1 //===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines some loop transformation utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H 14 #define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H 15 16 #include "llvm/Analysis/IVDescriptors.h" 17 #include "llvm/Analysis/LoopAccessAnalysis.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/IR/VectorBuilder.h" 20 #include "llvm/Transforms/Utils/ValueMapper.h" 21 22 namespace llvm { 23 24 template <typename T> class DomTreeNodeBase; 25 using DomTreeNode = DomTreeNodeBase<BasicBlock>; 26 class AssumptionCache; 27 class StringRef; 28 class AnalysisUsage; 29 class TargetTransformInfo; 30 class AAResults; 31 class BasicBlock; 32 class ICFLoopSafetyInfo; 33 class IRBuilderBase; 34 class Loop; 35 class LoopInfo; 36 class MemoryAccess; 37 class MemorySSA; 38 class MemorySSAUpdater; 39 class OptimizationRemarkEmitter; 40 class PredIteratorCache; 41 class ScalarEvolution; 42 class SCEV; 43 class SCEVExpander; 44 class TargetLibraryInfo; 45 class LPPassManager; 46 class Instruction; 47 struct RuntimeCheckingPtrGroup; 48 typedef std::pair<const RuntimeCheckingPtrGroup *, 49 const RuntimeCheckingPtrGroup *> 50 RuntimePointerCheck; 51 52 template <typename T, unsigned N> class SmallSetVector; 53 template <typename T, unsigned N> class SmallPriorityWorklist; 54 55 BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, 56 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 57 58 /// Ensure that all exit blocks of the loop are dedicated exits. 59 /// 60 /// For any loop exit block with non-loop predecessors, we split the loop 61 /// predecessors to use a dedicated loop exit block. We update the dominator 62 /// tree and loop info if provided, and will preserve LCSSA if requested. 63 bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 64 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 65 66 /// Ensures LCSSA form for every instruction from the Worklist in the scope of 67 /// innermost containing loop. 68 /// 69 /// For the given instruction which have uses outside of the loop, an LCSSA PHI 70 /// node is inserted and the uses outside the loop are rewritten to use this 71 /// node. 72 /// 73 /// LoopInfo and DominatorTree are required and, since the routine makes no 74 /// changes to CFG, preserved. 75 /// 76 /// Returns true if any modifications are made. 77 /// 78 /// This function may introduce unused PHI nodes. If \p PHIsToRemove is not 79 /// nullptr, those are added to it (before removing, the caller has to check if 80 /// they still do not have any uses). Otherwise the PHIs are directly removed. 81 /// 82 /// If \p InsertedPHIs is not nullptr, inserted phis will be added to this 83 /// vector. 84 bool formLCSSAForInstructions( 85 SmallVectorImpl<Instruction *> &Worklist, const DominatorTree &DT, 86 const LoopInfo &LI, ScalarEvolution *SE, 87 SmallVectorImpl<PHINode *> *PHIsToRemove = nullptr, 88 SmallVectorImpl<PHINode *> *InsertedPHIs = nullptr); 89 90 /// Put loop into LCSSA form. 91 /// 92 /// Looks at all instructions in the loop which have uses outside of the 93 /// current loop. For each, an LCSSA PHI node is inserted and the uses outside 94 /// the loop are rewritten to use this node. Sub-loops must be in LCSSA form 95 /// already. 96 /// 97 /// LoopInfo and DominatorTree are required and preserved. 98 /// 99 /// If ScalarEvolution is passed in, it will be preserved. 100 /// 101 /// Returns true if any modifications are made to the loop. 102 bool formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, 103 ScalarEvolution *SE); 104 105 /// Put a loop nest into LCSSA form. 106 /// 107 /// This recursively forms LCSSA for a loop nest. 108 /// 109 /// LoopInfo and DominatorTree are required and preserved. 110 /// 111 /// If ScalarEvolution is passed in, it will be preserved. 