xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/DAGISelMatcherGen.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Basic/SDNodeProperties.h"
10 #include "Common/CodeGenDAGPatterns.h"
11 #include "Common/CodeGenInstruction.h"
12 #include "Common/CodeGenRegisters.h"
13 #include "Common/CodeGenTarget.h"
14 #include "Common/DAGISelMatcher.h"
15 #include "Common/InfoByHwMode.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/TableGen/Error.h"
19 #include "llvm/TableGen/Record.h"
20 #include <utility>
21 using namespace llvm;
22 
23 /// getRegisterValueType - Look up and return the ValueType of the specified
24 /// register. If the register is a member of multiple register classes, they
25 /// must all have the same type.
getRegisterValueType(Record * R,const CodeGenTarget & T)26 static MVT::SimpleValueType getRegisterValueType(Record *R,
27                                                  const CodeGenTarget &T) {
28   bool FoundRC = false;
29   MVT::SimpleValueType VT = MVT::Other;
30   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
31 
32   for (const auto &RC : T.getRegBank().getRegClasses()) {
33     if (!RC.contains(Reg))
34       continue;
35 
36     if (!FoundRC) {
37       FoundRC = true;
38       const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
39       assert(VVT.isSimple());
40       VT = VVT.getSimple().SimpleTy;
41       continue;
42     }
43 
44 #ifndef NDEBUG
45     // If this occurs in multiple register classes, they all have to agree.
46     const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
47     assert(VVT.isSimple() && VVT.getSimple().SimpleTy == VT &&
48            "ValueType mismatch between register classes for this register");
49 #endif
50   }
51   return VT;
52 }
53 
54 namespace {
55 class MatcherGen {
56   const PatternToMatch &Pattern;
57   const CodeGenDAGPatterns &CGP;
58 
59   /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
60   /// out with all of the types removed.  This allows us to insert type checks
61   /// as we scan the tree.
62   TreePatternNodePtr PatWithNoTypes;
63 
64   /// VariableMap - A map from variable names ('$dst') to the recorded operand
65   /// number that they were captured as.  These are biased by 1 to make
66   /// insertion easier.
67   StringMap<unsigned> VariableMap;
68 
69   /// This maintains the recorded operand number that OPC_CheckComplexPattern
70   /// drops each sub-operand into. We don't want to insert these into
71   /// VariableMap because that leads to identity checking if they are
72   /// encountered multiple times. Biased by 1 like VariableMap for
73   /// consistency.
74   StringMap<unsigned> NamedComplexPatternOperands;
75 
76   /// NextRecordedOperandNo - As we emit opcodes to record matched values in
77   /// the RecordedNodes array, this keeps track of which slot will be next to
78   /// record into.
79   unsigned NextRecordedOperandNo;
80 
81   /// MatchedChainNodes - This maintains the position in the recorded nodes
82   /// array of all of the recorded input nodes that have chains.
83   SmallVector<unsigned, 2> MatchedChainNodes;
84 
85   /// MatchedComplexPatterns - This maintains a list of all of the
86   /// ComplexPatterns that we need to check. The second element of each pair
87   /// is the recorded operand number of the input node.
88   SmallVector<std::pair<const TreePatternNode *, unsigned>, 2>
89       MatchedComplexPatterns;
90 
91   /// PhysRegInputs - List list has an entry for each explicitly specified
92   /// physreg input to the pattern.  The first elt is the Register node, the
93   /// second is the recorded slot number the input pattern match saved it in.
94   SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs;
95 
96   /// Matcher - This is the top level of the generated matcher, the result.
97   Matcher *TheMatcher;
98 
99   /// CurPredicate - As we emit matcher nodes, this points to the latest check
100   /// which should have future checks stuck into its Next position.
101   Matcher *CurPredicate;
102 
103 public:
104   MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
105 
106   bool EmitMatcherCode(unsigned Variant);
107   void EmitResultCode();
108 
GetMatcher() const109   Matcher *GetMatcher() const { return TheMatcher; }
110 
111 private:
112   void AddMatcher(Matcher *NewNode);
113   void InferPossibleTypes();
114 
115   // Matcher Generation.
116   void EmitMatchCode(const TreePatternNode &N, TreePatternNode &NodeNoTypes);
117   void EmitLeafMatchCode(const TreePatternNode &N);
118   void EmitOperatorMatchCode(const TreePatternNode &N,
119                              TreePatternNode &NodeNoTypes);
120 
121   /// If this is the first time a node with unique identifier Name has been
122   /// seen, record it. Otherwise, emit a check to make sure this is the same
123   /// node. Returns true if this is the first encounter.
124   bool recordUniqueNode(ArrayRef<std::string> Names);
125 
126   // Result Code Generation.
getNamedArgumentSlot(StringRef Name)127   unsigned getNamedArgumentSlot(StringRef Name) {
128     unsigned VarMapEntry = VariableMap[Name];
129     assert(VarMapEntry != 0 &&
130            "Variable referenced but not defined and not caught earlier!");
131     return VarMapEntry - 1;
132   }
133 
134   void EmitResultOperand(const TreePatternNode &N,
135                          SmallVectorImpl<unsigned> &ResultOps);
136   void EmitResultOfNamedOperand(const TreePatternNode &N,
137                                 SmallVectorImpl<unsigned> &ResultOps);
138   void EmitResultLeafAsOperand(const TreePatternNode &N,
139                                SmallVectorImpl<unsigned> &ResultOps);
140   void EmitResultInstructionAsOperand(const TreePatternNode &N,
141                                       SmallVectorImpl<unsigned> &ResultOps);
142   void EmitResultSDNodeXFormAsOperand(const TreePatternNode &N,
143                                       SmallVectorImpl<unsigned> &ResultOps);
144 };
145 
146 } // end anonymous namespace
147 
MatcherGen(const PatternToMatch & pattern,const CodeGenDAGPatterns & cgp)148 MatcherGen::MatcherGen(const PatternToMatch &pattern,
149                        const CodeGenDAGPatterns &cgp)
150     : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), TheMatcher(nullptr),
151       CurPredicate(nullptr) {
152   // We need to produce the matcher tree for the patterns source pattern.  To
153   // do this we need to match the structure as well as the types.  To do the
154   // type matching, we want to figure out the fewest number of type checks we
155   // need to emit.  For example, if there is only one integer type supported
156   // by a target, there should be no type comparisons at all for integer
157   // patterns!
