xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1  //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  /// \file
10  /// This pass does misc. AMDGPU optimizations on IR before instruction
11  /// selection.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "AMDGPU.h"
16  #include "AMDGPUTargetMachine.h"
17  #include "SIModeRegisterDefaults.h"
18  #include "llvm/Analysis/AssumptionCache.h"
19  #include "llvm/Analysis/ConstantFolding.h"
20  #include "llvm/Analysis/TargetLibraryInfo.h"
21  #include "llvm/Analysis/UniformityAnalysis.h"
22  #include "llvm/Analysis/ValueTracking.h"
23  #include "llvm/CodeGen/TargetPassConfig.h"
24  #include "llvm/IR/Dominators.h"
25  #include "llvm/IR/IRBuilder.h"
26  #include "llvm/IR/InstVisitor.h"
27  #include "llvm/IR/IntrinsicsAMDGPU.h"
28  #include "llvm/IR/PatternMatch.h"
29  #include "llvm/InitializePasses.h"
30  #include "llvm/Pass.h"
31  #include "llvm/Support/KnownBits.h"
32  #include "llvm/Transforms/Utils/IntegerDivision.h"
33  #include "llvm/Transforms/Utils/Local.h"
34  
35  #define DEBUG_TYPE "amdgpu-codegenprepare"
36  
37  using namespace llvm;
38  using namespace llvm::PatternMatch;
39  
40  namespace {
41  
42  static cl::opt<bool> WidenLoads(
43    "amdgpu-codegenprepare-widen-constant-loads",
44    cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
45    cl::ReallyHidden,
46    cl::init(false));
47  
48  static cl::opt<bool> Widen16BitOps(
49    "amdgpu-codegenprepare-widen-16-bit-ops",
50    cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
51    cl::ReallyHidden,
52    cl::init(true));
53  
54  static cl::opt<bool>
55      BreakLargePHIs("amdgpu-codegenprepare-break-large-phis",
56                     cl::desc("Break large PHI nodes for DAGISel"),
57                     cl::ReallyHidden, cl::init(true));
58  
59  static cl::opt<bool>
60      ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis",
61                          cl::desc("For testing purposes, always break large "
62                                   "PHIs even if it isn't profitable."),
63                          cl::ReallyHidden, cl::init(false));
64  
65  static cl::opt<unsigned> BreakLargePHIsThreshold(
66      "amdgpu-codegenprepare-break-large-phis-threshold",
67      cl::desc("Minimum type size in bits for breaking large PHI nodes"),
68      cl::ReallyHidden, cl::init(32));
69  
70  static cl::opt<bool> UseMul24Intrin(
71    "amdgpu-codegenprepare-mul24",
72    cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
73    cl::ReallyHidden,
74    cl::init(true));
75  
76  // Legalize 64-bit division by using the generic IR expansion.
77  static cl::opt<bool> ExpandDiv64InIR(
78    "amdgpu-codegenprepare-expand-div64",
79    cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
80    cl::ReallyHidden,
81    cl::init(false));
82  
83  // Leave all division operations as they are. This supersedes ExpandDiv64InIR
84  // and is used for testing the legalizer.
85  static cl::opt<bool> DisableIDivExpand(
86    "amdgpu-codegenprepare-disable-idiv-expansion",
87    cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
88    cl::ReallyHidden,
89    cl::init(false));
90  
91  // Disable processing of fdiv so we can better test the backend implementations.
92  static cl::opt<bool> DisableFDivExpand(
93    "amdgpu-codegenprepare-disable-fdiv-expansion",
94    cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"),
95    cl::ReallyHidden,
96    cl::init(false));
97  
98  class AMDGPUCodeGenPrepareImpl
99      : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> {
100  public:
101    const GCNSubtarget *ST = nullptr;
102    const AMDGPUTargetMachine *TM = nullptr;
103    const TargetLibraryInfo *TLInfo = nullptr;
104    AssumptionCache *AC = nullptr;
105    DominatorTree *DT = nullptr;
106    UniformityInfo *UA = nullptr;
107    Module *Mod = nullptr;
108    const DataLayout *DL = nullptr;
109    bool HasUnsafeFPMath = false;
110    bool HasFP32DenormalFlush = false;
111    bool FlowChanged = false;
112    mutable Function *SqrtF32 = nullptr;
113    mutable Function *LdexpF32 = nullptr;
114  
115    DenseMap<const PHINode *, bool> BreakPhiNodesCache;
116  
getSqrtF32() const117    Function *getSqrtF32() const {
118      if (SqrtF32)
119        return SqrtF32;
120  
121      LLVMContext &Ctx = Mod->getContext();
122      SqrtF32 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_sqrt,
123                                          {Type::getFloatTy(Ctx)});
124      return SqrtF32;
125    }
126  
getLdexpF32() const127    Function *getLdexpF32() const {
128      if (LdexpF32)
129        return LdexpF32;
130  
131      LLVMContext &Ctx = Mod->getContext();
132      LdexpF32 = Intrinsic::getDeclaration(
133          Mod, Intrinsic::ldexp, {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)});
134      return LdexpF32;
135    }
136  
137    bool canBreakPHINode(const PHINode &I);
138  
139    /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
140    /// binary operation \p V.
141    ///
142    /// \returns Binary operation \p V.
143    /// \returns \p T's base element bit width.
144    unsigned getBaseElementBitWidth(const Type *T) const;
145  
146    /// \returns Equivalent 32 bit integer type for given type \p T. For example,
147    /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
148    /// is returned.
149    Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
150  
151    /// \returns True if binary operation \p I is a signed binary operation, false
152    /// otherwise.
153    bool isSigned(const BinaryOperator &I) const;
154  
155    /// \returns True if the condition of 'select' operation \p I comes from a
156    /// signed 'icmp' operation, false otherwise.
157    bool isSigned(const SelectInst &I) const;
158  
159    /// \returns True if type \p T needs to be promoted to 32 bit integer type,
160    /// false otherwise.
161    bool needsPromotionToI32(const Type *T) const;
162  
163    /// Return true if \p T is a legal scalar floating point type.
164    bool isLegalFloatingTy(const Type *T) const;
165  
166    /// Wrapper to pass all the arguments to computeKnownFPClass
computeKnownFPClass(const Value * V,FPClassTest Interested,const Instruction * CtxI) const167    KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested,
168                                     const Instruction *CtxI) const {
169      return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI,
170                                       DT);
171    }
172  
canIgnoreDenormalInput(const Value * V,const Instruction * CtxI) const173    bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const {
174      return HasFP32DenormalFlush ||
175             computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal();
176    }
177  
178    /// Promotes uniform binary operation \p I to equivalent 32 bit binary
179    /// operation.
180    ///
181    /// \details \p I's base element bit width must be greater than 1 and less
182    /// than or equal 16. Promotion is done by sign or zero extending operands to
183    /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
184    /// truncating the result of 32 bit binary operation back to \p I's original
185    /// type. Division operation is not promoted.
186    ///
187    /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
188    /// false otherwise.
189    bool promoteUniformOpToI32(BinaryOperator &I) const;
190  
191    /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
192    ///
193    /// \details \p I's base element bit width must be greater than 1 and less
194    /// than or equal 16. Promotion is done by sign or zero extending operands to
195    /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
196    ///
197    /// \returns True.
198    bool promoteUniformOpToI32(ICmpInst &I) const;
199  
200    /// Promotes uniform 'select' operation \p I to 32 bit 'select'
201    /// operation.
202    ///
203    /// \details \p I's base element bit width must be greater than 1 and less
204    /// than or equal 16. Promotion is done by sign or zero extending operands to
205    /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
206    /// result of 32 bit 'select' operation back to \p I's original type.
207    ///
208    /// \returns True.
209    bool promoteUniformOpToI32(SelectInst &I) const;
210  
211    /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
212    /// intrinsic.
213    ///
214    /// \details \p I's base element bit width must be greater than 1 and less
215    /// than or equal 16. Promotion is done by zero extending the operand to 32
216    /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
217    /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
218    /// shift amount is 32 minus \p I's base element bit width), and truncating
219    /// the result of the shift operation back to \p I's original type.
220    ///
221    /// \returns True.
222    bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
223  
224    /// \returns The minimum number of bits needed to store the value of \Op as an
225    /// unsigned integer. Truncating to this size and then zero-extending to
226    /// the original will not change the value.
227    unsigned numBitsUnsigned(Value *Op) const;
228  
229    /// \returns The minimum number of bits needed to store the value of \Op as a
230    /// signed integer. Truncating to this size and then sign-extending to
231    /// the original size will not change the value.
232    unsigned numBitsSigned(Value *Op) const;
233  
234    /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
235    /// SelectionDAG has an issue where an and asserting the bits are known
236    bool replaceMulWithMul24(BinaryOperator &I) const;
237  
238    /// Perform same function as equivalently named function in DAGCombiner. Since
239    /// we expand some divisions here, we need to perform this before obscuring.
240    bool foldBinOpIntoSelect(BinaryOperator &I) const;
241  
242    bool divHasSpecialOptimization(BinaryOperator &I,
243                                   Value *Num, Value *Den) const;
244    int getDivNumBits(BinaryOperator &I,
245                      Value *Num, Value *Den,
246                      unsigned AtLeast, bool Signed) const;
247  
248    /// Expands 24 bit div or rem.
249    Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
250                          Value *Num, Value *Den,
251                          bool IsDiv, bool IsSigned) const;
252  
253    Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
254                              Value *Num, Value *Den, unsigned NumBits,
255                              bool IsDiv, bool IsSigned) const;
256  
257    /// Expands 32 bit div or rem.
258    Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
259                          Value *Num, Value *Den) const;
260  
261    Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
262                          Value *Num, Value *Den) const;
263    void expandDivRem64(BinaryOperator &I) const;
264  
265    /// Widen a scalar load.
266    ///
267    /// \details \p Widen scalar load for uniform, small type loads from constant
268    //  memory / to a full 32-bits and then truncate the input to allow a scalar
269    //  load instead of a vector load.
270    //
271    /// \returns True.