112 /// 113 /// Returns true if any modifications are made to the loop. 114 bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, 115 ScalarEvolution *SE); 116 117 /// Flags controlling how much is checked when sinking or hoisting 118 /// instructions. The number of memory access in the loop (and whether there 119 /// are too many) is determined in the constructors when using MemorySSA. 120 class SinkAndHoistLICMFlags { 121 public: 122 // Explicitly set limits. 123 SinkAndHoistLICMFlags(unsigned LicmMssaOptCap, 124 unsigned LicmMssaNoAccForPromotionCap, bool IsSink, 125 Loop &L, MemorySSA &MSSA); 126 // Use default limits. 127 SinkAndHoistLICMFlags(bool IsSink, Loop &L, MemorySSA &MSSA); 128 setIsSink(bool B)129 void setIsSink(bool B) { IsSink = B; } getIsSink()130 bool getIsSink() { return IsSink; } tooManyMemoryAccesses()131 bool tooManyMemoryAccesses() { return NoOfMemAccTooLarge; } tooManyClobberingCalls()132 bool tooManyClobberingCalls() { return LicmMssaOptCounter >= LicmMssaOptCap; } incrementClobberingCalls()133 void incrementClobberingCalls() { ++LicmMssaOptCounter; } 134 135 protected: 136 bool NoOfMemAccTooLarge = false; 137 unsigned LicmMssaOptCounter = 0; 138 unsigned LicmMssaOptCap; 139 unsigned LicmMssaNoAccForPromotionCap; 140 bool IsSink; 141 }; 142 143 /// Walk the specified region of the CFG (defined by all blocks 144 /// dominated by the specified block, and that are in the current loop) in 145 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit 146 /// uses before definitions, allowing us to sink a loop body in one pass without 147 /// iteration. Takes DomTreeNode, AAResults, LoopInfo, DominatorTree, 148 /// TargetLibraryInfo, Loop, AliasSet information for all 149 /// instructions of the loop and loop safety information as 150 /// arguments. Diagnostics is emitted via \p ORE. It returns changed status. 151 /// \p CurLoop is a loop to do sinking on. \p OutermostLoop is used only when 152 /// this function is called by \p sinkRegionForLoopNest. 153 bool sinkRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *, 154 TargetLibraryInfo *, TargetTransformInfo *, Loop *CurLoop, 155 MemorySSAUpdater &, ICFLoopSafetyInfo *, 156 SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *, 157 Loop *OutermostLoop = nullptr); 158 159 /// Call sinkRegion on loops contained within the specified loop 160 /// in order from innermost to outermost. 161 bool sinkRegionForLoopNest(DomTreeNode *, AAResults *, LoopInfo *, 162 DominatorTree *, TargetLibraryInfo *, 163 TargetTransformInfo *, Loop *, MemorySSAUpdater &, 164 ICFLoopSafetyInfo *, SinkAndHoistLICMFlags &, 165 OptimizationRemarkEmitter *); 166 167 /// Walk the specified region of the CFG (defined by all blocks 168 /// dominated by the specified block, and that are in the current loop) in depth 169 /// first order w.r.t the DominatorTree. This allows us to visit definitions 170 /// before uses, allowing us to hoist a loop body in one pass without iteration. 171 /// Takes DomTreeNode, AAResults, LoopInfo, DominatorTree, 172 /// TargetLibraryInfo, Loop, AliasSet information for all 173 /// instructions of the loop and loop safety information as arguments. 174 /// Diagnostics is emitted via \p ORE. It returns changed status. 175 /// \p AllowSpeculation is whether values should be hoisted even if they are not 176 /// guaranteed to execute in the loop, but are safe to speculatively execute. 177 bool hoistRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *, 178 AssumptionCache *, TargetLibraryInfo *, Loop *, 179 MemorySSAUpdater &, ScalarEvolution *, ICFLoopSafetyInfo *, 180 SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *, bool, 181 bool AllowSpeculation); 182 183 /// Return true if the induction variable \p IV in a Loop whose latch is 184 /// \p LatchBlock would become dead if the exit test \p Cond were removed. 185 /// Conservatively returns false if analysis is insufficient. 