xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/Verifier.h"
55 #include "llvm/Support/BlockFrequency.h"
56 #include "llvm/Support/BranchProbability.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <map>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
73 
74 #define DEBUG_TYPE "code-extractor"
75 
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82                  cl::desc("Aggregate arguments to code-extracted functions"));
83 
84 /// Test whether a block is valid for extraction.
isBlockValidForExtraction(const BasicBlock & BB,const SetVector<BasicBlock * > & Result,bool AllowVarArgs,bool AllowAlloca)85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86                                       const SetVector<BasicBlock *> &Result,
87                                       bool AllowVarArgs, bool AllowAlloca) {
88   // taking the address of a basic block moved to another function is illegal
89   if (BB.hasAddressTaken())
90     return false;
91 
92   // don't hoist code that uses another basicblock address, as it's likely to
93   // lead to unexpected behavior, like cross-function jumps
94   SmallPtrSet<User const *, 16> Visited;
95   SmallVector<User const *, 16> ToVisit;
96 
97   for (Instruction const &Inst : BB)
98     ToVisit.push_back(&Inst);
99 
100   while (!ToVisit.empty()) {
101     User const *Curr = ToVisit.pop_back_val();
102     if (!Visited.insert(Curr).second)
103       continue;
104     if (isa<BlockAddress const>(Curr))
105       return false; // even a reference to self is likely to be not compatible
106 
107     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108       continue;
109 
110     for (auto const &U : Curr->operands()) {
111       if (auto *UU = dyn_cast<User>(U))
112         ToVisit.push_back(UU);
113     }
114   }
115 
116   // If explicitly requested, allow vastart and alloca. For invoke instructions
117   // verify that extraction is valid.
118   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119     if (isa<AllocaInst>(I)) {
120        if (!AllowAlloca)
121          return false;
122        continue;
123     }
124 
125     if (const auto *II = dyn_cast<InvokeInst>(I)) {
126       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127       // must be a part of the subgraph which is being extracted.
128       if (auto *UBB = II->getUnwindDest())
129         if (!Result.count(UBB))
130           return false;
131       continue;
132     }
133 
134     // All catch handlers of a catchswitch instruction as well as the unwind
135     // destination must be in the subgraph.
136     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137       if (auto *UBB = CSI->getUnwindDest())
138         if (!Result.count(UBB))
139           return false;
140       for (const auto *HBB : CSI->handlers())
141         if (!Result.count(const_cast<BasicBlock*>(HBB)))
142           return false;
143       continue;
144     }
145 
146     // Make sure that entire catch handler is within subgraph. It is sufficient
147     // to check that catch return's block is in the list.
148     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149       for (const auto *U : CPI->users())
150         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152             return false;
153       continue;
154     }
155 
156     // And do similar checks for cleanup handler - the entire handler must be
157     // in subgraph which is going to be extracted. For cleanup return should
158     // additionally check that the unwind destination is also in the subgraph.
159     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160       for (const auto *U : CPI->users())
161         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163             return false;
164       continue;
165     }
166     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167       if (auto *UBB = CRI->getUnwindDest())
168         if (!Result.count(UBB))
169           return false;
170       continue;
171     }
172 
173     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174       if (const Function *F = CI->getCalledFunction()) {
175         auto IID = F->getIntrinsicID();
176         if (IID == Intrinsic::vastart) {
177           if (AllowVarArgs)
178             continue;
179           else
180             return false;
181         }
182 
183         // Currently, we miscompile outlined copies of eh_typid_for. There are
184         // proposals for fixing this in llvm.org/PR39545.
185         if (IID == Intrinsic::eh_typeid_for)
186           return false;
187       }
188     }
189   }
190 
191   return true;
192 }
193 
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
buildExtractionBlockSet(ArrayRef<BasicBlock * > BBs,DominatorTree * DT,bool AllowVarArgs,bool AllowAlloca)196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197                         bool AllowVarArgs, bool AllowAlloca) {
198   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199   SetVector<BasicBlock *> Result;
200 
201   // Loop over the blocks, adding them to our set-vector, and aborting with an
202   // empty set if we encounter invalid blocks.
203   for (BasicBlock *BB : BBs) {
204     // If this block is dead, don't process it.
205     if (DT && !DT->isReachableFromEntry(BB))
206       continue;
207 
208     if (!Result.insert(BB))
209       llvm_unreachable("Repeated basic blocks in extraction input");
210   }
211 
212   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213                     << '\n');
214 
215   for (auto *BB : Result) {
216     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217       return {};
218 
219     // Make sure that the first block is not a landing pad.
220     if (BB == Result.front()) {
221       if (BB->isEHPad()) {
222         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223         return {};
224       }
225       continue;
226     }
227 
228     // All blocks other than the first must not have predecessors outside of
229     // the subgraph which is being extracted.
230     for (auto *PBB : predecessors(BB))
231       if (!Result.count(PBB)) {
232         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233                              "outside the region except for the first block!\n"
234                           << "Problematic source BB: " << BB->getName() << "\n"
235                           << "Problematic destination BB: " << PBB->getName()
236                           << "\n");
237         return {};
238       }
239   }
240 
241   return Result;
242 }
243 
CodeExtractor(ArrayRef<BasicBlock * > BBs,DominatorTree * DT,bool AggregateArgs,BlockFrequencyInfo * BFI,BranchProbabilityInfo * BPI,AssumptionCache * AC,bool AllowVarArgs,bool AllowAlloca,BasicBlock * AllocationBlock,std::string Suffix,bool ArgsInZeroAddressSpace)244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245                              bool AggregateArgs, BlockFrequencyInfo *BFI,
246                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
247                              bool AllowVarArgs, bool AllowAlloca,
248                              BasicBlock *AllocationBlock, std::string Suffix,
249                              bool ArgsInZeroAddressSpace)
250     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
251       BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
252       AllowVarArgs(AllowVarArgs),
253       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
254       Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {}
255 
CodeExtractor(DominatorTree & DT,Loop & L,bool AggregateArgs,BlockFrequencyInfo * BFI,BranchProbabilityInfo * BPI,AssumptionCache * AC,std::string Suffix)256 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
257                              BlockFrequencyInfo *BFI,
258                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
259                              std::string Suffix)
260     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
261       BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false),
262       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
263                                      /* AllowVarArgs */ false,
264                                      /* AllowAlloca */ false)),
265       Suffix(Suffix) {}
266 
267 /// definedInRegion - Return true if the specified value is defined in the
268 /// extracted region.
definedInRegion(const SetVector<BasicBlock * > & Blocks,Value * V)269 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
270   if (Instruction *I = dyn_cast<Instruction>(V))
271     if (Blocks.count(I->getParent()))
272       return true;
273   return false;
274 }
275 
276 /// definedInCaller - Return true if the specified value is defined in the
277 /// function being code extracted, but not in the region being extracted.
