)))
2532 				continue;
2533 
2534 			qname = ctx->s_qf_names[i]; /* May be NULL */
2535 			if (qname)
2536 				set_opt(sb, QUOTA);
2537 			ctx->s_qf_names[i] = NULL;
2538 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2539 						lockdep_is_held(&sb->s_umount));
2540 			if (qname)
2541 				kfree_rcu_mightsleep(qname);
2542 		}
2543 	}
2544 
2545 	if (ctx->spec & EXT4_SPEC_JQFMT)
2546 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2547 #endif
2548 }
2549 
2550 /*
2551  * Check quota settings consistency.
2552  */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2553 static int ext4_check_quota_consistency(struct fs_context *fc,
2554 					struct super_block *sb)
2555 {
2556 #ifdef CONFIG_QUOTA
2557 	struct ext4_fs_context *ctx = fc->fs_private;
2558 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2559 	bool quota_feature = ext4_has_feature_quota(sb);
2560 	bool quota_loaded = sb_any_quota_loaded(sb);
2561 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2562 	int quota_flags, i;
2563 
2564 	/*
2565 	 * We do the test below only for project quotas. 'usrquota' and
2566 	 * 'grpquota' mount options are allowed even without quota feature
2567 	 * to support legacy quotas in quota files.
2568 	 */
2569 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2570 	    !ext4_has_feature_project(sb)) {
2571 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2572 			 "Cannot enable project quota enforcement.");
2573 		return -EINVAL;
2574 	}
2575 
2576 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2577 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2578 	if (quota_loaded &&
2579 	    ctx->mask_s_mount_opt & quota_flags &&
2580 	    !ctx_test_mount_opt(ctx, quota_flags))
2581 		goto err_quota_change;
2582 
2583 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2584 
2585 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2586 			if (!(ctx->qname_spec & (1 << i)))
2587 				continue;
2588 
2589 			if (quota_loaded &&
2590 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2591 				goto err_jquota_change;
2592 
2593 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2594 			    strcmp(get_qf_name(sb, sbi, i),
2595 				   ctx->s_qf_names[i]) != 0)
2596 				goto err_jquota_specified;
2597 		}
2598 
2599 		if (quota_feature) {
2600 			ext4_msg(NULL, KERN_INFO,
2601 				 "Journaled quota options ignored when "
2602 				 "QUOTA feature is enabled");
2603 			return 0;
2604 		}
2605 	}
2606 
2607 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2608 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2609 			goto err_jquota_change;
2610 		if (quota_feature) {
2611 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2612 				 "ignored when QUOTA feature is enabled");
2613 			return 0;
2614 		}
2615 	}
2616 
2617 	/* Make sure we don't mix old and new quota format */
2618 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2619 		       ctx->s_qf_names[USRQUOTA]);
2620 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2621 		       ctx->s_qf_names[GRPQUOTA]);
2622 
2623 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2624 		    test_opt(sb, USRQUOTA));
2625 
2626 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2627 		    test_opt(sb, GRPQUOTA));
2628 
2629 	if (usr_qf_name) {
2630 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2631 		usrquota = false;
2632 	}
2633 	if (grp_qf_name) {
2634 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2635 		grpquota = false;
2636 	}
2637 
2638 	if (usr_qf_name || grp_qf_name) {
2639 		if (usrquota || grpquota) {
2640 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2641 				 "format mixing");
2642 			return -EINVAL;
2643 		}
2644 
2645 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2646 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2647 				 "not specified");
2648 			return -EINVAL;
2649 		}
2650 	}
2651 
2652 	return 0;
2653 
2654 err_quota_change:
2655 	ext4_msg(NULL, KERN_ERR,
2656 		 "Cannot change quota options when quota turned on");
2657 	return -EINVAL;
2658 err_jquota_change:
2659 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2660 		 "options when quota turned on");
2661 	return -EINVAL;
2662 err_jquota_specified:
2663 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2664 		 QTYPE2NAME(i));
2665 	return -EINVAL;
2666 #else
2667 	return 0;
2668 #endif
2669 }
2670 
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2671 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2672 					    struct super_block *sb)
2673 {
2674 	const struct ext4_fs_context *ctx = fc->fs_private;
2675 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2676 
2677 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2678 		return 0;
2679 
2680 	if (!ext4_has_feature_encrypt(sb)) {
2681 		ext4_msg(NULL, KERN_WARNING,
2682 			 "test_dummy_encryption requires encrypt feature");
2683 		return -EINVAL;
2684 	}
2685 	/*
2686 	 * This mount option is just for testing, and it's not worthwhile to
2687 	 * implement the extra complexity (e.g. RCU protection) that would be
2688 	 * needed to allow it to be set or changed during remount.  We do allow
2689 	 * it to be specified during remount, but only if there is no change.
2690 	 */
2691 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2692 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2693 						 &ctx->dummy_enc_policy))
2694 			return 0;
2695 		ext4_msg(NULL, KERN_WARNING,
2696 			 "Can't set or change test_dummy_encryption on remount");
2697 		return -EINVAL;
2698 	}
2699 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2700 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2701 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2702 						 &ctx->dummy_enc_policy))
2703 			return 0;
2704 		ext4_msg(NULL, KERN_WARNING,
2705 			 "Conflicting test_dummy_encryption options");
2706 		return -EINVAL;
2707 	}
2708 	return 0;
2709 }
2710 
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2711 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2712 					     struct super_block *sb)
2713 {
2714 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2715 	    /* if already set, it was already verified to be the same */
2716 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2717 		return;
2718 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2719 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2720 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2721 }
2722 
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2723 static int ext4_check_opt_consistency(struct fs_context *fc,
2724 				      struct super_block *sb)
2725 {
2726 	struct ext4_fs_context *ctx = fc->fs_private;
2727 	struct ext4_sb_info *sbi = fc->s_fs_info;
2728 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2729 	int err;
2730 
2731 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2732 		ext4_msg(NULL, KERN_ERR,
2733 			 "Mount option(s) incompatible with ext2");
2734 		return -EINVAL;
2735 	}
2736 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2737 		ext4_msg(NULL, KERN_ERR,
2738 			 "Mount option(s) incompatible with ext3");
2739 		return -EINVAL;
2740 	}
2741 
2742 	if (ctx->s_want_extra_isize >
2743 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2744 		ext4_msg(NULL, KERN_ERR,
2745 			 "Invalid want_extra_isize %d",
2746 			 ctx->s_want_extra_isize);
2747 		return -EINVAL;
2748 	}
2749 
2750 	err = ext4_check_test_dummy_encryption(fc, sb);
2751 	if (err)
2752 		return err;
2753 
2754 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2755 		if (!sbi->s_journal) {
2756 			ext4_msg(NULL, KERN_WARNING,
2757 				 "Remounting file system with no journal "
2758 				 "so ignoring journalled data option");
2759 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2760 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2761 			   test_opt(sb, DATA_FLAGS)) {
2762 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2763 				 "on remount");
2764 			return -EINVAL;
2765 		}
2766 	}
2767 
2768 	if (is_remount) {
2769 		if (!sbi->s_journal &&
2770 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) {
2771 			ext4_msg(NULL, KERN_WARNING,
2772 				 "Remounting fs w/o journal so ignoring data_err option");
2773 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT);
2774 		}
2775 
2776 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2777 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2778 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2779 				 "both data=journal and dax");
2780 			return -EINVAL;
2781 		}
2782 
2783 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2784 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2785 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2786 fail_dax_change_remount:
2787 			ext4_msg(NULL, KERN_ERR, "can't change "
2788 				 "dax mount option while remounting");
2789 			return -EINVAL;
2790 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2791 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2792 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2793 			goto fail_dax_change_remount;
2794 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2795 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2796 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2797 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2798 			goto fail_dax_change_remount;
2799 		}
2800 	}
2801 
2802 	return ext4_check_quota_consistency(fc, sb);
2803 }
2804 
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2805 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2806 {
2807 	struct ext4_fs_context *ctx = fc->fs_private;
2808 	struct ext4_sb_info *sbi = fc->s_fs_info;
2809 
2810 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2811 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2812 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2813 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2814 	sb->s_flags &= ~ctx->mask_s_flags;
2815 	sb->s_flags |= ctx->vals_s_flags;
2816 
2817 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2818 	APPLY(s_commit_interval);
2819 	APPLY(s_stripe);
2820 	APPLY(s_max_batch_time);
2821 	APPLY(s_min_batch_time);
2822 	APPLY(s_want_extra_isize);
2823 	APPLY(s_inode_readahead_blks);
2824 	APPLY(s_max_dir_size_kb);
2825 	APPLY(s_li_wait_mult);
2826 	APPLY(s_resgid);
2827 	APPLY(s_resuid);
2828 
2829 #ifdef CONFIG_EXT4_DEBUG
2830 	APPLY(s_fc_debug_max_replay);
2831 #endif
2832 
2833 	ext4_apply_quota_options(fc, sb);
2834 	ext4_apply_test_dummy_encryption(ctx, sb);
2835 }
2836 
2837 
ext4_validate_options(struct fs_context * fc)2838 static int ext4_validate_options(struct fs_context *fc)
2839 {
2840 #ifdef CONFIG_QUOTA
2841 	struct ext4_fs_context *ctx = fc->fs_private;
2842 	char *usr_qf_name, *grp_qf_name;
2843 
2844 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2845 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2846 
2847 	if (usr_qf_name || grp_qf_name) {
2848 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2849 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2850 
2851 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2852 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2853 
2854 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2855 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2856 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2857 				 "format mixing");
2858 			return -EINVAL;
2859 		}
2860 	}
2861 #endif
2862 	return 1;
2863 }
2864 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2865 static inline void ext4_show_quota_options(struct seq_file *seq,
2866 					   struct super_block *sb)
2867 {
2868 #if defined(CONFIG_QUOTA)
2869 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2870 	char *usr_qf_name, *grp_qf_name;
2871 
2872 	if (sbi->s_jquota_fmt) {
2873 		char *fmtname = "";
2874 
2875 		switch (sbi->s_jquota_fmt) {
2876 		case QFMT_VFS_OLD:
2877 			fmtname = "vfsold";
2878 			break;
2879 		case QFMT_VFS_V0:
2880 			fmtname = "vfsv0";
2881 			break;
2882 		case QFMT_VFS_V1:
2883 			fmtname = "vfsv1";
2884 			break;
2885 		}
2886 		seq_printf(seq, ",jqfmt=%s", fmtname);
2887 	}
2888 
2889 	rcu_read_lock();
2890 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2891 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2892 	if (usr_qf_name)
2893 		seq_show_option(seq, "usrjquota", usr_qf_name);
2894 	if (grp_qf_name)
2895 		seq_show_option(seq, "grpjquota", grp_qf_name);
2896 	rcu_read_unlock();
2897 #endif
2898 }
2899 
token2str(int token)2900 static const char *token2str(int token)
2901 {
2902 	const struct fs_parameter_spec *spec;
2903 
2904 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2905 		if (spec->opt == token && !spec->type)
2906 			break;
2907 	return spec->name;
2908 }
2909 
2910 /*
2911  * Show an option if
2912  *  - it's set to a non-default value OR
2913  *  - if the per-sb default is different from the global default
2914  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2915 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2916 			      int nodefs)
2917 {
2918 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2919 	struct ext4_super_block *es = sbi->s_es;
2920 	int def_errors;
2921 	const struct mount_opts *m;
2922 	char sep = nodefs ? '\n' : ',';
2923 
2924 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2925 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2926 
2927 	if (sbi->s_sb_block != 1)
2928 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2929 
2930 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2931 		int want_set = m->flags & MOPT_SET;
2932 		int opt_2 = m->flags & MOPT_2;
2933 		unsigned int mount_opt, def_mount_opt;
2934 
2935 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2936 		    m->flags & MOPT_SKIP)
2937 			continue;
2938 
2939 		if (opt_2) {
2940 			mount_opt = sbi->s_mount_opt2;
2941 			def_mount_opt = sbi->s_def_mount_opt2;
2942 		} else {
2943 			mount_opt = sbi->s_mount_opt;
2944 			def_mount_opt = sbi->s_def_mount_opt;
2945 		}
2946 		/* skip if same as the default */
2947 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2948 			continue;
2949 		/* select Opt_noFoo vs Opt_Foo */
2950 		if ((want_set &&
2951 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2952 		    (!want_set && (mount_opt & m->mount_opt)))
2953 			continue;
2954 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2955 	}
2956 
2957 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2958 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2959 		SEQ_OPTS_PRINT("resuid=%u",
2960 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2961 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2962 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2963 		SEQ_OPTS_PRINT("resgid=%u",
2964 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2965 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2966 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2967 		SEQ_OPTS_PUTS("errors=remount-ro");
2968 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2969 		SEQ_OPTS_PUTS("errors=continue");
2970 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2971 		SEQ_OPTS_PUTS("errors=panic");
2972 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2973 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2974 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2975 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2976 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2977 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2978 	if (nodefs || sbi->s_stripe)
2979 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2980 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2981 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2982 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2983 			SEQ_OPTS_PUTS("data=journal");
2984 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2985 			SEQ_OPTS_PUTS("data=ordered");
2986 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2987 			SEQ_OPTS_PUTS("data=writeback");
2988 	}
2989 	if (nodefs ||
2990 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2991 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2992 			       sbi->s_inode_readahead_blks);
2993 
2994 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2995 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2996 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2997 	if (nodefs || sbi->s_max_dir_size_kb)
2998 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2999 	if (test_opt(sb, DATA_ERR_ABORT))
3000 		SEQ_OPTS_PUTS("data_err=abort");
3001 
3002 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3003 
3004 	if (sb->s_flags & SB_INLINECRYPT)
3005 		SEQ_OPTS_PUTS("inlinecrypt");
3006 
3007 	if (test_opt(sb, DAX_ALWAYS)) {
3008 		if (IS_EXT2_SB(sb))
3009 			SEQ_OPTS_PUTS("dax");
3010 		else
3011 			SEQ_OPTS_PUTS("dax=always");
3012 	} else if (test_opt2(sb, DAX_NEVER)) {
3013 		SEQ_OPTS_PUTS("dax=never");
3014 	} else if (test_opt2(sb, DAX_INODE)) {
3015 		SEQ_OPTS_PUTS("dax=inode");
3016 	}
3017 
3018 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3019 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3020 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3021 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3022 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3023 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3024 	}
3025 
3026 	if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3027 		SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3028 
3029 	if (ext4_emergency_ro(sb))
3030 		SEQ_OPTS_PUTS("emergency_ro");
3031 
3032 	if (ext4_forced_shutdown(sb))
3033 		SEQ_OPTS_PUTS("shutdown");
3034 
3035 	ext4_show_quota_options(seq, sb);
3036 	return 0;
3037 }
3038 
ext4_show_options(struct seq_file * seq,struct dentry * root)3039 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3040 {
3041 	return _ext4_show_options(seq, root->d_sb, 0);
3042 }
3043 
ext4_seq_options_show(struct seq_file * seq,void * offset)3044 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3045 {
3046 	struct super_block *sb = seq->private;
3047 	int rc;
3048 
3049 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3050 	rc = _ext4_show_options(seq, sb, 1);
3051 	seq_putc(seq, '\n');
3052 	return rc;
3053 }
3054 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3055 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3056 			    int read_only)
3057 {
3058 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3059 	int err = 0;
3060 
3061 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3062 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3063 			 "forcing read-only mode");
3064 		err = -EROFS;
3065 		goto done;
3066 	}
3067 	if (read_only)
3068 		goto done;
3069 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3070 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3071 			 "running e2fsck is recommended");
3072 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3073 		ext4_msg(sb, KERN_WARNING,
3074 			 "warning: mounting fs with errors, "
3075 			 "running e2fsck is recommended");
3076 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3077 		 le16_to_cpu(es->s_mnt_count) >=
3078 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3079 		ext4_msg(sb, KERN_WARNING,
3080 			 "warning: maximal mount count reached, "
3081 			 "running e2fsck is recommended");
3082 	else if (le32_to_cpu(es->s_checkinterval) &&
3083 		 (ext4_get_tstamp(es, s_lastcheck) +
3084 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3085 		ext4_msg(sb, KERN_WARNING,
3086 			 "warning: checktime reached, "
3087 			 "running e2fsck is recommended");
3088 	if (!sbi->s_journal)
3089 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3090 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3091 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3092 	le16_add_cpu(&es->s_mnt_count, 1);
3093 	ext4_update_tstamp(es, s_mtime);
3094 	if (sbi->s_journal) {
3095 		ext4_set_feature_journal_needs_recovery(sb);
3096 		if (ext4_has_feature_orphan_file(sb))
3097 			ext4_set_feature_orphan_present(sb);
3098 	}
3099 
3100 	err = ext4_commit_super(sb);
3101 done:
3102 	if (test_opt(sb, DEBUG))
3103 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3104 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3105 			sb->s_blocksize,
3106 			sbi->s_groups_count,
3107 			EXT4_BLOCKS_PER_GROUP(sb),
3108 			EXT4_INODES_PER_GROUP(sb),
3109 			sbi->s_mount_opt, sbi->s_mount_opt2);
3110 	return err;
3111 }
3112 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3113 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3114 {
3115 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3116 	struct flex_groups **old_groups, **new_groups;
3117 	int size, i, j;
3118 
3119 	if (!sbi->s_log_groups_per_flex)
3120 		return 0;
3121 
3122 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3123 	if (size <= sbi->s_flex_groups_allocated)
3124 		return 0;
3125 
3126 	new_groups = kvzalloc(roundup_pow_of_two(size *
3127 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3128 	if (!new_groups) {
3129 		ext4_msg(sb, KERN_ERR,
3130 			 "not enough memory for %d flex group pointers", size);
3131 		return -ENOMEM;
3132 	}
3133 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3134 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3135 					 sizeof(struct flex_groups)),
3136 					 GFP_KERNEL);
3137 		if (!new_groups[i]) {
3138 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3139 				kvfree(new_groups[j]);
3140 			kvfree(new_groups);
3141 			ext4_msg(sb, KERN_ERR,
3142 				 "not enough memory for %d flex groups", size);
3143 			return -ENOMEM;
3144 		}
3145 	}
3146 	rcu_read_lock();
3147 	old_groups = rcu_dereference(sbi->s_flex_groups);
3148 	if (old_groups)
3149 		memcpy(new_groups, old_groups,
3150 		       (sbi->s_flex_groups_allocated *
3151 			sizeof(struct flex_groups *)));
3152 	rcu_read_unlock();
3153 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3154 	sbi->s_flex_groups_allocated = size;
3155 	if (old_groups)
3156 		ext4_kvfree_array_rcu(old_groups);
3157 	return 0;
3158 }
3159 
ext4_fill_flex_info(struct super_block * sb)3160 static int ext4_fill_flex_info(struct super_block *sb)
3161 {
3162 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3163 	struct ext4_group_desc *gdp = NULL;
3164 	struct flex_groups *fg;
3165 	ext4_group_t flex_group;
3166 	int i, err;
3167 
3168 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3169 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3170 		sbi->s_log_groups_per_flex = 0;
3171 		return 1;
3172 	}
3173 
3174 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3175 	if (err)
3176 		goto failed;
3177 
3178 	for (i = 0; i < sbi->s_groups_count; i++) {
3179 		gdp = ext4_get_group_desc(sb, i, NULL);
3180 
3181 		flex_group = ext4_flex_group(sbi, i);
3182 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3183 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3184 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3185 			     &fg->free_clusters);
3186 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3187 	}
3188 
3189 	return 1;
3190 failed:
3191 	return 0;
3192 }
3193 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3194 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3195 				   struct ext4_group_desc *gdp)
3196 {
3197 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3198 	__u16 crc = 0;
3199 	__le32 le_group = cpu_to_le32(block_group);
3200 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3201 
3202 	if (ext4_has_feature_metadata_csum(sbi->s_sb)) {
3203 		/* Use new metadata_csum algorithm */
3204 		__u32 csum32;
3205 		__u16 dummy_csum = 0;
3206 
3207 		csum32 = ext4_chksum(sbi->s_csum_seed, (__u8 *)&le_group,
3208 				     sizeof(le_group));
3209 		csum32 = ext4_chksum(csum32, (__u8 *)gdp, offset);
3210 		csum32 = ext4_chksum(csum32, (__u8 *)&dummy_csum,
3211 				     sizeof(dummy_csum));
3212 		offset += sizeof(dummy_csum);
3213 		if (offset < sbi->s_desc_size)
3214 			csum32 = ext4_chksum(csum32, (__u8 *)gdp + offset,
3215 					     sbi->s_desc_size - offset);
3216 
3217 		crc = csum32 & 0xFFFF;
3218 		goto out;
3219 	}
3220 
3221 	/* old crc16 code */
3222 	if (!ext4_has_feature_gdt_csum(sb))
3223 		return 0;
3224 
3225 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3226 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3227 	crc = crc16(crc, (__u8 *)gdp, offset);
3228 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3229 	/* for checksum of struct ext4_group_desc do the rest...*/
3230 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3231 		crc = crc16(crc, (__u8 *)gdp + offset,
3232 			    sbi->s_desc_size - offset);
3233 
3234 out:
3235 	return cpu_to_le16(crc);
3236 }
3237 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3238 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3239 				struct ext4_group_desc *gdp)
3240 {
3241 	if (ext4_has_group_desc_csum(sb) &&
3242 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3243 		return 0;
3244 
3245 	return 1;
3246 }
3247 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3248 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3249 			      struct ext4_group_desc *gdp)
3250 {
3251 	if (!ext4_has_group_desc_csum(sb))
3252 		return;
3253 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3254 }
3255 
3256 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3257 static int ext4_check_descriptors(struct super_block *sb,
3258 				  ext4_fsblk_t sb_block,
3259 				  ext4_group_t *first_not_zeroed)
3260 {
3261 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3262 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3263 	ext4_fsblk_t last_block;
3264 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3265 	ext4_fsblk_t block_bitmap;
3266 	ext4_fsblk_t inode_bitmap;
3267 	ext4_fsblk_t inode_table;
3268 	int flexbg_flag = 0;
3269 	ext4_group_t i, grp = sbi->s_groups_count;
3270 
3271 	if (ext4_has_feature_flex_bg(sb))
3272 		flexbg_flag = 1;
3273 
3274 	ext4_debug("Checking group descriptors");
3275 
3276 	for (i = 0; i < sbi->s_groups_count; i++) {
3277 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3278 
3279 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3280 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3281 		else
3282 			last_block = first_block +
3283 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3284 
3285 		if ((grp == sbi->s_groups_count) &&
3286 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3287 			grp = i;
3288 
3289 		block_bitmap = ext4_block_bitmap(sb, gdp);
3290 		if (block_bitmap == sb_block) {
3291 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3292 				 "Block bitmap for group %u overlaps "
3293 				 "superblock", i);
3294 			if (!sb_rdonly(sb))
3295 				return 0;
3296 		}
3297 		if (block_bitmap >= sb_block + 1 &&
3298 		    block_bitmap <= last_bg_block) {
3299 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3300 				 "Block bitmap for group %u overlaps "
3301 				 "block group descriptors", i);
3302 			if (!sb_rdonly(sb))
3303 				return 0;
3304 		}
3305 		if (block_bitmap < first_block || block_bitmap > last_block) {
3306 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3307 			       "Block bitmap for group %u not in group "
3308 			       "(block %llu)!", i, block_bitmap);
3309 			return 0;
3310 		}
3311 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3312 		if (inode_bitmap == sb_block) {
3313 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3314 				 "Inode bitmap for group %u overlaps "
3315 				 "superblock", i);
3316 			if (!sb_rdonly(sb))
3317 				return 0;
3318 		}
3319 		if (inode_bitmap >= sb_block + 1 &&
3320 		    inode_bitmap <= last_bg_block) {
3321 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3322 				 "Inode bitmap for group %u overlaps "
3323 				 "block group descriptors", i);
3324 			if (!sb_rdonly(sb))
3325 				return 0;
3326 		}
3327 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3328 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3329 			       "Inode bitmap for group %u not in group "
3330 			       "(block %llu)!", i, inode_bitmap);
3331 			return 0;
3332 		}
3333 		inode_table = ext4_inode_table(sb, gdp);
3334 		if (inode_table == sb_block) {
3335 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3336 				 "Inode table for group %u overlaps "
3337 				 "superblock", i);
3338 			if (!sb_rdonly(sb))
3339 				return 0;
3340 		}
3341 		if (inode_table >= sb_block + 1 &&
3342 		    inode_table <= last_bg_block) {
3343 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3344 				 "Inode table for group %u overlaps "
3345 				 "block group descriptors", i);
3346 			if (!sb_rdonly(sb))
3347 				return 0;
3348 		}
3349 		if (inode_table < first_block ||
3350 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3351 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3352 			       "Inode table for group %u not in group "
3353 			       "(block %llu)!", i, inode_table);
3354 			return 0;
3355 		}
3356 		ext4_lock_group(sb, i);
3357 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3358 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3359 				 "Checksum for group %u failed (%u!=%u)",
3360 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3361 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3362 			if (!sb_rdonly(sb)) {
3363 				ext4_unlock_group(sb, i);
3364 				return 0;
3365 			}
3366 		}
3367 		ext4_unlock_group(sb, i);
3368 		if (!flexbg_flag)
3369 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3370 	}
3371 	if (NULL != first_not_zeroed)
3372 		*first_not_zeroed = grp;
3373 	return 1;
3374 }
3375 
3376 /*
3377  * Maximal extent format file size.