272  
273    bool canWidenScalarExtLoad(LoadInst &I) const;
274  
275    Value *matchFractPat(IntrinsicInst &I);
276    Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg);
277  
278    bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF,
279                            FastMathFlags SqrtFMF) const;
280  
281    Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den,
282                           FastMathFlags DivFMF, FastMathFlags SqrtFMF,
283                           const Instruction *CtxI) const;
284  
285    Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den,
286                           FastMathFlags FMF, const Instruction *CtxI) const;
287    Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den,
288                                float ReqdAccuracy) const;
289  
290    Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den,
291                            FastMathFlags DivFMF, FastMathFlags SqrtFMF,
292                            Value *RsqOp, const Instruction *FDiv,
293                            float ReqdAccuracy) const;
294  
295    std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder,
296                                                Value *Src) const;
297  
298    Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src,
299                           bool IsNegative) const;
300    Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS,
301                        FastMathFlags FMF) const;
302    Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src,
303                            FastMathFlags FMF) const;
304  
305  public:
306    bool visitFDiv(BinaryOperator &I);
307  
visitInstruction(Instruction & I)308    bool visitInstruction(Instruction &I) { return false; }
309    bool visitBinaryOperator(BinaryOperator &I);
310    bool visitLoadInst(LoadInst &I);
311    bool visitICmpInst(ICmpInst &I);
312    bool visitSelectInst(SelectInst &I);
313    bool visitPHINode(PHINode &I);
314    bool visitAddrSpaceCastInst(AddrSpaceCastInst &I);
315  
316    bool visitIntrinsicInst(IntrinsicInst &I);
317    bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
318    bool visitMinNum(IntrinsicInst &I);
319    bool visitSqrt(IntrinsicInst &I);
320    bool run(Function &F);
321  };
322  
323  class AMDGPUCodeGenPrepare : public FunctionPass {
324  private:
325    AMDGPUCodeGenPrepareImpl Impl;
326  
327  public:
328    static char ID;
AMDGPUCodeGenPrepare()329    AMDGPUCodeGenPrepare() : FunctionPass(ID) {
330      initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry());
331    }
getAnalysisUsage(AnalysisUsage & AU) const332    void getAnalysisUsage(AnalysisUsage &AU) const override {
333      AU.addRequired<AssumptionCacheTracker>();
334      AU.addRequired<UniformityInfoWrapperPass>();
335      AU.addRequired<TargetLibraryInfoWrapperPass>();
336  
337      // FIXME: Division expansion needs to preserve the dominator tree.
338      if (!ExpandDiv64InIR)
339        AU.setPreservesAll();
340    }
341    bool runOnFunction(Function &F) override;
342    bool doInitialization(Module &M) override;
getPassName() const343    StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
344  };
345  
346  } // end anonymous namespace
347  
run(Function & F)348  bool AMDGPUCodeGenPrepareImpl::run(Function &F) {
349    BreakPhiNodesCache.clear();
350    bool MadeChange = false;
351  
352    Function::iterator NextBB;
353    for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
354      BasicBlock *BB = &*FI;
355      NextBB = std::next(FI);
356  
357      BasicBlock::iterator Next;
358      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
359           I = Next) {
360        Next = std::next(I);
361  
362        MadeChange |= visit(*I);
363  
364        if (Next != E) { // Control flow changed
365          BasicBlock *NextInstBB = Next->getParent();
366          if (NextInstBB != BB) {
367            BB = NextInstBB;
368            E = BB->end();
369            FE = F.end();
370          }
371        }
372      }
373    }
374    return MadeChange;
375  }
376  
getBaseElementBitWidth(const Type * T) const377  unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const {
378    assert(needsPromotionToI32(T) && "T does not need promotion to i32");
379  
380    if (T->isIntegerTy())
381      return T->getIntegerBitWidth();
382    return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
383  }
384  
getI32Ty(IRBuilder<> & B,const Type * T) const385  Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const {
386    assert(needsPromotionToI32(T) && "T does not need promotion to i32");
387  
388    if (T->isIntegerTy())
389      return B.getInt32Ty();
390    return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
391  }
392  
isSigned(const BinaryOperator & I) const393  bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const {
394    return I.getOpcode() == Instruction::AShr ||
395        I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
396  }
397  
isSigned(const SelectInst & I) const398  bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const {
399    return isa<ICmpInst>(I.getOperand(0)) ?
400        cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
401  }
402  
needsPromotionToI32(const Type * T) const403  bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const {
404    if (!Widen16BitOps)
405      return false;
406  
407    const IntegerType *IntTy = dyn_cast<IntegerType>(T);
408    if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
409      return true;
410  
411    if (const VectorType *VT = dyn_cast<VectorType>(T)) {
412      // TODO: The set of packed operations is more limited, so may want to
413      // promote some anyway.
414      if (ST->hasVOP3PInsts())
415        return false;
416  
417      return needsPromotionToI32(VT->getElementType());
418    }
419  
420    return false;
421  }
422  
isLegalFloatingTy(const Type * Ty) const423  bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const {
424    return Ty->isFloatTy() || Ty->isDoubleTy() ||
425           (Ty->isHalfTy() && ST->has16BitInsts());
426  }
427  
428  // Return true if the op promoted to i32 should have nsw set.
promotedOpIsNSW(const Instruction & I)429  static bool promotedOpIsNSW(const Instruction &I) {
430    switch (I.getOpcode()) {
431    case Instruction::Shl:
432    case Instruction::Add:
433    case Instruction::Sub:
434      return true;
435    case Instruction::Mul:
436      return I.hasNoUnsignedWrap();
437    default:
438      return false;
439    }
440  }
441  
442  // Return true if the op promoted to i32 should have nuw set.
promotedOpIsNUW(const Instruction & I)443  static bool promotedOpIsNUW(const Instruction &I) {
444    switch (I.getOpcode()) {
445    case Instruction::Shl:
446    case Instruction::Add:
447    case Instruction::Mul:
448      return true;
449    case Instruction::Sub:
450      return I.hasNoUnsignedWrap();
451    default:
452      return false;
453    }
454  }
455  
canWidenScalarExtLoad(LoadInst & I) const456  bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const {
457    Type *Ty = I.getType();
458    const DataLayout &DL = Mod->getDataLayout();
459    int TySize = DL.getTypeSizeInBits(Ty);
460    Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
461  
462    return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I);
463  }
464  
promoteUniformOpToI32(BinaryOperator & I) const465  bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const {
466    assert(needsPromotionToI32(I.getType()) &&
467           "I does not need promotion to i32");
468  
469    if (I.getOpcode() == Instruction::SDiv ||
470        I.getOpcode() == Instruction::UDiv ||
471        I.getOpcode() == Instruction::SRem ||
472        I.getOpcode() == Instruction::URem)
473      return false;
474  
475    IRBuilder<> Builder(&I);
476    Builder.SetCurrentDebugLocation(I.getDebugLoc());
477  
478    Type *I32Ty = getI32Ty(Builder, I.getType());
479    Value *ExtOp0 = nullptr;
480    Value *ExtOp1 = nullptr;
481    Value *ExtRes = nullptr;
482    Value *TruncRes = nullptr;
483  
484    if (isSigned(I)) {
485      ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
486      ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
487    } else {
488      ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
489      ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
490    }
491  
492    ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
493    if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
494      if (promotedOpIsNSW(cast<Instruction>(I)))
495        Inst->setHasNoSignedWrap();
496  
497      if (promotedOpIsNUW(cast<Instruction>(I)))
498        Inst->setHasNoUnsignedWrap();
499  
500      if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
501        Inst->setIsExact(ExactOp->isExact());
502    }
503  
504    TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
505  
506    I.replaceAllUsesWith(TruncRes);
507    I.eraseFromParent();
508  
509    return true;
510  }
511  
promoteUniformOpToI32(ICmpInst & I) const512  bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const {
513    assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
514           "I does not need promotion to i32");
515  
516    IRBuilder<> Builder(&I);
517    Builder.SetCurrentDebugLocation(I.getDebugLoc());
518  
519    Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
520    Value *ExtOp0 = nullptr;
521    Value *ExtOp1 = nullptr;
522    Value *NewICmp  = nullptr;
523  
524    if (I.isSigned()) {
525      ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
526      ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
527    } else {
528      ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
529      ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
530    }
531    NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
532  
533    I.replaceAllUsesWith(NewICmp);
534    I.eraseFromParent();
535  
536    return true;
537  }
538  
promoteUniformOpToI32(SelectInst & I) const539  bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const {
540    assert(needsPromotionToI32(I.getType()) &&
541           "I does not need promotion to i32");
542  
543    IRBuilder<> Builder(&I);
544    Builder.SetCurrentDebugLocation(I.getDebugLoc());
545  
546    Type *I32Ty = getI32Ty(Builder, I.getType());
547    Value *ExtOp1 = nullptr;
548    Value *ExtOp2 = nullptr;
549    Value *ExtRes = nullptr;
550    Value *TruncRes = nullptr;
551  
552    if (isSigned(I)) {
553      ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
554      ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
555    } else {
556      ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
557      ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
558    }
559    ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
560    TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
561  
562    I.replaceAllUsesWith(TruncRes);
563    I.eraseFromParent();
564  
565    return true;
566  }
567  
promoteUniformBitreverseToI32(IntrinsicInst & I) const568  bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32(
569      IntrinsicInst &I) const {
570    assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
571           "I must be bitreverse intrinsic");
572    assert(needsPromotionToI32(I.getType()) &&
573           "I does not need promotion to i32");
574  
575    IRBuilder<> Builder(&I);
576    Builder.SetCurrentDebugLocation(I.getDebugLoc());
577  
578    Type *I32Ty = getI32Ty(Builder, I.getType());
579    Function *I32 =
580        Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
581    Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
582    Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
583    Value *LShrOp =
584        Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
585    Value *TruncRes =
586        Builder.CreateTrunc(LShrOp, I.getType());
587  
588    I.replaceAllUsesWith(TruncRes);
589    I.eraseFromParent();
590  
591    return true;
592  }
593  
numBitsUnsigned(Value * Op) const594  unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const {
595    return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits();
596  }
597  
numBitsSigned(Value * Op) const598  unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const {
599    return ComputeMaxSignificantBits(Op, *DL, 0, AC);
600  }
601  
extractValues(IRBuilder<> & Builder,SmallVectorImpl<Value * > & Values,Value * V)602  static void extractValues(IRBuilder<> &Builder,
603                            SmallVectorImpl<Value *> &Values, Value *V) {
604    auto *VT = dyn_cast<FixedVectorType>(V->getType());
605    if (!VT) {
606      Values.push_back(V);
607      return;
608    }
609  
610    for (int I = 0, E = VT->getNumElements(); I != E; ++I)
611      Values.push_back(Builder.CreateExtractElement(V, I));
612  }
613  
insertValues(IRBuilder<> & Builder,Type * Ty,SmallVectorImpl<Value * > & Values)614  static Value *insertValues(IRBuilder<> &Builder,
615                             Type *Ty,
616                             SmallVectorImpl<Value *> &Values) {
617    if (!Ty->isVectorTy()) {
618      assert(Values.size() == 1);
619      return Values[0];
620    }
621  
622    Value *NewVal = PoisonValue::get(Ty);
623    for (int I = 0, E = Values.size(); I != E; ++I)
624      NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
625  
626    return NewVal;
627  }
628  
replaceMulWithMul24(BinaryOperator & I) const629  bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const {
630    if (I.getOpcode() != Instruction::Mul)
631      return false;
632  
633    Type *Ty = I.getType();
634    unsigned Size = Ty->getScalarSizeInBits();
635    if (Size <= 16 && ST->has16BitInsts())
636      return false;
637  
638    // Prefer scalar if this could be s_mul_i32
639    if (UA->isUniform(&I))
640      return false;
641  
642    Value *LHS = I.getOperand(0);
643    Value *RHS = I.getOperand(1);
644    IRBuilder<> Builder(&I);
645    Builder.SetCurrentDebugLocation(I.getDebugLoc());
646  
647    unsigned LHSBits = 0, RHSBits = 0;
648    bool IsSigned = false;
649  
650    if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 &&
651        (RHSBits = numBitsUnsigned(RHS)) <= 24) {
652      IsSigned = false;
653  
654    } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 &&
655               (RHSBits = numBitsSigned(RHS)) <= 24) {
656      IsSigned = true;
657  
658    } else
659      return false;
660  
661    SmallVector<Value *, 4> LHSVals;
662    SmallVector<Value *, 4> RHSVals;
663    SmallVector<Value *, 4> ResultVals;
664    extractValues(Builder, LHSVals, LHS);
665    extractValues(Builder, RHSVals, RHS);
666  
667    IntegerType *I32Ty = Builder.getInt32Ty();
668    IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty;
669    Type *DstTy = LHSVals[0]->getType();
670  
671    for (int I = 0, E = LHSVals.size(); I != E; ++I) {
672      Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty)
673                            : Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
674      Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty)
675                            : Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
676      Intrinsic::ID ID =
677          IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
678      Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS});
679      Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy)
680                        : Builder.CreateZExtOrTrunc(Result, DstTy);
681      ResultVals.push_back(Result);
682    }
683  
684    Value *NewVal = insertValues(Builder, Ty, ResultVals);
685    NewVal->takeName(&I);
686    I.replaceAllUsesWith(NewVal);
687    I.eraseFromParent();
688  
689    return true;
690  }
691  
692  // Find a select instruction, which may have been casted. This is mostly to deal
693  // with cases where i16 selects were promoted here to i32.
