xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Analysis/TargetTransformInfo.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This pass exposes codegen information to IR-level passes. Every
10 /// transformation that uses codegen information is broken into three parts:
11 /// 1. The IR-level analysis pass.
12 /// 2. The IR-level transformation interface which provides the needed
13 ///    information.
14 /// 3. Codegen-level implementation which uses target-specific hooks.
15 ///
16 /// This file defines #2, which is the interface that IR-level transformations
17 /// use for querying the codegen.
18 ///
19 //===----------------------------------------------------------------------===//
20 
21 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23 
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallBitVector.h"
26 #include "llvm/IR/FMF.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/PassManager.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/AtomicOrdering.h"
31 #include "llvm/Support/BranchProbability.h"
32 #include "llvm/Support/InstructionCost.h"
33 #include <functional>
34 #include <optional>
35 #include <utility>
36 
37 namespace llvm {
38 
39 namespace Intrinsic {
40 typedef unsigned ID;
41 }
42 
43 class AllocaInst;
44 class AssumptionCache;
45 class BlockFrequencyInfo;
46 class DominatorTree;
47 class BranchInst;
48 class CallBase;
49 class Function;
50 class GlobalValue;
51 class InstCombiner;
52 class OptimizationRemarkEmitter;
53 class InterleavedAccessInfo;
54 class IntrinsicInst;
55 class LoadInst;
56 class Loop;
57 class LoopInfo;
58 class LoopVectorizationLegality;
59 class ProfileSummaryInfo;
60 class RecurrenceDescriptor;
61 class SCEV;
62 class ScalarEvolution;
63 class StoreInst;
64 class SwitchInst;
65 class TargetLibraryInfo;
66 class Type;
67 class User;
68 class Value;
69 class VPIntrinsic;
70 struct KnownBits;
71 
72 /// Information about a load/store intrinsic defined by the target.
73 struct MemIntrinsicInfo {
74   /// This is the pointer that the intrinsic is loading from or storing to.
75   /// If this is non-null, then analysis/optimization passes can assume that
76   /// this intrinsic is functionally equivalent to a load/store from this
77   /// pointer.
78   Value *PtrVal = nullptr;
79 
80   // Ordering for atomic operations.
81   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
82 
83   // Same Id is set by the target for corresponding load/store intrinsics.
84   unsigned short MatchingId = 0;
85 
86   bool ReadMem = false;
87   bool WriteMem = false;
88   bool IsVolatile = false;
89 
isUnorderedMemIntrinsicInfo90   bool isUnordered() const {
91     return (Ordering == AtomicOrdering::NotAtomic ||
92             Ordering == AtomicOrdering::Unordered) &&
93            !IsVolatile;
94   }
95 };
96 
97 /// Attributes of a target dependent hardware loop.
98 struct HardwareLoopInfo {
99   HardwareLoopInfo() = delete;
100   HardwareLoopInfo(Loop *L);
101   Loop *L = nullptr;
102   BasicBlock *ExitBlock = nullptr;
103   BranchInst *ExitBranch = nullptr;
104   const SCEV *ExitCount = nullptr;
105   IntegerType *CountType = nullptr;
106   Value *LoopDecrement = nullptr; // Decrement the loop counter by this
107                                   // value in every iteration.
108   bool IsNestingLegal = false;    // Can a hardware loop be a parent to
109                                   // another hardware loop?
110   bool CounterInReg = false;      // Should loop counter be updated in
111                                   // the loop via a phi?
112   bool PerformEntryTest = false;  // Generate the intrinsic which also performs
113                                   // icmp ne zero on the loop counter value and
114                                   // produces an i1 to guard the loop entry.
115   bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
116                                DominatorTree &DT, bool ForceNestedLoop = false,
117                                bool ForceHardwareLoopPHI = false);
118   bool canAnalyze(LoopInfo &LI);
119 };
120 
121 class IntrinsicCostAttributes {
122   const IntrinsicInst *II = nullptr;
123   Type *RetTy = nullptr;
124   Intrinsic::ID IID;
125   SmallVector<Type *, 4> ParamTys;
126   SmallVector<const Value *, 4> Arguments;
127   FastMathFlags FMF;
128   // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
129   // arguments and the return value will be computed based on types.
130   InstructionCost ScalarizationCost = InstructionCost::getInvalid();
131 
132 public:
133   IntrinsicCostAttributes(
134       Intrinsic::ID Id, const CallBase &CI,
135       InstructionCost ScalarCost = InstructionCost::getInvalid(),
136       bool TypeBasedOnly = false);
137 
138   IntrinsicCostAttributes(
139       Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
140       FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
141       InstructionCost ScalarCost = InstructionCost::getInvalid());
142 
143   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
144                           ArrayRef<const Value *> Args);
145 
146   IntrinsicCostAttributes(
147       Intrinsic::ID Id, Type *RTy, ArrayRef<const Value *> Args,
148       ArrayRef<Type *> Tys, FastMathFlags Flags = FastMathFlags(),
149       const IntrinsicInst *I = nullptr,
150       InstructionCost ScalarCost = InstructionCost::getInvalid());
151 
getID()152   Intrinsic::ID getID() const { return IID; }
getInst()153   const IntrinsicInst *getInst() const { return II; }
getReturnType()154   Type *getReturnType() const { return RetTy; }
getFlags()155   FastMathFlags getFlags() const { return FMF; }
getScalarizationCost()156   InstructionCost getScalarizationCost() const { return ScalarizationCost; }
getArgs()157   const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
getArgTypes()158   const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
159 
isTypeBasedOnly()160   bool isTypeBasedOnly() const {
161     return Arguments.empty();
162   }
163 
skipScalarizationCost()164   bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
165 };
166 
167 enum class TailFoldingStyle {
168   /// Don't use tail folding
169   None,
170   /// Use predicate only to mask operations on data in the loop.
171   /// When the VL is not known to be a power-of-2, this method requires a
172   /// runtime overflow check for the i + VL in the loop because it compares the
173   /// scalar induction variable against the tripcount rounded up by VL which may
174   /// overflow. When the VL is a power-of-2, both the increment and uprounded
175   /// tripcount will overflow to 0, which does not require a runtime check
176   /// since the loop is exited when the loop induction variable equals the
177   /// uprounded trip-count, which are both 0.
178   Data,
179   /// Same as Data, but avoids using the get.active.lane.mask intrinsic to
180   /// calculate the mask and instead implements this with a
181   /// splat/stepvector/cmp.
182   /// FIXME: Can this kind be removed now that SelectionDAGBuilder expands the
183   /// active.lane.mask intrinsic when it is not natively supported?
184   DataWithoutLaneMask,
185   /// Use predicate to control both data and control flow.
186   /// This method always requires a runtime overflow check for the i + VL
187   /// increment inside the loop, because it uses the result direclty in the
188   /// active.lane.mask to calculate the mask for the next iteration. If the
189   /// increment overflows, the mask is no longer correct.
190   DataAndControlFlow,
191   /// Use predicate to control both data and control flow, but modify
192   /// the trip count so that a runtime overflow check can be avoided
193   /// and such that the scalar epilogue loop can always be removed.
194   DataAndControlFlowWithoutRuntimeCheck,
195   /// Use predicated EVL instructions for tail-folding.
196   /// Indicates that VP intrinsics should be used.
197   DataWithEVL,
198 };
199 
200 struct TailFoldingInfo {
201   TargetLibraryInfo *TLI;
202   LoopVectorizationLegality *LVL;
203   InterleavedAccessInfo *IAI;
TailFoldingInfoTailFoldingInfo204   TailFoldingInfo(TargetLibraryInfo *TLI, LoopVectorizationLegality *LVL,
205                   InterleavedAccessInfo *IAI)
206       : TLI(TLI), LVL(LVL), IAI(IAI) {}
207 };
208 
209 class TargetTransformInfo;
210 typedef TargetTransformInfo TTI;
211 
212 /// This pass provides access to the codegen interfaces that are needed
213 /// for IR-level transformations.
214 class TargetTransformInfo {
215 public:
216   /// Construct a TTI object using a type implementing the \c Concept
217   /// API below.
218   ///
219   /// This is used by targets to construct a TTI wrapping their target-specific
220   /// implementation that encodes appropriate costs for their target.
221   template <typename T> TargetTransformInfo(T Impl);
222 
223   /// Construct a baseline TTI object using a minimal implementation of
224   /// the \c Concept API below.
225   ///
226   /// The TTI implementation will reflect the information in the DataLayout
227   /// provided if non-null.
228   explicit TargetTransformInfo(const DataLayout &DL);
229 
230   // Provide move semantics.
231   TargetTransformInfo(TargetTransformInfo &&Arg);
232   TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
233 
234   // We need to define the destructor out-of-line to define our sub-classes
235   // out-of-line.
236   ~TargetTransformInfo();
237 
238   /// Handle the invalidation of this information.
239   ///
240   /// When used as a result of \c TargetIRAnalysis this method will be called
241   /// when the function this was computed for changes. When it returns false,
242   /// the information is preserved across those changes.
invalidate(Function &,const PreservedAnalyses &,FunctionAnalysisManager::Invalidator &)243   bool invalidate(Function &, const PreservedAnalyses &,
244                   FunctionAnalysisManager::Invalidator &) {
245     // FIXME: We should probably in some way ensure that the subtarget
246     // information for a function hasn't changed.
247     return false;
248   }
249 
250   /// \name Generic Target Information
251   /// @{
252 
253   /// The kind of cost model.
254   ///
255   /// There are several different cost models that can be customized by the
256   /// target. The normalization of each cost model may be target specific.
257   /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
258   /// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
259   enum TargetCostKind {
260     TCK_RecipThroughput, ///< Reciprocal throughput.
261     TCK_Latency,         ///< The latency of instruction.
262     TCK_CodeSize,        ///< Instruction code size.
263     TCK_SizeAndLatency   ///< The weighted sum of size and latency.
264   };
265 
266   /// Underlying constants for 'cost' values in this interface.
267   ///
268   /// Many APIs in this interface return a cost. This enum defines the
269   /// fundamental values that should be used to interpret (and produce) those
270   /// costs. The costs are returned as an int rather than a member of this
271   /// enumeration because it is expected that the cost of one IR instruction
272   /// may have a multiplicative factor to it or otherwise won't fit directly
273   /// into the enum. Moreover, it is common to sum or average costs which works
274   /// better as simple integral values. Thus this enum only provides constants.
275   /// Also note that the returned costs are signed integers to make it natural
276   /// to add, subtract, and test with zero (a common boundary condition). It is
277   /// not expected that 2^32 is a realistic cost to be modeling at any point.
278   ///
279   /// Note that these costs should usually reflect the intersection of code-size
280   /// cost and execution cost. A free instruction is typically one that folds
281   /// into another instruction. For example, reg-to-reg moves can often be
282   /// skipped by renaming the registers in the CPU, but they still are encoded
283   /// and thus wouldn't be considered 'free' here.
284   enum TargetCostConstants {
285     TCC_Free = 0,     ///< Expected to fold away in lowering.
286     TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
287     TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
288   };
289 
290   /// Estimate the cost of a GEP operation when lowered.
291   ///
292   /// \p PointeeType is the source element type of the GEP.
293   /// \p Ptr is the base pointer operand.
294   /// \p Operands is the list of indices following the base pointer.
295   ///
296   /// \p AccessType is a hint as to what type of memory might be accessed by
297   /// users of the GEP. getGEPCost will use it to determine if the GEP can be
298   /// folded into the addressing mode of a load/store. If AccessType is null,
299   /// then the resulting target type based off of PointeeType will be used as an
300   /// approximation.
301   InstructionCost
302   getGEPCost(Type *PointeeType, const Value *Ptr,
303              ArrayRef<const Value *> Operands, Type *AccessType = nullptr,
304              TargetCostKind CostKind = TCK_SizeAndLatency) const;
305 
306   /// Describe known properties for a set of pointers.
307   struct PointersChainInfo {
308     /// All the GEPs in a set have same base address.
309     unsigned IsSameBaseAddress : 1;
310     /// These properties only valid if SameBaseAddress is set.
311     /// True if all pointers are separated by a unit stride.
312     unsigned IsUnitStride : 1;
313     /// True if distance between any two neigbouring pointers is a known value.
314     unsigned IsKnownStride : 1;
315     unsigned Reserved : 29;
316 
isSameBasePointersChainInfo317     bool isSameBase() const { return IsSameBaseAddress; }
isUnitStridePointersChainInfo318     bool isUnitStride() const { return IsSameBaseAddress && IsUnitStride; }
isKnownStridePointersChainInfo319     bool isKnownStride() const { return IsSameBaseAddress && IsKnownStride; }
320 
getUnitStridePointersChainInfo321     static PointersChainInfo getUnitStride() {
322       return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/1,
323               /*IsKnownStride=*/1, 0};
324     }
getKnownStridePointersChainInfo325     static PointersChainInfo getKnownStride() {
326       return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
327               /*IsKnownStride=*/1, 0};
328     }
getUnknownStridePointersChainInfo329     static PointersChainInfo getUnknownStride() {
330       return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
331               /*IsKnownStride=*/0, 0};
332     }
333   };
334   static_assert(sizeof(PointersChainInfo) == 4, "Was size increase justified?");
335 
336   /// Estimate the cost of a chain of pointers (typically pointer operands of a
337   /// chain of loads or stores within same block) operations set when lowered.
338   /// \p AccessTy is the type of the loads/stores that will ultimately use the
339   /// \p Ptrs.
340   InstructionCost
341   getPointersChainCost(ArrayRef<const Value *> Ptrs, const Value *Base,
342                        const PointersChainInfo &Info, Type *AccessTy,
343                        TargetCostKind CostKind = TTI::TCK_RecipThroughput
344 
345   ) const;
346 
347   /// \returns A value by which our inlining threshold should be multiplied.
348   /// This is primarily used to bump up the inlining threshold wholesale on
349   /// targets where calls are unusually expensive.
350   ///
351   /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
352   /// individual classes of instructions would be better.
353   unsigned getInliningThresholdMultiplier() const;
354 
355   unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const;
356   unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const;
357 
358   /// \returns A value to be added to the inlining threshold.
359   unsigned adjustInliningThreshold(const CallBase *CB) const;
360 
361   /// \returns The cost of having an Alloca in the caller if not inlined, to be
362   /// added to the threshold
363   unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const;
364 
365   /// \returns Vector bonus in percent.
366   ///
367   /// Vector bonuses: We want to more aggressively inline vector-dense kernels
368   /// and apply this bonus based on the percentage of vector instructions. A
369   /// bonus is applied if the vector instructions exceed 50% and half that
370   /// amount is applied if it exceeds 10%. Note that these bonuses are some what
371   /// arbitrary and evolved over time by accident as much as because they are
372   /// principled bonuses.
373   /// FIXME: It would be nice to base the bonus values on something more
374   /// scientific. A target may has no bonus on vector instructions.
375   int getInlinerVectorBonusPercent() const;
376 
377   /// \return the expected cost of a memcpy, which could e.g. depend on the
378   /// source/destination type and alignment and the number of bytes copied.
379   InstructionCost getMemcpyCost(const Instruction *I) const;
380 
381   /// Returns the maximum memset / memcpy size in bytes that still makes it
382   /// profitable to inline the call.
383   uint64_t getMaxMemIntrinsicInlineSizeThreshold() const;
384 
385   /// \return The estimated number of case clusters when lowering \p 'SI'.
386   /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
387   /// table.
388   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
389                                             unsigned &JTSize,
390                                             ProfileSummaryInfo *PSI,
391                                             BlockFrequencyInfo *BFI) const;
392 
393   /// Estimate the cost of a given IR user when lowered.
394   ///
395   /// This can estimate the cost of either a ConstantExpr or Instruction when
396   /// lowered.
397   ///
398   /// \p Operands is a list of operands which can be a result of transformations
399   /// of the current operands. The number of the operands on the list must equal
400   /// to the number of the current operands the IR user has. Their order on the
401   /// list must be the same as the order of the current operands the IR user
402   /// has.
403   ///
404   /// The returned cost is defined in terms of \c TargetCostConstants, see its
405   /// comments for a detailed explanation of the cost values.
406   InstructionCost getInstructionCost(const User *U,
407                                      ArrayRef<const Value *> Operands,
408                                      TargetCostKind CostKind) const;
409 
410   /// This is a helper function which calls the three-argument
411   /// getInstructionCost with \p Operands which are the current operands U has.
getInstructionCost(const User * U,TargetCostKind CostKind)412   InstructionCost getInstructionCost(const User *U,
413                                      TargetCostKind CostKind) const {
414     SmallVector<const Value *, 4> Operands(U->operand_values());
415     return getInstructionCost(U, Operands, CostKind);
416   }
417 
418   /// If a branch or a select condition is skewed in one direction by more than
419   /// this factor, it is very likely to be predicted correctly.
420   BranchProbability getPredictableBranchThreshold() const;
421 
422   /// Returns estimated penalty of a branch misprediction in latency. Indicates
423   /// how aggressive the target wants for eliminating unpredictable branches. A
424   /// zero return value means extra optimization applied to them should be
425   /// minimal.