158   //
159   // To figure out the fewest number of type checks needed, clone the pattern,
160   // remove the types, then perform type inference on the pattern as a whole.
161   // If there are unresolved types, emit an explicit check for those types,
162   // apply the type to the tree, then rerun type inference.  Iterate until all
163   // types are resolved.
164   //
165   PatWithNoTypes = Pattern.getSrcPattern().clone();
166   PatWithNoTypes->RemoveAllTypes();
167 
168   // If there are types that are manifestly known, infer them.
169   InferPossibleTypes();
170 }
171 
172 /// InferPossibleTypes - As we emit the pattern, we end up generating type
173 /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
174 /// want to propagate implied types as far throughout the tree as possible so
175 /// that we avoid doing redundant type checks.  This does the type propagation.
InferPossibleTypes()176 void MatcherGen::InferPossibleTypes() {
177   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
178   // diagnostics, which we know are impossible at this point.
179   TreePattern &TP = *CGP.pf_begin()->second;
180 
181   bool MadeChange = true;
182   while (MadeChange)
183     MadeChange = PatWithNoTypes->ApplyTypeConstraints(
184         TP, true /*Ignore reg constraints*/);
185 }
186 
187 /// AddMatcher - Add a matcher node to the current graph we're building.
AddMatcher(Matcher * NewNode)188 void MatcherGen::AddMatcher(Matcher *NewNode) {
189   if (CurPredicate)
190     CurPredicate->setNext(NewNode);
191   else
192     TheMatcher = NewNode;
193   CurPredicate = NewNode;
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // Pattern Match Generation
198 //===----------------------------------------------------------------------===//
199 
200 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
EmitLeafMatchCode(const TreePatternNode & N)201 void MatcherGen::EmitLeafMatchCode(const TreePatternNode &N) {
202   assert(N.isLeaf() && "Not a leaf?");
203 
204   // Direct match against an integer constant.
205   if (IntInit *II = dyn_cast<IntInit>(N.getLeafValue())) {
206     // If this is the root of the dag we're matching, we emit a redundant opcode
207     // check to ensure that this gets folded into the normal top-level
208     // OpcodeSwitch.
209     if (&N == &Pattern.getSrcPattern()) {
210       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
211       AddMatcher(new CheckOpcodeMatcher(NI));
212     }
213 
214     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
215   }
216 
217   // An UnsetInit represents a named node without any constraints.
218   if (isa<UnsetInit>(N.getLeafValue())) {
219     assert(N.hasName() && "Unnamed ? leaf");
220     return;
221   }
222 
223   DefInit *DI = dyn_cast<DefInit>(N.getLeafValue());
224   if (!DI) {
225     errs() << "Unknown leaf kind: " << N << "\n";
226     abort();
227   }
228 
229   Record *LeafRec = DI->getDef();
230 
231   // A ValueType leaf node can represent a register when named, or itself when
232   // unnamed.
233   if (LeafRec->isSubClassOf("ValueType")) {
234     // A named ValueType leaf always matches: (add i32:$a, i32:$b).
235     if (N.hasName())
236       return;
237     // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
238     return AddMatcher(new CheckValueTypeMatcher(llvm::getValueType(LeafRec)));
239   }
240 
241   if ( // Handle register references.  Nothing to do here, they always match.
242       LeafRec->isSubClassOf("RegisterClass") ||
243       LeafRec->isSubClassOf("RegisterOperand") ||
244       LeafRec->isSubClassOf("PointerLikeRegClass") ||
245       LeafRec->isSubClassOf("SubRegIndex") ||
246       // Place holder for SRCVALUE nodes. Nothing to do here.
247       LeafRec->getName() == "srcvalue")
248     return;
249 
250   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
251   // record the register
252   if (LeafRec->isSubClassOf("Register")) {
253     AddMatcher(new RecordMatcher("physreg input " + LeafRec->getName().str(),
254                                  NextRecordedOperandNo));
255     PhysRegInputs.push_back(std::pair(LeafRec, NextRecordedOperandNo++));
256     return;
257   }
258 
259   if (LeafRec->isSubClassOf("CondCode"))
260     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
261 
262   if (LeafRec->isSubClassOf("ComplexPattern")) {
263     // We can't model ComplexPattern uses that don't have their name taken yet.
264     // The OPC_CheckComplexPattern operation implicitly records the results.
265     if (N.getName().empty()) {
266       std::string S;
267       raw_string_ostream OS(S);
268       OS << "We expect complex pattern uses to have names: " << N;
269       PrintFatalError(S);
270     }
271 
272     // Remember this ComplexPattern so that we can emit it after all the other
273     // structural matches are done.
274     unsigned InputOperand = VariableMap[N.getName()] - 1;
275     MatchedComplexPatterns.push_back(std::pair(&N, InputOperand));
276     return;
277   }
278 
279   if (LeafRec->getName() == "immAllOnesV" ||
280       LeafRec->getName() == "immAllZerosV") {
281     // If this is the root of the dag we're matching, we emit a redundant opcode
282     // check to ensure that this gets folded into the normal top-level
283     // OpcodeSwitch.