findSelectThroughCast(Value * V,CastInst * & Cast)694  static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
695    Cast = nullptr;
696    if (SelectInst *Sel = dyn_cast<SelectInst>(V))
697      return Sel;
698  
699    if ((Cast = dyn_cast<CastInst>(V))) {
700      if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
701        return Sel;
702    }
703  
704    return nullptr;
705  }
706  
foldBinOpIntoSelect(BinaryOperator & BO) const707  bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const {
708    // Don't do this unless the old select is going away. We want to eliminate the
709    // binary operator, not replace a binop with a select.
710    int SelOpNo = 0;
711  
712    CastInst *CastOp;
713  
714    // TODO: Should probably try to handle some cases with multiple
715    // users. Duplicating the select may be profitable for division.
716    SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
717    if (!Sel || !Sel->hasOneUse()) {
718      SelOpNo = 1;
719      Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
720    }
721  
722    if (!Sel || !Sel->hasOneUse())
723      return false;
724  
725    Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
726    Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
727    Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
728    if (!CBO || !CT || !CF)
729      return false;
730  
731    if (CastOp) {
732      if (!CastOp->hasOneUse())
733        return false;
734      CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
735      CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
736    }
737  
738    // TODO: Handle special 0/-1 cases DAG combine does, although we only really
739    // need to handle divisions here.
740    Constant *FoldedT = SelOpNo ?
741      ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
742      ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
743    if (!FoldedT || isa<ConstantExpr>(FoldedT))
744      return false;
745  
746    Constant *FoldedF = SelOpNo ?
747      ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
748      ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
749    if (!FoldedF || isa<ConstantExpr>(FoldedF))
750      return false;
751  
752    IRBuilder<> Builder(&BO);
753    Builder.SetCurrentDebugLocation(BO.getDebugLoc());
754    if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
755      Builder.setFastMathFlags(FPOp->getFastMathFlags());
756  
757    Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
758                                            FoldedT, FoldedF);
759    NewSelect->takeName(&BO);
760    BO.replaceAllUsesWith(NewSelect);
761    BO.eraseFromParent();
762    if (CastOp)
763      CastOp->eraseFromParent();
764    Sel->eraseFromParent();
765    return true;
766  }
767  
768  std::pair<Value *, Value *>
getFrexpResults(IRBuilder<> & Builder,Value * Src) const769  AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder,
770                                            Value *Src) const {
771    Type *Ty = Src->getType();
772    Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp,
773                                           {Ty, Builder.getInt32Ty()}, Src);
774    Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0});
775  
776    // Bypass the bug workaround for the exponent result since it doesn't matter.
777    // TODO: Does the bug workaround even really need to consider the exponent
778    // result? It's unspecified by the spec.
779  
780    Value *FrexpExp =
781        ST->hasFractBug()
782            ? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp,
783                                      {Builder.getInt32Ty(), Ty}, Src)
784            : Builder.CreateExtractValue(Frexp, {1});
785    return {FrexpMant, FrexpExp};
786  }
787  
788  /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals.
emitRcpIEEE1ULP(IRBuilder<> & Builder,Value * Src,bool IsNegative) const789  Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder,
790                                                   Value *Src,
791                                                   bool IsNegative) const {
792    // Same as for 1.0, but expand the sign out of the constant.
793    // -1.0 / x -> rcp (fneg x)
794    if (IsNegative)
795      Src = Builder.CreateFNeg(Src);
796  
797    // The rcp instruction doesn't support denormals, so scale the input
798    // out of the denormal range and convert at the end.
799    //
800    // Expand as 2^-n * (1.0 / (x * 2^n))
801  
802    // TODO: Skip scaling if input is known never denormal and the input
803    // range won't underflow to denormal. The hard part is knowing the
804    // result. We need a range check, the result could be denormal for
805    // 0x1p+126 < den <= 0x1p+127.
806    auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src);
807    Value *ScaleFactor = Builder.CreateNeg(FrexpExp);
808    Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant);
809    return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor});
810  }
811  
812  /// Emit a 2ulp expansion for fdiv by using frexp for input scaling.
emitFrexpDiv(IRBuilder<> & Builder,Value * LHS,Value * RHS,FastMathFlags FMF) const813  Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS,
814                                                Value *RHS,
815                                                FastMathFlags FMF) const {
816    // If we have have to work around the fract/frexp bug, we're worse off than
817    // using the fdiv.fast expansion. The full safe expansion is faster if we have
818    // fast FMA.
819    if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() &&
820        (!FMF.noNaNs() || !FMF.noInfs()))
821      return nullptr;
822  
823    // We're scaling the LHS to avoid a denormal input, and scale the denominator
824    // to avoid large values underflowing the result.
825    auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS);
826  
827    Value *Rcp =
828        Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS);
829  
830    auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS);
831    Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp);
832  
833    // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the
834    // result.
835    Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS);
836    return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff});
837  }
838  
839  /// Emit a sqrt that handles denormals and is accurate to 2ulp.
emitSqrtIEEE2ULP(IRBuilder<> & Builder,Value * Src,FastMathFlags FMF) const840  Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder,
841                                                    Value *Src,
842                                                    FastMathFlags FMF) const {
843    Type *Ty = Src->getType();
844    APFloat SmallestNormal =
845        APFloat::getSmallestNormalized(Ty->getFltSemantics());
846    Value *NeedScale =
847        Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal));
848  
849    ConstantInt *Zero = Builder.getInt32(0);
850    Value *InputScaleFactor =
851        Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero);
852  
853    Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor});
854  
855    Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled);
856  
857    Value *OutputScaleFactor =
858        Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero);
859    return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor});
860  }
861  
862  /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals.
emitRsqIEEE1ULP(IRBuilder<> & Builder,Value * Src,bool IsNegative)863  static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src,
864                                bool IsNegative) {
865    // bool need_scale = x < 0x1p-126f;
866    // float input_scale = need_scale ? 0x1.0p+24f : 1.0f;
867    // float output_scale = need_scale ? 0x1.0p+12f : 1.0f;
868    // rsq(x * input_scale) * output_scale;
869  
870    Type *Ty = Src->getType();
871    APFloat SmallestNormal =
872        APFloat::getSmallestNormalized(Ty->getFltSemantics());
873    Value *NeedScale =
874        Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal));
875    Constant *One = ConstantFP::get(Ty, 1.0);
876    Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24);
877    Constant *OutputScale =
878        ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12);
879  
880    Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One);
881  
882    Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor);
883    Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput);
884    Value *OutputScaleFactor = Builder.CreateSelect(
885        NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One);
886  
887    return Builder.CreateFMul(Rsq, OutputScaleFactor);
888  }
889  
canOptimizeWithRsq(const FPMathOperator * SqrtOp,FastMathFlags DivFMF,FastMathFlags SqrtFMF) const890  bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp,
891                                                    FastMathFlags DivFMF,
892                                                    FastMathFlags SqrtFMF) const {
893    // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp.
894    if (!DivFMF.allowContract() || !SqrtFMF.allowContract())
895      return false;
896  
897    // v_rsq_f32 gives 1ulp
898    return SqrtFMF.approxFunc() || HasUnsafeFPMath ||
899           SqrtOp->getFPAccuracy() >= 1.0f;
900  }
901  
optimizeWithRsq(IRBuilder<> & Builder,Value * Num,Value * Den,const FastMathFlags DivFMF,const FastMathFlags SqrtFMF,const Instruction * CtxI) const902  Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq(
903      IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF,
904      const FastMathFlags SqrtFMF, const Instruction *CtxI) const {
905    // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp.
906    assert(DivFMF.allowContract() && SqrtFMF.allowContract());
907  
908    // rsq_f16 is accurate to 0.51 ulp.
909    // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
910    // rsq_f64 is never accurate.
911    const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num);
912    if (!CLHS)
913      return nullptr;
914  
915    assert(Den->getType()->isFloatTy());
916  
917    bool IsNegative = false;
918  
919    // TODO: Handle other numerator values with arcp.
920    if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) {
921      // Add in the sqrt flags.
922      IRBuilder<>::FastMathFlagGuard Guard(Builder);
923      Builder.setFastMathFlags(DivFMF | SqrtFMF);
924  
925      if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath ||
926          canIgnoreDenormalInput(Den, CtxI)) {
927        Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den);
928        // -1.0 / sqrt(x) -> fneg(rsq(x))
929        return IsNegative ? Builder.CreateFNeg(Result) : Result;
930      }
931  
932      return emitRsqIEEE1ULP(Builder, Den, IsNegative);
933    }
934  
935    return nullptr;
936  }
937  
938  // Optimize fdiv with rcp:
939  //
940  // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
941  //               allowed with unsafe-fp-math or afn.