426   InstructionCost getBranchMispredictPenalty() const;
427 
428   /// Return true if branch divergence exists.
429   ///
430   /// Branch divergence has a significantly negative impact on GPU performance
431   /// when threads in the same wavefront take different paths due to conditional
432   /// branches.
433   ///
434   /// If \p F is passed, provides a context function. If \p F is known to only
435   /// execute in a single threaded environment, the target may choose to skip
436   /// uniformity analysis and assume all values are uniform.
437   bool hasBranchDivergence(const Function *F = nullptr) const;
438 
439   /// Returns whether V is a source of divergence.
440   ///
441   /// This function provides the target-dependent information for
442   /// the target-independent UniformityAnalysis.
443   bool isSourceOfDivergence(const Value *V) const;
444 
445   // Returns true for the target specific
446   // set of operations which produce uniform result
447   // even taking non-uniform arguments
448   bool isAlwaysUniform(const Value *V) const;
449 
450   /// Query the target whether the specified address space cast from FromAS to
451   /// ToAS is valid.
452   bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
453 
454   /// Return false if a \p AS0 address cannot possibly alias a \p AS1 address.
455   bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const;
456 
457   /// Returns the address space ID for a target's 'flat' address space. Note
458   /// this is not necessarily the same as addrspace(0), which LLVM sometimes
459   /// refers to as the generic address space. The flat address space is a
460   /// generic address space that can be used access multiple segments of memory
461   /// with different address spaces. Access of a memory location through a
462   /// pointer with this address space is expected to be legal but slower
463   /// compared to the same memory location accessed through a pointer with a
464   /// different address space.
465   //
466   /// This is for targets with different pointer representations which can
467   /// be converted with the addrspacecast instruction. If a pointer is converted
468   /// to this address space, optimizations should attempt to replace the access
469   /// with the source address space.
470   ///
471   /// \returns ~0u if the target does not have such a flat address space to
472   /// optimize away.
473   unsigned getFlatAddressSpace() const;
474 
475   /// Return any intrinsic address operand indexes which may be rewritten if
476   /// they use a flat address space pointer.
477   ///
478   /// \returns true if the intrinsic was handled.
479   bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
480                                   Intrinsic::ID IID) const;
481 
482   bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
483 
484   /// Return true if globals in this address space can have initializers other
485   /// than `undef`.
486   bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const;
487 
488   unsigned getAssumedAddrSpace(const Value *V) const;
489 
490   bool isSingleThreaded() const;
491 
492   std::pair<const Value *, unsigned>
493   getPredicatedAddrSpace(const Value *V) const;
494 
495   /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
496   /// NewV, which has a different address space. This should happen for every
497   /// operand index that collectFlatAddressOperands returned for the intrinsic.
498   /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
499   /// new value (which may be the original \p II with modified operands).
500   Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
501                                           Value *NewV) const;
502 
503   /// Test whether calls to a function lower to actual program function
504   /// calls.
505   ///
506   /// The idea is to test whether the program is likely to require a 'call'
507   /// instruction or equivalent in order to call the given function.
508   ///
509   /// FIXME: It's not clear that this is a good or useful query API. Client's
510   /// should probably move to simpler cost metrics using the above.
511   /// Alternatively, we could split the cost interface into distinct code-size
512   /// and execution-speed costs. This would allow modelling the core of this
513   /// query more accurately as a call is a single small instruction, but
514   /// incurs significant execution cost.
515   bool isLoweredToCall(const Function *F) const;
516 
517   struct LSRCost {
518     /// TODO: Some of these could be merged. Also, a lexical ordering
519     /// isn't always optimal.
520     unsigned Insns;
521     unsigned NumRegs;
522     unsigned AddRecCost;
523     unsigned NumIVMuls;
524     unsigned NumBaseAdds;
525     unsigned ImmCost;
526     unsigned SetupCost;
527     unsigned ScaleCost;
528   };
529 
530   /// Parameters that control the generic loop unrolling transformation.
531   struct UnrollingPreferences {
532     /// The cost threshold for the unrolled loop. Should be relative to the
533     /// getInstructionCost values returned by this API, and the expectation is
534     /// that the unrolled loop's instructions when run through that interface
535     /// should not exceed this cost. However, this is only an estimate. Also,
536     /// specific loops may be unrolled even with a cost above this threshold if
537     /// deemed profitable. Set this to UINT_MAX to disable the loop body cost
538     /// restriction.
539     unsigned Threshold;
540     /// If complete unrolling will reduce the cost of the loop, we will boost
541     /// the Threshold by a certain percent to allow more aggressive complete
542     /// unrolling. This value provides the maximum boost percentage that we
543     /// can apply to Threshold (The value should be no less than 100).
544     /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
545     ///                                    MaxPercentThresholdBoost / 100)
546     /// E.g. if complete unrolling reduces the loop execution time by 50%
547     /// then we boost the threshold by the factor of 2x. If unrolling is not
548     /// expected to reduce the running time, then we do not increase the
549     /// threshold.
550     unsigned MaxPercentThresholdBoost;
551     /// The cost threshold for the unrolled loop when optimizing for size (set
552     /// to UINT_MAX to disable).
553     unsigned OptSizeThreshold;
554     /// The cost threshold for the unrolled loop, like Threshold, but used
555     /// for partial/runtime unrolling (set to UINT_MAX to disable).
556     unsigned PartialThreshold;
557     /// The cost threshold for the unrolled loop when optimizing for size, like
558     /// OptSizeThreshold, but used for partial/runtime unrolling (set to
559     /// UINT_MAX to disable).
560     unsigned PartialOptSizeThreshold;
561     /// A forced unrolling factor (the number of concatenated bodies of the
562     /// original loop in the unrolled loop body). When set to 0, the unrolling
563     /// transformation will select an unrolling factor based on the current cost
564     /// threshold and other factors.
565     unsigned Count;
566     /// Default unroll count for loops with run-time trip count.
567     unsigned DefaultUnrollRuntimeCount;
568     // Set the maximum unrolling factor. The unrolling factor may be selected
569     // using the appropriate cost threshold, but may not exceed this number
570     // (set to UINT_MAX to disable). This does not apply in cases where the
571     // loop is being fully unrolled.
572     unsigned MaxCount;
573     /// Set the maximum upper bound of trip count. Allowing the MaxUpperBound
574     /// to be overrided by a target gives more flexiblity on certain cases.
575     /// By default, MaxUpperBound uses UnrollMaxUpperBound which value is 8.
576     unsigned MaxUpperBound;
577     /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
578     /// applies even if full unrolling is selected. This allows a target to fall
579     /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
580     unsigned FullUnrollMaxCount;
581     // Represents number of instructions optimized when "back edge"
582     // becomes "fall through" in unrolled loop.
583     // For now we count a conditional branch on a backedge and a comparison
584     // feeding it.
585     unsigned BEInsns;
586     /// Allow partial unrolling (unrolling of loops to expand the size of the
587     /// loop body, not only to eliminate small constant-trip-count loops).
588     bool Partial;
589     /// Allow runtime unrolling (unrolling of loops to expand the size of the
590     /// loop body even when the number of loop iterations is not known at
591     /// compile time).
592     bool Runtime;
593     /// Allow generation of a loop remainder (extra iterations after unroll).
594     bool AllowRemainder;
595     /// Allow emitting expensive instructions (such as divisions) when computing
596     /// the trip count of a loop for runtime unrolling.
597     bool AllowExpensiveTripCount;
598     /// Apply loop unroll on any kind of loop
599     /// (mainly to loops that fail runtime unrolling).
600     bool Force;
601     /// Allow using trip count upper bound to unroll loops.
602     bool UpperBound;
603     /// Allow unrolling of all the iterations of the runtime loop remainder.
604     bool UnrollRemainder;
605     /// Allow unroll and jam. Used to enable unroll and jam for the target.
606     bool UnrollAndJam;
607     /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
608     /// value above is used during unroll and jam for the outer loop size.
609     /// This value is used in the same manner to limit the size of the inner
610     /// loop.
611     unsigned UnrollAndJamInnerLoopThreshold;
612     /// Don't allow loop unrolling to simulate more than this number of
613     /// iterations when checking full unroll profitability
614     unsigned MaxIterationsCountToAnalyze;
615     /// Don't disable runtime unroll for the loops which were vectorized.
616     bool UnrollVectorizedLoop = false;
617   };
618 
619   /// Get target-customized preferences for the generic loop unrolling
620   /// transformation. The caller will initialize UP with the current
621   /// target-independent defaults.
622   void getUnrollingPreferences(Loop *L, ScalarEvolution &,
623                                UnrollingPreferences &UP,
624                                OptimizationRemarkEmitter *ORE) const;
625 
626   /// Query the target whether it would be profitable to convert the given loop
627   /// into a hardware loop.
628   bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
629                                 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
630                                 HardwareLoopInfo &HWLoopInfo) const;
631 
632   /// Query the target whether it would be prefered to create a predicated
633   /// vector loop, which can avoid the need to emit a scalar epilogue loop.
634   bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const;
635 
636   /// Query the target what the preferred style of tail folding is.
637   /// \param IVUpdateMayOverflow Tells whether it is known if the IV update
638   /// may (or will never) overflow for the suggested VF/UF in the given loop.
639   /// Targets can use this information to select a more optimal tail folding
640   /// style. The value conservatively defaults to true, such that no assumptions
641   /// are made on overflow.
642   TailFoldingStyle
643   getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const;
644 
645   // Parameters that control the loop peeling transformation
646   struct PeelingPreferences {
647     /// A forced peeling factor (the number of bodied of the original loop
648     /// that should be peeled off before the loop body). When set to 0, the
649     /// a peeling factor based on profile information and other factors.
650     unsigned PeelCount;
651     /// Allow peeling off loop iterations.
652     bool AllowPeeling;
653     /// Allow peeling off loop iterations for loop nests.
654     bool AllowLoopNestsPeeling;
655     /// Allow peeling basing on profile. Uses to enable peeling off all
656     /// iterations basing on provided profile.
657     /// If the value is true the peeling cost model can decide to peel only
658     /// some iterations and in this case it will set this to false.
659     bool PeelProfiledIterations;
660   };
661 
662   /// Get target-customized preferences for the generic loop peeling
663   /// transformation. The caller will initialize \p PP with the current
664   /// target-independent defaults with information from \p L and \p SE.
665   void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
666                              PeelingPreferences &PP) const;
667 
668   /// Targets can implement their own combinations for target-specific
669   /// intrinsics. This function will be called from the InstCombine pass every
670   /// time a target-specific intrinsic is encountered.
671   ///
672   /// \returns std::nullopt to not do anything target specific or a value that
673   /// will be returned from the InstCombiner. It is possible to return null and
674   /// stop further processing of the intrinsic by returning nullptr.
675   std::optional<Instruction *> instCombineIntrinsic(InstCombiner & IC,
676                                                     IntrinsicInst & II) const;
677   /// Can be used to implement target-specific instruction combining.
678   /// \see instCombineIntrinsic
679   std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
680       InstCombiner & IC, IntrinsicInst & II, APInt DemandedMask,
681       KnownBits & Known, bool &KnownBitsComputed) const;
682   /// Can be used to implement target-specific instruction combining.
683   /// \see instCombineIntrinsic
684   std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
685       InstCombiner & IC, IntrinsicInst & II, APInt DemandedElts,
686       APInt & UndefElts, APInt & UndefElts2, APInt & UndefElts3,
687       std::function<void(Instruction *, unsigned, APInt, APInt &)>
688           SimplifyAndSetOp) const;
689   /// @}
690 
691   /// \name Scalar Target Information
692   /// @{
693 
694   /// Flags indicating the kind of support for population count.
695   ///
696   /// Compared to the SW implementation, HW support is supposed to
697   /// significantly boost the performance when the population is dense, and it
698   /// may or may not degrade performance if the population is sparse. A HW
699   /// support is considered as "Fast" if it can outperform, or is on a par
700   /// with, SW implementation when the population is sparse; otherwise, it is
701   /// considered as "Slow".
702   enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
703 
704   /// Return true if the specified immediate is legal add immediate, that
705   /// is the target has add instructions which can add a register with the
706   /// immediate without having to materialize the immediate into a register.
707   bool isLegalAddImmediate(int64_t Imm) const;
708 
709   /// Return true if adding the specified scalable immediate is legal, that is
710   /// the target has add instructions which can add a register with the
711   /// immediate (multiplied by vscale) without having to materialize the
712   /// immediate into a register.
713   bool isLegalAddScalableImmediate(int64_t Imm) const;
714 
715   /// Return true if the specified immediate is legal icmp immediate,
716   /// that is the target has icmp instructions which can compare a register
717   /// against the immediate without having to materialize the immediate into a
718   /// register.
719   bool isLegalICmpImmediate(int64_t Imm) const;
720 
721   /// Return true if the addressing mode represented by AM is legal for
722   /// this target, for a load/store of the specified type.
723   /// The type may be VoidTy, in which case only return true if the addressing
724   /// mode is legal for a load/store of any legal type.
725   /// If target returns true in LSRWithInstrQueries(), I may be valid.
726   /// \param ScalableOffset represents a quantity of bytes multiplied by vscale,
727   /// an invariant value known only at runtime. Most targets should not accept
728   /// a scalable offset.
729   ///
730   /// TODO: Handle pre/postinc as well.
731   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
732                              bool HasBaseReg, int64_t Scale,
733                              unsigned AddrSpace = 0, Instruction *I = nullptr,
734                              int64_t ScalableOffset = 0) const;
735 
736   /// Return true if LSR cost of C1 is lower than C2.
737   bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
738                      const TargetTransformInfo::LSRCost &C2) const;
739 
740   /// Return true if LSR major cost is number of registers. Targets which
741   /// implement their own isLSRCostLess and unset number of registers as major
742   /// cost should return false, otherwise return true.
743   bool isNumRegsMajorCostOfLSR() const;
744 
745   /// Return true if LSR should attempts to replace a use of an otherwise dead
746   /// primary IV in the latch condition with another IV available in the loop.
747   /// When successful, makes the primary IV dead.
748   bool shouldFoldTerminatingConditionAfterLSR() const;
749 
750   /// Return true if LSR should drop a found solution if it's calculated to be
751   /// less profitable than the baseline.
752   bool shouldDropLSRSolutionIfLessProfitable() const;
753 
754   /// \returns true if LSR should not optimize a chain that includes \p I.
755   bool isProfitableLSRChainElement(Instruction *I) const;
756 
757   /// Return true if the target can fuse a compare and branch.
758   /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
759   /// calculation for the instructions in a loop.
760   bool canMacroFuseCmp() const;
761 
762   /// Return true if the target can save a compare for loop count, for example
763   /// hardware loop saves a compare.
764   bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
765                   DominatorTree *DT, AssumptionCache *AC,
766                   TargetLibraryInfo *LibInfo) const;
767 
768   enum AddressingModeKind {
769     AMK_PreIndexed,
770     AMK_PostIndexed,
771     AMK_None
772   };
773 
774   /// Return the preferred addressing mode LSR should make efforts to generate.
775   AddressingModeKind getPreferredAddressingMode(const Loop *L,
776                                                 ScalarEvolution *SE) const;
777 
778   /// Return true if the target supports masked store.
779   bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
780   /// Return true if the target supports masked load.
781   bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
782 
783   /// Return true if the target supports nontemporal store.
784   bool isLegalNTStore(Type *DataType, Align Alignment) const;
785   /// Return true if the target supports nontemporal load.
786   bool isLegalNTLoad(Type *DataType, Align Alignment) const;
787 
788   /// \Returns true if the target supports broadcasting a load to a vector of
789   /// type <NumElements x ElementTy>.
790   bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const;
791 
792   /// Return true if the target supports masked scatter.
793   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
794   /// Return true if the target supports masked gather.
795   bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
796   /// Return true if the target forces scalarizing of llvm.masked.gather
797   /// intrinsics.
798   bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const;
799   /// Return true if the target forces scalarizing of llvm.masked.scatter
800   /// intrinsics.
801   bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const;
802 
803   /// Return true if the target supports masked compress store.
804   bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const;
805   /// Return true if the target supports masked expand load.
806   bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const;
807 
808   /// Return true if the target supports strided load.
809   bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const;
810 
811   // Return true if the target supports masked vector histograms.
812   bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) const;
813 
814   /// Return true if this is an alternating opcode pattern that can be lowered
815   /// to a single instruction on the target. In X86 this is for the addsub
816   /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
817   /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
818   /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
819   /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
820   /// \p VecTy is the vector type of the instruction to be generated.
821   bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
822                        const SmallBitVector &OpcodeMask) const;
823 
824   /// Return true if we should be enabling ordered reductions for the target.
825   bool enableOrderedReductions() const;
826 
827   /// Return true if the target has a unified operation to calculate division
828   /// and remainder. If so, the additional implicit multiplication and
829   /// subtraction required to calculate a remainder from division are free. This
830   /// can enable more aggressive transformations for division and remainder than
831   /// would typically be allowed using throughput or size cost models.