186 bool isAlmostDeadIV(PHINode *IV, BasicBlock *LatchBlock, Value *Cond); 187 188 /// This function deletes dead loops. The caller of this function needs to 189 /// guarantee that the loop is infact dead. 190 /// The function requires a bunch or prerequisites to be present: 191 /// - The loop needs to be in LCSSA form 192 /// - The loop needs to have a Preheader 193 /// - A unique dedicated exit block must exist 194 /// 195 /// This also updates the relevant analysis information in \p DT, \p SE, \p LI 196 /// and \p MSSA if pointers to those are provided. 197 /// It also updates the loop PM if an updater struct is provided. 198 199 void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 200 LoopInfo *LI, MemorySSA *MSSA = nullptr); 201 202 /// Remove the backedge of the specified loop. Handles loop nests and general 203 /// loop structures subject to the precondition that the loop has no parent 204 /// loop and has a single latch block. Preserves all listed analyses. 205 void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 206 LoopInfo &LI, MemorySSA *MSSA); 207 208 /// Try to promote memory values to scalars by sinking stores out of 209 /// the loop and moving loads to before the loop. We do this by looping over 210 /// the stores in the loop, looking for stores to Must pointers which are 211 /// loop invariant. It takes a set of must-alias values, Loop exit blocks 212 /// vector, loop exit blocks insertion point vector, PredIteratorCache, 213 /// LoopInfo, DominatorTree, Loop, AliasSet information for all instructions 214 /// of the loop and loop safety information as arguments. 215 /// Diagnostics is emitted via \p ORE. It returns changed status. 216 /// \p AllowSpeculation is whether values should be hoisted even if they are not 217 /// guaranteed to execute in the loop, but are safe to speculatively execute. 218 bool promoteLoopAccessesToScalars( 219 const SmallSetVector<Value *, 8> &, SmallVectorImpl<BasicBlock *> &, 220 SmallVectorImpl<BasicBlock::iterator> &, SmallVectorImpl<MemoryAccess *> &, 221 PredIteratorCache &, LoopInfo *, DominatorTree *, AssumptionCache *AC, 222 const TargetLibraryInfo *, TargetTransformInfo *, Loop *, 223 MemorySSAUpdater &, ICFLoopSafetyInfo *, OptimizationRemarkEmitter *, 224 bool AllowSpeculation, bool HasReadsOutsideSet); 225 226 /// Does a BFS from a given node to all of its children inside a given loop. 227 /// The returned vector of nodes includes the starting point. 228 SmallVector<DomTreeNode *, 16> collectChildrenInLoop(DomTreeNode *N, 229 const Loop *CurLoop); 230 231 /// Returns the instructions that use values defined in the loop. 232 SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L); 233 234 /// Find a combination of metadata ("llvm.loop.vectorize.width" and 235 /// "llvm.loop.vectorize.scalable.enable") for a loop and use it to construct a 236 /// ElementCount. If the metadata "llvm.loop.vectorize.width" cannot be found 237 /// then std::nullopt is returned. 238 std::optional<ElementCount> 239 getOptionalElementCountLoopAttribute(const Loop *TheLoop); 240 241 /// Create a new loop identifier for a loop created from a loop transformation. 242 /// 243 /// @param OrigLoopID The loop ID of the loop before the transformation. 244 /// @param FollowupAttrs List of attribute names that contain attributes to be 245 /// added to the new loop ID. 246 /// @param InheritOptionsAttrsPrefix Selects which attributes should be inherited 247 /// from the original loop. The following values 248 /// are considered: 249 /// nullptr : Inherit all attributes from @p OrigLoopID. 250 /// "" : Do not inherit any attribute from @p OrigLoopID; only use 251 /// those specified by a followup attribute. 252 /// "<prefix>": Inherit all attributes except those which start with 253 /// <prefix>; commonly used to remove metadata for the 254 /// applied transformation. 255 /// @param AlwaysNew If true, do not try to reuse OrigLoopID and never return 256 /// std::nullopt. 257 /// 258 /// @return The loop ID for the after-transformation loop. The following values 259 /// can be returned: 260 /// std::nullopt : No followup attribute was found; it is up to the 261 /// transformation to choose attributes that make sense. 