942  //
943  // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0
944  Value *
optimizeWithRcp(IRBuilder<> & Builder,Value * Num,Value * Den,FastMathFlags FMF,const Instruction * CtxI) const945  AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num,
946                                            Value *Den, FastMathFlags FMF,
947                                            const Instruction *CtxI) const {
948    // rcp_f16 is accurate to 0.51 ulp.
949    // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
950    // rcp_f64 is never accurate.
951    assert(Den->getType()->isFloatTy());
952  
953    if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
954      bool IsNegative = false;
955      if (CLHS->isExactlyValue(1.0) ||
956          (IsNegative = CLHS->isExactlyValue(-1.0))) {
957        Value *Src = Den;
958  
959        if (HasFP32DenormalFlush || FMF.approxFunc()) {
960          // -1.0 / x -> 1.0 / fneg(x)
961          if (IsNegative)
962            Src = Builder.CreateFNeg(Src);
963  
964          // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
965          // the CI documentation has a worst case error of 1 ulp.
966          // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK
967          // to use it as long as we aren't trying to use denormals.
968          //
969          // v_rcp_f16 and v_rsq_f16 DO support denormals.
970  
971          // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
972          //       insert rsq intrinsic here.
973  
974          // 1.0 / x -> rcp(x)
975          return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src);
976        }
977  
978        // TODO: If the input isn't denormal, and we know the input exponent isn't
979        // big enough to introduce a denormal we can avoid the scaling.
980        return emitRcpIEEE1ULP(Builder, Src, IsNegative);
981      }
982    }
983  
984    if (FMF.allowReciprocal()) {
985      // x / y -> x * (1.0 / y)
986  
987      // TODO: Could avoid denormal scaling and use raw rcp if we knew the output
988      // will never underflow.
989      if (HasFP32DenormalFlush || FMF.approxFunc()) {
990        Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den);
991        return Builder.CreateFMul(Num, Recip);
992      }
993  
994      Value *Recip = emitRcpIEEE1ULP(Builder, Den, false);
995      return Builder.CreateFMul(Num, Recip);
996    }
997  
998    return nullptr;
999  }
1000  
1001  // optimize with fdiv.fast:
1002  //
1003  // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
1004  //
1005  // 1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
1006  //
1007  // NOTE: optimizeWithRcp should be tried first because rcp is the preference.
optimizeWithFDivFast(IRBuilder<> & Builder,Value * Num,Value * Den,float ReqdAccuracy) const1008  Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast(
1009      IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const {
1010    // fdiv.fast can achieve 2.5 ULP accuracy.
1011    if (ReqdAccuracy < 2.5f)
1012      return nullptr;
1013  
1014    // Only have fdiv.fast for f32.
1015    assert(Den->getType()->isFloatTy());
1016  
1017    bool NumIsOne = false;
1018    if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
1019      if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
1020        NumIsOne = true;
1021    }
1022  
1023    // fdiv does not support denormals. But 1.0/x is always fine to use it.
1024    //
1025    // TODO: This works for any value with a specific known exponent range, don't
1026    // just limit to constant 1.
1027    if (!HasFP32DenormalFlush && !NumIsOne)
1028      return nullptr;
1029  
1030    return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den});
1031  }
1032  
visitFDivElement(IRBuilder<> & Builder,Value * Num,Value * Den,FastMathFlags DivFMF,FastMathFlags SqrtFMF,Value * RsqOp,const Instruction * FDivInst,float ReqdDivAccuracy) const1033  Value *AMDGPUCodeGenPrepareImpl::visitFDivElement(
1034      IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF,
1035      FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst,
1036      float ReqdDivAccuracy) const {
1037    if (RsqOp) {
1038      Value *Rsq =
1039          optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst);
1040      if (Rsq)
1041        return Rsq;
1042    }
1043  
1044    Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst);
1045    if (Rcp)
1046      return Rcp;
1047  
1048    // In the basic case fdiv_fast has the same instruction count as the frexp div
1049    // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can
1050    // potentially be fused into a user. Also, materialization of the constants
1051    // can be reused for multiple instances.
1052    Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy);
1053    if (FDivFast)
1054      return FDivFast;
1055  
1056    return emitFrexpDiv(Builder, Num, Den, DivFMF);
1057  }
1058  
1059  // Optimizations is performed based on fpmath, fast math flags as well as
1060  // denormals to optimize fdiv with either rcp or fdiv.fast.
1061  //
1062  // With rcp:
1063  //   1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
1064  //                 allowed with unsafe-fp-math or afn.
1065  //
1066  //   a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
1067  //
1068  // With fdiv.fast:
1069  //   a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
1070  //
1071  //   1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
1072  //
1073  // NOTE: rcp is the preference in cases that both are legal.
visitFDiv(BinaryOperator & FDiv)1074  bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) {
1075    if (DisableFDivExpand)
1076      return false;
1077  
1078    Type *Ty = FDiv.getType()->getScalarType();
1079    if (!Ty->isFloatTy())
1080      return false;
1081  
1082    // The f64 rcp/rsq approximations are pretty inaccurate. We can do an
1083    // expansion around them in codegen. f16 is good enough to always use.
1084  
1085    const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
1086    const FastMathFlags DivFMF = FPOp->getFastMathFlags();
1087    const float ReqdAccuracy = FPOp->getFPAccuracy();
1088  
1089    FastMathFlags SqrtFMF;
1090  
1091    Value *Num = FDiv.getOperand(0);
1092    Value *Den = FDiv.getOperand(1);
1093  
1094    Value *RsqOp = nullptr;
1095    auto *DenII = dyn_cast<IntrinsicInst>(Den);
1096    if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt &&
1097        DenII->hasOneUse()) {
1098      const auto *SqrtOp = cast<FPMathOperator>(DenII);
1099      SqrtFMF = SqrtOp->getFastMathFlags();
1100      if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF))
1101        RsqOp = SqrtOp->getOperand(0);
1102    }
1103  
1104    // Inaccurate rcp is allowed with unsafe-fp-math or afn.
1105    //
1106    // Defer to codegen to handle this.
1107    //
1108    // TODO: Decide on an interpretation for interactions between afn + arcp +
1109    // !fpmath, and make it consistent between here and codegen. For now, defer
1110    // expansion of afn to codegen. The current interpretation is so aggressive we
1111    // don't need any pre-consideration here when we have better information. A
1112    // more conservative interpretation could use handling here.
1113    const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc();
1114    if (!RsqOp && AllowInaccurateRcp)
1115      return false;
1116  
1117    // Defer the correct implementations to codegen.
1118    if (ReqdAccuracy < 1.0f)
1119      return false;
1120  
1121    IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
1122    Builder.setFastMathFlags(DivFMF);
1123    Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
1124  
1125    SmallVector<Value *, 4> NumVals;
1126    SmallVector<Value *, 4> DenVals;
1127    SmallVector<Value *, 4> RsqDenVals;
1128    extractValues(Builder, NumVals, Num);
1129    extractValues(Builder, DenVals, Den);
1130  
1131    if (RsqOp)
1132      extractValues(Builder, RsqDenVals, RsqOp);
1133  
1134    SmallVector<Value *, 4> ResultVals(NumVals.size());
1135    for (int I = 0, E = NumVals.size(); I != E; ++I) {
1136      Value *NumElt = NumVals[I];
1137      Value *DenElt = DenVals[I];
1138      Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr;
1139  
1140      Value *NewElt =
1141          visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt,
1142                           cast<Instruction>(FPOp), ReqdAccuracy);
1143      if (!NewElt) {
1144        // Keep the original, but scalarized.
1145  
1146        // This has the unfortunate side effect of sometimes scalarizing when
1147        // we're not going to do anything.
1148        NewElt = Builder.CreateFDiv(NumElt, DenElt);
1149        if (auto *NewEltInst = dyn_cast<Instruction>(NewElt))
1150          NewEltInst->copyMetadata(FDiv);
1151      }
1152  
1153      ResultVals[I] = NewElt;
1154    }
1155  
1156    Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals);
1157  
1158    if (NewVal) {
1159      FDiv.replaceAllUsesWith(NewVal);
1160      NewVal->takeName(&FDiv);
1161      RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo);
1162    }
1163  
1164    return true;
1165  }
1166  
hasUnsafeFPMath(const Function & F)1167  static bool hasUnsafeFPMath(const Function &F) {
1168    Attribute Attr = F.getFnAttribute("unsafe-fp-math");
1169    return Attr.getValueAsBool();
1170  }
1171  
getMul64(IRBuilder<> & Builder,Value * LHS,Value * RHS)1172  static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
1173                                            Value *LHS, Value *RHS) {
1174    Type *I32Ty = Builder.getInt32Ty();
1175    Type *I64Ty = Builder.getInt64Ty();
1176  
1177    Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
1178    Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
1179    Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
1180    Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
1181    Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
1182    Hi = Builder.CreateTrunc(Hi, I32Ty);
1183    return std::pair(Lo, Hi);
1184  }
1185  
getMulHu(IRBuilder<> & Builder,Value * LHS,Value * RHS)1186  static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
1187    return getMul64(Builder, LHS, RHS).second;
1188  }
1189  
1190  /// Figure out how many bits are really needed for this division. \p AtLeast is
1191  /// an optimization hint to bypass the second ComputeNumSignBits call if we the
1192  /// first one is insufficient. Returns -1 on failure.
getDivNumBits(BinaryOperator & I,Value * Num,Value * Den,unsigned AtLeast,bool IsSigned) const1193  int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num,
1194                                              Value *Den, unsigned AtLeast,
1195                                              bool IsSigned) const {
1196    const DataLayout &DL = Mod->getDataLayout();
1197    unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
1198    if (LHSSignBits < AtLeast)
1199      return -1;
1200  
1201    unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
1202    if (RHSSignBits < AtLeast)
1203      return -1;
1204  
1205    unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1206    unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
1207    if (IsSigned)
1208      ++DivBits;
1209    return DivBits;
1210  }
1211  
1212  // The fractional part of a float is enough to accurately represent up to
1213  // a 24-bit signed integer.
expandDivRem24(IRBuilder<> & Builder,BinaryOperator & I,Value * Num,Value * Den,bool IsDiv,bool IsSigned) const1214  Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder,
1215                                                  BinaryOperator &I, Value *Num,
1216                                                  Value *Den, bool IsDiv,
1217                                                  bool IsSigned) const {
1218    unsigned SSBits = Num->getType()->getScalarSizeInBits();
1219    // If Num bits <= 24, assume 0 signbits.