284     if (&N == &Pattern.getSrcPattern()) {
285       MVT VT = N.getSimpleType(0);
286       StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
287       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
288       AddMatcher(new CheckOpcodeMatcher(NI));
289     }
290     if (LeafRec->getName() == "immAllOnesV")
291       AddMatcher(new CheckImmAllOnesVMatcher());
292     else
293       AddMatcher(new CheckImmAllZerosVMatcher());
294     return;
295   }
296 
297   errs() << "Unknown leaf kind: " << N << "\n";
298   abort();
299 }
300 
EmitOperatorMatchCode(const TreePatternNode & N,TreePatternNode & NodeNoTypes)301 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode &N,
302                                        TreePatternNode &NodeNoTypes) {
303   assert(!N.isLeaf() && "Not an operator?");
304 
305   if (N.getOperator()->isSubClassOf("ComplexPattern")) {
306     // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
307     // "MY_PAT:op1:op2". We should already have validated that the uses are
308     // consistent.
309     std::string PatternName = std::string(N.getOperator()->getName());
310     for (unsigned i = 0; i < N.getNumChildren(); ++i) {
311       PatternName += ":";
312       PatternName += N.getChild(i).getName();
313     }
314 
315     if (recordUniqueNode(PatternName)) {
316       auto NodeAndOpNum = std::pair(&N, NextRecordedOperandNo - 1);
317       MatchedComplexPatterns.push_back(NodeAndOpNum);
318     }
319 
320     return;
321   }
322 
323   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N.getOperator());
324 
325   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
326   // a constant without a predicate fn that has more than one bit set, handle
327   // this as a special case.  This is usually for targets that have special
328   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
329   // handling stuff).  Using these instructions is often far more efficient
330   // than materializing the constant.  Unfortunately, both the instcombiner
331   // and the dag combiner can often infer that bits are dead, and thus drop
332   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
333   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
334   // to handle this.
335   if ((N.getOperator()->getName() == "and" ||
336        N.getOperator()->getName() == "or") &&
337       N.getChild(1).isLeaf() && N.getChild(1).getPredicateCalls().empty() &&
338       N.getPredicateCalls().empty()) {
339     if (IntInit *II = dyn_cast<IntInit>(N.getChild(1).getLeafValue())) {
340       if (!llvm::has_single_bit<uint32_t>(
341               II->getValue())) { // Don't bother with single bits.
342         // If this is at the root of the pattern, we emit a redundant
343         // CheckOpcode so that the following checks get factored properly under
344         // a single opcode check.
345         if (&N == &Pattern.getSrcPattern())
346           AddMatcher(new CheckOpcodeMatcher(CInfo));
347 
348         // Emit the CheckAndImm/CheckOrImm node.
349         if (N.getOperator()->getName() == "and")
350           AddMatcher(new CheckAndImmMatcher(II->getValue()));
351         else
352           AddMatcher(new CheckOrImmMatcher(II->getValue()));
353 
354         // Match the LHS of the AND as appropriate.
355         AddMatcher(new MoveChildMatcher(0));
356         EmitMatchCode(N.getChild(0), NodeNoTypes.getChild(0));
357         AddMatcher(new MoveParentMatcher());
358         return;
359       }
360     }
361   }
362 
363   // Check that the current opcode lines up.
364   AddMatcher(new CheckOpcodeMatcher(CInfo));
365 
366   // If this node has memory references (i.e. is a load or store), tell the
367   // interpreter to capture them in the memref array.
368   if (N.NodeHasProperty(SDNPMemOperand, CGP))
369     AddMatcher(new RecordMemRefMatcher());
370 
371   // If this node has a chain, then the chain is operand #0 is the SDNode, and
372   // the child numbers of the node are all offset by one.
373   unsigned OpNo = 0;
374   if (N.NodeHasProperty(SDNPHasChain, CGP)) {
375     // Record the node and remember it in our chained nodes list.
376     AddMatcher(new RecordMatcher("'" + N.getOperator()->getName().str() +
377                                      "' chained node",
378                                  NextRecordedOperandNo));
379     // Remember all of the input chains our pattern will match.
380     MatchedChainNodes.push_back(NextRecordedOperandNo++);
381 
382     // Don't look at the input chain when matching the tree pattern to the
383     // SDNode.
384     OpNo = 1;
385 
386     // If this node is not the root and the subtree underneath it produces a
387     // chain, then the result of matching the node is also produce a chain.
388     // Beyond that, this means that we're also folding (at least) the root node
389     // into the node that produce the chain (for example, matching
390     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
391     // problematic, if the 'reg' node also uses the load (say, its chain).
392     // Graphically:
393     //
394     //         [LD]
395     //         ^  ^
396     //         |  \                              DAG's like cheese.
397     //        /    |
398     //       /    [YY]
399     //       |     ^
400     //      [XX]--/
401     //
402     // It would be invalid to fold XX and LD.  In this case, folding the two
403     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
404     // To prevent this, we emit a dynamic check for legality before allowing
405     // this to be folded.
406     //
407     const TreePatternNode &Root = Pattern.getSrcPattern();
408     if (&N != &Root) { // Not the root of the pattern.
409       // If there is a node between the root and this node, then we definitely
410       // need to emit the check.
411       bool NeedCheck = !Root.hasChild(&N);
412 
413       // If it *is* an immediate child of the root, we can still need a check if
414       // the root SDNode has multiple inputs.  For us, this means that it is an
415       // intrinsic, has multiple operands, or has other inputs like chain or
416       // glue).
