1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/PatternMatch.h"
88 #include "llvm/IR/Statepoint.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/User.h"
91 #include "llvm/IR/Value.h"
92 #include "llvm/MC/MCContext.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/InstructionCost.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetIntrinsicInfo.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include "llvm/TargetParser/Triple.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include <cstddef>
107 #include <deque>
108 #include <iterator>
109 #include <limits>
110 #include <optional>
111 #include <tuple>
112
113 using namespace llvm;
114 using namespace PatternMatch;
115 using namespace SwitchCG;
116
117 #define DEBUG_TYPE "isel"
118
119 /// LimitFloatPrecision - Generate low-precision inline sequences for
120 /// some float libcalls (6, 8 or 12 bits).
121 static unsigned LimitFloatPrecision;
122
123 static cl::opt<bool>
124 InsertAssertAlign("insert-assert-align", cl::init(true),
125 cl::desc("Insert the experimental `assertalign` node."),
126 cl::ReallyHidden);
127
128 static cl::opt<unsigned, true>
129 LimitFPPrecision("limit-float-precision",
130 cl::desc("Generate low-precision inline sequences "
131 "for some float libcalls"),
132 cl::location(LimitFloatPrecision), cl::Hidden,
133 cl::init(0));
134
135 static cl::opt<unsigned> SwitchPeelThreshold(
136 "switch-peel-threshold", cl::Hidden, cl::init(66),
137 cl::desc("Set the case probability threshold for peeling the case from a "
138 "switch statement. A value greater than 100 will void this "
139 "optimization"));
140
141 // Limit the width of DAG chains. This is important in general to prevent
142 // DAG-based analysis from blowing up. For example, alias analysis and
143 // load clustering may not complete in reasonable time. It is difficult to
144 // recognize and avoid this situation within each individual analysis, and
145 // future analyses are likely to have the same behavior. Limiting DAG width is
146 // the safe approach and will be especially important with global DAGs.
147 //
148 // MaxParallelChains default is arbitrarily high to avoid affecting
149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
150 // sequence over this should have been converted to llvm.memcpy by the
151 // frontend. It is easy to induce this behavior with .ll code such as:
152 // %buffer = alloca [4096 x i8]
153 // %data = load [4096 x i8]* %argPtr
154 // store [4096 x i8] %data, [4096 x i8]* %buffer
155 static const unsigned MaxParallelChains = 64;
156
157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
158 const SDValue *Parts, unsigned NumParts,
159 MVT PartVT, EVT ValueVT, const Value *V,
160 SDValue InChain,
161 std::optional<CallingConv::ID> CC);
162
163 /// getCopyFromParts - Create a value that contains the specified legal parts
164 /// combined into the value they represent. If the parts combine to a type
165 /// larger than ValueVT then AssertOp can be used to specify whether the extra
166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
167 /// (ISD::AssertSext).
168 static SDValue
getCopyFromParts(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V,SDValue InChain,std::optional<CallingConv::ID> CC=std::nullopt,std::optional<ISD::NodeType> AssertOp=std::nullopt)169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
170 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
171 SDValue InChain,
172 std::optional<CallingConv::ID> CC = std::nullopt,
173 std::optional<ISD::NodeType> AssertOp = std::nullopt) {
174 // Let the target assemble the parts if it wants to
175 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
176 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
177 PartVT, ValueVT, CC))
178 return Val;
179
180 if (ValueVT.isVector())
181 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
182 InChain, CC);
183
184 assert(NumParts > 0 && "No parts to assemble!");
185 SDValue Val = Parts[0];
186
187 if (NumParts > 1) {
188 // Assemble the value from multiple parts.
189 if (ValueVT.isInteger()) {
190 unsigned PartBits = PartVT.getSizeInBits();
191 unsigned ValueBits = ValueVT.getSizeInBits();
192
193 // Assemble the power of 2 part.
194 unsigned RoundParts = llvm::bit_floor(NumParts);
195 unsigned RoundBits = PartBits * RoundParts;
196 EVT RoundVT = RoundBits == ValueBits ?
197 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
198 SDValue Lo, Hi;
199
200 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
201
202 if (RoundParts > 2) {
203 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
204 InChain);
205 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
206 PartVT, HalfVT, V, InChain);
207 } else {
208 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
209 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
210 }
211
212 if (DAG.getDataLayout().isBigEndian())
213 std::swap(Lo, Hi);
214
215 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
216
217 if (RoundParts < NumParts) {
218 // Assemble the trailing non-power-of-2 part.
219 unsigned OddParts = NumParts - RoundParts;
220 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
221 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
222 OddVT, V, InChain, CC);
223
224 // Combine the round and odd parts.
225 Lo = Val;
226 if (DAG.getDataLayout().isBigEndian())
227 std::swap(Lo, Hi);
228 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
229 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
230 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
231 DAG.getConstant(Lo.getValueSizeInBits(), DL,
232 TLI.getShiftAmountTy(
233 TotalVT, DAG.getDataLayout())));
234 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
235 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
236 }
237 } else if (PartVT.isFloatingPoint()) {
238 // FP split into multiple FP parts (for ppcf128)
239 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
240 "Unexpected split");
241 SDValue Lo, Hi;
242 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
243 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
244 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
245 std::swap(Lo, Hi);
246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
247 } else {
248 // FP split into integer parts (soft fp)
249 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
250 !PartVT.isVector() && "Unexpected split");
251 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
252 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
253 InChain, CC);
254 }
255 }
256
257 // There is now one part, held in Val. Correct it to match ValueVT.
258 // PartEVT is the type of the register class that holds the value.
259 // ValueVT is the type of the inline asm operation.
260 EVT PartEVT = Val.getValueType();
261
262 if (PartEVT == ValueVT)
263 return Val;
264
265 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
266 ValueVT.bitsLT(PartEVT)) {
267 // For an FP value in an integer part, we need to truncate to the right
268 // width first.
269 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
270 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
271 }
272
273 // Handle types that have the same size.
274 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
275 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
276
277 // Handle types with different sizes.
278 if (PartEVT.isInteger() && ValueVT.isInteger()) {
279 if (ValueVT.bitsLT(PartEVT)) {
280 // For a truncate, see if we have any information to
281 // indicate whether the truncated bits will always be
282 // zero or sign-extension.
283 if (AssertOp)
284 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
285 DAG.getValueType(ValueVT));
286 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
287 }
288 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
289 }
290
291 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
292 // FP_ROUND's are always exact here.
293 if (ValueVT.bitsLT(Val.getValueType())) {
294
295 SDValue NoChange =
296 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
297
298 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
299 llvm::Attribute::StrictFP)) {
300 return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
301 DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
302 NoChange);
303 }
304
305 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
306 }
307
308 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
309 }
310
311 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
312 // then truncating.
313 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
314 ValueVT.bitsLT(PartEVT)) {
315 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317 }
318
319 report_fatal_error("Unknown mismatch in getCopyFromParts!");
320 }
321
diagnosePossiblyInvalidConstraint(LLVMContext & Ctx,const Value * V,const Twine & ErrMsg)322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
323 const Twine &ErrMsg) {
324 const Instruction *I = dyn_cast_or_null<Instruction>(V);
325 if (!V)
326 return Ctx.emitError(ErrMsg);
327
328 const char *AsmError = ", possible invalid constraint for vector type";
329 if (const CallInst *CI = dyn_cast<CallInst>(I))
330 if (CI->isInlineAsm())
331 return Ctx.emitError(I, ErrMsg + AsmError);
332
333 return Ctx.emitError(I, ErrMsg);
334 }
335
336 /// getCopyFromPartsVector - Create a value that contains the specified legal
337 /// parts combined into the value they represent. If the parts combine to a
338 /// type larger than ValueVT then AssertOp can be used to specify whether the
339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
340 /// ValueVT (ISD::AssertSext).
getCopyFromPartsVector(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V,SDValue InChain,std::optional<CallingConv::ID> CallConv)341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
342 const SDValue *Parts, unsigned NumParts,
343 MVT PartVT, EVT ValueVT, const Value *V,
344 SDValue InChain,
345 std::optional<CallingConv::ID> CallConv) {
346 assert(ValueVT.isVector() && "Not a vector value");
347 assert(NumParts > 0 && "No parts to assemble!");
348 const bool IsABIRegCopy = CallConv.has_value();
349
350 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
351 SDValue Val = Parts[0];
352
353 // Handle a multi-element vector.
354 if (NumParts > 1) {
355 EVT IntermediateVT;
356 MVT RegisterVT;
357 unsigned NumIntermediates;
358 unsigned NumRegs;
359
360 if (IsABIRegCopy) {
361 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
362 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
363 NumIntermediates, RegisterVT);
364 } else {
365 NumRegs =
366 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
367 NumIntermediates, RegisterVT);
368 }
369
370 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
371 NumParts = NumRegs; // Silence a compiler warning.
372 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
373 assert(RegisterVT.getSizeInBits() ==
374 Parts[0].getSimpleValueType().getSizeInBits() &&
375 "Part type sizes don't match!");
376
377 // Assemble the parts into intermediate operands.
378 SmallVector<SDValue, 8> Ops(NumIntermediates);
379 if (NumIntermediates == NumParts) {
380 // If the register was not expanded, truncate or copy the value,
381 // as appropriate.
382 for (unsigned i = 0; i != NumParts; ++i)
383 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
384 V, InChain, CallConv);
385 } else if (NumParts > 0) {
386 // If the intermediate type was expanded, build the intermediate
387 // operands from the parts.
388 assert(NumParts % NumIntermediates == 0 &&
389 "Must expand into a divisible number of parts!");
390 unsigned Factor = NumParts / NumIntermediates;
391 for (unsigned i = 0; i != NumIntermediates; ++i)
392 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
393 IntermediateVT, V, InChain, CallConv);
394 }
395
396 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
397 // intermediate operands.
398 EVT BuiltVectorTy =
399 IntermediateVT.isVector()
400 ? EVT::getVectorVT(
401 *DAG.getContext(), IntermediateVT.getScalarType(),
402 IntermediateVT.getVectorElementCount() * NumParts)
403 : EVT::getVectorVT(*DAG.getContext(),
404 IntermediateVT.getScalarType(),
405 NumIntermediates);
406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
407 : ISD::BUILD_VECTOR,
408 DL, BuiltVectorTy, Ops);
409 }
410
411 // There is now one part, held in Val. Correct it to match ValueVT.
412 EVT PartEVT = Val.getValueType();
413
414 if (PartEVT == ValueVT)
415 return Val;
416
417 if (PartEVT.isVector()) {
418 // Vector/Vector bitcast.
419 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
421
422 // If the parts vector has more elements than the value vector, then we
423 // have a vector widening case (e.g. <2 x float> -> <4 x float>).
424 // Extract the elements we want.
425 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
426 assert((PartEVT.getVectorElementCount().getKnownMinValue() >
427 ValueVT.getVectorElementCount().getKnownMinValue()) &&
428 (PartEVT.getVectorElementCount().isScalable() ==
429 ValueVT.getVectorElementCount().isScalable()) &&
430 "Cannot narrow, it would be a lossy transformation");
431 PartEVT =
432 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
433 ValueVT.getVectorElementCount());
434 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
435 DAG.getVectorIdxConstant(0, DL));
436 if (PartEVT == ValueVT)
437 return Val;
438 if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440
441 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
444 }
445
446 // Promoted vector extract
447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
448 }
449
450 // Trivial bitcast if the types are the same size and the destination
451 // vector type is legal.
452 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
453 TLI.isTypeLegal(ValueVT))
454 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
455
456 if (ValueVT.getVectorNumElements() != 1) {
457 // Certain ABIs require that vectors are passed as integers. For vectors
458 // are the same size, this is an obvious bitcast.
459 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
461 } else if (ValueVT.bitsLT(PartEVT)) {
462 const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
463 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
464 // Drop the extra bits.
465 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
466 return DAG.getBitcast(ValueVT, Val);
467 }
468
469 diagnosePossiblyInvalidConstraint(
470 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
471 return DAG.getUNDEF(ValueVT);
472 }
473
474 // Handle cases such as i8 -> <1 x i1>
475 EVT ValueSVT = ValueVT.getVectorElementType();
476 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
477 unsigned ValueSize = ValueSVT.getSizeInBits();
478 if (ValueSize == PartEVT.getSizeInBits()) {
479 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
480 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
481 // It's possible a scalar floating point type gets softened to integer and
482 // then promoted to a larger integer. If PartEVT is the larger integer
483 // we need to truncate it and then bitcast to the FP type.
484 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
485 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
486 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
487 Val = DAG.getBitcast(ValueSVT, Val);
488 } else {
489 Val = ValueVT.isFloatingPoint()
490 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
491 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
492 }
493 }
494
495 return DAG.getBuildVector(ValueVT, DL, Val);
496 }
497
498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
499 SDValue Val, SDValue *Parts, unsigned NumParts,
500 MVT PartVT, const Value *V,
501 std::optional<CallingConv::ID> CallConv);
502
503 /// getCopyToParts - Create a series of nodes that contain the specified value
504 /// split into legal parts. If the parts contain more bits than Val, then, for
505 /// integers, ExtendKind can be used to specify how to generate the extra bits.
506 static void
getCopyToParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V,std::optional<CallingConv::ID> CallConv=std::nullopt,ISD::NodeType ExtendKind=ISD::ANY_EXTEND)507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
508 unsigned NumParts, MVT PartVT, const Value *V,
509 std::optional<CallingConv::ID> CallConv = std::nullopt,
510 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
511 // Let the target split the parts if it wants to
512 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
513 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
514 CallConv))
515 return;
516 EVT ValueVT = Val.getValueType();
517
518 // Handle the vector case separately.
519 if (ValueVT.isVector())
520 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
521 CallConv);
522
523 unsigned OrigNumParts = NumParts;
524 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
525 "Copying to an illegal type!");
526
527 if (NumParts == 0)
528 return;
529
530 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
531 EVT PartEVT = PartVT;
532 if (PartEVT == ValueVT) {
533 assert(NumParts == 1 && "No-op copy with multiple parts!");
534 Parts[0] = Val;
535 return;
536 }
537
538 unsigned PartBits = PartVT.getSizeInBits();
539 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
540 // If the parts cover more bits than the value has, promote the value.
541 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
542 assert(NumParts == 1 && "Do not know what to promote to!");
543 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
544 } else {
545 if (ValueVT.isFloatingPoint()) {
546 // FP values need to be bitcast, then extended if they are being put
547 // into a larger container.
548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
549 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
550 }
551 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
552 ValueVT.isInteger() &&
553 "Unknown mismatch!");
554 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
555 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
556 if (PartVT == MVT::x86mmx)
557 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
558 }
559 } else if (PartBits == ValueVT.getSizeInBits()) {
560 // Different types of the same size.
561 assert(NumParts == 1 && PartEVT != ValueVT);
562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
563 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
564 // If the parts cover less bits than value has, truncate the value.
565 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
566 ValueVT.isInteger() &&
567 "Unknown mismatch!");
568 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
569 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
570 if (PartVT == MVT::x86mmx)
571 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
572 }
573
574 // The value may have changed - recompute ValueVT.
575 ValueVT = Val.getValueType();
576 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
577 "Failed to tile the value with PartVT!");
578
579 if (NumParts == 1) {
580 if (PartEVT != ValueVT) {
581 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
582 "scalar-to-vector conversion failed");
583 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
584 }
585
586 Parts[0] = Val;
587 return;
588 }
589
590 // Expand the value into multiple parts.
591 if (NumParts & (NumParts - 1)) {
592 // The number of parts is not a power of 2. Split off and copy the tail.
593 assert(PartVT.isInteger() && ValueVT.isInteger() &&
594 "Do not know what to expand to!");
595 unsigned RoundParts = llvm::bit_floor(NumParts);
596 unsigned RoundBits = RoundParts * PartBits;
597 unsigned OddParts = NumParts - RoundParts;
598 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
599 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
600
601 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
602 CallConv);
603
604 if (DAG.getDataLayout().isBigEndian())
605 // The odd parts were reversed by getCopyToParts - unreverse them.
606 std::reverse(Parts + RoundParts, Parts + NumParts);
607
608 NumParts = RoundParts;
609 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
610 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
611 }
612
613 // The number of parts is a power of 2. Repeatedly bisect the value using
614 // EXTRACT_ELEMENT.
615 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
616 EVT::getIntegerVT(*DAG.getContext(),
617 ValueVT.getSizeInBits()),
618 Val);
619
620 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
621 for (unsigned i = 0; i < NumParts; i += StepSize) {
622 unsigned ThisBits = StepSize * PartBits / 2;
623 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
624 SDValue &Part0 = Parts[i];
625 SDValue &Part1 = Parts[i+StepSize/2];
626
627 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
628 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
629 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
630 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
631
632 if (ThisBits == PartBits && ThisVT != PartVT) {
633 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
634 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
635 }
636 }
637 }
638
639 if (DAG.getDataLayout().isBigEndian())
640 std::reverse(Parts, Parts + OrigNumParts);
641 }
642
widenVectorToPartType(SelectionDAG & DAG,SDValue Val,const SDLoc & DL,EVT PartVT)643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
644 const SDLoc &DL, EVT PartVT) {
645 if (!PartVT.isVector())
646 return SDValue();
647
648 EVT ValueVT = Val.getValueType();
649 EVT PartEVT = PartVT.getVectorElementType();
650 EVT ValueEVT = ValueVT.getVectorElementType();
651 ElementCount PartNumElts = PartVT.getVectorElementCount();
652 ElementCount ValueNumElts = ValueVT.getVectorElementCount();
653
654 // We only support widening vectors with equivalent element types and
655 // fixed/scalable properties. If a target needs to widen a fixed-length type
656 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
657 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
658 PartNumElts.isScalable() != ValueNumElts.isScalable())
659 return SDValue();
660
661 // Have a try for bf16 because some targets share its ABI with fp16.
662 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
663 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
664 "Cannot widen to illegal type");
665 Val = DAG.getNode(ISD::BITCAST, DL,
666 ValueVT.changeVectorElementType(MVT::f16), Val);
667 } else if (PartEVT != ValueEVT) {
668 return SDValue();
669 }
670
671 // Widening a scalable vector to another scalable vector is done by inserting
672 // the vector into a larger undef one.
673 if (PartNumElts.isScalable())
674 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
675 Val, DAG.getVectorIdxConstant(0, DL));
676
677 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
678 // undef elements.
679 SmallVector<SDValue, 16> Ops;
680 DAG.ExtractVectorElements(Val, Ops);
681 SDValue EltUndef = DAG.getUNDEF(PartEVT);
682 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
683
684 // FIXME: Use CONCAT for 2x -> 4x.
685 return DAG.getBuildVector(PartVT, DL, Ops);
686 }
687
688 /// getCopyToPartsVector - Create a series of nodes that contain the specified
689 /// value split into legal parts.
getCopyToPartsVector(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V,std::optional<CallingConv::ID> CallConv)690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
691 SDValue Val, SDValue *Parts, unsigned NumParts,
692 MVT PartVT, const Value *V,
693 std::optional<CallingConv::ID> CallConv) {
694 EVT ValueVT = Val.getValueType();
695 assert(ValueVT.isVector() && "Not a vector");
696 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
697 const bool IsABIRegCopy = CallConv.has_value();
698
699 if (NumParts == 1) {
700 EVT PartEVT = PartVT;
701 if (PartEVT == ValueVT) {
702 // Nothing to do.
703 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
704 // Bitconvert vector->vector case.
705 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
706 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
707 Val = Widened;
708 } else if (PartVT.isVector() &&
709 PartEVT.getVectorElementType().bitsGE(
710 ValueVT.getVectorElementType()) &&
711 PartEVT.getVectorElementCount() ==
712 ValueVT.getVectorElementCount()) {
713
714 // Promoted vector extract
715 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
716 } else if (PartEVT.isVector() &&
717 PartEVT.getVectorElementType() !=
718 ValueVT.getVectorElementType() &&
719 TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
720 TargetLowering::TypeWidenVector) {
721 // Combination of widening and promotion.
722 EVT WidenVT =
723 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
724 PartVT.getVectorElementCount());
725 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
726 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
727 } else {
728 // Don't extract an integer from a float vector. This can happen if the
729 // FP type gets softened to integer and then promoted. The promotion
730 // prevents it from being picked up by the earlier bitcast case.
731 if (ValueVT.getVectorElementCount().isScalar() &&
732 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
733 // If we reach this condition and PartVT is FP, this means that
734 // ValueVT is also FP and both have a different size, otherwise we
735 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
736 // would be invalid since that would mean the smaller FP type has to
737 // be extended to the larger one.
738 if (PartVT.isFloatingPoint()) {
739 Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
740 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
741 } else
742 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
743 DAG.getVectorIdxConstant(0, DL));
744 } else {
745 uint64_t ValueSize = ValueVT.getFixedSizeInBits();
746 assert(PartVT.getFixedSizeInBits() > ValueSize &&
747 "lossy conversion of vector to scalar type");
748 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
749 Val = DAG.getBitcast(IntermediateType, Val);
750 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
751 }
752 }
753
754 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
755 Parts[0] = Val;
756 return;
757 }
758
759 // Handle a multi-element vector.
760 EVT IntermediateVT;
761 MVT RegisterVT;
762 unsigned NumIntermediates;
763 unsigned NumRegs;
764 if (IsABIRegCopy) {
765 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
766 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
767 RegisterVT);
768 } else {
769 NumRegs =
770 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
771 NumIntermediates, RegisterVT);
772 }
773
774 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
775 NumParts = NumRegs; // Silence a compiler warning.
776 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
777
778 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
779 "Mixing scalable and fixed vectors when copying in parts");
780
781 std::optional<ElementCount> DestEltCnt;
782
783 if (IntermediateVT.isVector())
784 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
785 else
786 DestEltCnt = ElementCount::getFixed(NumIntermediates);
787
788 EVT BuiltVectorTy = EVT::getVectorVT(
789 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
790
791 if (ValueVT == BuiltVectorTy) {
792 // Nothing to do.
793 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
794 // Bitconvert vector->vector case.
795 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
796 } else {
797 if (BuiltVectorTy.getVectorElementType().bitsGT(
798 ValueVT.getVectorElementType())) {
799 // Integer promotion.
800 ValueVT = EVT::getVectorVT(*DAG.getContext(),
801 BuiltVectorTy.getVectorElementType(),
802 ValueVT.getVectorElementCount());
803 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
804 }
805
806 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
807 Val = Widened;
808 }
809 }
810
811 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
812
813 // Split the vector into intermediate operands.
814 SmallVector<SDValue, 8> Ops(NumIntermediates);
815 for (unsigned i = 0; i != NumIntermediates; ++i) {
816 if (IntermediateVT.isVector()) {
817 // This does something sensible for scalable vectors - see the
818 // definition of EXTRACT_SUBVECTOR for further details.
819 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
820 Ops[i] =
821 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
822 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
823 } else {
824 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
825 DAG.getVectorIdxConstant(i, DL));
826 }
827 }
828
829 // Split the intermediate operands into legal parts.
830 if (NumParts == NumIntermediates) {
831 // If the register was not expanded, promote or copy the value,
832 // as appropriate.
833 for (unsigned i = 0; i != NumParts; ++i)
834 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
835 } else if (NumParts > 0) {
836 // If the intermediate type was expanded, split each the value into
837 // legal parts.
838 assert(NumIntermediates != 0 && "division by zero");
839 assert(NumParts % NumIntermediates == 0 &&
840 "Must expand into a divisible number of parts!");
841 unsigned Factor = NumParts / NumIntermediates;
842 for (unsigned i = 0; i != NumIntermediates; ++i)
843 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
844 CallConv);
845 }
846 }
847
RegsForValue(const SmallVector<unsigned,4> & regs,MVT regvt,EVT valuevt,std::optional<CallingConv::ID> CC)848 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt,
849 EVT valuevt, std::optional<CallingConv::ID> CC)
850 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
851 RegCount(1, regs.size()), CallConv(CC) {}
852
RegsForValue(LLVMContext & Context,const TargetLowering & TLI,const DataLayout & DL,unsigned Reg,Type * Ty,std::optional<CallingConv::ID> CC)853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
854 const DataLayout &DL, unsigned Reg, Type *Ty,
855 std::optional<CallingConv::ID> CC) {
856 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
857
858 CallConv = CC;
859
860 for (EVT ValueVT : ValueVTs) {
861 unsigned NumRegs =
862 isABIMangled()
863 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
864 : TLI.getNumRegisters(Context, ValueVT);
865 MVT RegisterVT =
866 isABIMangled()
867 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
868 : TLI.getRegisterType(Context, ValueVT);
869 for (unsigned i = 0; i != NumRegs; ++i)
870 Regs.push_back(Reg + i);
871 RegVTs.push_back(RegisterVT);
872 RegCount.push_back(NumRegs);
873 Reg += NumRegs;
874 }
875 }
876
getCopyFromRegs(SelectionDAG & DAG,FunctionLoweringInfo & FuncInfo,const SDLoc & dl,SDValue & Chain,SDValue * Glue,const Value * V) const877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
878 FunctionLoweringInfo &FuncInfo,
879 const SDLoc &dl, SDValue &Chain,
880 SDValue *Glue, const Value *V) const {
881 // A Value with type {} or [0 x %t] needs no registers.
882 if (ValueVTs.empty())
883 return SDValue();
884
885 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
886
887 // Assemble the legal parts into the final values.
888 SmallVector<SDValue, 4> Values(ValueVTs.size());
889 SmallVector<SDValue, 8> Parts;
890 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
891 // Copy the legal parts from the registers.
892 EVT ValueVT = ValueVTs[Value];
893 unsigned NumRegs = RegCount[Value];
894 MVT RegisterVT = isABIMangled()
895 ? TLI.getRegisterTypeForCallingConv(
896 *DAG.getContext(), *CallConv, RegVTs[Value])
897 : RegVTs[Value];
898
899 Parts.resize(NumRegs);
900 for (unsigned i = 0; i != NumRegs; ++i) {
901 SDValue P;
902 if (!Glue) {
903 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
904 } else {
905 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
906 *Glue = P.getValue(2);
907 }
908
909 Chain = P.getValue(1);
910 Parts[i] = P;
911
912 // If the source register was virtual and if we know something about it,
913 // add an assert node.
914 if (!Register::isVirtualRegister(Regs[Part + i]) ||
915 !RegisterVT.isInteger())
916 continue;
917
918 const FunctionLoweringInfo::LiveOutInfo *LOI =
919 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
920 if (!LOI)
921 continue;
922
923 unsigned RegSize = RegisterVT.getScalarSizeInBits();
924 unsigned NumSignBits = LOI->NumSignBits;
925 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
926
927 if (NumZeroBits == RegSize) {
928 // The current value is a zero.
929 // Explicitly express that as it would be easier for
930 // optimizations to kick in.
931 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
932 continue;
933 }
934
935 // FIXME: We capture more information than the dag can represent. For
936 // now, just use the tightest assertzext/assertsext possible.
937 bool isSExt;
938 EVT FromVT(MVT::Other);
939 if (NumZeroBits) {
940 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
941 isSExt = false;
942 } else if (NumSignBits > 1) {
943 FromVT =
944 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
945 isSExt = true;
946 } else {
947 continue;
948 }
949 // Add an assertion node.
950 assert(FromVT != MVT::Other);
951 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
952 RegisterVT, P, DAG.getValueType(FromVT));
953 }
954
955 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
956 RegisterVT, ValueVT, V, Chain, CallConv);
957 Part += NumRegs;
958 Parts.clear();
959 }
960
961 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
962 }
963
getCopyToRegs(SDValue Val,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,SDValue * Glue,const Value * V,ISD::NodeType PreferredExtendType) const964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
965 const SDLoc &dl, SDValue &Chain, SDValue *Glue,
966 const Value *V,
967 ISD::NodeType PreferredExtendType) const {
968 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
969 ISD::NodeType ExtendKind = PreferredExtendType;
970
971 // Get the list of the values's legal parts.
972 unsigned NumRegs = Regs.size();
973 SmallVector<SDValue, 8> Parts(NumRegs);
974 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
975 unsigned NumParts = RegCount[Value];
976
977 MVT RegisterVT = isABIMangled()
978 ? TLI.getRegisterTypeForCallingConv(
979 *DAG.getContext(), *CallConv, RegVTs[Value])
980 : RegVTs[Value];
981
982 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
983 ExtendKind = ISD::ZERO_EXTEND;
984
985 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
986 NumParts, RegisterVT, V, CallConv, ExtendKind);
987 Part += NumParts;
988 }
989
990 // Copy the parts into the registers.
991 SmallVector<SDValue, 8> Chains(NumRegs);
992 for (unsigned i = 0; i != NumRegs; ++i) {
993 SDValue Part;
994 if (!Glue) {
995 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
996 } else {
997 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
998 *Glue = Part.getValue(1);
999 }
1000
1001 Chains[i] = Part.getValue(0);
1002 }
1003
1004 if (NumRegs == 1 || Glue)
1005 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1006 // flagged to it. That is the CopyToReg nodes and the user are considered
1007 // a single scheduling unit. If we create a TokenFactor and return it as
1008 // chain, then the TokenFactor is both a predecessor (operand) of the
1009 // user as well as a successor (the TF operands are flagged to the user).
1010 // c1, f1 = CopyToReg
1011 // c2, f2 = CopyToReg
1012 // c3 = TokenFactor c1, c2
1013 // ...
1014 // = op c3, ..., f2
1015 Chain = Chains[NumRegs-1];
1016 else
1017 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1018 }
1019
AddInlineAsmOperands(InlineAsm::Kind Code,bool HasMatching,unsigned MatchingIdx,const SDLoc & dl,SelectionDAG & DAG,std::vector<SDValue> & Ops) const1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1021 unsigned MatchingIdx, const SDLoc &dl,
1022 SelectionDAG &DAG,
1023 std::vector<SDValue> &Ops) const {
1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1025
1026 InlineAsm::Flag Flag(Code, Regs.size());
1027 if (HasMatching)
1028 Flag.setMatchingOp(MatchingIdx);
1029 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1030 // Put the register class of the virtual registers in the flag word. That
1031 // way, later passes can recompute register class constraints for inline
1032 // assembly as well as normal instructions.
1033 // Don't do this for tied operands that can use the regclass information
1034 // from the def.
1035 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1036 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1037 Flag.setRegClass(RC->getID());
1038 }
1039
1040 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1041 Ops.push_back(Res);
1042
1043 if (Code == InlineAsm::Kind::Clobber) {
1044 // Clobbers should always have a 1:1 mapping with registers, and may
1045 // reference registers that have illegal (e.g. vector) types. Hence, we
1046 // shouldn't try to apply any sort of splitting logic to them.
1047 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1048 "No 1:1 mapping from clobbers to regs?");
1049 Register SP = TLI.getStackPointerRegisterToSaveRestore();
1050 (void)SP;
1051 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1052 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1053 assert(
1054 (Regs[I] != SP ||
1055 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1056 "If we clobbered the stack pointer, MFI should know about it.");
1057 }
1058 return;
1059 }
1060
1061 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1062 MVT RegisterVT = RegVTs[Value];
1063 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1064 RegisterVT);
1065 for (unsigned i = 0; i != NumRegs; ++i) {
1066 assert(Reg < Regs.size() && "Mismatch in # registers expected");
1067 unsigned TheReg = Regs[Reg++];
1068 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1069 }
1070 }
1071 }
1072
1073 SmallVector<std::pair<unsigned, TypeSize>, 4>
getRegsAndSizes() const1074 RegsForValue::getRegsAndSizes() const {
1075 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1076 unsigned I = 0;
1077 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1078 unsigned RegCount = std::get<0>(CountAndVT);
1079 MVT RegisterVT = std::get<1>(CountAndVT);
1080 TypeSize RegisterSize = RegisterVT.getSizeInBits();
1081 for (unsigned E = I + RegCount; I != E; ++I)
1082 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1083 }
1084 return OutVec;
1085 }
1086
init(GCFunctionInfo * gfi,AliasAnalysis * aa,AssumptionCache * ac,const TargetLibraryInfo * li)1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1088 AssumptionCache *ac,
1089 const TargetLibraryInfo *li) {
1090 AA = aa;
1091 AC = ac;
1092 GFI = gfi;
1093 LibInfo = li;
1094 Context = DAG.getContext();
1095 LPadToCallSiteMap.clear();
1096 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1097 AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1098 *DAG.getMachineFunction().getFunction().getParent());
1099 }
1100
clear()1101 void SelectionDAGBuilder::clear() {
1102 NodeMap.clear();
1103 UnusedArgNodeMap.clear();
1104 PendingLoads.clear();
1105 PendingExports.clear();
1106 PendingConstrainedFP.clear();
1107 PendingConstrainedFPStrict.clear();
1108 CurInst = nullptr;
1109 HasTailCall = false;
1110 SDNodeOrder = LowestSDNodeOrder;
1111 StatepointLowering.clear();
1112 }
1113
clearDanglingDebugInfo()1114 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1115 DanglingDebugInfoMap.clear();
1116 }
1117
1118 // Update DAG root to include dependencies on Pending chains.
updateRoot(SmallVectorImpl<SDValue> & Pending)1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1120 SDValue Root = DAG.getRoot();
1121
1122 if (Pending.empty())
1123 return Root;
1124
1125 // Add current root to PendingChains, unless we already indirectly
1126 // depend on it.
1127 if (Root.getOpcode() != ISD::EntryToken) {
1128 unsigned i = 0, e = Pending.size();
1129 for (; i != e; ++i) {
1130 assert(Pending[i].getNode()->getNumOperands() > 1);
1131 if (Pending[i].getNode()->getOperand(0) == Root)
1132 break; // Don't add the root if we already indirectly depend on it.
1133 }
1134
1135 if (i == e)
1136 Pending.push_back(Root);
1137 }
1138
1139 if (Pending.size() == 1)
1140 Root = Pending[0];
1141 else
1142 Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1143
1144 DAG.setRoot(Root);
1145 Pending.clear();
1146 return Root;
1147 }
1148
getMemoryRoot()1149 SDValue SelectionDAGBuilder::getMemoryRoot() {
1150 return updateRoot(PendingLoads);
1151 }
1152
getRoot()1153 SDValue SelectionDAGBuilder::getRoot() {
1154 // Chain up all pending constrained intrinsics together with all
1155 // pending loads, by simply appending them to PendingLoads and
1156 // then calling getMemoryRoot().
1157 PendingLoads.reserve(PendingLoads.size() +
1158 PendingConstrainedFP.size() +
1159 PendingConstrainedFPStrict.size());
1160 PendingLoads.append(PendingConstrainedFP.begin(),
1161 PendingConstrainedFP.end());
1162 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1163 PendingConstrainedFPStrict.end());
1164 PendingConstrainedFP.clear();
1165 PendingConstrainedFPStrict.clear();
1166 return getMemoryRoot();
1167 }
1168
getControlRoot()1169 SDValue SelectionDAGBuilder::getControlRoot() {
1170 // We need to emit pending fpexcept.strict constrained intrinsics,
1171 // so append them to the PendingExports list.
1172 PendingExports.append(PendingConstrainedFPStrict.begin(),
1173 PendingConstrainedFPStrict.end());
1174 PendingConstrainedFPStrict.clear();
1175 return updateRoot(PendingExports);
1176 }
1177
handleDebugDeclare(Value * Address,DILocalVariable * Variable,DIExpression * Expression,DebugLoc DL)1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1179 DILocalVariable *Variable,
1180 DIExpression *Expression,
1181 DebugLoc DL) {
1182 assert(Variable && "Missing variable");
1183
1184 // Check if address has undef value.
1185 if (!Address || isa<UndefValue>(Address) ||
1186 (Address->use_empty() && !isa<Argument>(Address))) {
1187 LLVM_DEBUG(
1188 dbgs()
1189 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1190 return;
1191 }
1192
1193 bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1194
1195 SDValue &N = NodeMap[Address];
1196 if (!N.getNode() && isa<Argument>(Address))
1197 // Check unused arguments map.
1198 N = UnusedArgNodeMap[Address];
1199 SDDbgValue *SDV;
1200 if (N.getNode()) {
1201 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1202 Address = BCI->getOperand(0);
1203 // Parameters are handled specially.
1204 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1205 if (IsParameter && FINode) {
1206 // Byval parameter. We have a frame index at this point.
1207 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1208 /*IsIndirect*/ true, DL, SDNodeOrder);
1209 } else if (isa<Argument>(Address)) {
1210 // Address is an argument, so try to emit its dbg value using
1211 // virtual register info from the FuncInfo.ValueMap.
1212 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1213 FuncArgumentDbgValueKind::Declare, N);
1214 return;
1215 } else {
1216 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1217 true, DL, SDNodeOrder);
1218 }
1219 DAG.AddDbgValue(SDV, IsParameter);
1220 } else {
1221 // If Address is an argument then try to emit its dbg value using
1222 // virtual register info from the FuncInfo.ValueMap.
1223 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1224 FuncArgumentDbgValueKind::Declare, N)) {
1225 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1226 << " (could not emit func-arg dbg_value)\n");
1227 }
1228 }
1229 return;
1230 }
1231
visitDbgInfo(const Instruction & I)1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1233 // Add SDDbgValue nodes for any var locs here. Do so before updating
1234 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1235 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1236 // Add SDDbgValue nodes for any var locs here. Do so before updating
1237 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1238 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1239 It != End; ++It) {
1240 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1241 dropDanglingDebugInfo(Var, It->Expr);
1242 if (It->Values.isKillLocation(It->Expr)) {
1243 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1244 continue;
1245 }
1246 SmallVector<Value *> Values(It->Values.location_ops());
1247 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1248 It->Values.hasArgList())) {
1249 SmallVector<Value *, 4> Vals;
1250 for (Value *V : It->Values.location_ops())
1251 Vals.push_back(V);
1252 addDanglingDebugInfo(Vals,
1253 FnVarLocs->getDILocalVariable(It->VariableID),
1254 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1255 }
1256 }
1257 }
1258
1259 // We must skip DbgVariableRecords if they've already been processed above as
1260 // we have just emitted the debug values resulting from assignment tracking
1261 // analysis, making any existing DbgVariableRecords redundant (and probably
1262 // less correct). We still need to process DbgLabelRecords. This does sink
1263 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1264 // be important as it does so deterministcally and ordering between
1265 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1266 // printing).
1267 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1268 // Is there is any debug-info attached to this instruction, in the form of
1269 // DbgRecord non-instruction debug-info records.
1270 for (DbgRecord &DR : I.getDbgRecordRange()) {
1271 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1272 assert(DLR->getLabel() && "Missing label");
1273 SDDbgLabel *SDV =
1274 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1275 DAG.AddDbgLabel(SDV);
1276 continue;
1277 }
1278
1279 if (SkipDbgVariableRecords)
1280 continue;
1281 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1282 DILocalVariable *Variable = DVR.getVariable();
1283 DIExpression *Expression = DVR.getExpression();
1284 dropDanglingDebugInfo(Variable, Expression);
1285
1286 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1287 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1288 continue;
1289 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1290 << "\n");
1291 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1292 DVR.getDebugLoc());
1293 continue;
1294 }
1295
1296 // A DbgVariableRecord with no locations is a kill location.
1297 SmallVector<Value *, 4> Values(DVR.location_ops());
1298 if (Values.empty()) {
1299 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1300 SDNodeOrder);
1301 continue;
1302 }
1303
1304 // A DbgVariableRecord with an undef or absent location is also a kill
1305 // location.
1306 if (llvm::any_of(Values,
1307 [](Value *V) { return !V || isa<UndefValue>(V); })) {
1308 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1309 SDNodeOrder);
1310 continue;
1311 }
1312
1313 bool IsVariadic = DVR.hasArgList();
1314 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1315 SDNodeOrder, IsVariadic)) {
1316 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1317 DVR.getDebugLoc(), SDNodeOrder);
1318 }
1319 }
1320 }
1321
visit(const Instruction & I)1322 void SelectionDAGBuilder::visit(const Instruction &I) {
1323 visitDbgInfo(I);
1324
1325 // Set up outgoing PHI node register values before emitting the terminator.
1326 if (I.isTerminator()) {
1327 HandlePHINodesInSuccessorBlocks(I.getParent());
1328 }
1329
1330 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1331 if (!isa<DbgInfoIntrinsic>(I))
1332 ++SDNodeOrder;
1333
1334 CurInst = &I;
1335
1336 // Set inserted listener only if required.
1337 bool NodeInserted = false;
1338 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1339 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1340 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1341 if (PCSectionsMD || MMRA) {
1342 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1343 DAG, [&](SDNode *) { NodeInserted = true; });
1344 }
1345
1346 visit(I.getOpcode(), I);
1347
1348 if (!I.isTerminator() && !HasTailCall &&
1349 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1350 CopyToExportRegsIfNeeded(&I);
1351
1352 // Handle metadata.
1353 if (PCSectionsMD || MMRA) {
1354 auto It = NodeMap.find(&I);
1355 if (It != NodeMap.end()) {
1356 if (PCSectionsMD)
1357 DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1358 if (MMRA)
1359 DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1360 } else if (NodeInserted) {
1361 // This should not happen; if it does, don't let it go unnoticed so we can
1362 // fix it. Relevant visit*() function is probably missing a setValue().
1363 errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1364 << I.getModule()->getName() << "]\n";
1365 LLVM_DEBUG(I.dump());
1366 assert(false);
1367 }
1368 }
1369
1370 CurInst = nullptr;
1371 }
1372
visitPHI(const PHINode &)1373 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1374 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1375 }
1376
visit(unsigned Opcode,const User & I)1377 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1378 // Note: this doesn't use InstVisitor, because it has to work with
1379 // ConstantExpr's in addition to instructions.
1380 switch (Opcode) {
1381 default: llvm_unreachable("Unknown instruction type encountered!");
1382 // Build the switch statement using the Instruction.def file.
1383 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1384 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1385 #include "llvm/IR/Instruction.def"
1386 }
1387 }
1388
handleDanglingVariadicDebugInfo(SelectionDAG & DAG,DILocalVariable * Variable,DebugLoc DL,unsigned Order,SmallVectorImpl<Value * > & Values,DIExpression * Expression)1389 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1390 DILocalVariable *Variable,
1391 DebugLoc DL, unsigned Order,
1392 SmallVectorImpl<Value *> &Values,
1393 DIExpression *Expression) {
1394 // For variadic dbg_values we will now insert an undef.
1395 // FIXME: We can potentially recover these!
1396 SmallVector<SDDbgOperand, 2> Locs;
1397 for (const Value *V : Values) {
1398 auto *Undef = UndefValue::get(V->getType());
1399 Locs.push_back(SDDbgOperand::fromConst(Undef));
1400 }
1401 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1402 /*IsIndirect=*/false, DL, Order,
1403 /*IsVariadic=*/true);
1404 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1405 return true;
1406 }
1407
addDanglingDebugInfo(SmallVectorImpl<Value * > & Values,DILocalVariable * Var,DIExpression * Expr,bool IsVariadic,DebugLoc DL,unsigned Order)1408 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1409 DILocalVariable *Var,
1410 DIExpression *Expr,
1411 bool IsVariadic, DebugLoc DL,
1412 unsigned Order) {
1413 if (IsVariadic) {
1414 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1415 return;
1416 }
1417 // TODO: Dangling debug info will eventually either be resolved or produce
1418 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1419 // between the original dbg.value location and its resolved DBG_VALUE,
1420 // which we should ideally fill with an extra Undef DBG_VALUE.
1421 assert(Values.size() == 1);
1422 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1423 }
1424
dropDanglingDebugInfo(const DILocalVariable * Variable,const DIExpression * Expr)1425 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1426 const DIExpression *Expr) {
1427 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1428 DIVariable *DanglingVariable = DDI.getVariable();
1429 DIExpression *DanglingExpr = DDI.getExpression();
1430 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1431 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1432 << printDDI(nullptr, DDI) << "\n");
1433 return true;
1434 }
1435 return false;
1436 };
1437
1438 for (auto &DDIMI : DanglingDebugInfoMap) {
1439 DanglingDebugInfoVector &DDIV = DDIMI.second;
1440
1441 // If debug info is to be dropped, run it through final checks to see
1442 // whether it can be salvaged.
1443 for (auto &DDI : DDIV)
1444 if (isMatchingDbgValue(DDI))
1445 salvageUnresolvedDbgValue(DDIMI.first, DDI);
1446
1447 erase_if(DDIV, isMatchingDbgValue);
1448 }
1449 }
1450
1451 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1452 // generate the debug data structures now that we've seen its definition.
resolveDanglingDebugInfo(const Value * V,SDValue Val)1453 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1454 SDValue Val) {
1455 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1456 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1457 return;
1458
1459 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1460 for (auto &DDI : DDIV) {
1461 DebugLoc DL = DDI.getDebugLoc();
1462 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1463 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1464 DILocalVariable *Variable = DDI.getVariable();
1465 DIExpression *Expr = DDI.getExpression();
1466 assert(Variable->isValidLocationForIntrinsic(DL) &&
1467 "Expected inlined-at fields to agree");
1468 SDDbgValue *SDV;
1469 if (Val.getNode()) {
1470 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1471 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1472 // we couldn't resolve it directly when examining the DbgValue intrinsic
1473 // in the first place we should not be more successful here). Unless we
1474 // have some test case that prove this to be correct we should avoid
1475 // calling EmitFuncArgumentDbgValue here.
1476 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1477 FuncArgumentDbgValueKind::Value, Val)) {
1478 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1479 << printDDI(V, DDI) << "\n");
1480 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1481 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1482 // inserted after the definition of Val when emitting the instructions
1483 // after ISel. An alternative could be to teach
1484 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1485 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1486 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1487 << ValSDNodeOrder << "\n");
1488 SDV = getDbgValue(Val, Variable, Expr, DL,
1489 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1490 DAG.AddDbgValue(SDV, false);
1491 } else
1492 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1493 << printDDI(V, DDI)
1494 << " in EmitFuncArgumentDbgValue\n");
1495 } else {
1496 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1497 << "\n");
1498 auto Undef = UndefValue::get(V->getType());
1499 auto SDV =
1500 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1501 DAG.AddDbgValue(SDV, false);
1502 }
1503 }
1504 DDIV.clear();
1505 }
1506
salvageUnresolvedDbgValue(const Value * V,DanglingDebugInfo & DDI)1507 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1508 DanglingDebugInfo &DDI) {
1509 // TODO: For the variadic implementation, instead of only checking the fail
1510 // state of `handleDebugValue`, we need know specifically which values were
1511 // invalid, so that we attempt to salvage only those values when processing
1512 // a DIArgList.
1513 const Value *OrigV = V;
1514 DILocalVariable *Var = DDI.getVariable();
1515 DIExpression *Expr = DDI.getExpression();
1516 DebugLoc DL = DDI.getDebugLoc();
1517 unsigned SDOrder = DDI.getSDNodeOrder();
1518
1519 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1520 // that DW_OP_stack_value is desired.
1521 bool StackValue = true;
1522
1523 // Can this Value can be encoded without any further work?
1524 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1525 return;
1526
1527 // Attempt to salvage back through as many instructions as possible. Bail if
1528 // a non-instruction is seen, such as a constant expression or global
1529 // variable. FIXME: Further work could recover those too.
1530 while (isa<Instruction>(V)) {
1531 const Instruction &VAsInst = *cast<const Instruction>(V);
1532 // Temporary "0", awaiting real implementation.
1533 SmallVector<uint64_t, 16> Ops;
1534 SmallVector<Value *, 4> AdditionalValues;
1535 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1536 Expr->getNumLocationOperands(), Ops,
1537 AdditionalValues);
1538 // If we cannot salvage any further, and haven't yet found a suitable debug
1539 // expression, bail out.
1540 if (!V)
1541 break;
1542
1543 // TODO: If AdditionalValues isn't empty, then the salvage can only be
1544 // represented with a DBG_VALUE_LIST, so we give up. When we have support
1545 // here for variadic dbg_values, remove that condition.
1546 if (!AdditionalValues.empty())
1547 break;
1548
1549 // New value and expr now represent this debuginfo.
1550 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1551
1552 // Some kind of simplification occurred: check whether the operand of the
1553 // salvaged debug expression can be encoded in this DAG.
1554 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1555 LLVM_DEBUG(
1556 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n"
1557 << *OrigV << "\nBy stripping back to:\n " << *V << "\n");
1558 return;
1559 }
1560 }
1561
1562 // This was the final opportunity to salvage this debug information, and it
1563 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1564 // any earlier variable location.
1565 assert(OrigV && "V shouldn't be null");
1566 auto *Undef = UndefValue::get(OrigV->getType());
1567 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1568 DAG.AddDbgValue(SDV, false);
1569 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n "
1570 << printDDI(OrigV, DDI) << "\n");
1571 }
1572
handleKillDebugValue(DILocalVariable * Var,DIExpression * Expr,DebugLoc DbgLoc,unsigned Order)1573 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1574 DIExpression *Expr,
1575 DebugLoc DbgLoc,
1576 unsigned Order) {
1577 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1578 DIExpression *NewExpr =
1579 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1580 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1581 /*IsVariadic*/ false);
1582 }
1583
handleDebugValue(ArrayRef<const Value * > Values,DILocalVariable * Var,DIExpression * Expr,DebugLoc DbgLoc,unsigned Order,bool IsVariadic)1584 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1585 DILocalVariable *Var,
1586 DIExpression *Expr, DebugLoc DbgLoc,
1587 unsigned Order, bool IsVariadic) {
1588 if (Values.empty())
1589 return true;
1590
1591 // Filter EntryValue locations out early.
1592 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1593 return true;
1594
1595 SmallVector<SDDbgOperand> LocationOps;
1596 SmallVector<SDNode *> Dependencies;
1597 for (const Value *V : Values) {
1598 // Constant value.
1599 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1600 isa<ConstantPointerNull>(V)) {
1601 LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1602 continue;
1603 }
1604
1605 // Look through IntToPtr constants.
1606 if (auto *CE = dyn_cast<ConstantExpr>(V))
1607 if (CE->getOpcode() == Instruction::IntToPtr) {
1608 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1609 continue;
1610 }
1611
1612 // If the Value is a frame index, we can create a FrameIndex debug value
1613 // without relying on the DAG at all.
1614 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1615 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1616 if (SI != FuncInfo.StaticAllocaMap.end()) {
1617 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1618 continue;
1619 }
1620 }
1621
1622 // Do not use getValue() in here; we don't want to generate code at
1623 // this point if it hasn't been done yet.
1624 SDValue N = NodeMap[V];
1625 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1626 N = UnusedArgNodeMap[V];
1627 if (N.getNode()) {
1628 // Only emit func arg dbg value for non-variadic dbg.values for now.
1629 if (!IsVariadic &&
1630 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1631 FuncArgumentDbgValueKind::Value, N))
1632 return true;
1633 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1634 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1635 // describe stack slot locations.
1636 //
1637 // Consider "int x = 0; int *px = &x;". There are two kinds of
1638 // interesting debug values here after optimization:
1639 //
1640 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
1641 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1642 //
1643 // Both describe the direct values of their associated variables.
1644 Dependencies.push_back(N.getNode());
1645 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1646 continue;
1647 }
1648 LocationOps.emplace_back(
1649 SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1650 continue;
1651 }
1652
1653 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1654 // Special rules apply for the first dbg.values of parameter variables in a
1655 // function. Identify them by the fact they reference Argument Values, that
1656 // they're parameters, and they are parameters of the current function. We
1657 // need to let them dangle until they get an SDNode.
1658 bool IsParamOfFunc =
1659 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1660 if (IsParamOfFunc)
1661 return false;
1662
1663 // The value is not used in this block yet (or it would have an SDNode).
1664 // We still want the value to appear for the user if possible -- if it has
1665 // an associated VReg, we can refer to that instead.
1666 auto VMI = FuncInfo.ValueMap.find(V);
1667 if (VMI != FuncInfo.ValueMap.end()) {
1668 unsigned Reg = VMI->second;
1669 // If this is a PHI node, it may be split up into several MI PHI nodes
1670 // (in FunctionLoweringInfo::set).
1671 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1672 V->getType(), std::nullopt);
1673 if (RFV.occupiesMultipleRegs()) {
1674 // FIXME: We could potentially support variadic dbg_values here.