832   bool hasDivRemOp(Type *DataType, bool IsSigned) const;
833 
834   /// Return true if the given instruction (assumed to be a memory access
835   /// instruction) has a volatile variant. If that's the case then we can avoid
836   /// addrspacecast to generic AS for volatile loads/stores. Default
837   /// implementation returns false, which prevents address space inference for
838   /// volatile loads/stores.
839   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
840 
841   /// Return true if target doesn't mind addresses in vectors.
842   bool prefersVectorizedAddressing() const;
843 
844   /// Return the cost of the scaling factor used in the addressing
845   /// mode represented by AM for this target, for a load/store
846   /// of the specified type.
847   /// If the AM is supported, the return value must be >= 0.
848   /// If the AM is not supported, it returns a negative value.
849   /// TODO: Handle pre/postinc as well.
850   InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
851                                        StackOffset BaseOffset, bool HasBaseReg,
852                                        int64_t Scale,
853                                        unsigned AddrSpace = 0) const;
854 
855   /// Return true if the loop strength reduce pass should make
856   /// Instruction* based TTI queries to isLegalAddressingMode(). This is
857   /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
858   /// immediate offset and no index register.
859   bool LSRWithInstrQueries() const;
860 
861   /// Return true if it's free to truncate a value of type Ty1 to type
862   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
863   /// by referencing its sub-register AX.
864   bool isTruncateFree(Type *Ty1, Type *Ty2) const;
865 
866   /// Return true if it is profitable to hoist instruction in the
867   /// then/else to before if.
868   bool isProfitableToHoist(Instruction *I) const;
869 
870   bool useAA() const;
871 
872   /// Return true if this type is legal.
873   bool isTypeLegal(Type *Ty) const;
874 
875   /// Returns the estimated number of registers required to represent \p Ty.
876   unsigned getRegUsageForType(Type *Ty) const;
877 
878   /// Return true if switches should be turned into lookup tables for the
879   /// target.
880   bool shouldBuildLookupTables() const;
881 
882   /// Return true if switches should be turned into lookup tables
883   /// containing this constant value for the target.
884   bool shouldBuildLookupTablesForConstant(Constant *C) const;
885 
886   /// Return true if lookup tables should be turned into relative lookup tables.
887   bool shouldBuildRelLookupTables() const;
888 
889   /// Return true if the input function which is cold at all call sites,
890   ///  should use coldcc calling convention.
891   bool useColdCCForColdCall(Function &F) const;
892 
893   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
894   /// are set if the demanded result elements need to be inserted and/or
895   /// extracted from vectors.
896   InstructionCost getScalarizationOverhead(VectorType *Ty,
897                                            const APInt &DemandedElts,
898                                            bool Insert, bool Extract,
899                                            TTI::TargetCostKind CostKind) const;
900 
901   /// Estimate the overhead of scalarizing an instructions unique
902   /// non-constant operands. The (potentially vector) types to use for each of
903   /// argument are passes via Tys.
904   InstructionCost
905   getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
906                                    ArrayRef<Type *> Tys,
907                                    TTI::TargetCostKind CostKind) const;
908 
909   /// If target has efficient vector element load/store instructions, it can
910   /// return true here so that insertion/extraction costs are not added to
911   /// the scalarization cost of a load/store.
912   bool supportsEfficientVectorElementLoadStore() const;
913 
914   /// If the target supports tail calls.
915   bool supportsTailCalls() const;
916 
917   /// If target supports tail call on \p CB
918   bool supportsTailCallFor(const CallBase *CB) const;
919 
920   /// Don't restrict interleaved unrolling to small loops.
921   bool enableAggressiveInterleaving(bool LoopHasReductions) const;
922 
923   /// Returns options for expansion of memcmp. IsZeroCmp is
924   // true if this is the expansion of memcmp(p1, p2, s) == 0.
925   struct MemCmpExpansionOptions {
926     // Return true if memcmp expansion is enabled.
927     operator bool() const { return MaxNumLoads > 0; }
928 
929     // Maximum number of load operations.
930     unsigned MaxNumLoads = 0;
931 
932     // The list of available load sizes (in bytes), sorted in decreasing order.
933     SmallVector<unsigned, 8> LoadSizes;
934 
935     // For memcmp expansion when the memcmp result is only compared equal or
936     // not-equal to 0, allow up to this number of load pairs per block. As an
937     // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
938     //   a0 = load2bytes &a[0]
939     //   b0 = load2bytes &b[0]
940     //   a2 = load1byte  &a[2]
941     //   b2 = load1byte  &b[2]
942     //   r  = cmp eq (a0 ^ b0 | a2 ^ b2), 0
943     unsigned NumLoadsPerBlock = 1;
944 
945     // Set to true to allow overlapping loads. For example, 7-byte compares can
946     // be done with two 4-byte compares instead of 4+2+1-byte compares. This
947     // requires all loads in LoadSizes to be doable in an unaligned way.
948     bool AllowOverlappingLoads = false;
949 
950     // Sometimes, the amount of data that needs to be compared is smaller than
951     // the standard register size, but it cannot be loaded with just one load
952     // instruction. For example, if the size of the memory comparison is 6
953     // bytes, we can handle it more efficiently by loading all 6 bytes in a
954     // single block and generating an 8-byte number, instead of generating two
955     // separate blocks with conditional jumps for 4 and 2 byte loads. This
956     // approach simplifies the process and produces the comparison result as
957     // normal. This array lists the allowed sizes of memcmp tails that can be
958     // merged into one block
959     SmallVector<unsigned, 4> AllowedTailExpansions;
960   };
961   MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
962                                                bool IsZeroCmp) const;
963 
964   /// Should the Select Optimization pass be enabled and ran.
965   bool enableSelectOptimize() const;
966 
967   /// Should the Select Optimization pass treat the given instruction like a
968   /// select, potentially converting it to a conditional branch. This can
969   /// include select-like instructions like or(zext(c), x) that can be converted
970   /// to selects.
971   bool shouldTreatInstructionLikeSelect(const Instruction *I) const;
972 
973   /// Enable matching of interleaved access groups.
974   bool enableInterleavedAccessVectorization() const;
975 
976   /// Enable matching of interleaved access groups that contain predicated
977   /// accesses or gaps and therefore vectorized using masked
978   /// vector loads/stores.
979   bool enableMaskedInterleavedAccessVectorization() const;
980 
981   /// Indicate that it is potentially unsafe to automatically vectorize
982   /// floating-point operations because the semantics of vector and scalar
983   /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
984   /// does not support IEEE-754 denormal numbers, while depending on the
985   /// platform, scalar floating-point math does.
986   /// This applies to floating-point math operations and calls, not memory
987   /// operations, shuffles, or casts.
988   bool isFPVectorizationPotentiallyUnsafe() const;
989 
990   /// Determine if the target supports unaligned memory accesses.
991   bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
992                                       unsigned AddressSpace = 0,
993                                       Align Alignment = Align(1),
994                                       unsigned *Fast = nullptr) const;
995 
996   /// Return hardware support for population count.
997   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
998 
999   /// Return true if the hardware has a fast square-root instruction.
1000   bool haveFastSqrt(Type *Ty) const;
1001 
1002   /// Return true if the cost of the instruction is too high to speculatively
1003   /// execute and should be kept behind a branch.
1004   /// This normally just wraps around a getInstructionCost() call, but some
1005   /// targets might report a low TCK_SizeAndLatency value that is incompatible
1006   /// with the fixed TCC_Expensive value.
1007   /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
1008   bool isExpensiveToSpeculativelyExecute(const Instruction *I) const;
1009 
1010   /// Return true if it is faster to check if a floating-point value is NaN
1011   /// (or not-NaN) versus a comparison against a constant FP zero value.
1012   /// Targets should override this if materializing a 0.0 for comparison is
1013   /// generally as cheap as checking for ordered/unordered.
1014   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
1015 
1016   /// Return the expected cost of supporting the floating point operation
1017   /// of the specified type.
1018   InstructionCost getFPOpCost(Type *Ty) const;
1019 
1020   /// Return the expected cost of materializing for the given integer
1021   /// immediate of the specified type.
1022   InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
1023                                 TargetCostKind CostKind) const;
1024 
1025   /// Return the expected cost of materialization for the given integer
1026   /// immediate of the specified type for a given instruction. The cost can be
1027   /// zero if the immediate can be folded into the specified instruction.
1028   InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
1029                                     const APInt &Imm, Type *Ty,
1030                                     TargetCostKind CostKind,
1031                                     Instruction *Inst = nullptr) const;
1032   InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
1033                                       const APInt &Imm, Type *Ty,
1034                                       TargetCostKind CostKind) const;
1035 
1036   /// Return the expected cost for the given integer when optimising
1037   /// for size. This is different than the other integer immediate cost
1038   /// functions in that it is subtarget agnostic. This is useful when you e.g.
1039   /// target one ISA such as Aarch32 but smaller encodings could be possible
1040   /// with another such as Thumb. This return value is used as a penalty when
1041   /// the total costs for a constant is calculated (the bigger the cost, the
1042   /// more beneficial constant hoisting is).
1043   InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1044                                         const APInt &Imm, Type *Ty) const;
1045 
1046   /// It can be advantageous to detach complex constants from their uses to make
1047   /// their generation cheaper. This hook allows targets to report when such
1048   /// transformations might negatively effect the code generation of the
1049   /// underlying operation. The motivating example is divides whereby hoisting
1050   /// constants prevents the code generator's ability to transform them into
1051   /// combinations of simpler operations.
1052   bool preferToKeepConstantsAttached(const Instruction &Inst,
1053                                      const Function &Fn) const;
1054 
1055   /// @}
1056 
1057   /// \name Vector Target Information
1058   /// @{
1059 
1060   /// The various kinds of shuffle patterns for vector queries.
1061   enum ShuffleKind {
1062     SK_Broadcast,        ///< Broadcast element 0 to all other elements.
1063     SK_Reverse,          ///< Reverse the order of the vector.
1064     SK_Select,           ///< Selects elements from the corresponding lane of
1065                          ///< either source operand. This is equivalent to a
1066                          ///< vector select with a constant condition operand.
1067     SK_Transpose,        ///< Transpose two vectors.
1068     SK_InsertSubvector,  ///< InsertSubvector. Index indicates start offset.
1069     SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
1070     SK_PermuteTwoSrc,    ///< Merge elements from two source vectors into one
1071                          ///< with any shuffle mask.
1072     SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
1073                          ///< shuffle mask.
1074     SK_Splice            ///< Concatenates elements from the first input vector
1075                          ///< with elements of the second input vector. Returning
1076                          ///< a vector of the same type as the input vectors.
1077                          ///< Index indicates start offset in first input vector.
1078   };
1079 
1080   /// Additional information about an operand's possible values.
1081   enum OperandValueKind {
1082     OK_AnyValue,               // Operand can have any value.
1083     OK_UniformValue,           // Operand is uniform (splat of a value).
1084     OK_UniformConstantValue,   // Operand is uniform constant.
1085     OK_NonUniformConstantValue // Operand is a non uniform constant value.
1086   };
1087 
1088   /// Additional properties of an operand's values.
1089   enum OperandValueProperties {
1090     OP_None = 0,
1091     OP_PowerOf2 = 1,
1092     OP_NegatedPowerOf2 = 2,
1093   };
1094 
1095   // Describe the values an operand can take.  We're in the process
1096   // of migrating uses of OperandValueKind and OperandValueProperties
1097   // to use this class, and then will change the internal representation.
1098   struct OperandValueInfo {
1099     OperandValueKind Kind = OK_AnyValue;
1100     OperandValueProperties Properties = OP_None;
1101 
isConstantOperandValueInfo1102     bool isConstant() const {
1103       return Kind == OK_UniformConstantValue || Kind == OK_NonUniformConstantValue;
1104     }
isUniformOperandValueInfo1105     bool isUniform() const {
1106       return Kind == OK_UniformConstantValue || Kind == OK_UniformValue;
1107     }
isPowerOf2OperandValueInfo1108     bool isPowerOf2() const {
1109       return Properties == OP_PowerOf2;
1110     }
isNegatedPowerOf2OperandValueInfo1111     bool isNegatedPowerOf2() const {
1112       return Properties == OP_NegatedPowerOf2;
1113     }
1114 
getNoPropsOperandValueInfo1115     OperandValueInfo getNoProps() const {
1116       return {Kind, OP_None};
1117     }
1118   };
1119 
1120   /// \return the number of registers in the target-provided register class.
1121   unsigned getNumberOfRegisters(unsigned ClassID) const;
1122 
1123   /// \return true if the target supports load/store that enables fault
1124   /// suppression of memory operands when the source condition is false.
1125   bool hasConditionalLoadStoreForType(Type *Ty = nullptr) const;
1126 
1127   /// \return the target-provided register class ID for the provided type,
1128   /// accounting for type promotion and other type-legalization techniques that
1129   /// the target might apply. However, it specifically does not account for the
1130   /// scalarization or splitting of vector types. Should a vector type require
1131   /// scalarization or splitting into multiple underlying vector registers, that
1132   /// type should be mapped to a register class containing no registers.
1133   /// Specifically, this is designed to provide a simple, high-level view of the
1134   /// register allocation later performed by the backend. These register classes
1135   /// don't necessarily map onto the register classes used by the backend.
1136   /// FIXME: It's not currently possible to determine how many registers
1137   /// are used by the provided type.
1138   unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
1139 
1140   /// \return the target-provided register class name
1141   const char *getRegisterClassName(unsigned ClassID) const;
1142 
1143   enum RegisterKind { RGK_Scalar, RGK_FixedWidthVector, RGK_ScalableVector };
1144 
1145   /// \return The width of the largest scalar or vector register type.
1146   TypeSize getRegisterBitWidth(RegisterKind K) const;
1147 
1148   /// \return The width of the smallest vector register type.
1149   unsigned getMinVectorRegisterBitWidth() const;
1150 
1151   /// \return The maximum value of vscale if the target specifies an
1152   ///  architectural maximum vector length, and std::nullopt otherwise.
1153   std::optional<unsigned> getMaxVScale() const;
1154 
1155   /// \return the value of vscale to tune the cost model for.
1156   std::optional<unsigned> getVScaleForTuning() const;
1157 
1158   /// \return true if vscale is known to be a power of 2
1159   bool isVScaleKnownToBeAPowerOfTwo() const;
1160 
1161   /// \return True if the vectorization factor should be chosen to
1162   /// make the vector of the smallest element type match the size of a
1163   /// vector register. For wider element types, this could result in
1164   /// creating vectors that span multiple vector registers.
1165   /// If false, the vectorization factor will be chosen based on the
1166   /// size of the widest element type.
1167   /// \p K Register Kind for vectorization.
1168   bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const;
1169 
1170   /// \return The minimum vectorization factor for types of given element
1171   /// bit width, or 0 if there is no minimum VF. The returned value only
1172   /// applies when shouldMaximizeVectorBandwidth returns true.
1173   /// If IsScalable is true, the returned ElementCount must be a scalable VF.
1174   ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
1175 
1176   /// \return The maximum vectorization factor for types of given element
1177   /// bit width and opcode, or 0 if there is no maximum VF.
1178   /// Currently only used by the SLP vectorizer.
1179   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
1180 
1181   /// \return The minimum vectorization factor for the store instruction. Given
1182   /// the initial estimation of the minimum vector factor and store value type,
1183   /// it tries to find possible lowest VF, which still might be profitable for
1184   /// the vectorization.
1185   /// \param VF Initial estimation of the minimum vector factor.
1186   /// \param ScalarMemTy Scalar memory type of the store operation.
1187   /// \param ScalarValTy Scalar type of the stored value.
1188   /// Currently only used by the SLP vectorizer.
1189   unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1190                              Type *ScalarValTy) const;
1191 
1192   /// \return True if it should be considered for address type promotion.
1193   /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
1194   /// profitable without finding other extensions fed by the same input.
1195   bool shouldConsiderAddressTypePromotion(
1196       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
1197 
1198   /// \return The size of a cache line in bytes.
1199   unsigned getCacheLineSize() const;
1200 
1201   /// The possible cache levels
1202   enum class CacheLevel {
1203     L1D, // The L1 data cache
1204     L2D, // The L2 data cache
1205 
1206     // We currently do not model L3 caches, as their sizes differ widely between
1207     // microarchitectures. Also, we currently do not have a use for L3 cache
1208     // size modeling yet.
1209   };
1210 
1211   /// \return The size of the cache level in bytes, if available.
1212   std::optional<unsigned> getCacheSize(CacheLevel Level) const;
1213 
1214   /// \return The associativity of the cache level, if available.
1215   std::optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
1216 
1217   /// \return The minimum architectural page size for the target.
1218   std::optional<unsigned> getMinPageSize() const;
1219 
1220   /// \return How much before a load we should place the prefetch
1221   /// instruction.  This is currently measured in number of
1222   /// instructions.
1223   unsigned getPrefetchDistance() const;
1224 
1225   /// Some HW prefetchers can handle accesses up to a certain constant stride.
1226   /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
1227   /// and the arguments provided are meant to serve as a basis for deciding this
1228   /// for a particular loop.
1229   ///
1230   /// \param NumMemAccesses        Number of memory accesses in the loop.