278 /// These values must be passed in as live-ins to the function.
definedInCaller(const SetVector<BasicBlock * > & Blocks,Value * V)279 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
280   if (isa<Argument>(V)) return true;
281   if (Instruction *I = dyn_cast<Instruction>(V))
282     if (!Blocks.count(I->getParent()))
283       return true;
284   return false;
285 }
286 
getCommonExitBlock(const SetVector<BasicBlock * > & Blocks)287 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
288   BasicBlock *CommonExitBlock = nullptr;
289   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
290     for (auto *Succ : successors(Block)) {
291       // Internal edges, ok.
292       if (Blocks.count(Succ))
293         continue;
294       if (!CommonExitBlock) {
295         CommonExitBlock = Succ;
296         continue;
297       }
298       if (CommonExitBlock != Succ)
299         return true;
300     }
301     return false;
302   };
303 
304   if (any_of(Blocks, hasNonCommonExitSucc))
305     return nullptr;
306 
307   return CommonExitBlock;
308 }
309 
CodeExtractorAnalysisCache(Function & F)310 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
311   for (BasicBlock &BB : F) {
312     for (Instruction &II : BB.instructionsWithoutDebug())
313       if (auto *AI = dyn_cast<AllocaInst>(&II))
314         Allocas.push_back(AI);
315 
316     findSideEffectInfoForBlock(BB);
317   }
318 }
319 
findSideEffectInfoForBlock(BasicBlock & BB)320 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
321   for (Instruction &II : BB.instructionsWithoutDebug()) {
322     unsigned Opcode = II.getOpcode();
323     Value *MemAddr = nullptr;
324     switch (Opcode) {
325     case Instruction::Store:
326     case Instruction::Load: {
327       if (Opcode == Instruction::Store) {
328         StoreInst *SI = cast<StoreInst>(&II);
329         MemAddr = SI->getPointerOperand();
330       } else {
331         LoadInst *LI = cast<LoadInst>(&II);
332         MemAddr = LI->getPointerOperand();
333       }
334       // Global variable can not be aliased with locals.
335       if (isa<Constant>(MemAddr))
336         break;
337       Value *Base = MemAddr->stripInBoundsConstantOffsets();
338       if (!isa<AllocaInst>(Base)) {
339         SideEffectingBlocks.insert(&BB);
340         return;
341       }
342       BaseMemAddrs[&BB].insert(Base);
343       break;
344     }
345     default: {
346       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
347       if (IntrInst) {
348         if (IntrInst->isLifetimeStartOrEnd())
349           break;
350         SideEffectingBlocks.insert(&BB);
351         return;
352       }
353       // Treat all the other cases conservatively if it has side effects.
354       if (II.mayHaveSideEffects()) {
355         SideEffectingBlocks.insert(&BB);
356         return;
357       }
358     }
359     }
360   }
361 }
362 
doesBlockContainClobberOfAddr(BasicBlock & BB,AllocaInst * Addr) const363 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
364     BasicBlock &BB, AllocaInst *Addr) const {
365   if (SideEffectingBlocks.count(&BB))
366     return true;
367   auto It = BaseMemAddrs.find(&BB);
368   if (It != BaseMemAddrs.end())
369     return It->second.count(Addr);
370   return false;
371 }
372 
isLegalToShrinkwrapLifetimeMarkers(const CodeExtractorAnalysisCache & CEAC,Instruction * Addr) const373 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
374     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
375   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
376   Function *Func = (*Blocks.begin())->getParent();
377   for (BasicBlock &BB : *Func) {
378     if (Blocks.count(&BB))
379       continue;
380     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
381       return false;
382   }
383   return true;
384 }
385 
386 BasicBlock *
findOrCreateBlockForHoisting(BasicBlock * CommonExitBlock)387 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
388   BasicBlock *SinglePredFromOutlineRegion = nullptr;
389   assert(!Blocks.count(CommonExitBlock) &&
390          "Expect a block outside the region!");
391   for (auto *Pred : predecessors(CommonExitBlock)) {
392     if (!Blocks.count(Pred))
393       continue;
394     if (!SinglePredFromOutlineRegion) {
395       SinglePredFromOutlineRegion = Pred;
396     } else if (SinglePredFromOutlineRegion != Pred) {
397       SinglePredFromOutlineRegion = nullptr;
398       break;
399     }
400   }
401 
402   if (SinglePredFromOutlineRegion)
403     return SinglePredFromOutlineRegion;
404 
405 #ifndef NDEBUG
406   auto getFirstPHI = [](BasicBlock *BB) {
407     BasicBlock::iterator I = BB->begin();
408     PHINode *FirstPhi = nullptr;
409     while (I != BB->end()) {
410       PHINode *Phi = dyn_cast<PHINode>(I);
411       if (!Phi)
412         break;
413       if (!FirstPhi) {
414         FirstPhi = Phi;
415         break;
416       }
417     }
418     return FirstPhi;
419   };
420   // If there are any phi nodes, the single pred either exists or has already
421   // be created before code extraction.
422   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
423 #endif
424 
425   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
426       CommonExitBlock->getFirstNonPHI()->getIterator());
427 
428   for (BasicBlock *Pred :
429        llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
430     if (Blocks.count(Pred))
431       continue;
432     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
433   }
434   // Now add the old exit block to the outline region.
435   Blocks.insert(CommonExitBlock);
436   OldTargets.push_back(NewExitBlock);
437   return CommonExitBlock;
438 }
439 
440 // Find the pair of life time markers for address 'Addr' that are either
441 // defined inside the outline region or can legally be shrinkwrapped into the
442 // outline region. If there are not other untracked uses of the address, return
443 // the pair of markers if found; otherwise return a pair of nullptr.
444 CodeExtractor::LifetimeMarkerInfo
getLifetimeMarkers(const CodeExtractorAnalysisCache & CEAC,Instruction * Addr,BasicBlock * ExitBlock) const445 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
446                                   Instruction *Addr,
447                                   BasicBlock *ExitBlock) const {
448   LifetimeMarkerInfo Info;
449 
450   for (User *U : Addr->users()) {
451     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
452     if (IntrInst) {
453       // We don't model addresses with multiple start/end markers, but the
454       // markers do not need to be in the region.
455       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
456         if (Info.LifeStart)
457           return {};
458         Info.LifeStart = IntrInst;
459         continue;
460       }
461       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
462         if (Info.LifeEnd)
463           return {};
464         Info.LifeEnd = IntrInst;
465         continue;
466       }
467       // At this point, permit debug uses outside of the region.
468       // This is fixed in a later call to fixupDebugInfoPostExtraction().
469       if (isa<DbgInfoIntrinsic>(IntrInst))
470         continue;
471     }
472     // Find untracked uses of the address, bail.
473     if (!definedInRegion(Blocks, U))
474       return {};
475   }
476 
477   if (!Info.LifeStart || !Info.LifeEnd)
478     return {};
479 
480   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
481   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
482   // Do legality check.
483   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
484       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
485     return {};
486 
487   // Check to see if we have a place to do hoisting, if not, bail.