417       if (!NeedCheck) {
418         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root.getOperator());
419         NeedCheck =
420             Root.getOperator() == CGP.get_intrinsic_void_sdnode() ||
421             Root.getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
422             Root.getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
423             PInfo.getNumOperands() > 1 || PInfo.hasProperty(SDNPHasChain) ||
424             PInfo.hasProperty(SDNPInGlue) || PInfo.hasProperty(SDNPOptInGlue);
425       }
426 
427       if (NeedCheck)
428         AddMatcher(new CheckFoldableChainNodeMatcher());
429     }
430   }
431 
432   // If this node has an output glue and isn't the root, remember it.
433   if (N.NodeHasProperty(SDNPOutGlue, CGP) && &N != &Pattern.getSrcPattern()) {
434     // TODO: This redundantly records nodes with both glues and chains.
435 
436     // Record the node and remember it in our chained nodes list.
437     AddMatcher(new RecordMatcher("'" + N.getOperator()->getName().str() +
438                                      "' glue output node",
439                                  NextRecordedOperandNo));
440   }
441 
442   // If this node is known to have an input glue or if it *might* have an input
443   // glue, capture it as the glue input of the pattern.
444   if (N.NodeHasProperty(SDNPOptInGlue, CGP) ||
445       N.NodeHasProperty(SDNPInGlue, CGP))
446     AddMatcher(new CaptureGlueInputMatcher());
447 
448   for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i, ++OpNo) {
449     // Get the code suitable for matching this child.  Move to the child, check
450     // it then move back to the parent.
451     AddMatcher(new MoveChildMatcher(OpNo));
452     EmitMatchCode(N.getChild(i), NodeNoTypes.getChild(i));
453     AddMatcher(new MoveParentMatcher());
454   }
455 }
456 
recordUniqueNode(ArrayRef<std::string> Names)457 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
458   unsigned Entry = 0;
459   for (const std::string &Name : Names) {
460     unsigned &VarMapEntry = VariableMap[Name];
461     if (!Entry)
462       Entry = VarMapEntry;
463     assert(Entry == VarMapEntry);
464   }
465 
466   bool NewRecord = false;
467   if (Entry == 0) {
468     // If it is a named node, we must emit a 'Record' opcode.
469     std::string WhatFor;
470     for (const std::string &Name : Names) {
471       if (!WhatFor.empty())
472         WhatFor += ',';
473       WhatFor += "$" + Name;
474     }
475     AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
476     Entry = ++NextRecordedOperandNo;
477     NewRecord = true;
478   } else {
479     // If we get here, this is a second reference to a specific name.  Since
480     // we already have checked that the first reference is valid, we don't
481     // have to recursively match it, just check that it's the same as the
482     // previously named thing.
483     AddMatcher(new CheckSameMatcher(Entry - 1));
484   }
485 
486   for (const std::string &Name : Names)
487     VariableMap[Name] = Entry;
488 
489   return NewRecord;
490 }
491 
EmitMatchCode(const TreePatternNode & N,TreePatternNode & NodeNoTypes)492 void MatcherGen::EmitMatchCode(const TreePatternNode &N,
493                                TreePatternNode &NodeNoTypes) {
494   // If N and NodeNoTypes don't agree on a type, then this is a case where we
495   // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
496   // reinfer any correlated types.
497   SmallVector<unsigned, 2> ResultsToTypeCheck;
498 
499   for (unsigned i = 0, e = NodeNoTypes.getNumTypes(); i != e; ++i) {
500     if (NodeNoTypes.getExtType(i) == N.getExtType(i))
501       continue;
502     NodeNoTypes.setType(i, N.getExtType(i));
503     InferPossibleTypes();
504     ResultsToTypeCheck.push_back(i);
505   }
506 
507   // If this node has a name associated with it, capture it in VariableMap. If
508   // we already saw this in the pattern, emit code to verify dagness.
509   SmallVector<std::string, 4> Names;
510   if (!N.getName().empty())
511     Names.push_back(N.getName());
512 
513   for (const ScopedName &Name : N.getNamesAsPredicateArg()) {
514     Names.push_back(
515         ("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
516   }
517 
518   if (!Names.empty()) {
519     if (!recordUniqueNode(Names))
520       return;
521   }
522 
523   if (N.isLeaf())
524     EmitLeafMatchCode(N);
525   else
526     EmitOperatorMatchCode(N, NodeNoTypes);
527 
528   // If there are node predicates for this node, generate their checks.
529   for (unsigned i = 0, e = N.getPredicateCalls().size(); i != e; ++i) {
530     const TreePredicateCall &Pred = N.getPredicateCalls()[i];
531     SmallVector<unsigned, 4> Operands;
532     if (Pred.Fn.usesOperands()) {
533       TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
534       for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
535         std::string Name =
536             ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
537         Operands.push_back(getNamedArgumentSlot(Name));
538       }
539     }
540     AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
541   }
542 
543   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
544     AddMatcher(new CheckTypeMatcher(N.getSimpleType(ResultsToTypeCheck[i]),
545                                     ResultsToTypeCheck[i]));
546 }
547 
548 /// EmitMatcherCode - Generate the code that matches the predicate of this
549 /// pattern for the specified Variant.  If the variant is invalid this returns
550 /// true and does not generate code, if it is valid, it returns false.
EmitMatcherCode(unsigned Variant)551 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
552   // If the root of the pattern is a ComplexPattern and if it is specified to
553   // match some number of root opcodes, these are considered to be our variants.
554   // Depending on which variant we're generating code for, emit the root opcode
555   // check.
556   if (const ComplexPattern *CP =
557           Pattern.getSrcPattern().getComplexPatternInfo(CGP)) {
558     const std::vector<Record *> &OpNodes = CP->getRootNodes();
559     assert(!OpNodes.empty() &&
560            "Complex Pattern must specify what it can match");
561     if (Variant >= OpNodes.size())
562       return true;
563 
564     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
565   } else {
566     if (Variant != 0)
567       return true;
568   }
569 
570   // Emit the matcher for the pattern structure and types.