3378  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3379  * extent format containers, within a sector_t, and within i_blocks
3380  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3381  * so that won't be a limiting factor.
3382  *
3383  * However there is other limiting factor. We do store extents in the form
3384  * of starting block and length, hence the resulting length of the extent
3385  * covering maximum file size must fit into on-disk format containers as
3386  * well. Given that length is always by 1 unit bigger than max unit (because
3387  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3388  *
3389  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3390  */
ext4_max_size(int blkbits,int has_huge_files)3391 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3392 {
3393 	loff_t res;
3394 	loff_t upper_limit = MAX_LFS_FILESIZE;
3395 
3396 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3397 
3398 	if (!has_huge_files) {
3399 		upper_limit = (1LL << 32) - 1;
3400 
3401 		/* total blocks in file system block size */
3402 		upper_limit >>= (blkbits - 9);
3403 		upper_limit <<= blkbits;
3404 	}
3405 
3406 	/*
3407 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3408 	 * by one fs block, so ee_len can cover the extent of maximum file
3409 	 * size
3410 	 */
3411 	res = (1LL << 32) - 1;
3412 	res <<= blkbits;
3413 
3414 	/* Sanity check against vm- & vfs- imposed limits */
3415 	if (res > upper_limit)
3416 		res = upper_limit;
3417 
3418 	return res;
3419 }
3420 
3421 /*
3422  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3423  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3424  * We need to be 1 filesystem block less than the 2^48 sector limit.
3425  */
ext4_max_bitmap_size(int bits,int has_huge_files)3426 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3427 {
3428 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3429 	int meta_blocks;
3430 	unsigned int ppb = 1 << (bits - 2);
3431 
3432 	/*
3433 	 * This is calculated to be the largest file size for a dense, block
3434 	 * mapped file such that the file's total number of 512-byte sectors,
3435 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3436 	 *
3437 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3438 	 * number of 512-byte sectors of the file.
3439 	 */
3440 	if (!has_huge_files) {
3441 		/*
3442 		 * !has_huge_files or implies that the inode i_block field
3443 		 * represents total file blocks in 2^32 512-byte sectors ==
3444 		 * size of vfs inode i_blocks * 8
3445 		 */
3446 		upper_limit = (1LL << 32) - 1;
3447 
3448 		/* total blocks in file system block size */
3449 		upper_limit >>= (bits - 9);
3450 
3451 	} else {
3452 		/*
3453 		 * We use 48 bit ext4_inode i_blocks
3454 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3455 		 * represent total number of blocks in
3456 		 * file system block size
3457 		 */
3458 		upper_limit = (1LL << 48) - 1;
3459 
3460 	}
3461 
3462 	/* Compute how many blocks we can address by block tree */
3463 	res += ppb;
3464 	res += ppb * ppb;
3465 	res += ((loff_t)ppb) * ppb * ppb;
3466 	/* Compute how many metadata blocks are needed */
3467 	meta_blocks = 1;
3468 	meta_blocks += 1 + ppb;
3469 	meta_blocks += 1 + ppb + ppb * ppb;
3470 	/* Does block tree limit file size? */
3471 	if (res + meta_blocks <= upper_limit)
3472 		goto check_lfs;
3473 
3474 	res = upper_limit;
3475 	/* How many metadata blocks are needed for addressing upper_limit? */
3476 	upper_limit -= EXT4_NDIR_BLOCKS;
3477 	/* indirect blocks */
3478 	meta_blocks = 1;
3479 	upper_limit -= ppb;
3480 	/* double indirect blocks */
3481 	if (upper_limit < ppb * ppb) {
3482 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3483 		res -= meta_blocks;
3484 		goto check_lfs;
3485 	}
3486 	meta_blocks += 1 + ppb;
3487 	upper_limit -= ppb * ppb;
3488 	/* tripple indirect blocks for the rest */
3489 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3490 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3491 	res -= meta_blocks;
3492 check_lfs:
3493 	res <<= bits;
3494 	if (res > MAX_LFS_FILESIZE)
3495 		res = MAX_LFS_FILESIZE;
3496 
3497 	return res;
3498 }
3499 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3500 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3501 				   ext4_fsblk_t logical_sb_block, int nr)
3502 {
3503 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3504 	ext4_group_t bg, first_meta_bg;
3505 	int has_super = 0;
3506 
3507 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3508 
3509 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3510 		return logical_sb_block + nr + 1;
3511 	bg = sbi->s_desc_per_block * nr;
3512 	if (ext4_bg_has_super(sb, bg))
3513 		has_super = 1;
3514 
3515 	/*
3516 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3517 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3518 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3519 	 * compensate.
3520 	 */
3521 	if (sb->s_blocksize == 1024 && nr == 0 &&
3522 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3523 		has_super++;
3524 
3525 	return (has_super + ext4_group_first_block_no(sb, bg));
3526 }
3527 
3528 /**
3529  * ext4_get_stripe_size: Get the stripe size.
3530  * @sbi: In memory super block info
3531  *
3532  * If we have specified it via mount option, then
3533  * use the mount option value. If the value specified at mount time is
3534  * greater than the blocks per group use the super block value.
3535  * If the super block value is greater than blocks per group return 0.
3536  * Allocator needs it be less than blocks per group.
3537  *
3538  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3539 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3540 {
3541 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3542 	unsigned long stripe_width =
3543 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3544 	int ret;
3545 
3546 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3547 		ret = sbi->s_stripe;
3548 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3549 		ret = stripe_width;
3550 	else if (stride && stride <= sbi->s_blocks_per_group)
3551 		ret = stride;
3552 	else
3553 		ret = 0;
3554 
3555 	/*
3556 	 * If the stripe width is 1, this makes no sense and
3557 	 * we set it to 0 to turn off stripe handling code.
3558 	 */
3559 	if (ret <= 1)
3560 		ret = 0;
3561 
3562 	return ret;
3563 }
3564 
3565 /*
3566  * Check whether this filesystem can be mounted based on
3567  * the features present and the RDONLY/RDWR mount requested.
3568  * Returns 1 if this filesystem can be mounted as requested,
3569  * 0 if it cannot be.
3570  */
ext4_feature_set_ok(struct super_block * sb,int readonly)3571 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3572 {
3573 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3574 		ext4_msg(sb, KERN_ERR,
3575 			"Couldn't mount because of "
3576 			"unsupported optional features (%x)",
3577 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3578 			~EXT4_FEATURE_INCOMPAT_SUPP));
3579 		return 0;
3580 	}
3581 
3582 	if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3583 		ext4_msg(sb, KERN_ERR,
3584 			 "Filesystem with casefold feature cannot be "
3585 			 "mounted without CONFIG_UNICODE");
3586 		return 0;
3587 	}
3588 
3589 	if (readonly)
3590 		return 1;
3591 
3592 	if (ext4_has_feature_readonly(sb)) {
3593 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3594 		sb->s_flags |= SB_RDONLY;
3595 		return 1;
3596 	}
3597 
3598 	/* Check that feature set is OK for a read-write mount */
3599 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3600 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3601 			 "unsupported optional features (%x)",
3602 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3603 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3604 		return 0;
3605 	}
3606 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3607 		ext4_msg(sb, KERN_ERR,
3608 			 "Can't support bigalloc feature without "
3609 			 "extents feature\n");
3610 		return 0;
3611 	}
3612 
3613 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3614 	if (!readonly && (ext4_has_feature_quota(sb) ||
3615 			  ext4_has_feature_project(sb))) {
3616 		ext4_msg(sb, KERN_ERR,
3617 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3618 		return 0;
3619 	}
3620 #endif  /* CONFIG_QUOTA */
3621 	return 1;
3622 }
3623 
3624 /*
3625  * This function is called once a day if we have errors logged
3626  * on the file system
3627  */
print_daily_error_info(struct timer_list * t)3628 static void print_daily_error_info(struct timer_list *t)
3629 {
3630 	struct ext4_sb_info *sbi = timer_container_of(sbi, t, s_err_report);
3631 	struct super_block *sb = sbi->s_sb;
3632 	struct ext4_super_block *es = sbi->s_es;
3633 
3634 	if (es->s_error_count)
3635 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3636 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3637 			 le32_to_cpu(es->s_error_count));
3638 	if (es->s_first_error_time) {
3639 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3640 		       sb->s_id,
3641 		       ext4_get_tstamp(es, s_first_error_time),
3642 		       (int) sizeof(es->s_first_error_func),
3643 		       es->s_first_error_func,
3644 		       le32_to_cpu(es->s_first_error_line));
3645 		if (es->s_first_error_ino)
3646 			printk(KERN_CONT ": inode %u",
3647 			       le32_to_cpu(es->s_first_error_ino));
3648 		if (es->s_first_error_block)
3649 			printk(KERN_CONT ": block %llu", (unsigned long long)
3650 			       le64_to_cpu(es->s_first_error_block));
3651 		printk(KERN_CONT "\n");
3652 	}
3653 	if (es->s_last_error_time) {
3654 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3655 		       sb->s_id,
3656 		       ext4_get_tstamp(es, s_last_error_time),
3657 		       (int) sizeof(es->s_last_error_func),
3658 		       es->s_last_error_func,
3659 		       le32_to_cpu(es->s_last_error_line));
3660 		if (es->s_last_error_ino)
3661 			printk(KERN_CONT ": inode %u",
3662 			       le32_to_cpu(es->s_last_error_ino));
3663 		if (es->s_last_error_block)
3664 			printk(KERN_CONT ": block %llu", (unsigned long long)
3665 			       le64_to_cpu(es->s_last_error_block));
3666 		printk(KERN_CONT "\n");
3667 	}
3668 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3669 }
3670 
3671 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3672 static int ext4_run_li_request(struct ext4_li_request *elr)
3673 {
3674 	struct ext4_group_desc *gdp = NULL;
3675 	struct super_block *sb = elr->lr_super;
3676 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3677 	ext4_group_t group = elr->lr_next_group;
3678 	unsigned int prefetch_ios = 0;
3679 	int ret = 0;
3680 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3681 	u64 start_time;
3682 
3683 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3684 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3685 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3686 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3687 		if (group >= elr->lr_next_group) {
3688 			ret = 1;
3689 			if (elr->lr_first_not_zeroed != ngroups &&
3690 			    !ext4_emergency_state(sb) && !sb_rdonly(sb) &&
3691 			    test_opt(sb, INIT_INODE_TABLE)) {
3692 				elr->lr_next_group = elr->lr_first_not_zeroed;
3693 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3694 				ret = 0;
3695 			}
3696 		}
3697 		return ret;
3698 	}
3699 
3700 	for (; group < ngroups; group++) {
3701 		gdp = ext4_get_group_desc(sb, group, NULL);
3702 		if (!gdp) {
3703 			ret = 1;
3704 			break;
3705 		}
3706 
3707 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3708 			break;
3709 	}
3710 
3711 	if (group >= ngroups)
3712 		ret = 1;
3713 
3714 	if (!ret) {
3715 		start_time = ktime_get_ns();
3716 		ret = ext4_init_inode_table(sb, group,
3717 					    elr->lr_timeout ? 0 : 1);
3718 		trace_ext4_lazy_itable_init(sb, group);
3719 		if (elr->lr_timeout == 0) {
3720 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3721 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3722 		}
3723 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3724 		elr->lr_next_group = group + 1;
3725 	}
3726 	return ret;
3727 }
3728 
3729 /*
3730  * Remove lr_request from the list_request and free the
3731  * request structure. Should be called with li_list_mtx held
3732  */
ext4_remove_li_request(struct ext4_li_request * elr)3733 static void ext4_remove_li_request(struct ext4_li_request *elr)
3734 {
3735 	if (!elr)
3736 		return;
3737 
3738 	list_del(&elr->lr_request);
3739 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3740 	kfree(elr);
3741 }
3742 
ext4_unregister_li_request(struct super_block * sb)3743 static void ext4_unregister_li_request(struct super_block *sb)
3744 {
3745 	mutex_lock(&ext4_li_mtx);
3746 	if (!ext4_li_info) {
3747 		mutex_unlock(&ext4_li_mtx);
3748 		return;
3749 	}
3750 
3751 	mutex_lock(&ext4_li_info->li_list_mtx);
3752 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3753 	mutex_unlock(&ext4_li_info->li_list_mtx);
3754 	mutex_unlock(&ext4_li_mtx);
3755 }
3756 
3757 static struct task_struct *ext4_lazyinit_task;
3758 
3759 /*
3760  * This is the function where ext4lazyinit thread lives. It walks
3761  * through the request list searching for next scheduled filesystem.
3762  * When such a fs is found, run the lazy initialization request
3763  * (ext4_rn_li_request) and keep track of the time spend in this
3764  * function. Based on that time we compute next schedule time of
3765  * the request. When walking through the list is complete, compute
3766  * next waking time and put itself into sleep.