488   if (Info.HoistLifeEnd && !ExitBlock)
489     return {};
490 
491   return Info;
492 }
493 
findAllocas(const CodeExtractorAnalysisCache & CEAC,ValueSet & SinkCands,ValueSet & HoistCands,BasicBlock * & ExitBlock) const494 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
495                                 ValueSet &SinkCands, ValueSet &HoistCands,
496                                 BasicBlock *&ExitBlock) const {
497   Function *Func = (*Blocks.begin())->getParent();
498   ExitBlock = getCommonExitBlock(Blocks);
499 
500   auto moveOrIgnoreLifetimeMarkers =
501       [&](const LifetimeMarkerInfo &LMI) -> bool {
502     if (!LMI.LifeStart)
503       return false;
504     if (LMI.SinkLifeStart) {
505       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
506                         << "\n");
507       SinkCands.insert(LMI.LifeStart);
508     }
509     if (LMI.HoistLifeEnd) {
510       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
511       HoistCands.insert(LMI.LifeEnd);
512     }
513     return true;
514   };
515 
516   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
517   // this is much faster than walking all the instructions.
518   for (AllocaInst *AI : CEAC.getAllocas()) {
519     BasicBlock *BB = AI->getParent();
520     if (Blocks.count(BB))
521       continue;
522 
523     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
524     // check whether it is actually still in the original function.
525     Function *AIFunc = BB->getParent();
526     if (AIFunc != Func)
527       continue;
528 
529     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
530     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
531     if (Moved) {
532       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
533       SinkCands.insert(AI);
534       continue;
535     }
536 
537     // Find bitcasts in the outlined region that have lifetime marker users
538     // outside that region. Replace the lifetime marker use with an
539     // outside region bitcast to avoid unnecessary alloca/reload instructions
540     // and extra lifetime markers.
541     SmallVector<Instruction *, 2> LifetimeBitcastUsers;
542     for (User *U : AI->users()) {
543       if (!definedInRegion(Blocks, U))
544         continue;
545 
546       if (U->stripInBoundsConstantOffsets() != AI)
547         continue;
548 
549       Instruction *Bitcast = cast<Instruction>(U);
550       for (User *BU : Bitcast->users()) {
551         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
552         if (!IntrInst)
553           continue;
554 
555         if (!IntrInst->isLifetimeStartOrEnd())
556           continue;
557 
558         if (definedInRegion(Blocks, IntrInst))
559           continue;
560 
561         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
562                           << *Bitcast << " in out-of-region lifetime marker "
563                           << *IntrInst << "\n");
564         LifetimeBitcastUsers.push_back(IntrInst);
565       }
566     }
567 
568     for (Instruction *I : LifetimeBitcastUsers) {
569       Module *M = AIFunc->getParent();
570       LLVMContext &Ctx = M->getContext();
571       auto *Int8PtrTy = PointerType::getUnqual(Ctx);
572       CastInst *CastI =
573           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I->getIterator());
574       I->replaceUsesOfWith(I->getOperand(1), CastI);
575     }
576 
577     // Follow any bitcasts.
578     SmallVector<Instruction *, 2> Bitcasts;
579     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
580     for (User *U : AI->users()) {
581       if (U->stripInBoundsConstantOffsets() == AI) {
582         Instruction *Bitcast = cast<Instruction>(U);
583         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
584         if (LMI.LifeStart) {
585           Bitcasts.push_back(Bitcast);
586           BitcastLifetimeInfo.push_back(LMI);
587           continue;
588         }
589       }
590 
591       // Found unknown use of AI.
592       if (!definedInRegion(Blocks, U)) {
593         Bitcasts.clear();
594         break;
595       }
596     }
597 
598     // Either no bitcasts reference the alloca or there are unknown uses.
599     if (Bitcasts.empty())
600       continue;
601 
602     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
603     SinkCands.insert(AI);
604     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
605       Instruction *BitcastAddr = Bitcasts[I];
606       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
607       assert(LMI.LifeStart &&
608              "Unsafe to sink bitcast without lifetime markers");
609       moveOrIgnoreLifetimeMarkers(LMI);
610       if (!definedInRegion(Blocks, BitcastAddr)) {
611         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
612                           << "\n");
613         SinkCands.insert(BitcastAddr);
614       }
615     }
616   }
617 }
618 
isEligible() const619 bool CodeExtractor::isEligible() const {
620   if (Blocks.empty())
621     return false;
622   BasicBlock *Header = *Blocks.begin();
623   Function *F = Header->getParent();
624 
625   // For functions with varargs, check that varargs handling is only done in the
626   // outlined function, i.e vastart and vaend are only used in outlined blocks.
627   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
628     auto containsVarArgIntrinsic = [](const Instruction &I) {
629       if (const CallInst *CI = dyn_cast<CallInst>(&I))
630         if (const Function *Callee = CI->getCalledFunction())
631           return Callee->getIntrinsicID() == Intrinsic::vastart ||
632                  Callee->getIntrinsicID() == Intrinsic::vaend;
633       return false;
634     };
635 
636     for (auto &BB : *F) {
637       if (Blocks.count(&BB))
638         continue;
639       if (llvm::any_of(BB, containsVarArgIntrinsic))
640         return false;
641     }
642   }
643   return true;
644 }
645 
findInputsOutputs(ValueSet & Inputs,ValueSet & Outputs,const ValueSet & SinkCands) const646 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
647                                       const ValueSet &SinkCands) const {
648   for (BasicBlock *BB : Blocks) {
649     // If a used value is defined outside the region, it's an input.  If an
650     // instruction is used outside the region, it's an output.
651     for (Instruction &II : *BB) {
652       for (auto &OI : II.operands()) {
653         Value *V = OI;
654         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
655           Inputs.insert(V);
656       }
657 
658       for (User *U : II.users())
659         if (!definedInRegion(Blocks, U)) {
660           Outputs.insert(&II);
661           break;
662         }
663     }
664   }
665 }
666 
667 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
668 /// of the region, we need to split the entry block of the region so that the
669 /// PHI node is easier to deal with.
severSplitPHINodesOfEntry(BasicBlock * & Header)670 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
671   unsigned NumPredsFromRegion = 0;
672   unsigned NumPredsOutsideRegion = 0;
673 
674   if (Header != &Header->getParent()->getEntryBlock()) {
675     PHINode *PN = dyn_cast<PHINode>(Header->begin());
676     if (!PN) return;  // No PHI nodes.
677 
678     // If the header node contains any PHI nodes, check to see if there is more
679     // than one entry from outside the region.  If so, we need to sever the
680     // header block into two.
681     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
682       if (Blocks.count(PN->getIncomingBlock(i)))
683         ++NumPredsFromRegion;
684       else
685         ++NumPredsOutsideRegion;
686 
687     // If there is one (or fewer) predecessor from outside the region, we don't
688     // need to do anything special.
689     if (NumPredsOutsideRegion <= 1) return;
690   }
691 
692   // Otherwise, we need to split the header block into two pieces: one
693   // containing PHI nodes merging values from outside of the region, and a
694   // second that contains all of the code for the block and merges back any
695   // incoming values from inside of the region.
696   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
697 
698   // We only want to code extract the second block now, and it becomes the new
699   // header of the region.