1231   /// \param NumStridedMemAccesses Number of the memory accesses that
1232   ///                              ScalarEvolution could find a known stride
1233   ///                              for.
1234   /// \param NumPrefetches         Number of software prefetches that will be
1235   ///                              emitted as determined by the addresses
1236   ///                              involved and the cache line size.
1237   /// \param HasCall               True if the loop contains a call.
1238   ///
1239   /// \return This is the minimum stride in bytes where it makes sense to start
1240   ///         adding SW prefetches. The default is 1, i.e. prefetch with any
1241   ///         stride.
1242   unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1243                                 unsigned NumStridedMemAccesses,
1244                                 unsigned NumPrefetches, bool HasCall) const;
1245 
1246   /// \return The maximum number of iterations to prefetch ahead.  If
1247   /// the required number of iterations is more than this number, no
1248   /// prefetching is performed.
1249   unsigned getMaxPrefetchIterationsAhead() const;
1250 
1251   /// \return True if prefetching should also be done for writes.
1252   bool enableWritePrefetching() const;
1253 
1254   /// \return if target want to issue a prefetch in address space \p AS.
1255   bool shouldPrefetchAddressSpace(unsigned AS) const;
1256 
1257   /// \return The maximum interleave factor that any transform should try to
1258   /// perform for this target. This number depends on the level of parallelism
1259   /// and the number of execution units in the CPU.
1260   unsigned getMaxInterleaveFactor(ElementCount VF) const;
1261 
1262   /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
1263   static OperandValueInfo getOperandInfo(const Value *V);
1264 
1265   /// This is an approximation of reciprocal throughput of a math/logic op.
1266   /// A higher cost indicates less expected throughput.
1267   /// From Agner Fog's guides, reciprocal throughput is "the average number of
1268   /// clock cycles per instruction when the instructions are not part of a
1269   /// limiting dependency chain."
1270   /// Therefore, costs should be scaled to account for multiple execution units
1271   /// on the target that can process this type of instruction. For example, if
1272   /// there are 5 scalar integer units and 2 vector integer units that can
1273   /// calculate an 'add' in a single cycle, this model should indicate that the
1274   /// cost of the vector add instruction is 2.5 times the cost of the scalar
1275   /// add instruction.
1276   /// \p Args is an optional argument which holds the instruction operands
1277   /// values so the TTI can analyze those values searching for special
1278   /// cases or optimizations based on those values.
1279   /// \p CxtI is the optional original context instruction, if one exists, to
1280   /// provide even more information.
1281   /// \p TLibInfo is used to search for platform specific vector library
1282   /// functions for instructions that might be converted to calls (e.g. frem).
1283   InstructionCost getArithmeticInstrCost(
1284       unsigned Opcode, Type *Ty,
1285       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1286       TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None},
1287       TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None},
1288       ArrayRef<const Value *> Args = std::nullopt,
1289       const Instruction *CxtI = nullptr,
1290       const TargetLibraryInfo *TLibInfo = nullptr) const;
1291 
1292   /// Returns the cost estimation for alternating opcode pattern that can be
1293   /// lowered to a single instruction on the target. In X86 this is for the
1294   /// addsub instruction which corrsponds to a Shuffle + Fadd + FSub pattern in
1295   /// IR. This function expects two opcodes: \p Opcode1 and \p Opcode2 being
1296   /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
1297   /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
1298   /// \p VecTy is the vector type of the instruction to be generated.
1299   InstructionCost getAltInstrCost(
1300       VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
1301       const SmallBitVector &OpcodeMask,
1302       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1303 
1304   /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
1305   /// The exact mask may be passed as Mask, or else the array will be empty.
1306   /// The index and subtype parameters are used by the subvector insertion and
1307   /// extraction shuffle kinds to show the insert/extract point and the type of
1308   /// the subvector being inserted/extracted. The operands of the shuffle can be
1309   /// passed through \p Args, which helps improve the cost estimation in some
1310   /// cases, like in broadcast loads.
1311   /// NOTE: For subvector extractions Tp represents the source type.
1312   InstructionCost getShuffleCost(
1313       ShuffleKind Kind, VectorType *Tp, ArrayRef<int> Mask = std::nullopt,
1314       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, int Index = 0,
1315       VectorType *SubTp = nullptr, ArrayRef<const Value *> Args = std::nullopt,
1316       const Instruction *CxtI = nullptr) const;
1317 
1318   /// Represents a hint about the context in which a cast is used.
1319   ///
1320   /// For zext/sext, the context of the cast is the operand, which must be a
1321   /// load of some kind. For trunc, the context is of the cast is the single
1322   /// user of the instruction, which must be a store of some kind.
1323   ///
1324   /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1325   /// type of cast it's dealing with, as not every cast is equal. For instance,
1326   /// the zext of a load may be free, but the zext of an interleaving load can
1327   //// be (very) expensive!
1328   ///
1329   /// See \c getCastContextHint to compute a CastContextHint from a cast
1330   /// Instruction*. Callers can use it if they don't need to override the
1331   /// context and just want it to be calculated from the instruction.
1332   ///
1333   /// FIXME: This handles the types of load/store that the vectorizer can
1334   /// produce, which are the cases where the context instruction is most
1335   /// likely to be incorrect. There are other situations where that can happen
1336   /// too, which might be handled here but in the long run a more general
1337   /// solution of costing multiple instructions at the same times may be better.
1338   enum class CastContextHint : uint8_t {
1339     None,          ///< The cast is not used with a load/store of any kind.
1340     Normal,        ///< The cast is used with a normal load/store.
1341     Masked,        ///< The cast is used with a masked load/store.
1342     GatherScatter, ///< The cast is used with a gather/scatter.
1343     Interleave,    ///< The cast is used with an interleaved load/store.
1344     Reversed,      ///< The cast is used with a reversed load/store.
1345   };
1346 
1347   /// Calculates a CastContextHint from \p I.
1348   /// This should be used by callers of getCastInstrCost if they wish to
1349   /// determine the context from some instruction.
1350   /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1351   /// or if it's another type of cast.
1352   static CastContextHint getCastContextHint(const Instruction *I);
1353 
1354   /// \return The expected cost of cast instructions, such as bitcast, trunc,
1355   /// zext, etc. If there is an existing instruction that holds Opcode, it
1356   /// may be passed in the 'I' parameter.
1357   InstructionCost
1358   getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1359                    TTI::CastContextHint CCH,
1360                    TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
1361                    const Instruction *I = nullptr) const;
1362 
1363   /// \return The expected cost of a sign- or zero-extended vector extract. Use
1364   /// Index = -1 to indicate that there is no information about the index value.
1365   InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1366                                            VectorType *VecTy,
1367                                            unsigned Index) const;
1368 
1369   /// \return The expected cost of control-flow related instructions such as
1370   /// Phi, Ret, Br, Switch.
1371   InstructionCost
1372   getCFInstrCost(unsigned Opcode,
1373                  TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
1374                  const Instruction *I = nullptr) const;
1375 
1376   /// \returns The expected cost of compare and select instructions. If there
1377   /// is an existing instruction that holds Opcode, it may be passed in the
1378   /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1379   /// is using a compare with the specified predicate as condition. When vector
1380   /// types are passed, \p VecPred must be used for all lanes.
1381   InstructionCost
1382   getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1383                      CmpInst::Predicate VecPred,
1384                      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1385                      const Instruction *I = nullptr) const;
1386 
1387   /// \return The expected cost of vector Insert and Extract.
1388   /// Use -1 to indicate that there is no information on the index value.
1389   /// This is used when the instruction is not available; a typical use
1390   /// case is to provision the cost of vectorization/scalarization in
1391   /// vectorizer passes.
1392   InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1393                                      TTI::TargetCostKind CostKind,
1394                                      unsigned Index = -1, Value *Op0 = nullptr,
1395                                      Value *Op1 = nullptr) const;
1396 
1397   /// \return The expected cost of vector Insert and Extract.
1398   /// This is used when instruction is available, and implementation
1399   /// asserts 'I' is not nullptr.
1400   ///
1401   /// A typical suitable use case is cost estimation when vector instruction
1402   /// exists (e.g., from basic blocks during transformation).
1403   InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
1404                                      TTI::TargetCostKind CostKind,
1405                                      unsigned Index = -1) const;
1406 
1407   /// \return The cost of replication shuffle of \p VF elements typed \p EltTy
1408   /// \p ReplicationFactor times.
1409   ///
1410   /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
1411   ///   <0,0,0,1,1,1,2,2,2,3,3,3>
1412   InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
1413                                             int VF,
1414                                             const APInt &DemandedDstElts,
1415                                             TTI::TargetCostKind CostKind) const;
1416 
1417   /// \return The cost of Load and Store instructions.
1418   InstructionCost
1419   getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1420                   unsigned AddressSpace,
1421                   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1422                   OperandValueInfo OpdInfo = {OK_AnyValue, OP_None},
1423                   const Instruction *I = nullptr) const;
1424 
1425   /// \return The cost of VP Load and Store instructions.
1426   InstructionCost
1427   getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1428                     unsigned AddressSpace,
1429                     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1430                     const Instruction *I = nullptr) const;
1431 
1432   /// \return The cost of masked Load and Store instructions.
1433   InstructionCost getMaskedMemoryOpCost(
1434       unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1435       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1436 
1437   /// \return The cost of Gather or Scatter operation
1438   /// \p Opcode - is a type of memory access Load or Store
1439   /// \p DataTy - a vector type of the data to be loaded or stored
1440   /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1441   /// \p VariableMask - true when the memory access is predicated with a mask
1442   ///                   that is not a compile-time constant
1443   /// \p Alignment - alignment of single element
1444   /// \p I - the optional original context instruction, if one exists, e.g. the
1445   ///        load/store to transform or the call to the gather/scatter intrinsic
1446   InstructionCost getGatherScatterOpCost(
1447       unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1448       Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1449       const Instruction *I = nullptr) const;
1450 
1451   /// \return The cost of strided memory operations.
1452   /// \p Opcode - is a type of memory access Load or Store
1453   /// \p DataTy - a vector type of the data to be loaded or stored
1454   /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1455   /// \p VariableMask - true when the memory access is predicated with a mask
1456   ///                   that is not a compile-time constant
1457   /// \p Alignment - alignment of single element
1458   /// \p I - the optional original context instruction, if one exists, e.g. the
1459   ///        load/store to transform or the call to the gather/scatter intrinsic
1460   InstructionCost getStridedMemoryOpCost(
1461       unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1462       Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1463       const Instruction *I = nullptr) const;
1464 
1465   /// \return The cost of the interleaved memory operation.
1466   /// \p Opcode is the memory operation code
1467   /// \p VecTy is the vector type of the interleaved access.
1468   /// \p Factor is the interleave factor
1469   /// \p Indices is the indices for interleaved load members (as interleaved
1470   ///    load allows gaps)
1471   /// \p Alignment is the alignment of the memory operation
1472   /// \p AddressSpace is address space of the pointer.
1473   /// \p UseMaskForCond indicates if the memory access is predicated.
1474   /// \p UseMaskForGaps indicates if gaps should be masked.
1475   InstructionCost getInterleavedMemoryOpCost(
1476       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1477       Align Alignment, unsigned AddressSpace,
1478       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1479       bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
1480 
1481   /// A helper function to determine the type of reduction algorithm used
1482   /// for a given \p Opcode and set of FastMathFlags \p FMF.
requiresOrderedReduction(std::optional<FastMathFlags> FMF)1483   static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
1484     return FMF && !(*FMF).allowReassoc();
1485   }
1486 
1487   /// Calculate the cost of vector reduction intrinsics.
1488   ///
1489   /// This is the cost of reducing the vector value of type \p Ty to a scalar
1490   /// value using the operation denoted by \p Opcode. The FastMathFlags
1491   /// parameter \p FMF indicates what type of reduction we are performing:
1492   ///   1. Tree-wise. This is the typical 'fast' reduction performed that
1493   ///   involves successively splitting a vector into half and doing the
1494   ///   operation on the pair of halves until you have a scalar value. For
1495   ///   example:
1496   ///     (v0, v1, v2, v3)
1497   ///     ((v0+v2), (v1+v3), undef, undef)
1498   ///     ((v0+v2+v1+v3), undef, undef, undef)
1499   ///   This is the default behaviour for integer operations, whereas for
1500   ///   floating point we only do this if \p FMF indicates that
1501   ///   reassociation is allowed.
1502   ///   2. Ordered. For a vector with N elements this involves performing N
1503   ///   operations in lane order, starting with an initial scalar value, i.e.
1504   ///     result = InitVal + v0
1505   ///     result = result + v1
1506   ///     result = result + v2
1507   ///     result = result + v3
1508   ///   This is only the case for FP operations and when reassociation is not
1509   ///   allowed.
1510   ///
1511   InstructionCost getArithmeticReductionCost(
1512       unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1513       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1514 
1515   InstructionCost getMinMaxReductionCost(
1516       Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF = FastMathFlags(),
1517       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1518 
1519   /// Calculate the cost of an extended reduction pattern, similar to
1520   /// getArithmeticReductionCost of an Add reduction with multiply and optional
1521   /// extensions. This is the cost of as:
1522   /// ResTy vecreduce.add(mul (A, B)).
1523   /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)).
1524   InstructionCost getMulAccReductionCost(
1525       bool IsUnsigned, Type *ResTy, VectorType *Ty,
1526       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1527 
1528   /// Calculate the cost of an extended reduction pattern, similar to
1529   /// getArithmeticReductionCost of a reduction with an extension.
1530   /// This is the cost of as:
1531   /// ResTy vecreduce.opcode(ext(Ty A)).
1532   InstructionCost getExtendedReductionCost(
1533       unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1534       FastMathFlags FMF,
1535       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1536 
1537   /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1538   /// Three cases are handled: 1. scalar instruction 2. vector instruction
1539   /// 3. scalar instruction which is to be vectorized.
1540   InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1541                                         TTI::TargetCostKind CostKind) const;
1542 
1543   /// \returns The cost of Call instructions.
1544   InstructionCost getCallInstrCost(
1545       Function *F, Type *RetTy, ArrayRef<Type *> Tys,
1546       TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
1547 
1548   /// \returns The number of pieces into which the provided type must be
1549   /// split during legalization. Zero is returned when the answer is unknown.
1550   unsigned getNumberOfParts(Type *Tp) const;
1551 
1552   /// \returns The cost of the address computation. For most targets this can be
1553   /// merged into the instruction indexing mode. Some targets might want to
1554   /// distinguish between address computation for memory operations on vector
1555   /// types and scalar types. Such targets should override this function.
1556   /// The 'SE' parameter holds pointer for the scalar evolution object which
1557   /// is used in order to get the Ptr step value in case of constant stride.
1558   /// The 'Ptr' parameter holds SCEV of the access pointer.
1559   InstructionCost getAddressComputationCost(Type *Ty,
1560                                             ScalarEvolution *SE = nullptr,
1561                                             const SCEV *Ptr = nullptr) const;
1562 
1563   /// \returns The cost, if any, of keeping values of the given types alive
1564   /// over a callsite.
1565   ///
1566   /// Some types may require the use of register classes that do not have
1567   /// any callee-saved registers, so would require a spill and fill.
1568   InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
1569 
1570   /// \returns True if the intrinsic is a supported memory intrinsic.  Info
1571   /// will contain additional information - whether the intrinsic may write
1572   /// or read to memory, volatility and the pointer.  Info is undefined
1573   /// if false is returned.
1574   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
1575 
1576   /// \returns The maximum element size, in bytes, for an element
1577   /// unordered-atomic memory intrinsic.
1578   unsigned getAtomicMemIntrinsicMaxElementSize() const;
1579 
1580   /// \returns A value which is the result of the given memory intrinsic.  New
1581   /// instructions may be created to extract the result from the given intrinsic
1582   /// memory operation.  Returns nullptr if the target cannot create a result
1583   /// from the given intrinsic.
1584   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1585                                            Type *ExpectedType) const;
1586 
1587   /// \returns The type to use in a loop expansion of a memcpy call.
1588   Type *getMemcpyLoopLoweringType(
1589       LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1590       unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
1591       std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
1592 
1593   /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1594   /// \param RemainingBytes The number of bytes to copy.
1595   ///
1596   /// Calculates the operand types to use when copying \p RemainingBytes of
1597   /// memory, where source and destination alignments are \p SrcAlign and
1598   /// \p DestAlign respectively.
1599   void getMemcpyLoopResidualLoweringType(
1600       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1601       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1602       unsigned SrcAlign, unsigned DestAlign,
1603       std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
1604 
1605   /// \returns True if the two functions have compatible attributes for inlining
1606   /// purposes.
1607   bool areInlineCompatible(const Function *Caller,
1608                            const Function *Callee) const;
1609 
1610   /// Returns a penalty for invoking call \p Call in \p F.
1611   /// For example, if a function F calls a function G, which in turn calls
1612   /// function H, then getInlineCallPenalty(F, H()) would return the
1613   /// penalty of calling H from F, e.g. after inlining G into F.
1614   /// \p DefaultCallPenalty is passed to give a default penalty that
1615   /// the target can amend or override.