3767  */
ext4_lazyinit_thread(void * arg)3768 static int ext4_lazyinit_thread(void *arg)
3769 {
3770 	struct ext4_lazy_init *eli = arg;
3771 	struct list_head *pos, *n;
3772 	struct ext4_li_request *elr;
3773 	unsigned long next_wakeup, cur;
3774 
3775 	BUG_ON(NULL == eli);
3776 	set_freezable();
3777 
3778 cont_thread:
3779 	while (true) {
3780 		bool next_wakeup_initialized = false;
3781 
3782 		next_wakeup = 0;
3783 		mutex_lock(&eli->li_list_mtx);
3784 		if (list_empty(&eli->li_request_list)) {
3785 			mutex_unlock(&eli->li_list_mtx);
3786 			goto exit_thread;
3787 		}
3788 		list_for_each_safe(pos, n, &eli->li_request_list) {
3789 			int err = 0;
3790 			int progress = 0;
3791 			elr = list_entry(pos, struct ext4_li_request,
3792 					 lr_request);
3793 
3794 			if (time_before(jiffies, elr->lr_next_sched)) {
3795 				if (!next_wakeup_initialized ||
3796 				    time_before(elr->lr_next_sched, next_wakeup)) {
3797 					next_wakeup = elr->lr_next_sched;
3798 					next_wakeup_initialized = true;
3799 				}
3800 				continue;
3801 			}
3802 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3803 				if (sb_start_write_trylock(elr->lr_super)) {
3804 					progress = 1;
3805 					/*
3806 					 * We hold sb->s_umount, sb can not
3807 					 * be removed from the list, it is
3808 					 * now safe to drop li_list_mtx
3809 					 */
3810 					mutex_unlock(&eli->li_list_mtx);
3811 					err = ext4_run_li_request(elr);
3812 					sb_end_write(elr->lr_super);
3813 					mutex_lock(&eli->li_list_mtx);
3814 					n = pos->next;
3815 				}
3816 				up_read((&elr->lr_super->s_umount));
3817 			}
3818 			/* error, remove the lazy_init job */
3819 			if (err) {
3820 				ext4_remove_li_request(elr);
3821 				continue;
3822 			}
3823 			if (!progress) {
3824 				elr->lr_next_sched = jiffies +
3825 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3826 			}
3827 			if (!next_wakeup_initialized ||
3828 			    time_before(elr->lr_next_sched, next_wakeup)) {
3829 				next_wakeup = elr->lr_next_sched;
3830 				next_wakeup_initialized = true;
3831 			}
3832 		}
3833 		mutex_unlock(&eli->li_list_mtx);
3834 
3835 		try_to_freeze();
3836 
3837 		cur = jiffies;
3838 		if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
3839 			cond_resched();
3840 			continue;
3841 		}
3842 
3843 		schedule_timeout_interruptible(next_wakeup - cur);
3844 
3845 		if (kthread_should_stop()) {
3846 			ext4_clear_request_list();
3847 			goto exit_thread;
3848 		}
3849 	}
3850 
3851 exit_thread:
3852 	/*
3853 	 * It looks like the request list is empty, but we need
3854 	 * to check it under the li_list_mtx lock, to prevent any
3855 	 * additions into it, and of course we should lock ext4_li_mtx
3856 	 * to atomically free the list and ext4_li_info, because at
3857 	 * this point another ext4 filesystem could be registering
3858 	 * new one.
3859 	 */
3860 	mutex_lock(&ext4_li_mtx);
3861 	mutex_lock(&eli->li_list_mtx);
3862 	if (!list_empty(&eli->li_request_list)) {
3863 		mutex_unlock(&eli->li_list_mtx);
3864 		mutex_unlock(&ext4_li_mtx);
3865 		goto cont_thread;
3866 	}
3867 	mutex_unlock(&eli->li_list_mtx);
3868 	kfree(ext4_li_info);
3869 	ext4_li_info = NULL;
3870 	mutex_unlock(&ext4_li_mtx);
3871 
3872 	return 0;
3873 }
3874 
ext4_clear_request_list(void)3875 static void ext4_clear_request_list(void)
3876 {
3877 	struct list_head *pos, *n;
3878 	struct ext4_li_request *elr;
3879 
3880 	mutex_lock(&ext4_li_info->li_list_mtx);
3881 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3882 		elr = list_entry(pos, struct ext4_li_request,
3883 				 lr_request);
3884 		ext4_remove_li_request(elr);
3885 	}
3886 	mutex_unlock(&ext4_li_info->li_list_mtx);
3887 }
3888 
ext4_run_lazyinit_thread(void)3889 static int ext4_run_lazyinit_thread(void)
3890 {
3891 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3892 					 ext4_li_info, "ext4lazyinit");
3893 	if (IS_ERR(ext4_lazyinit_task)) {
3894 		int err = PTR_ERR(ext4_lazyinit_task);
3895 		ext4_clear_request_list();
3896 		kfree(ext4_li_info);
3897 		ext4_li_info = NULL;
3898 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3899 				 "initialization thread\n",
3900 				 err);
3901 		return err;
3902 	}
3903 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3904 	return 0;
3905 }
3906 
3907 /*
3908  * Check whether it make sense to run itable init. thread or not.
3909  * If there is at least one uninitialized inode table, return
3910  * corresponding group number, else the loop goes through all
3911  * groups and return total number of groups.
3912  */
ext4_has_uninit_itable(struct super_block * sb)3913 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3914 {
3915 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3916 	struct ext4_group_desc *gdp = NULL;
3917 
3918 	if (!ext4_has_group_desc_csum(sb))
3919 		return ngroups;
3920 
3921 	for (group = 0; group < ngroups; group++) {
3922 		gdp = ext4_get_group_desc(sb, group, NULL);
3923 		if (!gdp)
3924 			continue;
3925 
3926 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3927 			break;
3928 	}
3929 
3930 	return group;
3931 }
3932 
ext4_li_info_new(void)3933 static int ext4_li_info_new(void)
3934 {
3935 	struct ext4_lazy_init *eli = NULL;
3936 
3937 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3938 	if (!eli)
3939 		return -ENOMEM;
3940 
3941 	INIT_LIST_HEAD(&eli->li_request_list);
3942 	mutex_init(&eli->li_list_mtx);
3943 
3944 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3945 
3946 	ext4_li_info = eli;
3947 
3948 	return 0;
3949 }
3950 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3951 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3952 					    ext4_group_t start)
3953 {
3954 	struct ext4_li_request *elr;
3955 
3956 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3957 	if (!elr)
3958 		return NULL;
3959 
3960 	elr->lr_super = sb;
3961 	elr->lr_first_not_zeroed = start;
3962 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3963 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3964 		elr->lr_next_group = start;
3965 	} else {
3966 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3967 	}
3968 
3969 	/*
3970 	 * Randomize first schedule time of the request to
3971 	 * spread the inode table initialization requests
3972 	 * better.
3973 	 */
3974 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3975 	return elr;
3976 }
3977 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3978 int ext4_register_li_request(struct super_block *sb,
3979 			     ext4_group_t first_not_zeroed)
3980 {
3981 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3982 	struct ext4_li_request *elr = NULL;
3983 	ext4_group_t ngroups = sbi->s_groups_count;
3984 	int ret = 0;
3985 
3986 	mutex_lock(&ext4_li_mtx);
3987 	if (sbi->s_li_request != NULL) {
3988 		/*
3989 		 * Reset timeout so it can be computed again, because
3990 		 * s_li_wait_mult might have changed.
3991 		 */
3992 		sbi->s_li_request->lr_timeout = 0;
3993 		goto out;
3994 	}
3995 
3996 	if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
3997 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3998 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3999 		goto out;
4000 
4001 	elr = ext4_li_request_new(sb, first_not_zeroed);
4002 	if (!elr) {
4003 		ret = -ENOMEM;
4004 		goto out;
4005 	}
4006 
4007 	if (NULL == ext4_li_info) {
4008 		ret = ext4_li_info_new();
4009 		if (ret)
4010 			goto out;
4011 	}
4012 
4013 	mutex_lock(&ext4_li_info->li_list_mtx);
4014 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4015 	mutex_unlock(&ext4_li_info->li_list_mtx);
4016 
4017 	sbi->s_li_request = elr;
4018 	/*
4019 	 * set elr to NULL here since it has been inserted to
4020 	 * the request_list and the removal and free of it is
4021 	 * handled by ext4_clear_request_list from now on.
4022 	 */
4023 	elr = NULL;
4024 
4025 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4026 		ret = ext4_run_lazyinit_thread();
4027 		if (ret)
4028 			goto out;
4029 	}
4030 out:
4031 	mutex_unlock(&ext4_li_mtx);
4032 	if (ret)
4033 		kfree(elr);
4034 	return ret;
4035 }
4036 
4037 /*
4038  * We do not need to lock anything since this is called on
4039  * module unload.
4040  */
ext4_destroy_lazyinit_thread(void)4041 static void ext4_destroy_lazyinit_thread(void)
4042 {
4043 	/*
4044 	 * If thread exited earlier
4045 	 * there's nothing to be done.
4046 	 */
4047 	if (!ext4_li_info || !ext4_lazyinit_task)
4048 		return;
4049 
4050 	kthread_stop(ext4_lazyinit_task);
4051 }
4052 
set_journal_csum_feature_set(struct super_block * sb)4053 static int set_journal_csum_feature_set(struct super_block *sb)
4054 {
4055 	int ret = 1;
4056 	int compat, incompat;
4057 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4058 
4059 	if (ext4_has_feature_metadata_csum(sb)) {
4060 		/* journal checksum v3 */
4061 		compat = 0;
4062 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4063 	} else {
4064 		/* journal checksum v1 */
4065 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4066 		incompat = 0;
4067 	}
4068 
4069 	jbd2_journal_clear_features(sbi->s_journal,
4070 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4071 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4072 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4073 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4074 		ret = jbd2_journal_set_features(sbi->s_journal,
4075 				compat, 0,
4076 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4077 				incompat);
4078 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4079 		ret = jbd2_journal_set_features(sbi->s_journal,
4080 				compat, 0,
4081 				incompat);
4082 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4083 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4084 	} else {
4085 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4086 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4087 	}
4088 
4089 	return ret;
4090 }
4091 
4092 /*
4093  * Note: calculating the overhead so we can be compatible with
4094  * historical BSD practice is quite difficult in the face of
4095  * clusters/bigalloc.  This is because multiple metadata blocks from
4096  * different block group can end up in the same allocation cluster.
4097  * Calculating the exact overhead in the face of clustered allocation
4098  * requires either O(all block bitmaps) in memory or O(number of block
4099  * groups**2) in time.  We will still calculate the superblock for
4100  * older file systems --- and if we come across with a bigalloc file
4101  * system with zero in s_overhead_clusters the estimate will be close to
4102  * correct especially for very large cluster sizes --- but for newer
4103  * file systems, it's better to calculate this figure once at mkfs
4104  * time, and store it in the superblock.  If the superblock value is
4105  * present (even for non-bigalloc file systems), we will use it.
4106  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4107 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4108 			  char *buf)
4109 {
4110 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4111 	struct ext4_group_desc	*gdp;
4112 	ext4_fsblk_t		first_block, last_block, b;
4113 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4114 	int			s, j, count = 0;
4115 	int			has_super = ext4_bg_has_super(sb, grp);
4116 
4117 	if (!ext4_has_feature_bigalloc(sb))
4118 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4119 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4120 			sbi->s_itb_per_group + 2);
4121 
4122 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4123 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4124 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4125 	for (i = 0; i < ngroups; i++) {
4126 		gdp = ext4_get_group_desc(sb, i, NULL);
4127 		b = ext4_block_bitmap(sb, gdp);
4128 		if (b >= first_block && b <= last_block) {
4129 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4130 			count++;
4131 		}
4132 		b = ext4_inode_bitmap(sb, gdp);
4133 		if (b >= first_block && b <= last_block) {
4134 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4135 			count++;
4136 		}
4137 		b = ext4_inode_table(sb, gdp);
4138 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4139 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4140 				int c = EXT4_B2C(sbi, b - first_block);
4141 				ext4_set_bit(c, buf);
4142 				count++;
4143 			}
4144 		if (i != grp)
4145 			continue;
4146 		s = 0;
4147 		if (ext4_bg_has_super(sb, grp)) {
4148 			ext4_set_bit(s++, buf);
4149 			count++;
4150 		}
4151 		j = ext4_bg_num_gdb(sb, grp);
4152 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4153 			ext4_error(sb, "Invalid number of block group "
4154 				   "descriptor blocks: %d", j);
4155 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4156 		}
4157 		count += j;
4158 		for (; j > 0; j--)
4159 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4160 	}
4161 	if (!count)
4162 		return 0;
4163 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4164 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4165 }
4166 
4167 /*
4168  * Compute the overhead and stash it in sbi->s_overhead
4169  */
ext4_calculate_overhead(struct super_block * sb)4170 int ext4_calculate_overhead(struct super_block *sb)
4171 {
4172 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4173 	struct ext4_super_block *es = sbi->s_es;
4174 	struct inode *j_inode;
4175 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4176 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4177 	ext4_fsblk_t overhead = 0;
4178 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4179 
4180 	if (!buf)
4181 		return -ENOMEM;
4182 
4183 	/*
4184 	 * Compute the overhead (FS structures).  This is constant
4185 	 * for a given filesystem unless the number of block groups
4186 	 * changes so we cache the previous value until it does.
4187 	 */
4188 
4189 	/*
4190 	 * All of the blocks before first_data_block are overhead
4191 	 */
4192 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4193 
4194 	/*
4195 	 * Add the overhead found in each block group
4196 	 */
4197 	for (i = 0; i < ngroups; i++) {
4198 		int blks;
4199 
4200 		blks = count_overhead(sb, i, buf);
4201 		overhead += blks;
4202 		if (blks)
4203 			memset(buf, 0, PAGE_SIZE);
4204 		cond_resched();
4205 	}
4206 
4207 	/*
4208 	 * Add the internal journal blocks whether the journal has been
4209 	 * loaded or not
4210 	 */
4211 	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4212 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4213 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4214 		/* j_inum for internal journal is non-zero */
4215 		j_inode = ext4_get_journal_inode(sb, j_inum);
4216 		if (!IS_ERR(j_inode)) {
4217 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4218 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4219 			iput(j_inode);
4220 		} else {
4221 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4222 		}
4223 	}
4224 	sbi->s_overhead = overhead;
4225 	smp_wmb();
4226 	free_page((unsigned long) buf);
4227 	return 0;
4228 }
4229 
ext4_set_resv_clusters(struct super_block * sb)4230 static void ext4_set_resv_clusters(struct super_block *sb)
4231 {
4232 	ext4_fsblk_t resv_clusters;
4233 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4234 
4235 	/*
4236 	 * There's no need to reserve anything when we aren't using extents.
4237 	 * The space estimates are exact, there are no unwritten extents,
4238 	 * hole punching doesn't need new metadata... This is needed especially
4239 	 * to keep ext2/3 backward compatibility.
4240 	 */
4241 	if (!ext4_has_feature_extents(sb))
4242 		return;
4243 	/*
4244 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4245 	 * This should cover the situations where we can not afford to run
4246 	 * out of space like for example punch hole, or converting
4247 	 * unwritten extents in delalloc path. In most cases such
4248 	 * allocation would require 1, or 2 blocks, higher numbers are
4249 	 * very rare.
4250 	 */
4251 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4252 			 sbi->s_cluster_bits);
4253 
4254 	do_div(resv_clusters, 50);
4255 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4256 
4257 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4258 }
4259 
ext4_quota_mode(struct super_block * sb)4260 static const char *ext4_quota_mode(struct super_block *sb)
4261 {
4262 #ifdef CONFIG_QUOTA
4263 	if (!ext4_quota_capable(sb))
4264 		return "none";
4265 
4266 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4267 		return "journalled";
4268 	else
4269 		return "writeback";
4270 #else
4271 	return "disabled";
4272 #endif
4273 }
4274 
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4275 static void ext4_setup_csum_trigger(struct super_block *sb,
4276 				    enum ext4_journal_trigger_type type,
4277 				    void (*trigger)(
4278 					struct jbd2_buffer_trigger_type *type,
4279 					struct buffer_head *bh,
4280 					void *mapped_data,
4281 					size_t size))
4282 {
4283 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4284 
4285 	sbi->s_journal_triggers[type].sb = sb;
4286 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4287 }
4288 
ext4_free_sbi(struct ext4_sb_info * sbi)4289 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4290 {
4291 	if (!sbi)
4292 		return;
4293 
4294 	kfree(sbi->s_blockgroup_lock);
4295 	fs_put_dax(sbi->s_daxdev, NULL);
4296 	kfree(sbi);
4297 }
4298 
ext4_alloc_sbi(struct super_block * sb)4299 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4300 {
4301 	struct ext4_sb_info *sbi;
4302 
4303 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4304 	if (!sbi)
4305 		return NULL;
4306 
4307 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4308 					   NULL, NULL);
4309 
4310 	sbi->s_blockgroup_lock =
4311 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4312 
4313 	if (!sbi->s_blockgroup_lock)
4314 		goto err_out;
4315 
4316 	sb->s_fs_info = sbi;
4317 	sbi->s_sb = sb;
4318 	return sbi;
4319 err_out:
4320 	fs_put_dax(sbi->s_daxdev, NULL);
4321 	kfree(sbi);
4322 	return NULL;
4323 }
4324 
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4325 static void ext4_set_def_opts(struct super_block *sb,
4326 			      struct ext4_super_block *es)
4327 {
4328 	unsigned long def_mount_opts;
4329 
4330 	/* Set defaults before we parse the mount options */
4331 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4332 	set_opt(sb, INIT_INODE_TABLE);
4333 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4334 		set_opt(sb, DEBUG);
4335 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4336 		set_opt(sb, GRPID);
4337 	if (def_mount_opts & EXT4_DEFM_UID16)
4338 		set_opt(sb, NO_UID32);
4339 	/* xattr user namespace & acls are now defaulted on */
4340 	set_opt(sb, XATTR_USER);
4341 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4342 	set_opt(sb, POSIX_ACL);
4343 #endif
4344 	if (ext4_has_feature_fast_commit(sb))
4345 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4346 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4347 	if (ext4_has_feature_metadata_csum(sb))
4348 		set_opt(sb, JOURNAL_CHECKSUM);
4349 
4350 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4351 		set_opt(sb, JOURNAL_DATA);
4352 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4353 		set_opt(sb, ORDERED_DATA);
4354 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4355 		set_opt(sb, WRITEBACK_DATA);
4356 
4357 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4358 		set_opt(sb, ERRORS_PANIC);
4359 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4360 		set_opt(sb, ERRORS_CONT);
4361 	else
4362 		set_opt(sb, ERRORS_RO);
4363 	/* block_validity enabled by default; disable with noblock_validity */
4364 	set_opt(sb, BLOCK_VALIDITY);
4365 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4366 		set_opt(sb, DISCARD);
4367 
4368 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4369 		set_opt(sb, BARRIER);
4370 
4371 	/*
4372 	 * enable delayed allocation by default
4373 	 * Use -o nodelalloc to turn it off
4374 	 */
4375 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4376 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4377 		set_opt(sb, DELALLOC);
4378 
4379 	if (sb->s_blocksize <= PAGE_SIZE)
4380 		set_opt(sb, DIOREAD_NOLOCK);
4381 }
4382 
ext4_handle_clustersize(struct super_block * sb)4383 static int ext4_handle_clustersize(struct super_block *sb)
4384 {
4385 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4386 	struct ext4_super_block *es = sbi->s_es;
4387 	int clustersize;
4388 
4389 	/* Handle clustersize */
4390 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4391 	if (ext4_has_feature_bigalloc(sb)) {
4392 		if (clustersize < sb->s_blocksize) {
4393 			ext4_msg(sb, KERN_ERR,
4394 				 "cluster size (%d) smaller than "
4395 				 "block size (%lu)", clustersize, sb->s_blocksize);
4396 			return -EINVAL;
4397 		}
4398 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4399 			le32_to_cpu(es->s_log_block_size);
4400 	} else {
4401 		if (clustersize != sb->s_blocksize) {
4402 			ext4_msg(sb, KERN_ERR,
4403 				 "fragment/cluster size (%d) != "
4404 				 "block size (%lu)", clustersize, sb->s_blocksize);
4405 			return -EINVAL;
4406 		}
4407 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4408 			ext4_msg(sb, KERN_ERR,
4409 				 "#blocks per group too big: %lu",
4410 				 sbi->s_blocks_per_group);
4411 			return -EINVAL;
4412 		}
4413 		sbi->s_cluster_bits = 0;
4414 	}
4415 	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4416 	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4417 		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4418 			 sbi->s_clusters_per_group);
4419 		return -EINVAL;
4420 	}
4421 	if (sbi->s_blocks_per_group !=
4422 	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4423 		ext4_msg(sb, KERN_ERR,
4424 			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4425 			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4426 		return -EINVAL;
4427 	}
4428 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4429 
4430 	/* Do we have standard group size of clustersize * 8 blocks ? */
4431 	if (sbi->s_blocks_per_group == clustersize << 3)
4432 		set_opt2(sb, STD_GROUP_SIZE);
4433 
4434 	return 0;
4435 }
4436 
4437 /*
4438  * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4439  * With non-bigalloc filesystem awu will be based upon filesystem blocksize
4440  * & bdev awu units.