700   BasicBlock *OldPred = Header;
701   Blocks.remove(OldPred);
702   Blocks.insert(NewBB);
703   Header = NewBB;
704 
705   // Okay, now we need to adjust the PHI nodes and any branches from within the
706   // region to go to the new header block instead of the old header block.
707   if (NumPredsFromRegion) {
708     PHINode *PN = cast<PHINode>(OldPred->begin());
709     // Loop over all of the predecessors of OldPred that are in the region,
710     // changing them to branch to NewBB instead.
711     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
712       if (Blocks.count(PN->getIncomingBlock(i))) {
713         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
714         TI->replaceUsesOfWith(OldPred, NewBB);
715       }
716 
717     // Okay, everything within the region is now branching to the right block, we
718     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
719     BasicBlock::iterator AfterPHIs;
720     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
721       PHINode *PN = cast<PHINode>(AfterPHIs);
722       // Create a new PHI node in the new region, which has an incoming value
723       // from OldPred of PN.
724       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
725                                        PN->getName() + ".ce");
726       NewPN->insertBefore(NewBB->begin());
727       PN->replaceAllUsesWith(NewPN);
728       NewPN->addIncoming(PN, OldPred);
729 
730       // Loop over all of the incoming value in PN, moving them to NewPN if they
731       // are from the extracted region.
732       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
733         if (Blocks.count(PN->getIncomingBlock(i))) {
734           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
735           PN->removeIncomingValue(i);
736           --i;
737         }
738       }
739     }
740   }
741 }
742 
743 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
744 /// outlined region, we split these PHIs on two: one with inputs from region
745 /// and other with remaining incoming blocks; then first PHIs are placed in
746 /// outlined region.
severSplitPHINodesOfExits(const SetVector<BasicBlock * > & Exits)747 void CodeExtractor::severSplitPHINodesOfExits(
748     const SetVector<BasicBlock *> &Exits) {
749   for (BasicBlock *ExitBB : Exits) {
750     BasicBlock *NewBB = nullptr;
751 
752     for (PHINode &PN : ExitBB->phis()) {
753       // Find all incoming values from the outlining region.
754       SmallVector<unsigned, 2> IncomingVals;
755       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
756         if (Blocks.count(PN.getIncomingBlock(i)))
757           IncomingVals.push_back(i);
758 
759       // Do not process PHI if there is one (or fewer) predecessor from region.
760       // If PHI has exactly one predecessor from region, only this one incoming
761       // will be replaced on codeRepl block, so it should be safe to skip PHI.
762       if (IncomingVals.size() <= 1)
763         continue;
764 
765       // Create block for new PHIs and add it to the list of outlined if it
766       // wasn't done before.
767       if (!NewBB) {
768         NewBB = BasicBlock::Create(ExitBB->getContext(),
769                                    ExitBB->getName() + ".split",
770                                    ExitBB->getParent(), ExitBB);
771         NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat;
772         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
773         for (BasicBlock *PredBB : Preds)
774           if (Blocks.count(PredBB))
775             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
776         BranchInst::Create(ExitBB, NewBB);
777         Blocks.insert(NewBB);
778       }
779 
780       // Split this PHI.
781       PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
782                                        PN.getName() + ".ce");
783       NewPN->insertBefore(NewBB->getFirstNonPHIIt());
784       for (unsigned i : IncomingVals)
785         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
786       for (unsigned i : reverse(IncomingVals))
787         PN.removeIncomingValue(i, false);
788       PN.addIncoming(NewPN, NewBB);
789     }
790   }
791 }
792 
splitReturnBlocks()793 void CodeExtractor::splitReturnBlocks() {
794   for (BasicBlock *Block : Blocks)
795     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
796       BasicBlock *New =
797           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
798       if (DT) {
799         // Old dominates New. New node dominates all other nodes dominated
800         // by Old.
801         DomTreeNode *OldNode = DT->getNode(Block);
802         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
803                                                OldNode->end());
804 
805         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
806 
807         for (DomTreeNode *I : Children)
808           DT->changeImmediateDominator(I, NewNode);
809       }
810     }
811 }
812 
813 /// constructFunction - make a function based on inputs and outputs, as follows:
814 /// f(in0, ..., inN, out0, ..., outN)
constructFunction(const ValueSet & inputs,const ValueSet & outputs,BasicBlock * header,BasicBlock * newRootNode,BasicBlock * newHeader,Function * oldFunction,Module * M)815 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
816                                            const ValueSet &outputs,
817                                            BasicBlock *header,
818                                            BasicBlock *newRootNode,
819                                            BasicBlock *newHeader,
820                                            Function *oldFunction,
821                                            Module *M) {
822   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
823   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
824 
825   // This function returns unsigned, outputs will go back by reference.
826   switch (NumExitBlocks) {
827   case 0:
828   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
829   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
830   default: RetTy = Type::getInt16Ty(header->getContext()); break;
831   }
832 
833   std::vector<Type *> ParamTy;
834   std::vector<Type *> AggParamTy;
835   ValueSet StructValues;
836   const DataLayout &DL = M->getDataLayout();
837 
838   // Add the types of the input values to the function's argument list
839   for (Value *value : inputs) {
840     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
841     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
842       AggParamTy.push_back(value->getType());
843       StructValues.insert(value);
844     } else
845       ParamTy.push_back(value->getType());
846   }
847 
848   // Add the types of the output values to the function's argument list.
849   for (Value *output : outputs) {
850     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
851     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
852       AggParamTy.push_back(output->getType());
853       StructValues.insert(output);
854     } else
855       ParamTy.push_back(
856           PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
857   }
858 
859   assert(
860       (ParamTy.size() + AggParamTy.size()) ==
861           (inputs.size() + outputs.size()) &&
862       "Number of scalar and aggregate params does not match inputs, outputs");
863   assert((StructValues.empty() || AggregateArgs) &&
864          "Expeced StructValues only with AggregateArgs set");
865 
866   // Concatenate scalar and aggregate params in ParamTy.
867   size_t NumScalarParams = ParamTy.size();
868   StructType *StructTy = nullptr;
869   if (AggregateArgs && !AggParamTy.empty()) {
870     StructTy = StructType::get(M->getContext(), AggParamTy);
871     ParamTy.push_back(PointerType::get(
872         StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace()));
873   }
874 
875   LLVM_DEBUG({
876     dbgs() << "Function type: " << *RetTy << " f(";
877     for (Type *i : ParamTy)
878       dbgs() << *i << ", ";
879     dbgs() << ")\n";
880   });
881 
882   FunctionType *funcType = FunctionType::get(
883       RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
884 
885   std::string SuffixToUse =
886       Suffix.empty()
887           ? (header->getName().empty() ? "extracted" : header->getName().str())
888           : Suffix;
889   // Create the new function
890   Function *newFunction = Function::Create(
891       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
892       oldFunction->getName() + "." + SuffixToUse, M);
893   newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
894 
895   // Inherit all of the target dependent attributes and white-listed
896   // target independent attributes.
897   //  (e.g. If the extracted region contains a call to an x86.sse
898   //  instruction we need to make sure that the extracted region has the
899   //  "target-features" attribute allowing it to be lowered.