1616   unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
1617                                 unsigned DefaultCallPenalty) const;
1618 
1619   /// \returns True if the caller and callee agree on how \p Types will be
1620   /// passed to or returned from the callee.
1621   /// to the callee.
1622   /// \param Types List of types to check.
1623   bool areTypesABICompatible(const Function *Caller, const Function *Callee,
1624                              const ArrayRef<Type *> &Types) const;
1625 
1626   /// The type of load/store indexing.
1627   enum MemIndexedMode {
1628     MIM_Unindexed, ///< No indexing.
1629     MIM_PreInc,    ///< Pre-incrementing.
1630     MIM_PreDec,    ///< Pre-decrementing.
1631     MIM_PostInc,   ///< Post-incrementing.
1632     MIM_PostDec    ///< Post-decrementing.
1633   };
1634 
1635   /// \returns True if the specified indexed load for the given type is legal.
1636   bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1637 
1638   /// \returns True if the specified indexed store for the given type is legal.
1639   bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1640 
1641   /// \returns The bitwidth of the largest vector type that should be used to
1642   /// load/store in the given address space.
1643   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1644 
1645   /// \returns True if the load instruction is legal to vectorize.
1646   bool isLegalToVectorizeLoad(LoadInst *LI) const;
1647 
1648   /// \returns True if the store instruction is legal to vectorize.
1649   bool isLegalToVectorizeStore(StoreInst *SI) const;
1650 
1651   /// \returns True if it is legal to vectorize the given load chain.
1652   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
1653                                    unsigned AddrSpace) const;
1654 
1655   /// \returns True if it is legal to vectorize the given store chain.
1656   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
1657                                     unsigned AddrSpace) const;
1658 
1659   /// \returns True if it is legal to vectorize the given reduction kind.
1660   bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
1661                                    ElementCount VF) const;
1662 
1663   /// \returns True if the given type is supported for scalable vectors
1664   bool isElementTypeLegalForScalableVector(Type *Ty) const;
1665 
1666   /// \returns The new vector factor value if the target doesn't support \p
1667   /// SizeInBytes loads or has a better vector factor.
1668   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1669                                unsigned ChainSizeInBytes,
1670                                VectorType *VecTy) const;
1671 
1672   /// \returns The new vector factor value if the target doesn't support \p
1673   /// SizeInBytes stores or has a better vector factor.
1674   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1675                                 unsigned ChainSizeInBytes,
1676                                 VectorType *VecTy) const;
1677 
1678   /// Flags describing the kind of vector reduction.
1679   struct ReductionFlags {
1680     ReductionFlags() = default;
1681     bool IsMaxOp =
1682         false; ///< If the op a min/max kind, true if it's a max operation.
1683     bool IsSigned = false; ///< Whether the operation is a signed int reduction.
1684     bool NoNaN =
1685         false; ///< If op is an fp min/max, whether NaNs may be present.
1686   };
1687 
1688   /// \returns True if the targets prefers fixed width vectorization if the
1689   /// loop vectorizer's cost-model assigns an equal cost to the fixed and
1690   /// scalable version of the vectorized loop.
1691   bool preferFixedOverScalableIfEqualCost() const;
1692 
1693   /// \returns True if the target prefers reductions in loop.
1694   bool preferInLoopReduction(unsigned Opcode, Type *Ty,
1695                              ReductionFlags Flags) const;
1696 
1697   /// \returns True if the target prefers reductions select kept in the loop
1698   /// when tail folding. i.e.
1699   /// loop:
1700   ///   p = phi (0, s)
1701   ///   a = add (p, x)
1702   ///   s = select (mask, a, p)
1703   /// vecreduce.add(s)
1704   ///
1705   /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1706   /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1707   /// by the target, this can lead to cleaner code generation.
1708   bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
1709                                        ReductionFlags Flags) const;
1710 
1711   /// Return true if the loop vectorizer should consider vectorizing an
1712   /// otherwise scalar epilogue loop.
1713   bool preferEpilogueVectorization() const;
1714 
1715   /// \returns True if the target wants to expand the given reduction intrinsic
1716   /// into a shuffle sequence.
1717   bool shouldExpandReduction(const IntrinsicInst *II) const;
1718 
1719   enum struct ReductionShuffle { SplitHalf, Pairwise };
1720 
1721   /// \returns The shuffle sequence pattern used to expand the given reduction
1722   /// intrinsic.
1723   ReductionShuffle
1724   getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const;
1725 
1726   /// \returns the size cost of rematerializing a GlobalValue address relative
1727   /// to a stack reload.
1728   unsigned getGISelRematGlobalCost() const;
1729 
1730   /// \returns the lower bound of a trip count to decide on vectorization
1731   /// while tail-folding.
1732   unsigned getMinTripCountTailFoldingThreshold() const;
1733 
1734   /// \returns True if the target supports scalable vectors.
1735   bool supportsScalableVectors() const;
1736 
1737   /// \return true when scalable vectorization is preferred.
1738   bool enableScalableVectorization() const;
1739 
1740   /// \name Vector Predication Information
1741   /// @{
1742   /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1743   /// in hardware, for the given opcode and type/alignment. (see LLVM Language
1744   /// Reference - "Vector Predication Intrinsics").
1745   /// Use of %evl is discouraged when that is not the case.
1746   bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
1747                              Align Alignment) const;
1748 
1749   struct VPLegalization {
1750     enum VPTransform {
1751       // keep the predicating parameter
1752       Legal = 0,
1753       // where legal, discard the predicate parameter
1754       Discard = 1,
1755       // transform into something else that is also predicating
1756       Convert = 2
1757     };
1758 
1759     // How to transform the EVL parameter.
1760     // Legal:   keep the EVL parameter as it is.
1761     // Discard: Ignore the EVL parameter where it is safe to do so.
1762     // Convert: Fold the EVL into the mask parameter.
1763     VPTransform EVLParamStrategy;
1764 
1765     // How to transform the operator.
1766     // Legal:   The target supports this operator.
1767     // Convert: Convert this to a non-VP operation.
1768     // The 'Discard' strategy is invalid.
1769     VPTransform OpStrategy;
1770 
shouldDoNothingVPLegalization1771     bool shouldDoNothing() const {
1772       return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
1773     }
VPLegalizationVPLegalization1774     VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)
1775         : EVLParamStrategy(EVLParamStrategy), OpStrategy(OpStrategy) {}
1776   };
1777 
1778   /// \returns How the target needs this vector-predicated operation to be
1779   /// transformed.
1780   VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const;
1781   /// @}
1782 
1783   /// \returns Whether a 32-bit branch instruction is available in Arm or Thumb
1784   /// state.
1785   ///
1786   /// Used by the LowerTypeTests pass, which constructs an IR inline assembler
1787   /// node containing a jump table in a format suitable for the target, so it
1788   /// needs to know what format of jump table it can legally use.
1789   ///
1790   /// For non-Arm targets, this function isn't used. It defaults to returning
1791   /// false, but it shouldn't matter what it returns anyway.
1792   bool hasArmWideBranch(bool Thumb) const;
1793 
1794   /// \return The maximum number of function arguments the target supports.
1795   unsigned getMaxNumArgs() const;
1796 
1797   /// @}
1798 
1799 private:
1800   /// The abstract base class used to type erase specific TTI
1801   /// implementations.
1802   class Concept;
1803 
1804   /// The template model for the base class which wraps a concrete
1805   /// implementation in a type erased interface.
1806   template <typename T> class Model;
1807 
1808   std::unique_ptr<Concept> TTIImpl;
1809 };
1810 
1811 class TargetTransformInfo::Concept {
1812 public:
1813   virtual ~Concept() = 0;
1814   virtual const DataLayout &getDataLayout() const = 0;
1815   virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
1816                                      ArrayRef<const Value *> Operands,
1817                                      Type *AccessType,
1818                                      TTI::TargetCostKind CostKind) = 0;
1819   virtual InstructionCost
1820   getPointersChainCost(ArrayRef<const Value *> Ptrs, const Value *Base,
1821                        const TTI::PointersChainInfo &Info, Type *AccessTy,
1822                        TTI::TargetCostKind CostKind) = 0;
1823   virtual unsigned getInliningThresholdMultiplier() const = 0;
1824   virtual unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const = 0;
1825   virtual unsigned
1826   getInliningCostBenefitAnalysisProfitableMultiplier() const = 0;
1827   virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0;
1828   virtual int getInlinerVectorBonusPercent() const = 0;
1829   virtual unsigned getCallerAllocaCost(const CallBase *CB,
1830                                        const AllocaInst *AI) const = 0;
1831   virtual InstructionCost getMemcpyCost(const Instruction *I) = 0;
1832   virtual uint64_t getMaxMemIntrinsicInlineSizeThreshold() const = 0;
1833   virtual unsigned
1834   getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
1835                                    ProfileSummaryInfo *PSI,
1836                                    BlockFrequencyInfo *BFI) = 0;
1837   virtual InstructionCost getInstructionCost(const User *U,
1838                                              ArrayRef<const Value *> Operands,
1839                                              TargetCostKind CostKind) = 0;
1840   virtual BranchProbability getPredictableBranchThreshold() = 0;
1841   virtual InstructionCost getBranchMispredictPenalty() = 0;
1842   virtual bool hasBranchDivergence(const Function *F = nullptr) = 0;
1843   virtual bool isSourceOfDivergence(const Value *V) = 0;
1844   virtual bool isAlwaysUniform(const Value *V) = 0;
1845   virtual bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
1846   virtual bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const = 0;
1847   virtual unsigned getFlatAddressSpace() = 0;
1848   virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1849                                           Intrinsic::ID IID) const = 0;
1850   virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
1851   virtual bool
1852   canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const = 0;
1853   virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
1854   virtual bool isSingleThreaded() const = 0;
1855   virtual std::pair<const Value *, unsigned>
1856   getPredicatedAddrSpace(const Value *V) const = 0;
1857   virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1858                                                   Value *OldV,
1859                                                   Value *NewV) const = 0;
1860   virtual bool isLoweredToCall(const Function *F) = 0;
1861   virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
1862                                        UnrollingPreferences &UP,
1863                                        OptimizationRemarkEmitter *ORE) = 0;
1864   virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1865                                      PeelingPreferences &PP) = 0;
1866   virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1867                                         AssumptionCache &AC,
1868                                         TargetLibraryInfo *LibInfo,
1869                                         HardwareLoopInfo &HWLoopInfo) = 0;
1870   virtual bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) = 0;
1871   virtual TailFoldingStyle
1872   getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) = 0;
1873   virtual std::optional<Instruction *> instCombineIntrinsic(
1874       InstCombiner &IC, IntrinsicInst &II) = 0;
1875   virtual std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
1876       InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask,
1877       KnownBits & Known, bool &KnownBitsComputed) = 0;
1878   virtual std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
1879       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts,
1880       APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
1881       std::function<void(Instruction *, unsigned, APInt, APInt &)>
1882           SimplifyAndSetOp) = 0;
1883   virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1884   virtual bool isLegalAddScalableImmediate(int64_t Imm) = 0;
1885   virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1886   virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1887                                      int64_t BaseOffset, bool HasBaseReg,
1888                                      int64_t Scale, unsigned AddrSpace,
1889                                      Instruction *I,
1890                                      int64_t ScalableOffset) = 0;
1891   virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
1892                              const TargetTransformInfo::LSRCost &C2) = 0;
1893   virtual bool isNumRegsMajorCostOfLSR() = 0;
1894   virtual bool shouldFoldTerminatingConditionAfterLSR() const = 0;
1895   virtual bool shouldDropLSRSolutionIfLessProfitable() const = 0;
1896   virtual bool isProfitableLSRChainElement(Instruction *I) = 0;
1897   virtual bool canMacroFuseCmp() = 0;
1898   virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1899                           LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
1900                           TargetLibraryInfo *LibInfo) = 0;
1901   virtual AddressingModeKind
1902     getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const = 0;
1903   virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
1904   virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
1905   virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
1906   virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
1907   virtual bool isLegalBroadcastLoad(Type *ElementTy,
1908                                     ElementCount NumElements) const = 0;
1909   virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
1910   virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
1911   virtual bool forceScalarizeMaskedGather(VectorType *DataType,
1912                                           Align Alignment) = 0;
1913   virtual bool forceScalarizeMaskedScatter(VectorType *DataType,
1914                                            Align Alignment) = 0;
1915   virtual bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) = 0;
1916   virtual bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) = 0;
1917   virtual bool isLegalStridedLoadStore(Type *DataType, Align Alignment) = 0;
1918   virtual bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) = 0;
1919   virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
1920                                unsigned Opcode1,
1921                                const SmallBitVector &OpcodeMask) const = 0;
1922   virtual bool enableOrderedReductions() = 0;
1923   virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
1924   virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
1925   virtual bool prefersVectorizedAddressing() = 0;
1926   virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
1927                                                StackOffset BaseOffset,
1928                                                bool HasBaseReg, int64_t Scale,
1929                                                unsigned AddrSpace) = 0;
1930   virtual bool LSRWithInstrQueries() = 0;
1931   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
1932   virtual bool isProfitableToHoist(Instruction *I) = 0;
1933   virtual bool useAA() = 0;
1934   virtual bool isTypeLegal(Type *Ty) = 0;
1935   virtual unsigned getRegUsageForType(Type *Ty) = 0;
1936   virtual bool shouldBuildLookupTables() = 0;
1937   virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
1938   virtual bool shouldBuildRelLookupTables() = 0;
1939   virtual bool useColdCCForColdCall(Function &F) = 0;
1940   virtual InstructionCost getScalarizationOverhead(VectorType *Ty,
1941                                                    const APInt &DemandedElts,
1942                                                    bool Insert, bool Extract,
1943                                                    TargetCostKind CostKind) = 0;
1944   virtual InstructionCost
1945   getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1946                                    ArrayRef<Type *> Tys,
1947                                    TargetCostKind CostKind) = 0;
1948   virtual bool supportsEfficientVectorElementLoadStore() = 0;
1949   virtual bool supportsTailCalls() = 0;
1950   virtual bool supportsTailCallFor(const CallBase *CB) = 0;
1951   virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
1952   virtual MemCmpExpansionOptions
1953   enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
1954   virtual bool enableSelectOptimize() = 0;
1955   virtual bool shouldTreatInstructionLikeSelect(const Instruction *I) = 0;
1956   virtual bool enableInterleavedAccessVectorization() = 0;
1957   virtual bool enableMaskedInterleavedAccessVectorization() = 0;
1958   virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
1959   virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1960                                               unsigned BitWidth,
1961                                               unsigned AddressSpace,
1962                                               Align Alignment,
1963                                               unsigned *Fast) = 0;
1964   virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
1965   virtual bool haveFastSqrt(Type *Ty) = 0;
1966   virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I) = 0;
1967   virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
1968   virtual InstructionCost getFPOpCost(Type *Ty) = 0;
1969   virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1970                                                 const APInt &Imm, Type *Ty) = 0;
1971   virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
1972                                         TargetCostKind CostKind) = 0;
1973   virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
1974                                             const APInt &Imm, Type *Ty,
1975                                             TargetCostKind CostKind,
1976                                             Instruction *Inst = nullptr) = 0;
1977   virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
1978                                               const APInt &Imm, Type *Ty,
1979                                               TargetCostKind CostKind) = 0;
1980   virtual bool preferToKeepConstantsAttached(const Instruction &Inst,
1981                                              const Function &Fn) const = 0;
1982   virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
1983   virtual bool hasConditionalLoadStoreForType(Type *Ty = nullptr) const = 0;
1984   virtual unsigned getRegisterClassForType(bool Vector,
1985                                            Type *Ty = nullptr) const = 0;
1986   virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
1987   virtual TypeSize getRegisterBitWidth(RegisterKind K) const = 0;
1988   virtual unsigned getMinVectorRegisterBitWidth() const = 0;
1989   virtual std::optional<unsigned> getMaxVScale() const = 0;
1990   virtual std::optional<unsigned> getVScaleForTuning() const = 0;
1991   virtual bool isVScaleKnownToBeAPowerOfTwo() const = 0;
1992   virtual bool
1993   shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const = 0;
1994   virtual ElementCount getMinimumVF(unsigned ElemWidth,
1995                                     bool IsScalable) const = 0;
1996   virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
1997   virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1998                                      Type *ScalarValTy) const = 0;
1999   virtual bool shouldConsiderAddressTypePromotion(
2000       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
2001   virtual unsigned getCacheLineSize() const = 0;
2002   virtual std::optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
2003   virtual std::optional<unsigned> getCacheAssociativity(CacheLevel Level)
2004       const = 0;
2005   virtual std::optional<unsigned> getMinPageSize() const = 0;
2006 
2007   /// \return How much before a load we should place the prefetch
2008   /// instruction.  This is currently measured in number of
2009   /// instructions.
2010   virtual unsigned getPrefetchDistance() const = 0;
2011 
2012   /// \return Some HW prefetchers can handle accesses up to a certain
2013   /// constant stride.  This is the minimum stride in bytes where it
2014   /// makes sense to start adding SW prefetches.  The default is 1,
2015   /// i.e. prefetch with any stride.  Sometimes prefetching is beneficial
2016   /// even below the HW prefetcher limit, and the arguments provided are
2017   /// meant to serve as a basis for deciding this for a particular loop.