571   EmitMatchCode(Pattern.getSrcPattern(), *PatWithNoTypes);
572 
573   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
574   // feature is around, do the check).
575   std::string PredicateCheck = Pattern.getPredicateCheck();
576   if (!PredicateCheck.empty())
577     AddMatcher(new CheckPatternPredicateMatcher(PredicateCheck));
578 
579   // Now that we've completed the structural type match, emit any ComplexPattern
580   // checks (e.g. addrmode matches).  We emit this after the structural match
581   // because they are generally more expensive to evaluate and more difficult to
582   // factor.
583   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
584     auto &N = *MatchedComplexPatterns[i].first;
585 
586     // Remember where the results of this match get stuck.
587     if (N.isLeaf()) {
588       NamedComplexPatternOperands[N.getName()] = NextRecordedOperandNo + 1;
589     } else {
590       unsigned CurOp = NextRecordedOperandNo;
591       for (unsigned i = 0; i < N.getNumChildren(); ++i) {
592         NamedComplexPatternOperands[N.getChild(i).getName()] = CurOp + 1;
593         CurOp += N.getChild(i).getNumMIResults(CGP);
594       }
595     }
596 
597     // Get the slot we recorded the value in from the name on the node.
598     unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
599 
600     const ComplexPattern *CP = N.getComplexPatternInfo(CGP);
601     assert(CP && "Not a valid ComplexPattern!");
602 
603     // Emit a CheckComplexPat operation, which does the match (aborting if it
604     // fails) and pushes the matched operands onto the recorded nodes list.
605     AddMatcher(new CheckComplexPatMatcher(*CP, RecNodeEntry, N.getName(),
606                                           NextRecordedOperandNo));
607 
608     // Record the right number of operands.
609     NextRecordedOperandNo += CP->getNumOperands();
610     if (CP->hasProperty(SDNPHasChain)) {
611       // If the complex pattern has a chain, then we need to keep track of the
612       // fact that we just recorded a chain input.  The chain input will be
613       // matched as the last operand of the predicate if it was successful.
614       ++NextRecordedOperandNo; // Chained node operand.
615 
616       // It is the last operand recorded.
617       assert(NextRecordedOperandNo > 1 &&
618              "Should have recorded input/result chains at least!");
619       MatchedChainNodes.push_back(NextRecordedOperandNo - 1);
620     }
621 
622     // TODO: Complex patterns can't have output glues, if they did, we'd want
623     // to record them.
624   }
625 
626   return false;
627 }
628 
629 //===----------------------------------------------------------------------===//
630 // Node Result Generation
631 //===----------------------------------------------------------------------===//
632 
EmitResultOfNamedOperand(const TreePatternNode & N,SmallVectorImpl<unsigned> & ResultOps)633 void MatcherGen::EmitResultOfNamedOperand(
634     const TreePatternNode &N, SmallVectorImpl<unsigned> &ResultOps) {
635   assert(!N.getName().empty() && "Operand not named!");
636 
637   if (unsigned SlotNo = NamedComplexPatternOperands[N.getName()]) {
638     // Complex operands have already been completely selected, just find the
639     // right slot ant add the arguments directly.
640     for (unsigned i = 0; i < N.getNumMIResults(CGP); ++i)
641       ResultOps.push_back(SlotNo - 1 + i);
642 
643     return;
644   }
645 
646   unsigned SlotNo = getNamedArgumentSlot(N.getName());
647 
648   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
649   // version of the immediate so that it doesn't get selected due to some other
650   // node use.
651   if (!N.isLeaf()) {
652     StringRef OperatorName = N.getOperator()->getName();
653     if (OperatorName == "imm" || OperatorName == "fpimm") {
654       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
655       ResultOps.push_back(NextRecordedOperandNo++);
656       return;
657     }
658   }
659 
660   for (unsigned i = 0; i < N.getNumMIResults(CGP); ++i)
661     ResultOps.push_back(SlotNo + i);
662 }
663 
EmitResultLeafAsOperand(const TreePatternNode & N,SmallVectorImpl<unsigned> & ResultOps)664 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode &N,
665                                          SmallVectorImpl<unsigned> &ResultOps) {
666   assert(N.isLeaf() && "Must be a leaf");
667 
668   if (IntInit *II = dyn_cast<IntInit>(N.getLeafValue())) {
669     AddMatcher(new EmitIntegerMatcher(II->getValue(), N.getSimpleType(0)));
670     ResultOps.push_back(NextRecordedOperandNo++);
671     return;
672   }
673 
674   // If this is an explicit register reference, handle it.
675   if (DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) {
676     Record *Def = DI->getDef();
677     if (Def->isSubClassOf("Register")) {
678       const CodeGenRegister *Reg = CGP.getTargetInfo().getRegBank().getReg(Def);
679       AddMatcher(new EmitRegisterMatcher(Reg, N.getSimpleType(0)));
680       ResultOps.push_back(NextRecordedOperandNo++);
681       return;
682     }
683 
684     if (Def->getName() == "zero_reg") {
685       AddMatcher(new EmitRegisterMatcher(nullptr, N.getSimpleType(0)));
686       ResultOps.push_back(NextRecordedOperandNo++);
687       return;
688     }
689 
690     if (Def->getName() == "undef_tied_input") {
691       MVT::SimpleValueType ResultVT = N.getSimpleType(0);
692       auto IDOperandNo = NextRecordedOperandNo++;
693       Record *ImpDef = Def->getRecords().getDef("IMPLICIT_DEF");
694       CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(ImpDef);
695       AddMatcher(new EmitNodeMatcher(II, ResultVT, std::nullopt, false, false,
696                                      false, false, -1, IDOperandNo));
697       ResultOps.push_back(IDOperandNo);
698       return;
699     }
700 
701     // Handle a reference to a register class. This is used
702     // in COPY_TO_SUBREG instructions.