900   // FIXME: This should be changed to check to see if a specific
901   //           attribute can not be inherited.
902   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
903     if (Attr.isStringAttribute()) {
904       if (Attr.getKindAsString() == "thunk")
905         continue;
906     } else
907       switch (Attr.getKindAsEnum()) {
908       // Those attributes cannot be propagated safely. Explicitly list them
909       // here so we get a warning if new attributes are added.
910       case Attribute::AllocSize:
911       case Attribute::Builtin:
912       case Attribute::Convergent:
913       case Attribute::JumpTable:
914       case Attribute::Naked:
915       case Attribute::NoBuiltin:
916       case Attribute::NoMerge:
917       case Attribute::NoReturn:
918       case Attribute::NoSync:
919       case Attribute::ReturnsTwice:
920       case Attribute::Speculatable:
921       case Attribute::StackAlignment:
922       case Attribute::WillReturn:
923       case Attribute::AllocKind:
924       case Attribute::PresplitCoroutine:
925       case Attribute::Memory:
926       case Attribute::NoFPClass:
927       case Attribute::CoroDestroyOnlyWhenComplete:
928         continue;
929       // Those attributes should be safe to propagate to the extracted function.
930       case Attribute::AlwaysInline:
931       case Attribute::Cold:
932       case Attribute::DisableSanitizerInstrumentation:
933       case Attribute::FnRetThunkExtern:
934       case Attribute::Hot:
935       case Attribute::HybridPatchable:
936       case Attribute::NoRecurse:
937       case Attribute::InlineHint:
938       case Attribute::MinSize:
939       case Attribute::NoCallback:
940       case Attribute::NoDuplicate:
941       case Attribute::NoFree:
942       case Attribute::NoImplicitFloat:
943       case Attribute::NoInline:
944       case Attribute::NonLazyBind:
945       case Attribute::NoRedZone:
946       case Attribute::NoUnwind:
947       case Attribute::NoSanitizeBounds:
948       case Attribute::NoSanitizeCoverage:
949       case Attribute::NullPointerIsValid:
950       case Attribute::OptimizeForDebugging:
951       case Attribute::OptForFuzzing:
952       case Attribute::OptimizeNone:
953       case Attribute::OptimizeForSize:
954       case Attribute::SafeStack:
955       case Attribute::ShadowCallStack:
956       case Attribute::SanitizeAddress:
957       case Attribute::SanitizeMemory:
958       case Attribute::SanitizeNumericalStability:
959       case Attribute::SanitizeThread:
960       case Attribute::SanitizeHWAddress:
961       case Attribute::SanitizeMemTag:
962       case Attribute::SpeculativeLoadHardening:
963       case Attribute::StackProtect:
964       case Attribute::StackProtectReq:
965       case Attribute::StackProtectStrong:
966       case Attribute::StrictFP:
967       case Attribute::UWTable:
968       case Attribute::VScaleRange:
969       case Attribute::NoCfCheck:
970       case Attribute::MustProgress:
971       case Attribute::NoProfile:
972       case Attribute::SkipProfile:
973         break;
974       // These attributes cannot be applied to functions.
975       case Attribute::Alignment:
976       case Attribute::AllocatedPointer:
977       case Attribute::AllocAlign:
978       case Attribute::ByVal:
979       case Attribute::Dereferenceable:
980       case Attribute::DereferenceableOrNull:
981       case Attribute::ElementType:
982       case Attribute::InAlloca:
983       case Attribute::InReg:
984       case Attribute::Nest:
985       case Attribute::NoAlias:
986       case Attribute::NoCapture:
987       case Attribute::NoUndef:
988       case Attribute::NonNull:
989       case Attribute::Preallocated:
990       case Attribute::ReadNone:
991       case Attribute::ReadOnly:
992       case Attribute::Returned:
993       case Attribute::SExt:
994       case Attribute::StructRet:
995       case Attribute::SwiftError:
996       case Attribute::SwiftSelf:
997       case Attribute::SwiftAsync:
998       case Attribute::ZExt:
999       case Attribute::ImmArg:
1000       case Attribute::ByRef:
1001       case Attribute::WriteOnly:
1002       case Attribute::Writable:
1003       case Attribute::DeadOnUnwind:
1004       case Attribute::Range:
1005       case Attribute::Initializes:
1006       //  These are not really attributes.
1007       case Attribute::None:
1008       case Attribute::EndAttrKinds:
1009       case Attribute::EmptyKey:
1010       case Attribute::TombstoneKey:
1011         llvm_unreachable("Not a function attribute");
1012       }
1013 
1014     newFunction->addFnAttr(Attr);
1015   }
1016 
1017   if (NumExitBlocks == 0) {
1018     // Mark the new function `noreturn` if applicable. Terminators which resume
1019     // exception propagation are treated as returning instructions. This is to
1020     // avoid inserting traps after calls to outlined functions which unwind.
1021     if (none_of(Blocks, [](const BasicBlock *BB) {
1022           const Instruction *Term = BB->getTerminator();
1023           return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1024         }))
1025       newFunction->setDoesNotReturn();
1026   }
1027 
1028   newFunction->insert(newFunction->end(), newRootNode);
1029 
1030   // Create scalar and aggregate iterators to name all of the arguments we
1031   // inserted.
1032   Function::arg_iterator ScalarAI = newFunction->arg_begin();
1033   Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1034 
1035   // Rewrite all users of the inputs in the extracted region to use the
1036   // arguments (or appropriate addressing into struct) instead.
1037   for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1038     Value *RewriteVal;
1039     if (AggregateArgs && StructValues.contains(inputs[i])) {
1040       Value *Idx[2];
1041       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1042       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1043       BasicBlock::iterator TI = newFunction->begin()->getTerminator()->getIterator();
1044       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1045           StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1046       RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1047                                 "loadgep_" + inputs[i]->getName(), TI);
1048       ++aggIdx;
1049     } else
1050       RewriteVal = &*ScalarAI++;
1051 
1052     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1053     for (User *use : Users)
1054       if (Instruction *inst = dyn_cast<Instruction>(use))
1055         if (Blocks.count(inst->getParent()))
1056           inst->replaceUsesOfWith(inputs[i], RewriteVal);
1057   }
1058 
1059   // Set names for input and output arguments.
1060   if (NumScalarParams) {
1061     ScalarAI = newFunction->arg_begin();
1062     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1063       if (!StructValues.contains(inputs[i]))
1064         ScalarAI->setName(inputs[i]->getName());
1065     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1066       if (!StructValues.contains(outputs[i]))
1067         ScalarAI->setName(outputs[i]->getName() + ".out");
1068   }
1069 
1070   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1071   // within the new function. This must be done before we lose track of which
1072   // blocks were originally in the code region.