1220    unsigned AtLeast = (SSBits <= 24) ? 0 : (SSBits - 24 + IsSigned);
1221    int DivBits = getDivNumBits(I, Num, Den, AtLeast, IsSigned);
1222    if (DivBits == -1)
1223      return nullptr;
1224    return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
1225  }
1226  
expandDivRem24Impl(IRBuilder<> & Builder,BinaryOperator & I,Value * Num,Value * Den,unsigned DivBits,bool IsDiv,bool IsSigned) const1227  Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl(
1228      IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den,
1229      unsigned DivBits, bool IsDiv, bool IsSigned) const {
1230    Type *I32Ty = Builder.getInt32Ty();
1231    Num = Builder.CreateTrunc(Num, I32Ty);
1232    Den = Builder.CreateTrunc(Den, I32Ty);
1233  
1234    Type *F32Ty = Builder.getFloatTy();
1235    ConstantInt *One = Builder.getInt32(1);
1236    Value *JQ = One;
1237  
1238    if (IsSigned) {
1239      // char|short jq = ia ^ ib;
1240      JQ = Builder.CreateXor(Num, Den);
1241  
1242      // jq = jq >> (bitsize - 2)
1243      JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
1244  
1245      // jq = jq | 0x1
1246      JQ = Builder.CreateOr(JQ, One);
1247    }
1248  
1249    // int ia = (int)LHS;
1250    Value *IA = Num;
1251  
1252    // int ib, (int)RHS;
1253    Value *IB = Den;
1254  
1255    // float fa = (float)ia;
1256    Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
1257                         : Builder.CreateUIToFP(IA, F32Ty);
1258  
1259    // float fb = (float)ib;
1260    Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
1261                         : Builder.CreateUIToFP(IB,F32Ty);
1262  
1263    Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
1264                                                  Builder.getFloatTy());
1265    Value *RCP = Builder.CreateCall(RcpDecl, { FB });
1266    Value *FQM = Builder.CreateFMul(FA, RCP);
1267  
1268    // fq = trunc(fqm);
1269    CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
1270    FQ->copyFastMathFlags(Builder.getFastMathFlags());
1271  
1272    // float fqneg = -fq;
1273    Value *FQNeg = Builder.CreateFNeg(FQ);
1274  
1275    // float fr = mad(fqneg, fb, fa);
1276    auto FMAD = !ST->hasMadMacF32Insts()
1277                    ? Intrinsic::fma
1278                    : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
1279    Value *FR = Builder.CreateIntrinsic(FMAD,
1280                                        {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
1281  
1282    // int iq = (int)fq;
1283    Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
1284                         : Builder.CreateFPToUI(FQ, I32Ty);
1285  
1286    // fr = fabs(fr);
1287    FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
1288  
1289    // fb = fabs(fb);
1290    FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
1291  
1292    // int cv = fr >= fb;
1293    Value *CV = Builder.CreateFCmpOGE(FR, FB);
1294  
1295    // jq = (cv ? jq : 0);
1296    JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
1297  
1298    // dst = iq + jq;
1299    Value *Div = Builder.CreateAdd(IQ, JQ);
1300  
1301    Value *Res = Div;
1302    if (!IsDiv) {
1303      // Rem needs compensation, it's easier to recompute it
1304      Value *Rem = Builder.CreateMul(Div, Den);
1305      Res = Builder.CreateSub(Num, Rem);
1306    }
1307  
1308    if (DivBits != 0 && DivBits < 32) {
1309      // Extend in register from the number of bits this divide really is.
1310      if (IsSigned) {
1311        int InRegBits = 32 - DivBits;
1312  
1313        Res = Builder.CreateShl(Res, InRegBits);
1314        Res = Builder.CreateAShr(Res, InRegBits);
1315      } else {
1316        ConstantInt *TruncMask
1317          = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
1318        Res = Builder.CreateAnd(Res, TruncMask);
1319      }
1320    }
1321  
1322    return Res;
1323  }
1324  
1325  // Try to recognize special cases the DAG will emit special, better expansions
1326  // than the general expansion we do here.
1327  
1328  // TODO: It would be better to just directly handle those optimizations here.
divHasSpecialOptimization(BinaryOperator & I,Value * Num,Value * Den) const1329  bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I,
1330                                                           Value *Num,
1331                                                           Value *Den) const {
1332    if (Constant *C = dyn_cast<Constant>(Den)) {
1333      // Arbitrary constants get a better expansion as long as a wider mulhi is
1334      // legal.
1335      if (C->getType()->getScalarSizeInBits() <= 32)
1336        return true;
1337  
1338      // TODO: Sdiv check for not exact for some reason.
1339  
1340      // If there's no wider mulhi, there's only a better expansion for powers of
1341      // two.
1342      // TODO: Should really know for each vector element.
1343      if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
1344        return true;
1345  
1346      return false;
1347    }
1348  
1349    if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
1350      // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1351      if (BinOpDen->getOpcode() == Instruction::Shl &&
1352          isa<Constant>(BinOpDen->getOperand(0)) &&
1353          isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
1354                                 0, AC, &I, DT)) {
1355        return true;
1356      }
1357    }
1358  
1359    return false;
1360  }
1361  
getSign32(Value * V,IRBuilder<> & Builder,const DataLayout * DL)1362  static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
1363    // Check whether the sign can be determined statically.
1364    KnownBits Known = computeKnownBits(V, *DL);
1365    if (Known.isNegative())
1366      return Constant::getAllOnesValue(V->getType());
1367    if (Known.isNonNegative())
1368      return Constant::getNullValue(V->getType());
1369    return Builder.CreateAShr(V, Builder.getInt32(31));
1370  }
1371  
expandDivRem32(IRBuilder<> & Builder,BinaryOperator & I,Value * X,Value * Y) const1372  Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder,
1373                                                  BinaryOperator &I, Value *X,
1374                                                  Value *Y) const {
1375    Instruction::BinaryOps Opc = I.getOpcode();
1376    assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
1377           Opc == Instruction::SRem || Opc == Instruction::SDiv);
1378  
1379    FastMathFlags FMF;
1380    FMF.setFast();
1381    Builder.setFastMathFlags(FMF);
1382  
1383    if (divHasSpecialOptimization(I, X, Y))
1384      return nullptr;  // Keep it for later optimization.
1385  
1386    bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
1387    bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
1388  
1389    Type *Ty = X->getType();
1390    Type *I32Ty = Builder.getInt32Ty();
1391    Type *F32Ty = Builder.getFloatTy();
1392  
1393    if (Ty->getScalarSizeInBits() != 32) {
1394      if (IsSigned) {
1395        X = Builder.CreateSExtOrTrunc(X, I32Ty);
1396        Y = Builder.CreateSExtOrTrunc(Y, I32Ty);
1397      } else {
1398        X = Builder.CreateZExtOrTrunc(X, I32Ty);
1399        Y = Builder.CreateZExtOrTrunc(Y, I32Ty);
1400      }
1401    }
1402  
1403    if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
1404      return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
1405                        Builder.CreateZExtOrTrunc(Res, Ty);
1406    }
1407  
1408    ConstantInt *Zero = Builder.getInt32(0);
1409    ConstantInt *One = Builder.getInt32(1);
1410  
1411    Value *Sign = nullptr;
1412    if (IsSigned) {
1413      Value *SignX = getSign32(X, Builder, DL);
1414      Value *SignY = getSign32(Y, Builder, DL);
1415      // Remainder sign is the same as LHS
1416      Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
1417  
1418      X = Builder.CreateAdd(X, SignX);
1419      Y = Builder.CreateAdd(Y, SignY);
1420  
1421      X = Builder.CreateXor(X, SignX);
1422      Y = Builder.CreateXor(Y, SignY);
1423    }
1424  
1425    // The algorithm here is based on ideas from "Software Integer Division", Tom
1426    // Rodeheffer, August 2008.
1427    //
1428    // unsigned udiv(unsigned x, unsigned y) {
1429    //   // Initial estimate of inv(y). The constant is less than 2^32 to ensure
1430    //   // that this is a lower bound on inv(y), even if some of the calculations
1431    //   // round up.
1432    //   unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
1433    //
1434    //   // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
1435    //   // Empirically this is guaranteed to give a "two-y" lower bound on
1436    //   // inv(y).
1437    //   z += umulh(z, -y * z);
1438    //
1439    //   // Quotient/remainder estimate.
1440    //   unsigned q = umulh(x, z);
1441    //   unsigned r = x - q * y;
1442    //
1443    //   // Two rounds of quotient/remainder refinement.
1444    //   if (r >= y) {
1445    //     ++q;
1446    //     r -= y;
1447    //   }
1448    //   if (r >= y) {
1449    //     ++q;
1450    //     r -= y;
1451    //   }
1452    //
1453    //   return q;
1454    // }
1455  
1456    // Initial estimate of inv(y).
1457    Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
1458    Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
1459    Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
1460    Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE));
1461    Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
1462    Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
1463  
1464    // One round of UNR.
1465    Value *NegY = Builder.CreateSub(Zero, Y);
1466    Value *NegYZ = Builder.CreateMul(NegY, Z);
1467    Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
1468  
1469    // Quotient/remainder estimate.
1470    Value *Q = getMulHu(Builder, X, Z);
1471    Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
1472  
1473    // First quotient/remainder refinement.
1474    Value *Cond = Builder.CreateICmpUGE(R, Y);
1475    if (IsDiv)
1476      Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1477    R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1478  
1479    // Second quotient/remainder refinement.
1480    Cond = Builder.CreateICmpUGE(R, Y);
1481    Value *Res;
1482    if (IsDiv)
1483      Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1484    else
1485      Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1486  
1487    if (IsSigned) {
1488      Res = Builder.CreateXor(Res, Sign);
1489      Res = Builder.CreateSub(Res, Sign);
1490      Res = Builder.CreateSExtOrTrunc(Res, Ty);
1491    } else {
1492      Res = Builder.CreateZExtOrTrunc(Res, Ty);
1493    }
1494    return Res;
1495  }
1496  
shrinkDivRem64(IRBuilder<> & Builder,BinaryOperator & I,Value * Num,Value * Den) const1497  Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder,
1498                                                  BinaryOperator &I, Value *Num,
1499                                                  Value *Den) const {
1500    if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
1501      return nullptr;  // Keep it for later optimization.