4441  * With bigalloc it will be based upon bigalloc cluster size & bdev awu units.
4442  * @sb: super block
4443  */
ext4_atomic_write_init(struct super_block * sb)4444 static void ext4_atomic_write_init(struct super_block *sb)
4445 {
4446 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4447 	struct block_device *bdev = sb->s_bdev;
4448 	unsigned int clustersize = EXT4_CLUSTER_SIZE(sb);
4449 
4450 	if (!bdev_can_atomic_write(bdev))
4451 		return;
4452 
4453 	if (!ext4_has_feature_extents(sb))
4454 		return;
4455 
4456 	sbi->s_awu_min = max(sb->s_blocksize,
4457 			      bdev_atomic_write_unit_min_bytes(bdev));
4458 	sbi->s_awu_max = min(clustersize,
4459 			      bdev_atomic_write_unit_max_bytes(bdev));
4460 	if (sbi->s_awu_min && sbi->s_awu_max &&
4461 	    sbi->s_awu_min <= sbi->s_awu_max) {
4462 		ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4463 			 sbi->s_awu_min, sbi->s_awu_max);
4464 	} else {
4465 		sbi->s_awu_min = 0;
4466 		sbi->s_awu_max = 0;
4467 	}
4468 }
4469 
ext4_fast_commit_init(struct super_block * sb)4470 static void ext4_fast_commit_init(struct super_block *sb)
4471 {
4472 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4473 
4474 	/* Initialize fast commit stuff */
4475 	atomic_set(&sbi->s_fc_subtid, 0);
4476 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4477 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4478 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4479 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4480 	sbi->s_fc_bytes = 0;
4481 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4482 	sbi->s_fc_ineligible_tid = 0;
4483 	mutex_init(&sbi->s_fc_lock);
4484 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4485 	sbi->s_fc_replay_state.fc_regions = NULL;
4486 	sbi->s_fc_replay_state.fc_regions_size = 0;
4487 	sbi->s_fc_replay_state.fc_regions_used = 0;
4488 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4489 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4490 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4491 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4492 }
4493 
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4494 static int ext4_inode_info_init(struct super_block *sb,
4495 				struct ext4_super_block *es)
4496 {
4497 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4498 
4499 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4500 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4501 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4502 	} else {
4503 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4504 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4505 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4506 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4507 				 sbi->s_first_ino);
4508 			return -EINVAL;
4509 		}
4510 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4511 		    (!is_power_of_2(sbi->s_inode_size)) ||
4512 		    (sbi->s_inode_size > sb->s_blocksize)) {
4513 			ext4_msg(sb, KERN_ERR,
4514 			       "unsupported inode size: %d",
4515 			       sbi->s_inode_size);
4516 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4517 			return -EINVAL;
4518 		}
4519 		/*
4520 		 * i_atime_extra is the last extra field available for
4521 		 * [acm]times in struct ext4_inode. Checking for that
4522 		 * field should suffice to ensure we have extra space
4523 		 * for all three.
4524 		 */
4525 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4526 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4527 			sb->s_time_gran = 1;
4528 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4529 		} else {
4530 			sb->s_time_gran = NSEC_PER_SEC;
4531 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4532 		}
4533 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4534 	}
4535 
4536 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4537 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4538 			EXT4_GOOD_OLD_INODE_SIZE;
4539 		if (ext4_has_feature_extra_isize(sb)) {
4540 			unsigned v, max = (sbi->s_inode_size -
4541 					   EXT4_GOOD_OLD_INODE_SIZE);
4542 
4543 			v = le16_to_cpu(es->s_want_extra_isize);
4544 			if (v > max) {
4545 				ext4_msg(sb, KERN_ERR,
4546 					 "bad s_want_extra_isize: %d", v);
4547 				return -EINVAL;
4548 			}
4549 			if (sbi->s_want_extra_isize < v)
4550 				sbi->s_want_extra_isize = v;
4551 
4552 			v = le16_to_cpu(es->s_min_extra_isize);
4553 			if (v > max) {
4554 				ext4_msg(sb, KERN_ERR,
4555 					 "bad s_min_extra_isize: %d", v);
4556 				return -EINVAL;
4557 			}
4558 			if (sbi->s_want_extra_isize < v)
4559 				sbi->s_want_extra_isize = v;
4560 		}
4561 	}
4562 
4563 	return 0;
4564 }
4565 
4566 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4567 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4568 {
4569 	const struct ext4_sb_encodings *encoding_info;
4570 	struct unicode_map *encoding;
4571 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4572 
4573 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4574 		return 0;
4575 
4576 	encoding_info = ext4_sb_read_encoding(es);
4577 	if (!encoding_info) {
4578 		ext4_msg(sb, KERN_ERR,
4579 			"Encoding requested by superblock is unknown");
4580 		return -EINVAL;
4581 	}
4582 
4583 	encoding = utf8_load(encoding_info->version);
4584 	if (IS_ERR(encoding)) {
4585 		ext4_msg(sb, KERN_ERR,
4586 			"can't mount with superblock charset: %s-%u.%u.%u "
4587 			"not supported by the kernel. flags: 0x%x.",
4588 			encoding_info->name,
4589 			unicode_major(encoding_info->version),
4590 			unicode_minor(encoding_info->version),
4591 			unicode_rev(encoding_info->version),
4592 			encoding_flags);
4593 		return -EINVAL;
4594 	}
4595 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4596 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4597 		unicode_major(encoding_info->version),
4598 		unicode_minor(encoding_info->version),
4599 		unicode_rev(encoding_info->version),
4600 		encoding_flags);
4601 
4602 	sb->s_encoding = encoding;
4603 	sb->s_encoding_flags = encoding_flags;
4604 
4605 	return 0;
4606 }
4607 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4608 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4609 {
4610 	return 0;
4611 }
4612 #endif
4613 
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4614 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4615 {
4616 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4617 
4618 	/* Warn if metadata_csum and gdt_csum are both set. */
4619 	if (ext4_has_feature_metadata_csum(sb) &&
4620 	    ext4_has_feature_gdt_csum(sb))
4621 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4622 			     "redundant flags; please run fsck.");
4623 
4624 	/* Check for a known checksum algorithm */
4625 	if (!ext4_verify_csum_type(sb, es)) {
4626 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4627 			 "unknown checksum algorithm.");
4628 		return -EINVAL;
4629 	}
4630 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4631 				ext4_orphan_file_block_trigger);
4632 
4633 	/* Check superblock checksum */
4634 	if (!ext4_superblock_csum_verify(sb, es)) {
4635 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4636 			 "invalid superblock checksum.  Run e2fsck?");
4637 		return -EFSBADCRC;
4638 	}
4639 
4640 	/* Precompute checksum seed for all metadata */
4641 	if (ext4_has_feature_csum_seed(sb))
4642 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4643 	else if (ext4_has_feature_metadata_csum(sb) ||
4644 		 ext4_has_feature_ea_inode(sb))
4645 		sbi->s_csum_seed = ext4_chksum(~0, es->s_uuid,
4646 					       sizeof(es->s_uuid));
4647 	return 0;
4648 }
4649 
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4650 static int ext4_check_feature_compatibility(struct super_block *sb,
4651 					    struct ext4_super_block *es,
4652 					    int silent)
4653 {
4654 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4655 
4656 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4657 	    (ext4_has_compat_features(sb) ||
4658 	     ext4_has_ro_compat_features(sb) ||
4659 	     ext4_has_incompat_features(sb)))
4660 		ext4_msg(sb, KERN_WARNING,
4661 		       "feature flags set on rev 0 fs, "
4662 		       "running e2fsck is recommended");
4663 
4664 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4665 		set_opt2(sb, HURD_COMPAT);
4666 		if (ext4_has_feature_64bit(sb)) {
4667 			ext4_msg(sb, KERN_ERR,
4668 				 "The Hurd can't support 64-bit file systems");
4669 			return -EINVAL;
4670 		}
4671 
4672 		/*
4673 		 * ea_inode feature uses l_i_version field which is not
4674 		 * available in HURD_COMPAT mode.
4675 		 */
4676 		if (ext4_has_feature_ea_inode(sb)) {
4677 			ext4_msg(sb, KERN_ERR,
4678 				 "ea_inode feature is not supported for Hurd");
4679 			return -EINVAL;
4680 		}
4681 	}
4682 
4683 	if (IS_EXT2_SB(sb)) {
4684 		if (ext2_feature_set_ok(sb))
4685 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4686 				 "using the ext4 subsystem");
4687 		else {
4688 			/*
4689 			 * If we're probing be silent, if this looks like
4690 			 * it's actually an ext[34] filesystem.
4691 			 */
4692 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4693 				return -EINVAL;
4694 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4695 				 "to feature incompatibilities");
4696 			return -EINVAL;
4697 		}
4698 	}
4699 
4700 	if (IS_EXT3_SB(sb)) {
4701 		if (ext3_feature_set_ok(sb))
4702 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4703 				 "using the ext4 subsystem");
4704 		else {
4705 			/*
4706 			 * If we're probing be silent, if this looks like
4707 			 * it's actually an ext4 filesystem.
4708 			 */
4709 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4710 				return -EINVAL;
4711 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4712 				 "to feature incompatibilities");
4713 			return -EINVAL;
4714 		}
4715 	}
4716 
4717 	/*
4718 	 * Check feature flags regardless of the revision level, since we
4719 	 * previously didn't change the revision level when setting the flags,
4720 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4721 	 */
4722 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4723 		return -EINVAL;
4724 
4725 	if (sbi->s_daxdev) {
4726 		if (sb->s_blocksize == PAGE_SIZE)
4727 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4728 		else
4729 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4730 	}
4731 
4732 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4733 		if (ext4_has_feature_inline_data(sb)) {
4734 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4735 					" that may contain inline data");
4736 			return -EINVAL;
4737 		}
4738 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4739 			ext4_msg(sb, KERN_ERR,
4740 				"DAX unsupported by block device.");
4741 			return -EINVAL;
4742 		}
4743 	}
4744 
4745 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4746 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4747 			 es->s_encryption_level);
4748 		return -EINVAL;
4749 	}
4750 
4751 	return 0;
4752 }
4753 
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4754 static int ext4_check_geometry(struct super_block *sb,
4755 			       struct ext4_super_block *es)
4756 {
4757 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4758 	__u64 blocks_count;
4759 	int err;
4760 
4761 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4762 		ext4_msg(sb, KERN_ERR,
4763 			 "Number of reserved GDT blocks insanely large: %d",
4764 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4765 		return -EINVAL;
4766 	}
4767 	/*
4768 	 * Test whether we have more sectors than will fit in sector_t,
4769 	 * and whether the max offset is addressable by the page cache.
4770 	 */
4771 	err = generic_check_addressable(sb->s_blocksize_bits,
4772 					ext4_blocks_count(es));
4773 	if (err) {
4774 		ext4_msg(sb, KERN_ERR, "filesystem"
4775 			 " too large to mount safely on this system");
4776 		return err;
4777 	}
4778 
4779 	/* check blocks count against device size */
4780 	blocks_count = sb_bdev_nr_blocks(sb);
4781 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4782 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4783 		       "exceeds size of device (%llu blocks)",
4784 		       ext4_blocks_count(es), blocks_count);
4785 		return -EINVAL;
4786 	}
4787 
4788 	/*
4789 	 * It makes no sense for the first data block to be beyond the end
4790 	 * of the filesystem.
4791 	 */
4792 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4793 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4794 			 "block %u is beyond end of filesystem (%llu)",
4795 			 le32_to_cpu(es->s_first_data_block),
4796 			 ext4_blocks_count(es));
4797 		return -EINVAL;
4798 	}
4799 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4800 	    (sbi->s_cluster_ratio == 1)) {
4801 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4802 			 "block is 0 with a 1k block and cluster size");
4803 		return -EINVAL;
4804 	}
4805 
4806 	blocks_count = (ext4_blocks_count(es) -
4807 			le32_to_cpu(es->s_first_data_block) +
4808 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4809 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4810 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4811 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4812 		       "(block count %llu, first data block %u, "
4813 		       "blocks per group %lu)", blocks_count,
4814 		       ext4_blocks_count(es),
4815 		       le32_to_cpu(es->s_first_data_block),
4816 		       EXT4_BLOCKS_PER_GROUP(sb));
4817 		return -EINVAL;
4818 	}
4819 	sbi->s_groups_count = blocks_count;
4820 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4821 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4822 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4823 	    le32_to_cpu(es->s_inodes_count)) {
4824 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4825 			 le32_to_cpu(es->s_inodes_count),
4826 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4827 		return -EINVAL;
4828 	}
4829 
4830 	return 0;
4831 }
4832 
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4833 static int ext4_group_desc_init(struct super_block *sb,
4834 				struct ext4_super_block *es,
4835 				ext4_fsblk_t logical_sb_block,
4836 				ext4_group_t *first_not_zeroed)
4837 {
4838 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4839 	unsigned int db_count;
4840 	ext4_fsblk_t block;
4841 	int i;
4842 
4843 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4844 		   EXT4_DESC_PER_BLOCK(sb);
4845 	if (ext4_has_feature_meta_bg(sb)) {
4846 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4847 			ext4_msg(sb, KERN_WARNING,
4848 				 "first meta block group too large: %u "
4849 				 "(group descriptor block count %u)",
4850 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4851 			return -EINVAL;
4852 		}
4853 	}
4854 	rcu_assign_pointer(sbi->s_group_desc,
4855 			   kvmalloc_array(db_count,
4856 					  sizeof(struct buffer_head *),
4857 					  GFP_KERNEL));
4858 	if (sbi->s_group_desc == NULL) {
4859 		ext4_msg(sb, KERN_ERR, "not enough memory");
4860 		return -ENOMEM;
4861 	}
4862 
4863 	bgl_lock_init(sbi->s_blockgroup_lock);
4864 
4865 	/* Pre-read the descriptors into the buffer cache */
4866 	for (i = 0; i < db_count; i++) {
4867 		block = descriptor_loc(sb, logical_sb_block, i);
4868 		ext4_sb_breadahead_unmovable(sb, block);
4869 	}
4870 
4871 	for (i = 0; i < db_count; i++) {
4872 		struct buffer_head *bh;
4873 
4874 		block = descriptor_loc(sb, logical_sb_block, i);
4875 		bh = ext4_sb_bread_unmovable(sb, block);
4876 		if (IS_ERR(bh)) {
4877 			ext4_msg(sb, KERN_ERR,
4878 			       "can't read group descriptor %d", i);
4879 			sbi->s_gdb_count = i;
4880 			return PTR_ERR(bh);
4881 		}
4882 		rcu_read_lock();
4883 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4884 		rcu_read_unlock();
4885 	}
4886 	sbi->s_gdb_count = db_count;
4887 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4888 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4889 		return -EFSCORRUPTED;
4890 	}
4891 
4892 	return 0;
4893 }
4894 
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4895 static int ext4_load_and_init_journal(struct super_block *sb,
4896 				      struct ext4_super_block *es,
4897 				      struct ext4_fs_context *ctx)
4898 {
4899 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4900 	int err;
4901 
4902 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4903 	if (err)
4904 		return err;
4905 
4906 	if (ext4_has_feature_64bit(sb) &&
4907 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4908 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4909 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4910 		goto out;
4911 	}
4912 
4913 	if (!set_journal_csum_feature_set(sb)) {
4914 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4915 			 "feature set");
4916 		goto out;
4917 	}
4918 
4919 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4920 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4921 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4922 		ext4_msg(sb, KERN_ERR,
4923 			"Failed to set fast commit journal feature");
4924 		goto out;
4925 	}
4926 
4927 	/* We have now updated the journal if required, so we can
4928 	 * validate the data journaling mode. */
4929 	switch (test_opt(sb, DATA_FLAGS)) {
4930 	case 0:
4931 		/* No mode set, assume a default based on the journal
4932 		 * capabilities: ORDERED_DATA if the journal can
4933 		 * cope, else JOURNAL_DATA
4934 		 */
4935 		if (jbd2_journal_check_available_features
4936 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4937 			set_opt(sb, ORDERED_DATA);
4938 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4939 		} else {
4940 			set_opt(sb, JOURNAL_DATA);
4941 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4942 		}
4943 		break;
4944 
4945 	case EXT4_MOUNT_ORDERED_DATA:
4946 	case EXT4_MOUNT_WRITEBACK_DATA:
4947 		if (!jbd2_journal_check_available_features
4948 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4949 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4950 			       "requested data journaling mode");
4951 			goto out;
4952 		}
4953 		break;
4954 	default:
4955 		break;
4956 	}
4957 
4958 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4959 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4960 		ext4_msg(sb, KERN_ERR, "can't mount with "
4961 			"journal_async_commit in data=ordered mode");
4962 		goto out;
4963 	}
4964 
4965 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4966 
4967 	sbi->s_journal->j_submit_inode_data_buffers =
4968 		ext4_journal_submit_inode_data_buffers;
4969 	sbi->s_journal->j_finish_inode_data_buffers =
4970 		ext4_journal_finish_inode_data_buffers;
4971 
4972 	return 0;
4973 
4974 out:
4975 	ext4_journal_destroy(sbi, sbi->s_journal);
4976 	return -EINVAL;
4977 }
4978 
ext4_check_journal_data_mode(struct super_block * sb)4979 static int ext4_check_journal_data_mode(struct super_block *sb)
4980 {
4981 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4982 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4983 			    "data=journal disables delayed allocation, "
4984 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4985 		/* can't mount with both data=journal and dioread_nolock. */
4986 		clear_opt(sb, DIOREAD_NOLOCK);
4987 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4988 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4989 			ext4_msg(sb, KERN_ERR, "can't mount with "
4990 				 "both data=journal and delalloc");
4991 			return -EINVAL;
4992 		}
4993 		if (test_opt(sb, DAX_ALWAYS)) {
4994 			ext4_msg(sb, KERN_ERR, "can't mount with "
4995 				 "both data=journal and dax");
4996 			return -EINVAL;
4997 		}
4998 		if (ext4_has_feature_encrypt(sb)) {
4999 			ext4_msg(sb, KERN_WARNING,
5000 				 "encrypted files will use data=ordered "
5001 				 "instead of data journaling mode");
5002 		}
5003 		if (test_opt(sb, DELALLOC))
5004 			clear_opt(sb, DELALLOC);
5005 	} else {
5006 		sb->s_iflags |= SB_I_CGROUPWB;
5007 	}
5008 
5009 	return 0;
5010 }
5011 
ext4_has_journal_option(struct super_block * sb)5012 static const char *ext4_has_journal_option(struct super_block *sb)
5013 {
5014 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5015 
5016 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
5017 		return "journal_async_commit";
5018 	if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM))
5019 		return "journal_checksum";
5020 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
5021 		return "commit=";
5022 	if (EXT4_MOUNT_DATA_FLAGS &
5023 	    (sbi->s_mount_opt ^ sbi->s_def_mount_opt))
5024 		return "data=";
5025 	if (test_opt(sb, DATA_ERR_ABORT))
5026 		return "data_err=abort";
5027 	return NULL;
5028 }
5029 
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5030 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5031 			   int silent)
5032 {
5033 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5034 	struct ext4_super_block *es;
5035 	ext4_fsblk_t logical_sb_block;
5036 	unsigned long offset = 0;
5037 	struct buffer_head *bh;
5038 	int ret = -EINVAL;
5039 	int blocksize;
5040 
5041 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5042 	if (!blocksize) {
5043 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5044 		return -EINVAL;
5045 	}
5046 
5047 	/*
5048 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5049 	 * block sizes.  We need to calculate the offset from buffer start.