1675 if (IsVariadic)
1676 return false;
1677 unsigned Offset = 0;
1678 unsigned BitsToDescribe = 0;
1679 if (auto VarSize = Var->getSizeInBits())
1680 BitsToDescribe = *VarSize;
1681 if (auto Fragment = Expr->getFragmentInfo())
1682 BitsToDescribe = Fragment->SizeInBits;
1683 for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1684 // Bail out if all bits are described already.
1685 if (Offset >= BitsToDescribe)
1686 break;
1687 // TODO: handle scalable vectors.
1688 unsigned RegisterSize = RegAndSize.second;
1689 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1690 ? BitsToDescribe - Offset
1691 : RegisterSize;
1692 auto FragmentExpr = DIExpression::createFragmentExpression(
1693 Expr, Offset, FragmentSize);
1694 if (!FragmentExpr)
1695 continue;
1696 SDDbgValue *SDV = DAG.getVRegDbgValue(
1697 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1698 DAG.AddDbgValue(SDV, false);
1699 Offset += RegisterSize;
1700 }
1701 return true;
1702 }
1703 // We can use simple vreg locations for variadic dbg_values as well.
1704 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1705 continue;
1706 }
1707 // We failed to create a SDDbgOperand for V.
1708 return false;
1709 }
1710
1711 // We have created a SDDbgOperand for each Value in Values.
1712 assert(!LocationOps.empty());
1713 SDDbgValue *SDV =
1714 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1715 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1716 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1717 return true;
1718 }
1719
resolveOrClearDbgInfo()1720 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1721 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1722 for (auto &Pair : DanglingDebugInfoMap)
1723 for (auto &DDI : Pair.second)
1724 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1725 clearDanglingDebugInfo();
1726 }
1727
1728 /// getCopyFromRegs - If there was virtual register allocated for the value V
1729 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
getCopyFromRegs(const Value * V,Type * Ty)1730 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1731 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1732 SDValue Result;
1733
1734 if (It != FuncInfo.ValueMap.end()) {
1735 Register InReg = It->second;
1736
1737 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1738 DAG.getDataLayout(), InReg, Ty,
1739 std::nullopt); // This is not an ABI copy.
1740 SDValue Chain = DAG.getEntryNode();
1741 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1742 V);
1743 resolveDanglingDebugInfo(V, Result);
1744 }
1745
1746 return Result;
1747 }
1748
1749 /// getValue - Return an SDValue for the given Value.
getValue(const Value * V)1750 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1751 // If we already have an SDValue for this value, use it. It's important
1752 // to do this first, so that we don't create a CopyFromReg if we already
1753 // have a regular SDValue.
1754 SDValue &N = NodeMap[V];
1755 if (N.getNode()) return N;
1756
1757 // If there's a virtual register allocated and initialized for this
1758 // value, use it.
1759 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1760 return copyFromReg;
1761
1762 // Otherwise create a new SDValue and remember it.
1763 SDValue Val = getValueImpl(V);
1764 NodeMap[V] = Val;
1765 resolveDanglingDebugInfo(V, Val);
1766 return Val;
1767 }
1768
1769 /// getNonRegisterValue - Return an SDValue for the given Value, but
1770 /// don't look in FuncInfo.ValueMap for a virtual register.
getNonRegisterValue(const Value * V)1771 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1772 // If we already have an SDValue for this value, use it.
1773 SDValue &N = NodeMap[V];
1774 if (N.getNode()) {
1775 if (isIntOrFPConstant(N)) {
1776 // Remove the debug location from the node as the node is about to be used
1777 // in a location which may differ from the original debug location. This
1778 // is relevant to Constant and ConstantFP nodes because they can appear
1779 // as constant expressions inside PHI nodes.
1780 N->setDebugLoc(DebugLoc());
1781 }
1782 return N;
1783 }
1784
1785 // Otherwise create a new SDValue and remember it.
1786 SDValue Val = getValueImpl(V);
1787 NodeMap[V] = Val;
1788 resolveDanglingDebugInfo(V, Val);
1789 return Val;
1790 }
1791
1792 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1793 /// Create an SDValue for the given value.
getValueImpl(const Value * V)1794 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1795 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1796
1797 if (const Constant *C = dyn_cast<Constant>(V)) {
1798 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1799
1800 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1801 return DAG.getConstant(*CI, getCurSDLoc(), VT);
1802
1803 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1804 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1805
1806 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1807 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1808 getValue(CPA->getPointer()), getValue(CPA->getKey()),
1809 getValue(CPA->getAddrDiscriminator()),
1810 getValue(CPA->getDiscriminator()));
1811 }
1812
1813 if (isa<ConstantPointerNull>(C)) {
1814 unsigned AS = V->getType()->getPointerAddressSpace();
1815 return DAG.getConstant(0, getCurSDLoc(),
1816 TLI.getPointerTy(DAG.getDataLayout(), AS));
1817 }
1818
1819 if (match(C, m_VScale()))
1820 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1821
1822 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1823 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1824
1825 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1826 return DAG.getUNDEF(VT);
1827
1828 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1829 visit(CE->getOpcode(), *CE);
1830 SDValue N1 = NodeMap[V];
1831 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1832 return N1;
1833 }
1834
1835 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1836 SmallVector<SDValue, 4> Constants;
1837 for (const Use &U : C->operands()) {
1838 SDNode *Val = getValue(U).getNode();
1839 // If the operand is an empty aggregate, there are no values.
1840 if (!Val) continue;
1841 // Add each leaf value from the operand to the Constants list
1842 // to form a flattened list of all the values.
1843 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1844 Constants.push_back(SDValue(Val, i));
1845 }
1846
1847 return DAG.getMergeValues(Constants, getCurSDLoc());
1848 }
1849
1850 if (const ConstantDataSequential *CDS =
1851 dyn_cast<ConstantDataSequential>(C)) {
1852 SmallVector<SDValue, 4> Ops;
1853 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1854 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1855 // Add each leaf value from the operand to the Constants list
1856 // to form a flattened list of all the values.
1857 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1858 Ops.push_back(SDValue(Val, i));
1859 }
1860
1861 if (isa<ArrayType>(CDS->getType()))
1862 return DAG.getMergeValues(Ops, getCurSDLoc());
1863 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1864 }
1865
1866 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1867 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1868 "Unknown struct or array constant!");
1869
1870 SmallVector<EVT, 4> ValueVTs;
1871 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1872 unsigned NumElts = ValueVTs.size();
1873 if (NumElts == 0)
1874 return SDValue(); // empty struct
1875 SmallVector<SDValue, 4> Constants(NumElts);
1876 for (unsigned i = 0; i != NumElts; ++i) {
1877 EVT EltVT = ValueVTs[i];
1878 if (isa<UndefValue>(C))
1879 Constants[i] = DAG.getUNDEF(EltVT);
1880 else if (EltVT.isFloatingPoint())
1881 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1882 else
1883 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1884 }
1885
1886 return DAG.getMergeValues(Constants, getCurSDLoc());
1887 }
1888
1889 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1890 return DAG.getBlockAddress(BA, VT);
1891
1892 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1893 return getValue(Equiv->getGlobalValue());
1894
1895 if (const auto *NC = dyn_cast<NoCFIValue>(C))
1896 return getValue(NC->getGlobalValue());
1897
1898 if (VT == MVT::aarch64svcount) {
1899 assert(C->isNullValue() && "Can only zero this target type!");
1900 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1901 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1902 }
1903
1904 VectorType *VecTy = cast<VectorType>(V->getType());
1905
1906 // Now that we know the number and type of the elements, get that number of
1907 // elements into the Ops array based on what kind of constant it is.
1908 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1909 SmallVector<SDValue, 16> Ops;
1910 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1911 for (unsigned i = 0; i != NumElements; ++i)
1912 Ops.push_back(getValue(CV->getOperand(i)));
1913
1914 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1915 }
1916
1917 if (isa<ConstantAggregateZero>(C)) {
1918 EVT EltVT =
1919 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1920
1921 SDValue Op;
1922 if (EltVT.isFloatingPoint())
1923 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1924 else
1925 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1926
1927 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1928 }
1929
1930 llvm_unreachable("Unknown vector constant");
1931 }
1932
1933 // If this is a static alloca, generate it as the frameindex instead of
1934 // computation.
1935 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1936 DenseMap<const AllocaInst*, int>::iterator SI =
1937 FuncInfo.StaticAllocaMap.find(AI);
1938 if (SI != FuncInfo.StaticAllocaMap.end())
1939 return DAG.getFrameIndex(
1940 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1941 }
1942
1943 // If this is an instruction which fast-isel has deferred, select it now.
1944 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1945 Register InReg = FuncInfo.InitializeRegForValue(Inst);
1946
1947 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1948 Inst->getType(), std::nullopt);
1949 SDValue Chain = DAG.getEntryNode();
1950 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1951 }
1952
1953 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1954 return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1955
1956 if (const auto *BB = dyn_cast<BasicBlock>(V))
1957 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1958
1959 llvm_unreachable("Can't get register for value!");
1960 }
1961
visitCatchPad(const CatchPadInst & I)1962 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1963 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1964 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1965 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1966 bool IsSEH = isAsynchronousEHPersonality(Pers);
1967 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1968 if (!IsSEH)
1969 CatchPadMBB->setIsEHScopeEntry();
1970 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1971 if (IsMSVCCXX || IsCoreCLR)
1972 CatchPadMBB->setIsEHFuncletEntry();
1973 }
1974
visitCatchRet(const CatchReturnInst & I)1975 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1976 // Update machine-CFG edge.
1977 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1978 FuncInfo.MBB->addSuccessor(TargetMBB);
1979 TargetMBB->setIsEHCatchretTarget(true);
1980 DAG.getMachineFunction().setHasEHCatchret(true);
1981
1982 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1983 bool IsSEH = isAsynchronousEHPersonality(Pers);
1984 if (IsSEH) {
1985 // If this is not a fall-through branch or optimizations are switched off,
1986 // emit the branch.
1987 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1988 TM.getOptLevel() == CodeGenOptLevel::None)
1989 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1990 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1991 return;
1992 }
1993
1994 // Figure out the funclet membership for the catchret's successor.
1995 // This will be used by the FuncletLayout pass to determine how to order the
1996 // BB's.
1997 // A 'catchret' returns to the outer scope's color.
1998 Value *ParentPad = I.getCatchSwitchParentPad();
1999 const BasicBlock *SuccessorColor;
2000 if (isa<ConstantTokenNone>(ParentPad))
2001 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
2002 else
2003 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2004 assert(SuccessorColor && "No parent funclet for catchret!");
2005 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
2006 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2007
2008 // Create the terminator node.
2009 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2010 getControlRoot(), DAG.getBasicBlock(TargetMBB),
2011 DAG.getBasicBlock(SuccessorColorMBB));
2012 DAG.setRoot(Ret);
2013 }
2014
visitCleanupPad(const CleanupPadInst & CPI)2015 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2016 // Don't emit any special code for the cleanuppad instruction. It just marks
2017 // the start of an EH scope/funclet.
2018 FuncInfo.MBB->setIsEHScopeEntry();
2019 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2020 if (Pers != EHPersonality::Wasm_CXX) {
2021 FuncInfo.MBB->setIsEHFuncletEntry();
2022 FuncInfo.MBB->setIsCleanupFuncletEntry();
2023 }
2024 }
2025
2026 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2027 // not match, it is OK to add only the first unwind destination catchpad to the
2028 // successors, because there will be at least one invoke instruction within the
2029 // catch scope that points to the next unwind destination, if one exists, so
2030 // CFGSort cannot mess up with BB sorting order.
2031 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2032 // call within them, and catchpads only consisting of 'catch (...)' have a
2033 // '__cxa_end_catch' call within them, both of which generate invokes in case
2034 // the next unwind destination exists, i.e., the next unwind destination is not
2035 // the caller.)
2036 //
2037 // Having at most one EH pad successor is also simpler and helps later
2038 // transformations.
2039 //
2040 // For example,
2041 // current:
2042 // invoke void @foo to ... unwind label %catch.dispatch
2043 // catch.dispatch:
2044 // %0 = catchswitch within ... [label %catch.start] unwind label %next
2045 // catch.start:
2046 // ...
2047 // ... in this BB or some other child BB dominated by this BB there will be an
2048 // invoke that points to 'next' BB as an unwind destination
2049 //
2050 // next: ; We don't need to add this to 'current' BB's successor
2051 // ...
findWasmUnwindDestinations(FunctionLoweringInfo & FuncInfo,const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)2052 static void findWasmUnwindDestinations(
2053 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2054 BranchProbability Prob,
2055 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2056 &UnwindDests) {
2057 while (EHPadBB) {
2058 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2059 if (isa<CleanupPadInst>(Pad)) {
2060 // Stop on cleanup pads.
2061 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2062 UnwindDests.back().first->setIsEHScopeEntry();
2063 break;
2064 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2065 // Add the catchpad handlers to the possible destinations. We don't
2066 // continue to the unwind destination of the catchswitch for wasm.
2067 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2068 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2069 UnwindDests.back().first->setIsEHScopeEntry();
2070 }
2071 break;
2072 } else {
2073 continue;
2074 }
2075 }
2076 }
2077
2078 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2079 /// many places it could ultimately go. In the IR, we have a single unwind
2080 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2081 /// This function skips over imaginary basic blocks that hold catchswitch
2082 /// instructions, and finds all the "real" machine
2083 /// basic block destinations. As those destinations may not be successors of
2084 /// EHPadBB, here we also calculate the edge probability to those destinations.
2085 /// The passed-in Prob is the edge probability to EHPadBB.
findUnwindDestinations(FunctionLoweringInfo & FuncInfo,const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)2086 static void findUnwindDestinations(
2087 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2088 BranchProbability Prob,
2089 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2090 &UnwindDests) {
2091 EHPersonality Personality =
2092 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2093 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2094 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2095 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2096 bool IsSEH = isAsynchronousEHPersonality(Personality);
2097
2098 if (IsWasmCXX) {
2099 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2100 assert(UnwindDests.size() <= 1 &&
2101 "There should be at most one unwind destination for wasm");
2102 return;
2103 }
2104
2105 while (EHPadBB) {
2106 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2107 BasicBlock *NewEHPadBB = nullptr;
2108 if (isa<LandingPadInst>(Pad)) {
2109 // Stop on landingpads. They are not funclets.
2110 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2111 break;
2112 } else if (isa<CleanupPadInst>(Pad)) {
2113 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2114 // personalities.
2115 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2116 UnwindDests.back().first->setIsEHScopeEntry();
2117 UnwindDests.back().first->setIsEHFuncletEntry();
2118 break;
2119 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2120 // Add the catchpad handlers to the possible destinations.
2121 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2122 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2123 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2124 if (IsMSVCCXX || IsCoreCLR)
2125 UnwindDests.back().first->setIsEHFuncletEntry();
2126 if (!IsSEH)
2127 UnwindDests.back().first->setIsEHScopeEntry();
2128 }
2129 NewEHPadBB = CatchSwitch->getUnwindDest();
2130 } else {
2131 continue;
2132 }
2133
2134 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2135 if (BPI && NewEHPadBB)
2136 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2137 EHPadBB = NewEHPadBB;
2138 }
2139 }
2140
visitCleanupRet(const CleanupReturnInst & I)2141 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2142 // Update successor info.
2143 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2144 auto UnwindDest = I.getUnwindDest();
2145 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2146 BranchProbability UnwindDestProb =
2147 (BPI && UnwindDest)
2148 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2149 : BranchProbability::getZero();
2150 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2151 for (auto &UnwindDest : UnwindDests) {
2152 UnwindDest.first->setIsEHPad();
2153 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2154 }
2155 FuncInfo.MBB->normalizeSuccProbs();
2156
2157 // Create the terminator node.
2158 MachineBasicBlock *CleanupPadMBB =
2159 FuncInfo.MBBMap[I.getCleanupPad()->getParent()];
2160 SDValue Ret = DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other,
2161 getControlRoot(), DAG.getBasicBlock(CleanupPadMBB));
2162 DAG.setRoot(Ret);
2163 }
2164
visitCatchSwitch(const CatchSwitchInst & CSI)2165 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2166 report_fatal_error("visitCatchSwitch not yet implemented!");
2167 }
2168
visitRet(const ReturnInst & I)2169 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2170 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2171 auto &DL = DAG.getDataLayout();
2172 SDValue Chain = getControlRoot();
2173 SmallVector<ISD::OutputArg, 8> Outs;
2174 SmallVector<SDValue, 8> OutVals;
2175
2176 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2177 // lower
2178 //
2179 // %val = call <ty> @llvm.experimental.deoptimize()
2180 // ret <ty> %val
2181 //
2182 // differently.
2183 if (I.getParent()->getTerminatingDeoptimizeCall()) {
2184 LowerDeoptimizingReturn();
2185 return;
2186 }
2187
2188 if (!FuncInfo.CanLowerReturn) {
2189 unsigned DemoteReg = FuncInfo.DemoteRegister;
2190 const Function *F = I.getParent()->getParent();
2191
2192 // Emit a store of the return value through the virtual register.
2193 // Leave Outs empty so that LowerReturn won't try to load return
2194 // registers the usual way.
2195 SmallVector<EVT, 1> PtrValueVTs;
2196 ComputeValueVTs(TLI, DL,
2197 PointerType::get(F->getContext(),
2198 DAG.getDataLayout().getAllocaAddrSpace()),
2199 PtrValueVTs);
2200
2201 SDValue RetPtr =
2202 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2203 SDValue RetOp = getValue(I.getOperand(0));
2204
2205 SmallVector<EVT, 4> ValueVTs, MemVTs;
2206 SmallVector<uint64_t, 4> Offsets;
2207 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2208 &Offsets, 0);
2209 unsigned NumValues = ValueVTs.size();
2210
2211 SmallVector<SDValue, 4> Chains(NumValues);
2212 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2213 for (unsigned i = 0; i != NumValues; ++i) {
2214 // An aggregate return value cannot wrap around the address space, so
2215 // offsets to its parts don't wrap either.
2216 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2217 TypeSize::getFixed(Offsets[i]));
2218
2219 SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2220 if (MemVTs[i] != ValueVTs[i])
2221 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2222 Chains[i] = DAG.getStore(
2223 Chain, getCurSDLoc(), Val,
2224 // FIXME: better loc info would be nice.
2225 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2226 commonAlignment(BaseAlign, Offsets[i]));
2227 }
2228
2229 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2230 MVT::Other, Chains);
2231 } else if (I.getNumOperands() != 0) {
2232 SmallVector<EVT, 4> ValueVTs;
2233 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2234 unsigned NumValues = ValueVTs.size();
2235 if (NumValues) {
2236 SDValue RetOp = getValue(I.getOperand(0));
2237
2238 const Function *F = I.getParent()->getParent();
2239
2240 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2241 I.getOperand(0)->getType(), F->getCallingConv(),
2242 /*IsVarArg*/ false, DL);
2243
2244 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2245 if (F->getAttributes().hasRetAttr(Attribute::SExt))
2246 ExtendKind = ISD::SIGN_EXTEND;
2247 else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2248 ExtendKind = ISD::ZERO_EXTEND;
2249
2250 LLVMContext &Context = F->getContext();
2251 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2252
2253 for (unsigned j = 0; j != NumValues; ++j) {
2254 EVT VT = ValueVTs[j];
2255
2256 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2257 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2258
2259 CallingConv::ID CC = F->getCallingConv();
2260
2261 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2262 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2263 SmallVector<SDValue, 4> Parts(NumParts);
2264 getCopyToParts(DAG, getCurSDLoc(),
2265 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2266 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2267
2268 // 'inreg' on function refers to return value
2269 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2270 if (RetInReg)
2271 Flags.setInReg();
2272
2273 if (I.getOperand(0)->getType()->isPointerTy()) {
2274 Flags.setPointer();
2275 Flags.setPointerAddrSpace(
2276 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2277 }
2278
2279 if (NeedsRegBlock) {
2280 Flags.setInConsecutiveRegs();
2281 if (j == NumValues - 1)
2282 Flags.setInConsecutiveRegsLast();
2283 }
2284
2285 // Propagate extension type if any
2286 if (ExtendKind == ISD::SIGN_EXTEND)
2287 Flags.setSExt();
2288 else if (ExtendKind == ISD::ZERO_EXTEND)
2289 Flags.setZExt();
2290
2291 for (unsigned i = 0; i < NumParts; ++i) {
2292 Outs.push_back(ISD::OutputArg(Flags,
2293 Parts[i].getValueType().getSimpleVT(),
2294 VT, /*isfixed=*/true, 0, 0));
2295 OutVals.push_back(Parts[i]);
2296 }
2297 }
2298 }
2299 }
2300
2301 // Push in swifterror virtual register as the last element of Outs. This makes
2302 // sure swifterror virtual register will be returned in the swifterror
2303 // physical register.
2304 const Function *F = I.getParent()->getParent();
2305 if (TLI.supportSwiftError() &&
2306 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2307 assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2308 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2309 Flags.setSwiftError();
2310 Outs.push_back(ISD::OutputArg(
2311 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2312 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2313 // Create SDNode for the swifterror virtual register.
2314 OutVals.push_back(
2315 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2316 &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2317 EVT(TLI.getPointerTy(DL))));
2318 }
2319
2320 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2321 CallingConv::ID CallConv =
2322 DAG.getMachineFunction().getFunction().getCallingConv();
2323 Chain = DAG.getTargetLoweringInfo().LowerReturn(
2324 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2325
2326 // Verify that the target's LowerReturn behaved as expected.
2327 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2328 "LowerReturn didn't return a valid chain!");
2329
2330 // Update the DAG with the new chain value resulting from return lowering.
2331 DAG.setRoot(Chain);
2332 }
2333
2334 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2335 /// created for it, emit nodes to copy the value into the virtual
2336 /// registers.
CopyToExportRegsIfNeeded(const Value * V)2337 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2338 // Skip empty types
2339 if (V->getType()->isEmptyTy())
2340 return;
2341
2342 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2343 if (VMI != FuncInfo.ValueMap.end()) {
2344 assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2345 "Unused value assigned virtual registers!");
2346 CopyValueToVirtualRegister(V, VMI->second);
2347 }
2348 }
2349
2350 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2351 /// the current basic block, add it to ValueMap now so that we'll get a
2352 /// CopyTo/FromReg.
ExportFromCurrentBlock(const Value * V)2353 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2354 // No need to export constants.
2355 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2356
2357 // Already exported?
2358 if (FuncInfo.isExportedInst(V)) return;
2359
2360 Register Reg = FuncInfo.InitializeRegForValue(V);
2361 CopyValueToVirtualRegister(V, Reg);
2362 }
2363
isExportableFromCurrentBlock(const Value * V,const BasicBlock * FromBB)2364 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2365 const BasicBlock *FromBB) {
2366 // The operands of the setcc have to be in this block. We don't know
2367 // how to export them from some other block.
2368 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2369 // Can export from current BB.
2370 if (VI->getParent() == FromBB)
2371 return true;
2372
2373 // Is already exported, noop.
2374 return FuncInfo.isExportedInst(V);
2375 }
2376
2377 // If this is an argument, we can export it if the BB is the entry block or
2378 // if it is already exported.
2379 if (isa<Argument>(V)) {
2380 if (FromBB->isEntryBlock())
2381 return true;
2382
2383 // Otherwise, can only export this if it is already exported.
2384 return FuncInfo.isExportedInst(V);
2385 }
2386
2387 // Otherwise, constants can always be exported.
2388 return true;
2389 }
2390
2391 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2392 BranchProbability
getEdgeProbability(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const2393 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2394 const MachineBasicBlock *Dst) const {
2395 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2396 const BasicBlock *SrcBB = Src->getBasicBlock();
2397 const BasicBlock *DstBB = Dst->getBasicBlock();
2398 if (!BPI) {
2399 // If BPI is not available, set the default probability as 1 / N, where N is
2400 // the number of successors.
2401 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2402 return BranchProbability(1, SuccSize);
2403 }
2404 return BPI->getEdgeProbability(SrcBB, DstBB);
2405 }
2406
addSuccessorWithProb(MachineBasicBlock * Src,MachineBasicBlock * Dst,BranchProbability Prob)2407 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2408 MachineBasicBlock *Dst,
2409 BranchProbability Prob) {
2410 if (!FuncInfo.BPI)
2411 Src->addSuccessorWithoutProb(Dst);
2412 else {
2413 if (Prob.isUnknown())
2414 Prob = getEdgeProbability(Src, Dst);
2415 Src->addSuccessor(Dst, Prob);
2416 }
2417 }
2418
InBlock(const Value * V,const BasicBlock * BB)2419 static bool InBlock(const Value *V, const BasicBlock *BB) {
2420 if (const Instruction *I = dyn_cast<Instruction>(V))
2421 return I->getParent() == BB;
2422 return true;
2423 }
2424
2425 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2426 /// This function emits a branch and is used at the leaves of an OR or an
2427 /// AND operator tree.
2428 void
EmitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,BranchProbability TProb,BranchProbability FProb,bool InvertCond)2429 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2430 MachineBasicBlock *TBB,
2431 MachineBasicBlock *FBB,
2432 MachineBasicBlock *CurBB,
2433 MachineBasicBlock *SwitchBB,
2434 BranchProbability TProb,
2435 BranchProbability FProb,
2436 bool InvertCond) {
2437 const BasicBlock *BB = CurBB->getBasicBlock();
2438
2439 // If the leaf of the tree is a comparison, merge the condition into
2440 // the caseblock.
2441 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2442 // The operands of the cmp have to be in this block. We don't know
2443 // how to export them from some other block. If this is the first block
2444 // of the sequence, no exporting is needed.
2445 if (CurBB == SwitchBB ||
2446 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2447 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2448 ISD::CondCode Condition;
2449 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2450 ICmpInst::Predicate Pred =
2451 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2452 Condition = getICmpCondCode(Pred);
2453 } else {
2454 const FCmpInst *FC = cast<FCmpInst>(Cond);
2455 FCmpInst::Predicate Pred =
2456 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2457 Condition = getFCmpCondCode(Pred);
2458 if (TM.Options.NoNaNsFPMath)
2459 Condition = getFCmpCodeWithoutNaN(Condition);
2460 }
2461
2462 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2463 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2464 SL->SwitchCases.push_back(CB);
2465 return;
2466 }
2467 }
2468
2469 // Create a CaseBlock record representing this branch.
2470 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2471 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2472 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2473 SL->SwitchCases.push_back(CB);
2474 }
2475
2476 // Collect dependencies on V recursively. This is used for the cost analysis in
2477 // `shouldKeepJumpConditionsTogether`.
collectInstructionDeps(SmallMapVector<const Instruction *,bool,8> * Deps,const Value * V,SmallMapVector<const Instruction *,bool,8> * Necessary=nullptr,unsigned Depth=0)2478 static bool collectInstructionDeps(
2479 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2480 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2481 unsigned Depth = 0) {
2482 // Return false if we have an incomplete count.
2483 if (Depth >= SelectionDAG::MaxRecursionDepth)
2484 return false;
2485
2486 auto *I = dyn_cast<Instruction>(V);
2487 if (I == nullptr)
2488 return true;
2489
2490 if (Necessary != nullptr) {
2491 // This instruction is necessary for the other side of the condition so
2492 // don't count it.
2493 if (Necessary->contains(I))
2494 return true;
2495 }
2496
2497 // Already added this dep.
2498 if (!Deps->try_emplace(I, false).second)
2499 return true;
2500
2501 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2502 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2503 Depth + 1))
2504 return false;
2505 return true;
2506 }
2507
shouldKeepJumpConditionsTogether(const FunctionLoweringInfo & FuncInfo,const BranchInst & I,Instruction::BinaryOps Opc,const Value * Lhs,const Value * Rhs,TargetLoweringBase::CondMergingParams Params) const2508 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2509 const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2510 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2511 TargetLoweringBase::CondMergingParams Params) const {
2512 if (I.getNumSuccessors() != 2)
2513 return false;
2514
2515 if (!I.isConditional())
2516 return false;
2517
2518 if (Params.BaseCost < 0)
2519 return false;
2520
2521 // Baseline cost.
2522 InstructionCost CostThresh = Params.BaseCost;
2523
2524 BranchProbabilityInfo *BPI = nullptr;
2525 if (Params.LikelyBias || Params.UnlikelyBias)
2526 BPI = FuncInfo.BPI;
2527 if (BPI != nullptr) {
2528 // See if we are either likely to get an early out or compute both lhs/rhs
2529 // of the condition.
2530 BasicBlock *IfFalse = I.getSuccessor(0);
2531 BasicBlock *IfTrue = I.getSuccessor(1);
2532
2533 std::optional<bool> Likely;
2534 if (BPI->isEdgeHot(I.getParent(), IfTrue))
2535 Likely = true;
2536 else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2537 Likely = false;
2538
2539 if (Likely) {
2540 if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2541 // Its likely we will have to compute both lhs and rhs of condition
2542 CostThresh += Params.LikelyBias;
2543 else {
2544 if (Params.UnlikelyBias < 0)
2545 return false;
2546 // Its likely we will get an early out.
2547 CostThresh -= Params.UnlikelyBias;
2548 }
2549 }
2550 }
2551
2552 if (CostThresh <= 0)
2553 return false;
2554
2555 // Collect "all" instructions that lhs condition is dependent on.
2556 // Use map for stable iteration (to avoid non-determanism of iteration of
2557 // SmallPtrSet). The `bool` value is just a dummy.
2558 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2559 collectInstructionDeps(&LhsDeps, Lhs);
2560 // Collect "all" instructions that rhs condition is dependent on AND are
2561 // dependencies of lhs. This gives us an estimate on which instructions we
2562 // stand to save by splitting the condition.
2563 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2564 return false;
2565 // Add the compare instruction itself unless its a dependency on the LHS.
2566 if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2567 if (!LhsDeps.contains(RhsI))
2568 RhsDeps.try_emplace(RhsI, false);
2569
2570 const auto &TLI = DAG.getTargetLoweringInfo();
2571 const auto &TTI =
2572 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2573
2574 InstructionCost CostOfIncluding = 0;
2575 // See if this instruction will need to computed independently of whether RHS
2576 // is.
2577 Value *BrCond = I.getCondition();
2578 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2579 for (const auto *U : Ins->users()) {
2580 // If user is independent of RHS calculation we don't need to count it.
2581 if (auto *UIns = dyn_cast<Instruction>(U))
2582 if (UIns != BrCond && !RhsDeps.contains(UIns))
2583 return false;
2584 }
2585 return true;
2586 };
2587
2588 // Prune instructions from RHS Deps that are dependencies of unrelated
2589 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2590 // arbitrary and just meant to cap the how much time we spend in the pruning
2591 // loop. Its highly unlikely to come into affect.
2592 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2593 // Stop after a certain point. No incorrectness from including too many
2594 // instructions.
2595 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2596 const Instruction *ToDrop = nullptr;
2597 for (const auto &InsPair : RhsDeps) {
2598 if (!ShouldCountInsn(InsPair.first)) {
2599 ToDrop = InsPair.first;
2600 break;
2601 }
2602 }
2603 if (ToDrop == nullptr)
2604 break;
2605 RhsDeps.erase(ToDrop);
2606 }
2607
2608 for (const auto &InsPair : RhsDeps) {
2609 // Finally accumulate latency that we can only attribute to computing the
2610 // RHS condition. Use latency because we are essentially trying to calculate
2611 // the cost of the dependency chain.
2612 // Possible TODO: We could try to estimate ILP and make this more precise.
2613 CostOfIncluding +=
2614 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2615
2616 if (CostOfIncluding > CostThresh)
2617 return false;
2618 }
2619 return true;
2620 }
2621
FindMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,Instruction::BinaryOps Opc,BranchProbability TProb,BranchProbability FProb,bool InvertCond)2622 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2623 MachineBasicBlock *TBB,
2624 MachineBasicBlock *FBB,
2625 MachineBasicBlock *CurBB,
2626 MachineBasicBlock *SwitchBB,
2627 Instruction::BinaryOps Opc,
2628 BranchProbability TProb,
2629 BranchProbability FProb,
2630 bool InvertCond) {
2631 // Skip over not part of the tree and remember to invert op and operands at
2632 // next level.
2633 Value *NotCond;
2634 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2635 InBlock(NotCond, CurBB->getBasicBlock())) {
2636 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2637 !InvertCond);
2638 return;
2639 }
2640
2641 const Instruction *BOp = dyn_cast<Instruction>(Cond);
2642 const Value *BOpOp0, *BOpOp1;
2643 // Compute the effective opcode for Cond, taking into account whether it needs
2644 // to be inverted, e.g.
2645 // and (not (or A, B)), C
2646 // gets lowered as
2647 // and (and (not A, not B), C)
2648 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2649 if (BOp) {
2650 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2651 ? Instruction::And
2652 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2653 ? Instruction::Or
2654 : (Instruction::BinaryOps)0);
2655 if (InvertCond) {
2656 if (BOpc == Instruction::And)
2657 BOpc = Instruction::Or;
2658 else if (BOpc == Instruction::Or)
2659 BOpc = Instruction::And;
2660 }
2661 }
2662
2663 // If this node is not part of the or/and tree, emit it as a branch.
2664 // Note that all nodes in the tree should have same opcode.
2665 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2666 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2667 !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2668 !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2669 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2670 TProb, FProb, InvertCond);
2671 return;
2672 }
2673
2674 // Create TmpBB after CurBB.
2675 MachineFunction::iterator BBI(CurBB);
2676 MachineFunction &MF = DAG.getMachineFunction();
2677 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2678 CurBB->getParent()->insert(++BBI, TmpBB);
2679
2680 if (Opc == Instruction::Or) {
2681 // Codegen X | Y as:
2682 // BB1:
2683 // jmp_if_X TBB
2684 // jmp TmpBB
2685 // TmpBB:
2686 // jmp_if_Y TBB
2687 // jmp FBB
2688 //
2689
2690 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2691 // The requirement is that
2692 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2693 // = TrueProb for original BB.
2694 // Assuming the original probabilities are A and B, one choice is to set
2695 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2696 // A/(1+B) and 2B/(1+B). This choice assumes that
2697 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2698 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2699 // TmpBB, but the math is more complicated.
2700
2701 auto NewTrueProb = TProb / 2;
2702 auto NewFalseProb = TProb / 2 + FProb;
2703 // Emit the LHS condition.
2704 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2705 NewFalseProb, InvertCond);
2706
2707 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2708 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2709 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2710 // Emit the RHS condition into TmpBB.
2711 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2712 Probs[1], InvertCond);
2713 } else {
2714 assert(Opc == Instruction::And && "Unknown merge op!");
2715 // Codegen X & Y as:
2716 // BB1:
2717 // jmp_if_X TmpBB
2718 // jmp FBB
2719 // TmpBB:
2720 // jmp_if_Y TBB
2721 // jmp FBB
2722 //
2723 // This requires creation of TmpBB after CurBB.
2724
2725 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2726 // The requirement is that
2727 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2728 // = FalseProb for original BB.
2729 // Assuming the original probabilities are A and B, one choice is to set
2730 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2731 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2732 // TrueProb for BB1 * FalseProb for TmpBB.
2733
2734 auto NewTrueProb = TProb + FProb / 2;
2735 auto NewFalseProb = FProb / 2;
2736 // Emit the LHS condition.
2737 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2738 NewFalseProb, InvertCond);
2739
2740 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2741 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2742 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2743 // Emit the RHS condition into TmpBB.
2744 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2745 Probs[1], InvertCond);
2746 }
2747 }
2748
2749 /// If the set of cases should be emitted as a series of branches, return true.
2750 /// If we should emit this as a bunch of and/or'd together conditions, return
2751 /// false.
2752 bool
ShouldEmitAsBranches(const std::vector<CaseBlock> & Cases)2753 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2754 if (Cases.size() != 2) return true;
2755
2756 // If this is two comparisons of the same values or'd or and'd together, they
2757 // will get folded into a single comparison, so don't emit two blocks.
2758 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2759 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2760 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2761 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2762 return false;
2763 }
2764
2765 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2766 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2767 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2768 Cases[0].CC == Cases[1].CC &&
2769 isa<Constant>(Cases[0].CmpRHS) &&
2770 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2771 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2772 return false;
2773 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2774 return false;
2775 }
2776
2777 return true;
2778 }
2779
visitBr(const BranchInst & I)2780 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2781 MachineBasicBlock *BrMBB = FuncInfo.MBB;
2782
2783 // Update machine-CFG edges.
2784 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2785
2786 if (I.isUnconditional()) {
2787 // Update machine-CFG edges.
2788 BrMBB->addSuccessor(Succ0MBB);
2789
2790 // If this is not a fall-through branch or optimizations are switched off,
2791 // emit the branch.
2792 if (Succ0MBB != NextBlock(BrMBB) ||
2793 TM.getOptLevel() == CodeGenOptLevel::None) {
2794 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2795 getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2796 setValue(&I, Br);
2797 DAG.setRoot(Br);
2798 }
2799
2800 return;
2801 }
2802
2803 // If this condition is one of the special cases we handle, do special stuff
2804 // now.
2805 const Value *CondVal = I.getCondition();
2806 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2807
2808 // If this is a series of conditions that are or'd or and'd together, emit
2809 // this as a sequence of branches instead of setcc's with and/or operations.
2810 // As long as jumps are not expensive (exceptions for multi-use logic ops,
2811 // unpredictable branches, and vector extracts because those jumps are likely
2812 // expensive for any target), this should improve performance.
2813 // For example, instead of something like:
2814 // cmp A, B
2815 // C = seteq
2816 // cmp D, E
2817 // F = setle
2818 // or C, F
2819 // jnz foo
2820 // Emit:
2821 // cmp A, B
2822 // je foo
2823 // cmp D, E
2824 // jle foo
2825 const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2826 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2827 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2828 Value *Vec;
2829 const Value *BOp0, *BOp1;
2830 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2831 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2832 Opcode = Instruction::And;
2833 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2834 Opcode = Instruction::Or;
2835
2836 if (Opcode &&
2837 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2838 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2839 !shouldKeepJumpConditionsTogether(
2840 FuncInfo, I, Opcode, BOp0, BOp1,
2841 DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2842 Opcode, BOp0, BOp1))) {
2843 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2844 getEdgeProbability(BrMBB, Succ0MBB),
2845 getEdgeProbability(BrMBB, Succ1MBB),
2846 /*InvertCond=*/false);
2847 // If the compares in later blocks need to use values not currently
2848 // exported from this block, export them now. This block should always
2849 // be the first entry.
2850 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2851
2852 // Allow some cases to be rejected.
2853 if (ShouldEmitAsBranches(SL->SwitchCases)) {
2854 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2855 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2856 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2857 }
2858
2859 // Emit the branch for this block.
2860 visitSwitchCase(SL->SwitchCases[0], BrMBB);
2861 SL->SwitchCases.erase(SL->SwitchCases.begin());
2862 return;
2863 }
2864
2865 // Okay, we decided not to do this, remove any inserted MBB's and clear
2866 // SwitchCases.
2867 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2868 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2869
2870 SL->SwitchCases.clear();
2871 }
2872 }
2873
2874 // Create a CaseBlock record representing this branch.
2875 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2876 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2877
2878 // Use visitSwitchCase to actually insert the fast branch sequence for this
2879 // cond branch.
2880 visitSwitchCase(CB, BrMBB);
2881 }
2882
2883 /// visitSwitchCase - Emits the necessary code to represent a single node in
2884 /// the binary search tree resulting from lowering a switch instruction.
visitSwitchCase(CaseBlock & CB,MachineBasicBlock * SwitchBB)2885 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2886 MachineBasicBlock *SwitchBB) {
2887 SDValue Cond;
2888 SDValue CondLHS = getValue(CB.CmpLHS);
2889 SDLoc dl = CB.DL;
2890
2891 if (CB.CC == ISD::SETTRUE) {
2892 // Branch or fall through to TrueBB.
2893 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2894 SwitchBB->normalizeSuccProbs();
2895 if (CB.TrueBB != NextBlock(SwitchBB)) {
2896 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2897 DAG.getBasicBlock(CB.TrueBB)));
2898 }
2899 return;
2900 }
2901
2902 auto &TLI = DAG.getTargetLoweringInfo();
2903 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2904
2905 // Build the setcc now.
2906 if (!CB.CmpMHS) {
2907 // Fold "(X == true)" to X and "(X == false)" to !X to
2908 // handle common cases produced by branch lowering.
2909 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2910 CB.CC == ISD::SETEQ)
2911 Cond = CondLHS;
2912 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2913 CB.CC == ISD::SETEQ) {
2914 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2915 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2916 } else {
2917 SDValue CondRHS = getValue(CB.CmpRHS);
2918
2919 // If a pointer's DAG type is larger than its memory type then the DAG
2920 // values are zero-extended. This breaks signed comparisons so truncate
2921 // back to the underlying type before doing the compare.
2922 if (CondLHS.getValueType() != MemVT) {
2923 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2924 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2925 }
2926 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2927 }
2928 } else {
2929 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2930
2931 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2932 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2933
2934 SDValue CmpOp = getValue(CB.CmpMHS);
2935 EVT VT = CmpOp.getValueType();
2936
2937 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2938 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2939 ISD::SETLE);
2940 } else {
2941 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2942 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2943 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2944 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2945 }
2946 }
2947
2948 // Update successor info
2949 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2950 // TrueBB and FalseBB are always different unless the incoming IR is
2951 // degenerate. This only happens when running llc on weird IR.
2952 if (CB.TrueBB != CB.FalseBB)
2953 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2954 SwitchBB->normalizeSuccProbs();
2955
2956 // If the lhs block is the next block, invert the condition so that we can
2957 // fall through to the lhs instead of the rhs block.
2958 if (CB.TrueBB == NextBlock(SwitchBB)) {
2959 std::swap(CB.TrueBB, CB.FalseBB);
2960 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2961 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2962 }
2963
2964 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2965 MVT::Other, getControlRoot(), Cond,
2966 DAG.getBasicBlock(CB.TrueBB));
2967
2968 setValue(CurInst, BrCond);
2969
2970 // Insert the false branch. Do this even if it's a fall through branch,
2971 // this makes it easier to do DAG optimizations which require inverting
2972 // the branch condition.
2973 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2974 DAG.getBasicBlock(CB.FalseBB));
2975
2976 DAG.setRoot(BrCond);
2977 }
2978
2979 /// visitJumpTable - Emit JumpTable node in the current MBB
visitJumpTable(SwitchCG::JumpTable & JT)2980 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2981 // Emit the code for the jump table
2982 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2983 assert(JT.Reg != -1U && "Should lower JT Header first!");
2984 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2985 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2986 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2987 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2988 Index.getValue(1), Table, Index);
2989 DAG.setRoot(BrJumpTable);
2990 }
2991
2992 /// visitJumpTableHeader - This function emits necessary code to produce index
2993 /// in the JumpTable from switch case.
visitJumpTableHeader(SwitchCG::JumpTable & JT,JumpTableHeader & JTH,MachineBasicBlock * SwitchBB)2994 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2995 JumpTableHeader &JTH,
2996 MachineBasicBlock *SwitchBB) {
2997 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2998 const SDLoc &dl = *JT.SL;
2999
3000 // Subtract the lowest switch case value from the value being switched on.
3001 SDValue SwitchOp = getValue(JTH.SValue);
3002 EVT VT = SwitchOp.getValueType();
3003 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3004 DAG.getConstant(JTH.First, dl, VT));
3005
3006 // The SDNode we just created, which holds the value being switched on minus
3007 // the smallest case value, needs to be copied to a virtual register so it
3008 // can be used as an index into the jump table in a subsequent basic block.
3009 // This value may be smaller or larger than the target's pointer type, and
3010 // therefore require extension or truncating.
3011 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3012 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
3013
3014 unsigned JumpTableReg =
3015 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
3016 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
3017 JumpTableReg, SwitchOp);
3018 JT.Reg = JumpTableReg;
3019
3020 if (!JTH.FallthroughUnreachable) {
3021 // Emit the range check for the jump table, and branch to the default block
3022 // for the switch statement if the value being switched on exceeds the
3023 // largest case in the switch.
3024 SDValue CMP = DAG.getSetCC(
3025 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3026 Sub.getValueType()),
3027 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3028
3029 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3030 MVT::Other, CopyTo, CMP,
3031 DAG.getBasicBlock(JT.Default));
3032
3033 // Avoid emitting unnecessary branches to the next block.
3034 if (JT.MBB != NextBlock(SwitchBB))
3035 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3036 DAG.getBasicBlock(JT.MBB));
3037
3038 DAG.setRoot(BrCond);
3039 } else {
3040 // Avoid emitting unnecessary branches to the next block.
3041 if (JT.MBB != NextBlock(SwitchBB))
3042 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3043 DAG.getBasicBlock(JT.MBB)));
3044 else
3045 DAG.setRoot(CopyTo);
3046 }
3047 }
3048
3049 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3050 /// variable if there exists one.
getLoadStackGuard(SelectionDAG & DAG,const SDLoc & DL,SDValue & Chain)3051 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3052 SDValue &Chain) {
3053 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3054 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3055 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3056 MachineFunction &MF = DAG.getMachineFunction();
3057 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3058 MachineSDNode *Node =
3059 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3060 if (Global) {
3061 MachinePointerInfo MPInfo(Global);
3062 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3063 MachineMemOperand::MODereferenceable;
3064 MachineMemOperand *MemRef = MF.getMachineMemOperand(
3065 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3066 DAG.getEVTAlign(PtrTy));
3067 DAG.setNodeMemRefs(Node, {MemRef});
3068 }
3069 if (PtrTy != PtrMemTy)
3070 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3071 return SDValue(Node, 0);
3072 }
3073
3074 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3075 /// tail spliced into a stack protector check success bb.
3076 ///
3077 /// For a high level explanation of how this fits into the stack protector
3078 /// generation see the comment on the declaration of class
3079 /// StackProtectorDescriptor.
visitSPDescriptorParent(StackProtectorDescriptor & SPD,MachineBasicBlock * ParentBB)3080 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3081 MachineBasicBlock *ParentBB) {
3082
3083 // First create the loads to the guard/stack slot for the comparison.
3084 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3085 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3086 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3087
3088 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3089 int FI = MFI.getStackProtectorIndex();
3090
3091 SDValue Guard;
3092 SDLoc dl = getCurSDLoc();
3093 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3094 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3095 Align Align =
3096 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3097
3098 // Generate code to load the content of the guard slot.
3099 SDValue GuardVal = DAG.getLoad(
3100 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3101 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3102 MachineMemOperand::MOVolatile);
3103
3104 if (TLI.useStackGuardXorFP())
3105 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3106
3107 // Retrieve guard check function, nullptr if instrumentation is inlined.
3108 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3109 // The target provides a guard check function to validate the guard value.
3110 // Generate a call to that function with the content of the guard slot as
3111 // argument.
3112 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3113 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3114
3115 TargetLowering::ArgListTy Args;
3116 TargetLowering::ArgListEntry Entry;
3117 Entry.Node = GuardVal;
3118 Entry.Ty = FnTy->getParamType(0);
3119 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3120 Entry.IsInReg = true;
3121 Args.push_back(Entry);
3122
3123 TargetLowering::CallLoweringInfo CLI(DAG);
3124 CLI.setDebugLoc(getCurSDLoc())
3125 .setChain(DAG.getEntryNode())
3126 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3127 getValue(GuardCheckFn), std::move(Args));
3128
3129 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3130 DAG.setRoot(Result.second);
3131 return;
3132 }
3133
3134 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3135 // Otherwise, emit a volatile load to retrieve the stack guard value.
3136 SDValue Chain = DAG.getEntryNode();
3137 if (TLI.useLoadStackGuardNode()) {
3138 Guard = getLoadStackGuard(DAG, dl, Chain);
3139 } else {
3140 const Value *IRGuard = TLI.getSDagStackGuard(M);
3141 SDValue GuardPtr = getValue(IRGuard);
3142
3143 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3144 MachinePointerInfo(IRGuard, 0), Align,
3145 MachineMemOperand::MOVolatile);
3146 }
3147
3148 // Perform the comparison via a getsetcc.
3149 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3150 *DAG.getContext(),
3151 Guard.getValueType()),
3152 Guard, GuardVal, ISD::SETNE);
3153
3154 // If the guard/stackslot do not equal, branch to failure MBB.
3155 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3156 MVT::Other, GuardVal.getOperand(0),
3157 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3158 // Otherwise branch to success MBB.
3159 SDValue Br = DAG.getNode(ISD::BR, dl,
3160 MVT::Other, BrCond,
3161 DAG.getBasicBlock(SPD.getSuccessMBB()));
3162
3163 DAG.setRoot(Br);
3164 }
3165
3166 /// Codegen the failure basic block for a stack protector check.
3167 ///
3168 /// A failure stack protector machine basic block consists simply of a call to
3169 /// __stack_chk_fail().
3170 ///
3171 /// For a high level explanation of how this fits into the stack protector
3172 /// generation see the comment on the declaration of class
3173 /// StackProtectorDescriptor.
3174 void
visitSPDescriptorFailure(StackProtectorDescriptor & SPD)3175 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3176 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3177 TargetLowering::MakeLibCallOptions CallOptions;
3178 CallOptions.setDiscardResult(true);
3179 SDValue Chain =
3180 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3181 std::nullopt, CallOptions, getCurSDLoc())
3182 .second;
3183 // On PS4/PS5, the "return address" must still be within the calling
3184 // function, even if it's at the very end, so emit an explicit TRAP here.
3185 // Passing 'true' for doesNotReturn above won't generate the trap for us.
3186 if (TM.getTargetTriple().isPS())
3187 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3188 // WebAssembly needs an unreachable instruction after a non-returning call,
3189 // because the function return type can be different from __stack_chk_fail's
3190 // return type (void).
3191 if (TM.getTargetTriple().isWasm())
3192 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3193
3194 DAG.setRoot(Chain);
3195 }
3196
3197 /// visitBitTestHeader - This function emits necessary code to produce value
3198 /// suitable for "bit tests"
visitBitTestHeader(BitTestBlock & B,MachineBasicBlock * SwitchBB)3199 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3200 MachineBasicBlock *SwitchBB) {
3201 SDLoc dl = getCurSDLoc();
3202
3203 // Subtract the minimum value.
3204 SDValue SwitchOp = getValue(B.SValue);
3205 EVT VT = SwitchOp.getValueType();
3206 SDValue RangeSub =
3207 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3208
3209 // Determine the type of the test operands.
3210 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3211 bool UsePtrType = false;
3212 if (!TLI.isTypeLegal(VT)) {
3213 UsePtrType = true;
3214 } else {
3215 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3216 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3217 // Switch table case range are encoded into series of masks.
3218 // Just use pointer type, it's guaranteed to fit.
3219 UsePtrType = true;
3220 break;
3221 }
3222 }
3223 SDValue Sub = RangeSub;
3224 if (UsePtrType) {
3225 VT = TLI.getPointerTy(DAG.getDataLayout());
3226 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3227 }
3228
3229 B.RegVT = VT.getSimpleVT();
3230 B.Reg = FuncInfo.CreateReg(B.RegVT);
3231 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3232
3233 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3234
3235 if (!B.FallthroughUnreachable)
3236 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3237 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3238 SwitchBB->normalizeSuccProbs();
3239
3240 SDValue Root = CopyTo;
3241 if (!B.FallthroughUnreachable) {
3242 // Conditional branch to the default block.
3243 SDValue RangeCmp = DAG.getSetCC(dl,
3244 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3245 RangeSub.getValueType()),
3246 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3247 ISD::SETUGT);
3248
3249 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3250 DAG.getBasicBlock(B.Default));
3251 }
3252
3253 // Avoid emitting unnecessary branches to the next block.
3254 if (MBB != NextBlock(SwitchBB))
3255 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3256
3257 DAG.setRoot(Root);
3258 }
3259
3260 /// visitBitTestCase - this function produces one "bit test"
visitBitTestCase(BitTestBlock & BB,MachineBasicBlock * NextMBB,BranchProbability BranchProbToNext,unsigned Reg,BitTestCase & B,MachineBasicBlock * SwitchBB)3261 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3262 MachineBasicBlock* NextMBB,
3263 BranchProbability BranchProbToNext,
3264 unsigned Reg,
3265 BitTestCase &B,
3266 MachineBasicBlock *SwitchBB) {
3267 SDLoc dl = getCurSDLoc();
3268 MVT VT = BB.RegVT;
3269 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3270 SDValue Cmp;
3271 unsigned PopCount = llvm::popcount(B.Mask);
3272 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3273 if (PopCount == 1) {
3274 // Testing for a single bit; just compare the shift count with what it
3275 // would need to be to shift a 1 bit in that position.