1502  
1503    Instruction::BinaryOps Opc = I.getOpcode();
1504  
1505    bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
1506    bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
1507  
1508    int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
1509    if (NumDivBits == -1)
1510      return nullptr;
1511  
1512    Value *Narrowed = nullptr;
1513    if (NumDivBits <= 24) {
1514      Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
1515                                    IsDiv, IsSigned);
1516    } else if (NumDivBits <= 32) {
1517      Narrowed = expandDivRem32(Builder, I, Num, Den);
1518    }
1519  
1520    if (Narrowed) {
1521      return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
1522                        Builder.CreateZExt(Narrowed, Num->getType());
1523    }
1524  
1525    return nullptr;
1526  }
1527  
expandDivRem64(BinaryOperator & I) const1528  void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const {
1529    Instruction::BinaryOps Opc = I.getOpcode();
1530    // Do the general expansion.
1531    if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
1532      expandDivisionUpTo64Bits(&I);
1533      return;
1534    }
1535  
1536    if (Opc == Instruction::URem || Opc == Instruction::SRem) {
1537      expandRemainderUpTo64Bits(&I);
1538      return;
1539    }
1540  
1541    llvm_unreachable("not a division");
1542  }
1543  
visitBinaryOperator(BinaryOperator & I)1544  bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) {
1545    if (foldBinOpIntoSelect(I))
1546      return true;
1547  
1548    if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1549        UA->isUniform(&I) && promoteUniformOpToI32(I))
1550      return true;
1551  
1552    if (UseMul24Intrin && replaceMulWithMul24(I))
1553      return true;
1554  
1555    bool Changed = false;
1556    Instruction::BinaryOps Opc = I.getOpcode();
1557    Type *Ty = I.getType();
1558    Value *NewDiv = nullptr;
1559    unsigned ScalarSize = Ty->getScalarSizeInBits();
1560  
1561    SmallVector<BinaryOperator *, 8> Div64ToExpand;
1562  
1563    if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
1564         Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
1565        ScalarSize <= 64 &&
1566        !DisableIDivExpand) {
1567      Value *Num = I.getOperand(0);
1568      Value *Den = I.getOperand(1);
1569      IRBuilder<> Builder(&I);
1570      Builder.SetCurrentDebugLocation(I.getDebugLoc());
1571  
1572      if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1573        NewDiv = PoisonValue::get(VT);
1574  
1575        for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
1576          Value *NumEltN = Builder.CreateExtractElement(Num, N);
1577          Value *DenEltN = Builder.CreateExtractElement(Den, N);
1578  
1579          Value *NewElt;
1580          if (ScalarSize <= 32) {
1581            NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
1582            if (!NewElt)
1583              NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1584          } else {
1585            // See if this 64-bit division can be shrunk to 32/24-bits before
1586            // producing the general expansion.
1587            NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
1588            if (!NewElt) {
1589              // The general 64-bit expansion introduces control flow and doesn't
1590              // return the new value. Just insert a scalar copy and defer
1591              // expanding it.
1592              NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1593              Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
1594            }
1595          }
1596  
1597          if (auto *NewEltI = dyn_cast<Instruction>(NewElt))
1598            NewEltI->copyIRFlags(&I);
1599  
1600          NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
1601        }
1602      } else {
1603        if (ScalarSize <= 32)
1604          NewDiv = expandDivRem32(Builder, I, Num, Den);
1605        else {
1606          NewDiv = shrinkDivRem64(Builder, I, Num, Den);
1607          if (!NewDiv)
1608            Div64ToExpand.push_back(&I);
1609        }
1610      }
1611  
1612      if (NewDiv) {
1613        I.replaceAllUsesWith(NewDiv);
1614        I.eraseFromParent();
1615        Changed = true;
1616      }
1617    }
1618  
1619    if (ExpandDiv64InIR) {
1620      // TODO: We get much worse code in specially handled constant cases.
1621      for (BinaryOperator *Div : Div64ToExpand) {
1622        expandDivRem64(*Div);
1623        FlowChanged = true;
1624        Changed = true;
1625      }
1626    }
1627  
1628    return Changed;
1629  }
1630  
visitLoadInst(LoadInst & I)1631  bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) {
1632    if (!WidenLoads)
1633      return false;
1634  
1635    if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
1636         I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
1637        canWidenScalarExtLoad(I)) {
1638      IRBuilder<> Builder(&I);
1639      Builder.SetCurrentDebugLocation(I.getDebugLoc());
1640  
1641      Type *I32Ty = Builder.getInt32Ty();
1642      LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand());
1643      WidenLoad->copyMetadata(I);
1644  
1645      // If we have range metadata, we need to convert the type, and not make
1646      // assumptions about the high bits.
1647      if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
1648        ConstantInt *Lower =
1649          mdconst::extract<ConstantInt>(Range->getOperand(0));
1650  
1651        if (Lower->isNullValue()) {
1652          WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
1653        } else {
1654          Metadata *LowAndHigh[] = {
1655            ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
1656            // Don't make assumptions about the high bits.
1657            ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
1658          };
1659  
1660          WidenLoad->setMetadata(LLVMContext::MD_range,
1661                                 MDNode::get(Mod->getContext(), LowAndHigh));
1662        }
1663      }
1664  
1665      int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
1666      Type *IntNTy = Builder.getIntNTy(TySize);
1667      Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
1668      Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
1669      I.replaceAllUsesWith(ValOrig);
1670      I.eraseFromParent();
1671      return true;
1672    }
1673  
1674    return false;
1675  }
1676  
visitICmpInst(ICmpInst & I)1677  bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) {
1678    bool Changed = false;
1679  
1680    if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1681        UA->isUniform(&I))
1682      Changed |= promoteUniformOpToI32(I);
1683  
1684    return Changed;
1685  }
1686  
visitSelectInst(SelectInst & I)1687  bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) {
1688    Value *Cond = I.getCondition();
1689    Value *TrueVal = I.getTrueValue();
1690    Value *FalseVal = I.getFalseValue();
1691    Value *CmpVal;
1692    FCmpInst::Predicate Pred;
1693  
1694    if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) {
1695      if (UA->isUniform(&I))
1696        return promoteUniformOpToI32(I);
1697      return false;
1698    }
1699  
1700    // Match fract pattern with nan check.
1701    if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN())))
1702      return false;
1703  
1704    FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I);
1705    if (!FPOp)
1706      return false;
1707  
1708    IRBuilder<> Builder(&I);
1709    Builder.setFastMathFlags(FPOp->getFastMathFlags());
1710  
1711    auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal);
1712    auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal);
1713  
1714    Value *Fract = nullptr;
1715    if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse &&
1716        CmpVal == matchFractPat(*IIFalse)) {
1717      // isnan(x) ? x : fract(x)
1718      Fract = applyFractPat(Builder, CmpVal);
1719    } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue &&
1720               CmpVal == matchFractPat(*IITrue)) {
1721      // !isnan(x) ? fract(x) : x
1722      Fract = applyFractPat(Builder, CmpVal);
1723    } else
1724      return false;
1725  
1726    Fract->takeName(&I);
1727    I.replaceAllUsesWith(Fract);
1728    RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo);
1729    return true;
1730  }
1731  
areInSameBB(const Value * A,const Value * B)1732  static bool areInSameBB(const Value *A, const Value *B) {
1733    const auto *IA = dyn_cast<Instruction>(A);
1734    const auto *IB = dyn_cast<Instruction>(B);
1735    return IA && IB && IA->getParent() == IB->getParent();
1736  }
1737  
1738  // Helper for breaking large PHIs that returns true when an extractelement on V
1739  // is likely to be folded away by the DAG combiner.
isInterestingPHIIncomingValue(const Value * V)1740  static bool isInterestingPHIIncomingValue(const Value *V) {
1741    const auto *FVT = dyn_cast<FixedVectorType>(V->getType());
1742    if (!FVT)
1743      return false;
1744  
1745    const Value *CurVal = V;
1746  
1747    // Check for insertelements, keeping track of the elements covered.
1748    BitVector EltsCovered(FVT->getNumElements());
1749    while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) {
1750      const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2));
1751  
1752      // Non constant index/out of bounds index -> folding is unlikely.
1753      // The latter is more of a sanity check because canonical IR should just
1754      // have replaced those with poison.
1755      if (!Idx || Idx->getZExtValue() >= FVT->getNumElements())
1756        return false;
1757  
1758      const auto *VecSrc = IE->getOperand(0);
1759  
1760      // If the vector source is another instruction, it must be in the same basic
1761      // block. Otherwise, the DAGCombiner won't see the whole thing and is
1762      // unlikely to be able to do anything interesting here.
1763      if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE))
1764        return false;
1765  
1766      CurVal = VecSrc;
1767      EltsCovered.set(Idx->getZExtValue());
1768  
1769      // All elements covered.
1770      if (EltsCovered.all())
1771        return true;
1772    }
1773  
1774    // We either didn't find a single insertelement, or the insertelement chain
1775    // ended before all elements were covered. Check for other interesting values.
1776  
1777    // Constants are always interesting because we can just constant fold the
1778    // extractelements.
1779    if (isa<Constant>(CurVal))
1780      return true;
1781  
1782    // shufflevector is likely to be profitable if either operand is a constant,
1783    // or if either source is in the same block.
1784    // This is because shufflevector is most often lowered as a series of
1785    // insert/extract elements anyway.
1786    if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) {
1787      return isa<Constant>(SV->getOperand(1)) ||
1788             areInSameBB(SV, SV->getOperand(0)) ||
1789             areInSameBB(SV, SV->getOperand(1));
1790    }
1791  
1792    return false;
1793  }
1794  
collectPHINodes(const PHINode & I,SmallPtrSet<const PHINode *,8> & SeenPHIs)1795  static void collectPHINodes(const PHINode &I,
1796                              SmallPtrSet<const PHINode *, 8> &SeenPHIs) {
1797    const auto [It, Inserted] = SeenPHIs.insert(&I);
1798    if (!Inserted)
1799      return;
1800  
1801    for (const Value *Inc : I.incoming_values()) {
1802      if (const auto *PhiInc = dyn_cast<PHINode>(Inc))
1803        collectPHINodes(*PhiInc, SeenPHIs);
1804    }
1805  
1806    for (const User *U : I.users()) {
1807      if (const auto *PhiU = dyn_cast<PHINode>(U))
1808        collectPHINodes(*PhiU, SeenPHIs);
1809    }
1810  }
1811  
canBreakPHINode(const PHINode & I)1812  bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) {
1813    // Check in the cache first.