703     if (Def->isSubClassOf("RegisterOperand"))
704       Def = Def->getValueAsDef("RegClass");
705     if (Def->isSubClassOf("RegisterClass")) {
706       // If the register class has an enum integer value greater than 127, the
707       // encoding overflows the limit of 7 bits, which precludes the use of
708       // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
709       const CodeGenRegisterClass &RC =
710           CGP.getTargetInfo().getRegisterClass(Def);
711       if (RC.EnumValue <= 127) {
712         std::string Value = RC.getQualifiedIdName();
713         AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
714         ResultOps.push_back(NextRecordedOperandNo++);
715       } else {
716         AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32));
717         ResultOps.push_back(NextRecordedOperandNo++);
718       }
719       return;
720     }
721 
722     // Handle a subregister index. This is used for INSERT_SUBREG etc.
723     if (Def->isSubClassOf("SubRegIndex")) {
724       const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank();
725       // If we have more than 127 subreg indices the encoding can overflow
726       // 7 bit and we cannot use StringInteger.
727       if (RB.getSubRegIndices().size() > 127) {
728         const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def);
729         assert(I && "Cannot find subreg index by name!");
730         if (I->EnumValue > 127) {
731           AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32));
732           ResultOps.push_back(NextRecordedOperandNo++);
733           return;
734         }
735       }
736       std::string Value = getQualifiedName(Def);
737       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
738       ResultOps.push_back(NextRecordedOperandNo++);
739       return;
740     }
741   }
742 
743   errs() << "unhandled leaf node:\n";
744   N.dump();
745 }
746 
mayInstNodeLoadOrStore(const TreePatternNode & N,const CodeGenDAGPatterns & CGP)747 static bool mayInstNodeLoadOrStore(const TreePatternNode &N,
748                                    const CodeGenDAGPatterns &CGP) {
749   Record *Op = N.getOperator();
750   const CodeGenTarget &CGT = CGP.getTargetInfo();
751   CodeGenInstruction &II = CGT.getInstruction(Op);
752   return II.mayLoad || II.mayStore;
753 }
754 
numNodesThatMayLoadOrStore(const TreePatternNode & N,const CodeGenDAGPatterns & CGP)755 static unsigned numNodesThatMayLoadOrStore(const TreePatternNode &N,
756                                            const CodeGenDAGPatterns &CGP) {
757   if (N.isLeaf())
758     return 0;
759 
760   Record *OpRec = N.getOperator();
761   if (!OpRec->isSubClassOf("Instruction"))
762     return 0;
763 
764   unsigned Count = 0;
765   if (mayInstNodeLoadOrStore(N, CGP))
766     ++Count;
767 
768   for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
769     Count += numNodesThatMayLoadOrStore(N.getChild(i), CGP);
770 
771   return Count;
772 }
773 
EmitResultInstructionAsOperand(const TreePatternNode & N,SmallVectorImpl<unsigned> & OutputOps)774 void MatcherGen::EmitResultInstructionAsOperand(
775     const TreePatternNode &N, SmallVectorImpl<unsigned> &OutputOps) {
776   Record *Op = N.getOperator();
777   const CodeGenTarget &CGT = CGP.getTargetInfo();
778   CodeGenInstruction &II = CGT.getInstruction(Op);
779   const DAGInstruction &Inst = CGP.getInstruction(Op);
780 
781   bool isRoot = &N == &Pattern.getDstPattern();
782 
783   // TreeHasOutGlue - True if this tree has glue.
784   bool TreeHasInGlue = false, TreeHasOutGlue = false;
785   if (isRoot) {
786     const TreePatternNode &SrcPat = Pattern.getSrcPattern();
787     TreeHasInGlue = SrcPat.TreeHasProperty(SDNPOptInGlue, CGP) ||
788                     SrcPat.TreeHasProperty(SDNPInGlue, CGP);
789 
790     // FIXME2: this is checking the entire pattern, not just the node in
791     // question, doing this just for the root seems like a total hack.
792     TreeHasOutGlue = SrcPat.TreeHasProperty(SDNPOutGlue, CGP);
793   }
794 
795   // NumResults - This is the number of results produced by the instruction in
796   // the "outs" list.
797   unsigned NumResults = Inst.getNumResults();
798 
799   // Number of operands we know the output instruction must have. If it is
800   // variadic, we could have more operands.
801   unsigned NumFixedOperands = II.Operands.size();
802 
803   SmallVector<unsigned, 8> InstOps;
804 
805   // Loop over all of the fixed operands of the instruction pattern, emitting
806   // code to fill them all in. The node 'N' usually has number children equal to
807   // the number of input operands of the instruction.  However, in cases where
808   // there are predicate operands for an instruction, we need to fill in the
809   // 'execute always' values. Match up the node operands to the instruction
810   // operands to do this.
811   unsigned ChildNo = 0;
812 
813   // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
814   // number of operands at the end of the list which have default values.
815   // Those can come from the pattern if it provides enough arguments, or be
816   // filled in with the default if the pattern hasn't provided them. But any
817   // operand with a default value _before_ the last mandatory one will be
818   // filled in with their defaults unconditionally.
819   unsigned NonOverridableOperands = NumFixedOperands;
820   while (NonOverridableOperands > NumResults &&
821          CGP.operandHasDefault(II.Operands[NonOverridableOperands - 1].Rec))
822     --NonOverridableOperands;
823 
824   for (unsigned InstOpNo = NumResults, e = NumFixedOperands; InstOpNo != e;
825        ++InstOpNo) {
826     // Determine what to emit for this operand.