262 /// @p OrigLoopID: The original identifier can be reused. 263 /// nullptr : The new loop has no attributes. 264 /// MDNode* : A new unique loop identifier. 265 std::optional<MDNode *> 266 makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef<StringRef> FollowupAttrs, 267 const char *InheritOptionsAttrsPrefix = "", 268 bool AlwaysNew = false); 269 270 /// Look for the loop attribute that disables all transformation heuristic. 271 bool hasDisableAllTransformsHint(const Loop *L); 272 273 /// Look for the loop attribute that disables the LICM transformation heuristics. 274 bool hasDisableLICMTransformsHint(const Loop *L); 275 276 /// The mode sets how eager a transformation should be applied. 277 enum TransformationMode { 278 /// The pass can use heuristics to determine whether a transformation should 279 /// be applied. 280 TM_Unspecified, 281 282 /// The transformation should be applied without considering a cost model. 283 TM_Enable, 284 285 /// The transformation should not be applied. 286 TM_Disable, 287 288 /// Force is a flag and should not be used alone. 289 TM_Force = 0x04, 290 291 /// The transformation was directed by the user, e.g. by a #pragma in 292 /// the source code. If the transformation could not be applied, a 293 /// warning should be emitted. 294 TM_ForcedByUser = TM_Enable | TM_Force, 295 296 /// The transformation must not be applied. For instance, `#pragma clang loop 297 /// unroll(disable)` explicitly forbids any unrolling to take place. Unlike 298 /// general loop metadata, it must not be dropped. Most passes should not 299 /// behave differently under TM_Disable and TM_SuppressedByUser. 300 TM_SuppressedByUser = TM_Disable | TM_Force 301 }; 302 303 /// @{ 304 /// Get the mode for LLVM's supported loop transformations. 305 TransformationMode hasUnrollTransformation(const Loop *L); 306 TransformationMode hasUnrollAndJamTransformation(const Loop *L); 307 TransformationMode hasVectorizeTransformation(const Loop *L); 308 TransformationMode hasDistributeTransformation(const Loop *L); 309 TransformationMode hasLICMVersioningTransformation(const Loop *L); 310 /// @} 311 312 /// Set input string into loop metadata by keeping other values intact. 313 /// If the string is already in loop metadata update value if it is 314 /// different. 315 void addStringMetadataToLoop(Loop *TheLoop, const char *MDString, 316 unsigned V = 0); 317 318 /// Returns a loop's estimated trip count based on branch weight metadata. 319 /// In addition if \p EstimatedLoopInvocationWeight is not null it is 320 /// initialized with weight of loop's latch leading to the exit. 321 /// Returns 0 when the count is estimated to be 0, or std::nullopt when a 322 /// meaningful estimate can not be made. 323 std::optional<unsigned> 324 getLoopEstimatedTripCount(Loop *L, 325 unsigned *EstimatedLoopInvocationWeight = nullptr); 326 327 /// Set a loop's branch weight metadata to reflect that loop has \p 328 /// EstimatedTripCount iterations and \p EstimatedLoopInvocationWeight exits 329 /// through latch. Returns true if metadata is successfully updated, false 330 /// otherwise. Note that loop must have a latch block which controls loop exit 331 /// in order to succeed. 332 bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 333 unsigned EstimatedLoopInvocationWeight); 334 335 /// Check inner loop (L) backedge count is known to be invariant on all 336 /// iterations of its outer loop. If the loop has no parent, this is trivially 337 /// true. 338 bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE); 339 340 /// Helper to consistently add the set of standard passes to a loop pass's \c 341 /// AnalysisUsage. 342 /// 343 /// All loop passes should call this as part of implementing their \c 344 /// getAnalysisUsage. 