1814    if (const auto It = BreakPhiNodesCache.find(&I);
1815        It != BreakPhiNodesCache.end())
1816      return It->second;
1817  
1818    // We consider PHI nodes as part of "chains", so given a PHI node I, we
1819    // recursively consider all its users and incoming values that are also PHI
1820    // nodes. We then make a decision about all of those PHIs at once. Either they
1821    // all get broken up, or none of them do. That way, we avoid cases where a
1822    // single PHI is/is not broken and we end up reforming/exploding a vector
1823    // multiple times, or even worse, doing it in a loop.
1824    SmallPtrSet<const PHINode *, 8> WorkList;
1825    collectPHINodes(I, WorkList);
1826  
1827  #ifndef NDEBUG
1828    // Check that none of the PHI nodes in the worklist are in the map. If some of
1829    // them are, it means we're not good enough at collecting related PHIs.
1830    for (const PHINode *WLP : WorkList) {
1831      assert(BreakPhiNodesCache.count(WLP) == 0);
1832    }
1833  #endif
1834  
1835    // To consider a PHI profitable to break, we need to see some interesting
1836    // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist
1837    // must have one to consider all PHIs breakable.
1838    //
1839    // This threshold has been determined through performance testing.
1840    //
1841    // Note that the computation below is equivalent to
1842    //
1843    //    (unsigned)ceil((K / 3.0) * 2)
1844    //
1845    // It's simply written this way to avoid mixing integral/FP arithmetic.
1846    const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3);
1847    unsigned NumBreakablePHIs = 0;
1848    bool CanBreak = false;
1849    for (const PHINode *Cur : WorkList) {
1850      // Don't break PHIs that have no interesting incoming values. That is, where
1851      // there is no clear opportunity to fold the "extractelement" instructions
1852      // we would add.
1853      //
1854      // Note: IC does not run after this pass, so we're only interested in the
1855      // foldings that the DAG combiner can do.
1856      if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) {
1857        if (++NumBreakablePHIs >= Threshold) {
1858          CanBreak = true;
1859          break;
1860        }
1861      }
1862    }
1863  
1864    for (const PHINode *Cur : WorkList)
1865      BreakPhiNodesCache[Cur] = CanBreak;
1866  
1867    return CanBreak;
1868  }
1869  
1870  /// Helper class for "break large PHIs" (visitPHINode).
1871  ///
1872  /// This represents a slice of a PHI's incoming value, which is made up of:
1873  ///   - The type of the slice (Ty)
1874  ///   - The index in the incoming value's vector where the slice starts (Idx)
1875  ///   - The number of elements in the slice (NumElts).
1876  /// It also keeps track of the NewPHI node inserted for this particular slice.
1877  ///
1878  /// Slice examples:
1879  ///   <4 x i64> -> Split into four i64 slices.
1880  ///     -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1]
1881  ///   <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail.
1882  ///     -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1]
1883  class VectorSlice {
1884  public:
VectorSlice(Type * Ty,unsigned Idx,unsigned NumElts)1885    VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts)
1886        : Ty(Ty), Idx(Idx), NumElts(NumElts) {}
1887  
1888    Type *Ty = nullptr;
1889    unsigned Idx = 0;
1890    unsigned NumElts = 0;
1891    PHINode *NewPHI = nullptr;
1892  
1893    /// Slice \p Inc according to the information contained within this slice.
1894    /// This is cached, so if called multiple times for the same \p BB & \p Inc
1895    /// pair, it returns the same Sliced value as well.
1896    ///
1897    /// Note this *intentionally* does not return the same value for, say,
1898    /// [%bb.0, %0] & [%bb.1, %0] as:
1899    ///   - It could cause issues with dominance (e.g. if bb.1 is seen first, then
1900    ///   the value in bb.1 may not be reachable from bb.0 if it's its
1901    ///   predecessor.)
1902    ///   - We also want to make our extract instructions as local as possible so
1903    ///   the DAG has better chances of folding them out. Duplicating them like
1904    ///   that is beneficial in that regard.
1905    ///
1906    /// This is both a minor optimization to avoid creating duplicate
1907    /// instructions, but also a requirement for correctness. It is not forbidden
1908    /// for a PHI node to have the same [BB, Val] pair multiple times. If we
1909    /// returned a new value each time, those previously identical pairs would all
1910    /// have different incoming values (from the same block) and it'd cause a "PHI
1911    /// node has multiple entries for the same basic block with different incoming
1912    /// values!" verifier error.
getSlicedVal(BasicBlock * BB,Value * Inc,StringRef NewValName)1913    Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) {
1914      Value *&Res = SlicedVals[{BB, Inc}];
1915      if (Res)
1916        return Res;
1917  
1918      IRBuilder<> B(BB->getTerminator());
1919      if (Instruction *IncInst = dyn_cast<Instruction>(Inc))
1920        B.SetCurrentDebugLocation(IncInst->getDebugLoc());
1921  
1922      if (NumElts > 1) {
1923        SmallVector<int, 4> Mask;
1924        for (unsigned K = Idx; K < (Idx + NumElts); ++K)
1925          Mask.push_back(K);
1926        Res = B.CreateShuffleVector(Inc, Mask, NewValName);
1927      } else
1928        Res = B.CreateExtractElement(Inc, Idx, NewValName);
1929  
1930      return Res;
1931    }
1932  
1933  private:
1934    SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals;
1935  };
1936  
visitPHINode(PHINode & I)1937  bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) {
1938    // Break-up fixed-vector PHIs into smaller pieces.
1939    // Default threshold is 32, so it breaks up any vector that's >32 bits into
1940    // its elements, or into 32-bit pieces (for 8/16 bit elts).
1941    //
1942    // This is only helpful for DAGISel because it doesn't handle large PHIs as
1943    // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg.
1944    // With large, odd-sized PHIs we may end up needing many `build_vector`
1945    // operations with most elements being "undef". This inhibits a lot of
1946    // optimization opportunities and can result in unreasonably high register
1947    // pressure and the inevitable stack spilling.
1948    if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption)
1949      return false;
1950  
1951    FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType());
1952    if (!FVT || FVT->getNumElements() == 1 ||
1953        DL->getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold)
1954      return false;
1955  
1956    if (!ForceBreakLargePHIs && !canBreakPHINode(I))
1957      return false;
1958  
1959    std::vector<VectorSlice> Slices;
1960  
1961    Type *EltTy = FVT->getElementType();
1962    {
1963      unsigned Idx = 0;
1964      // For 8/16 bits type, don't scalarize fully but break it up into as many
1965      // 32-bit slices as we can, and scalarize the tail.
1966      const unsigned EltSize = DL->getTypeSizeInBits(EltTy);
1967      const unsigned NumElts = FVT->getNumElements();
1968      if (EltSize == 8 || EltSize == 16) {
1969        const unsigned SubVecSize = (32 / EltSize);
1970        Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize);
1971        for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End;
1972             Idx += SubVecSize)
1973          Slices.emplace_back(SubVecTy, Idx, SubVecSize);
1974      }
1975  
1976      // Scalarize all remaining elements.
1977      for (; Idx < NumElts; ++Idx)
1978        Slices.emplace_back(EltTy, Idx, 1);
1979    }
1980  
1981    assert(Slices.size() > 1);
1982  
1983    // Create one PHI per vector piece. The "VectorSlice" class takes care of
1984    // creating the necessary instruction to extract the relevant slices of each
1985    // incoming value.
1986    IRBuilder<> B(I.getParent());
1987    B.SetCurrentDebugLocation(I.getDebugLoc());
1988  
1989    unsigned IncNameSuffix = 0;
1990    for (VectorSlice &S : Slices) {
1991      // We need to reset the build on each iteration, because getSlicedVal may
1992      // have inserted something into I's BB.
1993      B.SetInsertPoint(I.getParent()->getFirstNonPHIIt());
1994      S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues());
1995  
1996      for (const auto &[Idx, BB] : enumerate(I.blocks())) {
1997        S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx),
1998                                             "largephi.extractslice" +
1999                                                 std::to_string(IncNameSuffix++)),
2000                              BB);
2001      }
2002    }
2003  
2004    // And replace this PHI with a vector of all the previous PHI values.
2005    Value *Vec = PoisonValue::get(FVT);
2006    unsigned NameSuffix = 0;
2007    for (VectorSlice &S : Slices) {
2008      const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++);
2009      if (S.NumElts > 1)
2010        Vec =
2011            B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName);
2012      else
2013        Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName);
2014    }
2015  
2016    I.replaceAllUsesWith(Vec);
2017    I.eraseFromParent();
2018    return true;
2019  }
2020  
2021  /// \param V  Value to check
2022  /// \param DL DataLayout
2023  /// \param TM TargetMachine (TODO: remove once DL contains nullptr values)
2024  /// \param AS Target Address Space
2025  /// \return true if \p V cannot be the null value of \p AS, false otherwise.
isPtrKnownNeverNull(const Value * V,const DataLayout & DL,const AMDGPUTargetMachine & TM,unsigned AS)2026  static bool isPtrKnownNeverNull(const Value *V, const DataLayout &DL,
2027                                  const AMDGPUTargetMachine &TM, unsigned AS) {
2028    // Pointer cannot be null if it's a block address, GV or alloca.
2029    // NOTE: We don't support extern_weak, but if we did, we'd need to check for
2030    // it as the symbol could be null in such cases.
2031    if (isa<BlockAddress>(V) || isa<GlobalValue>(V) || isa<AllocaInst>(V))
2032      return true;
2033  
2034    // Check nonnull arguments.
2035    if (const auto *Arg = dyn_cast<Argument>(V); Arg && Arg->hasNonNullAttr())
2036      return true;
2037  
2038    // getUnderlyingObject may have looked through another addrspacecast, although
2039    // the optimizable situations most likely folded out by now.
2040    if (AS != cast<PointerType>(V->getType())->getAddressSpace())
2041      return false;
2042  
2043    // TODO: Calls that return nonnull?
2044  
2045    // For all other things, use KnownBits.
2046    // We either use 0 or all bits set to indicate null, so check whether the
2047    // value can be zero or all ones.
2048    //
2049    // TODO: Use ValueTracking's isKnownNeverNull if it becomes aware that some
2050    // address spaces have non-zero null values.
2051    auto SrcPtrKB = computeKnownBits(V, DL);
2052    const auto NullVal = TM.getNullPointerValue(AS);
2053  
2054    assert(SrcPtrKB.getBitWidth() == DL.getPointerSizeInBits(AS));
2055    assert((NullVal == 0 || NullVal == -1) &&
2056           "don't know how to check for this null value!");
2057    return NullVal ? !SrcPtrKB.getMaxValue().isAllOnes() : SrcPtrKB.isNonZero();
2058  }
2059  
visitAddrSpaceCastInst(AddrSpaceCastInst & I)2060  bool AMDGPUCodeGenPrepareImpl::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2061    // Intrinsic doesn't support vectors, also it seems that it's often difficult
2062    // to prove that a vector cannot have any nulls in it so it's unclear if it's
2063    // worth supporting.