827     Record *OperandNode = II.Operands[InstOpNo].Rec;
828     if (CGP.operandHasDefault(OperandNode) &&
829         (InstOpNo < NonOverridableOperands || ChildNo >= N.getNumChildren())) {
830       // This is a predicate or optional def operand which the pattern has not
831       // overridden, or which we aren't letting it override; emit the 'default
832       // ops' operands.
833       const DAGDefaultOperand &DefaultOp = CGP.getDefaultOperand(OperandNode);
834       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
835         EmitResultOperand(*DefaultOp.DefaultOps[i], InstOps);
836       continue;
837     }
838 
839     // Otherwise this is a normal operand or a predicate operand without
840     // 'execute always'; emit it.
841 
842     // For operands with multiple sub-operands we may need to emit
843     // multiple child patterns to cover them all.  However, ComplexPattern
844     // children may themselves emit multiple MI operands.
845     unsigned NumSubOps = 1;
846     if (OperandNode->isSubClassOf("Operand")) {
847       DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
848       if (unsigned NumArgs = MIOpInfo->getNumArgs())
849         NumSubOps = NumArgs;
850     }
851 
852     unsigned FinalNumOps = InstOps.size() + NumSubOps;
853     while (InstOps.size() < FinalNumOps) {
854       const TreePatternNode &Child = N.getChild(ChildNo);
855       unsigned BeforeAddingNumOps = InstOps.size();
856       EmitResultOperand(Child, InstOps);
857       assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
858 
859       // If the operand is an instruction and it produced multiple results, just
860       // take the first one.
861       if (!Child.isLeaf() && Child.getOperator()->isSubClassOf("Instruction"))
862         InstOps.resize(BeforeAddingNumOps + 1);
863 
864       ++ChildNo;
865     }
866   }
867 
868   // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
869   // expand suboperands, use default operands, or other features determined from
870   // the CodeGenInstruction after the fixed operands, which were handled
871   // above. Emit the remaining instructions implicitly added by the use for
872   // variable_ops.
873   if (II.Operands.isVariadic) {
874     for (unsigned I = ChildNo, E = N.getNumChildren(); I < E; ++I)
875       EmitResultOperand(N.getChild(I), InstOps);
876   }
877 
878   // If this node has input glue or explicitly specified input physregs, we
879   // need to add chained and glued copyfromreg nodes and materialize the glue
880   // input.
881   if (isRoot && !PhysRegInputs.empty()) {
882     // Emit all of the CopyToReg nodes for the input physical registers.  These
883     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
884     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
885       const CodeGenRegister *Reg =
886           CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
887       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, Reg));
888     }
889 
890     // Even if the node has no other glue inputs, the resultant node must be
891     // glued to the CopyFromReg nodes we just generated.
892     TreeHasInGlue = true;
893   }
894 
895   // Result order: node results, chain, glue
896 
897   // Determine the result types.
898   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
899   for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i)
900     ResultVTs.push_back(N.getSimpleType(i));
901 
902   // If this is the root instruction of a pattern that has physical registers in
903   // its result pattern, add output VTs for them.  For example, X86 has:
904   //   (set AL, (mul ...))
905   // This also handles implicit results like:
906   //   (implicit EFLAGS)
907   if (isRoot && !Pattern.getDstRegs().empty()) {
908     // If the root came from an implicit def in the instruction handling stuff,
909     // don't re-add it.
910     Record *HandledReg = nullptr;
911     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
912       HandledReg = II.ImplicitDefs[0];
913 
914     for (Record *Reg : Pattern.getDstRegs()) {
915       if (!Reg->isSubClassOf("Register") || Reg == HandledReg)
916         continue;
917       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
918     }
919   }
920 
921   // If this is the root of the pattern and the pattern we're matching includes
922   // a node that is variadic, mark the generated node as variadic so that it
923   // gets the excess operands from the input DAG.
924   int NumFixedArityOperands = -1;
925   if (isRoot && Pattern.getSrcPattern().NodeHasProperty(SDNPVariadic, CGP))
926     NumFixedArityOperands = Pattern.getSrcPattern().getNumChildren();
927 
928   // If this is the root node and multiple matched nodes in the input pattern
929   // have MemRefs in them, have the interpreter collect them and plop them onto
930   // this node. If there is just one node with MemRefs, leave them on that node
931   // even if it is not the root.
932   //
933   // FIXME3: This is actively incorrect for result patterns with multiple
934   // memory-referencing instructions.
935   bool PatternHasMemOperands =
936       Pattern.getSrcPattern().TreeHasProperty(SDNPMemOperand, CGP);
937 
938   bool NodeHasMemRefs = false;
939   if (PatternHasMemOperands) {
940     unsigned NumNodesThatLoadOrStore =
941         numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
942     bool NodeIsUniqueLoadOrStore =
943         mayInstNodeLoadOrStore(N, CGP) && NumNodesThatLoadOrStore == 1;
944     NodeHasMemRefs =
945         NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
946                                                NumNodesThatLoadOrStore != 1));
947   }
948 
949   // Determine whether we need to attach a chain to this node.
950   bool NodeHasChain = false;
951   if (Pattern.getSrcPattern().TreeHasProperty(SDNPHasChain, CGP)) {
952     // For some instructions, we were able to infer from the pattern whether
953     // they should have a chain.  Otherwise, attach the chain to the root.
954     //
955     // FIXME2: This is extremely dubious for several reasons, not the least of
956     // which it gives special status to instructions with patterns that Pat<>
957     // nodes can't duplicate.
958     if (II.hasChain_Inferred)
959       NodeHasChain = II.hasChain;
960     else
961       NodeHasChain = isRoot;
962     // Instructions which load and store from memory should have a chain,
963     // regardless of whether they happen to have a pattern saying so.