345 void getLoopAnalysisUsage(AnalysisUsage &AU); 346 347 /// Returns true if is legal to hoist or sink this instruction disregarding the 348 /// possible introduction of faults. Reasoning about potential faulting 349 /// instructions is the responsibility of the caller since it is challenging to 350 /// do efficiently from within this routine. 351 /// \p TargetExecutesOncePerLoop is true only when it is guaranteed that the 352 /// target executes at most once per execution of the loop body. This is used 353 /// to assess the legality of duplicating atomic loads. Generally, this is 354 /// true when moving out of loop and not true when moving into loops. 355 /// If \p ORE is set use it to emit optimization remarks. 356 bool canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, 357 Loop *CurLoop, MemorySSAUpdater &MSSAU, 358 bool TargetExecutesOncePerLoop, 359 SinkAndHoistLICMFlags &LICMFlags, 360 OptimizationRemarkEmitter *ORE = nullptr); 361 362 /// Returns the llvm.vector.reduce intrinsic that corresponds to the recurrence 363 /// kind. 364 constexpr Intrinsic::ID getReductionIntrinsicID(RecurKind RK); 365 366 /// Returns the arithmetic instruction opcode used when expanding a reduction. 367 unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID); 368 369 /// Returns the min/max intrinsic used when expanding a min/max reduction. 370 Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID); 371 372 /// Returns the min/max intrinsic used when expanding a min/max reduction. 373 Intrinsic::ID getMinMaxReductionIntrinsicOp(RecurKind RK); 374 375 /// Returns the recurence kind used when expanding a min/max reduction. 376 RecurKind getMinMaxReductionRecurKind(Intrinsic::ID RdxID); 377 378 /// Returns the comparison predicate used when expanding a min/max reduction. 379 CmpInst::Predicate getMinMaxReductionPredicate(RecurKind RK); 380 381 /// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind. 382 /// The Builder's fast-math-flags must be set to propagate the expected values. 383 Value *createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 384 Value *Right); 385 386 /// Generates an ordered vector reduction using extracts to reduce the value. 387 Value *getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 388 unsigned Op, RecurKind MinMaxKind = RecurKind::None); 389 390 /// Generates a vector reduction using shufflevectors to reduce the value. 391 /// Fast-math-flags are propagated using the IRBuilder's setting. 392 Value *getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op, 393 TargetTransformInfo::ReductionShuffle RS, 394 RecurKind MinMaxKind = RecurKind::None); 395 396 /// Create a target reduction of the given vector. The reduction operation 397 /// is described by the \p Opcode parameter. min/max reductions require 398 /// additional information supplied in \p RdxKind. 399 /// The target is queried to determine if intrinsics or shuffle sequences are 400 /// required to implement the reduction. 401 /// Fast-math-flags are propagated using the IRBuilder's setting. 402 Value *createSimpleTargetReduction(IRBuilderBase &B, Value *Src, 403 RecurKind RdxKind); 404 /// Overloaded function to generate vector-predication intrinsics for target 405 /// reduction. 406 Value *createSimpleTargetReduction(VectorBuilder &VB, Value *Src, 407 const RecurrenceDescriptor &Desc); 408 409 /// Create a target reduction of the given vector \p Src for a reduction of the 410 /// kind RecurKind::IAnyOf or RecurKind::FAnyOf. The reduction operation is 411 /// described by \p Desc. 412 Value *createAnyOfTargetReduction(IRBuilderBase &B, Value *Src, 413 const RecurrenceDescriptor &Desc, 414 PHINode *OrigPhi); 415 416 /// Create a generic target reduction using a recurrence descriptor \p Desc 417 /// The target is queried to determine if intrinsics or shuffle sequences are 418 /// required to implement the reduction. 419 /// Fast-math-flags are propagated using the RecurrenceDescriptor. 