2018   virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
2019                                         unsigned NumStridedMemAccesses,
2020                                         unsigned NumPrefetches,
2021                                         bool HasCall) const = 0;
2022 
2023   /// \return The maximum number of iterations to prefetch ahead.  If
2024   /// the required number of iterations is more than this number, no
2025   /// prefetching is performed.
2026   virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
2027 
2028   /// \return True if prefetching should also be done for writes.
2029   virtual bool enableWritePrefetching() const = 0;
2030 
2031   /// \return if target want to issue a prefetch in address space \p AS.
2032   virtual bool shouldPrefetchAddressSpace(unsigned AS) const = 0;
2033 
2034   virtual unsigned getMaxInterleaveFactor(ElementCount VF) = 0;
2035   virtual InstructionCost getArithmeticInstrCost(
2036       unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
2037       OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
2038       ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) = 0;
2039   virtual InstructionCost getAltInstrCost(
2040       VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
2041       const SmallBitVector &OpcodeMask,
2042       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const = 0;
2043 
2044   virtual InstructionCost
2045   getShuffleCost(ShuffleKind Kind, VectorType *Tp, ArrayRef<int> Mask,
2046                  TTI::TargetCostKind CostKind, int Index, VectorType *SubTp,
2047                  ArrayRef<const Value *> Args, const Instruction *CxtI) = 0;
2048   virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst,
2049                                            Type *Src, CastContextHint CCH,
2050                                            TTI::TargetCostKind CostKind,
2051                                            const Instruction *I) = 0;
2052   virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
2053                                                    VectorType *VecTy,
2054                                                    unsigned Index) = 0;
2055   virtual InstructionCost getCFInstrCost(unsigned Opcode,
2056                                          TTI::TargetCostKind CostKind,
2057                                          const Instruction *I = nullptr) = 0;
2058   virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
2059                                              Type *CondTy,
2060                                              CmpInst::Predicate VecPred,
2061                                              TTI::TargetCostKind CostKind,
2062                                              const Instruction *I) = 0;
2063   virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
2064                                              TTI::TargetCostKind CostKind,
2065                                              unsigned Index, Value *Op0,
2066                                              Value *Op1) = 0;
2067   virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
2068                                              TTI::TargetCostKind CostKind,
2069                                              unsigned Index) = 0;
2070 
2071   virtual InstructionCost
2072   getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
2073                             const APInt &DemandedDstElts,
2074                             TTI::TargetCostKind CostKind) = 0;
2075 
2076   virtual InstructionCost
2077   getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2078                   unsigned AddressSpace, TTI::TargetCostKind CostKind,
2079                   OperandValueInfo OpInfo, const Instruction *I) = 0;
2080   virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src,
2081                                             Align Alignment,
2082                                             unsigned AddressSpace,
2083                                             TTI::TargetCostKind CostKind,
2084                                             const Instruction *I) = 0;
2085   virtual InstructionCost
2086   getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2087                         unsigned AddressSpace,
2088                         TTI::TargetCostKind CostKind) = 0;
2089   virtual InstructionCost
2090   getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2091                          bool VariableMask, Align Alignment,
2092                          TTI::TargetCostKind CostKind,
2093                          const Instruction *I = nullptr) = 0;
2094   virtual InstructionCost
2095   getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2096                          bool VariableMask, Align Alignment,
2097                          TTI::TargetCostKind CostKind,
2098                          const Instruction *I = nullptr) = 0;
2099 
2100   virtual InstructionCost getInterleavedMemoryOpCost(
2101       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
2102       Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
2103       bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
2104   virtual InstructionCost
2105   getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
2106                              std::optional<FastMathFlags> FMF,
2107                              TTI::TargetCostKind CostKind) = 0;
2108   virtual InstructionCost
2109   getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
2110                          TTI::TargetCostKind CostKind) = 0;
2111   virtual InstructionCost getExtendedReductionCost(
2112       unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
2113       FastMathFlags FMF,
2114       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
2115   virtual InstructionCost getMulAccReductionCost(
2116       bool IsUnsigned, Type *ResTy, VectorType *Ty,
2117       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
2118   virtual InstructionCost
2119   getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2120                         TTI::TargetCostKind CostKind) = 0;
2121   virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy,
2122                                            ArrayRef<Type *> Tys,
2123                                            TTI::TargetCostKind CostKind) = 0;
2124   virtual unsigned getNumberOfParts(Type *Tp) = 0;
2125   virtual InstructionCost
2126   getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) = 0;
2127   virtual InstructionCost
2128   getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
2129   virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
2130                                   MemIntrinsicInfo &Info) = 0;
2131   virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
2132   virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
2133                                                    Type *ExpectedType) = 0;
2134   virtual Type *getMemcpyLoopLoweringType(
2135       LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
2136       unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
2137       std::optional<uint32_t> AtomicElementSize) const = 0;
2138 
2139   virtual void getMemcpyLoopResidualLoweringType(
2140       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
2141       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
2142       unsigned SrcAlign, unsigned DestAlign,
2143       std::optional<uint32_t> AtomicCpySize) const = 0;
2144   virtual bool areInlineCompatible(const Function *Caller,
2145                                    const Function *Callee) const = 0;
2146   virtual unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
2147                                         unsigned DefaultCallPenalty) const = 0;
2148   virtual bool areTypesABICompatible(const Function *Caller,
2149                                      const Function *Callee,
2150                                      const ArrayRef<Type *> &Types) const = 0;
2151   virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
2152   virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
2153   virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
2154   virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
2155   virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
2156   virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
2157                                            Align Alignment,
2158                                            unsigned AddrSpace) const = 0;
2159   virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
2160                                             Align Alignment,
2161                                             unsigned AddrSpace) const = 0;
2162   virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
2163                                            ElementCount VF) const = 0;
2164   virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0;
2165   virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
2166                                        unsigned ChainSizeInBytes,
2167                                        VectorType *VecTy) const = 0;
2168   virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
2169                                         unsigned ChainSizeInBytes,
2170                                         VectorType *VecTy) const = 0;
2171   virtual bool preferFixedOverScalableIfEqualCost() const = 0;
2172   virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
2173                                      ReductionFlags) const = 0;
2174   virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
2175                                                ReductionFlags) const = 0;
2176   virtual bool preferEpilogueVectorization() const = 0;
2177 
2178   virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
2179   virtual ReductionShuffle
2180   getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const = 0;
2181   virtual unsigned getGISelRematGlobalCost() const = 0;
2182   virtual unsigned getMinTripCountTailFoldingThreshold() const = 0;
2183   virtual bool enableScalableVectorization() const = 0;
2184   virtual bool supportsScalableVectors() const = 0;
2185   virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
2186                                      Align Alignment) const = 0;
2187   virtual VPLegalization
2188   getVPLegalizationStrategy(const VPIntrinsic &PI) const = 0;
2189   virtual bool hasArmWideBranch(bool Thumb) const = 0;
2190   virtual unsigned getMaxNumArgs() const = 0;
2191 };
2192 
2193 template <typename T>
2194 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
2195   T Impl;
2196 
2197 public:
Model(T Impl)2198   Model(T Impl) : Impl(std::move(Impl)) {}
2199   ~Model() override = default;
2200 
getDataLayout()2201   const DataLayout &getDataLayout() const override {
2202     return Impl.getDataLayout();
2203   }
2204 
2205   InstructionCost
getGEPCost(Type * PointeeType,const Value * Ptr,ArrayRef<const Value * > Operands,Type * AccessType,TargetTransformInfo::TargetCostKind CostKind)2206   getGEPCost(Type *PointeeType, const Value *Ptr,
2207              ArrayRef<const Value *> Operands, Type *AccessType,
2208              TargetTransformInfo::TargetCostKind CostKind) override {
2209     return Impl.getGEPCost(PointeeType, Ptr, Operands, AccessType, CostKind);
2210   }
getPointersChainCost(ArrayRef<const Value * > Ptrs,const Value * Base,const PointersChainInfo & Info,Type * AccessTy,TargetCostKind CostKind)2211   InstructionCost getPointersChainCost(ArrayRef<const Value *> Ptrs,
2212                                        const Value *Base,
2213                                        const PointersChainInfo &Info,
2214                                        Type *AccessTy,
2215                                        TargetCostKind CostKind) override {
2216     return Impl.getPointersChainCost(Ptrs, Base, Info, AccessTy, CostKind);
2217   }
getInliningThresholdMultiplier()2218   unsigned getInliningThresholdMultiplier() const override {
2219     return Impl.getInliningThresholdMultiplier();
2220   }
adjustInliningThreshold(const CallBase * CB)2221   unsigned adjustInliningThreshold(const CallBase *CB) override {
2222     return Impl.adjustInliningThreshold(CB);
2223   }
getInliningCostBenefitAnalysisSavingsMultiplier()2224   unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const override {
2225     return Impl.getInliningCostBenefitAnalysisSavingsMultiplier();
2226   }
getInliningCostBenefitAnalysisProfitableMultiplier()2227   unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const override {
2228     return Impl.getInliningCostBenefitAnalysisProfitableMultiplier();
2229   }
getInlinerVectorBonusPercent()2230   int getInlinerVectorBonusPercent() const override {
2231     return Impl.getInlinerVectorBonusPercent();
2232   }
getCallerAllocaCost(const CallBase * CB,const AllocaInst * AI)2233   unsigned getCallerAllocaCost(const CallBase *CB,
2234                                const AllocaInst *AI) const override {
2235     return Impl.getCallerAllocaCost(CB, AI);
2236   }
getMemcpyCost(const Instruction * I)2237   InstructionCost getMemcpyCost(const Instruction *I) override {
2238     return Impl.getMemcpyCost(I);
2239   }
2240 
getMaxMemIntrinsicInlineSizeThreshold()2241   uint64_t getMaxMemIntrinsicInlineSizeThreshold() const override {
2242     return Impl.getMaxMemIntrinsicInlineSizeThreshold();
2243   }
2244 
getInstructionCost(const User * U,ArrayRef<const Value * > Operands,TargetCostKind CostKind)2245   InstructionCost getInstructionCost(const User *U,
2246                                      ArrayRef<const Value *> Operands,
2247                                      TargetCostKind CostKind) override {
2248     return Impl.getInstructionCost(U, Operands, CostKind);
2249   }
getPredictableBranchThreshold()2250   BranchProbability getPredictableBranchThreshold() override {
2251     return Impl.getPredictableBranchThreshold();
2252   }
getBranchMispredictPenalty()2253   InstructionCost getBranchMispredictPenalty() override {
2254     return Impl.getBranchMispredictPenalty();
2255   }
2256   bool hasBranchDivergence(const Function *F = nullptr) override {
2257     return Impl.hasBranchDivergence(F);
2258   }
isSourceOfDivergence(const Value * V)2259   bool isSourceOfDivergence(const Value *V) override {
2260     return Impl.isSourceOfDivergence(V);
2261   }
2262 
isAlwaysUniform(const Value * V)2263   bool isAlwaysUniform(const Value *V) override {
2264     return Impl.isAlwaysUniform(V);
2265   }
2266 
isValidAddrSpaceCast(unsigned FromAS,unsigned ToAS)2267   bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
2268     return Impl.isValidAddrSpaceCast(FromAS, ToAS);
2269   }
2270 
addrspacesMayAlias(unsigned AS0,unsigned AS1)2271   bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const override {
2272     return Impl.addrspacesMayAlias(AS0, AS1);
2273   }
2274 
getFlatAddressSpace()2275   unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
2276 
collectFlatAddressOperands(SmallVectorImpl<int> & OpIndexes,Intrinsic::ID IID)2277   bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
2278                                   Intrinsic::ID IID) const override {
2279     return Impl.collectFlatAddressOperands(OpIndexes, IID);
2280   }
2281 
isNoopAddrSpaceCast(unsigned FromAS,unsigned ToAS)2282   bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
2283     return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
2284   }
2285 
2286   bool
canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS)2287   canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override {
2288     return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS);
2289   }
2290 
getAssumedAddrSpace(const Value * V)2291   unsigned getAssumedAddrSpace(const Value *V) const override {
2292     return Impl.getAssumedAddrSpace(V);
2293   }
2294 
isSingleThreaded()2295   bool isSingleThreaded() const override { return Impl.isSingleThreaded(); }
2296 
2297   std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value * V)2298   getPredicatedAddrSpace(const Value *V) const override {
2299     return Impl.getPredicatedAddrSpace(V);
2300   }
2301 
rewriteIntrinsicWithAddressSpace(IntrinsicInst * II,Value * OldV,Value * NewV)2302   Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
2303                                           Value *NewV) const override {
2304     return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
2305   }
2306 
isLoweredToCall(const Function * F)2307   bool isLoweredToCall(const Function *F) override {
2308     return Impl.isLoweredToCall(F);
2309   }
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,UnrollingPreferences & UP,OptimizationRemarkEmitter * ORE)2310   void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2311                                UnrollingPreferences &UP,
2312                                OptimizationRemarkEmitter *ORE) override {
2313     return Impl.getUnrollingPreferences(L, SE, UP, ORE);
2314   }
getPeelingPreferences(Loop * L,ScalarEvolution & SE,PeelingPreferences & PP)2315   void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2316                              PeelingPreferences &PP) override {
2317     return Impl.getPeelingPreferences(L, SE, PP);
2318   }
isHardwareLoopProfitable(Loop * L,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * LibInfo,HardwareLoopInfo & HWLoopInfo)2319   bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
2320                                 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
2321                                 HardwareLoopInfo &HWLoopInfo) override {
2322     return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
2323   }
preferPredicateOverEpilogue(TailFoldingInfo * TFI)2324   bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) override {
2325     return Impl.preferPredicateOverEpilogue(TFI);
2326   }
2327   TailFoldingStyle
2328   getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) override {
2329     return Impl.getPreferredTailFoldingStyle(IVUpdateMayOverflow);
2330   }
2331   std::optional<Instruction *>
instCombineIntrinsic(InstCombiner & IC,IntrinsicInst & II)2332   instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override {
2333     return Impl.instCombineIntrinsic(IC, II);
2334   }
2335   std::optional<Value *>
simplifyDemandedUseBitsIntrinsic(InstCombiner & IC,IntrinsicInst & II,APInt DemandedMask,KnownBits & Known,bool & KnownBitsComputed)2336   simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
2337                                    APInt DemandedMask, KnownBits &Known,
2338                                    bool &KnownBitsComputed) override {