1073   std::vector<User *> Users(header->user_begin(), header->user_end());
1074   for (auto &U : Users)
1075     // The BasicBlock which contains the branch is not in the region
1076     // modify the branch target to a new block
1077     if (Instruction *I = dyn_cast<Instruction>(U))
1078       if (I->isTerminator() && I->getFunction() == oldFunction &&
1079           !Blocks.count(I->getParent()))
1080         I->replaceUsesOfWith(header, newHeader);
1081 
1082   return newFunction;
1083 }
1084 
1085 /// Erase lifetime.start markers which reference inputs to the extraction
1086 /// region, and insert the referenced memory into \p LifetimesStart.
1087 ///
1088 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1089 /// of allocas which will be moved from the caller function into the extracted
1090 /// function (\p SunkAllocas).
eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock * > & Blocks,const SetVector<Value * > & SunkAllocas,SetVector<Value * > & LifetimesStart)1091 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1092                                          const SetVector<Value *> &SunkAllocas,
1093                                          SetVector<Value *> &LifetimesStart) {
1094   for (BasicBlock *BB : Blocks) {
1095     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1096       auto *II = dyn_cast<IntrinsicInst>(&I);
1097       if (!II || !II->isLifetimeStartOrEnd())
1098         continue;
1099 
1100       // Get the memory operand of the lifetime marker. If the underlying
1101       // object is a sunk alloca, or is otherwise defined in the extraction
1102       // region, the lifetime marker must not be erased.
1103       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1104       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1105         continue;
1106 
1107       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1108         LifetimesStart.insert(Mem);
1109       II->eraseFromParent();
1110     }
1111   }
1112 }
1113 
1114 /// Insert lifetime start/end markers surrounding the call to the new function
1115 /// for objects defined in the caller.
insertLifetimeMarkersSurroundingCall(Module * M,ArrayRef<Value * > LifetimesStart,ArrayRef<Value * > LifetimesEnd,CallInst * TheCall)1116 static void insertLifetimeMarkersSurroundingCall(
1117     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1118     CallInst *TheCall) {
1119   LLVMContext &Ctx = M->getContext();
1120   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1121   Instruction *Term = TheCall->getParent()->getTerminator();
1122 
1123   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1124   // markers before the call if \p InsertBefore, and after the call otherwise.
1125   auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1126                            bool InsertBefore) {
1127     for (Value *Mem : Objects) {
1128       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1129                                             TheCall->getFunction()) &&
1130              "Input memory not defined in original function");
1131 
1132       Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType());
1133       auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1134       if (InsertBefore)
1135         Marker->insertBefore(TheCall);
1136       else
1137         Marker->insertBefore(Term);
1138     }
1139   };
1140 
1141   if (!LifetimesStart.empty()) {
1142     insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1143                   /*InsertBefore=*/true);
1144   }
1145 
1146   if (!LifetimesEnd.empty()) {
1147     insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1148                   /*InsertBefore=*/false);
1149   }
1150 }
1151 
1152 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1153 /// the call instruction, splitting any PHI nodes in the header block as
1154 /// necessary.
emitCallAndSwitchStatement(Function * newFunction,BasicBlock * codeReplacer,ValueSet & inputs,ValueSet & outputs)1155 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1156                                                     BasicBlock *codeReplacer,
1157                                                     ValueSet &inputs,
1158                                                     ValueSet &outputs) {
1159   // Emit a call to the new function, passing in: *pointer to struct (if
1160   // aggregating parameters), or plan inputs and allocated memory for outputs
1161   std::vector<Value *> params, ReloadOutputs, Reloads;
1162   ValueSet StructValues;
1163 
1164   Module *M = newFunction->getParent();
1165   LLVMContext &Context = M->getContext();
1166   const DataLayout &DL = M->getDataLayout();
1167   CallInst *call = nullptr;
1168 
1169   // Add inputs as params, or to be filled into the struct
1170   unsigned ScalarInputArgNo = 0;
1171   SmallVector<unsigned, 1> SwiftErrorArgs;
1172   for (Value *input : inputs) {
1173     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1174       StructValues.insert(input);
1175     else {
1176       params.push_back(input);
1177       if (input->isSwiftError())
1178         SwiftErrorArgs.push_back(ScalarInputArgNo);
1179     }
1180     ++ScalarInputArgNo;
1181   }
1182 
1183   // Create allocas for the outputs
1184   unsigned ScalarOutputArgNo = 0;
1185   for (Value *output : outputs) {
1186     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1187       StructValues.insert(output);
1188     } else {
1189       AllocaInst *alloca =
1190         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1191                        nullptr, output->getName() + ".loc",
1192                        codeReplacer->getParent()->front().begin());
1193       ReloadOutputs.push_back(alloca);
1194       params.push_back(alloca);
1195       ++ScalarOutputArgNo;
1196     }
1197   }
1198 
1199   StructType *StructArgTy = nullptr;
1200   AllocaInst *Struct = nullptr;
1201   unsigned NumAggregatedInputs = 0;
1202   if (AggregateArgs && !StructValues.empty()) {
1203     std::vector<Type *> ArgTypes;
1204     for (Value *V : StructValues)
1205       ArgTypes.push_back(V->getType());
1206 
1207     // Allocate a struct at the beginning of this function
1208     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1209     Struct = new AllocaInst(
1210         StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1211         AllocationBlock ? AllocationBlock->getFirstInsertionPt()
1212                         : codeReplacer->getParent()->front().begin());
1213 
1214     if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) {
1215       auto *StructSpaceCast = new AddrSpaceCastInst(
1216           Struct, PointerType ::get(Context, 0), "structArg.ascast");
1217       StructSpaceCast->insertAfter(Struct);
1218       params.push_back(StructSpaceCast);
1219     } else {
1220       params.push_back(Struct);
1221     }
1222     // Store aggregated inputs in the struct.
1223     for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1224       if (inputs.contains(StructValues[i])) {
1225         Value *Idx[2];
1226         Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1227         Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1228         GetElementPtrInst *GEP = GetElementPtrInst::Create(
1229             StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1230         GEP->insertInto(codeReplacer, codeReplacer->end());
1231         new StoreInst(StructValues[i], GEP, codeReplacer);
1232         NumAggregatedInputs++;
1233       }
1234     }
1235   }
1236 
1237   // Emit the call to the function
1238   call = CallInst::Create(newFunction, params,
1239                           NumExitBlocks > 1 ? "targetBlock" : "");
1240   // Add debug location to the new call, if the original function has debug
1241   // info. In that case, the terminator of the entry block of the extracted
1242   // function contains the first debug location of the extracted function,
1243   // set in extractCodeRegion.
1244   if (codeReplacer->getParent()->getSubprogram()) {
1245     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1246       call->setDebugLoc(DL);
1247   }
1248   call->insertInto(codeReplacer, codeReplacer->end());
1249 
1250   // Set swifterror parameter attributes.
1251   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1252     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1253     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1254   }
1255 
1256   // Reload the outputs passed in by reference, use the struct if output is in
1257   // the aggregate or reload from the scalar argument.