964     if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
965         II.hasSideEffects)
966       NodeHasChain = true;
967   }
968 
969   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
970          "Node has no result");
971 
972   AddMatcher(new EmitNodeMatcher(II, ResultVTs, InstOps, NodeHasChain,
973                                  TreeHasInGlue, TreeHasOutGlue, NodeHasMemRefs,
974                                  NumFixedArityOperands, NextRecordedOperandNo));
975 
976   // The non-chain and non-glue results of the newly emitted node get recorded.
977   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
978     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue)
979       break;
980     OutputOps.push_back(NextRecordedOperandNo++);
981   }
982 }
983 
EmitResultSDNodeXFormAsOperand(const TreePatternNode & N,SmallVectorImpl<unsigned> & ResultOps)984 void MatcherGen::EmitResultSDNodeXFormAsOperand(
985     const TreePatternNode &N, SmallVectorImpl<unsigned> &ResultOps) {
986   assert(N.getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
987 
988   // Emit the operand.
989   SmallVector<unsigned, 8> InputOps;
990 
991   // FIXME2: Could easily generalize this to support multiple inputs and outputs
992   // to the SDNodeXForm.  For now we just support one input and one output like
993   // the old instruction selector.
994   assert(N.getNumChildren() == 1);
995   EmitResultOperand(N.getChild(0), InputOps);
996 
997   // The input currently must have produced exactly one result.
998   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
999 
1000   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N.getOperator()));
1001   ResultOps.push_back(NextRecordedOperandNo++);
1002 }
1003 
EmitResultOperand(const TreePatternNode & N,SmallVectorImpl<unsigned> & ResultOps)1004 void MatcherGen::EmitResultOperand(const TreePatternNode &N,
1005                                    SmallVectorImpl<unsigned> &ResultOps) {
1006   // This is something selected from the pattern we matched.
1007   if (!N.getName().empty())
1008     return EmitResultOfNamedOperand(N, ResultOps);
1009 
1010   if (N.isLeaf())
1011     return EmitResultLeafAsOperand(N, ResultOps);
1012 
1013   Record *OpRec = N.getOperator();
1014   if (OpRec->isSubClassOf("Instruction"))
1015     return EmitResultInstructionAsOperand(N, ResultOps);
1016   if (OpRec->isSubClassOf("SDNodeXForm"))
1017     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
1018   errs() << "Unknown result node to emit code for: " << N << '\n';
1019   PrintFatalError("Unknown node in result pattern!");
1020 }
1021 
EmitResultCode()1022 void MatcherGen::EmitResultCode() {
1023   // Patterns that match nodes with (potentially multiple) chain inputs have to
1024   // merge them together into a token factor.  This informs the generated code
1025   // what all the chained nodes are.
1026   if (!MatchedChainNodes.empty())
1027     AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
1028 
1029   // Codegen the root of the result pattern, capturing the resulting values.
1030   SmallVector<unsigned, 8> Ops;
1031   EmitResultOperand(Pattern.getDstPattern(), Ops);
1032 
1033   // At this point, we have however many values the result pattern produces.
1034   // However, the input pattern might not need all of these.  If there are
1035   // excess values at the end (such as implicit defs of condition codes etc)
1036   // just lop them off.  This doesn't need to worry about glue or chains, just
1037   // explicit results.
1038   //
1039   unsigned NumSrcResults = Pattern.getSrcPattern().getNumTypes();
1040 
1041   // If the pattern also has (implicit) results, count them as well.
1042   if (!Pattern.getDstRegs().empty()) {
1043     // If the root came from an implicit def in the instruction handling stuff,
1044     // don't re-add it.
1045     Record *HandledReg = nullptr;
1046     const TreePatternNode &DstPat = Pattern.getDstPattern();
1047     if (!DstPat.isLeaf() && DstPat.getOperator()->isSubClassOf("Instruction")) {
1048       const CodeGenTarget &CGT = CGP.getTargetInfo();
1049       CodeGenInstruction &II = CGT.getInstruction(DstPat.getOperator());
1050 
1051       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
1052         HandledReg = II.ImplicitDefs[0];
1053     }
1054 
1055     for (Record *Reg : Pattern.getDstRegs()) {
1056       if (!Reg->isSubClassOf("Register") || Reg == HandledReg)
1057         continue;
1058       ++NumSrcResults;
1059     }
1060   }
1061 
1062   SmallVector<unsigned, 8> Results(Ops);
1063 
1064   // Apply result permutation.
1065   for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern().getNumResults();
1066        ++ResNo) {
1067     Results[ResNo] = Ops[Pattern.getDstPattern().getResultIndex(ResNo)];
1068   }
1069 
1070   Results.resize(NumSrcResults);
1071   AddMatcher(new CompleteMatchMatcher(Results, Pattern));
1072 }
1073 
1074 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1075 /// the specified variant.  If the variant number is invalid, this returns null.
ConvertPatternToMatcher(const PatternToMatch & Pattern,unsigned Variant,const CodeGenDAGPatterns & CGP)1076 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1077                                        unsigned Variant,
1078                                        const CodeGenDAGPatterns &CGP) {
1079   MatcherGen Gen(Pattern, CGP);
1080 
1081   // Generate the code for the matcher.
1082   if (Gen.EmitMatcherCode(Variant))
1083     return nullptr;
1084 
1085   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1086   // FIXME2: Split result code out to another table, and make the matcher end
1087   // with an "Emit <index>" command.  This allows result generation stuff to be
1088   // shared and factored?
1089 
1090   // If the match succeeds, then we generate Pattern.
1091   Gen.EmitResultCode();
1092 
1093   // Unconditional match.
1094   return Gen.GetMatcher();
1095 }
1096