3276 Cmp = DAG.getSetCC(
3277 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3278 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3279 ISD::SETEQ);
3280 } else if (PopCount == BB.Range) {
3281 // There is only one zero bit in the range, test for it directly.
3282 Cmp = DAG.getSetCC(
3283 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3284 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3285 } else {
3286 // Make desired shift
3287 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3288 DAG.getConstant(1, dl, VT), ShiftOp);
3289
3290 // Emit bit tests and jumps
3291 SDValue AndOp = DAG.getNode(ISD::AND, dl,
3292 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3293 Cmp = DAG.getSetCC(
3294 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3295 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3296 }
3297
3298 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3299 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3300 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3301 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3302 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3303 // one as they are relative probabilities (and thus work more like weights),
3304 // and hence we need to normalize them to let the sum of them become one.
3305 SwitchBB->normalizeSuccProbs();
3306
3307 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3308 MVT::Other, getControlRoot(),
3309 Cmp, DAG.getBasicBlock(B.TargetBB));
3310
3311 // Avoid emitting unnecessary branches to the next block.
3312 if (NextMBB != NextBlock(SwitchBB))
3313 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3314 DAG.getBasicBlock(NextMBB));
3315
3316 DAG.setRoot(BrAnd);
3317 }
3318
visitInvoke(const InvokeInst & I)3319 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3320 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3321
3322 // Retrieve successors. Look through artificial IR level blocks like
3323 // catchswitch for successors.
3324 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3325 const BasicBlock *EHPadBB = I.getSuccessor(1);
3326 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3327
3328 // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3329 // have to do anything here to lower funclet bundles.
3330 assert(!I.hasOperandBundlesOtherThan(
3331 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3332 LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3333 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth,
3334 LLVMContext::OB_clang_arc_attachedcall}) &&
3335 "Cannot lower invokes with arbitrary operand bundles yet!");
3336
3337 const Value *Callee(I.getCalledOperand());
3338 const Function *Fn = dyn_cast<Function>(Callee);
3339 if (isa<InlineAsm>(Callee))
3340 visitInlineAsm(I, EHPadBB);
3341 else if (Fn && Fn->isIntrinsic()) {
3342 switch (Fn->getIntrinsicID()) {
3343 default:
3344 llvm_unreachable("Cannot invoke this intrinsic");
3345 case Intrinsic::donothing:
3346 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3347 case Intrinsic::seh_try_begin:
3348 case Intrinsic::seh_scope_begin:
3349 case Intrinsic::seh_try_end:
3350 case Intrinsic::seh_scope_end:
3351 if (EHPadMBB)
3352 // a block referenced by EH table
3353 // so dtor-funclet not removed by opts
3354 EHPadMBB->setMachineBlockAddressTaken();
3355 break;
3356 case Intrinsic::experimental_patchpoint_void:
3357 case Intrinsic::experimental_patchpoint:
3358 visitPatchpoint(I, EHPadBB);
3359 break;
3360 case Intrinsic::experimental_gc_statepoint:
3361 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3362 break;
3363 case Intrinsic::wasm_rethrow: {
3364 // This is usually done in visitTargetIntrinsic, but this intrinsic is
3365 // special because it can be invoked, so we manually lower it to a DAG
3366 // node here.
3367 SmallVector<SDValue, 8> Ops;
3368 Ops.push_back(getControlRoot()); // inchain for the terminator node
3369 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3370 Ops.push_back(
3371 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3372 TLI.getPointerTy(DAG.getDataLayout())));
3373 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3374 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3375 break;
3376 }
3377 }
3378 } else if (I.hasDeoptState()) {
3379 // Currently we do not lower any intrinsic calls with deopt operand bundles.
3380 // Eventually we will support lowering the @llvm.experimental.deoptimize
3381 // intrinsic, and right now there are no plans to support other intrinsics
3382 // with deopt state.
3383 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3384 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3385 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB);
3386 } else {
3387 LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3388 }
3389
3390 // If the value of the invoke is used outside of its defining block, make it
3391 // available as a virtual register.
3392 // We already took care of the exported value for the statepoint instruction
3393 // during call to the LowerStatepoint.
3394 if (!isa<GCStatepointInst>(I)) {
3395 CopyToExportRegsIfNeeded(&I);
3396 }
3397
3398 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3399 BranchProbabilityInfo *BPI = FuncInfo.BPI;
3400 BranchProbability EHPadBBProb =
3401 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3402 : BranchProbability::getZero();
3403 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3404
3405 // Update successor info.
3406 addSuccessorWithProb(InvokeMBB, Return);
3407 for (auto &UnwindDest : UnwindDests) {
3408 UnwindDest.first->setIsEHPad();
3409 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3410 }
3411 InvokeMBB->normalizeSuccProbs();
3412
3413 // Drop into normal successor.
3414 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3415 DAG.getBasicBlock(Return)));
3416 }
3417
visitCallBr(const CallBrInst & I)3418 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3419 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3420
3421 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3422 // have to do anything here to lower funclet bundles.
3423 assert(!I.hasOperandBundlesOtherThan(
3424 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3425 "Cannot lower callbrs with arbitrary operand bundles yet!");
3426
3427 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3428 visitInlineAsm(I);
3429 CopyToExportRegsIfNeeded(&I);
3430
3431 // Retrieve successors.
3432 SmallPtrSet<BasicBlock *, 8> Dests;
3433 Dests.insert(I.getDefaultDest());
3434 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3435
3436 // Update successor info.
3437 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3438 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3439 BasicBlock *Dest = I.getIndirectDest(i);
3440 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3441 Target->setIsInlineAsmBrIndirectTarget();
3442 Target->setMachineBlockAddressTaken();
3443 Target->setLabelMustBeEmitted();
3444 // Don't add duplicate machine successors.
3445 if (Dests.insert(Dest).second)
3446 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3447 }
3448 CallBrMBB->normalizeSuccProbs();
3449
3450 // Drop into default successor.
3451 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3452 MVT::Other, getControlRoot(),
3453 DAG.getBasicBlock(Return)));
3454 }
3455
visitResume(const ResumeInst & RI)3456 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3457 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3458 }
3459
visitLandingPad(const LandingPadInst & LP)3460 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3461 assert(FuncInfo.MBB->isEHPad() &&
3462 "Call to landingpad not in landing pad!");
3463
3464 // If there aren't registers to copy the values into (e.g., during SjLj
3465 // exceptions), then don't bother to create these DAG nodes.
3466 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3467 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3468 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3469 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3470 return;
3471
3472 // If landingpad's return type is token type, we don't create DAG nodes
3473 // for its exception pointer and selector value. The extraction of exception
3474 // pointer or selector value from token type landingpads is not currently
3475 // supported.
3476 if (LP.getType()->isTokenTy())
3477 return;
3478
3479 SmallVector<EVT, 2> ValueVTs;
3480 SDLoc dl = getCurSDLoc();
3481 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3482 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3483
3484 // Get the two live-in registers as SDValues. The physregs have already been
3485 // copied into virtual registers.
3486 SDValue Ops[2];
3487 if (FuncInfo.ExceptionPointerVirtReg) {
3488 Ops[0] = DAG.getZExtOrTrunc(
3489 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3490 FuncInfo.ExceptionPointerVirtReg,
3491 TLI.getPointerTy(DAG.getDataLayout())),
3492 dl, ValueVTs[0]);
3493 } else {
3494 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3495 }
3496 Ops[1] = DAG.getZExtOrTrunc(
3497 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3498 FuncInfo.ExceptionSelectorVirtReg,
3499 TLI.getPointerTy(DAG.getDataLayout())),
3500 dl, ValueVTs[1]);
3501
3502 // Merge into one.
3503 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3504 DAG.getVTList(ValueVTs), Ops);
3505 setValue(&LP, Res);
3506 }
3507
UpdateSplitBlock(MachineBasicBlock * First,MachineBasicBlock * Last)3508 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3509 MachineBasicBlock *Last) {
3510 // Update JTCases.
3511 for (JumpTableBlock &JTB : SL->JTCases)
3512 if (JTB.first.HeaderBB == First)
3513 JTB.first.HeaderBB = Last;
3514
3515 // Update BitTestCases.
3516 for (BitTestBlock &BTB : SL->BitTestCases)
3517 if (BTB.Parent == First)
3518 BTB.Parent = Last;
3519 }
3520
visitIndirectBr(const IndirectBrInst & I)3521 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3522 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3523
3524 // Update machine-CFG edges with unique successors.
3525 SmallSet<BasicBlock*, 32> Done;
3526 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3527 BasicBlock *BB = I.getSuccessor(i);
3528 bool Inserted = Done.insert(BB).second;
3529 if (!Inserted)
3530 continue;
3531
3532 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3533 addSuccessorWithProb(IndirectBrMBB, Succ);
3534 }
3535 IndirectBrMBB->normalizeSuccProbs();
3536
3537 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3538 MVT::Other, getControlRoot(),
3539 getValue(I.getAddress())));
3540 }
3541
visitUnreachable(const UnreachableInst & I)3542 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3543 if (!DAG.getTarget().Options.TrapUnreachable)
3544 return;
3545
3546 // We may be able to ignore unreachable behind a noreturn call.
3547 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode());
3548 Call && Call->doesNotReturn()) {
3549 if (DAG.getTarget().Options.NoTrapAfterNoreturn)
3550 return;
3551 // Do not emit an additional trap instruction.
3552 if (Call->isNonContinuableTrap())
3553 return;
3554 }
3555
3556 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3557 }
3558
visitUnary(const User & I,unsigned Opcode)3559 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3560 SDNodeFlags Flags;
3561 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3562 Flags.copyFMF(*FPOp);
3563
3564 SDValue Op = getValue(I.getOperand(0));
3565 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3566 Op, Flags);
3567 setValue(&I, UnNodeValue);
3568 }
3569
visitBinary(const User & I,unsigned Opcode)3570 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3571 SDNodeFlags Flags;
3572 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3573 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3574 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3575 }
3576 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3577 Flags.setExact(ExactOp->isExact());
3578 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3579 Flags.setDisjoint(DisjointOp->isDisjoint());
3580 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3581 Flags.copyFMF(*FPOp);
3582
3583 SDValue Op1 = getValue(I.getOperand(0));
3584 SDValue Op2 = getValue(I.getOperand(1));
3585 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3586 Op1, Op2, Flags);
3587 setValue(&I, BinNodeValue);
3588 }
3589
visitShift(const User & I,unsigned Opcode)3590 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3591 SDValue Op1 = getValue(I.getOperand(0));
3592 SDValue Op2 = getValue(I.getOperand(1));
3593
3594 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3595 Op1.getValueType(), DAG.getDataLayout());
3596
3597 // Coerce the shift amount to the right type if we can. This exposes the
3598 // truncate or zext to optimization early.
3599 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3600 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3601 "Unexpected shift type");
3602 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3603 }
3604
3605 bool nuw = false;
3606 bool nsw = false;
3607 bool exact = false;
3608
3609 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3610
3611 if (const OverflowingBinaryOperator *OFBinOp =
3612 dyn_cast<const OverflowingBinaryOperator>(&I)) {
3613 nuw = OFBinOp->hasNoUnsignedWrap();
3614 nsw = OFBinOp->hasNoSignedWrap();
3615 }
3616 if (const PossiblyExactOperator *ExactOp =
3617 dyn_cast<const PossiblyExactOperator>(&I))
3618 exact = ExactOp->isExact();
3619 }
3620 SDNodeFlags Flags;
3621 Flags.setExact(exact);
3622 Flags.setNoSignedWrap(nsw);
3623 Flags.setNoUnsignedWrap(nuw);
3624 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3625 Flags);
3626 setValue(&I, Res);
3627 }
3628
visitSDiv(const User & I)3629 void SelectionDAGBuilder::visitSDiv(const User &I) {
3630 SDValue Op1 = getValue(I.getOperand(0));
3631 SDValue Op2 = getValue(I.getOperand(1));
3632
3633 SDNodeFlags Flags;
3634 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3635 cast<PossiblyExactOperator>(&I)->isExact());
3636 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3637 Op2, Flags));
3638 }
3639
visitICmp(const ICmpInst & I)3640 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3641 ICmpInst::Predicate predicate = I.getPredicate();
3642 SDValue Op1 = getValue(I.getOperand(0));
3643 SDValue Op2 = getValue(I.getOperand(1));
3644 ISD::CondCode Opcode = getICmpCondCode(predicate);
3645
3646 auto &TLI = DAG.getTargetLoweringInfo();
3647 EVT MemVT =
3648 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3649
3650 // If a pointer's DAG type is larger than its memory type then the DAG values
3651 // are zero-extended. This breaks signed comparisons so truncate back to the
3652 // underlying type before doing the compare.
3653 if (Op1.getValueType() != MemVT) {
3654 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3655 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3656 }
3657
3658 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3659 I.getType());
3660 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3661 }
3662
visitFCmp(const FCmpInst & I)3663 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3664 FCmpInst::Predicate predicate = I.getPredicate();
3665 SDValue Op1 = getValue(I.getOperand(0));
3666 SDValue Op2 = getValue(I.getOperand(1));
3667
3668 ISD::CondCode Condition = getFCmpCondCode(predicate);
3669 auto *FPMO = cast<FPMathOperator>(&I);
3670 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3671 Condition = getFCmpCodeWithoutNaN(Condition);
3672
3673 SDNodeFlags Flags;
3674 Flags.copyFMF(*FPMO);
3675 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3676
3677 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3678 I.getType());
3679 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3680 }
3681
3682 // Check if the condition of the select has one use or two users that are both
3683 // selects with the same condition.
hasOnlySelectUsers(const Value * Cond)3684 static bool hasOnlySelectUsers(const Value *Cond) {
3685 return llvm::all_of(Cond->users(), [](const Value *V) {
3686 return isa<SelectInst>(V);
3687 });
3688 }
3689
visitSelect(const User & I)3690 void SelectionDAGBuilder::visitSelect(const User &I) {
3691 SmallVector<EVT, 4> ValueVTs;
3692 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3693 ValueVTs);
3694 unsigned NumValues = ValueVTs.size();
3695 if (NumValues == 0) return;
3696
3697 SmallVector<SDValue, 4> Values(NumValues);
3698 SDValue Cond = getValue(I.getOperand(0));
3699 SDValue LHSVal = getValue(I.getOperand(1));
3700 SDValue RHSVal = getValue(I.getOperand(2));
3701 SmallVector<SDValue, 1> BaseOps(1, Cond);
3702 ISD::NodeType OpCode =
3703 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3704
3705 bool IsUnaryAbs = false;
3706 bool Negate = false;
3707
3708 SDNodeFlags Flags;
3709 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3710 Flags.copyFMF(*FPOp);
3711
3712 Flags.setUnpredictable(
3713 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3714
3715 // Min/max matching is only viable if all output VTs are the same.
3716 if (all_equal(ValueVTs)) {
3717 EVT VT = ValueVTs[0];
3718 LLVMContext &Ctx = *DAG.getContext();
3719 auto &TLI = DAG.getTargetLoweringInfo();
3720
3721 // We care about the legality of the operation after it has been type
3722 // legalized.
3723 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3724 VT = TLI.getTypeToTransformTo(Ctx, VT);
3725
3726 // If the vselect is legal, assume we want to leave this as a vector setcc +
3727 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3728 // min/max is legal on the scalar type.
3729 bool UseScalarMinMax = VT.isVector() &&
3730 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3731
3732 // ValueTracking's select pattern matching does not account for -0.0,
3733 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3734 // -0.0 is less than +0.0.
3735 Value *LHS, *RHS;
3736 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3737 ISD::NodeType Opc = ISD::DELETED_NODE;
3738 switch (SPR.Flavor) {
3739 case SPF_UMAX: Opc = ISD::UMAX; break;
3740 case SPF_UMIN: Opc = ISD::UMIN; break;
3741 case SPF_SMAX: Opc = ISD::SMAX; break;
3742 case SPF_SMIN: Opc = ISD::SMIN; break;
3743 case SPF_FMINNUM:
3744 switch (SPR.NaNBehavior) {
3745 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3746 case SPNB_RETURNS_NAN: break;
3747 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3748 case SPNB_RETURNS_ANY:
3749 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3750 (UseScalarMinMax &&
3751 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3752 Opc = ISD::FMINNUM;
3753 break;
3754 }
3755 break;
3756 case SPF_FMAXNUM:
3757 switch (SPR.NaNBehavior) {
3758 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3759 case SPNB_RETURNS_NAN: break;
3760 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3761 case SPNB_RETURNS_ANY:
3762 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3763 (UseScalarMinMax &&
3764 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3765 Opc = ISD::FMAXNUM;
3766 break;
3767 }
3768 break;
3769 case SPF_NABS:
3770 Negate = true;
3771 [[fallthrough]];
3772 case SPF_ABS:
3773 IsUnaryAbs = true;
3774 Opc = ISD::ABS;
3775 break;
3776 default: break;
3777 }
3778
3779 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3780 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3781 (UseScalarMinMax &&
3782 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3783 // If the underlying comparison instruction is used by any other
3784 // instruction, the consumed instructions won't be destroyed, so it is
3785 // not profitable to convert to a min/max.
3786 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3787 OpCode = Opc;
3788 LHSVal = getValue(LHS);
3789 RHSVal = getValue(RHS);
3790 BaseOps.clear();
3791 }
3792
3793 if (IsUnaryAbs) {
3794 OpCode = Opc;
3795 LHSVal = getValue(LHS);
3796 BaseOps.clear();
3797 }
3798 }
3799
3800 if (IsUnaryAbs) {
3801 for (unsigned i = 0; i != NumValues; ++i) {
3802 SDLoc dl = getCurSDLoc();
3803 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3804 Values[i] =
3805 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3806 if (Negate)
3807 Values[i] = DAG.getNegative(Values[i], dl, VT);
3808 }
3809 } else {
3810 for (unsigned i = 0; i != NumValues; ++i) {
3811 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3812 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3813 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3814 Values[i] = DAG.getNode(
3815 OpCode, getCurSDLoc(),
3816 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3817 }
3818 }
3819
3820 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3821 DAG.getVTList(ValueVTs), Values));
3822 }
3823
visitTrunc(const User & I)3824 void SelectionDAGBuilder::visitTrunc(const User &I) {
3825 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3826 SDValue N = getValue(I.getOperand(0));
3827 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3828 I.getType());
3829 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3830 }
3831
visitZExt(const User & I)3832 void SelectionDAGBuilder::visitZExt(const User &I) {
3833 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3834 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3835 SDValue N = getValue(I.getOperand(0));
3836 auto &TLI = DAG.getTargetLoweringInfo();
3837 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3838
3839 SDNodeFlags Flags;
3840 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3841 Flags.setNonNeg(PNI->hasNonNeg());
3842
3843 // Eagerly use nonneg information to canonicalize towards sign_extend if
3844 // that is the target's preference.
3845 // TODO: Let the target do this later.
3846 if (Flags.hasNonNeg() &&
3847 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3848 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3849 return;
3850 }
3851
3852 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3853 }
3854
visitSExt(const User & I)3855 void SelectionDAGBuilder::visitSExt(const User &I) {
3856 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3857 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3858 SDValue N = getValue(I.getOperand(0));
3859 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3860 I.getType());
3861 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3862 }
3863
visitFPTrunc(const User & I)3864 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3865 // FPTrunc is never a no-op cast, no need to check
3866 SDValue N = getValue(I.getOperand(0));
3867 SDLoc dl = getCurSDLoc();
3868 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3869 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3870 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3871 DAG.getTargetConstant(
3872 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3873 }
3874
visitFPExt(const User & I)3875 void SelectionDAGBuilder::visitFPExt(const User &I) {
3876 // FPExt is never a no-op cast, no need to check
3877 SDValue N = getValue(I.getOperand(0));
3878 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3879 I.getType());
3880 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3881 }
3882
visitFPToUI(const User & I)3883 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3884 // FPToUI is never a no-op cast, no need to check
3885 SDValue N = getValue(I.getOperand(0));
3886 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3887 I.getType());
3888 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3889 }
3890
visitFPToSI(const User & I)3891 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3892 // FPToSI is never a no-op cast, no need to check
3893 SDValue N = getValue(I.getOperand(0));
3894 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3895 I.getType());
3896 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3897 }
3898
visitUIToFP(const User & I)3899 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3900 // UIToFP is never a no-op cast, no need to check
3901 SDValue N = getValue(I.getOperand(0));
3902 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3903 I.getType());
3904 SDNodeFlags Flags;
3905 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3906 Flags.setNonNeg(PNI->hasNonNeg());
3907
3908 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3909 }
3910
visitSIToFP(const User & I)3911 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3912 // SIToFP is never a no-op cast, no need to check
3913 SDValue N = getValue(I.getOperand(0));
3914 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3915 I.getType());
3916 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3917 }
3918
visitPtrToInt(const User & I)3919 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3920 // What to do depends on the size of the integer and the size of the pointer.
3921 // We can either truncate, zero extend, or no-op, accordingly.
3922 SDValue N = getValue(I.getOperand(0));
3923 auto &TLI = DAG.getTargetLoweringInfo();
3924 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3925 I.getType());
3926 EVT PtrMemVT =
3927 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3928 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3929 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3930 setValue(&I, N);
3931 }
3932
visitIntToPtr(const User & I)3933 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3934 // What to do depends on the size of the integer and the size of the pointer.
3935 // We can either truncate, zero extend, or no-op, accordingly.
3936 SDValue N = getValue(I.getOperand(0));
3937 auto &TLI = DAG.getTargetLoweringInfo();
3938 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3939 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3940 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3941 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3942 setValue(&I, N);
3943 }
3944
visitBitCast(const User & I)3945 void SelectionDAGBuilder::visitBitCast(const User &I) {
3946 SDValue N = getValue(I.getOperand(0));
3947 SDLoc dl = getCurSDLoc();
3948 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3949 I.getType());
3950
3951 // BitCast assures us that source and destination are the same size so this is
3952 // either a BITCAST or a no-op.
3953 if (DestVT != N.getValueType())
3954 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3955 DestVT, N)); // convert types.
3956 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3957 // might fold any kind of constant expression to an integer constant and that
3958 // is not what we are looking for. Only recognize a bitcast of a genuine
3959 // constant integer as an opaque constant.
3960 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3961 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3962 /*isOpaque*/true));
3963 else
3964 setValue(&I, N); // noop cast.
3965 }
3966
visitAddrSpaceCast(const User & I)3967 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3968 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3969 const Value *SV = I.getOperand(0);
3970 SDValue N = getValue(SV);
3971 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3972
3973 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3974 unsigned DestAS = I.getType()->getPointerAddressSpace();
3975
3976 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3977 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3978
3979 setValue(&I, N);
3980 }
3981
visitInsertElement(const User & I)3982 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3983 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3984 SDValue InVec = getValue(I.getOperand(0));
3985 SDValue InVal = getValue(I.getOperand(1));
3986 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3987 TLI.getVectorIdxTy(DAG.getDataLayout()));
3988 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3989 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3990 InVec, InVal, InIdx));
3991 }
3992
visitExtractElement(const User & I)3993 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3994 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3995 SDValue InVec = getValue(I.getOperand(0));
3996 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3997 TLI.getVectorIdxTy(DAG.getDataLayout()));
3998 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3999 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4000 InVec, InIdx));
4001 }
4002
visitShuffleVector(const User & I)4003 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4004 SDValue Src1 = getValue(I.getOperand(0));
4005 SDValue Src2 = getValue(I.getOperand(1));
4006 ArrayRef<int> Mask;
4007 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4008 Mask = SVI->getShuffleMask();
4009 else
4010 Mask = cast<ConstantExpr>(I).getShuffleMask();
4011 SDLoc DL = getCurSDLoc();
4012 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4013 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4014 EVT SrcVT = Src1.getValueType();
4015
4016 if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4017 VT.isScalableVector()) {
4018 // Canonical splat form of first element of first input vector.
4019 SDValue FirstElt =
4020 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4021 DAG.getVectorIdxConstant(0, DL));
4022 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4023 return;
4024 }
4025
4026 // For now, we only handle splats for scalable vectors.
4027 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4028 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4029 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4030
4031 unsigned SrcNumElts = SrcVT.getVectorNumElements();
4032 unsigned MaskNumElts = Mask.size();
4033
4034 if (SrcNumElts == MaskNumElts) {
4035 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4036 return;
4037 }
4038
4039 // Normalize the shuffle vector since mask and vector length don't match.
4040 if (SrcNumElts < MaskNumElts) {
4041 // Mask is longer than the source vectors. We can use concatenate vector to
4042 // make the mask and vectors lengths match.
4043
4044 if (MaskNumElts % SrcNumElts == 0) {
4045 // Mask length is a multiple of the source vector length.
4046 // Check if the shuffle is some kind of concatenation of the input
4047 // vectors.
4048 unsigned NumConcat = MaskNumElts / SrcNumElts;
4049 bool IsConcat = true;
4050 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4051 for (unsigned i = 0; i != MaskNumElts; ++i) {
4052 int Idx = Mask[i];
4053 if (Idx < 0)
4054 continue;
4055 // Ensure the indices in each SrcVT sized piece are sequential and that
4056 // the same source is used for the whole piece.
4057 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4058 (ConcatSrcs[i / SrcNumElts] >= 0 &&
4059 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4060 IsConcat = false;
4061 break;
4062 }
4063 // Remember which source this index came from.
4064 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4065 }
4066
4067 // The shuffle is concatenating multiple vectors together. Just emit
4068 // a CONCAT_VECTORS operation.
4069 if (IsConcat) {
4070 SmallVector<SDValue, 8> ConcatOps;
4071 for (auto Src : ConcatSrcs) {
4072 if (Src < 0)
4073 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4074 else if (Src == 0)
4075 ConcatOps.push_back(Src1);
4076 else
4077 ConcatOps.push_back(Src2);
4078 }
4079 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4080 return;
4081 }
4082 }
4083
4084 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4085 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4086 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4087 PaddedMaskNumElts);
4088
4089 // Pad both vectors with undefs to make them the same length as the mask.
4090 SDValue UndefVal = DAG.getUNDEF(SrcVT);
4091
4092 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4093 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4094 MOps1[0] = Src1;
4095 MOps2[0] = Src2;
4096
4097 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4098 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4099
4100 // Readjust mask for new input vector length.
4101 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4102 for (unsigned i = 0; i != MaskNumElts; ++i) {
4103 int Idx = Mask[i];
4104 if (Idx >= (int)SrcNumElts)
4105 Idx -= SrcNumElts - PaddedMaskNumElts;
4106 MappedOps[i] = Idx;
4107 }
4108
4109 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4110
4111 // If the concatenated vector was padded, extract a subvector with the
4112 // correct number of elements.
4113 if (MaskNumElts != PaddedMaskNumElts)
4114 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4115 DAG.getVectorIdxConstant(0, DL));
4116
4117 setValue(&I, Result);
4118 return;
4119 }
4120
4121 if (SrcNumElts > MaskNumElts) {
4122 // Analyze the access pattern of the vector to see if we can extract
4123 // two subvectors and do the shuffle.
4124 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from
4125 bool CanExtract = true;
4126 for (int Idx : Mask) {
4127 unsigned Input = 0;
4128 if (Idx < 0)
4129 continue;
4130
4131 if (Idx >= (int)SrcNumElts) {
4132 Input = 1;
4133 Idx -= SrcNumElts;
4134 }
4135
4136 // If all the indices come from the same MaskNumElts sized portion of
4137 // the sources we can use extract. Also make sure the extract wouldn't
4138 // extract past the end of the source.
4139 int NewStartIdx = alignDown(Idx, MaskNumElts);
4140 if (NewStartIdx + MaskNumElts > SrcNumElts ||
4141 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4142 CanExtract = false;
4143 // Make sure we always update StartIdx as we use it to track if all
4144 // elements are undef.
4145 StartIdx[Input] = NewStartIdx;
4146 }
4147
4148 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4149 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4150 return;
4151 }
4152 if (CanExtract) {
4153 // Extract appropriate subvector and generate a vector shuffle
4154 for (unsigned Input = 0; Input < 2; ++Input) {
4155 SDValue &Src = Input == 0 ? Src1 : Src2;
4156 if (StartIdx[Input] < 0)
4157 Src = DAG.getUNDEF(VT);
4158 else {
4159 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4160 DAG.getVectorIdxConstant(StartIdx[Input], DL));
4161 }
4162 }
4163
4164 // Calculate new mask.
4165 SmallVector<int, 8> MappedOps(Mask);
4166 for (int &Idx : MappedOps) {
4167 if (Idx >= (int)SrcNumElts)
4168 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4169 else if (Idx >= 0)
4170 Idx -= StartIdx[0];
4171 }
4172
4173 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4174 return;
4175 }
4176 }
4177
4178 // We can't use either concat vectors or extract subvectors so fall back to
4179 // replacing the shuffle with extract and build vector.
4180 // to insert and build vector.
4181 EVT EltVT = VT.getVectorElementType();
4182 SmallVector<SDValue,8> Ops;
4183 for (int Idx : Mask) {
4184 SDValue Res;
4185
4186 if (Idx < 0) {
4187 Res = DAG.getUNDEF(EltVT);
4188 } else {
4189 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4190 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4191
4192 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4193 DAG.getVectorIdxConstant(Idx, DL));
4194 }
4195
4196 Ops.push_back(Res);
4197 }
4198
4199 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4200 }
4201
visitInsertValue(const InsertValueInst & I)4202 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4203 ArrayRef<unsigned> Indices = I.getIndices();
4204 const Value *Op0 = I.getOperand(0);
4205 const Value *Op1 = I.getOperand(1);
4206 Type *AggTy = I.getType();
4207 Type *ValTy = Op1->getType();
4208 bool IntoUndef = isa<UndefValue>(Op0);
4209 bool FromUndef = isa<UndefValue>(Op1);
4210
4211 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4212
4213 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4214 SmallVector<EVT, 4> AggValueVTs;
4215 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4216 SmallVector<EVT, 4> ValValueVTs;
4217 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4218
4219 unsigned NumAggValues = AggValueVTs.size();
4220 unsigned NumValValues = ValValueVTs.size();
4221 SmallVector<SDValue, 4> Values(NumAggValues);
4222
4223 // Ignore an insertvalue that produces an empty object
4224 if (!NumAggValues) {
4225 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4226 return;
4227 }
4228
4229 SDValue Agg = getValue(Op0);
4230 unsigned i = 0;
4231 // Copy the beginning value(s) from the original aggregate.
4232 for (; i != LinearIndex; ++i)
4233 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4234 SDValue(Agg.getNode(), Agg.getResNo() + i);
4235 // Copy values from the inserted value(s).
4236 if (NumValValues) {
4237 SDValue Val = getValue(Op1);
4238 for (; i != LinearIndex + NumValValues; ++i)
4239 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4240 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4241 }
4242 // Copy remaining value(s) from the original aggregate.
4243 for (; i != NumAggValues; ++i)
4244 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4245 SDValue(Agg.getNode(), Agg.getResNo() + i);
4246
4247 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4248 DAG.getVTList(AggValueVTs), Values));
4249 }
4250
visitExtractValue(const ExtractValueInst & I)4251 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4252 ArrayRef<unsigned> Indices = I.getIndices();
4253 const Value *Op0 = I.getOperand(0);
4254 Type *AggTy = Op0->getType();
4255 Type *ValTy = I.getType();
4256 bool OutOfUndef = isa<UndefValue>(Op0);
4257
4258 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4259
4260 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4261 SmallVector<EVT, 4> ValValueVTs;
4262 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4263
4264 unsigned NumValValues = ValValueVTs.size();
4265
4266 // Ignore a extractvalue that produces an empty object
4267 if (!NumValValues) {
4268 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4269 return;
4270 }
4271
4272 SmallVector<SDValue, 4> Values(NumValValues);
4273
4274 SDValue Agg = getValue(Op0);
4275 // Copy out the selected value(s).
4276 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4277 Values[i - LinearIndex] =
4278 OutOfUndef ?
4279 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4280 SDValue(Agg.getNode(), Agg.getResNo() + i);
4281
4282 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4283 DAG.getVTList(ValValueVTs), Values));
4284 }
4285
visitGetElementPtr(const User & I)4286 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4287 Value *Op0 = I.getOperand(0);
4288 // Note that the pointer operand may be a vector of pointers. Take the scalar
4289 // element which holds a pointer.
4290 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4291 SDValue N = getValue(Op0);
4292 SDLoc dl = getCurSDLoc();
4293 auto &TLI = DAG.getTargetLoweringInfo();
4294
4295 // Normalize Vector GEP - all scalar operands should be converted to the
4296 // splat vector.
4297 bool IsVectorGEP = I.getType()->isVectorTy();
4298 ElementCount VectorElementCount =
4299 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4300 : ElementCount::getFixed(0);
4301
4302 if (IsVectorGEP && !N.getValueType().isVector()) {
4303 LLVMContext &Context = *DAG.getContext();
4304 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4305 N = DAG.getSplat(VT, dl, N);
4306 }
4307
4308 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4309 GTI != E; ++GTI) {
4310 const Value *Idx = GTI.getOperand();
4311 if (StructType *StTy = GTI.getStructTypeOrNull()) {
4312 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4313 if (Field) {
4314 // N = N + Offset
4315 uint64_t Offset =
4316 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4317
4318 // In an inbounds GEP with an offset that is nonnegative even when
4319 // interpreted as signed, assume there is no unsigned overflow.
4320 SDNodeFlags Flags;
4321 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4322 Flags.setNoUnsignedWrap(true);
4323
4324 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4325 DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4326 }
4327 } else {
4328 // IdxSize is the width of the arithmetic according to IR semantics.
4329 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4330 // (and fix up the result later).
4331 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4332 MVT IdxTy = MVT::getIntegerVT(IdxSize);
4333 TypeSize ElementSize =
4334 GTI.getSequentialElementStride(DAG.getDataLayout());
4335 // We intentionally mask away the high bits here; ElementSize may not
4336 // fit in IdxTy.
4337 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4338 bool ElementScalable = ElementSize.isScalable();
4339
4340 // If this is a scalar constant or a splat vector of constants,
4341 // handle it quickly.
4342 const auto *C = dyn_cast<Constant>(Idx);
4343 if (C && isa<VectorType>(C->getType()))
4344 C = C->getSplatValue();
4345
4346 const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4347 if (CI && CI->isZero())
4348 continue;
4349 if (CI && !ElementScalable) {
4350 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4351 LLVMContext &Context = *DAG.getContext();
4352 SDValue OffsVal;
4353 if (IsVectorGEP)
4354 OffsVal = DAG.getConstant(
4355 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4356 else
4357 OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4358
4359 // In an inbounds GEP with an offset that is nonnegative even when
4360 // interpreted as signed, assume there is no unsigned overflow.
4361 SDNodeFlags Flags;
4362 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4363 Flags.setNoUnsignedWrap(true);
4364
4365 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4366
4367 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4368 continue;
4369 }
4370
4371 // N = N + Idx * ElementMul;
4372 SDValue IdxN = getValue(Idx);
4373
4374 if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4375 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4376 VectorElementCount);
4377 IdxN = DAG.getSplat(VT, dl, IdxN);
4378 }
4379
4380 // If the index is smaller or larger than intptr_t, truncate or extend
4381 // it.
4382 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4383
4384 if (ElementScalable) {
4385 EVT VScaleTy = N.getValueType().getScalarType();
4386 SDValue VScale = DAG.getNode(
4387 ISD::VSCALE, dl, VScaleTy,
4388 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4389 if (IsVectorGEP)
4390 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4391 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4392 } else {
4393 // If this is a multiply by a power of two, turn it into a shl
4394 // immediately. This is a very common case.
4395 if (ElementMul != 1) {
4396 if (ElementMul.isPowerOf2()) {
4397 unsigned Amt = ElementMul.logBase2();
4398 IdxN = DAG.getNode(ISD::SHL, dl,
4399 N.getValueType(), IdxN,
4400 DAG.getConstant(Amt, dl, IdxN.getValueType()));
4401 } else {
4402 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4403 IdxN.getValueType());
4404 IdxN = DAG.getNode(ISD::MUL, dl,
4405 N.getValueType(), IdxN, Scale);
4406 }
4407 }
4408 }
4409
4410 N = DAG.getNode(ISD::ADD, dl,
4411 N.getValueType(), N, IdxN);
4412 }
4413 }
4414
4415 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4416 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4417 if (IsVectorGEP) {
4418 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4419 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4420 }
4421
4422 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4423 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4424
4425 setValue(&I, N);
4426 }
4427
visitAlloca(const AllocaInst & I)4428 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4429 // If this is a fixed sized alloca in the entry block of the function,
4430 // allocate it statically on the stack.
4431 if (FuncInfo.StaticAllocaMap.count(&I))
4432 return; // getValue will auto-populate this.
4433
4434 SDLoc dl = getCurSDLoc();
4435 Type *Ty = I.getAllocatedType();
4436 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4437 auto &DL = DAG.getDataLayout();
4438 TypeSize TySize = DL.getTypeAllocSize(Ty);
4439 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4440
4441 SDValue AllocSize = getValue(I.getArraySize());
4442
4443 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4444 if (AllocSize.getValueType() != IntPtr)
4445 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4446
4447 if (TySize.isScalable())
4448 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4449 DAG.getVScale(dl, IntPtr,
4450 APInt(IntPtr.getScalarSizeInBits(),
4451 TySize.getKnownMinValue())));
4452 else {
4453 SDValue TySizeValue =
4454 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4455 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4456 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4457 }
4458
4459 // Handle alignment. If the requested alignment is less than or equal to
4460 // the stack alignment, ignore it. If the size is greater than or equal to
4461 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4462 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4463 if (*Alignment <= StackAlign)
4464 Alignment = std::nullopt;
4465
4466 const uint64_t StackAlignMask = StackAlign.value() - 1U;
4467 // Round the size of the allocation up to the stack alignment size
4468 // by add SA-1 to the size. This doesn't overflow because we're computing
4469 // an address inside an alloca.
4470 SDNodeFlags Flags;
4471 Flags.setNoUnsignedWrap(true);
4472 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4473 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4474
4475 // Mask out the low bits for alignment purposes.
4476 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4477 DAG.getConstant(~StackAlignMask, dl, IntPtr));
4478
4479 SDValue Ops[] = {
4480 getRoot(), AllocSize,
4481 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4482 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4483 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4484 setValue(&I, DSA);
4485 DAG.setRoot(DSA.getValue(1));
4486
4487 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4488 }
4489
getRangeMetadata(const Instruction & I)4490 static const MDNode *getRangeMetadata(const Instruction &I) {
4491 // If !noundef is not present, then !range violation results in a poison
4492 // value rather than immediate undefined behavior. In theory, transferring
4493 // these annotations to SDAG is fine, but in practice there are key SDAG
4494 // transforms that are known not to be poison-safe, such as folding logical
4495 // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4496 // also present.
4497 if (!I.hasMetadata(LLVMContext::MD_noundef))
4498 return nullptr;
4499 return I.getMetadata(LLVMContext::MD_range);
4500 }
4501
getRange(const Instruction & I)4502 static std::optional<ConstantRange> getRange(const Instruction &I) {
4503 if (const auto *CB = dyn_cast<CallBase>(&I)) {
4504 // see comment in getRangeMetadata about this check
4505 if (CB->hasRetAttr(Attribute::NoUndef))
4506 return CB->getRange();
4507 }
4508 if (const MDNode *Range = getRangeMetadata(I))
4509 return getConstantRangeFromMetadata(*Range);
4510 return std::nullopt;
4511 }
4512
visitLoad(const LoadInst & I)4513 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4514 if (I.isAtomic())
4515 return visitAtomicLoad(I);
4516
4517 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4518 const Value *SV = I.getOperand(0);
4519 if (TLI.supportSwiftError()) {
4520 // Swifterror values can come from either a function parameter with
4521 // swifterror attribute or an alloca with swifterror attribute.
4522 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4523 if (Arg->hasSwiftErrorAttr())
4524 return visitLoadFromSwiftError(I);
4525 }
4526
4527 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4528 if (Alloca->isSwiftError())
4529 return visitLoadFromSwiftError(I);
4530 }
4531 }
4532
4533 SDValue Ptr = getValue(SV);
4534
4535 Type *Ty = I.getType();
4536 SmallVector<EVT, 4> ValueVTs, MemVTs;
4537 SmallVector<TypeSize, 4> Offsets;
4538 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4539 unsigned NumValues = ValueVTs.size();
4540 if (NumValues == 0)
4541 return;
4542
4543 Align Alignment = I.getAlign();
4544 AAMDNodes AAInfo = I.getAAMetadata();
4545 const MDNode *Ranges = getRangeMetadata(I);
4546 bool isVolatile = I.isVolatile();
4547 MachineMemOperand::Flags MMOFlags =
4548 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4549
4550 SDValue Root;
4551 bool ConstantMemory = false;
4552 if (isVolatile)
4553 // Serialize volatile loads with other side effects.
4554 Root = getRoot();
4555 else if (NumValues > MaxParallelChains)
4556 Root = getMemoryRoot();
4557 else if (AA &&
4558 AA->pointsToConstantMemory(MemoryLocation(
4559 SV,
4560 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4561 AAInfo))) {
4562 // Do not serialize (non-volatile) loads of constant memory with anything.
4563 Root = DAG.getEntryNode();
4564 ConstantMemory = true;
4565 MMOFlags |= MachineMemOperand::MOInvariant;
4566 } else {
4567 // Do not serialize non-volatile loads against each other.
4568 Root = DAG.getRoot();
4569 }
4570
4571 SDLoc dl = getCurSDLoc();
4572
4573 if (isVolatile)
4574 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4575
4576 SmallVector<SDValue, 4> Values(NumValues);
4577 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4578
4579 unsigned ChainI = 0;
4580 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4581 // Serializing loads here may result in excessive register pressure, and
4582 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4583 // could recover a bit by hoisting nodes upward in the chain by recognizing
4584 // they are side-effect free or do not alias. The optimizer should really
4585 // avoid this case by converting large object/array copies to llvm.memcpy
4586 // (MaxParallelChains should always remain as failsafe).
4587 if (ChainI == MaxParallelChains) {
4588 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4589 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4590 ArrayRef(Chains.data(), ChainI));
4591 Root = Chain;
4592 ChainI = 0;
4593 }
4594
4595 // TODO: MachinePointerInfo only supports a fixed length offset.
4596 MachinePointerInfo PtrInfo =
4597 !Offsets[i].isScalable() || Offsets[i].isZero()
4598 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4599 : MachinePointerInfo();
4600
4601 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4602 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4603 MMOFlags, AAInfo, Ranges);
4604 Chains[ChainI] = L.getValue(1);
4605
4606 if (MemVTs[i] != ValueVTs[i])
4607 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4608
4609 Values[i] = L;
4610 }
4611
4612 if (!ConstantMemory) {
4613 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4614 ArrayRef(Chains.data(), ChainI));
4615 if (isVolatile)
4616 DAG.setRoot(Chain);
4617 else
4618 PendingLoads.push_back(Chain);
4619 }
4620
4621 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4622 DAG.getVTList(ValueVTs), Values));
4623 }
4624
visitStoreToSwiftError(const StoreInst & I)4625 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4626 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4627 "call visitStoreToSwiftError when backend supports swifterror");
4628
4629 SmallVector<EVT, 4> ValueVTs;
4630 SmallVector<uint64_t, 4> Offsets;
4631 const Value *SrcV = I.getOperand(0);
4632 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4633 SrcV->getType(), ValueVTs, &Offsets, 0);
4634 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4635 "expect a single EVT for swifterror");
4636
4637 SDValue Src = getValue(SrcV);
4638 // Create a virtual register, then update the virtual register.
4639 Register VReg =
4640 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4641 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4642 // Chain can be getRoot or getControlRoot.
4643 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4644 SDValue(Src.getNode(), Src.getResNo()));
4645 DAG.setRoot(CopyNode);
4646 }
4647
visitLoadFromSwiftError(const LoadInst & I)4648 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4649 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4650 "call visitLoadFromSwiftError when backend supports swifterror");
4651
4652 assert(!I.isVolatile() &&
4653 !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4654 !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4655 "Support volatile, non temporal, invariant for load_from_swift_error");
4656
4657 const Value *SV = I.getOperand(0);
4658 Type *Ty = I.getType();
4659 assert(
4660 (!AA ||
4661 !AA->pointsToConstantMemory(MemoryLocation(
4662 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4663 I.getAAMetadata()))) &&
4664 "load_from_swift_error should not be constant memory");
4665
4666 SmallVector<EVT, 4> ValueVTs;
4667 SmallVector<uint64_t, 4> Offsets;
4668 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4669 ValueVTs, &Offsets, 0);
4670 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4671 "expect a single EVT for swifterror");
4672
4673 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4674 SDValue L = DAG.getCopyFromReg(
4675 getRoot(), getCurSDLoc(),
4676 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4677
4678 setValue(&I, L);
4679 }
4680
visitStore(const StoreInst & I)4681 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4682 if (I.isAtomic())
4683 return visitAtomicStore(I);
4684
4685 const Value *SrcV = I.getOperand(0);
4686 const Value *PtrV = I.getOperand(1);
4687
4688 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4689 if (TLI.supportSwiftError()) {
4690 // Swifterror values can come from either a function parameter with
4691 // swifterror attribute or an alloca with swifterror attribute.
4692 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4693 if (Arg->hasSwiftErrorAttr())
4694 return visitStoreToSwiftError(I);
4695 }
4696
4697 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4698 if (Alloca->isSwiftError())
4699 return visitStoreToSwiftError(I);
4700 }
4701 }
4702
4703 SmallVector<EVT, 4> ValueVTs, MemVTs;
4704 SmallVector<TypeSize, 4> Offsets;
4705 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4706 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4707 unsigned NumValues = ValueVTs.size();
4708 if (NumValues == 0)
4709 return;
4710
4711 // Get the lowered operands. Note that we do this after
4712 // checking if NumResults is zero, because with zero results
4713 // the operands won't have values in the map.
4714 SDValue Src = getValue(SrcV);
4715 SDValue Ptr = getValue(PtrV);
4716
4717 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4718 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4719 SDLoc dl = getCurSDLoc();
4720 Align Alignment = I.getAlign();
4721 AAMDNodes AAInfo = I.getAAMetadata();
4722
4723 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4724
4725 unsigned ChainI = 0;
4726 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4727 // See visitLoad comments.
4728 if (ChainI == MaxParallelChains) {
4729 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4730 ArrayRef(Chains.data(), ChainI));
4731 Root = Chain;
4732 ChainI = 0;
4733 }
4734
4735 // TODO: MachinePointerInfo only supports a fixed length offset.
4736 MachinePointerInfo PtrInfo =
4737 !Offsets[i].isScalable() || Offsets[i].isZero()
4738 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4739 : MachinePointerInfo();
4740
4741 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4742 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4743 if (MemVTs[i] != ValueVTs[i])
4744 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4745 SDValue St =
4746 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4747 Chains[ChainI] = St;
4748 }
4749
4750 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4751 ArrayRef(Chains.data(), ChainI));
4752 setValue(&I, StoreNode);
4753 DAG.setRoot(StoreNode);
4754 }
4755
visitMaskedStore(const CallInst & I,bool IsCompressing)4756 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4757 bool IsCompressing) {
4758 SDLoc sdl = getCurSDLoc();
4759
4760 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4761 Align &Alignment) {
4762 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4763 Src0 = I.getArgOperand(0);
4764 Ptr = I.getArgOperand(1);
4765 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4766 Mask = I.getArgOperand(3);
4767 };
4768 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4769 Align &Alignment) {
4770 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4771 Src0 = I.getArgOperand(0);
4772 Ptr = I.getArgOperand(1);
4773 Mask = I.getArgOperand(2);
4774 Alignment = I.getParamAlign(1).valueOrOne();
4775 };
4776
4777 Value *PtrOperand, *MaskOperand, *Src0Operand;
4778 Align Alignment;
4779 if (IsCompressing)
4780 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4781 else
4782 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4783
4784 SDValue Ptr = getValue(PtrOperand);
4785 SDValue Src0 = getValue(Src0Operand);
4786 SDValue Mask = getValue(MaskOperand);
4787 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4788
4789 EVT VT = Src0.getValueType();
4790
4791 auto MMOFlags = MachineMemOperand::MOStore;
4792 if (I.hasMetadata(LLVMContext::MD_nontemporal))
4793 MMOFlags |= MachineMemOperand::MONonTemporal;
4794
4795 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4796 MachinePointerInfo(PtrOperand), MMOFlags,
4797 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4798
4799 const auto &TLI = DAG.getTargetLoweringInfo();
4800 const auto &TTI =
4801 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4802 SDValue StoreNode =
4803 !IsCompressing &&
4804 TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType())
4805 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4806 Mask)
4807 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4808 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4809 IsCompressing);
4810 DAG.setRoot(StoreNode);
4811 setValue(&I, StoreNode);
4812 }
4813
4814 // Get a uniform base for the Gather/Scatter intrinsic.
4815 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4816 // We try to represent it as a base pointer + vector of indices.
4817 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4818 // The first operand of the GEP may be a single pointer or a vector of pointers
4819 // Example:
4820 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4821 // or
4822 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4823 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4824 //
4825 // When the first GEP operand is a single pointer - it is the uniform base we
4826 // are looking for. If first operand of the GEP is a splat vector - we
4827 // extract the splat value and use it as a uniform base.
4828 // In all other cases the function returns 'false'.
getUniformBase(const Value * Ptr,SDValue & Base,SDValue & Index,ISD::MemIndexType & IndexType,SDValue & Scale,SelectionDAGBuilder * SDB,const BasicBlock * CurBB,uint64_t ElemSize)4829 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4830 ISD::MemIndexType &IndexType, SDValue &Scale,
4831 SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4832 uint64_t ElemSize) {
4833 SelectionDAG& DAG = SDB->DAG;
4834 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4835 const DataLayout &DL = DAG.getDataLayout();
4836
4837 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4838
4839 // Handle splat constant pointer.
4840 if (auto *C = dyn_cast<Constant>(Ptr)) {
4841 C = C->getSplatValue();
4842 if (!C)
4843 return false;
4844
4845 Base = SDB->getValue(C);
4846
4847 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4848 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4849 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4850 IndexType = ISD::SIGNED_SCALED;
4851 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4852 return true;
4853 }
4854
4855 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4856 if (!GEP || GEP->getParent() != CurBB)
4857 return false;
4858
4859 if (GEP->getNumOperands() != 2)
4860 return false;
4861
4862 const Value *BasePtr = GEP->getPointerOperand();
4863 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4864
4865 // Make sure the base is scalar and the index is a vector.
4866 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4867 return false;
4868
4869 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4870 if (ScaleVal.isScalable())
4871 return false;
4872
4873 // Target may not support the required addressing mode.