1258   for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1259                 aggIdx = NumAggregatedInputs;
1260        i != e; ++i) {
1261     Value *Output = nullptr;
1262     if (AggregateArgs && StructValues.contains(outputs[i])) {
1263       Value *Idx[2];
1264       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1265       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1266       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1267           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1268       GEP->insertInto(codeReplacer, codeReplacer->end());
1269       Output = GEP;
1270       ++aggIdx;
1271     } else {
1272       Output = ReloadOutputs[scalarIdx];
1273       ++scalarIdx;
1274     }
1275     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1276                                   outputs[i]->getName() + ".reload",
1277                                   codeReplacer);
1278     Reloads.push_back(load);
1279     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1280     for (User *U : Users) {
1281       Instruction *inst = cast<Instruction>(U);
1282       if (!Blocks.count(inst->getParent()))
1283         inst->replaceUsesOfWith(outputs[i], load);
1284     }
1285   }
1286 
1287   // Now we can emit a switch statement using the call as a value.
1288   SwitchInst *TheSwitch =
1289       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1290                          codeReplacer, 0, codeReplacer);
1291 
1292   // Since there may be multiple exits from the original region, make the new
1293   // function return an unsigned, switch on that number.  This loop iterates
1294   // over all of the blocks in the extracted region, updating any terminator
1295   // instructions in the to-be-extracted region that branch to blocks that are
1296   // not in the region to be extracted.
1297   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1298 
1299   // Iterate over the previously collected targets, and create new blocks inside
1300   // the function to branch to.
1301   unsigned switchVal = 0;
1302   for (BasicBlock *OldTarget : OldTargets) {
1303     if (Blocks.count(OldTarget))
1304       continue;
1305     BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1306     if (NewTarget)
1307       continue;
1308 
1309     // If we don't already have an exit stub for this non-extracted
1310     // destination, create one now!
1311     NewTarget = BasicBlock::Create(Context,
1312                                     OldTarget->getName() + ".exitStub",
1313                                     newFunction);
1314     unsigned SuccNum = switchVal++;
1315 
1316     Value *brVal = nullptr;
1317     assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1318     switch (NumExitBlocks) {
1319     case 0:
1320     case 1: break;  // No value needed.
1321     case 2:         // Conditional branch, return a bool
1322       brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1323       break;
1324     default:
1325       brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1326       break;
1327     }
1328 
1329     ReturnInst::Create(Context, brVal, NewTarget);
1330 
1331     // Update the switch instruction.
1332     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1333                                         SuccNum),
1334                         OldTarget);
1335   }
1336 
1337   for (BasicBlock *Block : Blocks) {
1338     Instruction *TI = Block->getTerminator();
1339     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1340       if (Blocks.count(TI->getSuccessor(i)))
1341         continue;
1342       BasicBlock *OldTarget = TI->getSuccessor(i);
1343       // add a new basic block which returns the appropriate value
1344       BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1345       assert(NewTarget && "Unknown target block!");
1346 
1347       // rewrite the original branch instruction with this new target
1348       TI->setSuccessor(i, NewTarget);
1349    }
1350   }
1351 
1352   // Store the arguments right after the definition of output value.
1353   // This should be proceeded after creating exit stubs to be ensure that invoke
1354   // result restore will be placed in the outlined function.
1355   Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1356   std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1357   Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1358   std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1359 
1360   for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1361        ++i) {
1362     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1363     if (!OutI)
1364       continue;
1365 
1366     // Find proper insertion point.
1367     BasicBlock::iterator InsertPt;
1368     // In case OutI is an invoke, we insert the store at the beginning in the
1369     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1370     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1371       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1372     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1373       InsertPt = Phi->getParent()->getFirstInsertionPt();
1374     else
1375       InsertPt = std::next(OutI->getIterator());
1376 
1377     assert((InsertPt->getFunction() == newFunction ||
1378             Blocks.count(InsertPt->getParent())) &&
1379            "InsertPt should be in new function");
1380     if (AggregateArgs && StructValues.contains(outputs[i])) {
1381       assert(AggOutputArgBegin != newFunction->arg_end() &&
1382              "Number of aggregate output arguments should match "
1383              "the number of defined values");
1384       Value *Idx[2];
1385       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1386       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1387       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1388           StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1389           InsertPt);
1390       new StoreInst(outputs[i], GEP, InsertPt);
1391       ++aggIdx;
1392       // Since there should be only one struct argument aggregating
1393       // all the output values, we shouldn't increment AggOutputArgBegin, which
1394       // always points to the struct argument, in this case.
1395     } else {
1396       assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1397              "Number of scalar output arguments should match "
1398              "the number of defined values");
1399       new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertPt);
1400       ++ScalarOutputArgBegin;
1401     }
1402   }
1403 
1404   // Now that we've done the deed, simplify the switch instruction.
1405   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1406   switch (NumExitBlocks) {
1407   case 0:
1408     // There are no successors (the block containing the switch itself), which
1409     // means that previously this was the last part of the function, and hence
1410     // this should be rewritten as a `ret` or `unreachable`.
1411     if (newFunction->doesNotReturn()) {
1412       // If fn is no return, end with an unreachable terminator.
1413       (void)new UnreachableInst(Context, TheSwitch->getIterator());
1414     } else if (OldFnRetTy->isVoidTy()) {
1415       // We have no return value.
1416       ReturnInst::Create(Context, nullptr,
1417                          TheSwitch->getIterator()); // Return void
1418     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1419       // return what we have
1420       ReturnInst::Create(Context, TheSwitch->getCondition(),
1421                          TheSwitch->getIterator());
1422     } else {
1423       // Otherwise we must have code extracted an unwind or something, just
1424       // return whatever we want.
1425       ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy),
1426                          TheSwitch->getIterator());
1427     }
1428 
1429     TheSwitch->eraseFromParent();
1430     break;
1431   case 1:
1432     // Only a single destination, change the switch into an unconditional
1433     // branch.
1434     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getIterator());
1435     TheSwitch->eraseFromParent();
1436     break;
1437   case 2:
1438     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1439                        call, TheSwitch->getIterator());
1440     TheSwitch->eraseFromParent();
1441     break;
1442   default:
1443     // Otherwise, make the default destination of the switch instruction be one
1444     // of the other successors.
1445     TheSwitch->setCondition(call);
1446     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1447     // Remove redundant case
1448     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1449     break;
1450   }
1451 
1452   // Insert lifetime markers around the reloads of any output values. The
1453   // allocas output values are stored in are only in-use in the codeRepl block.
1454   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1455 
1456   return call;
1457 }
1458 
moveCodeToFunction(Function * newFunction)1459 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1460   auto newFuncIt = newFunction->front().getIterator();
1461   for (BasicBlock *Block : Blocks) {
1462     // Delete the basic block from the old function, and the list of blocks
1463     Block->removeFromParent();
1464 
1465     // Insert this basic block into the new function
1466     // Insert the original blocks after the entry block created
1467     // for the new function. The entry block may be followed
1468     // by a set of exit blocks at this point, but these exit
1469     // blocks better be placed at the end of the new function.
1470     newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1471   }
1472 }
1473 
calculateNewCallTerminatorWeights(BasicBlock * CodeReplacer,DenseMap<BasicBlock *,BlockFrequency> & ExitWeights,BranchProbabilityInfo * BPI)1474 void CodeExtractor::calculateNewCallTerminatorWeights(
1475     BasicBlock *CodeReplacer,
1476     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1477     BranchProbabilityInfo *BPI) {
1478   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1479   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1480 
1481   // Update the branch weights for the exit block.