2064    if (I.getType()->isVectorTy())
2065      return false;
2066  
2067    // Check if this can be lowered to a amdgcn.addrspacecast.nonnull.
2068    // This is only worthwhile for casts from/to priv/local to flat.
2069    const unsigned SrcAS = I.getSrcAddressSpace();
2070    const unsigned DstAS = I.getDestAddressSpace();
2071  
2072    bool CanLower = false;
2073    if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
2074      CanLower = (DstAS == AMDGPUAS::LOCAL_ADDRESS ||
2075                  DstAS == AMDGPUAS::PRIVATE_ADDRESS);
2076    else if (DstAS == AMDGPUAS::FLAT_ADDRESS)
2077      CanLower = (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
2078                  SrcAS == AMDGPUAS::PRIVATE_ADDRESS);
2079    if (!CanLower)
2080      return false;
2081  
2082    SmallVector<const Value *, 4> WorkList;
2083    getUnderlyingObjects(I.getOperand(0), WorkList);
2084    if (!all_of(WorkList, [&](const Value *V) {
2085          return isPtrKnownNeverNull(V, *DL, *TM, SrcAS);
2086        }))
2087      return false;
2088  
2089    IRBuilder<> B(&I);
2090    auto *Intrin = B.CreateIntrinsic(
2091        I.getType(), Intrinsic::amdgcn_addrspacecast_nonnull, {I.getOperand(0)});
2092    I.replaceAllUsesWith(Intrin);
2093    I.eraseFromParent();
2094    return true;
2095  }
2096  
visitIntrinsicInst(IntrinsicInst & I)2097  bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) {
2098    switch (I.getIntrinsicID()) {
2099    case Intrinsic::bitreverse:
2100      return visitBitreverseIntrinsicInst(I);
2101    case Intrinsic::minnum:
2102      return visitMinNum(I);
2103    case Intrinsic::sqrt:
2104      return visitSqrt(I);
2105    default:
2106      return false;
2107    }
2108  }
2109  
visitBitreverseIntrinsicInst(IntrinsicInst & I)2110  bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
2111    bool Changed = false;
2112  
2113    if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
2114        UA->isUniform(&I))
2115      Changed |= promoteUniformBitreverseToI32(I);
2116  
2117    return Changed;
2118  }
2119  
2120  /// Match non-nan fract pattern.
2121  ///   minnum(fsub(x, floor(x)), nextafter(1.0, -1.0)
2122  ///
2123  /// If fract is a useful instruction for the subtarget. Does not account for the
2124  /// nan handling; the instruction has a nan check on the input value.
matchFractPat(IntrinsicInst & I)2125  Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) {
2126    if (ST->hasFractBug())
2127      return nullptr;
2128  
2129    if (I.getIntrinsicID() != Intrinsic::minnum)
2130      return nullptr;
2131  
2132    Type *Ty = I.getType();
2133    if (!isLegalFloatingTy(Ty->getScalarType()))
2134      return nullptr;
2135  
2136    Value *Arg0 = I.getArgOperand(0);
2137    Value *Arg1 = I.getArgOperand(1);
2138  
2139    const APFloat *C;
2140    if (!match(Arg1, m_APFloat(C)))
2141      return nullptr;
2142  
2143    APFloat One(1.0);
2144    bool LosesInfo;
2145    One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo);
2146  
2147    // Match nextafter(1.0, -1)
2148    One.next(true);
2149    if (One != *C)
2150      return nullptr;
2151  
2152    Value *FloorSrc;
2153    if (match(Arg0, m_FSub(m_Value(FloorSrc),
2154                           m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc)))))
2155      return FloorSrc;
2156    return nullptr;
2157  }
2158  
applyFractPat(IRBuilder<> & Builder,Value * FractArg)2159  Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder,
2160                                                 Value *FractArg) {
2161    SmallVector<Value *, 4> FractVals;
2162    extractValues(Builder, FractVals, FractArg);
2163  
2164    SmallVector<Value *, 4> ResultVals(FractVals.size());
2165  
2166    Type *Ty = FractArg->getType()->getScalarType();
2167    for (unsigned I = 0, E = FractVals.size(); I != E; ++I) {
2168      ResultVals[I] =
2169          Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]});
2170    }
2171  
2172    return insertValues(Builder, FractArg->getType(), ResultVals);
2173  }
2174  
visitMinNum(IntrinsicInst & I)2175  bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) {
2176    Value *FractArg = matchFractPat(I);
2177    if (!FractArg)
2178      return false;
2179  
2180    // Match pattern for fract intrinsic in contexts where the nan check has been
2181    // optimized out (and hope the knowledge the source can't be nan wasn't lost).
2182    if (!I.hasNoNaNs() &&
2183        !isKnownNeverNaN(FractArg, /*Depth=*/0, SimplifyQuery(*DL, TLInfo)))
2184      return false;
2185  
2186    IRBuilder<> Builder(&I);
2187    FastMathFlags FMF = I.getFastMathFlags();
2188    FMF.setNoNaNs();
2189    Builder.setFastMathFlags(FMF);
2190  
2191    Value *Fract = applyFractPat(Builder, FractArg);
2192    Fract->takeName(&I);
2193    I.replaceAllUsesWith(Fract);
2194  
2195    RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo);
2196    return true;
2197  }
2198  
isOneOrNegOne(const Value * Val)2199  static bool isOneOrNegOne(const Value *Val) {
2200    const APFloat *C;
2201    return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0;
2202  }
2203  
2204  // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way.
visitSqrt(IntrinsicInst & Sqrt)2205  bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) {
2206    Type *Ty = Sqrt.getType()->getScalarType();
2207    if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST->has16BitInsts()))
2208      return false;
2209  
2210    const FPMathOperator *FPOp = cast<const FPMathOperator>(&Sqrt);
2211    FastMathFlags SqrtFMF = FPOp->getFastMathFlags();
2212  
2213    // We're trying to handle the fast-but-not-that-fast case only. The lowering
2214    // of fast llvm.sqrt will give the raw instruction anyway.
2215    if (SqrtFMF.approxFunc() || HasUnsafeFPMath)
2216      return false;
2217  
2218    const float ReqdAccuracy = FPOp->getFPAccuracy();
2219  
2220    // Defer correctly rounded expansion to codegen.
2221    if (ReqdAccuracy < 1.0f)
2222      return false;
2223  
2224    // FIXME: This is an ugly hack for this pass using forward iteration instead
2225    // of reverse. If it worked like a normal combiner, the rsq would form before
2226    // we saw a sqrt call.
2227    auto *FDiv =
2228        dyn_cast_or_null<FPMathOperator>(Sqrt.getUniqueUndroppableUser());
2229    if (FDiv && FDiv->getOpcode() == Instruction::FDiv &&
2230        FDiv->getFPAccuracy() >= 1.0f &&
2231        canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) &&
2232        // TODO: We should also handle the arcp case for the fdiv with non-1 value
2233        isOneOrNegOne(FDiv->getOperand(0)))
2234      return false;
2235  
2236    Value *SrcVal = Sqrt.getOperand(0);
2237    bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt);
2238  
2239    // The raw instruction is 1 ulp, but the correction for denormal handling
2240    // brings it to 2.
2241    if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f)
2242      return false;
2243  
2244    IRBuilder<> Builder(&Sqrt);
2245    SmallVector<Value *, 4> SrcVals;
2246    extractValues(Builder, SrcVals, SrcVal);
2247  
2248    SmallVector<Value *, 4> ResultVals(SrcVals.size());
2249    for (int I = 0, E = SrcVals.size(); I != E; ++I) {
2250      if (CanTreatAsDAZ)
2251        ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]);
2252      else
2253        ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF);
2254    }
2255  
2256    Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals);
2257    NewSqrt->takeName(&Sqrt);
2258    Sqrt.replaceAllUsesWith(NewSqrt);
2259    Sqrt.eraseFromParent();
2260    return true;
2261  }
2262  
doInitialization(Module & M)2263  bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
2264    Impl.Mod = &M;
2265    Impl.DL = &Impl.Mod->getDataLayout();
2266    Impl.SqrtF32 = nullptr;
2267    Impl.LdexpF32 = nullptr;
2268    return false;
2269  }
2270  
runOnFunction(Function & F)2271  bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
2272    if (skipFunction(F))
2273      return false;
2274  
2275    auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
2276    if (!TPC)
2277      return false;
2278  
2279    const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
2280    Impl.TM = &TM;
2281    Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2282    Impl.ST = &TM.getSubtarget<GCNSubtarget>(F);
2283    Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2284    Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
2285    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
2286    Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr;
2287    Impl.HasUnsafeFPMath = hasUnsafeFPMath(F);
2288    SIModeRegisterDefaults Mode(F, *Impl.ST);
2289    Impl.HasFP32DenormalFlush =
2290        Mode.FP32Denormals == DenormalMode::getPreserveSign();
2291    return Impl.run(F);
2292  }
2293  
run(Function & F,FunctionAnalysisManager & FAM)2294  PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F,
2295                                                  FunctionAnalysisManager &FAM) {
2296    AMDGPUCodeGenPrepareImpl Impl;
2297    Impl.Mod = F.getParent();
2298    Impl.DL = &Impl.Mod->getDataLayout();
2299    Impl.TM = static_cast<const AMDGPUTargetMachine *>(&TM);
2300    Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F);
2301    Impl.ST = &TM.getSubtarget<GCNSubtarget>(F);
2302    Impl.AC = &FAM.getResult<AssumptionAnalysis>(F);
2303    Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F);
2304    Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
2305    Impl.HasUnsafeFPMath = hasUnsafeFPMath(F);
2306    SIModeRegisterDefaults Mode(F, *Impl.ST);
2307    Impl.HasFP32DenormalFlush =
2308        Mode.FP32Denormals == DenormalMode::getPreserveSign();
2309    PreservedAnalyses PA = PreservedAnalyses::none();
2310    if (!Impl.FlowChanged)
2311      PA.preserveSet<CFGAnalyses>();
2312    return Impl.run(F) ? PA : PreservedAnalyses::all();
2313  }
2314  
2315  INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
2316                        "AMDGPU IR optimizations", false, false)
2317  INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2318  INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2319  INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
2320  INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
2321                      false, false)
2322  
2323  char AMDGPUCodeGenPrepare::ID = 0;
2324  
createAMDGPUCodeGenPreparePass()2325  FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
2326    return new AMDGPUCodeGenPrepare();
2327  }
2328