5050 	 */
5051 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5052 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5053 		offset = do_div(logical_sb_block, blocksize);
5054 	} else {
5055 		logical_sb_block = sbi->s_sb_block;
5056 	}
5057 
5058 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5059 	if (IS_ERR(bh)) {
5060 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5061 		return PTR_ERR(bh);
5062 	}
5063 	/*
5064 	 * Note: s_es must be initialized as soon as possible because
5065 	 *       some ext4 macro-instructions depend on its value
5066 	 */
5067 	es = (struct ext4_super_block *) (bh->b_data + offset);
5068 	sbi->s_es = es;
5069 	sb->s_magic = le16_to_cpu(es->s_magic);
5070 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5071 		if (!silent)
5072 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5073 		goto out;
5074 	}
5075 
5076 	if (le32_to_cpu(es->s_log_block_size) >
5077 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5078 		ext4_msg(sb, KERN_ERR,
5079 			 "Invalid log block size: %u",
5080 			 le32_to_cpu(es->s_log_block_size));
5081 		goto out;
5082 	}
5083 	if (le32_to_cpu(es->s_log_cluster_size) >
5084 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5085 		ext4_msg(sb, KERN_ERR,
5086 			 "Invalid log cluster size: %u",
5087 			 le32_to_cpu(es->s_log_cluster_size));
5088 		goto out;
5089 	}
5090 
5091 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5092 
5093 	/*
5094 	 * If the default block size is not the same as the real block size,
5095 	 * we need to reload it.
5096 	 */
5097 	if (sb->s_blocksize == blocksize) {
5098 		*lsb = logical_sb_block;
5099 		sbi->s_sbh = bh;
5100 		return 0;
5101 	}
5102 
5103 	/*
5104 	 * bh must be released before kill_bdev(), otherwise
5105 	 * it won't be freed and its page also. kill_bdev()
5106 	 * is called by sb_set_blocksize().
5107 	 */
5108 	brelse(bh);
5109 	/* Validate the filesystem blocksize */
5110 	if (!sb_set_blocksize(sb, blocksize)) {
5111 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5112 				blocksize);
5113 		bh = NULL;
5114 		goto out;
5115 	}
5116 
5117 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5118 	offset = do_div(logical_sb_block, blocksize);
5119 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5120 	if (IS_ERR(bh)) {
5121 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5122 		ret = PTR_ERR(bh);
5123 		bh = NULL;
5124 		goto out;
5125 	}
5126 	es = (struct ext4_super_block *)(bh->b_data + offset);
5127 	sbi->s_es = es;
5128 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5129 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5130 		goto out;
5131 	}
5132 	*lsb = logical_sb_block;
5133 	sbi->s_sbh = bh;
5134 	return 0;
5135 out:
5136 	brelse(bh);
5137 	return ret;
5138 }
5139 
ext4_hash_info_init(struct super_block * sb)5140 static int ext4_hash_info_init(struct super_block *sb)
5141 {
5142 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5143 	struct ext4_super_block *es = sbi->s_es;
5144 	unsigned int i;
5145 
5146 	sbi->s_def_hash_version = es->s_def_hash_version;
5147 
5148 	if (sbi->s_def_hash_version > DX_HASH_LAST) {
5149 		ext4_msg(sb, KERN_ERR,
5150 			 "Invalid default hash set in the superblock");
5151 		return -EINVAL;
5152 	} else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5153 		ext4_msg(sb, KERN_ERR,
5154 			 "SIPHASH is not a valid default hash value");
5155 		return -EINVAL;
5156 	}
5157 
5158 	for (i = 0; i < 4; i++)
5159 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5160 
5161 	if (ext4_has_feature_dir_index(sb)) {
5162 		i = le32_to_cpu(es->s_flags);
5163 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5164 			sbi->s_hash_unsigned = 3;
5165 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5166 #ifdef __CHAR_UNSIGNED__
5167 			if (!sb_rdonly(sb))
5168 				es->s_flags |=
5169 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5170 			sbi->s_hash_unsigned = 3;
5171 #else
5172 			if (!sb_rdonly(sb))
5173 				es->s_flags |=
5174 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5175 #endif
5176 		}
5177 	}
5178 	return 0;
5179 }
5180 
ext4_block_group_meta_init(struct super_block * sb,int silent)5181 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5182 {
5183 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5184 	struct ext4_super_block *es = sbi->s_es;
5185 	int has_huge_files;
5186 
5187 	has_huge_files = ext4_has_feature_huge_file(sb);
5188 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5189 						      has_huge_files);
5190 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5191 
5192 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5193 	if (ext4_has_feature_64bit(sb)) {
5194 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5195 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5196 		    !is_power_of_2(sbi->s_desc_size)) {
5197 			ext4_msg(sb, KERN_ERR,
5198 			       "unsupported descriptor size %lu",
5199 			       sbi->s_desc_size);
5200 			return -EINVAL;
5201 		}
5202 	} else
5203 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5204 
5205 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5206 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5207 
5208 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5209 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5210 		if (!silent)
5211 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5212 		return -EINVAL;
5213 	}
5214 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5215 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5216 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5217 			 sbi->s_inodes_per_group);
5218 		return -EINVAL;
5219 	}
5220 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5221 					sbi->s_inodes_per_block;
5222 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5223 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5224 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5225 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5226 
5227 	return 0;
5228 }
5229 
5230 /*
5231  * It's hard to get stripe aligned blocks if stripe is not aligned with
5232  * cluster, just disable stripe and alert user to simplify code and avoid
5233  * stripe aligned allocation which will rarely succeed.
5234  */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5235 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5236 {
5237 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5238 	return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5239 		stripe % sbi->s_cluster_ratio != 0);
5240 }
5241 
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5242 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5243 {
5244 	struct ext4_super_block *es = NULL;
5245 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5246 	ext4_fsblk_t logical_sb_block;
5247 	struct inode *root;
5248 	int needs_recovery;
5249 	int err;
5250 	ext4_group_t first_not_zeroed;
5251 	struct ext4_fs_context *ctx = fc->fs_private;
5252 	int silent = fc->sb_flags & SB_SILENT;
5253 
5254 	/* Set defaults for the variables that will be set during parsing */
5255 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5256 		ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
5257 
5258 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5259 	sbi->s_sectors_written_start =
5260 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5261 
5262 	err = ext4_load_super(sb, &logical_sb_block, silent);
5263 	if (err)
5264 		goto out_fail;
5265 
5266 	es = sbi->s_es;
5267 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5268 
5269 	err = ext4_init_metadata_csum(sb, es);
5270 	if (err)
5271 		goto failed_mount;
5272 
5273 	ext4_set_def_opts(sb, es);
5274 
5275 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5276 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5277 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5278 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5279 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5280 	sbi->s_sb_update_kb = EXT4_DEF_SB_UPDATE_INTERVAL_KB;
5281 	sbi->s_sb_update_sec = EXT4_DEF_SB_UPDATE_INTERVAL_SEC;
5282 
5283 	/*
5284 	 * set default s_li_wait_mult for lazyinit, for the case there is
5285 	 * no mount option specified.
5286 	 */
5287 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5288 
5289 	err = ext4_inode_info_init(sb, es);
5290 	if (err)
5291 		goto failed_mount;
5292 
5293 	err = parse_apply_sb_mount_options(sb, ctx);
5294 	if (err < 0)
5295 		goto failed_mount;
5296 
5297 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5298 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5299 
5300 	err = ext4_check_opt_consistency(fc, sb);
5301 	if (err < 0)
5302 		goto failed_mount;
5303 
5304 	ext4_apply_options(fc, sb);
5305 
5306 	err = ext4_encoding_init(sb, es);
5307 	if (err)
5308 		goto failed_mount;
5309 
5310 	err = ext4_check_journal_data_mode(sb);
5311 	if (err)
5312 		goto failed_mount;
5313 
5314 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5315 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5316 
5317 	/* i_version is always enabled now */
5318 	sb->s_flags |= SB_I_VERSION;
5319 
5320 	/* HSM events are allowed by default. */
5321 	sb->s_iflags |= SB_I_ALLOW_HSM;
5322 
5323 	err = ext4_check_feature_compatibility(sb, es, silent);
5324 	if (err)
5325 		goto failed_mount;
5326 
5327 	err = ext4_block_group_meta_init(sb, silent);
5328 	if (err)
5329 		goto failed_mount;
5330 
5331 	err = ext4_hash_info_init(sb);
5332 	if (err)
5333 		goto failed_mount;
5334 
5335 	err = ext4_handle_clustersize(sb);
5336 	if (err)
5337 		goto failed_mount;
5338 
5339 	err = ext4_check_geometry(sb, es);
5340 	if (err)
5341 		goto failed_mount;
5342 
5343 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5344 	spin_lock_init(&sbi->s_error_lock);
5345 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5346 
5347 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5348 	if (err)
5349 		goto failed_mount3;
5350 
5351 	err = ext4_es_register_shrinker(sbi);
5352 	if (err)
5353 		goto failed_mount3;
5354 
5355 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5356 	if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5357 		ext4_msg(sb, KERN_WARNING,
5358 			 "stripe (%lu) is not aligned with cluster size (%u), "
5359 			 "stripe is disabled",
5360 			 sbi->s_stripe, sbi->s_cluster_ratio);
5361 		sbi->s_stripe = 0;
5362 	}
5363 	sbi->s_extent_max_zeroout_kb = 32;
5364 
5365 	/*
5366 	 * set up enough so that it can read an inode
5367 	 */
5368 	sb->s_op = &ext4_sops;
5369 	sb->s_export_op = &ext4_export_ops;
5370 	sb->s_xattr = ext4_xattr_handlers;
5371 #ifdef CONFIG_FS_ENCRYPTION
5372 	sb->s_cop = &ext4_cryptops;
5373 #endif
5374 #ifdef CONFIG_FS_VERITY
5375 	sb->s_vop = &ext4_verityops;
5376 #endif
5377 #ifdef CONFIG_QUOTA
5378 	sb->dq_op = &ext4_quota_operations;
5379 	if (ext4_has_feature_quota(sb))
5380 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5381 	else
5382 		sb->s_qcop = &ext4_qctl_operations;
5383 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5384 #endif
5385 	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5386 	super_set_sysfs_name_bdev(sb);
5387 
5388 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5389 	mutex_init(&sbi->s_orphan_lock);
5390 
5391 	spin_lock_init(&sbi->s_bdev_wb_lock);
5392 
5393 	ext4_atomic_write_init(sb);
5394 	ext4_fast_commit_init(sb);
5395 
5396 	sb->s_root = NULL;
5397 
5398 	needs_recovery = (es->s_last_orphan != 0 ||
5399 			  ext4_has_feature_orphan_present(sb) ||
5400 			  ext4_has_feature_journal_needs_recovery(sb));
5401 
5402 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5403 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5404 		if (err)
5405 			goto failed_mount3a;
5406 	}
5407 
5408 	err = -EINVAL;
5409 	/*
5410 	 * The first inode we look at is the journal inode.  Don't try
5411 	 * root first: it may be modified in the journal!
5412 	 */
5413 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5414 		err = ext4_load_and_init_journal(sb, es, ctx);
5415 		if (err)
5416 			goto failed_mount3a;
5417 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5418 		   ext4_has_feature_journal_needs_recovery(sb)) {
5419 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5420 		       "suppressed and not mounted read-only");
5421 		goto failed_mount3a;
5422 	} else {
5423 		const char *journal_option;
5424 
5425 		/* Nojournal mode, all journal mount options are illegal */
5426 		journal_option = ext4_has_journal_option(sb);
5427 		if (journal_option != NULL) {
5428 			ext4_msg(sb, KERN_ERR,
5429 				 "can't mount with %s, fs mounted w/o journal",
5430 				 journal_option);
5431 			goto failed_mount3a;
5432 		}
5433 
5434 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5435 		clear_opt(sb, JOURNAL_CHECKSUM);
5436 		clear_opt(sb, DATA_FLAGS);
5437 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5438 		sbi->s_journal = NULL;
5439 		needs_recovery = 0;
5440 	}
5441 
5442 	if (!test_opt(sb, NO_MBCACHE)) {
5443 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5444 		if (!sbi->s_ea_block_cache) {
5445 			ext4_msg(sb, KERN_ERR,
5446 				 "Failed to create ea_block_cache");
5447 			err = -EINVAL;
5448 			goto failed_mount_wq;
5449 		}
5450 
5451 		if (ext4_has_feature_ea_inode(sb)) {
5452 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5453 			if (!sbi->s_ea_inode_cache) {
5454 				ext4_msg(sb, KERN_ERR,
5455 					 "Failed to create ea_inode_cache");
5456 				err = -EINVAL;
5457 				goto failed_mount_wq;
5458 			}
5459 		}
5460 	}
5461 
5462 	/*
5463 	 * Get the # of file system overhead blocks from the
5464 	 * superblock if present.
5465 	 */
5466 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5467 	/* ignore the precalculated value if it is ridiculous */
5468 	if (sbi->s_overhead > ext4_blocks_count(es))
5469 		sbi->s_overhead = 0;
5470 	/*
5471 	 * If the bigalloc feature is not enabled recalculating the
5472 	 * overhead doesn't take long, so we might as well just redo
5473 	 * it to make sure we are using the correct value.
5474 	 */
5475 	if (!ext4_has_feature_bigalloc(sb))
5476 		sbi->s_overhead = 0;
5477 	if (sbi->s_overhead == 0) {
5478 		err = ext4_calculate_overhead(sb);
5479 		if (err)
5480 			goto failed_mount_wq;
5481 	}
5482 
5483 	/*
5484 	 * The maximum number of concurrent works can be high and
5485 	 * concurrency isn't really necessary.  Limit it to 1.
5486 	 */
5487 	EXT4_SB(sb)->rsv_conversion_wq =
5488 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5489 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5490 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5491 		err = -ENOMEM;
5492 		goto failed_mount4;
5493 	}
5494 
5495 	/*
5496 	 * The jbd2_journal_load will have done any necessary log recovery,
5497 	 * so we can safely mount the rest of the filesystem now.
5498 	 */
5499 
5500 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5501 	if (IS_ERR(root)) {
5502 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5503 		err = PTR_ERR(root);
5504 		root = NULL;
5505 		goto failed_mount4;
5506 	}
5507 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5508 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5509 		iput(root);
5510 		err = -EFSCORRUPTED;
5511 		goto failed_mount4;
5512 	}
5513 
5514 	generic_set_sb_d_ops(sb);
5515 	sb->s_root = d_make_root(root);
5516 	if (!sb->s_root) {
5517 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5518 		err = -ENOMEM;
5519 		goto failed_mount4;
5520 	}
5521 
5522 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5523 	if (err == -EROFS) {
5524 		sb->s_flags |= SB_RDONLY;
5525 	} else if (err)
5526 		goto failed_mount4a;
5527 
5528 	ext4_set_resv_clusters(sb);
5529 
5530 	if (test_opt(sb, BLOCK_VALIDITY)) {
5531 		err = ext4_setup_system_zone(sb);
5532 		if (err) {
5533 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5534 				 "zone (%d)", err);
5535 			goto failed_mount4a;
5536 		}
5537 	}
5538 	ext4_fc_replay_cleanup(sb);
5539 
5540 	ext4_ext_init(sb);
5541 
5542 	/*
5543 	 * Enable optimize_scan if number of groups is > threshold. This can be
5544 	 * turned off by passing "mb_optimize_scan=0". This can also be
5545 	 * turned on forcefully by passing "mb_optimize_scan=1".
5546 	 */
5547 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5548 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5549 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5550 		else
5551 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5552 	}
5553 
5554 	err = ext4_mb_init(sb);
5555 	if (err) {
5556 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5557 			 err);
5558 		goto failed_mount5;
5559 	}
5560 
5561 	/*
5562 	 * We can only set up the journal commit callback once
5563 	 * mballoc is initialized
5564 	 */
5565 	if (sbi->s_journal)
5566 		sbi->s_journal->j_commit_callback =
5567 			ext4_journal_commit_callback;
5568 
5569 	err = ext4_percpu_param_init(sbi);
5570 	if (err)
5571 		goto failed_mount6;
5572 
5573 	if (ext4_has_feature_flex_bg(sb))
5574 		if (!ext4_fill_flex_info(sb)) {
5575 			ext4_msg(sb, KERN_ERR,
5576 			       "unable to initialize "
5577 			       "flex_bg meta info!");
5578 			err = -ENOMEM;
5579 			goto failed_mount6;
5580 		}
5581 
5582 	err = ext4_register_li_request(sb, first_not_zeroed);
5583 	if (err)
5584 		goto failed_mount6;
5585 
5586 	err = ext4_init_orphan_info(sb);
5587 	if (err)
5588 		goto failed_mount7;
5589 #ifdef CONFIG_QUOTA
5590 	/* Enable quota usage during mount. */
5591 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5592 		err = ext4_enable_quotas(sb);
5593 		if (err)
5594 			goto failed_mount8;
5595 	}
5596 #endif  /* CONFIG_QUOTA */
5597 
5598 	/*
5599 	 * Save the original bdev mapping's wb_err value which could be
5600 	 * used to detect the metadata async write error.
5601 	 */
5602 	errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5603 				 &sbi->s_bdev_wb_err);
5604 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5605 	ext4_orphan_cleanup(sb, es);
5606 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5607 	/*
5608 	 * Update the checksum after updating free space/inode counters and
5609 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5610 	 * checksum in the buffer cache until it is written out and
5611 	 * e2fsprogs programs trying to open a file system immediately
5612 	 * after it is mounted can fail.