4874 if (ScaleVal != 1 &&
4875 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4876 return false;
4877
4878 Base = SDB->getValue(BasePtr);
4879 Index = SDB->getValue(IndexVal);
4880 IndexType = ISD::SIGNED_SCALED;
4881
4882 Scale =
4883 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4884 return true;
4885 }
4886
visitMaskedScatter(const CallInst & I)4887 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4888 SDLoc sdl = getCurSDLoc();
4889
4890 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4891 const Value *Ptr = I.getArgOperand(1);
4892 SDValue Src0 = getValue(I.getArgOperand(0));
4893 SDValue Mask = getValue(I.getArgOperand(3));
4894 EVT VT = Src0.getValueType();
4895 Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4896 ->getMaybeAlignValue()
4897 .value_or(DAG.getEVTAlign(VT.getScalarType()));
4898 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4899
4900 SDValue Base;
4901 SDValue Index;
4902 ISD::MemIndexType IndexType;
4903 SDValue Scale;
4904 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4905 I.getParent(), VT.getScalarStoreSize());
4906
4907 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4908 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4909 MachinePointerInfo(AS), MachineMemOperand::MOStore,
4910 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4911 if (!UniformBase) {
4912 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4913 Index = getValue(Ptr);
4914 IndexType = ISD::SIGNED_SCALED;
4915 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4916 }
4917
4918 EVT IdxVT = Index.getValueType();
4919 EVT EltTy = IdxVT.getVectorElementType();
4920 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4921 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4922 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4923 }
4924
4925 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4926 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4927 Ops, MMO, IndexType, false);
4928 DAG.setRoot(Scatter);
4929 setValue(&I, Scatter);
4930 }
4931
visitMaskedLoad(const CallInst & I,bool IsExpanding)4932 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4933 SDLoc sdl = getCurSDLoc();
4934
4935 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4936 Align &Alignment) {
4937 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4938 Ptr = I.getArgOperand(0);
4939 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4940 Mask = I.getArgOperand(2);
4941 Src0 = I.getArgOperand(3);
4942 };
4943 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4944 Align &Alignment) {
4945 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4946 Ptr = I.getArgOperand(0);
4947 Alignment = I.getParamAlign(0).valueOrOne();
4948 Mask = I.getArgOperand(1);
4949 Src0 = I.getArgOperand(2);
4950 };
4951
4952 Value *PtrOperand, *MaskOperand, *Src0Operand;
4953 Align Alignment;
4954 if (IsExpanding)
4955 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4956 else
4957 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4958
4959 SDValue Ptr = getValue(PtrOperand);
4960 SDValue Src0 = getValue(Src0Operand);
4961 SDValue Mask = getValue(MaskOperand);
4962 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4963
4964 EVT VT = Src0.getValueType();
4965 AAMDNodes AAInfo = I.getAAMetadata();
4966 const MDNode *Ranges = getRangeMetadata(I);
4967
4968 // Do not serialize masked loads of constant memory with anything.
4969 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4970 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4971
4972 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4973
4974 auto MMOFlags = MachineMemOperand::MOLoad;
4975 if (I.hasMetadata(LLVMContext::MD_nontemporal))
4976 MMOFlags |= MachineMemOperand::MONonTemporal;
4977
4978 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4979 MachinePointerInfo(PtrOperand), MMOFlags,
4980 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4981
4982 const auto &TLI = DAG.getTargetLoweringInfo();
4983 const auto &TTI =
4984 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4985 // The Load/Res may point to different values and both of them are output
4986 // variables.
4987 SDValue Load;
4988 SDValue Res;
4989 if (!IsExpanding &&
4990 TTI.hasConditionalLoadStoreForType(Src0Operand->getType()))
4991 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
4992 else
4993 Res = Load =
4994 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4995 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4996 if (AddToChain)
4997 PendingLoads.push_back(Load.getValue(1));
4998 setValue(&I, Res);
4999 }
5000
visitMaskedGather(const CallInst & I)5001 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5002 SDLoc sdl = getCurSDLoc();
5003
5004 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
5005 const Value *Ptr = I.getArgOperand(0);
5006 SDValue Src0 = getValue(I.getArgOperand(3));
5007 SDValue Mask = getValue(I.getArgOperand(2));
5008
5009 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5010 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5011 Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
5012 ->getMaybeAlignValue()
5013 .value_or(DAG.getEVTAlign(VT.getScalarType()));
5014
5015 const MDNode *Ranges = getRangeMetadata(I);
5016
5017 SDValue Root = DAG.getRoot();
5018 SDValue Base;
5019 SDValue Index;
5020 ISD::MemIndexType IndexType;
5021 SDValue Scale;
5022 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
5023 I.getParent(), VT.getScalarStoreSize());
5024 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5025 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5026 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5027 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5028 Ranges);
5029
5030 if (!UniformBase) {
5031 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5032 Index = getValue(Ptr);
5033 IndexType = ISD::SIGNED_SCALED;
5034 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5035 }
5036
5037 EVT IdxVT = Index.getValueType();
5038 EVT EltTy = IdxVT.getVectorElementType();
5039 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5040 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
5041 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5042 }
5043
5044 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5045 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
5046 Ops, MMO, IndexType, ISD::NON_EXTLOAD);
5047
5048 PendingLoads.push_back(Gather.getValue(1));
5049 setValue(&I, Gather);
5050 }
5051
visitAtomicCmpXchg(const AtomicCmpXchgInst & I)5052 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5053 SDLoc dl = getCurSDLoc();
5054 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5055 AtomicOrdering FailureOrdering = I.getFailureOrdering();
5056 SyncScope::ID SSID = I.getSyncScopeID();
5057
5058 SDValue InChain = getRoot();
5059
5060 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5061 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5062
5063 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5064 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5065
5066 MachineFunction &MF = DAG.getMachineFunction();
5067 MachineMemOperand *MMO = MF.getMachineMemOperand(
5068 MachinePointerInfo(I.getPointerOperand()), Flags,
5069 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5070 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5071
5072 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5073 dl, MemVT, VTs, InChain,
5074 getValue(I.getPointerOperand()),
5075 getValue(I.getCompareOperand()),
5076 getValue(I.getNewValOperand()), MMO);
5077
5078 SDValue OutChain = L.getValue(2);
5079
5080 setValue(&I, L);
5081 DAG.setRoot(OutChain);
5082 }
5083
visitAtomicRMW(const AtomicRMWInst & I)5084 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5085 SDLoc dl = getCurSDLoc();
5086 ISD::NodeType NT;
5087 switch (I.getOperation()) {
5088 default: llvm_unreachable("Unknown atomicrmw operation");
5089 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5090 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
5091 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
5092 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
5093 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5094 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
5095 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
5096 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
5097 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
5098 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5099 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5100 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5101 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5102 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5103 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5104 case AtomicRMWInst::UIncWrap:
5105 NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5106 break;
5107 case AtomicRMWInst::UDecWrap:
5108 NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5109 break;
5110 }
5111 AtomicOrdering Ordering = I.getOrdering();
5112 SyncScope::ID SSID = I.getSyncScopeID();
5113
5114 SDValue InChain = getRoot();
5115
5116 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5117 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5118 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5119
5120 MachineFunction &MF = DAG.getMachineFunction();
5121 MachineMemOperand *MMO = MF.getMachineMemOperand(
5122 MachinePointerInfo(I.getPointerOperand()), Flags,
5123 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5124 AAMDNodes(), nullptr, SSID, Ordering);
5125
5126 SDValue L =
5127 DAG.getAtomic(NT, dl, MemVT, InChain,
5128 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5129 MMO);
5130
5131 SDValue OutChain = L.getValue(1);
5132
5133 setValue(&I, L);
5134 DAG.setRoot(OutChain);
5135 }
5136
visitFence(const FenceInst & I)5137 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5138 SDLoc dl = getCurSDLoc();
5139 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5140 SDValue Ops[3];
5141 Ops[0] = getRoot();
5142 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5143 TLI.getFenceOperandTy(DAG.getDataLayout()));
5144 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5145 TLI.getFenceOperandTy(DAG.getDataLayout()));
5146 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5147 setValue(&I, N);
5148 DAG.setRoot(N);
5149 }
5150
visitAtomicLoad(const LoadInst & I)5151 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5152 SDLoc dl = getCurSDLoc();
5153 AtomicOrdering Order = I.getOrdering();
5154 SyncScope::ID SSID = I.getSyncScopeID();
5155
5156 SDValue InChain = getRoot();
5157
5158 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5159 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5160 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5161
5162 if (!TLI.supportsUnalignedAtomics() &&
5163 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5164 report_fatal_error("Cannot generate unaligned atomic load");
5165
5166 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5167
5168 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5169 MachinePointerInfo(I.getPointerOperand()), Flags,
5170 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5171 nullptr, SSID, Order);
5172
5173 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5174
5175 SDValue Ptr = getValue(I.getPointerOperand());
5176 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5177 Ptr, MMO);
5178
5179 SDValue OutChain = L.getValue(1);
5180 if (MemVT != VT)
5181 L = DAG.getPtrExtOrTrunc(L, dl, VT);
5182
5183 setValue(&I, L);
5184 DAG.setRoot(OutChain);
5185 }
5186
visitAtomicStore(const StoreInst & I)5187 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5188 SDLoc dl = getCurSDLoc();
5189
5190 AtomicOrdering Ordering = I.getOrdering();
5191 SyncScope::ID SSID = I.getSyncScopeID();
5192
5193 SDValue InChain = getRoot();
5194
5195 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5196 EVT MemVT =
5197 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5198
5199 if (!TLI.supportsUnalignedAtomics() &&
5200 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5201 report_fatal_error("Cannot generate unaligned atomic store");
5202
5203 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5204
5205 MachineFunction &MF = DAG.getMachineFunction();
5206 MachineMemOperand *MMO = MF.getMachineMemOperand(
5207 MachinePointerInfo(I.getPointerOperand()), Flags,
5208 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5209 nullptr, SSID, Ordering);
5210
5211 SDValue Val = getValue(I.getValueOperand());
5212 if (Val.getValueType() != MemVT)
5213 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5214 SDValue Ptr = getValue(I.getPointerOperand());
5215
5216 SDValue OutChain =
5217 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5218
5219 setValue(&I, OutChain);
5220 DAG.setRoot(OutChain);
5221 }
5222
5223 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5224 /// node.
visitTargetIntrinsic(const CallInst & I,unsigned Intrinsic)5225 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5226 unsigned Intrinsic) {
5227 // Ignore the callsite's attributes. A specific call site may be marked with
5228 // readnone, but the lowering code will expect the chain based on the
5229 // definition.
5230 const Function *F = I.getCalledFunction();
5231 bool HasChain = !F->doesNotAccessMemory();
5232 bool OnlyLoad = HasChain && F->onlyReadsMemory();
5233
5234 // Build the operand list.
5235 SmallVector<SDValue, 8> Ops;
5236 if (HasChain) { // If this intrinsic has side-effects, chainify it.
5237 if (OnlyLoad) {
5238 // We don't need to serialize loads against other loads.
5239 Ops.push_back(DAG.getRoot());
5240 } else {
5241 Ops.push_back(getRoot());
5242 }
5243 }
5244
5245 // Info is set by getTgtMemIntrinsic
5246 TargetLowering::IntrinsicInfo Info;
5247 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5248 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5249 DAG.getMachineFunction(),
5250 Intrinsic);
5251
5252 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5253 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5254 Info.opc == ISD::INTRINSIC_W_CHAIN)
5255 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5256 TLI.getPointerTy(DAG.getDataLayout())));
5257
5258 // Add all operands of the call to the operand list.
5259 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5260 const Value *Arg = I.getArgOperand(i);
5261 if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5262 Ops.push_back(getValue(Arg));
5263 continue;
5264 }
5265
5266 // Use TargetConstant instead of a regular constant for immarg.
5267 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5268 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5269 assert(CI->getBitWidth() <= 64 &&
5270 "large intrinsic immediates not handled");
5271 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5272 } else {
5273 Ops.push_back(
5274 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5275 }
5276 }
5277
5278 SmallVector<EVT, 4> ValueVTs;
5279 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5280
5281 if (HasChain)
5282 ValueVTs.push_back(MVT::Other);
5283
5284 SDVTList VTs = DAG.getVTList(ValueVTs);
5285
5286 // Propagate fast-math-flags from IR to node(s).
5287 SDNodeFlags Flags;
5288 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5289 Flags.copyFMF(*FPMO);
5290 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5291
5292 // Create the node.
5293 SDValue Result;
5294
5295 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5296 auto *Token = Bundle->Inputs[0].get();
5297 SDValue ConvControlToken = getValue(Token);
5298 assert(Ops.back().getValueType() != MVT::Glue &&
5299 "Did not expected another glue node here.");
5300 ConvControlToken =
5301 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5302 Ops.push_back(ConvControlToken);
5303 }
5304
5305 // In some cases, custom collection of operands from CallInst I may be needed.
5306 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5307 if (IsTgtIntrinsic) {
5308 // This is target intrinsic that touches memory
5309 //
5310 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5311 // didn't yield anything useful.
5312 MachinePointerInfo MPI;
5313 if (Info.ptrVal)
5314 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5315 else if (Info.fallbackAddressSpace)
5316 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5317 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5318 Info.memVT, MPI, Info.align, Info.flags,
5319 Info.size, I.getAAMetadata());
5320 } else if (!HasChain) {
5321 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5322 } else if (!I.getType()->isVoidTy()) {
5323 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5324 } else {
5325 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5326 }
5327
5328 if (HasChain) {
5329 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5330 if (OnlyLoad)
5331 PendingLoads.push_back(Chain);
5332 else
5333 DAG.setRoot(Chain);
5334 }
5335
5336 if (!I.getType()->isVoidTy()) {
5337 if (!isa<VectorType>(I.getType()))
5338 Result = lowerRangeToAssertZExt(DAG, I, Result);
5339
5340 MaybeAlign Alignment = I.getRetAlign();
5341
5342 // Insert `assertalign` node if there's an alignment.
5343 if (InsertAssertAlign && Alignment) {
5344 Result =
5345 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5346 }
5347 }
5348
5349 setValue(&I, Result);
5350 }
5351
5352 /// GetSignificand - Get the significand and build it into a floating-point
5353 /// number with exponent of 1:
5354 ///
5355 /// Op = (Op & 0x007fffff) | 0x3f800000;
5356 ///
5357 /// where Op is the hexadecimal representation of floating point value.
GetSignificand(SelectionDAG & DAG,SDValue Op,const SDLoc & dl)5358 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5359 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5360 DAG.getConstant(0x007fffff, dl, MVT::i32));
5361 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5362 DAG.getConstant(0x3f800000, dl, MVT::i32));
5363 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5364 }
5365
5366 /// GetExponent - Get the exponent:
5367 ///
5368 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5369 ///
5370 /// where Op is the hexadecimal representation of floating point value.
GetExponent(SelectionDAG & DAG,SDValue Op,const TargetLowering & TLI,const SDLoc & dl)5371 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5372 const TargetLowering &TLI, const SDLoc &dl) {
5373 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5374 DAG.getConstant(0x7f800000, dl, MVT::i32));
5375 SDValue t1 = DAG.getNode(
5376 ISD::SRL, dl, MVT::i32, t0,
5377 DAG.getConstant(23, dl,
5378 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5379 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5380 DAG.getConstant(127, dl, MVT::i32));
5381 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5382 }
5383
5384 /// getF32Constant - Get 32-bit floating point constant.
getF32Constant(SelectionDAG & DAG,unsigned Flt,const SDLoc & dl)5385 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5386 const SDLoc &dl) {
5387 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5388 MVT::f32);
5389 }
5390
getLimitedPrecisionExp2(SDValue t0,const SDLoc & dl,SelectionDAG & DAG)5391 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5392 SelectionDAG &DAG) {
5393 // TODO: What fast-math-flags should be set on the floating-point nodes?
5394
5395 // IntegerPartOfX = ((int32_t)(t0);
5396 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5397
5398 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
5399 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5400 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5401
5402 // IntegerPartOfX <<= 23;
5403 IntegerPartOfX =
5404 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5405 DAG.getConstant(23, dl,
5406 DAG.getTargetLoweringInfo().getShiftAmountTy(
5407 MVT::i32, DAG.getDataLayout())));
5408
5409 SDValue TwoToFractionalPartOfX;
5410 if (LimitFloatPrecision <= 6) {
5411 // For floating-point precision of 6:
5412 //
5413 // TwoToFractionalPartOfX =
5414 // 0.997535578f +
5415 // (0.735607626f + 0.252464424f * x) * x;
5416 //
5417 // error 0.0144103317, which is 6 bits
5418 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5419 getF32Constant(DAG, 0x3e814304, dl));
5420 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5421 getF32Constant(DAG, 0x3f3c50c8, dl));
5422 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5423 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5424 getF32Constant(DAG, 0x3f7f5e7e, dl));
5425 } else if (LimitFloatPrecision <= 12) {
5426 // For floating-point precision of 12:
5427 //
5428 // TwoToFractionalPartOfX =
5429 // 0.999892986f +
5430 // (0.696457318f +
5431 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
5432 //
5433 // error 0.000107046256, which is 13 to 14 bits
5434 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5435 getF32Constant(DAG, 0x3da235e3, dl));
5436 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5437 getF32Constant(DAG, 0x3e65b8f3, dl));
5438 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5439 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5440 getF32Constant(DAG, 0x3f324b07, dl));
5441 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5442 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5443 getF32Constant(DAG, 0x3f7ff8fd, dl));
5444 } else { // LimitFloatPrecision <= 18
5445 // For floating-point precision of 18:
5446 //
5447 // TwoToFractionalPartOfX =
5448 // 0.999999982f +
5449 // (0.693148872f +
5450 // (0.240227044f +
5451 // (0.554906021e-1f +
5452 // (0.961591928e-2f +
5453 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5454 // error 2.47208000*10^(-7), which is better than 18 bits
5455 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5456 getF32Constant(DAG, 0x3924b03e, dl));
5457 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5458 getF32Constant(DAG, 0x3ab24b87, dl));
5459 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5460 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5461 getF32Constant(DAG, 0x3c1d8c17, dl));
5462 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5463 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5464 getF32Constant(DAG, 0x3d634a1d, dl));
5465 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5466 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5467 getF32Constant(DAG, 0x3e75fe14, dl));
5468 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5469 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5470 getF32Constant(DAG, 0x3f317234, dl));
5471 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5472 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5473 getF32Constant(DAG, 0x3f800000, dl));
5474 }
5475
5476 // Add the exponent into the result in integer domain.
5477 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5478 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5479 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5480 }
5481
5482 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5483 /// limited-precision mode.
expandExp(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5484 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5485 const TargetLowering &TLI, SDNodeFlags Flags) {
5486 if (Op.getValueType() == MVT::f32 &&
5487 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5488
5489 // Put the exponent in the right bit position for later addition to the
5490 // final result:
5491 //
5492 // t0 = Op * log2(e)
5493
5494 // TODO: What fast-math-flags should be set here?
5495 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5496 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5497 return getLimitedPrecisionExp2(t0, dl, DAG);
5498 }
5499
5500 // No special expansion.
5501 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5502 }
5503
5504 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5505 /// limited-precision mode.
expandLog(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5506 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5507 const TargetLowering &TLI, SDNodeFlags Flags) {
5508 // TODO: What fast-math-flags should be set on the floating-point nodes?
5509
5510 if (Op.getValueType() == MVT::f32 &&
5511 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5512 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5513
5514 // Scale the exponent by log(2).
5515 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5516 SDValue LogOfExponent =
5517 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5518 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5519
5520 // Get the significand and build it into a floating-point number with
5521 // exponent of 1.
5522 SDValue X = GetSignificand(DAG, Op1, dl);
5523
5524 SDValue LogOfMantissa;
5525 if (LimitFloatPrecision <= 6) {
5526 // For floating-point precision of 6:
5527 //
5528 // LogofMantissa =
5529 // -1.1609546f +
5530 // (1.4034025f - 0.23903021f * x) * x;
5531 //
5532 // error 0.0034276066, which is better than 8 bits
5533 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5534 getF32Constant(DAG, 0xbe74c456, dl));
5535 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5536 getF32Constant(DAG, 0x3fb3a2b1, dl));
5537 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5538 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5539 getF32Constant(DAG, 0x3f949a29, dl));
5540 } else if (LimitFloatPrecision <= 12) {
5541 // For floating-point precision of 12:
5542 //
5543 // LogOfMantissa =
5544 // -1.7417939f +
5545 // (2.8212026f +
5546 // (-1.4699568f +
5547 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5548 //
5549 // error 0.000061011436, which is 14 bits
5550 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5551 getF32Constant(DAG, 0xbd67b6d6, dl));
5552 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5553 getF32Constant(DAG, 0x3ee4f4b8, dl));
5554 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5555 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5556 getF32Constant(DAG, 0x3fbc278b, dl));
5557 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5558 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5559 getF32Constant(DAG, 0x40348e95, dl));
5560 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5561 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5562 getF32Constant(DAG, 0x3fdef31a, dl));
5563 } else { // LimitFloatPrecision <= 18
5564 // For floating-point precision of 18:
5565 //
5566 // LogOfMantissa =
5567 // -2.1072184f +
5568 // (4.2372794f +
5569 // (-3.7029485f +
5570 // (2.2781945f +
5571 // (-0.87823314f +
5572 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5573 //
5574 // error 0.0000023660568, which is better than 18 bits
5575 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5576 getF32Constant(DAG, 0xbc91e5ac, dl));
5577 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5578 getF32Constant(DAG, 0x3e4350aa, dl));
5579 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5580 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5581 getF32Constant(DAG, 0x3f60d3e3, dl));
5582 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5583 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5584 getF32Constant(DAG, 0x4011cdf0, dl));
5585 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5586 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5587 getF32Constant(DAG, 0x406cfd1c, dl));
5588 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5589 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5590 getF32Constant(DAG, 0x408797cb, dl));
5591 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5592 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5593 getF32Constant(DAG, 0x4006dcab, dl));
5594 }
5595
5596 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5597 }
5598
5599 // No special expansion.
5600 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5601 }
5602
5603 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5604 /// limited-precision mode.
expandLog2(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5605 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5606 const TargetLowering &TLI, SDNodeFlags Flags) {
5607 // TODO: What fast-math-flags should be set on the floating-point nodes?
5608
5609 if (Op.getValueType() == MVT::f32 &&
5610 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5611 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5612
5613 // Get the exponent.
5614 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5615
5616 // Get the significand and build it into a floating-point number with
5617 // exponent of 1.
5618 SDValue X = GetSignificand(DAG, Op1, dl);
5619
5620 // Different possible minimax approximations of significand in
5621 // floating-point for various degrees of accuracy over [1,2].
5622 SDValue Log2ofMantissa;
5623 if (LimitFloatPrecision <= 6) {
5624 // For floating-point precision of 6:
5625 //
5626 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5627 //
5628 // error 0.0049451742, which is more than 7 bits
5629 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5630 getF32Constant(DAG, 0xbeb08fe0, dl));
5631 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5632 getF32Constant(DAG, 0x40019463, dl));
5633 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5634 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5635 getF32Constant(DAG, 0x3fd6633d, dl));
5636 } else if (LimitFloatPrecision <= 12) {
5637 // For floating-point precision of 12:
5638 //
5639 // Log2ofMantissa =
5640 // -2.51285454f +
5641 // (4.07009056f +
5642 // (-2.12067489f +
5643 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5644 //
5645 // error 0.0000876136000, which is better than 13 bits
5646 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5647 getF32Constant(DAG, 0xbda7262e, dl));
5648 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5649 getF32Constant(DAG, 0x3f25280b, dl));
5650 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5651 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5652 getF32Constant(DAG, 0x4007b923, dl));
5653 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5654 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5655 getF32Constant(DAG, 0x40823e2f, dl));
5656 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5657 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5658 getF32Constant(DAG, 0x4020d29c, dl));
5659 } else { // LimitFloatPrecision <= 18
5660 // For floating-point precision of 18:
5661 //
5662 // Log2ofMantissa =
5663 // -3.0400495f +
5664 // (6.1129976f +
5665 // (-5.3420409f +
5666 // (3.2865683f +
5667 // (-1.2669343f +
5668 // (0.27515199f -
5669 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5670 //
5671 // error 0.0000018516, which is better than 18 bits
5672 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5673 getF32Constant(DAG, 0xbcd2769e, dl));
5674 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5675 getF32Constant(DAG, 0x3e8ce0b9, dl));
5676 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5677 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5678 getF32Constant(DAG, 0x3fa22ae7, dl));
5679 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5680 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5681 getF32Constant(DAG, 0x40525723, dl));
5682 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5683 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5684 getF32Constant(DAG, 0x40aaf200, dl));
5685 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5686 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5687 getF32Constant(DAG, 0x40c39dad, dl));
5688 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5689 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5690 getF32Constant(DAG, 0x4042902c, dl));
5691 }
5692
5693 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5694 }
5695
5696 // No special expansion.
5697 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5698 }
5699
5700 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5701 /// limited-precision mode.
expandLog10(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5702 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5703 const TargetLowering &TLI, SDNodeFlags Flags) {
5704 // TODO: What fast-math-flags should be set on the floating-point nodes?
5705
5706 if (Op.getValueType() == MVT::f32 &&
5707 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5708 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5709
5710 // Scale the exponent by log10(2) [0.30102999f].
5711 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5712 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5713 getF32Constant(DAG, 0x3e9a209a, dl));
5714
5715 // Get the significand and build it into a floating-point number with
5716 // exponent of 1.
5717 SDValue X = GetSignificand(DAG, Op1, dl);
5718
5719 SDValue Log10ofMantissa;
5720 if (LimitFloatPrecision <= 6) {
5721 // For floating-point precision of 6:
5722 //
5723 // Log10ofMantissa =
5724 // -0.50419619f +
5725 // (0.60948995f - 0.10380950f * x) * x;
5726 //
5727 // error 0.0014886165, which is 6 bits
5728 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5729 getF32Constant(DAG, 0xbdd49a13, dl));
5730 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5731 getF32Constant(DAG, 0x3f1c0789, dl));
5732 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5733 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5734 getF32Constant(DAG, 0x3f011300, dl));
5735 } else if (LimitFloatPrecision <= 12) {
5736 // For floating-point precision of 12:
5737 //
5738 // Log10ofMantissa =
5739 // -0.64831180f +
5740 // (0.91751397f +
5741 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5742 //
5743 // error 0.00019228036, which is better than 12 bits
5744 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5745 getF32Constant(DAG, 0x3d431f31, dl));
5746 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5747 getF32Constant(DAG, 0x3ea21fb2, dl));
5748 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5749 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5750 getF32Constant(DAG, 0x3f6ae232, dl));
5751 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5752 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5753 getF32Constant(DAG, 0x3f25f7c3, dl));
5754 } else { // LimitFloatPrecision <= 18
5755 // For floating-point precision of 18:
5756 //
5757 // Log10ofMantissa =
5758 // -0.84299375f +
5759 // (1.5327582f +
5760 // (-1.0688956f +
5761 // (0.49102474f +
5762 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5763 //
5764 // error 0.0000037995730, which is better than 18 bits
5765 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5766 getF32Constant(DAG, 0x3c5d51ce, dl));
5767 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5768 getF32Constant(DAG, 0x3e00685a, dl));
5769 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5770 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5771 getF32Constant(DAG, 0x3efb6798, dl));
5772 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5773 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5774 getF32Constant(DAG, 0x3f88d192, dl));
5775 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5776 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5777 getF32Constant(DAG, 0x3fc4316c, dl));
5778 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5779 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5780 getF32Constant(DAG, 0x3f57ce70, dl));
5781 }
5782
5783 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5784 }
5785
5786 // No special expansion.
5787 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5788 }
5789
5790 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5791 /// limited-precision mode.
expandExp2(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5792 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5793 const TargetLowering &TLI, SDNodeFlags Flags) {
5794 if (Op.getValueType() == MVT::f32 &&
5795 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5796 return getLimitedPrecisionExp2(Op, dl, DAG);
5797
5798 // No special expansion.
5799 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5800 }
5801
5802 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5803 /// limited-precision mode with x == 10.0f.
expandPow(const SDLoc & dl,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5804 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5805 SelectionDAG &DAG, const TargetLowering &TLI,
5806 SDNodeFlags Flags) {
5807 bool IsExp10 = false;
5808 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5809 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5810 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5811 APFloat Ten(10.0f);
5812 IsExp10 = LHSC->isExactlyValue(Ten);
5813 }
5814 }
5815
5816 // TODO: What fast-math-flags should be set on the FMUL node?
5817 if (IsExp10) {
5818 // Put the exponent in the right bit position for later addition to the
5819 // final result:
5820 //
5821 // #define LOG2OF10 3.3219281f
5822 // t0 = Op * LOG2OF10;
5823 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5824 getF32Constant(DAG, 0x40549a78, dl));
5825 return getLimitedPrecisionExp2(t0, dl, DAG);
5826 }
5827
5828 // No special expansion.
5829 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5830 }
5831
5832 /// ExpandPowI - Expand a llvm.powi intrinsic.
ExpandPowI(const SDLoc & DL,SDValue LHS,SDValue RHS,SelectionDAG & DAG)5833 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5834 SelectionDAG &DAG) {
5835 // If RHS is a constant, we can expand this out to a multiplication tree if
5836 // it's beneficial on the target, otherwise we end up lowering to a call to
5837 // __powidf2 (for example).
5838 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5839 unsigned Val = RHSC->getSExtValue();
5840
5841 // powi(x, 0) -> 1.0
5842 if (Val == 0)
5843 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5844
5845 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5846 Val, DAG.shouldOptForSize())) {
5847 // Get the exponent as a positive value.
5848 if ((int)Val < 0)
5849 Val = -Val;
5850 // We use the simple binary decomposition method to generate the multiply
5851 // sequence. There are more optimal ways to do this (for example,
5852 // powi(x,15) generates one more multiply than it should), but this has
5853 // the benefit of being both really simple and much better than a libcall.
5854 SDValue Res; // Logically starts equal to 1.0
5855 SDValue CurSquare = LHS;
5856 // TODO: Intrinsics should have fast-math-flags that propagate to these
5857 // nodes.
5858 while (Val) {
5859 if (Val & 1) {
5860 if (Res.getNode())
5861 Res =
5862 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5863 else
5864 Res = CurSquare; // 1.0*CurSquare.
5865 }
5866
5867 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5868 CurSquare, CurSquare);
5869 Val >>= 1;
5870 }
5871
5872 // If the original was negative, invert the result, producing 1/(x*x*x).
5873 if (RHSC->getSExtValue() < 0)
5874 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5875 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5876 return Res;
5877 }
5878 }
5879
5880 // Otherwise, expand to a libcall.
5881 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5882 }
5883
expandDivFix(unsigned Opcode,const SDLoc & DL,SDValue LHS,SDValue RHS,SDValue Scale,SelectionDAG & DAG,const TargetLowering & TLI)5884 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5885 SDValue LHS, SDValue RHS, SDValue Scale,
5886 SelectionDAG &DAG, const TargetLowering &TLI) {
5887 EVT VT = LHS.getValueType();
5888 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5889 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5890 LLVMContext &Ctx = *DAG.getContext();
5891
5892 // If the type is legal but the operation isn't, this node might survive all
5893 // the way to operation legalization. If we end up there and we do not have
5894 // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5895 // node.
5896
5897 // Coax the legalizer into expanding the node during type legalization instead
5898 // by bumping the size by one bit. This will force it to Promote, enabling the
5899 // early expansion and avoiding the need to expand later.
5900
5901 // We don't have to do this if Scale is 0; that can always be expanded, unless
5902 // it's a saturating signed operation. Those can experience true integer
5903 // division overflow, a case which we must avoid.
5904
5905 // FIXME: We wouldn't have to do this (or any of the early
5906 // expansion/promotion) if it was possible to expand a libcall of an
5907 // illegal type during operation legalization. But it's not, so things
5908 // get a bit hacky.
5909 unsigned ScaleInt = Scale->getAsZExtVal();
5910 if ((ScaleInt > 0 || (Saturating && Signed)) &&
5911 (TLI.isTypeLegal(VT) ||
5912 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5913 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5914 Opcode, VT, ScaleInt);
5915 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5916 EVT PromVT;
5917 if (VT.isScalarInteger())
5918 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5919 else if (VT.isVector()) {
5920 PromVT = VT.getVectorElementType();
5921 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5922 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5923 } else
5924 llvm_unreachable("Wrong VT for DIVFIX?");
5925 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5926 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5927 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5928 // For saturating operations, we need to shift up the LHS to get the
5929 // proper saturation width, and then shift down again afterwards.
5930 if (Saturating)
5931 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5932 DAG.getConstant(1, DL, ShiftTy));
5933 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5934 if (Saturating)
5935 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5936 DAG.getConstant(1, DL, ShiftTy));
5937 return DAG.getZExtOrTrunc(Res, DL, VT);
5938 }
5939 }
5940
5941 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5942 }
5943
5944 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5945 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5946 static void
getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned,TypeSize>> & Regs,const SDValue & N)5947 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5948 const SDValue &N) {
5949 switch (N.getOpcode()) {
5950 case ISD::CopyFromReg: {
5951 SDValue Op = N.getOperand(1);
5952 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5953 Op.getValueType().getSizeInBits());
5954 return;
5955 }
5956 case ISD::BITCAST:
5957 case ISD::AssertZext:
5958 case ISD::AssertSext:
5959 case ISD::TRUNCATE:
5960 getUnderlyingArgRegs(Regs, N.getOperand(0));
5961 return;
5962 case ISD::BUILD_PAIR:
5963 case ISD::BUILD_VECTOR:
5964 case ISD::CONCAT_VECTORS:
5965 for (SDValue Op : N->op_values())
5966 getUnderlyingArgRegs(Regs, Op);
5967 return;
5968 default:
5969 return;
5970 }
5971 }
5972
5973 /// If the DbgValueInst is a dbg_value of a function argument, create the
5974 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5975 /// instruction selection, they will be inserted to the entry BB.
5976 /// We don't currently support this for variadic dbg_values, as they shouldn't
5977 /// appear for function arguments or in the prologue.
EmitFuncArgumentDbgValue(const Value * V,DILocalVariable * Variable,DIExpression * Expr,DILocation * DL,FuncArgumentDbgValueKind Kind,const SDValue & N)5978 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5979 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5980 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5981 const Argument *Arg = dyn_cast<Argument>(V);
5982 if (!Arg)
5983 return false;
5984
5985 MachineFunction &MF = DAG.getMachineFunction();
5986 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5987
5988 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5989 // we've been asked to pursue.
5990 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5991 bool Indirect) {
5992 if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5993 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5994 // pointing at the VReg, which will be patched up later.
5995 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5996 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5997 /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5998 /* isKill */ false, /* isDead */ false,
5999 /* isUndef */ false, /* isEarlyClobber */ false,
6000 /* SubReg */ 0, /* isDebug */ true)});
6001
6002 auto *NewDIExpr = FragExpr;
6003 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6004 // the DIExpression.
6005 if (Indirect)
6006 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6007 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
6008 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6009 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6010 } else {
6011 // Create a completely standard DBG_VALUE.
6012 auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6013 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6014 }
6015 };
6016
6017 if (Kind == FuncArgumentDbgValueKind::Value) {
6018 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6019 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6020 // the entry block.
6021 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6022 if (!IsInEntryBlock)
6023 return false;
6024
6025 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6026 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6027 // variable that also is a param.
6028 //
6029 // Although, if we are at the top of the entry block already, we can still
6030 // emit using ArgDbgValue. This might catch some situations when the
6031 // dbg.value refers to an argument that isn't used in the entry block, so
6032 // any CopyToReg node would be optimized out and the only way to express
6033 // this DBG_VALUE is by using the physical reg (or FI) as done in this
6034 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
6035 // we should only emit as ArgDbgValue if the Variable is an argument to the
6036 // current function, and the dbg.value intrinsic is found in the entry
6037 // block.
6038 bool VariableIsFunctionInputArg = Variable->isParameter() &&
6039 !DL->getInlinedAt();
6040 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6041 if (!IsInPrologue && !VariableIsFunctionInputArg)
6042 return false;
6043
6044 // Here we assume that a function argument on IR level only can be used to
6045 // describe one input parameter on source level. If we for example have
6046 // source code like this
6047 //
6048 // struct A { long x, y; };
6049 // void foo(struct A a, long b) {
6050 // ...
6051 // b = a.x;
6052 // ...
6053 // }
6054 //
6055 // and IR like this
6056 //
6057 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
6058 // entry:
6059 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6060 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6061 // call void @llvm.dbg.value(metadata i32 %b, "b",
6062 // ...
6063 // call void @llvm.dbg.value(metadata i32 %a1, "b"
6064 // ...
6065 //
6066 // then the last dbg.value is describing a parameter "b" using a value that
6067 // is an argument. But since we already has used %a1 to describe a parameter
6068 // we should not handle that last dbg.value here (that would result in an
6069 // incorrect hoisting of the DBG_VALUE to the function entry).
6070 // Notice that we allow one dbg.value per IR level argument, to accommodate
6071 // for the situation with fragments above.
6072 // If there is no node for the value being handled, we return true to skip
6073 // the normal generation of debug info, as it would kill existing debug
6074 // info for the parameter in case of duplicates.
6075 if (VariableIsFunctionInputArg) {
6076 unsigned ArgNo = Arg->getArgNo();
6077 if (ArgNo >= FuncInfo.DescribedArgs.size())
6078 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6079 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6080 return !NodeMap[V].getNode();
6081 FuncInfo.DescribedArgs.set(ArgNo);
6082 }
6083 }
6084
6085 bool IsIndirect = false;
6086 std::optional<MachineOperand> Op;
6087 // Some arguments' frame index is recorded during argument lowering.
6088 int FI = FuncInfo.getArgumentFrameIndex(Arg);
6089 if (FI != std::numeric_limits<int>::max())
6090 Op = MachineOperand::CreateFI(FI);
6091
6092 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6093 if (!Op && N.getNode()) {
6094 getUnderlyingArgRegs(ArgRegsAndSizes, N);
6095 Register Reg;
6096 if (ArgRegsAndSizes.size() == 1)
6097 Reg = ArgRegsAndSizes.front().first;
6098
6099 if (Reg && Reg.isVirtual()) {
6100 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6101 Register PR = RegInfo.getLiveInPhysReg(Reg);
6102 if (PR)
6103 Reg = PR;
6104 }
6105 if (Reg) {
6106 Op = MachineOperand::CreateReg(Reg, false);
6107 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6108 }
6109 }
6110
6111 if (!Op && N.getNode()) {
6112 // Check if frame index is available.
6113 SDValue LCandidate = peekThroughBitcasts(N);
6114 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6115 if (FrameIndexSDNode *FINode =
6116 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6117 Op = MachineOperand::CreateFI(FINode->getIndex());
6118 }
6119
6120 if (!Op) {
6121 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6122 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6123 SplitRegs) {
6124 unsigned Offset = 0;
6125 for (const auto &RegAndSize : SplitRegs) {
6126 // If the expression is already a fragment, the current register
6127 // offset+size might extend beyond the fragment. In this case, only
6128 // the register bits that are inside the fragment are relevant.
6129 int RegFragmentSizeInBits = RegAndSize.second;
6130 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6131 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6132 // The register is entirely outside the expression fragment,
6133 // so is irrelevant for debug info.
6134 if (Offset >= ExprFragmentSizeInBits)
6135 break;
6136 // The register is partially outside the expression fragment, only
6137 // the low bits within the fragment are relevant for debug info.
6138 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6139 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6140 }
6141 }
6142
6143 auto FragmentExpr = DIExpression::createFragmentExpression(
6144 Expr, Offset, RegFragmentSizeInBits);
6145 Offset += RegAndSize.second;
6146 // If a valid fragment expression cannot be created, the variable's
6147 // correct value cannot be determined and so it is set as Undef.
6148 if (!FragmentExpr) {
6149 SDDbgValue *SDV = DAG.getConstantDbgValue(
6150 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6151 DAG.AddDbgValue(SDV, false);
6152 continue;
6153 }
6154 MachineInstr *NewMI =
6155 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6156 Kind != FuncArgumentDbgValueKind::Value);
6157 FuncInfo.ArgDbgValues.push_back(NewMI);
6158 }
6159 };
6160
6161 // Check if ValueMap has reg number.
6162 DenseMap<const Value *, Register>::const_iterator
6163 VMI = FuncInfo.ValueMap.find(V);
6164 if (VMI != FuncInfo.ValueMap.end()) {
6165 const auto &TLI = DAG.getTargetLoweringInfo();
6166 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6167 V->getType(), std::nullopt);
6168 if (RFV.occupiesMultipleRegs()) {
6169 splitMultiRegDbgValue(RFV.getRegsAndSizes());
6170 return true;
6171 }
6172
6173 Op = MachineOperand::CreateReg(VMI->second, false);
6174 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6175 } else if (ArgRegsAndSizes.size() > 1) {
6176 // This was split due to the calling convention, and no virtual register
6177 // mapping exists for the value.
6178 splitMultiRegDbgValue(ArgRegsAndSizes);
6179 return true;
6180 }
6181 }
6182
6183 if (!Op)
6184 return false;
6185
6186 assert(Variable->isValidLocationForIntrinsic(DL) &&
6187 "Expected inlined-at fields to agree");
6188 MachineInstr *NewMI = nullptr;
6189
6190 if (Op->isReg())
6191 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6192 else
6193 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6194 Variable, Expr);
6195
6196 // Otherwise, use ArgDbgValues.
6197 FuncInfo.ArgDbgValues.push_back(NewMI);
6198 return true;
6199 }
6200
6201 /// Return the appropriate SDDbgValue based on N.
getDbgValue(SDValue N,DILocalVariable * Variable,DIExpression * Expr,const DebugLoc & dl,unsigned DbgSDNodeOrder)6202 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6203 DILocalVariable *Variable,
6204 DIExpression *Expr,
6205 const DebugLoc &dl,
6206 unsigned DbgSDNodeOrder) {
6207 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6208 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6209 // stack slot locations.
6210 //
6211 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6212 // debug values here after optimization:
6213 //
6214 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
6215 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6216 //
6217 // Both describe the direct values of their associated variables.
6218 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6219 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6220 }
6221 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6222 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6223 }
6224
FixedPointIntrinsicToOpcode(unsigned Intrinsic)6225 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6226 switch (Intrinsic) {
6227 case Intrinsic::smul_fix:
6228 return ISD::SMULFIX;
6229 case Intrinsic::umul_fix:
6230 return ISD::UMULFIX;
6231 case Intrinsic::smul_fix_sat:
6232 return ISD::SMULFIXSAT;
6233 case Intrinsic::umul_fix_sat:
6234 return ISD::UMULFIXSAT;
6235 case Intrinsic::sdiv_fix:
6236 return ISD::SDIVFIX;
6237 case Intrinsic::udiv_fix:
6238 return ISD::UDIVFIX;
6239 case Intrinsic::sdiv_fix_sat:
6240 return ISD::SDIVFIXSAT;
6241 case Intrinsic::udiv_fix_sat:
6242 return ISD::UDIVFIXSAT;
6243 default:
6244 llvm_unreachable("Unhandled fixed point intrinsic");
6245 }
6246 }
6247
lowerCallToExternalSymbol(const CallInst & I,const char * FunctionName)6248 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6249 const char *FunctionName) {
6250 assert(FunctionName && "FunctionName must not be nullptr");
6251 SDValue Callee = DAG.getExternalSymbol(
6252 FunctionName,
6253 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6254 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6255 }
6256
6257 /// Given a @llvm.call.preallocated.setup, return the corresponding
6258 /// preallocated call.
FindPreallocatedCall(const Value * PreallocatedSetup)6259 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6260 assert(cast<CallBase>(PreallocatedSetup)
6261 ->getCalledFunction()
6262 ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6263 "expected call_preallocated_setup Value");
6264 for (const auto *U : PreallocatedSetup->users()) {
6265 auto *UseCall = cast<CallBase>(U);
6266 const Function *Fn = UseCall->getCalledFunction();
6267 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6268 return UseCall;
6269 }
6270 }
6271 llvm_unreachable("expected corresponding call to preallocated setup/arg");
6272 }
6273
6274 /// If DI is a debug value with an EntryValue expression, lower it using the
6275 /// corresponding physical register of the associated Argument value
6276 /// (guaranteed to exist by the verifier).
visitEntryValueDbgValue(ArrayRef<const Value * > Values,DILocalVariable * Variable,DIExpression * Expr,DebugLoc DbgLoc)6277 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6278 ArrayRef<const Value *> Values, DILocalVariable *Variable,
6279 DIExpression *Expr, DebugLoc DbgLoc) {
6280 if (!Expr->isEntryValue() || !hasSingleElement(Values))
6281 return false;
6282
6283 // These properties are guaranteed by the verifier.
6284 const Argument *Arg = cast<Argument>(Values[0]);
6285 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6286
6287 auto ArgIt = FuncInfo.ValueMap.find(Arg);
6288 if (ArgIt == FuncInfo.ValueMap.end()) {
6289 LLVM_DEBUG(
6290 dbgs() << "Dropping dbg.value: expression is entry_value but "
6291 "couldn't find an associated register for the Argument\n");
6292 return true;
6293 }
6294 Register ArgVReg = ArgIt->getSecond();
6295
6296 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6297 if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6298 SDDbgValue *SDV = DAG.getVRegDbgValue(
6299 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6300 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6301 return true;
6302 }
6303 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6304 "couldn't find a physical register\n");
6305 return true;
6306 }
6307
6308 /// Lower the call to the specified intrinsic function.
visitConvergenceControl(const CallInst & I,unsigned Intrinsic)6309 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6310 unsigned Intrinsic) {
6311 SDLoc sdl = getCurSDLoc();
6312 switch (Intrinsic) {
6313 case Intrinsic::experimental_convergence_anchor:
6314 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6315 break;
6316 case Intrinsic::experimental_convergence_entry:
6317 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6318 break;
6319 case Intrinsic::experimental_convergence_loop: {
6320 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6321 auto *Token = Bundle->Inputs[0].get();
6322 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6323 getValue(Token)));
6324 break;
6325 }
6326 }
6327 }
6328
visitVectorHistogram(const CallInst & I,unsigned IntrinsicID)6329 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6330 unsigned IntrinsicID) {
6331 // For now, we're only lowering an 'add' histogram.
6332 // We can add others later, e.g. saturating adds, min/max.
6333 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6334 "Tried to lower unsupported histogram type");
6335 SDLoc sdl = getCurSDLoc();
6336 Value *Ptr = I.getOperand(0);
6337 SDValue Inc = getValue(I.getOperand(1));
6338 SDValue Mask = getValue(I.getOperand(2));
6339
6340 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6341 DataLayout TargetDL = DAG.getDataLayout();
6342 EVT VT = Inc.getValueType();
6343 Align Alignment = DAG.getEVTAlign(VT);
6344
6345 const MDNode *Ranges = getRangeMetadata(I);
6346
6347 SDValue Root = DAG.getRoot();
6348 SDValue Base;
6349 SDValue Index;
6350 ISD::MemIndexType IndexType;
6351 SDValue Scale;
6352 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
6353 I.getParent(), VT.getScalarStoreSize());
6354
6355 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6356
6357 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6358 MachinePointerInfo(AS),
6359 MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
6360 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6361
6362 if (!UniformBase) {
6363 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6364 Index = getValue(Ptr);
6365 IndexType = ISD::SIGNED_SCALED;
6366 Scale =
6367 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6368 }
6369
6370 EVT IdxVT = Index.getValueType();
6371 EVT EltTy = IdxVT.getVectorElementType();
6372 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6373 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6374 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6375 }
6376
6377 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6378
6379 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6380 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6381 Ops, MMO, IndexType);
6382
6383 setValue(&I, Histogram);
6384 DAG.setRoot(Histogram);
6385 }
6386
6387 /// Lower the call to the specified intrinsic function.
visitIntrinsicCall(const CallInst & I,unsigned Intrinsic)6388 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6389 unsigned Intrinsic) {
6390 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6391 SDLoc sdl = getCurSDLoc();
6392 DebugLoc dl = getCurDebugLoc();
6393 SDValue Res;
6394
6395 SDNodeFlags Flags;
6396 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6397 Flags.copyFMF(*FPOp);
6398
6399 switch (Intrinsic) {
6400 default:
6401 // By default, turn this into a target intrinsic node.
6402 visitTargetIntrinsic(I, Intrinsic);
6403 return;
6404 case Intrinsic::vscale: {
6405 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6406 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6407 return;
6408 }
6409 case Intrinsic::vastart: visitVAStart(I); return;
6410 case Intrinsic::vaend: visitVAEnd(I); return;
6411 case Intrinsic::vacopy: visitVACopy(I); return;
6412 case Intrinsic::returnaddress:
6413 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6414 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6415 getValue(I.getArgOperand(0))));
6416 return;
6417 case Intrinsic::addressofreturnaddress:
6418 setValue(&I,
6419 DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6420 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6421 return;
6422 case Intrinsic::sponentry:
6423 setValue(&I,
6424 DAG.getNode(ISD::SPONENTRY, sdl,
6425 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6426 return;
6427 case Intrinsic::frameaddress:
6428 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6429 TLI.getFrameIndexTy(DAG.getDataLayout()),
6430 getValue(I.getArgOperand(0))));
6431 return;
6432 case Intrinsic::read_volatile_register:
6433 case Intrinsic::read_register: {
6434 Value *Reg = I.getArgOperand(0);
6435 SDValue Chain = getRoot();
6436 SDValue RegName =
6437 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6438 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6439 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6440 DAG.getVTList(VT, MVT::Other), Chain, RegName);
6441 setValue(&I, Res);
6442 DAG.setRoot(Res.getValue(1));
6443 return;
6444 }
6445 case Intrinsic::write_register: {
6446 Value *Reg = I.getArgOperand(0);
6447 Value *RegValue = I.getArgOperand(1);
6448 SDValue Chain = getRoot();
6449 SDValue RegName =
6450 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6451 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6452 RegName, getValue(RegValue)));
6453 return;
6454 }
6455 case Intrinsic::memcpy: {
6456 const auto &MCI = cast<MemCpyInst>(I);
6457 SDValue Op1 = getValue(I.getArgOperand(0));
6458 SDValue Op2 = getValue(I.getArgOperand(1));
6459 SDValue Op3 = getValue(I.getArgOperand(2));
6460 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6461 Align DstAlign = MCI.getDestAlign().valueOrOne();
6462 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6463 Align Alignment = std::min(DstAlign, SrcAlign);
6464 bool isVol = MCI.isVolatile();
6465 // FIXME: Support passing different dest/src alignments to the memcpy DAG
6466 // node.
6467 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6468 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6469 /* AlwaysInline */ false, &I, std::nullopt,
6470 MachinePointerInfo(I.getArgOperand(0)),
6471 MachinePointerInfo(I.getArgOperand(1)),
6472 I.getAAMetadata(), AA);
6473 updateDAGForMaybeTailCall(MC);
6474 return;
6475 }
6476 case Intrinsic::memcpy_inline: {
6477 const auto &MCI = cast<MemCpyInlineInst>(I);
6478 SDValue Dst = getValue(I.getArgOperand(0));
6479 SDValue Src = getValue(I.getArgOperand(1));
6480 SDValue Size = getValue(I.getArgOperand(2));
6481 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6482 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6483 Align DstAlign = MCI.getDestAlign().valueOrOne();
6484 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6485 Align Alignment = std::min(DstAlign, SrcAlign);
6486 bool isVol = MCI.isVolatile();
6487 // FIXME: Support passing different dest/src alignments to the memcpy DAG
6488 // node.
6489 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6490 /* AlwaysInline */ true, &I, std::nullopt,
6491 MachinePointerInfo(I.getArgOperand(0)),
6492 MachinePointerInfo(I.getArgOperand(1)),
6493 I.getAAMetadata(), AA);
6494 updateDAGForMaybeTailCall(MC);
6495 return;
6496 }
6497 case Intrinsic::memset: {
6498 const auto &MSI = cast<MemSetInst>(I);
6499 SDValue Op1 = getValue(I.getArgOperand(0));
6500 SDValue Op2 = getValue(I.getArgOperand(1));
6501 SDValue Op3 = getValue(I.getArgOperand(2));
6502 // @llvm.memset defines 0 and 1 to both mean no alignment.
6503 Align Alignment = MSI.getDestAlign().valueOrOne();
6504 bool isVol = MSI.isVolatile();
6505 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6506 SDValue MS = DAG.getMemset(
6507 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6508 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6509 updateDAGForMaybeTailCall(MS);
6510 return;
6511 }
6512 case Intrinsic::memset_inline: {
6513 const auto &MSII = cast<MemSetInlineInst>(I);
6514 SDValue Dst = getValue(I.getArgOperand(0));
6515 SDValue Value = getValue(I.getArgOperand(1));
6516 SDValue Size = getValue(I.getArgOperand(2));
6517 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6518 // @llvm.memset defines 0 and 1 to both mean no alignment.
6519 Align DstAlign = MSII.getDestAlign().valueOrOne();
6520 bool isVol = MSII.isVolatile();
6521 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6522 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6523 /* AlwaysInline */ true, &I,
6524 MachinePointerInfo(I.getArgOperand(0)),
6525 I.getAAMetadata());
6526 updateDAGForMaybeTailCall(MC);
6527 return;
6528 }
6529 case Intrinsic::memmove: {
6530 const auto &MMI = cast<MemMoveInst>(I);
6531 SDValue Op1 = getValue(I.getArgOperand(0));
6532 SDValue Op2 = getValue(I.getArgOperand(1));
6533 SDValue Op3 = getValue(I.getArgOperand(2));
6534 // @llvm.memmove defines 0 and 1 to both mean no alignment.