420 Value *createTargetReduction(IRBuilderBase &B, const RecurrenceDescriptor &Desc, 421 Value *Src, PHINode *OrigPhi = nullptr); 422 423 /// Create an ordered reduction intrinsic using the given recurrence 424 /// descriptor \p Desc. 425 Value *createOrderedReduction(IRBuilderBase &B, 426 const RecurrenceDescriptor &Desc, Value *Src, 427 Value *Start); 428 /// Overloaded function to generate vector-predication intrinsics for ordered 429 /// reduction. 430 Value *createOrderedReduction(VectorBuilder &VB, 431 const RecurrenceDescriptor &Desc, Value *Src, 432 Value *Start); 433 434 /// Get the intersection (logical and) of all of the potential IR flags 435 /// of each scalar operation (VL) that will be converted into a vector (I). 436 /// If OpValue is non-null, we only consider operations similar to OpValue 437 /// when intersecting. 438 /// Flag set: NSW, NUW (if IncludeWrapFlags is true), exact, and all of 439 /// fast-math. 440 void propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue = nullptr, 441 bool IncludeWrapFlags = true); 442 443 /// Returns true if we can prove that \p S is defined and always negative in 444 /// loop \p L. 445 bool isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE); 446 447 /// Returns true if we can prove that \p S is defined and always non-negative in 448 /// loop \p L. 449 bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 450 ScalarEvolution &SE); 451 /// Returns true if we can prove that \p S is defined and always positive in 452 /// loop \p L. 453 bool isKnownPositiveInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE); 454 455 /// Returns true if we can prove that \p S is defined and always non-positive in 456 /// loop \p L. 457 bool isKnownNonPositiveInLoop(const SCEV *S, const Loop *L, 458 ScalarEvolution &SE); 459 460 /// Returns true if \p S is defined and never is equal to signed/unsigned max. 461 bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 462 bool Signed); 463 464 /// Returns true if \p S is defined and never is equal to signed/unsigned min. 465 bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 466 bool Signed); 467 468 enum ReplaceExitVal { 469 NeverRepl, 470 OnlyCheapRepl, 471 NoHardUse, 472 UnusedIndVarInLoop, 473 AlwaysRepl 474 }; 475 476 /// If the final value of any expressions that are recurrent in the loop can 477 /// be computed, substitute the exit values from the loop into any instructions 478 /// outside of the loop that use the final values of the current expressions. 479 /// Return the number of loop exit values that have been replaced, and the 480 /// corresponding phi node will be added to DeadInsts. 481 int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 482 ScalarEvolution *SE, const TargetTransformInfo *TTI, 483 SCEVExpander &Rewriter, DominatorTree *DT, 484 ReplaceExitVal ReplaceExitValue, 485 SmallVector<WeakTrackingVH, 16> &DeadInsts); 486 487 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 488 /// \p OrigLoop and the following distribution of \p OrigLoop iteration among \p 489 /// UnrolledLoop and \p RemainderLoop. \p UnrolledLoop receives weights that 490 /// reflect TC/UF iterations, and \p RemainderLoop receives weights that reflect 491 /// the remaining TC%UF iterations. 492 /// 493 /// Note that \p OrigLoop may be equal to either \p UnrolledLoop or \p 494 /// RemainderLoop in which case weights for \p OrigLoop are updated accordingly. 495 /// Note also behavior is undefined if \p UnrolledLoop and \p RemainderLoop are 496 /// equal. \p UF must be greater than zero. 497 /// If \p OrigLoop has no profile info associated nothing happens. 498 /// 499 /// This utility may be useful for such optimizations as unroller and 500 /// vectorizer as it's typical transformation for them. 501 void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 502 Loop *RemainderLoop, uint64_t UF); 503 504 /// Utility that implements appending of loops onto a worklist given a range. 505 /// We want to process loops in postorder, but the worklist is a LIFO data 506 /// structure, so we append to it in *reverse* postorder. 