2339     return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
2340                                                  KnownBitsComputed);
2341   }
simplifyDemandedVectorEltsIntrinsic(InstCombiner & IC,IntrinsicInst & II,APInt DemandedElts,APInt & UndefElts,APInt & UndefElts2,APInt & UndefElts3,std::function<void (Instruction *,unsigned,APInt,APInt &)> SimplifyAndSetOp)2342   std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
2343       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
2344       APInt &UndefElts2, APInt &UndefElts3,
2345       std::function<void(Instruction *, unsigned, APInt, APInt &)>
2346           SimplifyAndSetOp) override {
2347     return Impl.simplifyDemandedVectorEltsIntrinsic(
2348         IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
2349         SimplifyAndSetOp);
2350   }
isLegalAddImmediate(int64_t Imm)2351   bool isLegalAddImmediate(int64_t Imm) override {
2352     return Impl.isLegalAddImmediate(Imm);
2353   }
isLegalAddScalableImmediate(int64_t Imm)2354   bool isLegalAddScalableImmediate(int64_t Imm) override {
2355     return Impl.isLegalAddScalableImmediate(Imm);
2356   }
isLegalICmpImmediate(int64_t Imm)2357   bool isLegalICmpImmediate(int64_t Imm) override {
2358     return Impl.isLegalICmpImmediate(Imm);
2359   }
isLegalAddressingMode(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace,Instruction * I,int64_t ScalableOffset)2360   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
2361                              bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
2362                              Instruction *I, int64_t ScalableOffset) override {
2363     return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
2364                                       AddrSpace, I, ScalableOffset);
2365   }
isLSRCostLess(const TargetTransformInfo::LSRCost & C1,const TargetTransformInfo::LSRCost & C2)2366   bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
2367                      const TargetTransformInfo::LSRCost &C2) override {
2368     return Impl.isLSRCostLess(C1, C2);
2369   }
isNumRegsMajorCostOfLSR()2370   bool isNumRegsMajorCostOfLSR() override {
2371     return Impl.isNumRegsMajorCostOfLSR();
2372   }
shouldFoldTerminatingConditionAfterLSR()2373   bool shouldFoldTerminatingConditionAfterLSR() const override {
2374     return Impl.shouldFoldTerminatingConditionAfterLSR();
2375   }
shouldDropLSRSolutionIfLessProfitable()2376   bool shouldDropLSRSolutionIfLessProfitable() const override {
2377     return Impl.shouldDropLSRSolutionIfLessProfitable();
2378   }
isProfitableLSRChainElement(Instruction * I)2379   bool isProfitableLSRChainElement(Instruction *I) override {
2380     return Impl.isProfitableLSRChainElement(I);
2381   }
canMacroFuseCmp()2382   bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
canSaveCmp(Loop * L,BranchInst ** BI,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * LibInfo)2383   bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
2384                   DominatorTree *DT, AssumptionCache *AC,
2385                   TargetLibraryInfo *LibInfo) override {
2386     return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
2387   }
2388   AddressingModeKind
getPreferredAddressingMode(const Loop * L,ScalarEvolution * SE)2389     getPreferredAddressingMode(const Loop *L,
2390                                ScalarEvolution *SE) const override {
2391     return Impl.getPreferredAddressingMode(L, SE);
2392   }
isLegalMaskedStore(Type * DataType,Align Alignment)2393   bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
2394     return Impl.isLegalMaskedStore(DataType, Alignment);
2395   }
isLegalMaskedLoad(Type * DataType,Align Alignment)2396   bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
2397     return Impl.isLegalMaskedLoad(DataType, Alignment);
2398   }
isLegalNTStore(Type * DataType,Align Alignment)2399   bool isLegalNTStore(Type *DataType, Align Alignment) override {
2400     return Impl.isLegalNTStore(DataType, Alignment);
2401   }
isLegalNTLoad(Type * DataType,Align Alignment)2402   bool isLegalNTLoad(Type *DataType, Align Alignment) override {
2403     return Impl.isLegalNTLoad(DataType, Alignment);
2404   }
isLegalBroadcastLoad(Type * ElementTy,ElementCount NumElements)2405   bool isLegalBroadcastLoad(Type *ElementTy,
2406                             ElementCount NumElements) const override {
2407     return Impl.isLegalBroadcastLoad(ElementTy, NumElements);
2408   }
isLegalMaskedScatter(Type * DataType,Align Alignment)2409   bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
2410     return Impl.isLegalMaskedScatter(DataType, Alignment);
2411   }
isLegalMaskedGather(Type * DataType,Align Alignment)2412   bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
2413     return Impl.isLegalMaskedGather(DataType, Alignment);
2414   }
forceScalarizeMaskedGather(VectorType * DataType,Align Alignment)2415   bool forceScalarizeMaskedGather(VectorType *DataType,
2416                                   Align Alignment) override {
2417     return Impl.forceScalarizeMaskedGather(DataType, Alignment);
2418   }
forceScalarizeMaskedScatter(VectorType * DataType,Align Alignment)2419   bool forceScalarizeMaskedScatter(VectorType *DataType,
2420                                    Align Alignment) override {
2421     return Impl.forceScalarizeMaskedScatter(DataType, Alignment);
2422   }
isLegalMaskedCompressStore(Type * DataType,Align Alignment)2423   bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) override {
2424     return Impl.isLegalMaskedCompressStore(DataType, Alignment);
2425   }
isLegalMaskedExpandLoad(Type * DataType,Align Alignment)2426   bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) override {
2427     return Impl.isLegalMaskedExpandLoad(DataType, Alignment);
2428   }
isLegalStridedLoadStore(Type * DataType,Align Alignment)2429   bool isLegalStridedLoadStore(Type *DataType, Align Alignment) override {
2430     return Impl.isLegalStridedLoadStore(DataType, Alignment);
2431   }
isLegalMaskedVectorHistogram(Type * AddrType,Type * DataType)2432   bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) override {
2433     return Impl.isLegalMaskedVectorHistogram(AddrType, DataType);
2434   }
isLegalAltInstr(VectorType * VecTy,unsigned Opcode0,unsigned Opcode1,const SmallBitVector & OpcodeMask)2435   bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
2436                        const SmallBitVector &OpcodeMask) const override {
2437     return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
2438   }
enableOrderedReductions()2439   bool enableOrderedReductions() override {
2440     return Impl.enableOrderedReductions();
2441   }
hasDivRemOp(Type * DataType,bool IsSigned)2442   bool hasDivRemOp(Type *DataType, bool IsSigned) override {
2443     return Impl.hasDivRemOp(DataType, IsSigned);
2444   }
hasVolatileVariant(Instruction * I,unsigned AddrSpace)2445   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
2446     return Impl.hasVolatileVariant(I, AddrSpace);
2447   }
prefersVectorizedAddressing()2448   bool prefersVectorizedAddressing() override {
2449     return Impl.prefersVectorizedAddressing();
2450   }
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,StackOffset BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace)2451   InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
2452                                        StackOffset BaseOffset, bool HasBaseReg,
2453                                        int64_t Scale,
2454                                        unsigned AddrSpace) override {
2455     return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
2456                                      AddrSpace);
2457   }
LSRWithInstrQueries()2458   bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
isTruncateFree(Type * Ty1,Type * Ty2)2459   bool isTruncateFree(Type *Ty1, Type *Ty2) override {
2460     return Impl.isTruncateFree(Ty1, Ty2);
2461   }
isProfitableToHoist(Instruction * I)2462   bool isProfitableToHoist(Instruction *I) override {
2463     return Impl.isProfitableToHoist(I);
2464   }
useAA()2465   bool useAA() override { return Impl.useAA(); }
isTypeLegal(Type * Ty)2466   bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
getRegUsageForType(Type * Ty)2467   unsigned getRegUsageForType(Type *Ty) override {
2468     return Impl.getRegUsageForType(Ty);
2469   }
shouldBuildLookupTables()2470   bool shouldBuildLookupTables() override {
2471     return Impl.shouldBuildLookupTables();
2472   }
shouldBuildLookupTablesForConstant(Constant * C)2473   bool shouldBuildLookupTablesForConstant(Constant *C) override {
2474     return Impl.shouldBuildLookupTablesForConstant(C);
2475   }
shouldBuildRelLookupTables()2476   bool shouldBuildRelLookupTables() override {
2477     return Impl.shouldBuildRelLookupTables();
2478   }
useColdCCForColdCall(Function & F)2479   bool useColdCCForColdCall(Function &F) override {
2480     return Impl.useColdCCForColdCall(F);
2481   }
2482 
getScalarizationOverhead(VectorType * Ty,const APInt & DemandedElts,bool Insert,bool Extract,TargetCostKind CostKind)2483   InstructionCost getScalarizationOverhead(VectorType *Ty,
2484                                            const APInt &DemandedElts,
2485                                            bool Insert, bool Extract,
2486                                            TargetCostKind CostKind) override {
2487     return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
2488                                          CostKind);
2489   }
2490   InstructionCost
getOperandsScalarizationOverhead(ArrayRef<const Value * > Args,ArrayRef<Type * > Tys,TargetCostKind CostKind)2491   getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
2492                                    ArrayRef<Type *> Tys,
2493                                    TargetCostKind CostKind) override {
2494     return Impl.getOperandsScalarizationOverhead(Args, Tys, CostKind);
2495   }
2496 
supportsEfficientVectorElementLoadStore()2497   bool supportsEfficientVectorElementLoadStore() override {
2498     return Impl.supportsEfficientVectorElementLoadStore();
2499   }
2500 
supportsTailCalls()2501   bool supportsTailCalls() override { return Impl.supportsTailCalls(); }
supportsTailCallFor(const CallBase * CB)2502   bool supportsTailCallFor(const CallBase *CB) override {
2503     return Impl.supportsTailCallFor(CB);
2504   }
2505 
enableAggressiveInterleaving(bool LoopHasReductions)2506   bool enableAggressiveInterleaving(bool LoopHasReductions) override {
2507     return Impl.enableAggressiveInterleaving(LoopHasReductions);
2508   }
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp)2509   MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
2510                                                bool IsZeroCmp) const override {
2511     return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
2512   }
enableSelectOptimize()2513   bool enableSelectOptimize() override {
2514     return Impl.enableSelectOptimize();
2515   }
shouldTreatInstructionLikeSelect(const Instruction * I)2516   bool shouldTreatInstructionLikeSelect(const Instruction *I) override {
2517     return Impl.shouldTreatInstructionLikeSelect(I);
2518   }
enableInterleavedAccessVectorization()2519   bool enableInterleavedAccessVectorization() override {
2520     return Impl.enableInterleavedAccessVectorization();
2521   }
enableMaskedInterleavedAccessVectorization()2522   bool enableMaskedInterleavedAccessVectorization() override {
2523     return Impl.enableMaskedInterleavedAccessVectorization();
2524   }
isFPVectorizationPotentiallyUnsafe()2525   bool isFPVectorizationPotentiallyUnsafe() override {
2526     return Impl.isFPVectorizationPotentiallyUnsafe();
2527   }
allowsMisalignedMemoryAccesses(LLVMContext & Context,unsigned BitWidth,unsigned AddressSpace,Align Alignment,unsigned * Fast)2528   bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
2529                                       unsigned AddressSpace, Align Alignment,
2530                                       unsigned *Fast) override {
2531     return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
2532                                                Alignment, Fast);
2533   }
getPopcntSupport(unsigned IntTyWidthInBit)2534   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
2535     return Impl.getPopcntSupport(IntTyWidthInBit);
2536   }
haveFastSqrt(Type * Ty)2537   bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
2538 
isExpensiveToSpeculativelyExecute(const Instruction * I)2539   bool isExpensiveToSpeculativelyExecute(const Instruction* I) override {
2540     return Impl.isExpensiveToSpeculativelyExecute(I);
2541   }
2542 
isFCmpOrdCheaperThanFCmpZero(Type * Ty)2543   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
2544     return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
2545   }
2546 
getFPOpCost(Type * Ty)2547   InstructionCost getFPOpCost(Type *Ty) override {
2548     return Impl.getFPOpCost(Ty);
2549   }
2550 
getIntImmCodeSizeCost(unsigned Opc,unsigned Idx,const APInt & Imm,Type * Ty)2551   InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
2552                                         const APInt &Imm, Type *Ty) override {
2553     return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
2554   }
getIntImmCost(const APInt & Imm,Type * Ty,TargetCostKind CostKind)2555   InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
2556                                 TargetCostKind CostKind) override {
2557     return Impl.getIntImmCost(Imm, Ty, CostKind);
2558   }
2559   InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
2560                                     const APInt &Imm, Type *Ty,
2561                                     TargetCostKind CostKind,
2562                                     Instruction *Inst = nullptr) override {
2563     return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
2564   }
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty,TargetCostKind CostKind)2565   InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
2566                                       const APInt &Imm, Type *Ty,
2567                                       TargetCostKind CostKind) override {
2568     return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
2569   }
preferToKeepConstantsAttached(const Instruction & Inst,const Function & Fn)2570   bool preferToKeepConstantsAttached(const Instruction &Inst,
2571                                      const Function &Fn) const override {
2572     return Impl.preferToKeepConstantsAttached(Inst, Fn);
2573   }
getNumberOfRegisters(unsigned ClassID)2574   unsigned getNumberOfRegisters(unsigned ClassID) const override {
2575     return Impl.getNumberOfRegisters(ClassID);
2576   }
2577   bool hasConditionalLoadStoreForType(Type *Ty = nullptr) const override {
2578     return Impl.hasConditionalLoadStoreForType(Ty);
2579   }
2580   unsigned getRegisterClassForType(bool Vector,
2581                                    Type *Ty = nullptr) const override {
2582     return Impl.getRegisterClassForType(Vector, Ty);
2583   }
getRegisterClassName(unsigned ClassID)2584   const char *getRegisterClassName(unsigned ClassID) const override {
2585     return Impl.getRegisterClassName(ClassID);
2586   }
getRegisterBitWidth(RegisterKind K)2587   TypeSize getRegisterBitWidth(RegisterKind K) const override {
2588     return Impl.getRegisterBitWidth(K);
2589   }
getMinVectorRegisterBitWidth()2590   unsigned getMinVectorRegisterBitWidth() const override {
2591     return Impl.getMinVectorRegisterBitWidth();
2592   }
getMaxVScale()2593   std::optional<unsigned> getMaxVScale() const override {
2594     return Impl.getMaxVScale();
2595   }
getVScaleForTuning()2596   std::optional<unsigned> getVScaleForTuning() const override {
2597     return Impl.getVScaleForTuning();
2598   }
isVScaleKnownToBeAPowerOfTwo()2599   bool isVScaleKnownToBeAPowerOfTwo() const override {
2600     return Impl.isVScaleKnownToBeAPowerOfTwo();
2601   }
shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K)2602   bool shouldMaximizeVectorBandwidth(
2603       TargetTransformInfo::RegisterKind K) const override {
2604     return Impl.shouldMaximizeVectorBandwidth(K);
2605   }
getMinimumVF(unsigned ElemWidth,bool IsScalable)2606   ElementCount getMinimumVF(unsigned ElemWidth,
2607                             bool IsScalable) const override {
2608     return Impl.getMinimumVF(ElemWidth, IsScalable);
2609   }
getMaximumVF(unsigned ElemWidth,unsigned Opcode)2610   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
2611     return Impl.getMaximumVF(ElemWidth, Opcode);
2612   }
getStoreMinimumVF(unsigned VF,Type * ScalarMemTy,Type * ScalarValTy)2613   unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
2614                              Type *ScalarValTy) const override {
2615     return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
2616   }
shouldConsiderAddressTypePromotion(const Instruction & I,bool & AllowPromotionWithoutCommonHeader)2617   bool shouldConsiderAddressTypePromotion(
2618       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
2619     return Impl.shouldConsiderAddressTypePromotion(
2620         I, AllowPromotionWithoutCommonHeader);
2621   }
getCacheLineSize()2622   unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
getCacheSize(CacheLevel Level)2623   std::optional<unsigned> getCacheSize(CacheLevel Level) const override {
2624     return Impl.getCacheSize(Level);
2625   }
2626   std::optional<unsigned>
getCacheAssociativity(CacheLevel Level)2627   getCacheAssociativity(CacheLevel Level) const override {
2628     return Impl.getCacheAssociativity(Level);
2629   }
2630 
getMinPageSize()2631   std::optional<unsigned> getMinPageSize() const override {
2632     return Impl.getMinPageSize();
2633   }
2634 
2635   /// Return the preferred prefetch distance in terms of instructions.
2636   ///
getPrefetchDistance()2637   unsigned getPrefetchDistance() const override {
2638     return Impl.getPrefetchDistance();
2639   }
2640 
2641   /// Return the minimum stride necessary to trigger software
2642   /// prefetching.
2643   ///
getMinPrefetchStride(unsigned NumMemAccesses,unsigned NumStridedMemAccesses,unsigned NumPrefetches,bool HasCall)2644   unsigned getMinPrefetchStride(unsigned NumMemAccesses,
2645                                 unsigned NumStridedMemAccesses,
2646                                 unsigned NumPrefetches,
2647                                 bool HasCall) const override {
2648     return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
2649                                      NumPrefetches, HasCall);
2650   }
2651 
2652   /// Return the maximum prefetch distance in terms of loop
2653   /// iterations.