6535 Align DstAlign = MMI.getDestAlign().valueOrOne();
6536 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6537 Align Alignment = std::min(DstAlign, SrcAlign);
6538 bool isVol = MMI.isVolatile();
6539 // FIXME: Support passing different dest/src alignments to the memmove DAG
6540 // node.
6541 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6542 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6543 /* OverrideTailCall */ std::nullopt,
6544 MachinePointerInfo(I.getArgOperand(0)),
6545 MachinePointerInfo(I.getArgOperand(1)),
6546 I.getAAMetadata(), AA);
6547 updateDAGForMaybeTailCall(MM);
6548 return;
6549 }
6550 case Intrinsic::memcpy_element_unordered_atomic: {
6551 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6552 SDValue Dst = getValue(MI.getRawDest());
6553 SDValue Src = getValue(MI.getRawSource());
6554 SDValue Length = getValue(MI.getLength());
6555
6556 Type *LengthTy = MI.getLength()->getType();
6557 unsigned ElemSz = MI.getElementSizeInBytes();
6558 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6559 SDValue MC =
6560 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6561 isTC, MachinePointerInfo(MI.getRawDest()),
6562 MachinePointerInfo(MI.getRawSource()));
6563 updateDAGForMaybeTailCall(MC);
6564 return;
6565 }
6566 case Intrinsic::memmove_element_unordered_atomic: {
6567 auto &MI = cast<AtomicMemMoveInst>(I);
6568 SDValue Dst = getValue(MI.getRawDest());
6569 SDValue Src = getValue(MI.getRawSource());
6570 SDValue Length = getValue(MI.getLength());
6571
6572 Type *LengthTy = MI.getLength()->getType();
6573 unsigned ElemSz = MI.getElementSizeInBytes();
6574 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6575 SDValue MC =
6576 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6577 isTC, MachinePointerInfo(MI.getRawDest()),
6578 MachinePointerInfo(MI.getRawSource()));
6579 updateDAGForMaybeTailCall(MC);
6580 return;
6581 }
6582 case Intrinsic::memset_element_unordered_atomic: {
6583 auto &MI = cast<AtomicMemSetInst>(I);
6584 SDValue Dst = getValue(MI.getRawDest());
6585 SDValue Val = getValue(MI.getValue());
6586 SDValue Length = getValue(MI.getLength());
6587
6588 Type *LengthTy = MI.getLength()->getType();
6589 unsigned ElemSz = MI.getElementSizeInBytes();
6590 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6591 SDValue MC =
6592 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6593 isTC, MachinePointerInfo(MI.getRawDest()));
6594 updateDAGForMaybeTailCall(MC);
6595 return;
6596 }
6597 case Intrinsic::call_preallocated_setup: {
6598 const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6599 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6600 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6601 getRoot(), SrcValue);
6602 setValue(&I, Res);
6603 DAG.setRoot(Res);
6604 return;
6605 }
6606 case Intrinsic::call_preallocated_arg: {
6607 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6608 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6609 SDValue Ops[3];
6610 Ops[0] = getRoot();
6611 Ops[1] = SrcValue;
6612 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6613 MVT::i32); // arg index
6614 SDValue Res = DAG.getNode(
6615 ISD::PREALLOCATED_ARG, sdl,
6616 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6617 setValue(&I, Res);
6618 DAG.setRoot(Res.getValue(1));
6619 return;
6620 }
6621 case Intrinsic::dbg_declare: {
6622 const auto &DI = cast<DbgDeclareInst>(I);
6623 // Debug intrinsics are handled separately in assignment tracking mode.
6624 // Some intrinsics are handled right after Argument lowering.
6625 if (AssignmentTrackingEnabled ||
6626 FuncInfo.PreprocessedDbgDeclares.count(&DI))
6627 return;
6628 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6629 DILocalVariable *Variable = DI.getVariable();
6630 DIExpression *Expression = DI.getExpression();
6631 dropDanglingDebugInfo(Variable, Expression);
6632 // Assume dbg.declare can not currently use DIArgList, i.e.
6633 // it is non-variadic.
6634 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6635 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6636 DI.getDebugLoc());
6637 return;
6638 }
6639 case Intrinsic::dbg_label: {
6640 const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6641 DILabel *Label = DI.getLabel();
6642 assert(Label && "Missing label");
6643
6644 SDDbgLabel *SDV;
6645 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6646 DAG.AddDbgLabel(SDV);
6647 return;
6648 }
6649 case Intrinsic::dbg_assign: {
6650 // Debug intrinsics are handled separately in assignment tracking mode.
6651 if (AssignmentTrackingEnabled)
6652 return;
6653 // If assignment tracking hasn't been enabled then fall through and treat
6654 // the dbg.assign as a dbg.value.
6655 [[fallthrough]];
6656 }
6657 case Intrinsic::dbg_value: {
6658 // Debug intrinsics are handled separately in assignment tracking mode.
6659 if (AssignmentTrackingEnabled)
6660 return;
6661 const DbgValueInst &DI = cast<DbgValueInst>(I);
6662 assert(DI.getVariable() && "Missing variable");
6663
6664 DILocalVariable *Variable = DI.getVariable();
6665 DIExpression *Expression = DI.getExpression();
6666 dropDanglingDebugInfo(Variable, Expression);
6667
6668 if (DI.isKillLocation()) {
6669 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6670 return;
6671 }
6672
6673 SmallVector<Value *, 4> Values(DI.getValues());
6674 if (Values.empty())
6675 return;
6676
6677 bool IsVariadic = DI.hasArgList();
6678 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6679 SDNodeOrder, IsVariadic))
6680 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6681 DI.getDebugLoc(), SDNodeOrder);
6682 return;
6683 }
6684
6685 case Intrinsic::eh_typeid_for: {
6686 // Find the type id for the given typeinfo.
6687 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6688 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6689 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6690 setValue(&I, Res);
6691 return;
6692 }
6693
6694 case Intrinsic::eh_return_i32:
6695 case Intrinsic::eh_return_i64:
6696 DAG.getMachineFunction().setCallsEHReturn(true);
6697 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6698 MVT::Other,
6699 getControlRoot(),
6700 getValue(I.getArgOperand(0)),
6701 getValue(I.getArgOperand(1))));
6702 return;
6703 case Intrinsic::eh_unwind_init:
6704 DAG.getMachineFunction().setCallsUnwindInit(true);
6705 return;
6706 case Intrinsic::eh_dwarf_cfa:
6707 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6708 TLI.getPointerTy(DAG.getDataLayout()),
6709 getValue(I.getArgOperand(0))));
6710 return;
6711 case Intrinsic::eh_sjlj_callsite: {
6712 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6713 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6714 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6715
6716 MMI.setCurrentCallSite(CI->getZExtValue());
6717 return;
6718 }
6719 case Intrinsic::eh_sjlj_functioncontext: {
6720 // Get and store the index of the function context.
6721 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6722 AllocaInst *FnCtx =
6723 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6724 int FI = FuncInfo.StaticAllocaMap[FnCtx];
6725 MFI.setFunctionContextIndex(FI);
6726 return;
6727 }
6728 case Intrinsic::eh_sjlj_setjmp: {
6729 SDValue Ops[2];
6730 Ops[0] = getRoot();
6731 Ops[1] = getValue(I.getArgOperand(0));
6732 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6733 DAG.getVTList(MVT::i32, MVT::Other), Ops);
6734 setValue(&I, Op.getValue(0));
6735 DAG.setRoot(Op.getValue(1));
6736 return;
6737 }
6738 case Intrinsic::eh_sjlj_longjmp:
6739 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6740 getRoot(), getValue(I.getArgOperand(0))));
6741 return;
6742 case Intrinsic::eh_sjlj_setup_dispatch:
6743 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6744 getRoot()));
6745 return;
6746 case Intrinsic::masked_gather:
6747 visitMaskedGather(I);
6748 return;
6749 case Intrinsic::masked_load:
6750 visitMaskedLoad(I);
6751 return;
6752 case Intrinsic::masked_scatter:
6753 visitMaskedScatter(I);
6754 return;
6755 case Intrinsic::masked_store:
6756 visitMaskedStore(I);
6757 return;
6758 case Intrinsic::masked_expandload:
6759 visitMaskedLoad(I, true /* IsExpanding */);
6760 return;
6761 case Intrinsic::masked_compressstore:
6762 visitMaskedStore(I, true /* IsCompressing */);
6763 return;
6764 case Intrinsic::powi:
6765 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6766 getValue(I.getArgOperand(1)), DAG));
6767 return;
6768 case Intrinsic::log:
6769 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6770 return;
6771 case Intrinsic::log2:
6772 setValue(&I,
6773 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6774 return;
6775 case Intrinsic::log10:
6776 setValue(&I,
6777 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6778 return;
6779 case Intrinsic::exp:
6780 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6781 return;
6782 case Intrinsic::exp2:
6783 setValue(&I,
6784 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6785 return;
6786 case Intrinsic::pow:
6787 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6788 getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6789 return;
6790 case Intrinsic::sqrt:
6791 case Intrinsic::fabs:
6792 case Intrinsic::sin:
6793 case Intrinsic::cos:
6794 case Intrinsic::tan:
6795 case Intrinsic::asin:
6796 case Intrinsic::acos:
6797 case Intrinsic::atan:
6798 case Intrinsic::sinh:
6799 case Intrinsic::cosh:
6800 case Intrinsic::tanh:
6801 case Intrinsic::exp10:
6802 case Intrinsic::floor:
6803 case Intrinsic::ceil:
6804 case Intrinsic::trunc:
6805 case Intrinsic::rint:
6806 case Intrinsic::nearbyint:
6807 case Intrinsic::round:
6808 case Intrinsic::roundeven:
6809 case Intrinsic::canonicalize: {
6810 unsigned Opcode;
6811 // clang-format off
6812 switch (Intrinsic) {
6813 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6814 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6815 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6816 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6817 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6818 case Intrinsic::tan: Opcode = ISD::FTAN; break;
6819 case Intrinsic::asin: Opcode = ISD::FASIN; break;
6820 case Intrinsic::acos: Opcode = ISD::FACOS; break;
6821 case Intrinsic::atan: Opcode = ISD::FATAN; break;
6822 case Intrinsic::sinh: Opcode = ISD::FSINH; break;
6823 case Intrinsic::cosh: Opcode = ISD::FCOSH; break;
6824 case Intrinsic::tanh: Opcode = ISD::FTANH; break;
6825 case Intrinsic::exp10: Opcode = ISD::FEXP10; break;
6826 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6827 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6828 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6829 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6830 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6831 case Intrinsic::round: Opcode = ISD::FROUND; break;
6832 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6833 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6834 }
6835 // clang-format on
6836
6837 setValue(&I, DAG.getNode(Opcode, sdl,
6838 getValue(I.getArgOperand(0)).getValueType(),
6839 getValue(I.getArgOperand(0)), Flags));
6840 return;
6841 }
6842 case Intrinsic::lround:
6843 case Intrinsic::llround:
6844 case Intrinsic::lrint:
6845 case Intrinsic::llrint: {
6846 unsigned Opcode;
6847 // clang-format off
6848 switch (Intrinsic) {
6849 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6850 case Intrinsic::lround: Opcode = ISD::LROUND; break;
6851 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6852 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
6853 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
6854 }
6855 // clang-format on
6856
6857 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6858 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6859 getValue(I.getArgOperand(0))));
6860 return;
6861 }
6862 case Intrinsic::minnum:
6863 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6864 getValue(I.getArgOperand(0)).getValueType(),
6865 getValue(I.getArgOperand(0)),
6866 getValue(I.getArgOperand(1)), Flags));
6867 return;
6868 case Intrinsic::maxnum:
6869 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6870 getValue(I.getArgOperand(0)).getValueType(),
6871 getValue(I.getArgOperand(0)),
6872 getValue(I.getArgOperand(1)), Flags));
6873 return;
6874 case Intrinsic::minimum:
6875 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6876 getValue(I.getArgOperand(0)).getValueType(),
6877 getValue(I.getArgOperand(0)),
6878 getValue(I.getArgOperand(1)), Flags));
6879 return;
6880 case Intrinsic::maximum:
6881 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6882 getValue(I.getArgOperand(0)).getValueType(),
6883 getValue(I.getArgOperand(0)),
6884 getValue(I.getArgOperand(1)), Flags));
6885 return;
6886 case Intrinsic::copysign:
6887 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6888 getValue(I.getArgOperand(0)).getValueType(),
6889 getValue(I.getArgOperand(0)),
6890 getValue(I.getArgOperand(1)), Flags));
6891 return;
6892 case Intrinsic::ldexp:
6893 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6894 getValue(I.getArgOperand(0)).getValueType(),
6895 getValue(I.getArgOperand(0)),
6896 getValue(I.getArgOperand(1)), Flags));
6897 return;
6898 case Intrinsic::frexp: {
6899 SmallVector<EVT, 2> ValueVTs;
6900 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6901 SDVTList VTs = DAG.getVTList(ValueVTs);
6902 setValue(&I,
6903 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6904 return;
6905 }
6906 case Intrinsic::arithmetic_fence: {
6907 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6908 getValue(I.getArgOperand(0)).getValueType(),
6909 getValue(I.getArgOperand(0)), Flags));
6910 return;
6911 }
6912 case Intrinsic::fma:
6913 setValue(&I, DAG.getNode(
6914 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6915 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6916 getValue(I.getArgOperand(2)), Flags));
6917 return;
6918 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
6919 case Intrinsic::INTRINSIC:
6920 #include "llvm/IR/ConstrainedOps.def"
6921 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6922 return;
6923 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6924 #include "llvm/IR/VPIntrinsics.def"
6925 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6926 return;
6927 case Intrinsic::fptrunc_round: {
6928 // Get the last argument, the metadata and convert it to an integer in the
6929 // call
6930 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6931 std::optional<RoundingMode> RoundMode =
6932 convertStrToRoundingMode(cast<MDString>(MD)->getString());
6933
6934 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6935
6936 // Propagate fast-math-flags from IR to node(s).
6937 SDNodeFlags Flags;
6938 Flags.copyFMF(*cast<FPMathOperator>(&I));
6939 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6940
6941 SDValue Result;
6942 Result = DAG.getNode(
6943 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6944 DAG.getTargetConstant((int)*RoundMode, sdl,
6945 TLI.getPointerTy(DAG.getDataLayout())));
6946 setValue(&I, Result);
6947
6948 return;
6949 }
6950 case Intrinsic::fmuladd: {
6951 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6952 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6953 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6954 setValue(&I, DAG.getNode(ISD::FMA, sdl,
6955 getValue(I.getArgOperand(0)).getValueType(),
6956 getValue(I.getArgOperand(0)),
6957 getValue(I.getArgOperand(1)),
6958 getValue(I.getArgOperand(2)), Flags));
6959 } else {
6960 // TODO: Intrinsic calls should have fast-math-flags.
6961 SDValue Mul = DAG.getNode(
6962 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6963 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6964 SDValue Add = DAG.getNode(ISD::FADD, sdl,
6965 getValue(I.getArgOperand(0)).getValueType(),
6966 Mul, getValue(I.getArgOperand(2)), Flags);
6967 setValue(&I, Add);
6968 }
6969 return;
6970 }
6971 case Intrinsic::convert_to_fp16:
6972 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6973 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6974 getValue(I.getArgOperand(0)),
6975 DAG.getTargetConstant(0, sdl,
6976 MVT::i32))));
6977 return;
6978 case Intrinsic::convert_from_fp16:
6979 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6980 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6981 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6982 getValue(I.getArgOperand(0)))));
6983 return;
6984 case Intrinsic::fptosi_sat: {
6985 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6986 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6987 getValue(I.getArgOperand(0)),
6988 DAG.getValueType(VT.getScalarType())));
6989 return;
6990 }
6991 case Intrinsic::fptoui_sat: {
6992 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6993 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6994 getValue(I.getArgOperand(0)),
6995 DAG.getValueType(VT.getScalarType())));
6996 return;
6997 }
6998 case Intrinsic::set_rounding:
6999 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7000 {getRoot(), getValue(I.getArgOperand(0))});
7001 setValue(&I, Res);
7002 DAG.setRoot(Res.getValue(0));
7003 return;
7004 case Intrinsic::is_fpclass: {
7005 const DataLayout DLayout = DAG.getDataLayout();
7006 EVT DestVT = TLI.getValueType(DLayout, I.getType());
7007 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7008 FPClassTest Test = static_cast<FPClassTest>(
7009 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7010 MachineFunction &MF = DAG.getMachineFunction();
7011 const Function &F = MF.getFunction();
7012 SDValue Op = getValue(I.getArgOperand(0));
7013 SDNodeFlags Flags;
7014 Flags.setNoFPExcept(
7015 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7016 // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7017 // expansion can use illegal types. Making expansion early allows
7018 // legalizing these types prior to selection.
7019 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
7020 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7021 setValue(&I, Result);
7022 return;
7023 }
7024
7025 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7026 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7027 setValue(&I, V);
7028 return;
7029 }
7030 case Intrinsic::get_fpenv: {
7031 const DataLayout DLayout = DAG.getDataLayout();
7032 EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7033 Align TempAlign = DAG.getEVTAlign(EnvVT);
7034 SDValue Chain = getRoot();
7035 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7036 // and temporary storage in stack.
7037 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7038 Res = DAG.getNode(
7039 ISD::GET_FPENV, sdl,
7040 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7041 MVT::Other),
7042 Chain);
7043 } else {
7044 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7045 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7046 auto MPI =
7047 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7048 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7049 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
7050 TempAlign);
7051 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7052 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7053 }
7054 setValue(&I, Res);
7055 DAG.setRoot(Res.getValue(1));
7056 return;
7057 }
7058 case Intrinsic::set_fpenv: {
7059 const DataLayout DLayout = DAG.getDataLayout();
7060 SDValue Env = getValue(I.getArgOperand(0));
7061 EVT EnvVT = Env.getValueType();
7062 Align TempAlign = DAG.getEVTAlign(EnvVT);
7063 SDValue Chain = getRoot();
7064 // If SET_FPENV is custom or legal, use it. Otherwise use loading
7065 // environment from memory.
7066 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7067 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7068 } else {
7069 // Allocate space in stack, copy environment bits into it and use this
7070 // memory in SET_FPENV_MEM.
7071 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7072 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7073 auto MPI =
7074 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7075 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7076 MachineMemOperand::MOStore);
7077 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7078 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
7079 TempAlign);
7080 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7081 }
7082 DAG.setRoot(Chain);
7083 return;
7084 }
7085 case Intrinsic::reset_fpenv:
7086 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7087 return;
7088 case Intrinsic::get_fpmode:
7089 Res = DAG.getNode(
7090 ISD::GET_FPMODE, sdl,
7091 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7092 MVT::Other),
7093 DAG.getRoot());
7094 setValue(&I, Res);
7095 DAG.setRoot(Res.getValue(1));
7096 return;
7097 case Intrinsic::set_fpmode:
7098 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7099 getValue(I.getArgOperand(0)));
7100 DAG.setRoot(Res);
7101 return;
7102 case Intrinsic::reset_fpmode: {
7103 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7104 DAG.setRoot(Res);
7105 return;
7106 }
7107 case Intrinsic::pcmarker: {
7108 SDValue Tmp = getValue(I.getArgOperand(0));
7109 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7110 return;
7111 }
7112 case Intrinsic::readcyclecounter: {
7113 SDValue Op = getRoot();
7114 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7115 DAG.getVTList(MVT::i64, MVT::Other), Op);
7116 setValue(&I, Res);
7117 DAG.setRoot(Res.getValue(1));
7118 return;
7119 }
7120 case Intrinsic::readsteadycounter: {
7121 SDValue Op = getRoot();
7122 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7123 DAG.getVTList(MVT::i64, MVT::Other), Op);
7124 setValue(&I, Res);
7125 DAG.setRoot(Res.getValue(1));
7126 return;
7127 }
7128 case Intrinsic::bitreverse:
7129 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7130 getValue(I.getArgOperand(0)).getValueType(),
7131 getValue(I.getArgOperand(0))));
7132 return;
7133 case Intrinsic::bswap:
7134 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7135 getValue(I.getArgOperand(0)).getValueType(),
7136 getValue(I.getArgOperand(0))));
7137 return;
7138 case Intrinsic::cttz: {
7139 SDValue Arg = getValue(I.getArgOperand(0));
7140 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7141 EVT Ty = Arg.getValueType();
7142 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7143 sdl, Ty, Arg));
7144 return;
7145 }
7146 case Intrinsic::ctlz: {
7147 SDValue Arg = getValue(I.getArgOperand(0));
7148 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7149 EVT Ty = Arg.getValueType();
7150 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7151 sdl, Ty, Arg));
7152 return;
7153 }
7154 case Intrinsic::ctpop: {
7155 SDValue Arg = getValue(I.getArgOperand(0));
7156 EVT Ty = Arg.getValueType();
7157 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7158 return;
7159 }
7160 case Intrinsic::fshl:
7161 case Intrinsic::fshr: {
7162 bool IsFSHL = Intrinsic == Intrinsic::fshl;
7163 SDValue X = getValue(I.getArgOperand(0));
7164 SDValue Y = getValue(I.getArgOperand(1));
7165 SDValue Z = getValue(I.getArgOperand(2));
7166 EVT VT = X.getValueType();
7167
7168 if (X == Y) {
7169 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7170 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7171 } else {
7172 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7173 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7174 }
7175 return;
7176 }
7177 case Intrinsic::sadd_sat: {
7178 SDValue Op1 = getValue(I.getArgOperand(0));
7179 SDValue Op2 = getValue(I.getArgOperand(1));
7180 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7181 return;
7182 }
7183 case Intrinsic::uadd_sat: {
7184 SDValue Op1 = getValue(I.getArgOperand(0));
7185 SDValue Op2 = getValue(I.getArgOperand(1));
7186 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7187 return;
7188 }
7189 case Intrinsic::ssub_sat: {
7190 SDValue Op1 = getValue(I.getArgOperand(0));
7191 SDValue Op2 = getValue(I.getArgOperand(1));
7192 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7193 return;
7194 }
7195 case Intrinsic::usub_sat: {
7196 SDValue Op1 = getValue(I.getArgOperand(0));
7197 SDValue Op2 = getValue(I.getArgOperand(1));
7198 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7199 return;
7200 }
7201 case Intrinsic::sshl_sat: {
7202 SDValue Op1 = getValue(I.getArgOperand(0));
7203 SDValue Op2 = getValue(I.getArgOperand(1));
7204 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7205 return;
7206 }
7207 case Intrinsic::ushl_sat: {
7208 SDValue Op1 = getValue(I.getArgOperand(0));
7209 SDValue Op2 = getValue(I.getArgOperand(1));
7210 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7211 return;
7212 }
7213 case Intrinsic::smul_fix:
7214 case Intrinsic::umul_fix:
7215 case Intrinsic::smul_fix_sat:
7216 case Intrinsic::umul_fix_sat: {
7217 SDValue Op1 = getValue(I.getArgOperand(0));
7218 SDValue Op2 = getValue(I.getArgOperand(1));
7219 SDValue Op3 = getValue(I.getArgOperand(2));
7220 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7221 Op1.getValueType(), Op1, Op2, Op3));
7222 return;
7223 }
7224 case Intrinsic::sdiv_fix:
7225 case Intrinsic::udiv_fix:
7226 case Intrinsic::sdiv_fix_sat:
7227 case Intrinsic::udiv_fix_sat: {
7228 SDValue Op1 = getValue(I.getArgOperand(0));
7229 SDValue Op2 = getValue(I.getArgOperand(1));
7230 SDValue Op3 = getValue(I.getArgOperand(2));
7231 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7232 Op1, Op2, Op3, DAG, TLI));
7233 return;
7234 }
7235 case Intrinsic::smax: {
7236 SDValue Op1 = getValue(I.getArgOperand(0));
7237 SDValue Op2 = getValue(I.getArgOperand(1));
7238 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7239 return;
7240 }
7241 case Intrinsic::smin: {
7242 SDValue Op1 = getValue(I.getArgOperand(0));
7243 SDValue Op2 = getValue(I.getArgOperand(1));
7244 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7245 return;
7246 }
7247 case Intrinsic::umax: {
7248 SDValue Op1 = getValue(I.getArgOperand(0));
7249 SDValue Op2 = getValue(I.getArgOperand(1));
7250 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7251 return;
7252 }
7253 case Intrinsic::umin: {
7254 SDValue Op1 = getValue(I.getArgOperand(0));
7255 SDValue Op2 = getValue(I.getArgOperand(1));
7256 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7257 return;
7258 }
7259 case Intrinsic::abs: {
7260 // TODO: Preserve "int min is poison" arg in SDAG?
7261 SDValue Op1 = getValue(I.getArgOperand(0));
7262 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7263 return;
7264 }
7265 case Intrinsic::scmp: {
7266 SDValue Op1 = getValue(I.getArgOperand(0));
7267 SDValue Op2 = getValue(I.getArgOperand(1));
7268 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7269 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7270 break;
7271 }
7272 case Intrinsic::ucmp: {
7273 SDValue Op1 = getValue(I.getArgOperand(0));
7274 SDValue Op2 = getValue(I.getArgOperand(1));
7275 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7276 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7277 break;
7278 }
7279 case Intrinsic::stacksave: {
7280 SDValue Op = getRoot();
7281 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7282 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7283 setValue(&I, Res);
7284 DAG.setRoot(Res.getValue(1));
7285 return;
7286 }
7287 case Intrinsic::stackrestore:
7288 Res = getValue(I.getArgOperand(0));
7289 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7290 return;
7291 case Intrinsic::get_dynamic_area_offset: {
7292 SDValue Op = getRoot();
7293 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7294 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7295 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7296 // target.
7297 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7298 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7299 " intrinsic!");
7300 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7301 Op);
7302 DAG.setRoot(Op);
7303 setValue(&I, Res);
7304 return;
7305 }
7306 case Intrinsic::stackguard: {
7307 MachineFunction &MF = DAG.getMachineFunction();
7308 const Module &M = *MF.getFunction().getParent();
7309 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7310 SDValue Chain = getRoot();
7311 if (TLI.useLoadStackGuardNode()) {
7312 Res = getLoadStackGuard(DAG, sdl, Chain);
7313 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7314 } else {
7315 const Value *Global = TLI.getSDagStackGuard(M);
7316 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7317 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7318 MachinePointerInfo(Global, 0), Align,
7319 MachineMemOperand::MOVolatile);
7320 }
7321 if (TLI.useStackGuardXorFP())
7322 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7323 DAG.setRoot(Chain);
7324 setValue(&I, Res);
7325 return;
7326 }
7327 case Intrinsic::stackprotector: {
7328 // Emit code into the DAG to store the stack guard onto the stack.
7329 MachineFunction &MF = DAG.getMachineFunction();
7330 MachineFrameInfo &MFI = MF.getFrameInfo();
7331 SDValue Src, Chain = getRoot();
7332
7333 if (TLI.useLoadStackGuardNode())
7334 Src = getLoadStackGuard(DAG, sdl, Chain);
7335 else
7336 Src = getValue(I.getArgOperand(0)); // The guard's value.
7337
7338 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7339
7340 int FI = FuncInfo.StaticAllocaMap[Slot];
7341 MFI.setStackProtectorIndex(FI);
7342 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7343
7344 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7345
7346 // Store the stack protector onto the stack.
7347 Res = DAG.getStore(
7348 Chain, sdl, Src, FIN,
7349 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7350 MaybeAlign(), MachineMemOperand::MOVolatile);
7351 setValue(&I, Res);
7352 DAG.setRoot(Res);
7353 return;
7354 }
7355 case Intrinsic::objectsize:
7356 llvm_unreachable("llvm.objectsize.* should have been lowered already");
7357
7358 case Intrinsic::is_constant:
7359 llvm_unreachable("llvm.is.constant.* should have been lowered already");
7360
7361 case Intrinsic::annotation:
7362 case Intrinsic::ptr_annotation:
7363 case Intrinsic::launder_invariant_group:
7364 case Intrinsic::strip_invariant_group:
7365 // Drop the intrinsic, but forward the value
7366 setValue(&I, getValue(I.getOperand(0)));
7367 return;
7368
7369 case Intrinsic::assume:
7370 case Intrinsic::experimental_noalias_scope_decl:
7371 case Intrinsic::var_annotation:
7372 case Intrinsic::sideeffect:
7373 // Discard annotate attributes, noalias scope declarations, assumptions, and
7374 // artificial side-effects.
7375 return;
7376
7377 case Intrinsic::codeview_annotation: {
7378 // Emit a label associated with this metadata.
7379 MachineFunction &MF = DAG.getMachineFunction();
7380 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7381 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7382 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7383 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7384 DAG.setRoot(Res);
7385 return;
7386 }
7387
7388 case Intrinsic::init_trampoline: {
7389 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7390
7391 SDValue Ops[6];
7392 Ops[0] = getRoot();
7393 Ops[1] = getValue(I.getArgOperand(0));
7394 Ops[2] = getValue(I.getArgOperand(1));
7395 Ops[3] = getValue(I.getArgOperand(2));
7396 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7397 Ops[5] = DAG.getSrcValue(F);
7398
7399 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7400
7401 DAG.setRoot(Res);
7402 return;
7403 }
7404 case Intrinsic::adjust_trampoline:
7405 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7406 TLI.getPointerTy(DAG.getDataLayout()),
7407 getValue(I.getArgOperand(0))));
7408 return;
7409 case Intrinsic::gcroot: {
7410 assert(DAG.getMachineFunction().getFunction().hasGC() &&
7411 "only valid in functions with gc specified, enforced by Verifier");
7412 assert(GFI && "implied by previous");
7413 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7414 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7415
7416 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7417 GFI->addStackRoot(FI->getIndex(), TypeMap);
7418 return;
7419 }
7420 case Intrinsic::gcread:
7421 case Intrinsic::gcwrite:
7422 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7423 case Intrinsic::get_rounding:
7424 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7425 setValue(&I, Res);
7426 DAG.setRoot(Res.getValue(1));
7427 return;
7428
7429 case Intrinsic::expect:
7430 // Just replace __builtin_expect(exp, c) with EXP.
7431 setValue(&I, getValue(I.getArgOperand(0)));
7432 return;
7433
7434 case Intrinsic::ubsantrap:
7435 case Intrinsic::debugtrap:
7436 case Intrinsic::trap: {
7437 StringRef TrapFuncName =
7438 I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7439 if (TrapFuncName.empty()) {
7440 switch (Intrinsic) {
7441 case Intrinsic::trap:
7442 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7443 break;
7444 case Intrinsic::debugtrap:
7445 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7446 break;
7447 case Intrinsic::ubsantrap:
7448 DAG.setRoot(DAG.getNode(
7449 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7450 DAG.getTargetConstant(
7451 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7452 MVT::i32)));
7453 break;
7454 default: llvm_unreachable("unknown trap intrinsic");
7455 }
7456 return;
7457 }
7458 TargetLowering::ArgListTy Args;
7459 if (Intrinsic == Intrinsic::ubsantrap) {
7460 Args.push_back(TargetLoweringBase::ArgListEntry());
7461 Args[0].Val = I.getArgOperand(0);
7462 Args[0].Node = getValue(Args[0].Val);
7463 Args[0].Ty = Args[0].Val->getType();
7464 }
7465
7466 TargetLowering::CallLoweringInfo CLI(DAG);
7467 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7468 CallingConv::C, I.getType(),
7469 DAG.getExternalSymbol(TrapFuncName.data(),
7470 TLI.getPointerTy(DAG.getDataLayout())),
7471 std::move(Args));
7472
7473 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7474 DAG.setRoot(Result.second);
7475 return;
7476 }
7477
7478 case Intrinsic::allow_runtime_check:
7479 case Intrinsic::allow_ubsan_check:
7480 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7481 return;
7482
7483 case Intrinsic::uadd_with_overflow:
7484 case Intrinsic::sadd_with_overflow:
7485 case Intrinsic::usub_with_overflow:
7486 case Intrinsic::ssub_with_overflow:
7487 case Intrinsic::umul_with_overflow:
7488 case Intrinsic::smul_with_overflow: {
7489 ISD::NodeType Op;
7490 switch (Intrinsic) {
7491 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7492 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7493 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7494 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7495 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7496 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7497 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7498 }
7499 SDValue Op1 = getValue(I.getArgOperand(0));
7500 SDValue Op2 = getValue(I.getArgOperand(1));
7501
7502 EVT ResultVT = Op1.getValueType();
7503 EVT OverflowVT = MVT::i1;
7504 if (ResultVT.isVector())
7505 OverflowVT = EVT::getVectorVT(
7506 *Context, OverflowVT, ResultVT.getVectorElementCount());
7507
7508 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7509 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7510 return;
7511 }
7512 case Intrinsic::prefetch: {
7513 SDValue Ops[5];
7514 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7515 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7516 Ops[0] = DAG.getRoot();
7517 Ops[1] = getValue(I.getArgOperand(0));
7518 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7519 MVT::i32);
7520 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7521 MVT::i32);
7522 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7523 MVT::i32);
7524 SDValue Result = DAG.getMemIntrinsicNode(
7525 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7526 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7527 /* align */ std::nullopt, Flags);
7528
7529 // Chain the prefetch in parallel with any pending loads, to stay out of
7530 // the way of later optimizations.
7531 PendingLoads.push_back(Result);
7532 Result = getRoot();
7533 DAG.setRoot(Result);
7534 return;
7535 }
7536 case Intrinsic::lifetime_start:
7537 case Intrinsic::lifetime_end: {
7538 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7539 // Stack coloring is not enabled in O0, discard region information.
7540 if (TM.getOptLevel() == CodeGenOptLevel::None)
7541 return;
7542
7543 const int64_t ObjectSize =
7544 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7545 Value *const ObjectPtr = I.getArgOperand(1);
7546 SmallVector<const Value *, 4> Allocas;
7547 getUnderlyingObjects(ObjectPtr, Allocas);
7548
7549 for (const Value *Alloca : Allocas) {
7550 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7551
7552 // Could not find an Alloca.
7553 if (!LifetimeObject)
7554 continue;
7555
7556 // First check that the Alloca is static, otherwise it won't have a
7557 // valid frame index.
7558 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7559 if (SI == FuncInfo.StaticAllocaMap.end())
7560 return;
7561
7562 const int FrameIndex = SI->second;
7563 int64_t Offset;
7564 if (GetPointerBaseWithConstantOffset(
7565 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7566 Offset = -1; // Cannot determine offset from alloca to lifetime object.
7567 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7568 Offset);
7569 DAG.setRoot(Res);
7570 }
7571 return;
7572 }
7573 case Intrinsic::pseudoprobe: {
7574 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7575 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7576 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7577 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7578 DAG.setRoot(Res);
7579 return;
7580 }
7581 case Intrinsic::invariant_start:
7582 // Discard region information.
7583 setValue(&I,
7584 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7585 return;
7586 case Intrinsic::invariant_end:
7587 // Discard region information.
7588 return;
7589 case Intrinsic::clear_cache: {
7590 SDValue InputChain = DAG.getRoot();
7591 SDValue StartVal = getValue(I.getArgOperand(0));
7592 SDValue EndVal = getValue(I.getArgOperand(1));
7593 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7594 {InputChain, StartVal, EndVal});
7595 setValue(&I, Res);
7596 DAG.setRoot(Res);
7597 return;
7598 }
7599 case Intrinsic::donothing:
7600 case Intrinsic::seh_try_begin:
7601 case Intrinsic::seh_scope_begin:
7602 case Intrinsic::seh_try_end:
7603 case Intrinsic::seh_scope_end:
7604 // ignore
7605 return;
7606 case Intrinsic::experimental_stackmap:
7607 visitStackmap(I);
7608 return;
7609 case Intrinsic::experimental_patchpoint_void:
7610 case Intrinsic::experimental_patchpoint:
7611 visitPatchpoint(I);
7612 return;
7613 case Intrinsic::experimental_gc_statepoint:
7614 LowerStatepoint(cast<GCStatepointInst>(I));
7615 return;
7616 case Intrinsic::experimental_gc_result:
7617 visitGCResult(cast<GCResultInst>(I));
7618 return;
7619 case Intrinsic::experimental_gc_relocate:
7620 visitGCRelocate(cast<GCRelocateInst>(I));
7621 return;
7622 case Intrinsic::instrprof_cover:
7623 llvm_unreachable("instrprof failed to lower a cover");
7624 case Intrinsic::instrprof_increment:
7625 llvm_unreachable("instrprof failed to lower an increment");
7626 case Intrinsic::instrprof_timestamp:
7627 llvm_unreachable("instrprof failed to lower a timestamp");
7628 case Intrinsic::instrprof_value_profile:
7629 llvm_unreachable("instrprof failed to lower a value profiling call");
7630 case Intrinsic::instrprof_mcdc_parameters:
7631 llvm_unreachable("instrprof failed to lower mcdc parameters");
7632 case Intrinsic::instrprof_mcdc_tvbitmap_update:
7633 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7634 case Intrinsic::localescape: {
7635 MachineFunction &MF = DAG.getMachineFunction();
7636 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7637
7638 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7639 // is the same on all targets.
7640 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7641 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7642 if (isa<ConstantPointerNull>(Arg))
7643 continue; // Skip null pointers. They represent a hole in index space.
7644 AllocaInst *Slot = cast<AllocaInst>(Arg);
7645 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7646 "can only escape static allocas");
7647 int FI = FuncInfo.StaticAllocaMap[Slot];
7648 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7649 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7650 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7651 TII->get(TargetOpcode::LOCAL_ESCAPE))
7652 .addSym(FrameAllocSym)
7653 .addFrameIndex(FI);
7654 }
7655
7656 return;
7657 }
7658
7659 case Intrinsic::localrecover: {
7660 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7661 MachineFunction &MF = DAG.getMachineFunction();
7662
7663 // Get the symbol that defines the frame offset.
7664 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7665 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7666 unsigned IdxVal =
7667 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7668 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7669 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7670
7671 Value *FP = I.getArgOperand(1);
7672 SDValue FPVal = getValue(FP);
7673 EVT PtrVT = FPVal.getValueType();
7674
7675 // Create a MCSymbol for the label to avoid any target lowering
7676 // that would make this PC relative.
7677 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7678 SDValue OffsetVal =
7679 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7680
7681 // Add the offset to the FP.
7682 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7683 setValue(&I, Add);
7684
7685 return;
7686 }
7687
7688 case Intrinsic::eh_exceptionpointer:
7689 case Intrinsic::eh_exceptioncode: {
7690 // Get the exception pointer vreg, copy from it, and resize it to fit.
7691 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7692 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7693 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7694 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7695 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7696 if (Intrinsic == Intrinsic::eh_exceptioncode)
7697 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7698 setValue(&I, N);
7699 return;
7700 }
7701 case Intrinsic::xray_customevent: {
7702 // Here we want to make sure that the intrinsic behaves as if it has a
7703 // specific calling convention.
7704 const auto &Triple = DAG.getTarget().getTargetTriple();
7705 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7706 return;
7707
7708 SmallVector<SDValue, 8> Ops;
7709
7710 // We want to say that we always want the arguments in registers.
7711 SDValue LogEntryVal = getValue(I.getArgOperand(0));
7712 SDValue StrSizeVal = getValue(I.getArgOperand(1));
7713 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7714 SDValue Chain = getRoot();
7715 Ops.push_back(LogEntryVal);
7716 Ops.push_back(StrSizeVal);
7717 Ops.push_back(Chain);
7718
7719 // We need to enforce the calling convention for the callsite, so that
7720 // argument ordering is enforced correctly, and that register allocation can
7721 // see that some registers may be assumed clobbered and have to preserve
7722 // them across calls to the intrinsic.
7723 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7724 sdl, NodeTys, Ops);
7725 SDValue patchableNode = SDValue(MN, 0);
7726 DAG.setRoot(patchableNode);
7727 setValue(&I, patchableNode);
7728 return;
7729 }
7730 case Intrinsic::xray_typedevent: {
7731 // Here we want to make sure that the intrinsic behaves as if it has a
7732 // specific calling convention.
7733 const auto &Triple = DAG.getTarget().getTargetTriple();
7734 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7735 return;
7736
7737 SmallVector<SDValue, 8> Ops;
7738
7739 // We want to say that we always want the arguments in registers.
7740 // It's unclear to me how manipulating the selection DAG here forces callers
7741 // to provide arguments in registers instead of on the stack.
7742 SDValue LogTypeId = getValue(I.getArgOperand(0));
7743 SDValue LogEntryVal = getValue(I.getArgOperand(1));
7744 SDValue StrSizeVal = getValue(I.getArgOperand(2));
7745 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7746 SDValue Chain = getRoot();
7747 Ops.push_back(LogTypeId);
7748 Ops.push_back(LogEntryVal);
7749 Ops.push_back(StrSizeVal);
7750 Ops.push_back(Chain);
7751
7752 // We need to enforce the calling convention for the callsite, so that
7753 // argument ordering is enforced correctly, and that register allocation can
7754 // see that some registers may be assumed clobbered and have to preserve
7755 // them across calls to the intrinsic.
7756 MachineSDNode *MN = DAG.getMachineNode(
7757 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7758 SDValue patchableNode = SDValue(MN, 0);
7759 DAG.setRoot(patchableNode);
7760 setValue(&I, patchableNode);
7761 return;
7762 }
7763 case Intrinsic::experimental_deoptimize:
7764 LowerDeoptimizeCall(&I);
7765 return;
7766 case Intrinsic::experimental_stepvector:
7767 visitStepVector(I);
7768 return;
7769 case Intrinsic::vector_reduce_fadd:
7770 case Intrinsic::vector_reduce_fmul:
7771 case Intrinsic::vector_reduce_add:
7772 case Intrinsic::vector_reduce_mul:
7773 case Intrinsic::vector_reduce_and:
7774 case Intrinsic::vector_reduce_or:
7775 case Intrinsic::vector_reduce_xor:
7776 case Intrinsic::vector_reduce_smax:
7777 case Intrinsic::vector_reduce_smin:
7778 case Intrinsic::vector_reduce_umax:
7779 case Intrinsic::vector_reduce_umin:
7780 case Intrinsic::vector_reduce_fmax:
7781 case Intrinsic::vector_reduce_fmin:
7782 case Intrinsic::vector_reduce_fmaximum:
7783 case Intrinsic::vector_reduce_fminimum:
7784 visitVectorReduce(I, Intrinsic);
7785 return;
7786
7787 case Intrinsic::icall_branch_funnel: {
7788 SmallVector<SDValue, 16> Ops;
7789 Ops.push_back(getValue(I.getArgOperand(0)));
7790
7791 int64_t Offset;
7792 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7793 I.getArgOperand(1), Offset, DAG.getDataLayout()));
7794 if (!Base)
7795 report_fatal_error(
7796 "llvm.icall.branch.funnel operand must be a GlobalValue");
7797 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7798
7799 struct BranchFunnelTarget {
7800 int64_t Offset;
7801 SDValue Target;
7802 };
7803 SmallVector<BranchFunnelTarget, 8> Targets;
7804
7805 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7806 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7807 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7808 if (ElemBase != Base)
7809 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7810 "to the same GlobalValue");
7811
7812 SDValue Val = getValue(I.getArgOperand(Op + 1));
7813 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7814 if (!GA)
7815 report_fatal_error(
7816 "llvm.icall.branch.funnel operand must be a GlobalValue");
7817 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7818 GA->getGlobal(), sdl, Val.getValueType(),
7819 GA->getOffset())});
7820 }
7821 llvm::sort(Targets,
7822 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7823 return T1.Offset < T2.Offset;
7824 });
7825
7826 for (auto &T : Targets) {
7827 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7828 Ops.push_back(T.Target);
7829 }
7830
7831 Ops.push_back(DAG.getRoot()); // Chain
7832 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7833 MVT::Other, Ops),
7834 0);
7835 DAG.setRoot(N);
7836 setValue(&I, N);
7837 HasTailCall = true;
7838 return;
7839 }
7840
7841 case Intrinsic::wasm_landingpad_index:
7842 // Information this intrinsic contained has been transferred to
7843 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7844 // delete it now.
7845 return;
7846
7847 case Intrinsic::aarch64_settag:
7848 case Intrinsic::aarch64_settag_zero: {
7849 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7850 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7851 SDValue Val = TSI.EmitTargetCodeForSetTag(
7852 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7853 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7854 ZeroMemory);
7855 DAG.setRoot(Val);
7856 setValue(&I, Val);
7857 return;
7858 }
7859 case Intrinsic::amdgcn_cs_chain: {
7860 assert(I.arg_size() == 5 && "Additional args not supported yet");
7861 assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7862 "Non-zero flags not supported yet");
7863
7864 // At this point we don't care if it's amdgpu_cs_chain or
7865 // amdgpu_cs_chain_preserve.
7866 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7867
7868 Type *RetTy = I.getType();
7869 assert(RetTy->isVoidTy() && "Should not return");
7870
7871 SDValue Callee = getValue(I.getOperand(0));
7872
7873 // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7874 // We'll also tack the value of the EXEC mask at the end.
7875 TargetLowering::ArgListTy Args;
7876 Args.reserve(3);
7877
7878 for (unsigned Idx : {2, 3, 1}) {
7879 TargetLowering::ArgListEntry Arg;
7880 Arg.Node = getValue(I.getOperand(Idx));
7881 Arg.Ty = I.getOperand(Idx)->getType();
7882 Arg.setAttributes(&I, Idx);
7883 Args.push_back(Arg);
7884 }
7885
7886 assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7887 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7888 Args[2].IsInReg = true; // EXEC should be inreg
7889
7890 TargetLowering::CallLoweringInfo CLI(DAG);
7891 CLI.setDebugLoc(getCurSDLoc())
7892 .setChain(getRoot())
7893 .setCallee(CC, RetTy, Callee, std::move(Args))
7894 .setNoReturn(true)
7895 .setTailCall(true)
7896 .setConvergent(I.isConvergent());
7897 CLI.CB = &I;
7898 std::pair<SDValue, SDValue> Result =
7899 lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7900 (void)Result;
7901 assert(!Result.first.getNode() && !Result.second.getNode() &&
7902 "Should've lowered as tail call");
7903
7904 HasTailCall = true;
7905 return;
7906 }
7907 case Intrinsic::ptrmask: {
7908 SDValue Ptr = getValue(I.getOperand(0));
7909 SDValue Mask = getValue(I.getOperand(1));
7910
7911 // On arm64_32, pointers are 32 bits when stored in memory, but
7912 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to
7913 // match the index type, but the pointer is 64 bits, so the the mask must be
7914 // zero-extended up to 64 bits to match the pointer.
7915 EVT PtrVT =
7916 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7917 EVT MemVT =
7918 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7919 assert(PtrVT == Ptr.getValueType());
7920 assert(MemVT == Mask.getValueType());
7921 if (MemVT != PtrVT)
7922 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
7923
7924 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7925 return;
7926 }
7927 case Intrinsic::threadlocal_address: {
7928 setValue(&I, getValue(I.getOperand(0)));
7929 return;
7930 }
7931 case Intrinsic::get_active_lane_mask: {
7932 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7933 SDValue Index = getValue(I.getOperand(0));
7934 EVT ElementVT = Index.getValueType();
7935
7936 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7937 visitTargetIntrinsic(I, Intrinsic);
7938 return;
7939 }
7940
7941 SDValue TripCount = getValue(I.getOperand(1));
7942 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7943 CCVT.getVectorElementCount());
7944
7945 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7946 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7947 SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7948 SDValue VectorInduction = DAG.getNode(
7949 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7950 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7951 VectorTripCount, ISD::CondCode::SETULT);
7952 setValue(&I, SetCC);
7953 return;
7954 }
7955 case Intrinsic::experimental_get_vector_length: {
7956 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7957 "Expected positive VF");
7958 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7959 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7960
7961 SDValue Count = getValue(I.getOperand(0));
7962 EVT CountVT = Count.getValueType();
7963
7964 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7965 visitTargetIntrinsic(I, Intrinsic);
7966 return;
7967 }
7968
7969 // Expand to a umin between the trip count and the maximum elements the type
7970 // can hold.
7971 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7972
7973 // Extend the trip count to at least the result VT.
7974 if (CountVT.bitsLT(VT)) {
7975 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7976 CountVT = VT;
7977 }
7978
7979 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7980 ElementCount::get(VF, IsScalable));
7981
7982 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7983 // Clip to the result type if needed.
7984 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7985
7986 setValue(&I, Trunc);
7987 return;
7988 }
7989 case Intrinsic::experimental_vector_partial_reduce_add: {
7990 SDValue OpNode = getValue(I.getOperand(1));
7991 EVT ReducedTy = EVT::getEVT(I.getType());
7992 EVT FullTy = OpNode.getValueType();
7993
7994 unsigned Stride = ReducedTy.getVectorMinNumElements();
7995 unsigned ScaleFactor = FullTy.getVectorMinNumElements() / Stride;
7996
7997 // Collect all of the subvectors
7998 std::deque<SDValue> Subvectors;
7999 Subvectors.push_back(getValue(I.getOperand(0)));
8000 for (unsigned i = 0; i < ScaleFactor; i++) {
8001 auto SourceIndex = DAG.getVectorIdxConstant(i * Stride, sdl);
8002 Subvectors.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ReducedTy,
8003 {OpNode, SourceIndex}));
8004 }
8005
8006 // Flatten the subvector tree
8007 while (Subvectors.size() > 1) {
8008 Subvectors.push_back(DAG.getNode(ISD::ADD, sdl, ReducedTy,
8009 {Subvectors[0], Subvectors[1]}));
8010 Subvectors.pop_front();
8011 Subvectors.pop_front();
8012 }
8013
8014 assert(Subvectors.size() == 1 &&
8015 "There should only be one subvector after tree flattening");
8016
8017 setValue(&I, Subvectors[0]);
8018 return;
8019 }
8020 case Intrinsic::experimental_cttz_elts: {
8021 auto DL = getCurSDLoc();
8022 SDValue Op = getValue(I.getOperand(0));
8023 EVT OpVT = Op.getValueType();
8024
8025 if (!TLI.shouldExpandCttzElements(OpVT)) {
8026 visitTargetIntrinsic(I, Intrinsic);
8027 return;
8028 }
8029
8030 if (OpVT.getScalarType() != MVT::i1) {
8031 // Compare the input vector elements to zero & use to count trailing zeros
8032 SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8033 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8034 OpVT.getVectorElementCount());
8035 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8036 }
8037
8038 // If the zero-is-poison flag is set, we can assume the upper limit
8039 // of the result is VF-1.
8040 bool ZeroIsPoison =
8041 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8042 ConstantRange VScaleRange(1, true); // Dummy value.
8043 if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8044 VScaleRange = getVScaleRange(I.getCaller(), 64);
8045 unsigned EltWidth = TLI.getBitWidthForCttzElements(
8046 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8047
8048 MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8049
8050 // Create the new vector type & get the vector length
8051 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8052 OpVT.getVectorElementCount());
8053
8054 SDValue VL =
8055 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8056
8057 SDValue StepVec = DAG.getStepVector(DL, NewVT);
8058 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8059 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8060 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8061 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8062 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8063 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8064
8065 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8066 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8067
8068 setValue(&I, Ret);
8069 return;
8070 }
8071 case Intrinsic::vector_insert: {
8072 SDValue Vec = getValue(I.getOperand(0));
8073 SDValue SubVec = getValue(I.getOperand(1));
8074 SDValue Index = getValue(I.getOperand(2));
8075
8076 // The intrinsic's index type is i64, but the SDNode requires an index type
8077 // suitable for the target. Convert the index as required.
8078 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8079 if (Index.getValueType() != VectorIdxTy)
8080 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8081
8082 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8083 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8084 Index));
8085 return;
8086 }
8087 case Intrinsic::vector_extract: {
8088 SDValue Vec = getValue(I.getOperand(0));
8089 SDValue Index = getValue(I.getOperand(1));
8090 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8091
8092 // The intrinsic's index type is i64, but the SDNode requires an index type
8093 // suitable for the target. Convert the index as required.