5613 	 */
5614 	ext4_superblock_csum_set(sb);
5615 	if (needs_recovery) {
5616 		ext4_msg(sb, KERN_INFO, "recovery complete");
5617 		err = ext4_mark_recovery_complete(sb, es);
5618 		if (err)
5619 			goto failed_mount9;
5620 	}
5621 
5622 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) {
5623 		ext4_msg(sb, KERN_WARNING,
5624 			 "mounting with \"discard\" option, but the device does not support discard");
5625 		clear_opt(sb, DISCARD);
5626 	}
5627 
5628 	if (es->s_error_count)
5629 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5630 
5631 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5632 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5633 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5634 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5635 	atomic_set(&sbi->s_warning_count, 0);
5636 	atomic_set(&sbi->s_msg_count, 0);
5637 
5638 	/* Register sysfs after all initializations are complete. */
5639 	err = ext4_register_sysfs(sb);
5640 	if (err)
5641 		goto failed_mount9;
5642 
5643 	return 0;
5644 
5645 failed_mount9:
5646 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5647 failed_mount8: __maybe_unused
5648 	ext4_release_orphan_info(sb);
5649 failed_mount7:
5650 	ext4_unregister_li_request(sb);
5651 failed_mount6:
5652 	ext4_mb_release(sb);
5653 	ext4_flex_groups_free(sbi);
5654 	ext4_percpu_param_destroy(sbi);
5655 failed_mount5:
5656 	ext4_ext_release(sb);
5657 	ext4_release_system_zone(sb);
5658 failed_mount4a:
5659 	dput(sb->s_root);
5660 	sb->s_root = NULL;
5661 failed_mount4:
5662 	ext4_msg(sb, KERN_ERR, "mount failed");
5663 	if (EXT4_SB(sb)->rsv_conversion_wq)
5664 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5665 failed_mount_wq:
5666 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5667 	sbi->s_ea_inode_cache = NULL;
5668 
5669 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5670 	sbi->s_ea_block_cache = NULL;
5671 
5672 	if (sbi->s_journal) {
5673 		ext4_journal_destroy(sbi, sbi->s_journal);
5674 	}
5675 failed_mount3a:
5676 	ext4_es_unregister_shrinker(sbi);
5677 failed_mount3:
5678 	/* flush s_sb_upd_work before sbi destroy */
5679 	flush_work(&sbi->s_sb_upd_work);
5680 	ext4_stop_mmpd(sbi);
5681 	timer_delete_sync(&sbi->s_err_report);
5682 	ext4_group_desc_free(sbi);
5683 failed_mount:
5684 #if IS_ENABLED(CONFIG_UNICODE)
5685 	utf8_unload(sb->s_encoding);
5686 #endif
5687 
5688 #ifdef CONFIG_QUOTA
5689 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5690 		kfree(get_qf_name(sb, sbi, i));
5691 #endif
5692 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5693 	brelse(sbi->s_sbh);
5694 	if (sbi->s_journal_bdev_file) {
5695 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5696 		bdev_fput(sbi->s_journal_bdev_file);
5697 	}
5698 out_fail:
5699 	invalidate_bdev(sb->s_bdev);
5700 	sb->s_fs_info = NULL;
5701 	return err;
5702 }
5703 
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5704 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5705 {
5706 	struct ext4_fs_context *ctx = fc->fs_private;
5707 	struct ext4_sb_info *sbi;
5708 	const char *descr;
5709 	int ret;
5710 
5711 	sbi = ext4_alloc_sbi(sb);
5712 	if (!sbi)
5713 		return -ENOMEM;
5714 
5715 	fc->s_fs_info = sbi;
5716 
5717 	/* Cleanup superblock name */
5718 	strreplace(sb->s_id, '/', '!');
5719 
5720 	sbi->s_sb_block = 1;	/* Default super block location */
5721 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5722 		sbi->s_sb_block = ctx->s_sb_block;
5723 
5724 	ret = __ext4_fill_super(fc, sb);
5725 	if (ret < 0)
5726 		goto free_sbi;
5727 
5728 	if (sbi->s_journal) {
5729 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5730 			descr = " journalled data mode";
5731 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5732 			descr = " ordered data mode";
5733 		else
5734 			descr = " writeback data mode";
5735 	} else
5736 		descr = "out journal";
5737 
5738 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5739 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5740 			 "Quota mode: %s.", &sb->s_uuid,
5741 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5742 			 ext4_quota_mode(sb));
5743 
5744 	/* Update the s_overhead_clusters if necessary */
5745 	ext4_update_overhead(sb, false);
5746 	return 0;
5747 
5748 free_sbi:
5749 	ext4_free_sbi(sbi);
5750 	fc->s_fs_info = NULL;
5751 	return ret;
5752 }
5753 
ext4_get_tree(struct fs_context * fc)5754 static int ext4_get_tree(struct fs_context *fc)
5755 {
5756 	return get_tree_bdev(fc, ext4_fill_super);
5757 }
5758 
5759 /*
5760  * Setup any per-fs journal parameters now.  We'll do this both on
5761  * initial mount, once the journal has been initialised but before we've
5762  * done any recovery; and again on any subsequent remount.
5763  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5764 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5765 {
5766 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5767 
5768 	journal->j_commit_interval = sbi->s_commit_interval;
5769 	journal->j_min_batch_time = sbi->s_min_batch_time;
5770 	journal->j_max_batch_time = sbi->s_max_batch_time;
5771 	ext4_fc_init(sb, journal);
5772 
5773 	write_lock(&journal->j_state_lock);
5774 	if (test_opt(sb, BARRIER))
5775 		journal->j_flags |= JBD2_BARRIER;
5776 	else
5777 		journal->j_flags &= ~JBD2_BARRIER;
5778 	/*
5779 	 * Always enable journal cycle record option, letting the journal
5780 	 * records log transactions continuously between each mount.
5781 	 */
5782 	journal->j_flags |= JBD2_CYCLE_RECORD;
5783 	write_unlock(&journal->j_state_lock);
5784 }
5785 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5786 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5787 					     unsigned int journal_inum)
5788 {
5789 	struct inode *journal_inode;
5790 
5791 	/*
5792 	 * Test for the existence of a valid inode on disk.  Bad things
5793 	 * happen if we iget() an unused inode, as the subsequent iput()
5794 	 * will try to delete it.
5795 	 */
5796 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5797 	if (IS_ERR(journal_inode)) {
5798 		ext4_msg(sb, KERN_ERR, "no journal found");
5799 		return ERR_CAST(journal_inode);
5800 	}
5801 	if (!journal_inode->i_nlink) {
5802 		make_bad_inode(journal_inode);
5803 		iput(journal_inode);
5804 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5805 		return ERR_PTR(-EFSCORRUPTED);
5806 	}
5807 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5808 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5809 		iput(journal_inode);
5810 		return ERR_PTR(-EFSCORRUPTED);
5811 	}
5812 
5813 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5814 		  journal_inode, journal_inode->i_size);
5815 	return journal_inode;
5816 }
5817 
ext4_journal_bmap(journal_t * journal,sector_t * block)5818 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5819 {
5820 	struct ext4_map_blocks map;
5821 	int ret;
5822 
5823 	if (journal->j_inode == NULL)
5824 		return 0;
5825 
5826 	map.m_lblk = *block;
5827 	map.m_len = 1;
5828 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5829 	if (ret <= 0) {
5830 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5831 			 "journal bmap failed: block %llu ret %d\n",
5832 			 *block, ret);
5833 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5834 		return ret;
5835 	}
5836 	*block = map.m_pblk;
5837 	return 0;
5838 }
5839 
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5840 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5841 					  unsigned int journal_inum)
5842 {
5843 	struct inode *journal_inode;
5844 	journal_t *journal;
5845 
5846 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5847 	if (IS_ERR(journal_inode))
5848 		return ERR_CAST(journal_inode);
5849 
5850 	journal = jbd2_journal_init_inode(journal_inode);
5851 	if (IS_ERR(journal)) {
5852 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5853 		iput(journal_inode);
5854 		return ERR_CAST(journal);
5855 	}
5856 	journal->j_private = sb;
5857 	journal->j_bmap = ext4_journal_bmap;
5858 	ext4_init_journal_params(sb, journal);
5859 	return journal;
5860 }
5861 
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5862 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5863 					dev_t j_dev, ext4_fsblk_t *j_start,
5864 					ext4_fsblk_t *j_len)
5865 {
5866 	struct buffer_head *bh;
5867 	struct block_device *bdev;
5868 	struct file *bdev_file;
5869 	int hblock, blocksize;
5870 	ext4_fsblk_t sb_block;
5871 	unsigned long offset;
5872 	struct ext4_super_block *es;
5873 	int errno;
5874 
5875 	bdev_file = bdev_file_open_by_dev(j_dev,
5876 		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5877 		sb, &fs_holder_ops);
5878 	if (IS_ERR(bdev_file)) {
5879 		ext4_msg(sb, KERN_ERR,
5880 			 "failed to open journal device unknown-block(%u,%u) %ld",
5881 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5882 		return bdev_file;
5883 	}
5884 
5885 	bdev = file_bdev(bdev_file);
5886 	blocksize = sb->s_blocksize;
5887 	hblock = bdev_logical_block_size(bdev);
5888 	if (blocksize < hblock) {
5889 		ext4_msg(sb, KERN_ERR,
5890 			"blocksize too small for journal device");
5891 		errno = -EINVAL;
5892 		goto out_bdev;
5893 	}
5894 
5895 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5896 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5897 	set_blocksize(bdev_file, blocksize);
5898 	bh = __bread(bdev, sb_block, blocksize);
5899 	if (!bh) {
5900 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5901 		       "external journal");
5902 		errno = -EINVAL;
5903 		goto out_bdev;
5904 	}
5905 
5906 	es = (struct ext4_super_block *) (bh->b_data + offset);
5907 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5908 	    !(le32_to_cpu(es->s_feature_incompat) &
5909 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5910 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5911 		errno = -EFSCORRUPTED;
5912 		goto out_bh;
5913 	}
5914 
5915 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5916 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5917 	    es->s_checksum != ext4_superblock_csum(es)) {
5918 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5919 		errno = -EFSCORRUPTED;
5920 		goto out_bh;
5921 	}
5922 
5923 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5924 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5925 		errno = -EFSCORRUPTED;
5926 		goto out_bh;
5927 	}
5928 
5929 	*j_start = sb_block + 1;
5930 	*j_len = ext4_blocks_count(es);
5931 	brelse(bh);
5932 	return bdev_file;
5933 
5934 out_bh:
5935 	brelse(bh);
5936 out_bdev:
5937 	bdev_fput(bdev_file);
5938 	return ERR_PTR(errno);
5939 }
5940 
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5941 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5942 					dev_t j_dev)
5943 {
5944 	journal_t *journal;
5945 	ext4_fsblk_t j_start;
5946 	ext4_fsblk_t j_len;
5947 	struct file *bdev_file;
5948 	int errno = 0;
5949 
5950 	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5951 	if (IS_ERR(bdev_file))
5952 		return ERR_CAST(bdev_file);
5953 
5954 	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5955 					j_len, sb->s_blocksize);
5956 	if (IS_ERR(journal)) {
5957 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5958 		errno = PTR_ERR(journal);
5959 		goto out_bdev;
5960 	}
5961 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5962 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5963 					"user (unsupported) - %d",
5964 			be32_to_cpu(journal->j_superblock->s_nr_users));
5965 		errno = -EINVAL;
5966 		goto out_journal;
5967 	}
5968 	journal->j_private = sb;
5969 	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5970 	ext4_init_journal_params(sb, journal);
5971 	return journal;
5972 
5973 out_journal:
5974 	ext4_journal_destroy(EXT4_SB(sb), journal);
5975 out_bdev:
5976 	bdev_fput(bdev_file);
5977 	return ERR_PTR(errno);
5978 }
5979 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5980 static int ext4_load_journal(struct super_block *sb,
5981 			     struct ext4_super_block *es,
5982 			     unsigned long journal_devnum)
5983 {
5984 	journal_t *journal;
5985 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5986 	dev_t journal_dev;
5987 	int err = 0;
5988 	int really_read_only;
5989 	int journal_dev_ro;
5990 
5991 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5992 		return -EFSCORRUPTED;
5993 
5994 	if (journal_devnum &&
5995 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5996 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5997 			"numbers have changed");
5998 		journal_dev = new_decode_dev(journal_devnum);
5999 	} else
6000 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6001 
6002 	if (journal_inum && journal_dev) {
6003 		ext4_msg(sb, KERN_ERR,
6004 			 "filesystem has both journal inode and journal device!");
6005 		return -EINVAL;
6006 	}
6007 
6008 	if (journal_inum) {
6009 		journal = ext4_open_inode_journal(sb, journal_inum);
6010 		if (IS_ERR(journal))
6011 			return PTR_ERR(journal);
6012 	} else {
6013 		journal = ext4_open_dev_journal(sb, journal_dev);
6014 		if (IS_ERR(journal))
6015 			return PTR_ERR(journal);
6016 	}
6017 
6018 	journal_dev_ro = bdev_read_only(journal->j_dev);
6019 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6020 
6021 	if (journal_dev_ro && !sb_rdonly(sb)) {
6022 		ext4_msg(sb, KERN_ERR,
6023 			 "journal device read-only, try mounting with '-o ro'");
6024 		err = -EROFS;
6025 		goto err_out;
6026 	}
6027 
6028 	/*
6029 	 * Are we loading a blank journal or performing recovery after a
6030 	 * crash?  For recovery, we need to check in advance whether we
6031 	 * can get read-write access to the device.
6032 	 */
6033 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6034 		if (sb_rdonly(sb)) {
6035 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6036 					"required on readonly filesystem");
6037 			if (really_read_only) {
6038 				ext4_msg(sb, KERN_ERR, "write access "
6039 					"unavailable, cannot proceed "
6040 					"(try mounting with noload)");
6041 				err = -EROFS;
6042 				goto err_out;
6043 			}
6044 			ext4_msg(sb, KERN_INFO, "write access will "
6045 			       "be enabled during recovery");
6046 		}
6047 	}
6048 
6049 	if (!(journal->j_flags & JBD2_BARRIER))
6050 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6051 
6052 	if (!ext4_has_feature_journal_needs_recovery(sb))
6053 		err = jbd2_journal_wipe(journal, !really_read_only);
6054 	if (!err) {
6055 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6056 		__le16 orig_state;
6057 		bool changed = false;
6058 
6059 		if (save)
6060 			memcpy(save, ((char *) es) +
6061 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6062 		err = jbd2_journal_load(journal);
6063 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6064 				   save, EXT4_S_ERR_LEN)) {
6065 			memcpy(((char *) es) + EXT4_S_ERR_START,
6066 			       save, EXT4_S_ERR_LEN);
6067 			changed = true;
6068 		}
6069 		kfree(save);
6070 		orig_state = es->s_state;
6071 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6072 					   EXT4_ERROR_FS);
6073 		if (orig_state != es->s_state)
6074 			changed = true;
6075 		/* Write out restored error information to the superblock */
6076 		if (changed && !really_read_only) {
6077 			int err2;
6078 			err2 = ext4_commit_super(sb);
6079 			err = err ? : err2;
6080 		}
6081 	}
6082 
6083 	if (err) {
6084 		ext4_msg(sb, KERN_ERR, "error loading journal");
6085 		goto err_out;
6086 	}
6087 
6088 	EXT4_SB(sb)->s_journal = journal;
6089 	err = ext4_clear_journal_err(sb, es);
6090 	if (err) {
6091 		ext4_journal_destroy(EXT4_SB(sb), journal);
6092 		return err;
6093 	}
6094 
6095 	if (!really_read_only && journal_devnum &&
6096 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6097 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6098 		ext4_commit_super(sb);
6099 	}
6100 	if (!really_read_only && journal_inum &&
6101 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6102 		es->s_journal_inum = cpu_to_le32(journal_inum);
6103 		ext4_commit_super(sb);
6104 	}
6105 
6106 	return 0;
6107 
6108 err_out:
6109 	ext4_journal_destroy(EXT4_SB(sb), journal);
6110 	return err;
6111 }
6112 
6113 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6114 static void ext4_update_super(struct super_block *sb)
6115 {
6116 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6117 	struct ext4_super_block *es = sbi->s_es;
6118 	struct buffer_head *sbh = sbi->s_sbh;
6119 
6120 	lock_buffer(sbh);
6121 	/*
6122 	 * If the file system is mounted read-only, don't update the
6123 	 * superblock write time.  This avoids updating the superblock
6124 	 * write time when we are mounting the root file system
6125 	 * read/only but we need to replay the journal; at that point,
6126 	 * for people who are east of GMT and who make their clock
6127 	 * tick in localtime for Windows bug-for-bug compatibility,
6128 	 * the clock is set in the future, and this will cause e2fsck
6129 	 * to complain and force a full file system check.
6130 	 */
6131 	if (!sb_rdonly(sb))
6132 		ext4_update_tstamp(es, s_wtime);
6133 	es->s_kbytes_written =
6134 		cpu_to_le64(sbi->s_kbytes_written +
6135 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6136 		      sbi->s_sectors_written_start) >> 1));
6137 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6138 		ext4_free_blocks_count_set(es,
6139 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6140 				&sbi->s_freeclusters_counter)));
6141 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6142 		es->s_free_inodes_count =
6143 			cpu_to_le32(percpu_counter_sum_positive(
6144 				&sbi->s_freeinodes_counter));
6145 	/* Copy error information to the on-disk superblock */
6146 	spin_lock(&sbi->s_error_lock);
6147 	if (sbi->s_add_error_count > 0) {
6148 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6149 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6150 			__ext4_update_tstamp(&es->s_first_error_time,
6151 					     &es->s_first_error_time_hi,
6152 					     sbi->s_first_error_time);
6153 			strtomem_pad(es->s_first_error_func,
6154 				     sbi->s_first_error_func, 0);
6155 			es->s_first_error_line =
6156 				cpu_to_le32(sbi->s_first_error_line);
6157 			es->s_first_error_ino =
6158 				cpu_to_le32(sbi->s_first_error_ino);
6159 			es->s_first_error_block =
6160 				cpu_to_le64(sbi->s_first_error_block);
6161 			es->s_first_error_errcode =
6162 				ext4_errno_to_code(sbi->s_first_error_code);
6163 		}
6164 		__ext4_update_tstamp(&es->s_last_error_time,
6165 				     &es->s_last_error_time_hi,
6166 				     sbi->s_last_error_time);
6167 		strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6168 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6169 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6170 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6171 		es->s_last_error_errcode =
6172 				ext4_errno_to_code(sbi->s_last_error_code);
6173 		/*
6174 		 * Start the daily error reporting function if it hasn't been
6175 		 * started already
6176 		 */
6177 		if (!es->s_error_count)
6178 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6179 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6180 		sbi->s_add_error_count = 0;
6181 	}
6182 	spin_unlock(&sbi->s_error_lock);
6183 
6184 	ext4_superblock_csum_set(sb);
6185 	unlock_buffer(sbh);
6186 }
6187 
ext4_commit_super(struct super_block * sb)6188 static int ext4_commit_super(struct super_block *sb)
6189 {
6190 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6191 
6192 	if (!sbh)
6193 		return -EINVAL;
6194 
6195 	ext4_update_super(sb);
6196 
6197 	lock_buffer(sbh);
6198 	/* Buffer got discarded which means block device got invalidated */
6199 	if (!buffer_mapped(sbh)) {
6200 		unlock_buffer(sbh);
6201 		return -EIO;
6202 	}
6203 
6204 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6205 		/*
6206 		 * Oh, dear.  A previous attempt to write the
6207 		 * superblock failed.  This could happen because the
6208 		 * USB device was yanked out.  Or it could happen to
6209 		 * be a transient write error and maybe the block will
6210 		 * be remapped.  Nothing we can do but to retry the
6211 		 * write and hope for the best.
6212 		 */
6213 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6214 		       "superblock detected");
6215 		clear_buffer_write_io_error(sbh);
6216 		set_buffer_uptodate(sbh);
6217 	}
6218 	get_bh(sbh);
6219 	/* Clear potential dirty bit if it was journalled update */
6220 	clear_buffer_dirty(sbh);
6221 	sbh->b_end_io = end_buffer_write_sync;
6222 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6223 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6224 	wait_on_buffer(sbh);
6225 	if (buffer_write_io_error(sbh)) {
6226 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6227 		       "superblock");
6228 		clear_buffer_write_io_error(sbh);
6229 		set_buffer_uptodate(sbh);
6230 		return -EIO;
6231 	}
6232 	return 0;
6233 }
6234 
6235 /*
6236  * Have we just finished recovery?  If so, and if we are mounting (or
6237  * remounting) the filesystem readonly, then we will end up with a
6238  * consistent fs on disk.  Record that fact.
6239  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6240 static int ext4_mark_recovery_complete(struct super_block *sb,
6241 				       struct ext4_super_block *es)
6242 {
6243 	int err;
6244 	journal_t *journal = EXT4_SB(sb)->s_journal;
6245 
6246 	if (!ext4_has_feature_journal(sb)) {
6247 		if (journal != NULL) {
6248 			ext4_error(sb, "Journal got removed while the fs was "
6249 				   "mounted!");
6250 			return -EFSCORRUPTED;
6251 		}
6252 		return 0;
6253 	}
6254 	jbd2_journal_lock_updates(journal);
6255 	err = jbd2_journal_flush(journal, 0);
6256 	if (err < 0)
6257 		goto out;
6258 
6259 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6260 	    ext4_has_feature_orphan_present(sb))) {
6261 		if (!ext4_orphan_file_empty(sb)) {
6262 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6263 			err = -EFSCORRUPTED;
6264 			goto out;
6265 		}
6266 		ext4_clear_feature_journal_needs_recovery(sb);
6267 		ext4_clear_feature_orphan_present(sb);
6268 		ext4_commit_super(sb);
6269 	}
6270 out:
6271 	jbd2_journal_unlock_updates(journal);
6272 	return err;
6273 }
6274 
6275 /*
6276  * If we are mounting (or read-write remounting) a filesystem whose journal
6277  * has recorded an error from a previous lifetime, move that error to the
6278  * main filesystem now.