507 /// For trees, a preorder traversal is a viable reverse postorder, so we 508 /// actually append using a preorder walk algorithm. 509 template <typename RangeT> 510 void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist<Loop *, 4> &); 511 /// Utility that implements appending of loops onto a worklist given a range. 512 /// It has the same behavior as appendLoopsToWorklist, but assumes the range of 513 /// loops has already been reversed, so it processes loops in the given order. 514 template <typename RangeT> 515 void appendReversedLoopsToWorklist(RangeT &&, 516 SmallPriorityWorklist<Loop *, 4> &); 517 518 /// Utility that implements appending of loops onto a worklist given LoopInfo. 519 /// Calls the templated utility taking a Range of loops, handing it the Loops 520 /// in LoopInfo, iterated in reverse. This is because the loops are stored in 521 /// RPO w.r.t. the control flow graph in LoopInfo. For the purpose of unrolling, 522 /// loop deletion, and LICM, we largely want to work forward across the CFG so 523 /// that we visit defs before uses and can propagate simplifications from one 524 /// loop nest into the next. Calls appendReversedLoopsToWorklist with the 525 /// already reversed loops in LI. 526 /// FIXME: Consider changing the order in LoopInfo. 527 void appendLoopsToWorklist(LoopInfo &, SmallPriorityWorklist<Loop *, 4> &); 528 529 /// Recursively clone the specified loop and all of its children, 530 /// mapping the blocks with the specified map. 531 Loop *cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 532 LoopInfo *LI, LPPassManager *LPM); 533 534 /// Add code that checks at runtime if the accessed arrays in \p PointerChecks 535 /// overlap. Returns the final comparator value or NULL if no check is needed. 536 Value * 537 addRuntimeChecks(Instruction *Loc, Loop *TheLoop, 538 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 539 SCEVExpander &Expander, bool HoistRuntimeChecks = false); 540 541 Value *addDiffRuntimeChecks( 542 Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander, 543 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC); 544 545 /// Struct to hold information about a partially invariant condition. 546 struct IVConditionInfo { 547 /// Instructions that need to be duplicated and checked for the unswitching 548 /// condition. 549 SmallVector<Instruction *> InstToDuplicate; 550 551 /// Constant to indicate for which value the condition is invariant. 552 Constant *KnownValue = nullptr; 553 554 /// True if the partially invariant path is no-op (=does not have any 555 /// side-effects and no loop value is used outside the loop). 556 bool PathIsNoop = true; 557 558 /// If the partially invariant path reaches a single exit block, ExitForPath 559 /// is set to that block. Otherwise it is nullptr. 560 BasicBlock *ExitForPath = nullptr; 561 }; 562 563 /// Check if the loop header has a conditional branch that is not 564 /// loop-invariant, because it involves load instructions. If all paths from 565 /// either the true or false successor to the header or loop exists do not 566 /// modify the memory feeding the condition, perform 'partial unswitching'. That 567 /// is, duplicate the instructions feeding the condition in the pre-header. Then 568 /// unswitch on the duplicated condition. The condition is now known in the 569 /// unswitched version for the 'invariant' path through the original loop. 570 /// 571 /// If the branch condition of the header is partially invariant, return a pair 572 /// containing the instructions to duplicate and a boolean Constant to update 573 /// the condition in the loops created for the true or false successors. 574 std::optional<IVConditionInfo> hasPartialIVCondition(const Loop &L, 575 unsigned MSSAThreshold, 576 const MemorySSA &MSSA, 577 AAResults &AA); 578 579 } // end namespace llvm 580 581 #endif // LLVM_TRANSFORMS_UTILS_LOOPUTILS_H 582