8094 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8095 if (Index.getValueType() != VectorIdxTy)
8096 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8097
8098 setValue(&I,
8099 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8100 return;
8101 }
8102 case Intrinsic::vector_reverse:
8103 visitVectorReverse(I);
8104 return;
8105 case Intrinsic::vector_splice:
8106 visitVectorSplice(I);
8107 return;
8108 case Intrinsic::callbr_landingpad:
8109 visitCallBrLandingPad(I);
8110 return;
8111 case Intrinsic::vector_interleave2:
8112 visitVectorInterleave(I);
8113 return;
8114 case Intrinsic::vector_deinterleave2:
8115 visitVectorDeinterleave(I);
8116 return;
8117 case Intrinsic::experimental_vector_compress:
8118 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8119 getValue(I.getArgOperand(0)).getValueType(),
8120 getValue(I.getArgOperand(0)),
8121 getValue(I.getArgOperand(1)),
8122 getValue(I.getArgOperand(2)), Flags));
8123 return;
8124 case Intrinsic::experimental_convergence_anchor:
8125 case Intrinsic::experimental_convergence_entry:
8126 case Intrinsic::experimental_convergence_loop:
8127 visitConvergenceControl(I, Intrinsic);
8128 return;
8129 case Intrinsic::experimental_vector_histogram_add: {
8130 visitVectorHistogram(I, Intrinsic);
8131 return;
8132 }
8133 }
8134 }
8135
visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic & FPI)8136 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8137 const ConstrainedFPIntrinsic &FPI) {
8138 SDLoc sdl = getCurSDLoc();
8139
8140 // We do not need to serialize constrained FP intrinsics against
8141 // each other or against (nonvolatile) loads, so they can be
8142 // chained like loads.
8143 SDValue Chain = DAG.getRoot();
8144 SmallVector<SDValue, 4> Opers;
8145 Opers.push_back(Chain);
8146 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8147 Opers.push_back(getValue(FPI.getArgOperand(I)));
8148
8149 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
8150 assert(Result.getNode()->getNumValues() == 2);
8151
8152 // Push node to the appropriate list so that future instructions can be
8153 // chained up correctly.
8154 SDValue OutChain = Result.getValue(1);
8155 switch (EB) {
8156 case fp::ExceptionBehavior::ebIgnore:
8157 // The only reason why ebIgnore nodes still need to be chained is that
8158 // they might depend on the current rounding mode, and therefore must
8159 // not be moved across instruction that may change that mode.
8160 [[fallthrough]];
8161 case fp::ExceptionBehavior::ebMayTrap:
8162 // These must not be moved across calls or instructions that may change
8163 // floating-point exception masks.
8164 PendingConstrainedFP.push_back(OutChain);
8165 break;
8166 case fp::ExceptionBehavior::ebStrict:
8167 // These must not be moved across calls or instructions that may change
8168 // floating-point exception masks or read floating-point exception flags.
8169 // In addition, they cannot be optimized out even if unused.
8170 PendingConstrainedFPStrict.push_back(OutChain);
8171 break;
8172 }
8173 };
8174
8175 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8176 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8177 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8178 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8179
8180 SDNodeFlags Flags;
8181 if (EB == fp::ExceptionBehavior::ebIgnore)
8182 Flags.setNoFPExcept(true);
8183
8184 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8185 Flags.copyFMF(*FPOp);
8186
8187 unsigned Opcode;
8188 switch (FPI.getIntrinsicID()) {
8189 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
8190 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8191 case Intrinsic::INTRINSIC: \
8192 Opcode = ISD::STRICT_##DAGN; \
8193 break;
8194 #include "llvm/IR/ConstrainedOps.def"
8195 case Intrinsic::experimental_constrained_fmuladd: {
8196 Opcode = ISD::STRICT_FMA;
8197 // Break fmuladd into fmul and fadd.
8198 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8199 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8200 Opers.pop_back();
8201 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8202 pushOutChain(Mul, EB);
8203 Opcode = ISD::STRICT_FADD;
8204 Opers.clear();
8205 Opers.push_back(Mul.getValue(1));
8206 Opers.push_back(Mul.getValue(0));
8207 Opers.push_back(getValue(FPI.getArgOperand(2)));
8208 }
8209 break;
8210 }
8211 }
8212
8213 // A few strict DAG nodes carry additional operands that are not
8214 // set up by the default code above.
8215 switch (Opcode) {
8216 default: break;
8217 case ISD::STRICT_FP_ROUND:
8218 Opers.push_back(
8219 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8220 break;
8221 case ISD::STRICT_FSETCC:
8222 case ISD::STRICT_FSETCCS: {
8223 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8224 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8225 if (TM.Options.NoNaNsFPMath)
8226 Condition = getFCmpCodeWithoutNaN(Condition);
8227 Opers.push_back(DAG.getCondCode(Condition));
8228 break;
8229 }
8230 }
8231
8232 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8233 pushOutChain(Result, EB);
8234
8235 SDValue FPResult = Result.getValue(0);
8236 setValue(&FPI, FPResult);
8237 }
8238
getISDForVPIntrinsic(const VPIntrinsic & VPIntrin)8239 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8240 std::optional<unsigned> ResOPC;
8241 switch (VPIntrin.getIntrinsicID()) {
8242 case Intrinsic::vp_ctlz: {
8243 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8244 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8245 break;
8246 }
8247 case Intrinsic::vp_cttz: {
8248 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8249 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8250 break;
8251 }
8252 case Intrinsic::vp_cttz_elts: {
8253 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8254 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8255 break;
8256 }
8257 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
8258 case Intrinsic::VPID: \
8259 ResOPC = ISD::VPSD; \
8260 break;
8261 #include "llvm/IR/VPIntrinsics.def"
8262 }
8263
8264 if (!ResOPC)
8265 llvm_unreachable(
8266 "Inconsistency: no SDNode available for this VPIntrinsic!");
8267
8268 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8269 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8270 if (VPIntrin.getFastMathFlags().allowReassoc())
8271 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8272 : ISD::VP_REDUCE_FMUL;
8273 }
8274
8275 return *ResOPC;
8276 }
8277
visitVPLoad(const VPIntrinsic & VPIntrin,EVT VT,const SmallVectorImpl<SDValue> & OpValues)8278 void SelectionDAGBuilder::visitVPLoad(
8279 const VPIntrinsic &VPIntrin, EVT VT,
8280 const SmallVectorImpl<SDValue> &OpValues) {
8281 SDLoc DL = getCurSDLoc();
8282 Value *PtrOperand = VPIntrin.getArgOperand(0);
8283 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8284 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8285 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8286 SDValue LD;
8287 // Do not serialize variable-length loads of constant memory with
8288 // anything.
8289 if (!Alignment)
8290 Alignment = DAG.getEVTAlign(VT);
8291 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8292 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8293 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8294 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8295 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8296 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8297 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8298 MMO, false /*IsExpanding */);
8299 if (AddToChain)
8300 PendingLoads.push_back(LD.getValue(1));
8301 setValue(&VPIntrin, LD);
8302 }
8303
visitVPGather(const VPIntrinsic & VPIntrin,EVT VT,const SmallVectorImpl<SDValue> & OpValues)8304 void SelectionDAGBuilder::visitVPGather(
8305 const VPIntrinsic &VPIntrin, EVT VT,
8306 const SmallVectorImpl<SDValue> &OpValues) {
8307 SDLoc DL = getCurSDLoc();
8308 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8309 Value *PtrOperand = VPIntrin.getArgOperand(0);
8310 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8311 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8312 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8313 SDValue LD;
8314 if (!Alignment)
8315 Alignment = DAG.getEVTAlign(VT.getScalarType());
8316 unsigned AS =
8317 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8318 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8319 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8320 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8321 SDValue Base, Index, Scale;
8322 ISD::MemIndexType IndexType;
8323 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8324 this, VPIntrin.getParent(),
8325 VT.getScalarStoreSize());
8326 if (!UniformBase) {
8327 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8328 Index = getValue(PtrOperand);
8329 IndexType = ISD::SIGNED_SCALED;
8330 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8331 }
8332 EVT IdxVT = Index.getValueType();
8333 EVT EltTy = IdxVT.getVectorElementType();
8334 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8335 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8336 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8337 }
8338 LD = DAG.getGatherVP(
8339 DAG.getVTList(VT, MVT::Other), VT, DL,
8340 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8341 IndexType);
8342 PendingLoads.push_back(LD.getValue(1));
8343 setValue(&VPIntrin, LD);
8344 }
8345
visitVPStore(const VPIntrinsic & VPIntrin,const SmallVectorImpl<SDValue> & OpValues)8346 void SelectionDAGBuilder::visitVPStore(
8347 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8348 SDLoc DL = getCurSDLoc();
8349 Value *PtrOperand = VPIntrin.getArgOperand(1);
8350 EVT VT = OpValues[0].getValueType();
8351 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8352 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8353 SDValue ST;
8354 if (!Alignment)
8355 Alignment = DAG.getEVTAlign(VT);
8356 SDValue Ptr = OpValues[1];
8357 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8358 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8359 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8360 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8361 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8362 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8363 /* IsTruncating */ false, /*IsCompressing*/ false);
8364 DAG.setRoot(ST);
8365 setValue(&VPIntrin, ST);
8366 }
8367
visitVPScatter(const VPIntrinsic & VPIntrin,const SmallVectorImpl<SDValue> & OpValues)8368 void SelectionDAGBuilder::visitVPScatter(
8369 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8370 SDLoc DL = getCurSDLoc();
8371 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8372 Value *PtrOperand = VPIntrin.getArgOperand(1);
8373 EVT VT = OpValues[0].getValueType();
8374 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8375 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8376 SDValue ST;
8377 if (!Alignment)
8378 Alignment = DAG.getEVTAlign(VT.getScalarType());
8379 unsigned AS =
8380 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8381 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8382 MachinePointerInfo(AS), MachineMemOperand::MOStore,
8383 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8384 SDValue Base, Index, Scale;
8385 ISD::MemIndexType IndexType;
8386 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8387 this, VPIntrin.getParent(),
8388 VT.getScalarStoreSize());
8389 if (!UniformBase) {
8390 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8391 Index = getValue(PtrOperand);
8392 IndexType = ISD::SIGNED_SCALED;
8393 Scale =
8394 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8395 }
8396 EVT IdxVT = Index.getValueType();
8397 EVT EltTy = IdxVT.getVectorElementType();
8398 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8399 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8400 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8401 }
8402 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8403 {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8404 OpValues[2], OpValues[3]},
8405 MMO, IndexType);
8406 DAG.setRoot(ST);
8407 setValue(&VPIntrin, ST);
8408 }
8409
visitVPStridedLoad(const VPIntrinsic & VPIntrin,EVT VT,const SmallVectorImpl<SDValue> & OpValues)8410 void SelectionDAGBuilder::visitVPStridedLoad(
8411 const VPIntrinsic &VPIntrin, EVT VT,
8412 const SmallVectorImpl<SDValue> &OpValues) {
8413 SDLoc DL = getCurSDLoc();
8414 Value *PtrOperand = VPIntrin.getArgOperand(0);
8415 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8416 if (!Alignment)
8417 Alignment = DAG.getEVTAlign(VT.getScalarType());
8418 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8419 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8420 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8421 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8422 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8423 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8424 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8425 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8426 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8427
8428 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8429 OpValues[2], OpValues[3], MMO,
8430 false /*IsExpanding*/);
8431
8432 if (AddToChain)
8433 PendingLoads.push_back(LD.getValue(1));
8434 setValue(&VPIntrin, LD);
8435 }
8436
visitVPStridedStore(const VPIntrinsic & VPIntrin,const SmallVectorImpl<SDValue> & OpValues)8437 void SelectionDAGBuilder::visitVPStridedStore(
8438 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8439 SDLoc DL = getCurSDLoc();
8440 Value *PtrOperand = VPIntrin.getArgOperand(1);
8441 EVT VT = OpValues[0].getValueType();
8442 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8443 if (!Alignment)
8444 Alignment = DAG.getEVTAlign(VT.getScalarType());
8445 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8446 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8447 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8448 MachinePointerInfo(AS), MachineMemOperand::MOStore,
8449 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8450
8451 SDValue ST = DAG.getStridedStoreVP(
8452 getMemoryRoot(), DL, OpValues[0], OpValues[1],
8453 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8454 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8455 /*IsCompressing*/ false);
8456
8457 DAG.setRoot(ST);
8458 setValue(&VPIntrin, ST);
8459 }
8460
visitVPCmp(const VPCmpIntrinsic & VPIntrin)8461 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8462 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8463 SDLoc DL = getCurSDLoc();
8464
8465 ISD::CondCode Condition;
8466 CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8467 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8468 if (IsFP) {
8469 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8470 // flags, but calls that don't return floating-point types can't be
8471 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8472 Condition = getFCmpCondCode(CondCode);
8473 if (TM.Options.NoNaNsFPMath)
8474 Condition = getFCmpCodeWithoutNaN(Condition);
8475 } else {
8476 Condition = getICmpCondCode(CondCode);
8477 }
8478
8479 SDValue Op1 = getValue(VPIntrin.getOperand(0));
8480 SDValue Op2 = getValue(VPIntrin.getOperand(1));
8481 // #2 is the condition code
8482 SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8483 SDValue EVL = getValue(VPIntrin.getOperand(4));
8484 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8485 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8486 "Unexpected target EVL type");
8487 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8488
8489 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8490 VPIntrin.getType());
8491 setValue(&VPIntrin,
8492 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8493 }
8494
visitVectorPredicationIntrinsic(const VPIntrinsic & VPIntrin)8495 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8496 const VPIntrinsic &VPIntrin) {
8497 SDLoc DL = getCurSDLoc();
8498 unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8499
8500 auto IID = VPIntrin.getIntrinsicID();
8501
8502 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8503 return visitVPCmp(*CmpI);
8504
8505 SmallVector<EVT, 4> ValueVTs;
8506 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8507 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8508 SDVTList VTs = DAG.getVTList(ValueVTs);
8509
8510 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8511
8512 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8513 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8514 "Unexpected target EVL type");
8515
8516 // Request operands.
8517 SmallVector<SDValue, 7> OpValues;
8518 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8519 auto Op = getValue(VPIntrin.getArgOperand(I));
8520 if (I == EVLParamPos)
8521 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8522 OpValues.push_back(Op);
8523 }
8524
8525 switch (Opcode) {
8526 default: {
8527 SDNodeFlags SDFlags;
8528 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8529 SDFlags.copyFMF(*FPMO);
8530 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8531 setValue(&VPIntrin, Result);
8532 break;
8533 }
8534 case ISD::VP_LOAD:
8535 visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8536 break;
8537 case ISD::VP_GATHER:
8538 visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8539 break;
8540 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8541 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8542 break;
8543 case ISD::VP_STORE:
8544 visitVPStore(VPIntrin, OpValues);
8545 break;
8546 case ISD::VP_SCATTER:
8547 visitVPScatter(VPIntrin, OpValues);
8548 break;
8549 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8550 visitVPStridedStore(VPIntrin, OpValues);
8551 break;
8552 case ISD::VP_FMULADD: {
8553 assert(OpValues.size() == 5 && "Unexpected number of operands");
8554 SDNodeFlags SDFlags;
8555 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8556 SDFlags.copyFMF(*FPMO);
8557 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8558 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8559 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8560 } else {
8561 SDValue Mul = DAG.getNode(
8562 ISD::VP_FMUL, DL, VTs,
8563 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8564 SDValue Add =
8565 DAG.getNode(ISD::VP_FADD, DL, VTs,
8566 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8567 setValue(&VPIntrin, Add);
8568 }
8569 break;
8570 }
8571 case ISD::VP_IS_FPCLASS: {
8572 const DataLayout DLayout = DAG.getDataLayout();
8573 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8574 auto Constant = OpValues[1]->getAsZExtVal();
8575 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8576 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8577 {OpValues[0], Check, OpValues[2], OpValues[3]});
8578 setValue(&VPIntrin, V);
8579 return;
8580 }
8581 case ISD::VP_INTTOPTR: {
8582 SDValue N = OpValues[0];
8583 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8584 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8585 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8586 OpValues[2]);
8587 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8588 OpValues[2]);
8589 setValue(&VPIntrin, N);
8590 break;
8591 }
8592 case ISD::VP_PTRTOINT: {
8593 SDValue N = OpValues[0];
8594 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8595 VPIntrin.getType());
8596 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8597 VPIntrin.getOperand(0)->getType());
8598 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8599 OpValues[2]);
8600 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8601 OpValues[2]);
8602 setValue(&VPIntrin, N);
8603 break;
8604 }
8605 case ISD::VP_ABS:
8606 case ISD::VP_CTLZ:
8607 case ISD::VP_CTLZ_ZERO_UNDEF:
8608 case ISD::VP_CTTZ:
8609 case ISD::VP_CTTZ_ZERO_UNDEF:
8610 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8611 case ISD::VP_CTTZ_ELTS: {
8612 SDValue Result =
8613 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8614 setValue(&VPIntrin, Result);
8615 break;
8616 }
8617 }
8618 }
8619
lowerStartEH(SDValue Chain,const BasicBlock * EHPadBB,MCSymbol * & BeginLabel)8620 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8621 const BasicBlock *EHPadBB,
8622 MCSymbol *&BeginLabel) {
8623 MachineFunction &MF = DAG.getMachineFunction();
8624 MachineModuleInfo &MMI = MF.getMMI();
8625
8626 // Insert a label before the invoke call to mark the try range. This can be
8627 // used to detect deletion of the invoke via the MachineModuleInfo.
8628 BeginLabel = MF.getContext().createTempSymbol();
8629
8630 // For SjLj, keep track of which landing pads go with which invokes
8631 // so as to maintain the ordering of pads in the LSDA.
8632 unsigned CallSiteIndex = MMI.getCurrentCallSite();
8633 if (CallSiteIndex) {
8634 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8635 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8636
8637 // Now that the call site is handled, stop tracking it.
8638 MMI.setCurrentCallSite(0);
8639 }
8640
8641 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8642 }
8643
lowerEndEH(SDValue Chain,const InvokeInst * II,const BasicBlock * EHPadBB,MCSymbol * BeginLabel)8644 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8645 const BasicBlock *EHPadBB,
8646 MCSymbol *BeginLabel) {
8647 assert(BeginLabel && "BeginLabel should've been set");
8648
8649 MachineFunction &MF = DAG.getMachineFunction();
8650
8651 // Insert a label at the end of the invoke call to mark the try range. This
8652 // can be used to detect deletion of the invoke via the MachineModuleInfo.
8653 MCSymbol *EndLabel = MF.getContext().createTempSymbol();
8654 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8655
8656 // Inform MachineModuleInfo of range.
8657 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8658 // There is a platform (e.g. wasm) that uses funclet style IR but does not
8659 // actually use outlined funclets and their LSDA info style.
8660 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8661 assert(II && "II should've been set");
8662 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8663 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8664 } else if (!isScopedEHPersonality(Pers)) {
8665 assert(EHPadBB);
8666 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8667 }
8668
8669 return Chain;
8670 }
8671
8672 std::pair<SDValue, SDValue>
lowerInvokable(TargetLowering::CallLoweringInfo & CLI,const BasicBlock * EHPadBB)8673 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8674 const BasicBlock *EHPadBB) {
8675 MCSymbol *BeginLabel = nullptr;
8676
8677 if (EHPadBB) {
8678 // Both PendingLoads and PendingExports must be flushed here;
8679 // this call might not return.
8680 (void)getRoot();
8681 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8682 CLI.setChain(getRoot());
8683 }
8684
8685 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8686 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8687
8688 assert((CLI.IsTailCall || Result.second.getNode()) &&
8689 "Non-null chain expected with non-tail call!");
8690 assert((Result.second.getNode() || !Result.first.getNode()) &&
8691 "Null value expected with tail call!");
8692
8693 if (!Result.second.getNode()) {
8694 // As a special case, a null chain means that a tail call has been emitted
8695 // and the DAG root is already updated.
8696 HasTailCall = true;
8697
8698 // Since there's no actual continuation from this block, nothing can be
8699 // relying on us setting vregs for them.
8700 PendingExports.clear();
8701 } else {
8702 DAG.setRoot(Result.second);
8703 }
8704
8705 if (EHPadBB) {
8706 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8707 BeginLabel));
8708 Result.second = getRoot();
8709 }
8710
8711 return Result;
8712 }
8713
LowerCallTo(const CallBase & CB,SDValue Callee,bool isTailCall,bool isMustTailCall,const BasicBlock * EHPadBB,const TargetLowering::PtrAuthInfo * PAI)8714 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8715 bool isTailCall, bool isMustTailCall,
8716 const BasicBlock *EHPadBB,
8717 const TargetLowering::PtrAuthInfo *PAI) {
8718 auto &DL = DAG.getDataLayout();
8719 FunctionType *FTy = CB.getFunctionType();
8720 Type *RetTy = CB.getType();
8721
8722 TargetLowering::ArgListTy Args;
8723 Args.reserve(CB.arg_size());
8724
8725 const Value *SwiftErrorVal = nullptr;
8726 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8727
8728 if (isTailCall) {
8729 // Avoid emitting tail calls in functions with the disable-tail-calls
8730 // attribute.
8731 auto *Caller = CB.getParent()->getParent();
8732 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8733 "true" && !isMustTailCall)
8734 isTailCall = false;
8735
8736 // We can't tail call inside a function with a swifterror argument. Lowering
8737 // does not support this yet. It would have to move into the swifterror
8738 // register before the call.
8739 if (TLI.supportSwiftError() &&
8740 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8741 isTailCall = false;
8742 }
8743
8744 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8745 TargetLowering::ArgListEntry Entry;
8746 const Value *V = *I;
8747
8748 // Skip empty types
8749 if (V->getType()->isEmptyTy())
8750 continue;
8751
8752 SDValue ArgNode = getValue(V);
8753 Entry.Node = ArgNode; Entry.Ty = V->getType();
8754
8755 Entry.setAttributes(&CB, I - CB.arg_begin());
8756
8757 // Use swifterror virtual register as input to the call.
8758 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8759 SwiftErrorVal = V;
8760 // We find the virtual register for the actual swifterror argument.
8761 // Instead of using the Value, we use the virtual register instead.
8762 Entry.Node =
8763 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8764 EVT(TLI.getPointerTy(DL)));
8765 }
8766
8767 Args.push_back(Entry);
8768
8769 // If we have an explicit sret argument that is an Instruction, (i.e., it
8770 // might point to function-local memory), we can't meaningfully tail-call.
8771 if (Entry.IsSRet && isa<Instruction>(V))
8772 isTailCall = false;
8773 }
8774
8775 // If call site has a cfguardtarget operand bundle, create and add an
8776 // additional ArgListEntry.
8777 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8778 TargetLowering::ArgListEntry Entry;
8779 Value *V = Bundle->Inputs[0];
8780 SDValue ArgNode = getValue(V);
8781 Entry.Node = ArgNode;
8782 Entry.Ty = V->getType();
8783 Entry.IsCFGuardTarget = true;
8784 Args.push_back(Entry);
8785 }
8786
8787 // Check if target-independent constraints permit a tail call here.
8788 // Target-dependent constraints are checked within TLI->LowerCallTo.
8789 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8790 isTailCall = false;
8791
8792 // Disable tail calls if there is an swifterror argument. Targets have not
8793 // been updated to support tail calls.
8794 if (TLI.supportSwiftError() && SwiftErrorVal)
8795 isTailCall = false;
8796
8797 ConstantInt *CFIType = nullptr;
8798 if (CB.isIndirectCall()) {
8799 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8800 if (!TLI.supportKCFIBundles())
8801 report_fatal_error(
8802 "Target doesn't support calls with kcfi operand bundles.");
8803 CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8804 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8805 }
8806 }
8807
8808 SDValue ConvControlToken;
8809 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8810 auto *Token = Bundle->Inputs[0].get();
8811 ConvControlToken = getValue(Token);
8812 }
8813
8814 TargetLowering::CallLoweringInfo CLI(DAG);
8815 CLI.setDebugLoc(getCurSDLoc())
8816 .setChain(getRoot())
8817 .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8818 .setTailCall(isTailCall)
8819 .setConvergent(CB.isConvergent())
8820 .setIsPreallocated(
8821 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8822 .setCFIType(CFIType)
8823 .setConvergenceControlToken(ConvControlToken);
8824
8825 // Set the pointer authentication info if we have it.
8826 if (PAI) {
8827 if (!TLI.supportPtrAuthBundles())
8828 report_fatal_error(
8829 "This target doesn't support calls with ptrauth operand bundles.");
8830 CLI.setPtrAuth(*PAI);
8831 }
8832
8833 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8834
8835 if (Result.first.getNode()) {
8836 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8837 setValue(&CB, Result.first);
8838 }
8839
8840 // The last element of CLI.InVals has the SDValue for swifterror return.
8841 // Here we copy it to a virtual register and update SwiftErrorMap for
8842 // book-keeping.
8843 if (SwiftErrorVal && TLI.supportSwiftError()) {
8844 // Get the last element of InVals.
8845 SDValue Src = CLI.InVals.back();
8846 Register VReg =
8847 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8848 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8849 DAG.setRoot(CopyNode);
8850 }
8851 }
8852
getMemCmpLoad(const Value * PtrVal,MVT LoadVT,SelectionDAGBuilder & Builder)8853 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8854 SelectionDAGBuilder &Builder) {
8855 // Check to see if this load can be trivially constant folded, e.g. if the
8856 // input is from a string literal.
8857 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8858 // Cast pointer to the type we really want to load.
8859 Type *LoadTy =
8860 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8861 if (LoadVT.isVector())
8862 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8863
8864 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8865 PointerType::getUnqual(LoadTy));
8866
8867 if (const Constant *LoadCst =
8868 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8869 LoadTy, Builder.DAG.getDataLayout()))
8870 return Builder.getValue(LoadCst);
8871 }
8872
8873 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
8874 // still constant memory, the input chain can be the entry node.
8875 SDValue Root;
8876 bool ConstantMemory = false;
8877
8878 // Do not serialize (non-volatile) loads of constant memory with anything.
8879 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8880 Root = Builder.DAG.getEntryNode();
8881 ConstantMemory = true;
8882 } else {
8883 // Do not serialize non-volatile loads against each other.
8884 Root = Builder.DAG.getRoot();
8885 }
8886
8887 SDValue Ptr = Builder.getValue(PtrVal);
8888 SDValue LoadVal =
8889 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8890 MachinePointerInfo(PtrVal), Align(1));
8891
8892 if (!ConstantMemory)
8893 Builder.PendingLoads.push_back(LoadVal.getValue(1));
8894 return LoadVal;
8895 }
8896
8897 /// Record the value for an instruction that produces an integer result,
8898 /// converting the type where necessary.
processIntegerCallValue(const Instruction & I,SDValue Value,bool IsSigned)8899 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8900 SDValue Value,
8901 bool IsSigned) {
8902 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8903 I.getType(), true);
8904 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8905 setValue(&I, Value);
8906 }
8907
8908 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8909 /// true and lower it. Otherwise return false, and it will be lowered like a
8910 /// normal call.
8911 /// The caller already checked that \p I calls the appropriate LibFunc with a
8912 /// correct prototype.
visitMemCmpBCmpCall(const CallInst & I)8913 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8914 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8915 const Value *Size = I.getArgOperand(2);
8916 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8917 if (CSize && CSize->getZExtValue() == 0) {
8918 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8919 I.getType(), true);
8920 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8921 return true;
8922 }
8923
8924 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8925 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8926 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8927 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8928 if (Res.first.getNode()) {
8929 processIntegerCallValue(I, Res.first, true);
8930 PendingLoads.push_back(Res.second);
8931 return true;
8932 }
8933
8934 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
8935 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
8936 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8937 return false;
8938
8939 // If the target has a fast compare for the given size, it will return a
8940 // preferred load type for that size. Require that the load VT is legal and
8941 // that the target supports unaligned loads of that type. Otherwise, return
8942 // INVALID.
8943 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8944 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8945 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8946 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8947 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8948 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8949 // TODO: Check alignment of src and dest ptrs.
8950 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8951 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8952 if (!TLI.isTypeLegal(LVT) ||
8953 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8954 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8955 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8956 }
8957
8958 return LVT;
8959 };
8960
8961 // This turns into unaligned loads. We only do this if the target natively
8962 // supports the MVT we'll be loading or if it is small enough (<= 4) that
8963 // we'll only produce a small number of byte loads.
8964 MVT LoadVT;
8965 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8966 switch (NumBitsToCompare) {
8967 default:
8968 return false;
8969 case 16:
8970 LoadVT = MVT::i16;
8971 break;
8972 case 32:
8973 LoadVT = MVT::i32;
8974 break;
8975 case 64:
8976 case 128:
8977 case 256:
8978 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8979 break;
8980 }
8981
8982 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8983 return false;
8984
8985 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8986 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8987
8988 // Bitcast to a wide integer type if the loads are vectors.
8989 if (LoadVT.isVector()) {
8990 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8991 LoadL = DAG.getBitcast(CmpVT, LoadL);
8992 LoadR = DAG.getBitcast(CmpVT, LoadR);
8993 }
8994
8995 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8996 processIntegerCallValue(I, Cmp, false);
8997 return true;
8998 }
8999
9000 /// See if we can lower a memchr call into an optimized form. If so, return
9001 /// true and lower it. Otherwise return false, and it will be lowered like a
9002 /// normal call.
9003 /// The caller already checked that \p I calls the appropriate LibFunc with a
9004 /// correct prototype.
visitMemChrCall(const CallInst & I)9005 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9006 const Value *Src = I.getArgOperand(0);
9007 const Value *Char = I.getArgOperand(1);
9008 const Value *Length = I.getArgOperand(2);
9009
9010 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9011 std::pair<SDValue, SDValue> Res =
9012 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9013 getValue(Src), getValue(Char), getValue(Length),
9014 MachinePointerInfo(Src));
9015 if (Res.first.getNode()) {
9016 setValue(&I, Res.first);
9017 PendingLoads.push_back(Res.second);
9018 return true;
9019 }
9020
9021 return false;
9022 }
9023
9024 /// See if we can lower a mempcpy call into an optimized form. If so, return
9025 /// true and lower it. Otherwise return false, and it will be lowered like a
9026 /// normal call.
9027 /// The caller already checked that \p I calls the appropriate LibFunc with a
9028 /// correct prototype.
visitMemPCpyCall(const CallInst & I)9029 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9030 SDValue Dst = getValue(I.getArgOperand(0));
9031 SDValue Src = getValue(I.getArgOperand(1));
9032 SDValue Size = getValue(I.getArgOperand(2));
9033
9034 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9035 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9036 // DAG::getMemcpy needs Alignment to be defined.
9037 Align Alignment = std::min(DstAlign, SrcAlign);
9038
9039 SDLoc sdl = getCurSDLoc();
9040
9041 // In the mempcpy context we need to pass in a false value for isTailCall
9042 // because the return pointer needs to be adjusted by the size of
9043 // the copied memory.
9044 SDValue Root = getMemoryRoot();
9045 SDValue MC = DAG.getMemcpy(
9046 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9047 std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9048 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9049 assert(MC.getNode() != nullptr &&
9050 "** memcpy should not be lowered as TailCall in mempcpy context **");
9051 DAG.setRoot(MC);
9052
9053 // Check if Size needs to be truncated or extended.
9054 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9055
9056 // Adjust return pointer to point just past the last dst byte.
9057 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
9058 Dst, Size);
9059 setValue(&I, DstPlusSize);
9060 return true;
9061 }
9062
9063 /// See if we can lower a strcpy call into an optimized form. If so, return
9064 /// true and lower it, otherwise return false and it will be lowered like a
9065 /// normal call.
9066 /// The caller already checked that \p I calls the appropriate LibFunc with a
9067 /// correct prototype.
visitStrCpyCall(const CallInst & I,bool isStpcpy)9068 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9069 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9070
9071 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9072 std::pair<SDValue, SDValue> Res =
9073 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
9074 getValue(Arg0), getValue(Arg1),
9075 MachinePointerInfo(Arg0),
9076 MachinePointerInfo(Arg1), isStpcpy);
9077 if (Res.first.getNode()) {
9078 setValue(&I, Res.first);
9079 DAG.setRoot(Res.second);
9080 return true;
9081 }
9082
9083 return false;
9084 }
9085
9086 /// See if we can lower a strcmp call into an optimized form. If so, return
9087 /// true and lower it, otherwise return false and it will be lowered like a
9088 /// normal call.
9089 /// The caller already checked that \p I calls the appropriate LibFunc with a
9090 /// correct prototype.
visitStrCmpCall(const CallInst & I)9091 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9092 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9093
9094 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9095 std::pair<SDValue, SDValue> Res =
9096 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9097 getValue(Arg0), getValue(Arg1),
9098 MachinePointerInfo(Arg0),
9099 MachinePointerInfo(Arg1));
9100 if (Res.first.getNode()) {
9101 processIntegerCallValue(I, Res.first, true);
9102 PendingLoads.push_back(Res.second);
9103 return true;
9104 }
9105
9106 return false;
9107 }
9108
9109 /// See if we can lower a strlen call into an optimized form. If so, return
9110 /// true and lower it, otherwise return false and it will be lowered like a
9111 /// normal call.
9112 /// The caller already checked that \p I calls the appropriate LibFunc with a
9113 /// correct prototype.
visitStrLenCall(const CallInst & I)9114 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9115 const Value *Arg0 = I.getArgOperand(0);
9116
9117 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9118 std::pair<SDValue, SDValue> Res =
9119 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
9120 getValue(Arg0), MachinePointerInfo(Arg0));
9121 if (Res.first.getNode()) {
9122 processIntegerCallValue(I, Res.first, false);
9123 PendingLoads.push_back(Res.second);
9124 return true;
9125 }
9126
9127 return false;
9128 }
9129
9130 /// See if we can lower a strnlen call into an optimized form. If so, return
9131 /// true and lower it, otherwise return false and it will be lowered like a
9132 /// normal call.
9133 /// The caller already checked that \p I calls the appropriate LibFunc with a
9134 /// correct prototype.
visitStrNLenCall(const CallInst & I)9135 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9136 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9137
9138 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9139 std::pair<SDValue, SDValue> Res =
9140 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9141 getValue(Arg0), getValue(Arg1),
9142 MachinePointerInfo(Arg0));
9143 if (Res.first.getNode()) {
9144 processIntegerCallValue(I, Res.first, false);
9145 PendingLoads.push_back(Res.second);
9146 return true;
9147 }
9148
9149 return false;
9150 }
9151
9152 /// See if we can lower a unary floating-point operation into an SDNode with
9153 /// the specified Opcode. If so, return true and lower it, otherwise return
9154 /// false and it will be lowered like a normal call.
9155 /// The caller already checked that \p I calls the appropriate LibFunc with a
9156 /// correct prototype.
visitUnaryFloatCall(const CallInst & I,unsigned Opcode)9157 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9158 unsigned Opcode) {
9159 // We already checked this call's prototype; verify it doesn't modify errno.
9160 if (!I.onlyReadsMemory())
9161 return false;
9162
9163 SDNodeFlags Flags;
9164 Flags.copyFMF(cast<FPMathOperator>(I));
9165
9166 SDValue Tmp = getValue(I.getArgOperand(0));
9167 setValue(&I,
9168 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9169 return true;
9170 }
9171
9172 /// See if we can lower a binary floating-point operation into an SDNode with
9173 /// the specified Opcode. If so, return true and lower it. Otherwise return
9174 /// false, and it will be lowered like a normal call.
9175 /// The caller already checked that \p I calls the appropriate LibFunc with a
9176 /// correct prototype.
visitBinaryFloatCall(const CallInst & I,unsigned Opcode)9177 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9178 unsigned Opcode) {
9179 // We already checked this call's prototype; verify it doesn't modify errno.
9180 if (!I.onlyReadsMemory())
9181 return false;
9182
9183 SDNodeFlags Flags;
9184 Flags.copyFMF(cast<FPMathOperator>(I));
9185
9186 SDValue Tmp0 = getValue(I.getArgOperand(0));
9187 SDValue Tmp1 = getValue(I.getArgOperand(1));
9188 EVT VT = Tmp0.getValueType();
9189 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9190 return true;
9191 }
9192
visitCall(const CallInst & I)9193 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9194 // Handle inline assembly differently.
9195 if (I.isInlineAsm()) {
9196 visitInlineAsm(I);
9197 return;
9198 }
9199
9200 diagnoseDontCall(I);
9201
9202 if (Function *F = I.getCalledFunction()) {
9203 if (F->isDeclaration()) {
9204 // Is this an LLVM intrinsic or a target-specific intrinsic?
9205 unsigned IID = F->getIntrinsicID();
9206 if (!IID)
9207 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9208 IID = II->getIntrinsicID(F);
9209
9210 if (IID) {
9211 visitIntrinsicCall(I, IID);
9212 return;
9213 }
9214 }
9215
9216 // Check for well-known libc/libm calls. If the function is internal, it
9217 // can't be a library call. Don't do the check if marked as nobuiltin for
9218 // some reason or the call site requires strict floating point semantics.
9219 LibFunc Func;
9220 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9221 F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9222 LibInfo->hasOptimizedCodeGen(Func)) {
9223 switch (Func) {
9224 default: break;
9225 case LibFunc_bcmp:
9226 if (visitMemCmpBCmpCall(I))
9227 return;
9228 break;
9229 case LibFunc_copysign:
9230 case LibFunc_copysignf:
9231 case LibFunc_copysignl:
9232 // We already checked this call's prototype; verify it doesn't modify
9233 // errno.
9234 if (I.onlyReadsMemory()) {
9235 SDValue LHS = getValue(I.getArgOperand(0));
9236 SDValue RHS = getValue(I.getArgOperand(1));
9237 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9238 LHS.getValueType(), LHS, RHS));
9239 return;
9240 }
9241 break;
9242 case LibFunc_fabs:
9243 case LibFunc_fabsf:
9244 case LibFunc_fabsl:
9245 if (visitUnaryFloatCall(I, ISD::FABS))
9246 return;
9247 break;
9248 case LibFunc_fmin:
9249 case LibFunc_fminf:
9250 case LibFunc_fminl:
9251 if (visitBinaryFloatCall(I, ISD::FMINNUM))
9252 return;
9253 break;
9254 case LibFunc_fmax:
9255 case LibFunc_fmaxf:
9256 case LibFunc_fmaxl:
9257 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9258 return;
9259 break;
9260 case LibFunc_sin:
9261 case LibFunc_sinf:
9262 case LibFunc_sinl:
9263 if (visitUnaryFloatCall(I, ISD::FSIN))
9264 return;
9265 break;
9266 case LibFunc_cos:
9267 case LibFunc_cosf:
9268 case LibFunc_cosl:
9269 if (visitUnaryFloatCall(I, ISD::FCOS))
9270 return;
9271 break;
9272 case LibFunc_tan:
9273 case LibFunc_tanf:
9274 case LibFunc_tanl:
9275 if (visitUnaryFloatCall(I, ISD::FTAN))
9276 return;
9277 break;
9278 case LibFunc_asin:
9279 case LibFunc_asinf:
9280 case LibFunc_asinl:
9281 if (visitUnaryFloatCall(I, ISD::FASIN))
9282 return;
9283 break;
9284 case LibFunc_acos:
9285 case LibFunc_acosf:
9286 case LibFunc_acosl:
9287 if (visitUnaryFloatCall(I, ISD::FACOS))
9288 return;
9289 break;
9290 case LibFunc_atan:
9291 case LibFunc_atanf:
9292 case LibFunc_atanl:
9293 if (visitUnaryFloatCall(I, ISD::FATAN))
9294 return;
9295 break;
9296 case LibFunc_sinh:
9297 case LibFunc_sinhf:
9298 case LibFunc_sinhl:
9299 if (visitUnaryFloatCall(I, ISD::FSINH))
9300 return;
9301 break;
9302 case LibFunc_cosh:
9303 case LibFunc_coshf:
9304 case LibFunc_coshl:
9305 if (visitUnaryFloatCall(I, ISD::FCOSH))
9306 return;
9307 break;
9308 case LibFunc_tanh:
9309 case LibFunc_tanhf:
9310 case LibFunc_tanhl:
9311 if (visitUnaryFloatCall(I, ISD::FTANH))
9312 return;
9313 break;
9314 case LibFunc_sqrt:
9315 case LibFunc_sqrtf:
9316 case LibFunc_sqrtl:
9317 case LibFunc_sqrt_finite:
9318 case LibFunc_sqrtf_finite:
9319 case LibFunc_sqrtl_finite:
9320 if (visitUnaryFloatCall(I, ISD::FSQRT))
9321 return;
9322 break;
9323 case LibFunc_floor:
9324 case LibFunc_floorf:
9325 case LibFunc_floorl:
9326 if (visitUnaryFloatCall(I, ISD::FFLOOR))
9327 return;
9328 break;
9329 case LibFunc_nearbyint:
9330 case LibFunc_nearbyintf:
9331 case LibFunc_nearbyintl:
9332 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9333 return;
9334 break;
9335 case LibFunc_ceil:
9336 case LibFunc_ceilf:
9337 case LibFunc_ceill:
9338 if (visitUnaryFloatCall(I, ISD::FCEIL))
9339 return;
9340 break;
9341 case LibFunc_rint:
9342 case LibFunc_rintf:
9343 case LibFunc_rintl:
9344 if (visitUnaryFloatCall(I, ISD::FRINT))
9345 return;
9346 break;
9347 case LibFunc_round:
9348 case LibFunc_roundf:
9349 case LibFunc_roundl:
9350 if (visitUnaryFloatCall(I, ISD::FROUND))
9351 return;
9352 break;
9353 case LibFunc_trunc:
9354 case LibFunc_truncf:
9355 case LibFunc_truncl:
9356 if (visitUnaryFloatCall(I, ISD::FTRUNC))
9357 return;
9358 break;
9359 case LibFunc_log2:
9360 case LibFunc_log2f:
9361 case LibFunc_log2l:
9362 if (visitUnaryFloatCall(I, ISD::FLOG2))
9363 return;
9364 break;
9365 case LibFunc_exp2:
9366 case LibFunc_exp2f:
9367 case LibFunc_exp2l:
9368 if (visitUnaryFloatCall(I, ISD::FEXP2))
9369 return;
9370 break;
9371 case LibFunc_exp10:
9372 case LibFunc_exp10f:
9373 case LibFunc_exp10l:
9374 if (visitUnaryFloatCall(I, ISD::FEXP10))
9375 return;
9376 break;
9377 case LibFunc_ldexp:
9378 case LibFunc_ldexpf:
9379 case LibFunc_ldexpl:
9380 if (visitBinaryFloatCall(I, ISD::FLDEXP))
9381 return;
9382 break;
9383 case LibFunc_memcmp:
9384 if (visitMemCmpBCmpCall(I))
9385 return;
9386 break;
9387 case LibFunc_mempcpy:
9388 if (visitMemPCpyCall(I))
9389 return;
9390 break;
9391 case LibFunc_memchr:
9392 if (visitMemChrCall(I))
9393 return;
9394 break;
9395 case LibFunc_strcpy:
9396 if (visitStrCpyCall(I, false))
9397 return;
9398 break;
9399 case LibFunc_stpcpy:
9400 if (visitStrCpyCall(I, true))
9401 return;
9402 break;
9403 case LibFunc_strcmp:
9404 if (visitStrCmpCall(I))
9405 return;
9406 break;
9407 case LibFunc_strlen:
9408 if (visitStrLenCall(I))
9409 return;
9410 break;
9411 case LibFunc_strnlen:
9412 if (visitStrNLenCall(I))
9413 return;
9414 break;
9415 }
9416 }
9417 }
9418
9419 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9420 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9421 return;
9422 }
9423
9424 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9425 // have to do anything here to lower funclet bundles.
9426 // CFGuardTarget bundles are lowered in LowerCallTo.
9427 assert(!I.hasOperandBundlesOtherThan(
9428 {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9429 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9430 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9431 LLVMContext::OB_convergencectrl}) &&
9432 "Cannot lower calls with arbitrary operand bundles!");
9433
9434 SDValue Callee = getValue(I.getCalledOperand());
9435
9436 if (I.hasDeoptState())
9437 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9438 else
9439 // Check if we can potentially perform a tail call. More detailed checking
9440 // is be done within LowerCallTo, after more information about the call is
9441 // known.
9442 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9443 }
9444
LowerCallSiteWithPtrAuthBundle(const CallBase & CB,const BasicBlock * EHPadBB)9445 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle(
9446 const CallBase &CB, const BasicBlock *EHPadBB) {
9447 auto PAB = CB.getOperandBundle("ptrauth");
9448 const Value *CalleeV = CB.getCalledOperand();
9449
9450 // Gather the call ptrauth data from the operand bundle:
9451 // [ i32 <key>, i64 <discriminator> ]
9452 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9453 const Value *Discriminator = PAB->Inputs[1];
9454
9455 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9456 assert(Discriminator->getType()->isIntegerTy(64) &&
9457 "Invalid ptrauth discriminator");
9458
9459 // Look through ptrauth constants to find the raw callee.
9460 // Do a direct unauthenticated call if we found it and everything matches.
9461 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9462 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9463 DAG.getDataLayout()))
9464 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9465 CB.isMustTailCall(), EHPadBB);
9466
9467 // Functions should never be ptrauth-called directly.
9468 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9469
9470 // Otherwise, do an authenticated indirect call.
9471 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9472 getValue(Discriminator)};
9473
9474 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9475 EHPadBB, &PAI);
9476 }
9477
9478 namespace {
9479
9480 /// AsmOperandInfo - This contains information for each constraint that we are
9481 /// lowering.
9482 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9483 public:
9484 /// CallOperand - If this is the result output operand or a clobber
9485 /// this is null, otherwise it is the incoming operand to the CallInst.
9486 /// This gets modified as the asm is processed.
9487 SDValue CallOperand;
9488
9489 /// AssignedRegs - If this is a register or register class operand, this
9490 /// contains the set of register corresponding to the operand.
9491 RegsForValue AssignedRegs;
9492
SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & info)9493 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9494 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9495 }
9496
9497 /// Whether or not this operand accesses memory
hasMemory(const TargetLowering & TLI) const9498 bool hasMemory(const TargetLowering &TLI) const {
9499 // Indirect operand accesses access memory.
9500 if (isIndirect)
9501 return true;
9502
9503 for (const auto &Code : Codes)
9504 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9505 return true;
9506
9507 return false;
9508 }
9509 };
9510
9511
9512 } // end anonymous namespace
9513
9514 /// Make sure that the output operand \p OpInfo and its corresponding input
9515 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9516 /// out).
patchMatchingInput(const SDISelAsmOperandInfo & OpInfo,SDISelAsmOperandInfo & MatchingOpInfo,SelectionDAG & DAG)9517 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9518 SDISelAsmOperandInfo &MatchingOpInfo,
9519 SelectionDAG &DAG) {
9520 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9521 return;
9522
9523 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9524 const auto &TLI = DAG.getTargetLoweringInfo();
9525
9526 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9527 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9528 OpInfo.ConstraintVT);
9529 std::pair<unsigned, const TargetRegisterClass *> InputRC =
9530 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9531 MatchingOpInfo.ConstraintVT);
9532 if ((OpInfo.ConstraintVT.isInteger() !=
9533 MatchingOpInfo.ConstraintVT.isInteger()) ||
9534 (MatchRC.second != InputRC.second)) {
9535 // FIXME: error out in a more elegant fashion
9536 report_fatal_error("Unsupported asm: input constraint"
9537 " with a matching output constraint of"
9538 " incompatible type!");
9539 }
9540 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9541 }
9542
9543 /// Get a direct memory input to behave well as an indirect operand.
9544 /// This may introduce stores, hence the need for a \p Chain.
9545 /// \return The (possibly updated) chain.
getAddressForMemoryInput(SDValue Chain,const SDLoc & Location,SDISelAsmOperandInfo & OpInfo,SelectionDAG & DAG)9546 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9547 SDISelAsmOperandInfo &OpInfo,
9548 SelectionDAG &DAG) {
9549 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9550
9551 // If we don't have an indirect input, put it in the constpool if we can,
9552 // otherwise spill it to a stack slot.
9553 // TODO: This isn't quite right. We need to handle these according to
9554 // the addressing mode that the constraint wants. Also, this may take
9555 // an additional register for the computation and we don't want that
9556 // either.
9557
9558 // If the operand is a float, integer, or vector constant, spill to a
9559 // constant pool entry to get its address.
9560 const Value *OpVal = OpInfo.CallOperandVal;
9561 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9562 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9563 OpInfo.CallOperand = DAG.getConstantPool(
9564 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9565 return Chain;
9566 }
9567
9568 // Otherwise, create a stack slot and emit a store to it before the asm.
9569 Type *Ty = OpVal->getType();
9570 auto &DL = DAG.getDataLayout();
9571 TypeSize TySize = DL.getTypeAllocSize(Ty);
9572 MachineFunction &MF = DAG.getMachineFunction();
9573 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
9574 int StackID = 0;
9575 if (TySize.isScalable())
9576 StackID = TFI->getStackIDForScalableVectors();
9577 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9578 DL.getPrefTypeAlign(Ty), false,
9579 nullptr, StackID);
9580 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9581 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9582 MachinePointerInfo::getFixedStack(MF, SSFI),
9583 TLI.getMemValueType(DL, Ty));
9584 OpInfo.CallOperand = StackSlot;
9585
9586 return Chain;
9587 }
9588
9589 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9590 /// specified operand. We prefer to assign virtual registers, to allow the
9591 /// register allocator to handle the assignment process. However, if the asm
9592 /// uses features that we can't model on machineinstrs, we have SDISel do the
9593 /// allocation. This produces generally horrible, but correct, code.
9594 ///
9595 /// OpInfo describes the operand
9596 /// RefOpInfo describes the matching operand if any, the operand otherwise
9597 static std::optional<unsigned>
getRegistersForValue(SelectionDAG & DAG,const SDLoc & DL,SDISelAsmOperandInfo & OpInfo,SDISelAsmOperandInfo & RefOpInfo)9598 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9599 SDISelAsmOperandInfo &OpInfo,
9600 SDISelAsmOperandInfo &RefOpInfo) {
9601 LLVMContext &Context = *DAG.getContext();
9602 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9603
9604 MachineFunction &MF = DAG.getMachineFunction();
9605 SmallVector<unsigned, 4> Regs;
9606 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9607
9608 // No work to do for memory/address operands.
9609 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9610 OpInfo.ConstraintType == TargetLowering::C_Address)
9611 return std::nullopt;
9612
9613 // If this is a constraint for a single physreg, or a constraint for a
9614 // register class, find it.
9615 unsigned AssignedReg;
9616 const TargetRegisterClass *RC;
9617 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9618 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9619 // RC is unset only on failure. Return immediately.
9620 if (!RC)
9621 return std::nullopt;
9622
9623 // Get the actual register value type. This is important, because the user
9624 // may have asked for (e.g.) the AX register in i32 type. We need to
9625 // remember that AX is actually i16 to get the right extension.
9626 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9627
9628 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9629 // If this is an FP operand in an integer register (or visa versa), or more
9630 // generally if the operand value disagrees with the register class we plan
9631 // to stick it in, fix the operand type.
9632 //
9633 // If this is an input value, the bitcast to the new type is done now.
9634 // Bitcast for output value is done at the end of visitInlineAsm().
9635 if ((OpInfo.Type == InlineAsm::isOutput ||
9636 OpInfo.Type == InlineAsm::isInput) &&
9637 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9638 // Try to convert to the first EVT that the reg class contains. If the
9639 // types are identical size, use a bitcast to convert (e.g. two differing
9640 // vector types). Note: output bitcast is done at the end of
9641 // visitInlineAsm().
9642 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9643 // Exclude indirect inputs while they are unsupported because the code
9644 // to perform the load is missing and thus OpInfo.CallOperand still
9645 // refers to the input address rather than the pointed-to value.
9646 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9647 OpInfo.CallOperand =
9648 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9649 OpInfo.ConstraintVT = RegVT;
9650 // If the operand is an FP value and we want it in integer registers,
9651 // use the corresponding integer type. This turns an f64 value into
9652 // i64, which can be passed with two i32 values on a 32-bit machine.