6279  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6280 static int ext4_clear_journal_err(struct super_block *sb,
6281 				   struct ext4_super_block *es)
6282 {
6283 	journal_t *journal;
6284 	int j_errno;
6285 	const char *errstr;
6286 
6287 	if (!ext4_has_feature_journal(sb)) {
6288 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6289 		return -EFSCORRUPTED;
6290 	}
6291 
6292 	journal = EXT4_SB(sb)->s_journal;
6293 
6294 	/*
6295 	 * Now check for any error status which may have been recorded in the
6296 	 * journal by a prior ext4_error() or ext4_abort()
6297 	 */
6298 
6299 	j_errno = jbd2_journal_errno(journal);
6300 	if (j_errno) {
6301 		char nbuf[16];
6302 
6303 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6304 		ext4_warning(sb, "Filesystem error recorded "
6305 			     "from previous mount: %s", errstr);
6306 
6307 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6308 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6309 		j_errno = ext4_commit_super(sb);
6310 		if (j_errno)
6311 			return j_errno;
6312 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6313 
6314 		jbd2_journal_clear_err(journal);
6315 		jbd2_journal_update_sb_errno(journal);
6316 	}
6317 	return 0;
6318 }
6319 
6320 /*
6321  * Force the running and committing transactions to commit,
6322  * and wait on the commit.
6323  */
ext4_force_commit(struct super_block * sb)6324 int ext4_force_commit(struct super_block *sb)
6325 {
6326 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6327 }
6328 
ext4_sync_fs(struct super_block * sb,int wait)6329 static int ext4_sync_fs(struct super_block *sb, int wait)
6330 {
6331 	int ret = 0;
6332 	tid_t target;
6333 	bool needs_barrier = false;
6334 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6335 
6336 	ret = ext4_emergency_state(sb);
6337 	if (unlikely(ret))
6338 		return ret;
6339 
6340 	trace_ext4_sync_fs(sb, wait);
6341 	flush_workqueue(sbi->rsv_conversion_wq);
6342 	/*
6343 	 * Writeback quota in non-journalled quota case - journalled quota has
6344 	 * no dirty dquots
6345 	 */
6346 	dquot_writeback_dquots(sb, -1);
6347 	/*
6348 	 * Data writeback is possible w/o journal transaction, so barrier must
6349 	 * being sent at the end of the function. But we can skip it if
6350 	 * transaction_commit will do it for us.
6351 	 */
6352 	if (sbi->s_journal) {
6353 		target = jbd2_get_latest_transaction(sbi->s_journal);
6354 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6355 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6356 			needs_barrier = true;
6357 
6358 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6359 			if (wait)
6360 				ret = jbd2_log_wait_commit(sbi->s_journal,
6361 							   target);
6362 		}
6363 	} else if (wait && test_opt(sb, BARRIER))
6364 		needs_barrier = true;
6365 	if (needs_barrier) {
6366 		int err;
6367 		err = blkdev_issue_flush(sb->s_bdev);
6368 		if (!ret)
6369 			ret = err;
6370 	}
6371 
6372 	return ret;
6373 }
6374 
6375 /*
6376  * LVM calls this function before a (read-only) snapshot is created.  This
6377  * gives us a chance to flush the journal completely and mark the fs clean.
6378  *
6379  * Note that only this function cannot bring a filesystem to be in a clean
6380  * state independently. It relies on upper layer to stop all data & metadata
6381  * modifications.
6382  */
ext4_freeze(struct super_block * sb)6383 static int ext4_freeze(struct super_block *sb)
6384 {
6385 	int error = 0;
6386 	journal_t *journal = EXT4_SB(sb)->s_journal;
6387 
6388 	if (journal) {
6389 		/* Now we set up the journal barrier. */
6390 		jbd2_journal_lock_updates(journal);
6391 
6392 		/*
6393 		 * Don't clear the needs_recovery flag if we failed to
6394 		 * flush the journal.
6395 		 */
6396 		error = jbd2_journal_flush(journal, 0);
6397 		if (error < 0)
6398 			goto out;
6399 
6400 		/* Journal blocked and flushed, clear needs_recovery flag. */
6401 		ext4_clear_feature_journal_needs_recovery(sb);
6402 		if (ext4_orphan_file_empty(sb))
6403 			ext4_clear_feature_orphan_present(sb);
6404 	}
6405 
6406 	error = ext4_commit_super(sb);
6407 out:
6408 	if (journal)
6409 		/* we rely on upper layer to stop further updates */
6410 		jbd2_journal_unlock_updates(journal);
6411 	return error;
6412 }
6413 
6414 /*
6415  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6416  * flag here, even though the filesystem is not technically dirty yet.
6417  */
ext4_unfreeze(struct super_block * sb)6418 static int ext4_unfreeze(struct super_block *sb)
6419 {
6420 	if (ext4_emergency_state(sb))
6421 		return 0;
6422 
6423 	if (EXT4_SB(sb)->s_journal) {
6424 		/* Reset the needs_recovery flag before the fs is unlocked. */
6425 		ext4_set_feature_journal_needs_recovery(sb);
6426 		if (ext4_has_feature_orphan_file(sb))
6427 			ext4_set_feature_orphan_present(sb);
6428 	}
6429 
6430 	ext4_commit_super(sb);
6431 	return 0;
6432 }
6433 
6434 /*
6435  * Structure to save mount options for ext4_remount's benefit
6436  */
6437 struct ext4_mount_options {
6438 	unsigned long s_mount_opt;
6439 	unsigned long s_mount_opt2;
6440 	kuid_t s_resuid;
6441 	kgid_t s_resgid;
6442 	unsigned long s_commit_interval;
6443 	u32 s_min_batch_time, s_max_batch_time;
6444 #ifdef CONFIG_QUOTA
6445 	int s_jquota_fmt;
6446 	char *s_qf_names[EXT4_MAXQUOTAS];
6447 #endif
6448 };
6449 
__ext4_remount(struct fs_context * fc,struct super_block * sb)6450 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6451 {
6452 	struct ext4_fs_context *ctx = fc->fs_private;
6453 	struct ext4_super_block *es;
6454 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6455 	unsigned long old_sb_flags;
6456 	struct ext4_mount_options old_opts;
6457 	ext4_group_t g;
6458 	int err = 0;
6459 	int alloc_ctx;
6460 #ifdef CONFIG_QUOTA
6461 	int enable_quota = 0;
6462 	int i, j;
6463 	char *to_free[EXT4_MAXQUOTAS];
6464 #endif
6465 
6466 
6467 	/* Store the original options */
6468 	old_sb_flags = sb->s_flags;
6469 	old_opts.s_mount_opt = sbi->s_mount_opt;
6470 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6471 	old_opts.s_resuid = sbi->s_resuid;
6472 	old_opts.s_resgid = sbi->s_resgid;
6473 	old_opts.s_commit_interval = sbi->s_commit_interval;
6474 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6475 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6476 #ifdef CONFIG_QUOTA
6477 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6478 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6479 		if (sbi->s_qf_names[i]) {
6480 			char *qf_name = get_qf_name(sb, sbi, i);
6481 
6482 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6483 			if (!old_opts.s_qf_names[i]) {
6484 				for (j = 0; j < i; j++)
6485 					kfree(old_opts.s_qf_names[j]);
6486 				return -ENOMEM;
6487 			}
6488 		} else
6489 			old_opts.s_qf_names[i] = NULL;
6490 #endif
6491 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6492 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6493 			ctx->journal_ioprio =
6494 				sbi->s_journal->j_task->io_context->ioprio;
6495 		else
6496 			ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
6497 
6498 	}
6499 
6500 	if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6501 	    ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6502 		ext4_msg(sb, KERN_WARNING,
6503 			 "stripe (%lu) is not aligned with cluster size (%u), "
6504 			 "stripe is disabled",
6505 			 ctx->s_stripe, sbi->s_cluster_ratio);
6506 		ctx->s_stripe = 0;
6507 	}
6508 
6509 	/*
6510 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6511 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6512 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6513 	 * here s_writepages_rwsem to avoid race between writepages ops and
6514 	 * remount.
6515 	 */
6516 	alloc_ctx = ext4_writepages_down_write(sb);
6517 	ext4_apply_options(fc, sb);
6518 	ext4_writepages_up_write(sb, alloc_ctx);
6519 
6520 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6521 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6522 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6523 			 "during remount not supported; ignoring");
6524 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6525 	}
6526 
6527 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6528 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6529 			ext4_msg(sb, KERN_ERR, "can't mount with "
6530 				 "both data=journal and delalloc");
6531 			err = -EINVAL;
6532 			goto restore_opts;
6533 		}
6534 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6535 			ext4_msg(sb, KERN_ERR, "can't mount with "
6536 				 "both data=journal and dioread_nolock");
6537 			err = -EINVAL;
6538 			goto restore_opts;
6539 		}
6540 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6541 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6542 			ext4_msg(sb, KERN_ERR, "can't mount with "
6543 				"journal_async_commit in data=ordered mode");
6544 			err = -EINVAL;
6545 			goto restore_opts;
6546 		}
6547 	}
6548 
6549 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6550 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6551 		err = -EINVAL;
6552 		goto restore_opts;
6553 	}
6554 
6555 	if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6556 	    !test_opt(sb, DELALLOC)) {
6557 		ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6558 		err = -EINVAL;
6559 		goto restore_opts;
6560 	}
6561 
6562 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6563 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6564 
6565 	es = sbi->s_es;
6566 
6567 	if (sbi->s_journal) {
6568 		ext4_init_journal_params(sb, sbi->s_journal);
6569 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6570 	}
6571 
6572 	/* Flush outstanding errors before changing fs state */
6573 	flush_work(&sbi->s_sb_upd_work);
6574 
6575 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6576 		if (ext4_emergency_state(sb)) {
6577 			err = -EROFS;
6578 			goto restore_opts;
6579 		}
6580 
6581 		if (fc->sb_flags & SB_RDONLY) {
6582 			err = sync_filesystem(sb);
6583 			if (err < 0)
6584 				goto restore_opts;
6585 			err = dquot_suspend(sb, -1);
6586 			if (err < 0)
6587 				goto restore_opts;
6588 
6589 			/*
6590 			 * First of all, the unconditional stuff we have to do
6591 			 * to disable replay of the journal when we next remount
6592 			 */
6593 			sb->s_flags |= SB_RDONLY;
6594 
6595 			/*
6596 			 * OK, test if we are remounting a valid rw partition
6597 			 * readonly, and if so set the rdonly flag and then
6598 			 * mark the partition as valid again.
6599 			 */
6600 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6601 			    (sbi->s_mount_state & EXT4_VALID_FS))
6602 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6603 
6604 			if (sbi->s_journal) {
6605 				/*
6606 				 * We let remount-ro finish even if marking fs
6607 				 * as clean failed...
6608 				 */
6609 				ext4_mark_recovery_complete(sb, es);
6610 			}
6611 		} else {
6612 			/* Make sure we can mount this feature set readwrite */
6613 			if (ext4_has_feature_readonly(sb) ||
6614 			    !ext4_feature_set_ok(sb, 0)) {
6615 				err = -EROFS;
6616 				goto restore_opts;
6617 			}
6618 			/*
6619 			 * Make sure the group descriptor checksums
6620 			 * are sane.  If they aren't, refuse to remount r/w.
6621 			 */
6622 			for (g = 0; g < sbi->s_groups_count; g++) {
6623 				struct ext4_group_desc *gdp =
6624 					ext4_get_group_desc(sb, g, NULL);
6625 
6626 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6627 					ext4_msg(sb, KERN_ERR,
6628 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6629 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6630 					       le16_to_cpu(gdp->bg_checksum));
6631 					err = -EFSBADCRC;
6632 					goto restore_opts;
6633 				}
6634 			}
6635 
6636 			/*
6637 			 * If we have an unprocessed orphan list hanging
6638 			 * around from a previously readonly bdev mount,
6639 			 * require a full umount/remount for now.
6640 			 */
6641 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6642 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6643 				       "remount RDWR because of unprocessed "
6644 				       "orphan inode list.  Please "
6645 				       "umount/remount instead");
6646 				err = -EINVAL;
6647 				goto restore_opts;
6648 			}
6649 
6650 			/*
6651 			 * Mounting a RDONLY partition read-write, so reread
6652 			 * and store the current valid flag.  (It may have
6653 			 * been changed by e2fsck since we originally mounted
6654 			 * the partition.)
6655 			 */
6656 			if (sbi->s_journal) {
6657 				err = ext4_clear_journal_err(sb, es);
6658 				if (err)
6659 					goto restore_opts;
6660 			}
6661 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6662 					      ~EXT4_FC_REPLAY);
6663 
6664 			err = ext4_setup_super(sb, es, 0);
6665 			if (err)
6666 				goto restore_opts;
6667 
6668 			sb->s_flags &= ~SB_RDONLY;
6669 			if (ext4_has_feature_mmp(sb)) {
6670 				err = ext4_multi_mount_protect(sb,
6671 						le64_to_cpu(es->s_mmp_block));
6672 				if (err)
6673 					goto restore_opts;
6674 			}
6675 #ifdef CONFIG_QUOTA
6676 			enable_quota = 1;
6677 #endif
6678 		}
6679 	}
6680 
6681 	/*
6682 	 * Handle creation of system zone data early because it can fail.
6683 	 * Releasing of existing data is done when we are sure remount will
6684 	 * succeed.
6685 	 */
6686 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6687 		err = ext4_setup_system_zone(sb);
6688 		if (err)
6689 			goto restore_opts;
6690 	}
6691 
6692 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6693 		err = ext4_commit_super(sb);
6694 		if (err)
6695 			goto restore_opts;
6696 	}
6697 
6698 #ifdef CONFIG_QUOTA
6699 	if (enable_quota) {
6700 		if (sb_any_quota_suspended(sb))
6701 			dquot_resume(sb, -1);
6702 		else if (ext4_has_feature_quota(sb)) {
6703 			err = ext4_enable_quotas(sb);
6704 			if (err)
6705 				goto restore_opts;
6706 		}
6707 	}
6708 	/* Release old quota file names */
6709 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6710 		kfree(old_opts.s_qf_names[i]);
6711 #endif
6712 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6713 		ext4_release_system_zone(sb);
6714 
6715 	/*
6716 	 * Reinitialize lazy itable initialization thread based on
6717 	 * current settings
6718 	 */
6719 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6720 		ext4_unregister_li_request(sb);
6721 	else {
6722 		ext4_group_t first_not_zeroed;
6723 		first_not_zeroed = ext4_has_uninit_itable(sb);
6724 		ext4_register_li_request(sb, first_not_zeroed);
6725 	}
6726 
6727 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6728 		ext4_stop_mmpd(sbi);
6729 
6730 	/*
6731 	 * Handle aborting the filesystem as the last thing during remount to
6732 	 * avoid obsure errors during remount when some option changes fail to
6733 	 * apply due to shutdown filesystem.
6734 	 */
6735 	if (test_opt2(sb, ABORT))
6736 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6737 
6738 	return 0;
6739 
6740 restore_opts:
6741 	/*
6742 	 * If there was a failing r/w to ro transition, we may need to
6743 	 * re-enable quota
6744 	 */
6745 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6746 	    sb_any_quota_suspended(sb))
6747 		dquot_resume(sb, -1);
6748 
6749 	alloc_ctx = ext4_writepages_down_write(sb);
6750 	sb->s_flags = old_sb_flags;
6751 	sbi->s_mount_opt = old_opts.s_mount_opt;
6752 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6753 	sbi->s_resuid = old_opts.s_resuid;
6754 	sbi->s_resgid = old_opts.s_resgid;
6755 	sbi->s_commit_interval = old_opts.s_commit_interval;
6756 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6757 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6758 	ext4_writepages_up_write(sb, alloc_ctx);
6759 
6760 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6761 		ext4_release_system_zone(sb);
6762 #ifdef CONFIG_QUOTA
6763 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6764 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6765 		to_free[i] = get_qf_name(sb, sbi, i);
6766 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6767 	}
6768 	synchronize_rcu();
6769 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6770 		kfree(to_free[i]);
6771 #endif
6772 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6773 		ext4_stop_mmpd(sbi);
6774 	return err;
6775 }
6776 
ext4_reconfigure(struct fs_context * fc)6777 static int ext4_reconfigure(struct fs_context *fc)
6778 {
6779 	struct super_block *sb = fc->root->d_sb;
6780 	int ret;
6781 	bool old_ro = sb_rdonly(sb);
6782 
6783 	fc->s_fs_info = EXT4_SB(sb);
6784 
6785 	ret = ext4_check_opt_consistency(fc, sb);
6786 	if (ret < 0)
6787 		return ret;
6788 
6789 	ret = __ext4_remount(fc, sb);
6790 	if (ret < 0)
6791 		return ret;
6792 
6793 	ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.",
6794 		 &sb->s_uuid,
6795 		 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : "");
6796 
6797 	return 0;
6798 }
6799 
6800 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6801 static int ext4_statfs_project(struct super_block *sb,
6802 			       kprojid_t projid, struct kstatfs *buf)
6803 {
6804 	struct kqid qid;
6805 	struct dquot *dquot;
6806 	u64 limit;
6807 	u64 curblock;
6808 
6809 	qid = make_kqid_projid(projid);
6810 	dquot = dqget(sb, qid);
6811 	if (IS_ERR(dquot))
6812 		return PTR_ERR(dquot);
6813 	spin_lock(&dquot->dq_dqb_lock);
6814 
6815 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6816 			     dquot->dq_dqb.dqb_bhardlimit);
6817 	limit >>= sb->s_blocksize_bits;
6818 
6819 	if (limit) {
6820 		uint64_t	remaining = 0;
6821 
6822 		curblock = (dquot->dq_dqb.dqb_curspace +
6823 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6824 		if (limit > curblock)
6825 			remaining = limit - curblock;
6826 
6827 		buf->f_blocks = min(buf->f_blocks, limit);
6828 		buf->f_bfree = min(buf->f_bfree, remaining);
6829 		buf->f_bavail = min(buf->f_bavail, remaining);
6830 	}
6831 
6832 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6833 			     dquot->dq_dqb.dqb_ihardlimit);
6834 	if (limit) {
6835 		uint64_t	remaining = 0;
6836 
6837 		if (limit > dquot->dq_dqb.dqb_curinodes)
6838 			remaining = limit - dquot->dq_dqb.dqb_curinodes;
6839 
6840 		buf->f_files = min(buf->f_files, limit);
6841 		buf->f_ffree = min(buf->f_ffree, remaining);
6842 	}
6843 
6844 	spin_unlock(&dquot->dq_dqb_lock);
6845 	dqput(dquot);
6846 	return 0;
6847 }
6848 #endif
6849 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6850 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6851 {
6852 	struct super_block *sb = dentry->d_sb;
6853 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6854 	struct ext4_super_block *es = sbi->s_es;
6855 	ext4_fsblk_t overhead = 0, resv_blocks;
6856 	s64 bfree;
6857 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6858 
6859 	if (!test_opt(sb, MINIX_DF))
6860 		overhead = sbi->s_overhead;
6861 
6862 	buf->f_type = EXT4_SUPER_MAGIC;
6863 	buf->f_bsize = sb->s_blocksize;
6864 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6865 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6866 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6867 	/* prevent underflow in case that few free space is available */
6868 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6869 	buf->f_bavail = buf->f_bfree -
6870 			(ext4_r_blocks_count(es) + resv_blocks);
6871 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6872 		buf->f_bavail = 0;
6873 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6874 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6875 	buf->f_namelen = EXT4_NAME_LEN;
6876 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6877 
6878 #ifdef CONFIG_QUOTA
6879 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6880 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6881 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6882 #endif
6883 	return 0;
6884 }
6885 
6886 
6887 #ifdef CONFIG_QUOTA
6888 
6889 /*
6890  * Helper functions so that transaction is started before we acquire dqio_sem
6891  * to keep correct lock ordering of transaction > dqio_sem
6892  */
dquot_to_inode(struct dquot * dquot)6893 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6894 {
6895 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6896 }
6897 
ext4_write_dquot(struct dquot * dquot)6898 static int ext4_write_dquot(struct dquot *dquot)
6899 {
6900 	int ret, err;
6901 	handle_t *handle;
6902 	struct inode *inode;
6903 
6904 	inode = dquot_to_inode(dquot);
6905 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6906 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6907 	if (IS_ERR(handle))
6908 		return PTR_ERR(handle);
6909 	ret = dquot_commit(dquot);
6910 	if (ret < 0)
6911 		ext4_error_err(dquot->dq_sb, -ret,
6912 			       "Failed to commit dquot type %d",
6913 			       dquot->dq_id.type);
6914 	err = ext4_journal_stop(handle);
6915 	if (!ret)
6916 		ret = err;
6917 	return ret;
6918 }
6919 
ext4_acquire_dquot(struct dquot * dquot)6920 static int ext4_acquire_dquot(struct dquot *dquot)
6921 {
6922 	int ret, err;
6923 	handle_t *handle;
6924 
6925 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6926 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6927 	if (IS_ERR(handle))
6928 		return PTR_ERR(handle);
6929 	ret = dquot_acquire(dquot);
6930 	if (ret < 0)
6931 		ext4_error_err(dquot->dq_sb, -ret,
6932 			      "Failed to acquire dquot type %d",
6933 			      dquot->dq_id.type);
6934 	err = ext4_journal_stop(handle);
6935 	if (!ret)
6936 		ret = err;
6937 	return ret;
6938 }
6939 
ext4_release_dquot(struct dquot * dquot)6940 static int ext4_release_dquot(struct dquot *dquot)
6941 {
6942 	int ret, err;
6943 	handle_t *handle;
6944 	bool freeze_protected = false;
6945 
6946 	/*
6947 	 * Trying to sb_start_intwrite() in a running transaction
6948 	 * can result in a deadlock. Further, running transactions
6949 	 * are already protected from freezing.