2654   ///
getMaxPrefetchIterationsAhead()2655   unsigned getMaxPrefetchIterationsAhead() const override {
2656     return Impl.getMaxPrefetchIterationsAhead();
2657   }
2658 
2659   /// \return True if prefetching should also be done for writes.
enableWritePrefetching()2660   bool enableWritePrefetching() const override {
2661     return Impl.enableWritePrefetching();
2662   }
2663 
2664   /// \return if target want to issue a prefetch in address space \p AS.
shouldPrefetchAddressSpace(unsigned AS)2665   bool shouldPrefetchAddressSpace(unsigned AS) const override {
2666     return Impl.shouldPrefetchAddressSpace(AS);
2667   }
2668 
getMaxInterleaveFactor(ElementCount VF)2669   unsigned getMaxInterleaveFactor(ElementCount VF) override {
2670     return Impl.getMaxInterleaveFactor(VF);
2671   }
getEstimatedNumberOfCaseClusters(const SwitchInst & SI,unsigned & JTSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)2672   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
2673                                             unsigned &JTSize,
2674                                             ProfileSummaryInfo *PSI,
2675                                             BlockFrequencyInfo *BFI) override {
2676     return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
2677   }
2678   InstructionCost getArithmeticInstrCost(
2679       unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
2680       OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
2681       ArrayRef<const Value *> Args,
2682       const Instruction *CxtI = nullptr) override {
2683     return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
2684                                        Args, CxtI);
2685   }
getAltInstrCost(VectorType * VecTy,unsigned Opcode0,unsigned Opcode1,const SmallBitVector & OpcodeMask,TTI::TargetCostKind CostKind)2686   InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0,
2687                                   unsigned Opcode1,
2688                                   const SmallBitVector &OpcodeMask,
2689                                   TTI::TargetCostKind CostKind) const override {
2690     return Impl.getAltInstrCost(VecTy, Opcode0, Opcode1, OpcodeMask, CostKind);
2691   }
2692 
getShuffleCost(ShuffleKind Kind,VectorType * Tp,ArrayRef<int> Mask,TTI::TargetCostKind CostKind,int Index,VectorType * SubTp,ArrayRef<const Value * > Args,const Instruction * CxtI)2693   InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
2694                                  ArrayRef<int> Mask,
2695                                  TTI::TargetCostKind CostKind, int Index,
2696                                  VectorType *SubTp,
2697                                  ArrayRef<const Value *> Args,
2698                                  const Instruction *CxtI) override {
2699     return Impl.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args,
2700                                CxtI);
2701   }
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,CastContextHint CCH,TTI::TargetCostKind CostKind,const Instruction * I)2702   InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
2703                                    CastContextHint CCH,
2704                                    TTI::TargetCostKind CostKind,
2705                                    const Instruction *I) override {
2706     return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
2707   }
getExtractWithExtendCost(unsigned Opcode,Type * Dst,VectorType * VecTy,unsigned Index)2708   InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
2709                                            VectorType *VecTy,
2710                                            unsigned Index) override {
2711     return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
2712   }
2713   InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
2714                                  const Instruction *I = nullptr) override {
2715     return Impl.getCFInstrCost(Opcode, CostKind, I);
2716   }
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,CmpInst::Predicate VecPred,TTI::TargetCostKind CostKind,const Instruction * I)2717   InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2718                                      CmpInst::Predicate VecPred,
2719                                      TTI::TargetCostKind CostKind,
2720                                      const Instruction *I) override {
2721     return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2722   }
getVectorInstrCost(unsigned Opcode,Type * Val,TTI::TargetCostKind CostKind,unsigned Index,Value * Op0,Value * Op1)2723   InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
2724                                      TTI::TargetCostKind CostKind,
2725                                      unsigned Index, Value *Op0,
2726                                      Value *Op1) override {
2727     return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
2728   }
getVectorInstrCost(const Instruction & I,Type * Val,TTI::TargetCostKind CostKind,unsigned Index)2729   InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
2730                                      TTI::TargetCostKind CostKind,
2731                                      unsigned Index) override {
2732     return Impl.getVectorInstrCost(I, Val, CostKind, Index);
2733   }
2734   InstructionCost
getReplicationShuffleCost(Type * EltTy,int ReplicationFactor,int VF,const APInt & DemandedDstElts,TTI::TargetCostKind CostKind)2735   getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
2736                             const APInt &DemandedDstElts,
2737                             TTI::TargetCostKind CostKind) override {
2738     return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
2739                                           DemandedDstElts, CostKind);
2740   }
getMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,OperandValueInfo OpInfo,const Instruction * I)2741   InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2742                                   unsigned AddressSpace,
2743                                   TTI::TargetCostKind CostKind,
2744                                   OperandValueInfo OpInfo,
2745                                   const Instruction *I) override {
2746     return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind,
2747                                 OpInfo, I);
2748   }
getVPMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,const Instruction * I)2749   InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2750                                     unsigned AddressSpace,
2751                                     TTI::TargetCostKind CostKind,
2752                                     const Instruction *I) override {
2753     return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2754                                   CostKind, I);
2755   }
getMaskedMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind)2756   InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
2757                                         Align Alignment, unsigned AddressSpace,
2758                                         TTI::TargetCostKind CostKind) override {
2759     return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2760                                       CostKind);
2761   }
2762   InstructionCost
2763   getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2764                          bool VariableMask, Align Alignment,
2765                          TTI::TargetCostKind CostKind,
2766                          const Instruction *I = nullptr) override {
2767     return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
2768                                        Alignment, CostKind, I);
2769   }
2770   InstructionCost
2771   getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2772                          bool VariableMask, Align Alignment,
2773                          TTI::TargetCostKind CostKind,
2774                          const Instruction *I = nullptr) override {
2775     return Impl.getStridedMemoryOpCost(Opcode, DataTy, Ptr, VariableMask,
2776                                        Alignment, CostKind, I);
2777   }
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)2778   InstructionCost getInterleavedMemoryOpCost(
2779       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
2780       Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
2781       bool UseMaskForCond, bool UseMaskForGaps) override {
2782     return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2783                                            Alignment, AddressSpace, CostKind,
2784                                            UseMaskForCond, UseMaskForGaps);
2785   }
2786   InstructionCost
getArithmeticReductionCost(unsigned Opcode,VectorType * Ty,std::optional<FastMathFlags> FMF,TTI::TargetCostKind CostKind)2787   getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
2788                              std::optional<FastMathFlags> FMF,
2789                              TTI::TargetCostKind CostKind) override {
2790     return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
2791   }
2792   InstructionCost
getMinMaxReductionCost(Intrinsic::ID IID,VectorType * Ty,FastMathFlags FMF,TTI::TargetCostKind CostKind)2793   getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
2794                          TTI::TargetCostKind CostKind) override {
2795     return Impl.getMinMaxReductionCost(IID, Ty, FMF, CostKind);
2796   }
2797   InstructionCost
getExtendedReductionCost(unsigned Opcode,bool IsUnsigned,Type * ResTy,VectorType * Ty,FastMathFlags FMF,TTI::TargetCostKind CostKind)2798   getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy,
2799                            VectorType *Ty, FastMathFlags FMF,
2800                            TTI::TargetCostKind CostKind) override {
2801     return Impl.getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF,
2802                                          CostKind);
2803   }
2804   InstructionCost
getMulAccReductionCost(bool IsUnsigned,Type * ResTy,VectorType * Ty,TTI::TargetCostKind CostKind)2805   getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty,
2806                          TTI::TargetCostKind CostKind) override {
2807     return Impl.getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind);
2808   }
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)2809   InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2810                                         TTI::TargetCostKind CostKind) override {
2811     return Impl.getIntrinsicInstrCost(ICA, CostKind);
2812   }
getCallInstrCost(Function * F,Type * RetTy,ArrayRef<Type * > Tys,TTI::TargetCostKind CostKind)2813   InstructionCost getCallInstrCost(Function *F, Type *RetTy,
2814                                    ArrayRef<Type *> Tys,
2815                                    TTI::TargetCostKind CostKind) override {
2816     return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
2817   }
getNumberOfParts(Type * Tp)2818   unsigned getNumberOfParts(Type *Tp) override {
2819     return Impl.getNumberOfParts(Tp);
2820   }
getAddressComputationCost(Type * Ty,ScalarEvolution * SE,const SCEV * Ptr)2821   InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2822                                             const SCEV *Ptr) override {
2823     return Impl.getAddressComputationCost(Ty, SE, Ptr);
2824   }
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys)2825   InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
2826     return Impl.getCostOfKeepingLiveOverCall(Tys);
2827   }
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)2828   bool getTgtMemIntrinsic(IntrinsicInst *Inst,
2829                           MemIntrinsicInfo &Info) override {
2830     return Impl.getTgtMemIntrinsic(Inst, Info);
2831   }
getAtomicMemIntrinsicMaxElementSize()2832   unsigned getAtomicMemIntrinsicMaxElementSize() const override {
2833     return Impl.getAtomicMemIntrinsicMaxElementSize();
2834   }
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType)2835   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
2836                                            Type *ExpectedType) override {
2837     return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
2838   }
getMemcpyLoopLoweringType(LLVMContext & Context,Value * Length,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign,std::optional<uint32_t> AtomicElementSize)2839   Type *getMemcpyLoopLoweringType(
2840       LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
2841       unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
2842       std::optional<uint32_t> AtomicElementSize) const override {
2843     return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
2844                                           DestAddrSpace, SrcAlign, DestAlign,
2845                                           AtomicElementSize);
2846   }
getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type * > & OpsOut,LLVMContext & Context,unsigned RemainingBytes,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign,std::optional<uint32_t> AtomicCpySize)2847   void getMemcpyLoopResidualLoweringType(
2848       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
2849       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
2850       unsigned SrcAlign, unsigned DestAlign,
2851       std::optional<uint32_t> AtomicCpySize) const override {
2852     Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
2853                                            SrcAddrSpace, DestAddrSpace,
2854                                            SrcAlign, DestAlign, AtomicCpySize);
2855   }
areInlineCompatible(const Function * Caller,const Function * Callee)2856   bool areInlineCompatible(const Function *Caller,
2857                            const Function *Callee) const override {
2858     return Impl.areInlineCompatible(Caller, Callee);
2859   }
getInlineCallPenalty(const Function * F,const CallBase & Call,unsigned DefaultCallPenalty)2860   unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
2861                                 unsigned DefaultCallPenalty) const override {
2862     return Impl.getInlineCallPenalty(F, Call, DefaultCallPenalty);
2863   }
areTypesABICompatible(const Function * Caller,const Function * Callee,const ArrayRef<Type * > & Types)2864   bool areTypesABICompatible(const Function *Caller, const Function *Callee,
2865                              const ArrayRef<Type *> &Types) const override {
2866     return Impl.areTypesABICompatible(Caller, Callee, Types);
2867   }
isIndexedLoadLegal(MemIndexedMode Mode,Type * Ty)2868   bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
2869     return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
2870   }
isIndexedStoreLegal(MemIndexedMode Mode,Type * Ty)2871   bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
2872     return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
2873   }
getLoadStoreVecRegBitWidth(unsigned AddrSpace)2874   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
2875     return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
2876   }
isLegalToVectorizeLoad(LoadInst * LI)2877   bool isLegalToVectorizeLoad(LoadInst *LI) const override {
2878     return Impl.isLegalToVectorizeLoad(LI);
2879   }
isLegalToVectorizeStore(StoreInst * SI)2880   bool isLegalToVectorizeStore(StoreInst *SI) const override {
2881     return Impl.isLegalToVectorizeStore(SI);
2882   }
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace)2883   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
2884                                    unsigned AddrSpace) const override {
2885     return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
2886                                             AddrSpace);
2887   }
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace)2888   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
2889                                     unsigned AddrSpace) const override {
2890     return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
2891                                              AddrSpace);
2892   }
isLegalToVectorizeReduction(const RecurrenceDescriptor & RdxDesc,ElementCount VF)2893   bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
2894                                    ElementCount VF) const override {
2895     return Impl.isLegalToVectorizeReduction(RdxDesc, VF);
2896   }
isElementTypeLegalForScalableVector(Type * Ty)2897   bool isElementTypeLegalForScalableVector(Type *Ty) const override {
2898     return Impl.isElementTypeLegalForScalableVector(Ty);
2899   }
getLoadVectorFactor(unsigned VF,unsigned LoadSize,unsigned ChainSizeInBytes,VectorType * VecTy)2900   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
2901                                unsigned ChainSizeInBytes,
2902                                VectorType *VecTy) const override {
2903     return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
2904   }
getStoreVectorFactor(unsigned VF,unsigned StoreSize,unsigned ChainSizeInBytes,VectorType * VecTy)2905   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
2906                                 unsigned ChainSizeInBytes,
2907                                 VectorType *VecTy) const override {
2908     return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
2909   }
preferFixedOverScalableIfEqualCost()2910   bool preferFixedOverScalableIfEqualCost() const override {
2911     return Impl.preferFixedOverScalableIfEqualCost();
2912   }
preferInLoopReduction(unsigned Opcode,Type * Ty,ReductionFlags Flags)2913   bool preferInLoopReduction(unsigned Opcode, Type *Ty,
2914                              ReductionFlags Flags) const override {
2915     return Impl.preferInLoopReduction(Opcode, Ty, Flags);
2916   }
preferPredicatedReductionSelect(unsigned Opcode,Type * Ty,ReductionFlags Flags)2917   bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
2918                                        ReductionFlags Flags) const override {
2919     return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
2920   }
preferEpilogueVectorization()2921   bool preferEpilogueVectorization() const override {
2922     return Impl.preferEpilogueVectorization();
2923   }
2924 
shouldExpandReduction(const IntrinsicInst * II)2925   bool shouldExpandReduction(const IntrinsicInst *II) const override {
2926     return Impl.shouldExpandReduction(II);
2927   }
2928 
2929   ReductionShuffle
getPreferredExpandedReductionShuffle(const IntrinsicInst * II)2930   getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const override {
2931     return Impl.getPreferredExpandedReductionShuffle(II);
2932   }
2933 
getGISelRematGlobalCost()2934   unsigned getGISelRematGlobalCost() const override {
2935     return Impl.getGISelRematGlobalCost();
2936   }
2937 
getMinTripCountTailFoldingThreshold()2938   unsigned getMinTripCountTailFoldingThreshold() const override {
2939     return Impl.getMinTripCountTailFoldingThreshold();
2940   }
2941 
supportsScalableVectors()2942   bool supportsScalableVectors() const override {
2943     return Impl.supportsScalableVectors();
2944   }
2945 
enableScalableVectorization()2946   bool enableScalableVectorization() const override {
2947     return Impl.enableScalableVectorization();
2948   }
2949 
hasActiveVectorLength(unsigned Opcode,Type * DataType,Align Alignment)2950   bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
2951                              Align Alignment) const override {
2952     return Impl.hasActiveVectorLength(Opcode, DataType, Alignment);
2953   }
2954 
2955   VPLegalization
getVPLegalizationStrategy(const VPIntrinsic & PI)2956   getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
2957     return Impl.getVPLegalizationStrategy(PI);
2958   }
2959 
hasArmWideBranch(bool Thumb)2960   bool hasArmWideBranch(bool Thumb) const override {
2961     return Impl.hasArmWideBranch(Thumb);
2962   }
2963 
getMaxNumArgs()2964   unsigned getMaxNumArgs() const override {
2965     return Impl.getMaxNumArgs();
2966   }
2967 };
2968 
2969 template <typename T>
TargetTransformInfo(T Impl)2970 TargetTransformInfo::TargetTransformInfo(T Impl)
2971     : TTIImpl(new Model<T>(Impl)) {}
2972 
2973 /// Analysis pass providing the \c TargetTransformInfo.
2974 ///
2975 /// The core idea of the TargetIRAnalysis is to expose an interface through
2976 /// which LLVM targets can analyze and provide information about the middle
2977 /// end's target-independent IR. This supports use cases such as target-aware
2978 /// cost modeling of IR constructs.
2979 ///
2980 /// This is a function analysis because much of the cost modeling for targets
2981 /// is done in a subtarget specific way and LLVM supports compiling different
2982 /// functions targeting different subtargets in order to support runtime
2983 /// dispatch according to the observed subtarget.
2984 class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
2985 public:
2986   typedef TargetTransformInfo Result;
2987 
2988   /// Default construct a target IR analysis.
2989   ///
2990   /// This will use the module's datalayout to construct a baseline
2991   /// conservative TTI result.
2992   TargetIRAnalysis();
2993 
2994   /// Construct an IR analysis pass around a target-provide callback.
2995   ///
2996   /// The callback will be called with a particular function for which the TTI
2997   /// is needed and must return a TTI object for that function.
2998   TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
2999 
3000   // Value semantics. We spell out the constructors for MSVC.
TargetIRAnalysis(const TargetIRAnalysis & Arg)3001   TargetIRAnalysis(const TargetIRAnalysis &Arg)
3002       : TTICallback(Arg.TTICallback) {}
TargetIRAnalysis(TargetIRAnalysis && Arg)3003   TargetIRAnalysis(TargetIRAnalysis &&Arg)
3004       : TTICallback(std::move(Arg.TTICallback)) {}
3005   TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
3006     TTICallback = RHS.TTICallback;
3007     return *this;
3008   }
3009   TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
3010     TTICallback = std::move(RHS.TTICallback);
3011     return *this;
3012   }
3013 
3014   Result run(const Function &F, FunctionAnalysisManager &);
3015 
3016 private:
3017   friend AnalysisInfoMixin<TargetIRAnalysis>;
3018   static AnalysisKey Key;
3019 
3020   /// The callback used to produce a result.
3021   ///
3022   /// We use a completely opaque callback so that targets can provide whatever
3023   /// mechanism they desire for constructing the TTI for a given function.
3024   ///
3025   /// FIXME: Should we really use std::function? It's relatively inefficient.
3026   /// It might be possible to arrange for even stateful callbacks to outlive
3027   /// the analysis and thus use a function_ref which would be lighter weight.
3028   /// This may also be less error prone as the callback is likely to reference
3029   /// the external TargetMachine, and that reference needs to never dangle.
3030   std::function<Result(const Function &)> TTICallback;
3031 
3032   /// Helper function used as the callback in the default constructor.
3033   static Result getDefaultTTI(const Function &F);
3034 };
3035 
3036 /// Wrapper pass for TargetTransformInfo.
3037 ///
3038 /// This pass can be constructed from a TTI object which it stores internally
3039 /// and is queried by passes.
3040 class TargetTransformInfoWrapperPass : public ImmutablePass {
3041   TargetIRAnalysis TIRA;
3042   std::optional<TargetTransformInfo> TTI;
3043 
3044   virtual void anchor();
3045 
3046 public:
3047   static char ID;
3048 
3049   /// We must provide a default constructor for the pass but it should
3050   /// never be used.
3051   ///
3052   /// Use the constructor below or call one of the creation routines.
3053   TargetTransformInfoWrapperPass();
3054 
3055   explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
3056 
3057   TargetTransformInfo &getTTI(const Function &F);
3058 };
3059 
3060 /// Create an analysis pass wrapper around a TTI object.
3061 ///
3062 /// This analysis pass just holds the TTI instance and makes it available to
3063 /// clients.
3064 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
3065 
3066 } // namespace llvm
3067 
3068 #endif
3069