9653 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9654 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9655 if (OpInfo.Type == InlineAsm::isInput)
9656 OpInfo.CallOperand =
9657 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9658 OpInfo.ConstraintVT = VT;
9659 }
9660 }
9661 }
9662
9663 // No need to allocate a matching input constraint since the constraint it's
9664 // matching to has already been allocated.
9665 if (OpInfo.isMatchingInputConstraint())
9666 return std::nullopt;
9667
9668 EVT ValueVT = OpInfo.ConstraintVT;
9669 if (OpInfo.ConstraintVT == MVT::Other)
9670 ValueVT = RegVT;
9671
9672 // Initialize NumRegs.
9673 unsigned NumRegs = 1;
9674 if (OpInfo.ConstraintVT != MVT::Other)
9675 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9676
9677 // If this is a constraint for a specific physical register, like {r17},
9678 // assign it now.
9679
9680 // If this associated to a specific register, initialize iterator to correct
9681 // place. If virtual, make sure we have enough registers
9682
9683 // Initialize iterator if necessary
9684 TargetRegisterClass::iterator I = RC->begin();
9685 MachineRegisterInfo &RegInfo = MF.getRegInfo();
9686
9687 // Do not check for single registers.
9688 if (AssignedReg) {
9689 I = std::find(I, RC->end(), AssignedReg);
9690 if (I == RC->end()) {
9691 // RC does not contain the selected register, which indicates a
9692 // mismatch between the register and the required type/bitwidth.
9693 return {AssignedReg};
9694 }
9695 }
9696
9697 for (; NumRegs; --NumRegs, ++I) {
9698 assert(I != RC->end() && "Ran out of registers to allocate!");
9699 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9700 Regs.push_back(R);
9701 }
9702
9703 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9704 return std::nullopt;
9705 }
9706
9707 static unsigned
findMatchingInlineAsmOperand(unsigned OperandNo,const std::vector<SDValue> & AsmNodeOperands)9708 findMatchingInlineAsmOperand(unsigned OperandNo,
9709 const std::vector<SDValue> &AsmNodeOperands) {
9710 // Scan until we find the definition we already emitted of this operand.
9711 unsigned CurOp = InlineAsm::Op_FirstOperand;
9712 for (; OperandNo; --OperandNo) {
9713 // Advance to the next operand.
9714 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9715 const InlineAsm::Flag F(OpFlag);
9716 assert(
9717 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9718 "Skipped past definitions?");
9719 CurOp += F.getNumOperandRegisters() + 1;
9720 }
9721 return CurOp;
9722 }
9723
9724 namespace {
9725
9726 class ExtraFlags {
9727 unsigned Flags = 0;
9728
9729 public:
ExtraFlags(const CallBase & Call)9730 explicit ExtraFlags(const CallBase &Call) {
9731 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9732 if (IA->hasSideEffects())
9733 Flags |= InlineAsm::Extra_HasSideEffects;
9734 if (IA->isAlignStack())
9735 Flags |= InlineAsm::Extra_IsAlignStack;
9736 if (Call.isConvergent())
9737 Flags |= InlineAsm::Extra_IsConvergent;
9738 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9739 }
9740
update(const TargetLowering::AsmOperandInfo & OpInfo)9741 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9742 // Ideally, we would only check against memory constraints. However, the
9743 // meaning of an Other constraint can be target-specific and we can't easily
9744 // reason about it. Therefore, be conservative and set MayLoad/MayStore
9745 // for Other constraints as well.
9746 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9747 OpInfo.ConstraintType == TargetLowering::C_Other) {
9748 if (OpInfo.Type == InlineAsm::isInput)
9749 Flags |= InlineAsm::Extra_MayLoad;
9750 else if (OpInfo.Type == InlineAsm::isOutput)
9751 Flags |= InlineAsm::Extra_MayStore;
9752 else if (OpInfo.Type == InlineAsm::isClobber)
9753 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9754 }
9755 }
9756
get() const9757 unsigned get() const { return Flags; }
9758 };
9759
9760 } // end anonymous namespace
9761
isFunction(SDValue Op)9762 static bool isFunction(SDValue Op) {
9763 if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9764 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9765 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9766
9767 // In normal "call dllimport func" instruction (non-inlineasm) it force
9768 // indirect access by specifing call opcode. And usually specially print
9769 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9770 // not do in this way now. (In fact, this is similar with "Data Access"
9771 // action). So here we ignore dllimport function.
9772 if (Fn && !Fn->hasDLLImportStorageClass())
9773 return true;
9774 }
9775 }
9776 return false;
9777 }
9778
9779 /// visitInlineAsm - Handle a call to an InlineAsm object.
visitInlineAsm(const CallBase & Call,const BasicBlock * EHPadBB)9780 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9781 const BasicBlock *EHPadBB) {
9782 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9783
9784 /// ConstraintOperands - Information about all of the constraints.
9785 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9786
9787 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9788 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9789 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9790
9791 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9792 // AsmDialect, MayLoad, MayStore).
9793 bool HasSideEffect = IA->hasSideEffects();
9794 ExtraFlags ExtraInfo(Call);
9795
9796 for (auto &T : TargetConstraints) {
9797 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9798 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9799
9800 if (OpInfo.CallOperandVal)
9801 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9802
9803 if (!HasSideEffect)
9804 HasSideEffect = OpInfo.hasMemory(TLI);
9805
9806 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9807 // FIXME: Could we compute this on OpInfo rather than T?
9808
9809 // Compute the constraint code and ConstraintType to use.
9810 TLI.ComputeConstraintToUse(T, SDValue());
9811
9812 if (T.ConstraintType == TargetLowering::C_Immediate &&
9813 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9814 // We've delayed emitting a diagnostic like the "n" constraint because
9815 // inlining could cause an integer showing up.
9816 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9817 "' expects an integer constant "
9818 "expression");
9819
9820 ExtraInfo.update(T);
9821 }
9822
9823 // We won't need to flush pending loads if this asm doesn't touch
9824 // memory and is nonvolatile.
9825 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9826
9827 bool EmitEHLabels = isa<InvokeInst>(Call);
9828 if (EmitEHLabels) {
9829 assert(EHPadBB && "InvokeInst must have an EHPadBB");
9830 }
9831 bool IsCallBr = isa<CallBrInst>(Call);
9832
9833 if (IsCallBr || EmitEHLabels) {
9834 // If this is a callbr or invoke we need to flush pending exports since
9835 // inlineasm_br and invoke are terminators.
9836 // We need to do this before nodes are glued to the inlineasm_br node.
9837 Chain = getControlRoot();
9838 }
9839
9840 MCSymbol *BeginLabel = nullptr;
9841 if (EmitEHLabels) {
9842 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9843 }
9844
9845 int OpNo = -1;
9846 SmallVector<StringRef> AsmStrs;
9847 IA->collectAsmStrs(AsmStrs);
9848
9849 // Second pass over the constraints: compute which constraint option to use.
9850 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9851 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9852 OpNo++;
9853
9854 // If this is an output operand with a matching input operand, look up the
9855 // matching input. If their types mismatch, e.g. one is an integer, the
9856 // other is floating point, or their sizes are different, flag it as an
9857 // error.
9858 if (OpInfo.hasMatchingInput()) {
9859 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9860 patchMatchingInput(OpInfo, Input, DAG);
9861 }
9862
9863 // Compute the constraint code and ConstraintType to use.
9864 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9865
9866 if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9867 OpInfo.Type == InlineAsm::isClobber) ||
9868 OpInfo.ConstraintType == TargetLowering::C_Address)
9869 continue;
9870
9871 // In Linux PIC model, there are 4 cases about value/label addressing:
9872 //
9873 // 1: Function call or Label jmp inside the module.
9874 // 2: Data access (such as global variable, static variable) inside module.
9875 // 3: Function call or Label jmp outside the module.
9876 // 4: Data access (such as global variable) outside the module.
9877 //
9878 // Due to current llvm inline asm architecture designed to not "recognize"
9879 // the asm code, there are quite troubles for us to treat mem addressing
9880 // differently for same value/adress used in different instuctions.
9881 // For example, in pic model, call a func may in plt way or direclty
9882 // pc-related, but lea/mov a function adress may use got.
9883 //
9884 // Here we try to "recognize" function call for the case 1 and case 3 in
9885 // inline asm. And try to adjust the constraint for them.
9886 //
9887 // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9888 // label, so here we don't handle jmp function label now, but we need to
9889 // enhance it (especilly in PIC model) if we meet meaningful requirements.
9890 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9891 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9892 TM.getCodeModel() != CodeModel::Large) {
9893 OpInfo.isIndirect = false;
9894 OpInfo.ConstraintType = TargetLowering::C_Address;
9895 }
9896
9897 // If this is a memory input, and if the operand is not indirect, do what we
9898 // need to provide an address for the memory input.
9899 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9900 !OpInfo.isIndirect) {
9901 assert((OpInfo.isMultipleAlternative ||
9902 (OpInfo.Type == InlineAsm::isInput)) &&
9903 "Can only indirectify direct input operands!");
9904
9905 // Memory operands really want the address of the value.
9906 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9907
9908 // There is no longer a Value* corresponding to this operand.
9909 OpInfo.CallOperandVal = nullptr;
9910
9911 // It is now an indirect operand.
9912 OpInfo.isIndirect = true;
9913 }
9914
9915 }
9916
9917 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9918 std::vector<SDValue> AsmNodeOperands;
9919 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
9920 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9921 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9922
9923 // If we have a !srcloc metadata node associated with it, we want to attach
9924 // this to the ultimately generated inline asm machineinstr. To do this, we
9925 // pass in the third operand as this (potentially null) inline asm MDNode.
9926 const MDNode *SrcLoc = Call.getMetadata("srcloc");
9927 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9928
9929 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9930 // bits as operand 3.
9931 AsmNodeOperands.push_back(DAG.getTargetConstant(
9932 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9933
9934 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9935 // this, assign virtual and physical registers for inputs and otput.
9936 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9937 // Assign Registers.
9938 SDISelAsmOperandInfo &RefOpInfo =
9939 OpInfo.isMatchingInputConstraint()
9940 ? ConstraintOperands[OpInfo.getMatchedOperand()]
9941 : OpInfo;
9942 const auto RegError =
9943 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9944 if (RegError) {
9945 const MachineFunction &MF = DAG.getMachineFunction();
9946 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9947 const char *RegName = TRI.getName(*RegError);
9948 emitInlineAsmError(Call, "register '" + Twine(RegName) +
9949 "' allocated for constraint '" +
9950 Twine(OpInfo.ConstraintCode) +
9951 "' does not match required type");
9952 return;
9953 }
9954
9955 auto DetectWriteToReservedRegister = [&]() {
9956 const MachineFunction &MF = DAG.getMachineFunction();
9957 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9958 for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9959 if (Register::isPhysicalRegister(Reg) &&
9960 TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9961 const char *RegName = TRI.getName(Reg);
9962 emitInlineAsmError(Call, "write to reserved register '" +
9963 Twine(RegName) + "'");
9964 return true;
9965 }
9966 }
9967 return false;
9968 };
9969 assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9970 (OpInfo.Type == InlineAsm::isInput &&
9971 !OpInfo.isMatchingInputConstraint())) &&
9972 "Only address as input operand is allowed.");
9973
9974 switch (OpInfo.Type) {
9975 case InlineAsm::isOutput:
9976 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9977 const InlineAsm::ConstraintCode ConstraintID =
9978 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9979 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9980 "Failed to convert memory constraint code to constraint id.");
9981
9982 // Add information to the INLINEASM node to know about this output.
9983 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9984 OpFlags.setMemConstraint(ConstraintID);
9985 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9986 MVT::i32));
9987 AsmNodeOperands.push_back(OpInfo.CallOperand);
9988 } else {
9989 // Otherwise, this outputs to a register (directly for C_Register /
9990 // C_RegisterClass, and a target-defined fashion for
9991 // C_Immediate/C_Other). Find a register that we can use.
9992 if (OpInfo.AssignedRegs.Regs.empty()) {
9993 emitInlineAsmError(
9994 Call, "couldn't allocate output register for constraint '" +
9995 Twine(OpInfo.ConstraintCode) + "'");
9996 return;
9997 }
9998
9999 if (DetectWriteToReservedRegister())
10000 return;
10001
10002 // Add information to the INLINEASM node to know that this register is
10003 // set.
10004 OpInfo.AssignedRegs.AddInlineAsmOperands(
10005 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10006 : InlineAsm::Kind::RegDef,
10007 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10008 }
10009 break;
10010
10011 case InlineAsm::isInput:
10012 case InlineAsm::isLabel: {
10013 SDValue InOperandVal = OpInfo.CallOperand;
10014
10015 if (OpInfo.isMatchingInputConstraint()) {
10016 // If this is required to match an output register we have already set,
10017 // just use its register.
10018 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10019 AsmNodeOperands);
10020 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10021 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10022 if (OpInfo.isIndirect) {
10023 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10024 emitInlineAsmError(Call, "inline asm not supported yet: "
10025 "don't know how to handle tied "
10026 "indirect register inputs");
10027 return;
10028 }
10029
10030 SmallVector<unsigned, 4> Regs;
10031 MachineFunction &MF = DAG.getMachineFunction();
10032 MachineRegisterInfo &MRI = MF.getRegInfo();
10033 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10034 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10035 Register TiedReg = R->getReg();
10036 MVT RegVT = R->getSimpleValueType(0);
10037 const TargetRegisterClass *RC =
10038 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg)
10039 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10040 : TRI.getMinimalPhysRegClass(TiedReg);
10041 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10042 Regs.push_back(MRI.createVirtualRegister(RC));
10043
10044 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10045
10046 SDLoc dl = getCurSDLoc();
10047 // Use the produced MatchedRegs object to
10048 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10049 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10050 OpInfo.getMatchedOperand(), dl, DAG,
10051 AsmNodeOperands);
10052 break;
10053 }
10054
10055 assert(Flag.isMemKind() && "Unknown matching constraint!");
10056 assert(Flag.getNumOperandRegisters() == 1 &&
10057 "Unexpected number of operands");
10058 // Add information to the INLINEASM node to know about this input.
10059 // See InlineAsm.h isUseOperandTiedToDef.
10060 Flag.clearMemConstraint();
10061 Flag.setMatchingOp(OpInfo.getMatchedOperand());
10062 AsmNodeOperands.push_back(DAG.getTargetConstant(
10063 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10064 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10065 break;
10066 }
10067
10068 // Treat indirect 'X' constraint as memory.
10069 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10070 OpInfo.isIndirect)
10071 OpInfo.ConstraintType = TargetLowering::C_Memory;
10072
10073 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10074 OpInfo.ConstraintType == TargetLowering::C_Other) {
10075 std::vector<SDValue> Ops;
10076 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10077 Ops, DAG);
10078 if (Ops.empty()) {
10079 if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10080 if (isa<ConstantSDNode>(InOperandVal)) {
10081 emitInlineAsmError(Call, "value out of range for constraint '" +
10082 Twine(OpInfo.ConstraintCode) + "'");
10083 return;
10084 }
10085
10086 emitInlineAsmError(Call,
10087 "invalid operand for inline asm constraint '" +
10088 Twine(OpInfo.ConstraintCode) + "'");
10089 return;
10090 }
10091
10092 // Add information to the INLINEASM node to know about this input.
10093 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10094 AsmNodeOperands.push_back(DAG.getTargetConstant(
10095 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10096 llvm::append_range(AsmNodeOperands, Ops);
10097 break;
10098 }
10099
10100 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10101 assert((OpInfo.isIndirect ||
10102 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10103 "Operand must be indirect to be a mem!");
10104 assert(InOperandVal.getValueType() ==
10105 TLI.getPointerTy(DAG.getDataLayout()) &&
10106 "Memory operands expect pointer values");
10107
10108 const InlineAsm::ConstraintCode ConstraintID =
10109 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10110 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10111 "Failed to convert memory constraint code to constraint id.");
10112
10113 // Add information to the INLINEASM node to know about this input.
10114 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10115 ResOpType.setMemConstraint(ConstraintID);
10116 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10117 getCurSDLoc(),
10118 MVT::i32));
10119 AsmNodeOperands.push_back(InOperandVal);
10120 break;
10121 }
10122
10123 if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10124 const InlineAsm::ConstraintCode ConstraintID =
10125 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10126 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10127 "Failed to convert memory constraint code to constraint id.");
10128
10129 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10130
10131 SDValue AsmOp = InOperandVal;
10132 if (isFunction(InOperandVal)) {
10133 auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10134 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10135 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10136 InOperandVal.getValueType(),
10137 GA->getOffset());
10138 }
10139
10140 // Add information to the INLINEASM node to know about this input.
10141 ResOpType.setMemConstraint(ConstraintID);
10142
10143 AsmNodeOperands.push_back(
10144 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10145
10146 AsmNodeOperands.push_back(AsmOp);
10147 break;
10148 }
10149
10150 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10151 OpInfo.ConstraintType != TargetLowering::C_Register) {
10152 emitInlineAsmError(Call, "unknown asm constraint '" +
10153 Twine(OpInfo.ConstraintCode) + "'");
10154 return;
10155 }
10156
10157 // TODO: Support this.
10158 if (OpInfo.isIndirect) {
10159 emitInlineAsmError(
10160 Call, "Don't know how to handle indirect register inputs yet "
10161 "for constraint '" +
10162 Twine(OpInfo.ConstraintCode) + "'");
10163 return;
10164 }
10165
10166 // Copy the input into the appropriate registers.
10167 if (OpInfo.AssignedRegs.Regs.empty()) {
10168 emitInlineAsmError(Call,
10169 "couldn't allocate input reg for constraint '" +
10170 Twine(OpInfo.ConstraintCode) + "'");
10171 return;
10172 }
10173
10174 if (DetectWriteToReservedRegister())
10175 return;
10176
10177 SDLoc dl = getCurSDLoc();
10178
10179 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10180 &Call);
10181
10182 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10183 0, dl, DAG, AsmNodeOperands);
10184 break;
10185 }
10186 case InlineAsm::isClobber:
10187 // Add the clobbered value to the operand list, so that the register
10188 // allocator is aware that the physreg got clobbered.
10189 if (!OpInfo.AssignedRegs.Regs.empty())
10190 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
10191 false, 0, getCurSDLoc(), DAG,
10192 AsmNodeOperands);
10193 break;
10194 }
10195 }
10196
10197 // Finish up input operands. Set the input chain and add the flag last.
10198 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10199 if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10200
10201 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10202 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10203 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10204 Glue = Chain.getValue(1);
10205
10206 // Do additional work to generate outputs.
10207
10208 SmallVector<EVT, 1> ResultVTs;
10209 SmallVector<SDValue, 1> ResultValues;
10210 SmallVector<SDValue, 8> OutChains;
10211
10212 llvm::Type *CallResultType = Call.getType();
10213 ArrayRef<Type *> ResultTypes;
10214 if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10215 ResultTypes = StructResult->elements();
10216 else if (!CallResultType->isVoidTy())
10217 ResultTypes = ArrayRef(CallResultType);
10218
10219 auto CurResultType = ResultTypes.begin();
10220 auto handleRegAssign = [&](SDValue V) {
10221 assert(CurResultType != ResultTypes.end() && "Unexpected value");
10222 assert((*CurResultType)->isSized() && "Unexpected unsized type");
10223 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10224 ++CurResultType;
10225 // If the type of the inline asm call site return value is different but has
10226 // same size as the type of the asm output bitcast it. One example of this
10227 // is for vectors with different width / number of elements. This can
10228 // happen for register classes that can contain multiple different value
10229 // types. The preg or vreg allocated may not have the same VT as was
10230 // expected.
10231 //
10232 // This can also happen for a return value that disagrees with the register
10233 // class it is put in, eg. a double in a general-purpose register on a
10234 // 32-bit machine.
10235 if (ResultVT != V.getValueType() &&
10236 ResultVT.getSizeInBits() == V.getValueSizeInBits())
10237 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10238 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10239 V.getValueType().isInteger()) {
10240 // If a result value was tied to an input value, the computed result
10241 // may have a wider width than the expected result. Extract the
10242 // relevant portion.
10243 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10244 }
10245 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10246 ResultVTs.push_back(ResultVT);
10247 ResultValues.push_back(V);
10248 };
10249
10250 // Deal with output operands.
10251 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10252 if (OpInfo.Type == InlineAsm::isOutput) {
10253 SDValue Val;
10254 // Skip trivial output operands.
10255 if (OpInfo.AssignedRegs.Regs.empty())
10256 continue;
10257
10258 switch (OpInfo.ConstraintType) {
10259 case TargetLowering::C_Register:
10260 case TargetLowering::C_RegisterClass:
10261 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10262 Chain, &Glue, &Call);
10263 break;
10264 case TargetLowering::C_Immediate:
10265 case TargetLowering::C_Other:
10266 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10267 OpInfo, DAG);
10268 break;
10269 case TargetLowering::C_Memory:
10270 break; // Already handled.
10271 case TargetLowering::C_Address:
10272 break; // Silence warning.
10273 case TargetLowering::C_Unknown:
10274 assert(false && "Unexpected unknown constraint");
10275 }
10276
10277 // Indirect output manifest as stores. Record output chains.
10278 if (OpInfo.isIndirect) {
10279 const Value *Ptr = OpInfo.CallOperandVal;
10280 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10281 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10282 MachinePointerInfo(Ptr));
10283 OutChains.push_back(Store);
10284 } else {
10285 // generate CopyFromRegs to associated registers.
10286 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10287 if (Val.getOpcode() == ISD::MERGE_VALUES) {
10288 for (const SDValue &V : Val->op_values())
10289 handleRegAssign(V);
10290 } else
10291 handleRegAssign(Val);
10292 }
10293 }
10294 }
10295
10296 // Set results.
10297 if (!ResultValues.empty()) {
10298 assert(CurResultType == ResultTypes.end() &&
10299 "Mismatch in number of ResultTypes");
10300 assert(ResultValues.size() == ResultTypes.size() &&
10301 "Mismatch in number of output operands in asm result");
10302
10303 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10304 DAG.getVTList(ResultVTs), ResultValues);
10305 setValue(&Call, V);
10306 }
10307
10308 // Collect store chains.
10309 if (!OutChains.empty())
10310 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10311
10312 if (EmitEHLabels) {
10313 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10314 }
10315
10316 // Only Update Root if inline assembly has a memory effect.
10317 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10318 EmitEHLabels)
10319 DAG.setRoot(Chain);
10320 }
10321
emitInlineAsmError(const CallBase & Call,const Twine & Message)10322 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10323 const Twine &Message) {
10324 LLVMContext &Ctx = *DAG.getContext();
10325 Ctx.emitError(&Call, Message);
10326
10327 // Make sure we leave the DAG in a valid state
10328 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10329 SmallVector<EVT, 1> ValueVTs;
10330 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10331
10332 if (ValueVTs.empty())
10333 return;
10334
10335 SmallVector<SDValue, 1> Ops;
10336 for (const EVT &VT : ValueVTs)
10337 Ops.push_back(DAG.getUNDEF(VT));
10338
10339 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10340 }
10341
visitVAStart(const CallInst & I)10342 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10343 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10344 MVT::Other, getRoot(),
10345 getValue(I.getArgOperand(0)),
10346 DAG.getSrcValue(I.getArgOperand(0))));
10347 }
10348
visitVAArg(const VAArgInst & I)10349 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10350 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10351 const DataLayout &DL = DAG.getDataLayout();
10352 SDValue V = DAG.getVAArg(
10353 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10354 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10355 DL.getABITypeAlign(I.getType()).value());
10356 DAG.setRoot(V.getValue(1));
10357
10358 if (I.getType()->isPointerTy())
10359 V = DAG.getPtrExtOrTrunc(
10360 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10361 setValue(&I, V);
10362 }
10363
visitVAEnd(const CallInst & I)10364 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10365 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10366 MVT::Other, getRoot(),
10367 getValue(I.getArgOperand(0)),
10368 DAG.getSrcValue(I.getArgOperand(0))));
10369 }
10370
visitVACopy(const CallInst & I)10371 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10372 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10373 MVT::Other, getRoot(),
10374 getValue(I.getArgOperand(0)),
10375 getValue(I.getArgOperand(1)),
10376 DAG.getSrcValue(I.getArgOperand(0)),
10377 DAG.getSrcValue(I.getArgOperand(1))));
10378 }
10379
lowerRangeToAssertZExt(SelectionDAG & DAG,const Instruction & I,SDValue Op)10380 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10381 const Instruction &I,
10382 SDValue Op) {
10383 std::optional<ConstantRange> CR = getRange(I);
10384
10385 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10386 return Op;
10387
10388 APInt Lo = CR->getUnsignedMin();
10389 if (!Lo.isMinValue())
10390 return Op;
10391
10392 APInt Hi = CR->getUnsignedMax();
10393 unsigned Bits = std::max(Hi.getActiveBits(),
10394 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10395
10396 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10397
10398 SDLoc SL = getCurSDLoc();
10399
10400 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10401 DAG.getValueType(SmallVT));
10402 unsigned NumVals = Op.getNode()->getNumValues();
10403 if (NumVals == 1)
10404 return ZExt;
10405
10406 SmallVector<SDValue, 4> Ops;
10407
10408 Ops.push_back(ZExt);
10409 for (unsigned I = 1; I != NumVals; ++I)
10410 Ops.push_back(Op.getValue(I));
10411
10412 return DAG.getMergeValues(Ops, SL);
10413 }
10414
10415 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10416 /// the call being lowered.
10417 ///
10418 /// This is a helper for lowering intrinsics that follow a target calling
10419 /// convention or require stack pointer adjustment. Only a subset of the
10420 /// intrinsic's operands need to participate in the calling convention.
populateCallLoweringInfo(TargetLowering::CallLoweringInfo & CLI,const CallBase * Call,unsigned ArgIdx,unsigned NumArgs,SDValue Callee,Type * ReturnTy,AttributeSet RetAttrs,bool IsPatchPoint)10421 void SelectionDAGBuilder::populateCallLoweringInfo(
10422 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10423 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10424 AttributeSet RetAttrs, bool IsPatchPoint) {
10425 TargetLowering::ArgListTy Args;
10426 Args.reserve(NumArgs);
10427
10428 // Populate the argument list.
10429 // Attributes for args start at offset 1, after the return attribute.
10430 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10431 ArgI != ArgE; ++ArgI) {
10432 const Value *V = Call->getOperand(ArgI);
10433
10434 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10435
10436 TargetLowering::ArgListEntry Entry;
10437 Entry.Node = getValue(V);
10438 Entry.Ty = V->getType();
10439 Entry.setAttributes(Call, ArgI);
10440 Args.push_back(Entry);
10441 }
10442
10443 CLI.setDebugLoc(getCurSDLoc())
10444 .setChain(getRoot())
10445 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10446 RetAttrs)
10447 .setDiscardResult(Call->use_empty())
10448 .setIsPatchPoint(IsPatchPoint)
10449 .setIsPreallocated(
10450 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10451 }
10452
10453 /// Add a stack map intrinsic call's live variable operands to a stackmap
10454 /// or patchpoint target node's operand list.
10455 ///
10456 /// Constants are converted to TargetConstants purely as an optimization to
10457 /// avoid constant materialization and register allocation.
10458 ///
10459 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10460 /// generate addess computation nodes, and so FinalizeISel can convert the
10461 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10462 /// address materialization and register allocation, but may also be required
10463 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10464 /// alloca in the entry block, then the runtime may assume that the alloca's
10465 /// StackMap location can be read immediately after compilation and that the
10466 /// location is valid at any point during execution (this is similar to the
10467 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10468 /// only available in a register, then the runtime would need to trap when
10469 /// execution reaches the StackMap in order to read the alloca's location.
addStackMapLiveVars(const CallBase & Call,unsigned StartIdx,const SDLoc & DL,SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder)10470 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10471 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10472 SelectionDAGBuilder &Builder) {
10473 SelectionDAG &DAG = Builder.DAG;
10474 for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10475 SDValue Op = Builder.getValue(Call.getArgOperand(I));
10476
10477 // Things on the stack are pointer-typed, meaning that they are already
10478 // legal and can be emitted directly to target nodes.
10479 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10480 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10481 } else {
10482 // Otherwise emit a target independent node to be legalised.
10483 Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10484 }
10485 }
10486 }
10487
10488 /// Lower llvm.experimental.stackmap.
visitStackmap(const CallInst & CI)10489 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10490 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10491 // [live variables...])
10492
10493 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10494
10495 SDValue Chain, InGlue, Callee;
10496 SmallVector<SDValue, 32> Ops;
10497
10498 SDLoc DL = getCurSDLoc();
10499 Callee = getValue(CI.getCalledOperand());
10500
10501 // The stackmap intrinsic only records the live variables (the arguments
10502 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10503 // intrinsic, this won't be lowered to a function call. This means we don't
10504 // have to worry about calling conventions and target specific lowering code.
10505 // Instead we perform the call lowering right here.
10506 //
10507 // chain, flag = CALLSEQ_START(chain, 0, 0)
10508 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10509 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10510 //
10511 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10512 InGlue = Chain.getValue(1);
10513
10514 // Add the STACKMAP operands, starting with DAG house-keeping.
10515 Ops.push_back(Chain);
10516 Ops.push_back(InGlue);
10517
10518 // Add the <id>, <numShadowBytes> operands.
10519 //
10520 // These do not require legalisation, and can be emitted directly to target
10521 // constant nodes.
10522 SDValue ID = getValue(CI.getArgOperand(0));
10523 assert(ID.getValueType() == MVT::i64);
10524 SDValue IDConst =
10525 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10526 Ops.push_back(IDConst);
10527
10528 SDValue Shad = getValue(CI.getArgOperand(1));
10529 assert(Shad.getValueType() == MVT::i32);
10530 SDValue ShadConst =
10531 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10532 Ops.push_back(ShadConst);
10533
10534 // Add the live variables.
10535 addStackMapLiveVars(CI, 2, DL, Ops, *this);
10536
10537 // Create the STACKMAP node.
10538 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10539 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10540 InGlue = Chain.getValue(1);
10541
10542 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10543
10544 // Stackmaps don't generate values, so nothing goes into the NodeMap.
10545
10546 // Set the root to the target-lowered call chain.
10547 DAG.setRoot(Chain);
10548
10549 // Inform the Frame Information that we have a stackmap in this function.
10550 FuncInfo.MF->getFrameInfo().setHasStackMap();
10551 }
10552
10553 /// Lower llvm.experimental.patchpoint directly to its target opcode.
visitPatchpoint(const CallBase & CB,const BasicBlock * EHPadBB)10554 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10555 const BasicBlock *EHPadBB) {
10556 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10557 // i32 <numBytes>,
10558 // i8* <target>,
10559 // i32 <numArgs>,
10560 // [Args...],
10561 // [live variables...])
10562
10563 CallingConv::ID CC = CB.getCallingConv();
10564 bool IsAnyRegCC = CC == CallingConv::AnyReg;
10565 bool HasDef = !CB.getType()->isVoidTy();
10566 SDLoc dl = getCurSDLoc();
10567 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10568
10569 // Handle immediate and symbolic callees.
10570 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10571 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10572 /*isTarget=*/true);
10573 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10574 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10575 SDLoc(SymbolicCallee),
10576 SymbolicCallee->getValueType(0));
10577
10578 // Get the real number of arguments participating in the call <numArgs>
10579 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10580 unsigned NumArgs = NArgVal->getAsZExtVal();
10581
10582 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10583 // Intrinsics include all meta-operands up to but not including CC.
10584 unsigned NumMetaOpers = PatchPointOpers::CCPos;
10585 assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10586 "Not enough arguments provided to the patchpoint intrinsic");
10587
10588 // For AnyRegCC the arguments are lowered later on manually.
10589 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10590 Type *ReturnTy =
10591 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10592
10593 TargetLowering::CallLoweringInfo CLI(DAG);
10594 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10595 ReturnTy, CB.getAttributes().getRetAttrs(), true);
10596 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10597
10598 SDNode *CallEnd = Result.second.getNode();
10599 if (CallEnd->getOpcode() == ISD::EH_LABEL)
10600 CallEnd = CallEnd->getOperand(0).getNode();
10601 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10602 CallEnd = CallEnd->getOperand(0).getNode();
10603
10604 /// Get a call instruction from the call sequence chain.
10605 /// Tail calls are not allowed.
10606 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10607 "Expected a callseq node.");
10608 SDNode *Call = CallEnd->getOperand(0).getNode();
10609 bool HasGlue = Call->getGluedNode();
10610
10611 // Replace the target specific call node with the patchable intrinsic.
10612 SmallVector<SDValue, 8> Ops;
10613
10614 // Push the chain.
10615 Ops.push_back(*(Call->op_begin()));
10616
10617 // Optionally, push the glue (if any).
10618 if (HasGlue)
10619 Ops.push_back(*(Call->op_end() - 1));
10620
10621 // Push the register mask info.
10622 if (HasGlue)
10623 Ops.push_back(*(Call->op_end() - 2));
10624 else
10625 Ops.push_back(*(Call->op_end() - 1));
10626
10627 // Add the <id> and <numBytes> constants.
10628 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10629 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10630 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10631 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10632
10633 // Add the callee.
10634 Ops.push_back(Callee);
10635
10636 // Adjust <numArgs> to account for any arguments that have been passed on the
10637 // stack instead.
10638 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10639 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10640 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10641 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10642
10643 // Add the calling convention
10644 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10645
10646 // Add the arguments we omitted previously. The register allocator should
10647 // place these in any free register.
10648 if (IsAnyRegCC)
10649 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10650 Ops.push_back(getValue(CB.getArgOperand(i)));
10651
10652 // Push the arguments from the call instruction.
10653 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10654 Ops.append(Call->op_begin() + 2, e);
10655
10656 // Push live variables for the stack map.
10657 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10658
10659 SDVTList NodeTys;
10660 if (IsAnyRegCC && HasDef) {
10661 // Create the return types based on the intrinsic definition
10662 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10663 SmallVector<EVT, 3> ValueVTs;
10664 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10665 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10666
10667 // There is always a chain and a glue type at the end
10668 ValueVTs.push_back(MVT::Other);
10669 ValueVTs.push_back(MVT::Glue);
10670 NodeTys = DAG.getVTList(ValueVTs);
10671 } else
10672 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10673
10674 // Replace the target specific call node with a PATCHPOINT node.
10675 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10676
10677 // Update the NodeMap.
10678 if (HasDef) {
10679 if (IsAnyRegCC)
10680 setValue(&CB, SDValue(PPV.getNode(), 0));
10681 else
10682 setValue(&CB, Result.first);
10683 }
10684
10685 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10686 // call sequence. Furthermore the location of the chain and glue can change
10687 // when the AnyReg calling convention is used and the intrinsic returns a
10688 // value.
10689 if (IsAnyRegCC && HasDef) {
10690 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10691 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10692 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10693 } else
10694 DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10695 DAG.DeleteNode(Call);
10696
10697 // Inform the Frame Information that we have a patchpoint in this function.
10698 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10699 }
10700
visitVectorReduce(const CallInst & I,unsigned Intrinsic)10701 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10702 unsigned Intrinsic) {
10703 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10704 SDValue Op1 = getValue(I.getArgOperand(0));
10705 SDValue Op2;
10706 if (I.arg_size() > 1)
10707 Op2 = getValue(I.getArgOperand(1));
10708 SDLoc dl = getCurSDLoc();
10709 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10710 SDValue Res;
10711 SDNodeFlags SDFlags;
10712 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10713 SDFlags.copyFMF(*FPMO);
10714
10715 switch (Intrinsic) {
10716 case Intrinsic::vector_reduce_fadd:
10717 if (SDFlags.hasAllowReassociation())
10718 Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10719 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10720 SDFlags);
10721 else
10722 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10723 break;
10724 case Intrinsic::vector_reduce_fmul:
10725 if (SDFlags.hasAllowReassociation())
10726 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10727 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10728 SDFlags);
10729 else
10730 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10731 break;
10732 case Intrinsic::vector_reduce_add:
10733 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10734 break;
10735 case Intrinsic::vector_reduce_mul:
10736 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10737 break;
10738 case Intrinsic::vector_reduce_and:
10739 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10740 break;
10741 case Intrinsic::vector_reduce_or:
10742 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10743 break;
10744 case Intrinsic::vector_reduce_xor:
10745 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10746 break;
10747 case Intrinsic::vector_reduce_smax:
10748 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10749 break;
10750 case Intrinsic::vector_reduce_smin:
10751 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10752 break;
10753 case Intrinsic::vector_reduce_umax:
10754 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10755 break;
10756 case Intrinsic::vector_reduce_umin:
10757 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10758 break;
10759 case Intrinsic::vector_reduce_fmax:
10760 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10761 break;
10762 case Intrinsic::vector_reduce_fmin:
10763 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10764 break;
10765 case Intrinsic::vector_reduce_fmaximum:
10766 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10767 break;
10768 case Intrinsic::vector_reduce_fminimum:
10769 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10770 break;
10771 default:
10772 llvm_unreachable("Unhandled vector reduce intrinsic");
10773 }
10774 setValue(&I, Res);
10775 }
10776
10777 /// Returns an AttributeList representing the attributes applied to the return
10778 /// value of the given call.
getReturnAttrs(TargetLowering::CallLoweringInfo & CLI)10779 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10780 SmallVector<Attribute::AttrKind, 2> Attrs;
10781 if (CLI.RetSExt)
10782 Attrs.push_back(Attribute::SExt);
10783 if (CLI.RetZExt)
10784 Attrs.push_back(Attribute::ZExt);
10785 if (CLI.IsInReg)
10786 Attrs.push_back(Attribute::InReg);
10787
10788 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10789 Attrs);
10790 }
10791
10792 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10793 /// implementation, which just calls LowerCall.
10794 /// FIXME: When all targets are
10795 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10796 std::pair<SDValue, SDValue>
LowerCallTo(TargetLowering::CallLoweringInfo & CLI) const10797 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10798 // Handle the incoming return values from the call.
10799 CLI.Ins.clear();
10800 Type *OrigRetTy = CLI.RetTy;
10801 SmallVector<EVT, 4> RetTys;
10802 SmallVector<TypeSize, 4> Offsets;
10803 auto &DL = CLI.DAG.getDataLayout();
10804 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10805
10806 if (CLI.IsPostTypeLegalization) {
10807 // If we are lowering a libcall after legalization, split the return type.
10808 SmallVector<EVT, 4> OldRetTys;
10809 SmallVector<TypeSize, 4> OldOffsets;
10810 RetTys.swap(OldRetTys);
10811 Offsets.swap(OldOffsets);
10812
10813 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10814 EVT RetVT = OldRetTys[i];
10815 uint64_t Offset = OldOffsets[i];
10816 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10817 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10818 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10819 RetTys.append(NumRegs, RegisterVT);
10820 for (unsigned j = 0; j != NumRegs; ++j)
10821 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10822 }
10823 }
10824
10825 SmallVector<ISD::OutputArg, 4> Outs;
10826 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10827
10828 bool CanLowerReturn =
10829 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10830 CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10831
10832 SDValue DemoteStackSlot;
10833 int DemoteStackIdx = -100;
10834 if (!CanLowerReturn) {
10835 // FIXME: equivalent assert?
10836 // assert(!CS.hasInAllocaArgument() &&
10837 // "sret demotion is incompatible with inalloca");
10838 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10839 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10840 MachineFunction &MF = CLI.DAG.getMachineFunction();
10841 DemoteStackIdx =
10842 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10843 Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10844 DL.getAllocaAddrSpace());
10845
10846 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10847 ArgListEntry Entry;
10848 Entry.Node = DemoteStackSlot;
10849 Entry.Ty = StackSlotPtrType;
10850 Entry.IsSExt = false;
10851 Entry.IsZExt = false;
10852 Entry.IsInReg = false;
10853 Entry.IsSRet = true;
10854 Entry.IsNest = false;
10855 Entry.IsByVal = false;
10856 Entry.IsByRef = false;
10857 Entry.IsReturned = false;
10858 Entry.IsSwiftSelf = false;
10859 Entry.IsSwiftAsync = false;
10860 Entry.IsSwiftError = false;
10861 Entry.IsCFGuardTarget = false;
10862 Entry.Alignment = Alignment;
10863 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10864 CLI.NumFixedArgs += 1;
10865 CLI.getArgs()[0].IndirectType = CLI.RetTy;
10866 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10867
10868 // sret demotion isn't compatible with tail-calls, since the sret argument
10869 // points into the callers stack frame.
10870 CLI.IsTailCall = false;
10871 } else {
10872 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10873 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10874 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10875 ISD::ArgFlagsTy Flags;
10876 if (NeedsRegBlock) {
10877 Flags.setInConsecutiveRegs();
10878 if (I == RetTys.size() - 1)
10879 Flags.setInConsecutiveRegsLast();
10880 }
10881 EVT VT = RetTys[I];
10882 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10883 CLI.CallConv, VT);
10884 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10885 CLI.CallConv, VT);
10886 for (unsigned i = 0; i != NumRegs; ++i) {
10887 ISD::InputArg MyFlags;
10888 MyFlags.Flags = Flags;
10889 MyFlags.VT = RegisterVT;
10890 MyFlags.ArgVT = VT;
10891 MyFlags.Used = CLI.IsReturnValueUsed;
10892 if (CLI.RetTy->isPointerTy()) {
10893 MyFlags.Flags.setPointer();
10894 MyFlags.Flags.setPointerAddrSpace(
10895 cast<PointerType>(CLI.RetTy)->getAddressSpace());
10896 }
10897 if (CLI.RetSExt)
10898 MyFlags.Flags.setSExt();
10899 if (CLI.RetZExt)
10900 MyFlags.Flags.setZExt();
10901 if (CLI.IsInReg)
10902 MyFlags.Flags.setInReg();
10903 CLI.Ins.push_back(MyFlags);
10904 }
10905 }
10906 }
10907
10908 // We push in swifterror return as the last element of CLI.Ins.
10909 ArgListTy &Args = CLI.getArgs();
10910 if (supportSwiftError()) {
10911 for (const ArgListEntry &Arg : Args) {
10912 if (Arg.IsSwiftError) {
10913 ISD::InputArg MyFlags;
10914 MyFlags.VT = getPointerTy(DL);
10915 MyFlags.ArgVT = EVT(getPointerTy(DL));
10916 MyFlags.Flags.setSwiftError();
10917 CLI.Ins.push_back(MyFlags);
10918 }
10919 }
10920 }
10921
10922 // Handle all of the outgoing arguments.
10923 CLI.Outs.clear();
10924 CLI.OutVals.clear();
10925 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10926 SmallVector<EVT, 4> ValueVTs;
10927 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10928 // FIXME: Split arguments if CLI.IsPostTypeLegalization
10929 Type *FinalType = Args[i].Ty;
10930 if (Args[i].IsByVal)
10931 FinalType = Args[i].IndirectType;
10932 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10933 FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10934 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10935 ++Value) {
10936 EVT VT = ValueVTs[Value];
10937 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10938 SDValue Op = SDValue(Args[i].Node.getNode(),
10939 Args[i].Node.getResNo() + Value);
10940 ISD::ArgFlagsTy Flags;
10941
10942 // Certain targets (such as MIPS), may have a different ABI alignment
10943 // for a type depending on the context. Give the target a chance to
10944 // specify the alignment it wants.
10945 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10946 Flags.setOrigAlign(OriginalAlignment);
10947
10948 if (Args[i].Ty->isPointerTy()) {
10949 Flags.setPointer();
10950 Flags.setPointerAddrSpace(
10951 cast<PointerType>(Args[i].Ty)->getAddressSpace());
10952 }
10953 if (Args[i].IsZExt)
10954 Flags.setZExt();
10955 if (Args[i].IsSExt)
10956 Flags.setSExt();
10957 if (Args[i].IsInReg) {
10958 // If we are using vectorcall calling convention, a structure that is
10959 // passed InReg - is surely an HVA
10960 if (CLI.CallConv == CallingConv::X86_VectorCall &&
10961 isa<StructType>(FinalType)) {
10962 // The first value of a structure is marked
10963 if (0 == Value)
10964 Flags.setHvaStart();
10965 Flags.setHva();
10966 }
10967 // Set InReg Flag
10968 Flags.setInReg();
10969 }
10970 if (Args[i].IsSRet)
10971 Flags.setSRet();
10972 if (Args[i].IsSwiftSelf)
10973 Flags.setSwiftSelf();
10974 if (Args[i].IsSwiftAsync)
10975 Flags.setSwiftAsync();
10976 if (Args[i].IsSwiftError)
10977 Flags.setSwiftError();
10978 if (Args[i].IsCFGuardTarget)
10979 Flags.setCFGuardTarget();
10980 if (Args[i].IsByVal)
10981 Flags.setByVal();
10982 if (Args[i].IsByRef)
10983 Flags.setByRef();
10984 if (Args[i].IsPreallocated) {
10985 Flags.setPreallocated();
10986 // Set the byval flag for CCAssignFn callbacks that don't know about
10987 // preallocated. This way we can know how many bytes we should've
10988 // allocated and how many bytes a callee cleanup function will pop. If
10989 // we port preallocated to more targets, we'll have to add custom
10990 // preallocated handling in the various CC lowering callbacks.
10991 Flags.setByVal();
10992 }
10993 if (Args[i].IsInAlloca) {
10994 Flags.setInAlloca();
10995 // Set the byval flag for CCAssignFn callbacks that don't know about
10996 // inalloca. This way we can know how many bytes we should've allocated
10997 // and how many bytes a callee cleanup function will pop. If we port
10998 // inalloca to more targets, we'll have to add custom inalloca handling
10999 // in the various CC lowering callbacks.
11000 Flags.setByVal();
11001 }
11002 Align MemAlign;
11003 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11004 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11005 Flags.setByValSize(FrameSize);
11006
11007 // info is not there but there are cases it cannot get right.
11008 if (auto MA = Args[i].Alignment)
11009 MemAlign = *MA;
11010 else
11011 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
11012 } else if (auto MA = Args[i].Alignment) {
11013 MemAlign = *MA;
11014 } else {
11015 MemAlign = OriginalAlignment;
11016 }
11017 Flags.setMemAlign(MemAlign);
11018 if (Args[i].IsNest)
11019 Flags.setNest();
11020 if (NeedsRegBlock)
11021 Flags.setInConsecutiveRegs();
11022
11023 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11024 CLI.CallConv, VT);
11025 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11026 CLI.CallConv, VT);
11027 SmallVector<SDValue, 4> Parts(NumParts);
11028 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11029
11030 if (Args[i].IsSExt)
11031 ExtendKind = ISD::SIGN_EXTEND;
11032 else if (Args[i].IsZExt)
11033 ExtendKind = ISD::ZERO_EXTEND;
11034
11035 // Conservatively only handle 'returned' on non-vectors that can be lowered,
11036 // for now.
11037 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11038 CanLowerReturn) {
11039 assert((CLI.RetTy == Args[i].Ty ||
11040 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11041 CLI.RetTy->getPointerAddressSpace() ==
11042 Args[i].Ty->getPointerAddressSpace())) &&
11043 RetTys.size() == NumValues && "unexpected use of 'returned'");
11044 // Before passing 'returned' to the target lowering code, ensure that
11045 // either the register MVT and the actual EVT are the same size or that
11046 // the return value and argument are extended in the same way; in these
11047 // cases it's safe to pass the argument register value unchanged as the
11048 // return register value (although it's at the target's option whether
11049 // to do so)
11050 // TODO: allow code generation to take advantage of partially preserved
11051 // registers rather than clobbering the entire register when the
11052 // parameter extension method is not compatible with the return
11053 // extension method
11054 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11055 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11056 CLI.RetZExt == Args[i].IsZExt))
11057 Flags.setReturned();
11058 }
11059
11060 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11061 CLI.CallConv, ExtendKind);
11062
11063 for (unsigned j = 0; j != NumParts; ++j) {
11064 // if it isn't first piece, alignment must be 1
11065 // For scalable vectors the scalable part is currently handled
11066 // by individual targets, so we just use the known minimum size here.
11067 ISD::OutputArg MyFlags(
11068 Flags, Parts[j].getValueType().getSimpleVT(), VT,
11069 i < CLI.NumFixedArgs, i,
11070 j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11071 if (NumParts > 1 && j == 0)
11072 MyFlags.Flags.setSplit();
11073 else if (j != 0) {
11074 MyFlags.Flags.setOrigAlign(Align(1));
11075 if (j == NumParts - 1)
11076 MyFlags.Flags.setSplitEnd();
11077 }
11078
11079 CLI.Outs.push_back(MyFlags);
11080 CLI.OutVals.push_back(Parts[j]);
11081 }
11082
11083 if (NeedsRegBlock && Value == NumValues - 1)
11084 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11085 }
11086 }
11087
11088 SmallVector<SDValue, 4> InVals;
11089 CLI.Chain = LowerCall(CLI, InVals);
11090
11091 // Update CLI.InVals to use outside of this function.
11092 CLI.InVals = InVals;
11093
11094 // Verify that the target's LowerCall behaved as expected.
11095 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11096 "LowerCall didn't return a valid chain!");
11097 assert((!CLI.IsTailCall || InVals.empty()) &&
11098 "LowerCall emitted a return value for a tail call!");
11099 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11100 "LowerCall didn't emit the correct number of values!");
11101
11102 // For a tail call, the return value is merely live-out and there aren't
11103 // any nodes in the DAG representing it. Return a special value to
11104 // indicate that a tail call has been emitted and no more Instructions
11105 // should be processed in the current block.
11106 if (CLI.IsTailCall) {
11107 CLI.DAG.setRoot(CLI.Chain);
11108 return std::make_pair(SDValue(), SDValue());
11109 }
11110
11111 #ifndef NDEBUG
11112 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11113 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11114 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11115 "LowerCall emitted a value with the wrong type!");
11116 }
11117 #endif
11118
11119 SmallVector<SDValue, 4> ReturnValues;
11120 if (!CanLowerReturn) {
11121 // The instruction result is the result of loading from the
11122 // hidden sret parameter.
11123 SmallVector<EVT, 1> PVTs;
11124 Type *PtrRetTy =
11125 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
11126
11127 ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
11128 assert(PVTs.size() == 1 && "Pointers should fit in one register");
11129 EVT PtrVT = PVTs[0];
11130
11131 unsigned NumValues = RetTys.size();
11132 ReturnValues.resize(NumValues);
11133 SmallVector<SDValue, 4> Chains(NumValues);
11134
11135 // An aggregate return value cannot wrap around the address space, so
11136 // offsets to its parts don't wrap either.
11137 SDNodeFlags Flags;
11138 Flags.setNoUnsignedWrap(true);
11139
11140 MachineFunction &MF = CLI.DAG.getMachineFunction();
11141 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11142 for (unsigned i = 0; i < NumValues; ++i) {
11143 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
11144 CLI.DAG.getConstant(Offsets[i], CLI.DL,
11145 PtrVT), Flags);
11146 SDValue L = CLI.DAG.getLoad(
11147 RetTys[i], CLI.DL, CLI.Chain, Add,
11148 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
11149 DemoteStackIdx, Offsets[i]),
11150 HiddenSRetAlign);
11151 ReturnValues[i] = L;
11152 Chains[i] = L.getValue(1);
11153 }
11154
11155 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11156 } else {
11157 // Collect the legal value parts into potentially illegal values
11158 // that correspond to the original function's return values.
11159 std::optional<ISD::NodeType> AssertOp;
11160 if (CLI.RetSExt)
11161 AssertOp = ISD::AssertSext;
11162 else if (CLI.RetZExt)
11163 AssertOp = ISD::AssertZext;
11164 unsigned CurReg = 0;
11165 for (EVT VT : RetTys) {
11166 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11167 CLI.CallConv, VT);
11168 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11169 CLI.CallConv, VT);
11170
11171 ReturnValues.push_back(getCopyFromParts(
11172 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11173 CLI.Chain, CLI.CallConv, AssertOp));
11174 CurReg += NumRegs;
11175 }
11176
11177 // For a function returning void, there is no return value. We can't create
11178 // such a node, so we just return a null return value in that case. In
11179 // that case, nothing will actually look at the value.
11180 if (ReturnValues.empty())
11181 return std::make_pair(SDValue(), CLI.Chain);
11182 }
11183
11184 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11185 CLI.DAG.getVTList(RetTys), ReturnValues);
11186 return std::make_pair(Res, CLI.Chain);
11187 }
11188
11189 /// Places new result values for the node in Results (their number
11190 /// and types must exactly match those of the original return values of
11191 /// the node), or leaves Results empty, which indicates that the node is not
11192 /// to be custom lowered after all.