6950 	 */
6951 	if (!ext4_journal_current_handle()) {
6952 		sb_start_intwrite(dquot->dq_sb);
6953 		freeze_protected = true;
6954 	}
6955 
6956 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6957 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6958 	if (IS_ERR(handle)) {
6959 		/* Release dquot anyway to avoid endless cycle in dqput() */
6960 		dquot_release(dquot);
6961 		if (freeze_protected)
6962 			sb_end_intwrite(dquot->dq_sb);
6963 		return PTR_ERR(handle);
6964 	}
6965 	ret = dquot_release(dquot);
6966 	if (ret < 0)
6967 		ext4_error_err(dquot->dq_sb, -ret,
6968 			       "Failed to release dquot type %d",
6969 			       dquot->dq_id.type);
6970 	err = ext4_journal_stop(handle);
6971 	if (!ret)
6972 		ret = err;
6973 
6974 	if (freeze_protected)
6975 		sb_end_intwrite(dquot->dq_sb);
6976 
6977 	return ret;
6978 }
6979 
ext4_mark_dquot_dirty(struct dquot * dquot)6980 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6981 {
6982 	struct super_block *sb = dquot->dq_sb;
6983 
6984 	if (ext4_is_quota_journalled(sb)) {
6985 		dquot_mark_dquot_dirty(dquot);
6986 		return ext4_write_dquot(dquot);
6987 	} else {
6988 		return dquot_mark_dquot_dirty(dquot);
6989 	}
6990 }
6991 
ext4_write_info(struct super_block * sb,int type)6992 static int ext4_write_info(struct super_block *sb, int type)
6993 {
6994 	int ret, err;
6995 	handle_t *handle;
6996 
6997 	/* Data block + inode block */
6998 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6999 	if (IS_ERR(handle))
7000 		return PTR_ERR(handle);
7001 	ret = dquot_commit_info(sb, type);
7002 	err = ext4_journal_stop(handle);
7003 	if (!ret)
7004 		ret = err;
7005 	return ret;
7006 }
7007 
lockdep_set_quota_inode(struct inode * inode,int subclass)7008 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
7009 {
7010 	struct ext4_inode_info *ei = EXT4_I(inode);
7011 
7012 	/* The first argument of lockdep_set_subclass has to be
7013 	 * *exactly* the same as the argument to init_rwsem() --- in
7014 	 * this case, in init_once() --- or lockdep gets unhappy
7015 	 * because the name of the lock is set using the
7016 	 * stringification of the argument to init_rwsem().
7017 	 */
7018 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
7019 	lockdep_set_subclass(&ei->i_data_sem, subclass);
7020 }
7021 
7022 /*
7023  * Standard function to be called on quota_on
7024  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)7025 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7026 			 const struct path *path)
7027 {
7028 	int err;
7029 
7030 	if (!test_opt(sb, QUOTA))
7031 		return -EINVAL;
7032 
7033 	/* Quotafile not on the same filesystem? */
7034 	if (path->dentry->d_sb != sb)
7035 		return -EXDEV;
7036 
7037 	/* Quota already enabled for this file? */
7038 	if (IS_NOQUOTA(d_inode(path->dentry)))
7039 		return -EBUSY;
7040 
7041 	/* Journaling quota? */
7042 	if (EXT4_SB(sb)->s_qf_names[type]) {
7043 		/* Quotafile not in fs root? */
7044 		if (path->dentry->d_parent != sb->s_root)
7045 			ext4_msg(sb, KERN_WARNING,
7046 				"Quota file not on filesystem root. "
7047 				"Journaled quota will not work");
7048 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7049 	} else {
7050 		/*
7051 		 * Clear the flag just in case mount options changed since
7052 		 * last time.
7053 		 */
7054 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7055 	}
7056 
7057 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7058 	err = dquot_quota_on(sb, type, format_id, path);
7059 	if (!err) {
7060 		struct inode *inode = d_inode(path->dentry);
7061 		handle_t *handle;
7062 
7063 		/*
7064 		 * Set inode flags to prevent userspace from messing with quota
7065 		 * files. If this fails, we return success anyway since quotas
7066 		 * are already enabled and this is not a hard failure.
7067 		 */
7068 		inode_lock(inode);
7069 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7070 		if (IS_ERR(handle))
7071 			goto unlock_inode;
7072 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7073 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7074 				S_NOATIME | S_IMMUTABLE);
7075 		err = ext4_mark_inode_dirty(handle, inode);
7076 		ext4_journal_stop(handle);
7077 	unlock_inode:
7078 		inode_unlock(inode);
7079 		if (err)
7080 			dquot_quota_off(sb, type);
7081 	}
7082 	if (err)
7083 		lockdep_set_quota_inode(path->dentry->d_inode,
7084 					     I_DATA_SEM_NORMAL);
7085 	return err;
7086 }
7087 
ext4_check_quota_inum(int type,unsigned long qf_inum)7088 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7089 {
7090 	switch (type) {
7091 	case USRQUOTA:
7092 		return qf_inum == EXT4_USR_QUOTA_INO;
7093 	case GRPQUOTA:
7094 		return qf_inum == EXT4_GRP_QUOTA_INO;
7095 	case PRJQUOTA:
7096 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7097 	default:
7098 		BUG();
7099 	}
7100 }
7101 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7102 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7103 			     unsigned int flags)
7104 {
7105 	int err;
7106 	struct inode *qf_inode;
7107 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7108 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7109 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7110 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7111 	};
7112 
7113 	BUG_ON(!ext4_has_feature_quota(sb));
7114 
7115 	if (!qf_inums[type])
7116 		return -EPERM;
7117 
7118 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7119 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7120 				qf_inums[type], type);
7121 		return -EUCLEAN;
7122 	}
7123 
7124 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7125 	if (IS_ERR(qf_inode)) {
7126 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7127 				qf_inums[type], type);
7128 		return PTR_ERR(qf_inode);
7129 	}
7130 
7131 	/* Don't account quota for quota files to avoid recursion */
7132 	qf_inode->i_flags |= S_NOQUOTA;
7133 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7134 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7135 	if (err)
7136 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7137 	iput(qf_inode);
7138 
7139 	return err;
7140 }
7141 
7142 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7143 int ext4_enable_quotas(struct super_block *sb)
7144 {
7145 	int type, err = 0;
7146 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7147 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7148 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7149 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7150 	};
7151 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7152 		test_opt(sb, USRQUOTA),
7153 		test_opt(sb, GRPQUOTA),
7154 		test_opt(sb, PRJQUOTA),
7155 	};
7156 
7157 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7158 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7159 		if (qf_inums[type]) {
7160 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7161 				DQUOT_USAGE_ENABLED |
7162 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7163 			if (err) {
7164 				ext4_warning(sb,
7165 					"Failed to enable quota tracking "
7166 					"(type=%d, err=%d, ino=%lu). "
7167 					"Please run e2fsck to fix.", type,
7168 					err, qf_inums[type]);
7169 
7170 				ext4_quotas_off(sb, type);
7171 				return err;
7172 			}
7173 		}
7174 	}
7175 	return 0;
7176 }
7177 
ext4_quota_off(struct super_block * sb,int type)7178 static int ext4_quota_off(struct super_block *sb, int type)
7179 {
7180 	struct inode *inode = sb_dqopt(sb)->files[type];
7181 	handle_t *handle;
7182 	int err;
7183 
7184 	/* Force all delayed allocation blocks to be allocated.
7185 	 * Caller already holds s_umount sem */
7186 	if (test_opt(sb, DELALLOC))
7187 		sync_filesystem(sb);
7188 
7189 	if (!inode || !igrab(inode))
7190 		goto out;
7191 
7192 	err = dquot_quota_off(sb, type);
7193 	if (err || ext4_has_feature_quota(sb))
7194 		goto out_put;
7195 	/*
7196 	 * When the filesystem was remounted read-only first, we cannot cleanup
7197 	 * inode flags here. Bad luck but people should be using QUOTA feature
7198 	 * these days anyway.
7199 	 */
7200 	if (sb_rdonly(sb))
7201 		goto out_put;
7202 
7203 	inode_lock(inode);
7204 	/*
7205 	 * Update modification times of quota files when userspace can
7206 	 * start looking at them. If we fail, we return success anyway since
7207 	 * this is not a hard failure and quotas are already disabled.
7208 	 */
7209 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7210 	if (IS_ERR(handle)) {
7211 		err = PTR_ERR(handle);
7212 		goto out_unlock;
7213 	}
7214 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7215 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7216 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7217 	err = ext4_mark_inode_dirty(handle, inode);
7218 	ext4_journal_stop(handle);
7219 out_unlock:
7220 	inode_unlock(inode);
7221 out_put:
7222 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7223 	iput(inode);
7224 	return err;
7225 out:
7226 	return dquot_quota_off(sb, type);
7227 }
7228 
7229 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7230  * acquiring the locks... As quota files are never truncated and quota code
7231  * itself serializes the operations (and no one else should touch the files)
7232  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7233 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7234 			       size_t len, loff_t off)
7235 {
7236 	struct inode *inode = sb_dqopt(sb)->files[type];
7237 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7238 	int offset = off & (sb->s_blocksize - 1);
7239 	int tocopy;
7240 	size_t toread;
7241 	struct buffer_head *bh;
7242 	loff_t i_size = i_size_read(inode);
7243 
7244 	if (off > i_size)
7245 		return 0;
7246 	if (off+len > i_size)
7247 		len = i_size-off;
7248 	toread = len;
7249 	while (toread > 0) {
7250 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7251 		bh = ext4_bread(NULL, inode, blk, 0);
7252 		if (IS_ERR(bh))
7253 			return PTR_ERR(bh);
7254 		if (!bh)	/* A hole? */
7255 			memset(data, 0, tocopy);
7256 		else
7257 			memcpy(data, bh->b_data+offset, tocopy);
7258 		brelse(bh);
7259 		offset = 0;
7260 		toread -= tocopy;
7261 		data += tocopy;
7262 		blk++;
7263 	}
7264 	return len;
7265 }
7266 
7267 /* Write to quotafile (we know the transaction is already started and has
7268  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7269 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7270 				const char *data, size_t len, loff_t off)
7271 {
7272 	struct inode *inode = sb_dqopt(sb)->files[type];
7273 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7274 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7275 	int retries = 0;
7276 	struct buffer_head *bh;
7277 	handle_t *handle = journal_current_handle();
7278 
7279 	if (!handle) {
7280 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7281 			" cancelled because transaction is not started",
7282 			(unsigned long long)off, (unsigned long long)len);
7283 		return -EIO;
7284 	}
7285 	/*
7286 	 * Since we account only one data block in transaction credits,
7287 	 * then it is impossible to cross a block boundary.
7288 	 */
7289 	if (sb->s_blocksize - offset < len) {
7290 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7291 			" cancelled because not block aligned",
7292 			(unsigned long long)off, (unsigned long long)len);
7293 		return -EIO;
7294 	}
7295 
7296 	do {
7297 		bh = ext4_bread(handle, inode, blk,
7298 				EXT4_GET_BLOCKS_CREATE |
7299 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7300 	} while (PTR_ERR(bh) == -ENOSPC &&
7301 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7302 	if (IS_ERR(bh))
7303 		return PTR_ERR(bh);
7304 	if (!bh)
7305 		goto out;
7306 	BUFFER_TRACE(bh, "get write access");
7307 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7308 	if (err) {
7309 		brelse(bh);
7310 		return err;
7311 	}
7312 	lock_buffer(bh);
7313 	memcpy(bh->b_data+offset, data, len);
7314 	flush_dcache_folio(bh->b_folio);
7315 	unlock_buffer(bh);
7316 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7317 	brelse(bh);
7318 out:
7319 	if (inode->i_size < off + len) {
7320 		i_size_write(inode, off + len);
7321 		EXT4_I(inode)->i_disksize = inode->i_size;
7322 		err2 = ext4_mark_inode_dirty(handle, inode);
7323 		if (unlikely(err2 && !err))
7324 			err = err2;
7325 	}
7326 	return err ? err : len;
7327 }
7328 #endif
7329 
7330 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7331 static inline void register_as_ext2(void)
7332 {
7333 	int err = register_filesystem(&ext2_fs_type);
7334 	if (err)
7335 		printk(KERN_WARNING
7336 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7337 }
7338 
unregister_as_ext2(void)7339 static inline void unregister_as_ext2(void)
7340 {
7341 	unregister_filesystem(&ext2_fs_type);
7342 }
7343 
ext2_feature_set_ok(struct super_block * sb)7344 static inline int ext2_feature_set_ok(struct super_block *sb)
7345 {
7346 	if (ext4_has_unknown_ext2_incompat_features(sb))
7347 		return 0;
7348 	if (sb_rdonly(sb))
7349 		return 1;
7350 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7351 		return 0;
7352 	return 1;
7353 }
7354 #else
register_as_ext2(void)7355 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7356 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7357 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7358 #endif
7359 
register_as_ext3(void)7360 static inline void register_as_ext3(void)
7361 {
7362 	int err = register_filesystem(&ext3_fs_type);
7363 	if (err)
7364 		printk(KERN_WARNING
7365 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7366 }
7367 
unregister_as_ext3(void)7368 static inline void unregister_as_ext3(void)
7369 {
7370 	unregister_filesystem(&ext3_fs_type);
7371 }
7372 
ext3_feature_set_ok(struct super_block * sb)7373 static inline int ext3_feature_set_ok(struct super_block *sb)
7374 {
7375 	if (ext4_has_unknown_ext3_incompat_features(sb))
7376 		return 0;
7377 	if (!ext4_has_feature_journal(sb))
7378 		return 0;
7379 	if (sb_rdonly(sb))
7380 		return 1;
7381 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7382 		return 0;
7383 	return 1;
7384 }
7385 
ext4_kill_sb(struct super_block * sb)7386 static void ext4_kill_sb(struct super_block *sb)
7387 {
7388 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7389 	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7390 
7391 	kill_block_super(sb);
7392 
7393 	if (bdev_file)
7394 		bdev_fput(bdev_file);
7395 }
7396 
7397 static struct file_system_type ext4_fs_type = {
7398 	.owner			= THIS_MODULE,
7399 	.name			= "ext4",
7400 	.init_fs_context	= ext4_init_fs_context,
7401 	.parameters		= ext4_param_specs,
7402 	.kill_sb		= ext4_kill_sb,
7403 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7404 };
7405 MODULE_ALIAS_FS("ext4");
7406 
ext4_init_fs(void)7407 static int __init ext4_init_fs(void)
7408 {
7409 	int err;
7410 
7411 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7412 	ext4_li_info = NULL;
7413 
7414 	/* Build-time check for flags consistency */
7415 	ext4_check_flag_values();
7416 
7417 	err = ext4_init_es();
7418 	if (err)
7419 		return err;
7420 
7421 	err = ext4_init_pending();
7422 	if (err)
7423 		goto out7;
7424 
7425 	err = ext4_init_post_read_processing();
7426 	if (err)
7427 		goto out6;
7428 
7429 	err = ext4_init_pageio();
7430 	if (err)
7431 		goto out5;
7432 
7433 	err = ext4_init_system_zone();
7434 	if (err)
7435 		goto out4;
7436 
7437 	err = ext4_init_sysfs();
7438 	if (err)
7439 		goto out3;
7440 
7441 	err = ext4_init_mballoc();
7442 	if (err)
7443 		goto out2;
7444 	err = init_inodecache();
7445 	if (err)
7446 		goto out1;
7447 
7448 	err = ext4_fc_init_dentry_cache();
7449 	if (err)
7450 		goto out05;
7451 
7452 	register_as_ext3();
7453 	register_as_ext2();
7454 	err = register_filesystem(&ext4_fs_type);
7455 	if (err)
7456 		goto out;
7457 
7458 	return 0;
7459 out:
7460 	unregister_as_ext2();
7461 	unregister_as_ext3();
7462 	ext4_fc_destroy_dentry_cache();
7463 out05:
7464 	destroy_inodecache();
7465 out1:
7466 	ext4_exit_mballoc();
7467 out2:
7468 	ext4_exit_sysfs();
7469 out3:
7470 	ext4_exit_system_zone();
7471 out4:
7472 	ext4_exit_pageio();
7473 out5:
7474 	ext4_exit_post_read_processing();
7475 out6:
7476 	ext4_exit_pending();
7477 out7:
7478 	ext4_exit_es();
7479 
7480 	return err;
7481 }
7482 
ext4_exit_fs(void)7483 static void __exit ext4_exit_fs(void)
7484 {
7485 	ext4_destroy_lazyinit_thread();
7486 	unregister_as_ext2();
7487 	unregister_as_ext3();
7488 	unregister_filesystem(&ext4_fs_type);
7489 	ext4_fc_destroy_dentry_cache();
7490 	destroy_inodecache();
7491 	ext4_exit_mballoc();
7492 	ext4_exit_sysfs();
7493 	ext4_exit_system_zone();
7494 	ext4_exit_pageio();
7495 	ext4_exit_post_read_processing();
7496 	ext4_exit_es();
7497 	ext4_exit_pending();
7498 }
7499 
7500 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7501 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7502 MODULE_LICENSE("GPL");
7503 module_init(ext4_init_fs)
7504 module_exit(ext4_exit_fs)
7505