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const11193 void TargetLowering::LowerOperationWrapper(SDNode *N,
11194 SmallVectorImpl<SDValue> &Results,
11195 SelectionDAG &DAG) const {
11196 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11197
11198 if (!Res.getNode())
11199 return;
11200
11201 // If the original node has one result, take the return value from
11202 // LowerOperation as is. It might not be result number 0.
11203 if (N->getNumValues() == 1) {
11204 Results.push_back(Res);
11205 return;
11206 }
11207
11208 // If the original node has multiple results, then the return node should
11209 // have the same number of results.
11210 assert((N->getNumValues() == Res->getNumValues()) &&
11211 "Lowering returned the wrong number of results!");
11212
11213 // Places new result values base on N result number.
11214 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11215 Results.push_back(Res.getValue(I));
11216 }
11217
LowerOperation(SDValue Op,SelectionDAG & DAG) const11218 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11219 llvm_unreachable("LowerOperation not implemented for this target!");
11220 }
11221
CopyValueToVirtualRegister(const Value * V,unsigned Reg,ISD::NodeType ExtendType)11222 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
11223 unsigned Reg,
11224 ISD::NodeType ExtendType) {
11225 SDValue Op = getNonRegisterValue(V);
11226 assert((Op.getOpcode() != ISD::CopyFromReg ||
11227 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11228 "Copy from a reg to the same reg!");
11229 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
11230
11231 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11232 // If this is an InlineAsm we have to match the registers required, not the
11233 // notional registers required by the type.
11234
11235 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11236 std::nullopt); // This is not an ABI copy.
11237 SDValue Chain = DAG.getEntryNode();
11238
11239 if (ExtendType == ISD::ANY_EXTEND) {
11240 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11241 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11242 ExtendType = PreferredExtendIt->second;
11243 }
11244 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11245 PendingExports.push_back(Chain);
11246 }
11247
11248 #include "llvm/CodeGen/SelectionDAGISel.h"
11249
11250 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11251 /// entry block, return true. This includes arguments used by switches, since
11252 /// the switch may expand into multiple basic blocks.
isOnlyUsedInEntryBlock(const Argument * A,bool FastISel)11253 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11254 // With FastISel active, we may be splitting blocks, so force creation
11255 // of virtual registers for all non-dead arguments.
11256 if (FastISel)
11257 return A->use_empty();
11258
11259 const BasicBlock &Entry = A->getParent()->front();
11260 for (const User *U : A->users())
11261 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11262 return false; // Use not in entry block.
11263
11264 return true;
11265 }
11266
11267 using ArgCopyElisionMapTy =
11268 DenseMap<const Argument *,
11269 std::pair<const AllocaInst *, const StoreInst *>>;
11270
11271 /// Scan the entry block of the function in FuncInfo for arguments that look
11272 /// like copies into a local alloca. Record any copied arguments in
11273 /// ArgCopyElisionCandidates.
11274 static void
findArgumentCopyElisionCandidates(const DataLayout & DL,FunctionLoweringInfo * FuncInfo,ArgCopyElisionMapTy & ArgCopyElisionCandidates)11275 findArgumentCopyElisionCandidates(const DataLayout &DL,
11276 FunctionLoweringInfo *FuncInfo,
11277 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11278 // Record the state of every static alloca used in the entry block. Argument
11279 // allocas are all used in the entry block, so we need approximately as many
11280 // entries as we have arguments.
11281 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11282 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11283 unsigned NumArgs = FuncInfo->Fn->arg_size();
11284 StaticAllocas.reserve(NumArgs * 2);
11285
11286 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11287 if (!V)
11288 return nullptr;
11289 V = V->stripPointerCasts();
11290 const auto *AI = dyn_cast<AllocaInst>(V);
11291 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11292 return nullptr;
11293 auto Iter = StaticAllocas.insert({AI, Unknown});
11294 return &Iter.first->second;
11295 };
11296
11297 // Look for stores of arguments to static allocas. Look through bitcasts and
11298 // GEPs to handle type coercions, as long as the alloca is fully initialized
11299 // by the store. Any non-store use of an alloca escapes it and any subsequent
11300 // unanalyzed store might write it.
11301 // FIXME: Handle structs initialized with multiple stores.
11302 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11303 // Look for stores, and handle non-store uses conservatively.
11304 const auto *SI = dyn_cast<StoreInst>(&I);
11305 if (!SI) {
11306 // We will look through cast uses, so ignore them completely.
11307 if (I.isCast())
11308 continue;
11309 // Ignore debug info and pseudo op intrinsics, they don't escape or store
11310 // to allocas.
11311 if (I.isDebugOrPseudoInst())
11312 continue;
11313 // This is an unknown instruction. Assume it escapes or writes to all
11314 // static alloca operands.
11315 for (const Use &U : I.operands()) {
11316 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11317 *Info = StaticAllocaInfo::Clobbered;
11318 }
11319 continue;
11320 }
11321
11322 // If the stored value is a static alloca, mark it as escaped.
11323 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11324 *Info = StaticAllocaInfo::Clobbered;
11325
11326 // Check if the destination is a static alloca.
11327 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11328 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11329 if (!Info)
11330 continue;
11331 const AllocaInst *AI = cast<AllocaInst>(Dst);
11332
11333 // Skip allocas that have been initialized or clobbered.
11334 if (*Info != StaticAllocaInfo::Unknown)
11335 continue;
11336
11337 // Check if the stored value is an argument, and that this store fully
11338 // initializes the alloca.
11339 // If the argument type has padding bits we can't directly forward a pointer
11340 // as the upper bits may contain garbage.
11341 // Don't elide copies from the same argument twice.
11342 const Value *Val = SI->getValueOperand()->stripPointerCasts();
11343 const auto *Arg = dyn_cast<Argument>(Val);
11344 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11345 Arg->getType()->isEmptyTy() ||
11346 DL.getTypeStoreSize(Arg->getType()) !=
11347 DL.getTypeAllocSize(AI->getAllocatedType()) ||
11348 !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11349 ArgCopyElisionCandidates.count(Arg)) {
11350 *Info = StaticAllocaInfo::Clobbered;
11351 continue;
11352 }
11353
11354 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11355 << '\n');
11356
11357 // Mark this alloca and store for argument copy elision.
11358 *Info = StaticAllocaInfo::Elidable;
11359 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11360
11361 // Stop scanning if we've seen all arguments. This will happen early in -O0
11362 // builds, which is useful, because -O0 builds have large entry blocks and
11363 // many allocas.
11364 if (ArgCopyElisionCandidates.size() == NumArgs)
11365 break;
11366 }
11367 }
11368
11369 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11370 /// ArgVal is a load from a suitable fixed stack object.
tryToElideArgumentCopy(FunctionLoweringInfo & FuncInfo,SmallVectorImpl<SDValue> & Chains,DenseMap<int,int> & ArgCopyElisionFrameIndexMap,SmallPtrSetImpl<const Instruction * > & ElidedArgCopyInstrs,ArgCopyElisionMapTy & ArgCopyElisionCandidates,const Argument & Arg,ArrayRef<SDValue> ArgVals,bool & ArgHasUses)11371 static void tryToElideArgumentCopy(
11372 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11373 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11374 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11375 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11376 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11377 // Check if this is a load from a fixed stack object.
11378 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11379 if (!LNode)
11380 return;
11381 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11382 if (!FINode)
11383 return;
11384
11385 // Check that the fixed stack object is the right size and alignment.
11386 // Look at the alignment that the user wrote on the alloca instead of looking
11387 // at the stack object.
11388 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11389 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11390 const AllocaInst *AI = ArgCopyIter->second.first;
11391 int FixedIndex = FINode->getIndex();
11392 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11393 int OldIndex = AllocaIndex;
11394 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11395 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11396 LLVM_DEBUG(
11397 dbgs() << " argument copy elision failed due to bad fixed stack "
11398 "object size\n");
11399 return;
11400 }
11401 Align RequiredAlignment = AI->getAlign();
11402 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11403 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
11404 "greater than stack argument alignment ("
11405 << DebugStr(RequiredAlignment) << " vs "
11406 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11407 return;
11408 }
11409
11410 // Perform the elision. Delete the old stack object and replace its only use
11411 // in the variable info map. Mark the stack object as mutable and aliased.
11412 LLVM_DEBUG({
11413 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11414 << " Replacing frame index " << OldIndex << " with " << FixedIndex
11415 << '\n';
11416 });
11417 MFI.RemoveStackObject(OldIndex);
11418 MFI.setIsImmutableObjectIndex(FixedIndex, false);
11419 MFI.setIsAliasedObjectIndex(FixedIndex, true);
11420 AllocaIndex = FixedIndex;
11421 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11422 for (SDValue ArgVal : ArgVals)
11423 Chains.push_back(ArgVal.getValue(1));
11424
11425 // Avoid emitting code for the store implementing the copy.
11426 const StoreInst *SI = ArgCopyIter->second.second;
11427 ElidedArgCopyInstrs.insert(SI);
11428
11429 // Check for uses of the argument again so that we can avoid exporting ArgVal
11430 // if it is't used by anything other than the store.
11431 for (const Value *U : Arg.users()) {
11432 if (U != SI) {
11433 ArgHasUses = true;
11434 break;
11435 }
11436 }
11437 }
11438
LowerArguments(const Function & F)11439 void SelectionDAGISel::LowerArguments(const Function &F) {
11440 SelectionDAG &DAG = SDB->DAG;
11441 SDLoc dl = SDB->getCurSDLoc();
11442 const DataLayout &DL = DAG.getDataLayout();
11443 SmallVector<ISD::InputArg, 16> Ins;
11444
11445 // In Naked functions we aren't going to save any registers.
11446 if (F.hasFnAttribute(Attribute::Naked))
11447 return;
11448
11449 if (!FuncInfo->CanLowerReturn) {
11450 // Put in an sret pointer parameter before all the other parameters.
11451 SmallVector<EVT, 1> ValueVTs;
11452 ComputeValueVTs(*TLI, DAG.getDataLayout(),
11453 PointerType::get(F.getContext(),
11454 DAG.getDataLayout().getAllocaAddrSpace()),
11455 ValueVTs);
11456
11457 // NOTE: Assuming that a pointer will never break down to more than one VT
11458 // or one register.
11459 ISD::ArgFlagsTy Flags;
11460 Flags.setSRet();
11461 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11462 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11463 ISD::InputArg::NoArgIndex, 0);
11464 Ins.push_back(RetArg);
11465 }
11466
11467 // Look for stores of arguments to static allocas. Mark such arguments with a
11468 // flag to ask the target to give us the memory location of that argument if
11469 // available.
11470 ArgCopyElisionMapTy ArgCopyElisionCandidates;
11471 findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11472 ArgCopyElisionCandidates);
11473
11474 // Set up the incoming argument description vector.
11475 for (const Argument &Arg : F.args()) {
11476 unsigned ArgNo = Arg.getArgNo();
11477 SmallVector<EVT, 4> ValueVTs;
11478 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11479 bool isArgValueUsed = !Arg.use_empty();
11480 unsigned PartBase = 0;
11481 Type *FinalType = Arg.getType();
11482 if (Arg.hasAttribute(Attribute::ByVal))
11483 FinalType = Arg.getParamByValType();
11484 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11485 FinalType, F.getCallingConv(), F.isVarArg(), DL);
11486 for (unsigned Value = 0, NumValues = ValueVTs.size();
11487 Value != NumValues; ++Value) {
11488 EVT VT = ValueVTs[Value];
11489 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11490 ISD::ArgFlagsTy Flags;
11491
11492
11493 if (Arg.getType()->isPointerTy()) {
11494 Flags.setPointer();
11495 Flags.setPointerAddrSpace(
11496 cast<PointerType>(Arg.getType())->getAddressSpace());
11497 }
11498 if (Arg.hasAttribute(Attribute::ZExt))
11499 Flags.setZExt();
11500 if (Arg.hasAttribute(Attribute::SExt))
11501 Flags.setSExt();
11502 if (Arg.hasAttribute(Attribute::InReg)) {
11503 // If we are using vectorcall calling convention, a structure that is
11504 // passed InReg - is surely an HVA
11505 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11506 isa<StructType>(Arg.getType())) {
11507 // The first value of a structure is marked
11508 if (0 == Value)
11509 Flags.setHvaStart();
11510 Flags.setHva();
11511 }
11512 // Set InReg Flag
11513 Flags.setInReg();
11514 }
11515 if (Arg.hasAttribute(Attribute::StructRet))
11516 Flags.setSRet();
11517 if (Arg.hasAttribute(Attribute::SwiftSelf))
11518 Flags.setSwiftSelf();
11519 if (Arg.hasAttribute(Attribute::SwiftAsync))
11520 Flags.setSwiftAsync();
11521 if (Arg.hasAttribute(Attribute::SwiftError))
11522 Flags.setSwiftError();
11523 if (Arg.hasAttribute(Attribute::ByVal))
11524 Flags.setByVal();
11525 if (Arg.hasAttribute(Attribute::ByRef))
11526 Flags.setByRef();
11527 if (Arg.hasAttribute(Attribute::InAlloca)) {
11528 Flags.setInAlloca();
11529 // Set the byval flag for CCAssignFn callbacks that don't know about
11530 // inalloca. This way we can know how many bytes we should've allocated
11531 // and how many bytes a callee cleanup function will pop. If we port
11532 // inalloca to more targets, we'll have to add custom inalloca handling
11533 // in the various CC lowering callbacks.
11534 Flags.setByVal();
11535 }
11536 if (Arg.hasAttribute(Attribute::Preallocated)) {
11537 Flags.setPreallocated();
11538 // Set the byval flag for CCAssignFn callbacks that don't know about
11539 // preallocated. This way we can know how many bytes we should've
11540 // allocated and how many bytes a callee cleanup function will pop. If
11541 // we port preallocated to more targets, we'll have to add custom
11542 // preallocated handling in the various CC lowering callbacks.
11543 Flags.setByVal();
11544 }
11545
11546 // Certain targets (such as MIPS), may have a different ABI alignment
11547 // for a type depending on the context. Give the target a chance to
11548 // specify the alignment it wants.
11549 const Align OriginalAlignment(
11550 TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11551 Flags.setOrigAlign(OriginalAlignment);
11552
11553 Align MemAlign;
11554 Type *ArgMemTy = nullptr;
11555 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11556 Flags.isByRef()) {
11557 if (!ArgMemTy)
11558 ArgMemTy = Arg.getPointeeInMemoryValueType();
11559
11560 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11561
11562 // For in-memory arguments, size and alignment should be passed from FE.
11563 // BE will guess if this info is not there but there are cases it cannot
11564 // get right.
11565 if (auto ParamAlign = Arg.getParamStackAlign())
11566 MemAlign = *ParamAlign;
11567 else if ((ParamAlign = Arg.getParamAlign()))
11568 MemAlign = *ParamAlign;
11569 else
11570 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11571 if (Flags.isByRef())
11572 Flags.setByRefSize(MemSize);
11573 else
11574 Flags.setByValSize(MemSize);
11575 } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11576 MemAlign = *ParamAlign;
11577 } else {
11578 MemAlign = OriginalAlignment;
11579 }
11580 Flags.setMemAlign(MemAlign);
11581
11582 if (Arg.hasAttribute(Attribute::Nest))
11583 Flags.setNest();
11584 if (NeedsRegBlock)
11585 Flags.setInConsecutiveRegs();
11586 if (ArgCopyElisionCandidates.count(&Arg))
11587 Flags.setCopyElisionCandidate();
11588 if (Arg.hasAttribute(Attribute::Returned))
11589 Flags.setReturned();
11590
11591 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11592 *CurDAG->getContext(), F.getCallingConv(), VT);
11593 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11594 *CurDAG->getContext(), F.getCallingConv(), VT);
11595 for (unsigned i = 0; i != NumRegs; ++i) {
11596 // For scalable vectors, use the minimum size; individual targets
11597 // are responsible for handling scalable vector arguments and
11598 // return values.
11599 ISD::InputArg MyFlags(
11600 Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11601 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11602 if (NumRegs > 1 && i == 0)
11603 MyFlags.Flags.setSplit();
11604 // if it isn't first piece, alignment must be 1
11605 else if (i > 0) {
11606 MyFlags.Flags.setOrigAlign(Align(1));
11607 if (i == NumRegs - 1)
11608 MyFlags.Flags.setSplitEnd();
11609 }
11610 Ins.push_back(MyFlags);
11611 }
11612 if (NeedsRegBlock && Value == NumValues - 1)
11613 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11614 PartBase += VT.getStoreSize().getKnownMinValue();
11615 }
11616 }
11617
11618 // Call the target to set up the argument values.
11619 SmallVector<SDValue, 8> InVals;
11620 SDValue NewRoot = TLI->LowerFormalArguments(
11621 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11622
11623 // Verify that the target's LowerFormalArguments behaved as expected.
11624 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11625 "LowerFormalArguments didn't return a valid chain!");
11626 assert(InVals.size() == Ins.size() &&
11627 "LowerFormalArguments didn't emit the correct number of values!");
11628 LLVM_DEBUG({
11629 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11630 assert(InVals[i].getNode() &&
11631 "LowerFormalArguments emitted a null value!");
11632 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11633 "LowerFormalArguments emitted a value with the wrong type!");
11634 }
11635 });
11636
11637 // Update the DAG with the new chain value resulting from argument lowering.
11638 DAG.setRoot(NewRoot);
11639
11640 // Set up the argument values.
11641 unsigned i = 0;
11642 if (!FuncInfo->CanLowerReturn) {
11643 // Create a virtual register for the sret pointer, and put in a copy
11644 // from the sret argument into it.
11645 SmallVector<EVT, 1> ValueVTs;
11646 ComputeValueVTs(*TLI, DAG.getDataLayout(),
11647 PointerType::get(F.getContext(),
11648 DAG.getDataLayout().getAllocaAddrSpace()),
11649 ValueVTs);
11650 MVT VT = ValueVTs[0].getSimpleVT();
11651 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11652 std::optional<ISD::NodeType> AssertOp;
11653 SDValue ArgValue =
11654 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11655 F.getCallingConv(), AssertOp);
11656
11657 MachineFunction& MF = SDB->DAG.getMachineFunction();
11658 MachineRegisterInfo& RegInfo = MF.getRegInfo();
11659 Register SRetReg =
11660 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11661 FuncInfo->DemoteRegister = SRetReg;
11662 NewRoot =
11663 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11664 DAG.setRoot(NewRoot);
11665
11666 // i indexes lowered arguments. Bump it past the hidden sret argument.
11667 ++i;
11668 }
11669
11670 SmallVector<SDValue, 4> Chains;
11671 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11672 for (const Argument &Arg : F.args()) {
11673 SmallVector<SDValue, 4> ArgValues;
11674 SmallVector<EVT, 4> ValueVTs;
11675 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11676 unsigned NumValues = ValueVTs.size();
11677 if (NumValues == 0)
11678 continue;
11679
11680 bool ArgHasUses = !Arg.use_empty();
11681
11682 // Elide the copying store if the target loaded this argument from a
11683 // suitable fixed stack object.
11684 if (Ins[i].Flags.isCopyElisionCandidate()) {
11685 unsigned NumParts = 0;
11686 for (EVT VT : ValueVTs)
11687 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11688 F.getCallingConv(), VT);
11689
11690 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11691 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11692 ArrayRef(&InVals[i], NumParts), ArgHasUses);
11693 }
11694
11695 // If this argument is unused then remember its value. It is used to generate
11696 // debugging information.
11697 bool isSwiftErrorArg =
11698 TLI->supportSwiftError() &&
11699 Arg.hasAttribute(Attribute::SwiftError);
11700 if (!ArgHasUses && !isSwiftErrorArg) {
11701 SDB->setUnusedArgValue(&Arg, InVals[i]);
11702
11703 // Also remember any frame index for use in FastISel.
11704 if (FrameIndexSDNode *FI =
11705 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11706 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11707 }
11708
11709 for (unsigned Val = 0; Val != NumValues; ++Val) {
11710 EVT VT = ValueVTs[Val];
11711 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11712 F.getCallingConv(), VT);
11713 unsigned NumParts = TLI->getNumRegistersForCallingConv(
11714 *CurDAG->getContext(), F.getCallingConv(), VT);
11715
11716 // Even an apparent 'unused' swifterror argument needs to be returned. So
11717 // we do generate a copy for it that can be used on return from the
11718 // function.
11719 if (ArgHasUses || isSwiftErrorArg) {
11720 std::optional<ISD::NodeType> AssertOp;
11721 if (Arg.hasAttribute(Attribute::SExt))
11722 AssertOp = ISD::AssertSext;
11723 else if (Arg.hasAttribute(Attribute::ZExt))
11724 AssertOp = ISD::AssertZext;
11725
11726 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11727 PartVT, VT, nullptr, NewRoot,
11728 F.getCallingConv(), AssertOp));
11729 }
11730
11731 i += NumParts;
11732 }
11733
11734 // We don't need to do anything else for unused arguments.
11735 if (ArgValues.empty())
11736 continue;
11737
11738 // Note down frame index.
11739 if (FrameIndexSDNode *FI =
11740 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11741 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11742
11743 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11744 SDB->getCurSDLoc());
11745
11746 SDB->setValue(&Arg, Res);
11747 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11748 // We want to associate the argument with the frame index, among
11749 // involved operands, that correspond to the lowest address. The
11750 // getCopyFromParts function, called earlier, is swapping the order of
11751 // the operands to BUILD_PAIR depending on endianness. The result of
11752 // that swapping is that the least significant bits of the argument will
11753 // be in the first operand of the BUILD_PAIR node, and the most
11754 // significant bits will be in the second operand.
11755 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11756 if (LoadSDNode *LNode =
11757 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11758 if (FrameIndexSDNode *FI =
11759 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11760 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11761 }
11762
11763 // Analyses past this point are naive and don't expect an assertion.
11764 if (Res.getOpcode() == ISD::AssertZext)
11765 Res = Res.getOperand(0);
11766
11767 // Update the SwiftErrorVRegDefMap.
11768 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11769 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11770 if (Register::isVirtualRegister(Reg))
11771 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11772 Reg);
11773 }
11774
11775 // If this argument is live outside of the entry block, insert a copy from
11776 // wherever we got it to the vreg that other BB's will reference it as.
11777 if (Res.getOpcode() == ISD::CopyFromReg) {
11778 // If we can, though, try to skip creating an unnecessary vreg.
11779 // FIXME: This isn't very clean... it would be nice to make this more
11780 // general.
11781 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11782 if (Register::isVirtualRegister(Reg)) {
11783 FuncInfo->ValueMap[&Arg] = Reg;
11784 continue;
11785 }
11786 }
11787 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11788 FuncInfo->InitializeRegForValue(&Arg);
11789 SDB->CopyToExportRegsIfNeeded(&Arg);
11790 }
11791 }
11792
11793 if (!Chains.empty()) {
11794 Chains.push_back(NewRoot);
11795 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11796 }
11797
11798 DAG.setRoot(NewRoot);
11799
11800 assert(i == InVals.size() && "Argument register count mismatch!");
11801
11802 // If any argument copy elisions occurred and we have debug info, update the
11803 // stale frame indices used in the dbg.declare variable info table.
11804 if (!ArgCopyElisionFrameIndexMap.empty()) {
11805 for (MachineFunction::VariableDbgInfo &VI :
11806 MF->getInStackSlotVariableDbgInfo()) {
11807 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11808 if (I != ArgCopyElisionFrameIndexMap.end())
11809 VI.updateStackSlot(I->second);
11810 }
11811 }
11812
11813 // Finally, if the target has anything special to do, allow it to do so.
11814 emitFunctionEntryCode();
11815 }
11816
11817 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
11818 /// ensure constants are generated when needed. Remember the virtual registers
11819 /// that need to be added to the Machine PHI nodes as input. We cannot just
11820 /// directly add them, because expansion might result in multiple MBB's for one
11821 /// BB. As such, the start of the BB might correspond to a different MBB than
11822 /// the end.
11823 void
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)11824 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11825 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11826
11827 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11828
11829 // Check PHI nodes in successors that expect a value to be available from this
11830 // block.
11831 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11832 if (!isa<PHINode>(SuccBB->begin())) continue;
11833 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11834
11835 // If this terminator has multiple identical successors (common for
11836 // switches), only handle each succ once.
11837 if (!SuccsHandled.insert(SuccMBB).second)
11838 continue;
11839
11840 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11841
11842 // At this point we know that there is a 1-1 correspondence between LLVM PHI
11843 // nodes and Machine PHI nodes, but the incoming operands have not been
11844 // emitted yet.
11845 for (const PHINode &PN : SuccBB->phis()) {
11846 // Ignore dead phi's.
11847 if (PN.use_empty())
11848 continue;
11849
11850 // Skip empty types
11851 if (PN.getType()->isEmptyTy())
11852 continue;
11853
11854 unsigned Reg;
11855 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11856
11857 if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11858 unsigned &RegOut = ConstantsOut[C];
11859 if (RegOut == 0) {
11860 RegOut = FuncInfo.CreateRegs(C);
11861 // We need to zero/sign extend ConstantInt phi operands to match
11862 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11863 ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11864 if (auto *CI = dyn_cast<ConstantInt>(C))
11865 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11866 : ISD::ZERO_EXTEND;
11867 CopyValueToVirtualRegister(C, RegOut, ExtendType);
11868 }
11869 Reg = RegOut;
11870 } else {
11871 DenseMap<const Value *, Register>::iterator I =
11872 FuncInfo.ValueMap.find(PHIOp);
11873 if (I != FuncInfo.ValueMap.end())
11874 Reg = I->second;
11875 else {
11876 assert(isa<AllocaInst>(PHIOp) &&
11877 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11878 "Didn't codegen value into a register!??");
11879 Reg = FuncInfo.CreateRegs(PHIOp);
11880 CopyValueToVirtualRegister(PHIOp, Reg);
11881 }
11882 }
11883
11884 // Remember that this register needs to added to the machine PHI node as
11885 // the input for this MBB.
11886 SmallVector<EVT, 4> ValueVTs;
11887 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11888 for (EVT VT : ValueVTs) {
11889 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11890 for (unsigned i = 0; i != NumRegisters; ++i)
11891 FuncInfo.PHINodesToUpdate.push_back(
11892 std::make_pair(&*MBBI++, Reg + i));
11893 Reg += NumRegisters;
11894 }
11895 }
11896 }
11897
11898 ConstantsOut.clear();
11899 }
11900
NextBlock(MachineBasicBlock * MBB)11901 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11902 MachineFunction::iterator I(MBB);
11903 if (++I == FuncInfo.MF->end())
11904 return nullptr;
11905 return &*I;
11906 }
11907
11908 /// During lowering new call nodes can be created (such as memset, etc.).
11909 /// Those will become new roots of the current DAG, but complications arise
11910 /// when they are tail calls. In such cases, the call lowering will update
11911 /// the root, but the builder still needs to know that a tail call has been
11912 /// lowered in order to avoid generating an additional return.
updateDAGForMaybeTailCall(SDValue MaybeTC)11913 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11914 // If the node is null, we do have a tail call.
11915 if (MaybeTC.getNode() != nullptr)
11916 DAG.setRoot(MaybeTC);
11917 else
11918 HasTailCall = true;
11919 }
11920
lowerWorkItem(SwitchWorkListItem W,Value * Cond,MachineBasicBlock * SwitchMBB,MachineBasicBlock * DefaultMBB)11921 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11922 MachineBasicBlock *SwitchMBB,
11923 MachineBasicBlock *DefaultMBB) {
11924 MachineFunction *CurMF = FuncInfo.MF;
11925 MachineBasicBlock *NextMBB = nullptr;
11926 MachineFunction::iterator BBI(W.MBB);
11927 if (++BBI != FuncInfo.MF->end())
11928 NextMBB = &*BBI;
11929
11930 unsigned Size = W.LastCluster - W.FirstCluster + 1;
11931
11932 BranchProbabilityInfo *BPI = FuncInfo.BPI;
11933
11934 if (Size == 2 && W.MBB == SwitchMBB) {
11935 // If any two of the cases has the same destination, and if one value
11936 // is the same as the other, but has one bit unset that the other has set,
11937 // use bit manipulation to do two compares at once. For example:
11938 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11939 // TODO: This could be extended to merge any 2 cases in switches with 3
11940 // cases.
11941 // TODO: Handle cases where W.CaseBB != SwitchBB.
11942 CaseCluster &Small = *W.FirstCluster;
11943 CaseCluster &Big = *W.LastCluster;
11944
11945 if (Small.Low == Small.High && Big.Low == Big.High &&
11946 Small.MBB == Big.MBB) {
11947 const APInt &SmallValue = Small.Low->getValue();
11948 const APInt &BigValue = Big.Low->getValue();
11949
11950 // Check that there is only one bit different.
11951 APInt CommonBit = BigValue ^ SmallValue;
11952 if (CommonBit.isPowerOf2()) {
11953 SDValue CondLHS = getValue(Cond);
11954 EVT VT = CondLHS.getValueType();
11955 SDLoc DL = getCurSDLoc();
11956
11957 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11958 DAG.getConstant(CommonBit, DL, VT));
11959 SDValue Cond = DAG.getSetCC(
11960 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11961 ISD::SETEQ);
11962
11963 // Update successor info.
11964 // Both Small and Big will jump to Small.BB, so we sum up the
11965 // probabilities.
11966 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11967 if (BPI)
11968 addSuccessorWithProb(
11969 SwitchMBB, DefaultMBB,
11970 // The default destination is the first successor in IR.
11971 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11972 else
11973 addSuccessorWithProb(SwitchMBB, DefaultMBB);
11974
11975 // Insert the true branch.
11976 SDValue BrCond =
11977 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11978 DAG.getBasicBlock(Small.MBB));
11979 // Insert the false branch.
11980 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11981 DAG.getBasicBlock(DefaultMBB));
11982
11983 DAG.setRoot(BrCond);
11984 return;
11985 }
11986 }
11987 }
11988
11989 if (TM.getOptLevel() != CodeGenOptLevel::None) {
11990 // Here, we order cases by probability so the most likely case will be
11991 // checked first. However, two clusters can have the same probability in
11992 // which case their relative ordering is non-deterministic. So we use Low
11993 // as a tie-breaker as clusters are guaranteed to never overlap.
11994 llvm::sort(W.FirstCluster, W.LastCluster + 1,
11995 [](const CaseCluster &a, const CaseCluster &b) {
11996 return a.Prob != b.Prob ?
11997 a.Prob > b.Prob :
11998 a.Low->getValue().slt(b.Low->getValue());
11999 });
12000
12001 // Rearrange the case blocks so that the last one falls through if possible
12002 // without changing the order of probabilities.
12003 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12004 --I;
12005 if (I->Prob > W.LastCluster->Prob)
12006 break;
12007 if (I->Kind == CC_Range && I->MBB == NextMBB) {
12008 std::swap(*I, *W.LastCluster);
12009 break;
12010 }
12011 }
12012 }
12013
12014 // Compute total probability.
12015 BranchProbability DefaultProb = W.DefaultProb;
12016 BranchProbability UnhandledProbs = DefaultProb;
12017 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12018 UnhandledProbs += I->Prob;
12019
12020 MachineBasicBlock *CurMBB = W.MBB;
12021 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12022 bool FallthroughUnreachable = false;
12023 MachineBasicBlock *Fallthrough;
12024 if (I == W.LastCluster) {
12025 // For the last cluster, fall through to the default destination.
12026 Fallthrough = DefaultMBB;
12027 FallthroughUnreachable = isa<UnreachableInst>(
12028 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12029 } else {
12030 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12031 CurMF->insert(BBI, Fallthrough);
12032 // Put Cond in a virtual register to make it available from the new blocks.
12033 ExportFromCurrentBlock(Cond);
12034 }
12035 UnhandledProbs -= I->Prob;
12036
12037 switch (I->Kind) {
12038 case CC_JumpTable: {
12039 // FIXME: Optimize away range check based on pivot comparisons.
12040 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12041 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12042
12043 // The jump block hasn't been inserted yet; insert it here.
12044 MachineBasicBlock *JumpMBB = JT->MBB;
12045 CurMF->insert(BBI, JumpMBB);
12046
12047 auto JumpProb = I->Prob;
12048 auto FallthroughProb = UnhandledProbs;
12049
12050 // If the default statement is a target of the jump table, we evenly
12051 // distribute the default probability to successors of CurMBB. Also
12052 // update the probability on the edge from JumpMBB to Fallthrough.
12053 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12054 SE = JumpMBB->succ_end();
12055 SI != SE; ++SI) {
12056 if (*SI == DefaultMBB) {
12057 JumpProb += DefaultProb / 2;
12058 FallthroughProb -= DefaultProb / 2;
12059 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12060 JumpMBB->normalizeSuccProbs();
12061 break;
12062 }
12063 }
12064
12065 // If the default clause is unreachable, propagate that knowledge into
12066 // JTH->FallthroughUnreachable which will use it to suppress the range
12067 // check.
12068 //
12069 // However, don't do this if we're doing branch target enforcement,
12070 // because a table branch _without_ a range check can be a tempting JOP
12071 // gadget - out-of-bounds inputs that are impossible in correct
12072 // execution become possible again if an attacker can influence the
12073 // control flow. So if an attacker doesn't already have a BTI bypass
12074 // available, we don't want them to be able to get one out of this
12075 // table branch.
12076 if (FallthroughUnreachable) {
12077 Function &CurFunc = CurMF->getFunction();
12078 if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12079 JTH->FallthroughUnreachable = true;
12080 }
12081
12082 if (!JTH->FallthroughUnreachable)
12083 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12084 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12085 CurMBB->normalizeSuccProbs();
12086
12087 // The jump table header will be inserted in our current block, do the
12088 // range check, and fall through to our fallthrough block.
12089 JTH->HeaderBB = CurMBB;
12090 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12091
12092 // If we're in the right place, emit the jump table header right now.
12093 if (CurMBB == SwitchMBB) {
12094 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12095 JTH->Emitted = true;
12096 }
12097 break;
12098 }
12099 case CC_BitTests: {
12100 // FIXME: Optimize away range check based on pivot comparisons.
12101 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12102
12103 // The bit test blocks haven't been inserted yet; insert them here.
12104 for (BitTestCase &BTC : BTB->Cases)
12105 CurMF->insert(BBI, BTC.ThisBB);
12106
12107 // Fill in fields of the BitTestBlock.
12108 BTB->Parent = CurMBB;
12109 BTB->Default = Fallthrough;
12110
12111 BTB->DefaultProb = UnhandledProbs;
12112 // If the cases in bit test don't form a contiguous range, we evenly
12113 // distribute the probability on the edge to Fallthrough to two
12114 // successors of CurMBB.
12115 if (!BTB->ContiguousRange) {
12116 BTB->Prob += DefaultProb / 2;
12117 BTB->DefaultProb -= DefaultProb / 2;
12118 }
12119
12120 if (FallthroughUnreachable)
12121 BTB->FallthroughUnreachable = true;
12122
12123 // If we're in the right place, emit the bit test header right now.
12124 if (CurMBB == SwitchMBB) {
12125 visitBitTestHeader(*BTB, SwitchMBB);
12126 BTB->Emitted = true;
12127 }
12128 break;
12129 }
12130 case CC_Range: {
12131 const Value *RHS, *LHS, *MHS;
12132 ISD::CondCode CC;
12133 if (I->Low == I->High) {
12134 // Check Cond == I->Low.
12135 CC = ISD::SETEQ;
12136 LHS = Cond;
12137 RHS=I->Low;
12138 MHS = nullptr;
12139 } else {
12140 // Check I->Low <= Cond <= I->High.
12141 CC = ISD::SETLE;
12142 LHS = I->Low;
12143 MHS = Cond;
12144 RHS = I->High;
12145 }
12146
12147 // If Fallthrough is unreachable, fold away the comparison.
12148 if (FallthroughUnreachable)
12149 CC = ISD::SETTRUE;
12150
12151 // The false probability is the sum of all unhandled cases.
12152 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12153 getCurSDLoc(), I->Prob, UnhandledProbs);
12154
12155 if (CurMBB == SwitchMBB)
12156 visitSwitchCase(CB, SwitchMBB);
12157 else
12158 SL->SwitchCases.push_back(CB);
12159
12160 break;
12161 }
12162 }
12163 CurMBB = Fallthrough;
12164 }
12165 }
12166
splitWorkItem(SwitchWorkList & WorkList,const SwitchWorkListItem & W,Value * Cond,MachineBasicBlock * SwitchMBB)12167 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12168 const SwitchWorkListItem &W,
12169 Value *Cond,
12170 MachineBasicBlock *SwitchMBB) {
12171 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12172 "Clusters not sorted?");
12173 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12174
12175 auto [LastLeft, FirstRight, LeftProb, RightProb] =
12176 SL->computeSplitWorkItemInfo(W);
12177
12178 // Use the first element on the right as pivot since we will make less-than
12179 // comparisons against it.
12180 CaseClusterIt PivotCluster = FirstRight;
12181 assert(PivotCluster > W.FirstCluster);
12182 assert(PivotCluster <= W.LastCluster);
12183
12184 CaseClusterIt FirstLeft = W.FirstCluster;
12185 CaseClusterIt LastRight = W.LastCluster;
12186
12187 const ConstantInt *Pivot = PivotCluster->Low;
12188
12189 // New blocks will be inserted immediately after the current one.
12190 MachineFunction::iterator BBI(W.MBB);
12191 ++BBI;
12192
12193 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12194 // we can branch to its destination directly if it's squeezed exactly in
12195 // between the known lower bound and Pivot - 1.
12196 MachineBasicBlock *LeftMBB;
12197 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12198 FirstLeft->Low == W.GE &&
12199 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12200 LeftMBB = FirstLeft->MBB;
12201 } else {
12202 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12203 FuncInfo.MF->insert(BBI, LeftMBB);
12204 WorkList.push_back(
12205 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12206 // Put Cond in a virtual register to make it available from the new blocks.
12207 ExportFromCurrentBlock(Cond);
12208 }
12209
12210 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12211 // single cluster, RHS.Low == Pivot, and we can branch to its destination
12212 // directly if RHS.High equals the current upper bound.
12213 MachineBasicBlock *RightMBB;
12214 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12215 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12216 RightMBB = FirstRight->MBB;
12217 } else {
12218 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12219 FuncInfo.MF->insert(BBI, RightMBB);
12220 WorkList.push_back(
12221 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12222 // Put Cond in a virtual register to make it available from the new blocks.
12223 ExportFromCurrentBlock(Cond);
12224 }
12225
12226 // Create the CaseBlock record that will be used to lower the branch.
12227 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12228 getCurSDLoc(), LeftProb, RightProb);
12229
12230 if (W.MBB == SwitchMBB)
12231 visitSwitchCase(CB, SwitchMBB);
12232 else
12233 SL->SwitchCases.push_back(CB);
12234 }
12235
12236 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12237 // from the swith statement.
scaleCaseProbality(BranchProbability CaseProb,BranchProbability PeeledCaseProb)12238 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
12239 BranchProbability PeeledCaseProb) {
12240 if (PeeledCaseProb == BranchProbability::getOne())
12241 return BranchProbability::getZero();
12242 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12243
12244 uint32_t Numerator = CaseProb.getNumerator();
12245 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12246 return BranchProbability(Numerator, std::max(Numerator, Denominator));
12247 }
12248
12249 // Try to peel the top probability case if it exceeds the threshold.
12250 // Return current MachineBasicBlock for the switch statement if the peeling
12251 // does not occur.
12252 // If the peeling is performed, return the newly created MachineBasicBlock
12253 // for the peeled switch statement. Also update Clusters to remove the peeled
12254 // case. PeeledCaseProb is the BranchProbability for the peeled case.
peelDominantCaseCluster(const SwitchInst & SI,CaseClusterVector & Clusters,BranchProbability & PeeledCaseProb)12255 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12256 const SwitchInst &SI, CaseClusterVector &Clusters,
12257 BranchProbability &PeeledCaseProb) {
12258 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12259 // Don't perform if there is only one cluster or optimizing for size.
12260 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12261 TM.getOptLevel() == CodeGenOptLevel::None ||
12262 SwitchMBB->getParent()->getFunction().hasMinSize())
12263 return SwitchMBB;
12264
12265 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12266 unsigned PeeledCaseIndex = 0;
12267 bool SwitchPeeled = false;
12268 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12269 CaseCluster &CC = Clusters[Index];
12270 if (CC.Prob < TopCaseProb)
12271 continue;
12272 TopCaseProb = CC.Prob;
12273 PeeledCaseIndex = Index;
12274 SwitchPeeled = true;
12275 }
12276 if (!SwitchPeeled)
12277 return SwitchMBB;
12278
12279 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12280 << TopCaseProb << "\n");
12281
12282 // Record the MBB for the peeled switch statement.
12283 MachineFunction::iterator BBI(SwitchMBB);
12284 ++BBI;
12285 MachineBasicBlock *PeeledSwitchMBB =
12286 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12287 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12288
12289 ExportFromCurrentBlock(SI.getCondition());
12290 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12291 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12292 nullptr, nullptr, TopCaseProb.getCompl()};
12293 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12294
12295 Clusters.erase(PeeledCaseIt);
12296 for (CaseCluster &CC : Clusters) {
12297 LLVM_DEBUG(
12298 dbgs() << "Scale the probablity for one cluster, before scaling: "
12299 << CC.Prob << "\n");
12300 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12301 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12302 }
12303 PeeledCaseProb = TopCaseProb;
12304 return PeeledSwitchMBB;
12305 }
12306
visitSwitch(const SwitchInst & SI)12307 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12308 // Extract cases from the switch.
12309 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12310 CaseClusterVector Clusters;
12311 Clusters.reserve(SI.getNumCases());
12312 for (auto I : SI.cases()) {
12313 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
12314 const ConstantInt *CaseVal = I.getCaseValue();
12315 BranchProbability Prob =
12316 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12317 : BranchProbability(1, SI.getNumCases() + 1);
12318 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12319 }
12320
12321 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
12322
12323 // Cluster adjacent cases with the same destination. We do this at all
12324 // optimization levels because it's cheap to do and will make codegen faster
12325 // if there are many clusters.
12326 sortAndRangeify(Clusters);
12327
12328 // The branch probablity of the peeled case.
12329 BranchProbability PeeledCaseProb = BranchProbability::getZero();
12330 MachineBasicBlock *PeeledSwitchMBB =
12331 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12332
12333 // If there is only the default destination, jump there directly.
12334 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12335 if (Clusters.empty()) {
12336 assert(PeeledSwitchMBB == SwitchMBB);
12337 SwitchMBB->addSuccessor(DefaultMBB);
12338 if (DefaultMBB != NextBlock(SwitchMBB)) {
12339 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12340 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12341 }
12342 return;
12343 }
12344
12345 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12346 DAG.getBFI());
12347 SL->findBitTestClusters(Clusters, &SI);
12348
12349 LLVM_DEBUG({
12350 dbgs() << "Case clusters: ";
12351 for (const CaseCluster &C : Clusters) {
12352 if (C.Kind == CC_JumpTable)
12353 dbgs() << "JT:";
12354 if (C.Kind == CC_BitTests)
12355 dbgs() << "BT:";
12356
12357 C.Low->getValue().print(dbgs(), true);
12358 if (C.Low != C.High) {
12359 dbgs() << '-';
12360 C.High->getValue().print(dbgs(), true);
12361 }
12362 dbgs() << ' ';
12363 }
12364 dbgs() << '\n';
12365 });
12366
12367 assert(!Clusters.empty());
12368 SwitchWorkList WorkList;
12369 CaseClusterIt First = Clusters.begin();
12370 CaseClusterIt Last = Clusters.end() - 1;
12371 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12372 // Scale the branchprobability for DefaultMBB if the peel occurs and
12373 // DefaultMBB is not replaced.
12374 if (PeeledCaseProb != BranchProbability::getZero() &&
12375 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
12376 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12377 WorkList.push_back(
12378 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12379
12380 while (!WorkList.empty()) {
12381 SwitchWorkListItem W = WorkList.pop_back_val();
12382 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12383
12384 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12385 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12386 // For optimized builds, lower large range as a balanced binary tree.
12387 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12388 continue;
12389 }
12390
12391 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12392 }
12393 }
12394
visitStepVector(const CallInst & I)12395 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12396 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12397 auto DL = getCurSDLoc();
12398 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12399 setValue(&I, DAG.getStepVector(DL, ResultVT));
12400 }
12401
visitVectorReverse(const CallInst & I)12402 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12403 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12404 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12405
12406 SDLoc DL = getCurSDLoc();
12407 SDValue V = getValue(I.getOperand(0));
12408 assert(VT == V.getValueType() && "Malformed vector.reverse!");
12409
12410 if (VT.isScalableVector()) {
12411 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12412 return;
12413 }
12414
12415 // Use VECTOR_SHUFFLE for the fixed-length vector
12416 // to maintain existing behavior.
12417 SmallVector<int, 8> Mask;
12418 unsigned NumElts = VT.getVectorMinNumElements();
12419 for (unsigned i = 0; i != NumElts; ++i)
12420 Mask.push_back(NumElts - 1 - i);
12421
12422 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12423 }
12424
visitVectorDeinterleave(const CallInst & I)12425 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12426 auto DL = getCurSDLoc();
12427 SDValue InVec = getValue(I.getOperand(0));
12428 EVT OutVT =
12429 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12430
12431 unsigned OutNumElts = OutVT.getVectorMinNumElements();
12432
12433 // ISD Node needs the input vectors split into two equal parts
12434 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12435 DAG.getVectorIdxConstant(0, DL));
12436 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12437 DAG.getVectorIdxConstant(OutNumElts, DL));
12438
12439 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12440 // legalisation and combines.
12441 if (OutVT.isFixedLengthVector()) {
12442 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12443 createStrideMask(0, 2, OutNumElts));
12444 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12445 createStrideMask(1, 2, OutNumElts));
12446 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12447 setValue(&I, Res);
12448 return;
12449 }
12450
12451 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12452 DAG.getVTList(OutVT, OutVT), Lo, Hi);
12453 setValue(&I, Res);
12454 }
12455
visitVectorInterleave(const CallInst & I)12456 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12457 auto DL = getCurSDLoc();
12458 EVT InVT = getValue(I.getOperand(0)).getValueType();
12459 SDValue InVec0 = getValue(I.getOperand(0));
12460 SDValue InVec1 = getValue(I.getOperand(1));
12461 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12462 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12463
12464 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12465 // legalisation and combines.
12466 if (OutVT.isFixedLengthVector()) {
12467 unsigned NumElts = InVT.getVectorMinNumElements();
12468 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12469 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12470 createInterleaveMask(NumElts, 2)));
12471 return;
12472 }
12473
12474 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12475 DAG.getVTList(InVT, InVT), InVec0, InVec1);
12476 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12477 Res.getValue(1));
12478 setValue(&I, Res);
12479 }
12480
visitFreeze(const FreezeInst & I)12481 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12482 SmallVector<EVT, 4> ValueVTs;
12483 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12484 ValueVTs);
12485 unsigned NumValues = ValueVTs.size();
12486 if (NumValues == 0) return;
12487
12488 SmallVector<SDValue, 4> Values(NumValues);
12489 SDValue Op = getValue(I.getOperand(0));
12490
12491 for (unsigned i = 0; i != NumValues; ++i)
12492 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12493 SDValue(Op.getNode(), Op.getResNo() + i));
12494
12495 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12496 DAG.getVTList(ValueVTs), Values));
12497 }
12498
visitVectorSplice(const CallInst & I)12499 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12500 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12501 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12502
12503 SDLoc DL = getCurSDLoc();
12504 SDValue V1 = getValue(I.getOperand(0));
12505 SDValue V2 = getValue(I.getOperand(1));
12506 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12507
12508 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12509 if (VT.isScalableVector()) {
12510 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12511 DAG.getVectorIdxConstant(Imm, DL)));
12512 return;
12513 }
12514
12515 unsigned NumElts = VT.getVectorNumElements();
12516
12517 uint64_t Idx = (NumElts + Imm) % NumElts;
12518
12519 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12520 SmallVector<int, 8> Mask;
12521 for (unsigned i = 0; i < NumElts; ++i)
12522 Mask.push_back(Idx + i);
12523 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12524 }
12525
12526 // Consider the following MIR after SelectionDAG, which produces output in
12527 // phyregs in the first case or virtregs in the second case.
12528 //
12529 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12530 // %5:gr32 = COPY $ebx
12531 // %6:gr32 = COPY $edx
12532 // %1:gr32 = COPY %6:gr32
12533 // %0:gr32 = COPY %5:gr32
12534 //
12535 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12536 // %1:gr32 = COPY %6:gr32
12537 // %0:gr32 = COPY %5:gr32
12538 //
12539 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12540 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12541 //
12542 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12543 // to a single virtreg (such as %0). The remaining outputs monotonically
12544 // increase in virtreg number from there. If a callbr has no outputs, then it
12545 // should not have a corresponding callbr landingpad; in fact, the callbr
12546 // landingpad would not even be able to refer to such a callbr.
FollowCopyChain(MachineRegisterInfo & MRI,Register Reg)12547 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12548 MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12549 // There is definitely at least one copy.
12550 assert(MI->getOpcode() == TargetOpcode::COPY &&
12551 "start of copy chain MUST be COPY");
12552 Reg = MI->getOperand(1).getReg();
12553 MI = MRI.def_begin(Reg)->getParent();
12554 // There may be an optional second copy.
12555 if (MI->getOpcode() == TargetOpcode::COPY) {
12556 assert(Reg.isVirtual() && "expected COPY of virtual register");
12557 Reg = MI->getOperand(1).getReg();
12558 assert(Reg.isPhysical() && "expected COPY of physical register");
12559 MI = MRI.def_begin(Reg)->getParent();
12560 }
12561 // The start of the chain must be an INLINEASM_BR.
12562 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12563 "end of copy chain MUST be INLINEASM_BR");
12564 return Reg;
12565 }
12566
12567 // We must do this walk rather than the simpler
12568 // setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12569 // otherwise we will end up with copies of virtregs only valid along direct
12570 // edges.
visitCallBrLandingPad(const CallInst & I)12571 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12572 SmallVector<EVT, 8> ResultVTs;
12573 SmallVector<SDValue, 8> ResultValues;
12574 const auto *CBR =
12575 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12576
12577 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12578 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12579 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12580
12581 unsigned InitialDef = FuncInfo.ValueMap[CBR];
12582 SDValue Chain = DAG.getRoot();
12583
12584 // Re-parse the asm constraints string.
12585 TargetLowering::AsmOperandInfoVector TargetConstraints =
12586 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12587 for (auto &T : TargetConstraints) {
12588 SDISelAsmOperandInfo OpInfo(T);
12589 if (OpInfo.Type != InlineAsm::isOutput)
12590 continue;
12591
12592 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12593 // individual constraint.
12594 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12595
12596 switch (OpInfo.ConstraintType) {
12597 case TargetLowering::C_Register:
12598 case TargetLowering::C_RegisterClass: {
12599 // Fill in OpInfo.AssignedRegs.Regs.
12600 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12601
12602 // getRegistersForValue may produce 1 to many registers based on whether
12603 // the OpInfo.ConstraintVT is legal on the target or not.
12604 for (unsigned &Reg : OpInfo.AssignedRegs.Regs) {
12605 Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12606 if (Register::isPhysicalRegister(OriginalDef))
12607 FuncInfo.MBB->addLiveIn(OriginalDef);
12608 // Update the assigned registers to use the original defs.
12609 Reg = OriginalDef;
12610 }
12611
12612 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12613 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12614 ResultValues.push_back(V);
12615 ResultVTs.push_back(OpInfo.ConstraintVT);
12616 break;
12617 }
12618 case TargetLowering::C_Other: {
12619 SDValue Flag;
12620 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12621 OpInfo, DAG);
12622 ++InitialDef;
12623 ResultValues.push_back(V);
12624 ResultVTs.push_back(OpInfo.ConstraintVT);
12625 break;
12626 }
12627 default:
12628 break;
12629 }
12630 }
12631 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12632 DAG.getVTList(ResultVTs), ResultValues);
12633 setValue(&I, V);
12634 }
12635