1482   Instruction *TI = CodeReplacer->getTerminator();
1483   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1484 
1485   // Block Frequency distribution with dummy node.
1486   Distribution BranchDist;
1487 
1488   SmallVector<BranchProbability, 4> EdgeProbabilities(
1489       TI->getNumSuccessors(), BranchProbability::getUnknown());
1490 
1491   // Add each of the frequencies of the successors.
1492   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1493     BlockNode ExitNode(i);
1494     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1495     if (ExitFreq != 0)
1496       BranchDist.addExit(ExitNode, ExitFreq);
1497     else
1498       EdgeProbabilities[i] = BranchProbability::getZero();
1499   }
1500 
1501   // Check for no total weight.
1502   if (BranchDist.Total == 0) {
1503     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1504     return;
1505   }
1506 
1507   // Normalize the distribution so that they can fit in unsigned.
1508   BranchDist.normalize();
1509 
1510   // Create normalized branch weights and set the metadata.
1511   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1512     const auto &Weight = BranchDist.Weights[I];
1513 
1514     // Get the weight and update the current BFI.
1515     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1516     BranchProbability BP(Weight.Amount, BranchDist.Total);
1517     EdgeProbabilities[Weight.TargetNode.Index] = BP;
1518   }
1519   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1520   TI->setMetadata(
1521       LLVMContext::MD_prof,
1522       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1523 }
1524 
1525 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1526 /// \p F.
eraseDebugIntrinsicsWithNonLocalRefs(Function & F)1527 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1528   for (Instruction &I : instructions(F)) {
1529     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1530     SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1531     findDbgUsers(DbgUsers, &I, &DbgVariableRecords);
1532     for (DbgVariableIntrinsic *DVI : DbgUsers)
1533       if (DVI->getFunction() != &F)
1534         DVI->eraseFromParent();
1535     for (DbgVariableRecord *DVR : DbgVariableRecords)
1536       if (DVR->getFunction() != &F)
1537         DVR->eraseFromParent();
1538   }
1539 }
1540 
1541 /// Fix up the debug info in the old and new functions by pointing line
1542 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1543 /// intrinsics which point to values outside of the new function.
fixupDebugInfoPostExtraction(Function & OldFunc,Function & NewFunc,CallInst & TheCall)1544 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1545                                          CallInst &TheCall) {
1546   DISubprogram *OldSP = OldFunc.getSubprogram();
1547   LLVMContext &Ctx = OldFunc.getContext();
1548 
1549   if (!OldSP) {
1550     // Erase any debug info the new function contains.
1551     stripDebugInfo(NewFunc);
1552     // Make sure the old function doesn't contain any non-local metadata refs.
1553     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1554     return;
1555   }
1556 
1557   // Create a subprogram for the new function. Leave out a description of the
1558   // function arguments, as the parameters don't correspond to anything at the
1559   // source level.
1560   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1561   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1562                 OldSP->getUnit());
1563   auto SPType =
1564       DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt));
1565   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1566                                     DISubprogram::SPFlagOptimized |
1567                                     DISubprogram::SPFlagLocalToUnit;
1568   auto NewSP = DIB.createFunction(
1569       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1570       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1571   NewFunc.setSubprogram(NewSP);
1572 
1573   auto IsInvalidLocation = [&NewFunc](Value *Location) {
1574     // Location is invalid if it isn't a constant or an instruction, or is an
1575     // instruction but isn't in the new function.
1576     if (!Location ||
1577         (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1578       return true;
1579     Instruction *LocationInst = dyn_cast<Instruction>(Location);
1580     return LocationInst && LocationInst->getFunction() != &NewFunc;
1581   };
1582 
1583   // Debug intrinsics in the new function need to be updated in one of two
1584   // ways:
1585   //  1) They need to be deleted, because they describe a value in the old
1586   //     function.
1587   //  2) They need to point to fresh metadata, e.g. because they currently
1588   //     point to a variable in the wrong scope.
1589   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1590   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1591   SmallVector<DbgVariableRecord *, 4> DVRsToDelete;
1592   DenseMap<const MDNode *, MDNode *> Cache;
1593 
1594   auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) {
1595     DINode *&NewVar = RemappedMetadata[OldVar];
1596     if (!NewVar) {
1597       DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1598           *OldVar->getScope(), *NewSP, Ctx, Cache);
1599       NewVar = DIB.createAutoVariable(
1600           NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1601           OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1602           OldVar->getAlignInBits());
1603     }
1604     return cast<DILocalVariable>(NewVar);
1605   };
1606 
1607   auto UpdateDbgLabel = [&](auto *LabelRecord) {
1608     // Point the label record to a fresh label within the new function if
1609     // the record was not inlined from some other function.
1610     if (LabelRecord->getDebugLoc().getInlinedAt())
1611       return;
1612     DILabel *OldLabel = LabelRecord->getLabel();
1613     DINode *&NewLabel = RemappedMetadata[OldLabel];
1614     if (!NewLabel) {
1615       DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1616           *OldLabel->getScope(), *NewSP, Ctx, Cache);
1617       NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1618                               OldLabel->getFile(), OldLabel->getLine());
1619     }
1620     LabelRecord->setLabel(cast<DILabel>(NewLabel));
1621   };
1622 
1623   auto UpdateDbgRecordsOnInst = [&](Instruction &I) -> void {
1624     for (DbgRecord &DR : I.getDbgRecordRange()) {
1625       if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1626         UpdateDbgLabel(DLR);
1627         continue;
1628       }
1629 
1630       DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1631       // Apply the two updates that dbg.values get: invalid operands, and
1632       // variable metadata fixup.
1633       if (any_of(DVR.location_ops(), IsInvalidLocation)) {
1634         DVRsToDelete.push_back(&DVR);
1635         continue;
1636       }
1637       if (DVR.isDbgAssign() && IsInvalidLocation(DVR.getAddress())) {
1638         DVRsToDelete.push_back(&DVR);
1639         continue;
1640       }
1641       if (!DVR.getDebugLoc().getInlinedAt())
1642         DVR.setVariable(GetUpdatedDIVariable(DVR.getVariable()));
1643     }
1644   };
1645 
1646   for (Instruction &I : instructions(NewFunc)) {
1647     UpdateDbgRecordsOnInst(I);
1648 
1649     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1650     if (!DII)
1651       continue;
1652 
1653     // Point the intrinsic to a fresh label within the new function if the
1654     // intrinsic was not inlined from some other function.
1655     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1656       UpdateDbgLabel(DLI);
1657       continue;
1658     }
1659 
1660     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1661     // If any of the used locations are invalid, delete the intrinsic.
1662     if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1663       DebugIntrinsicsToDelete.push_back(DVI);
1664       continue;
1665     }
1666     // DbgAssign intrinsics have an extra Value argument:
1667     if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
1668         DAI && IsInvalidLocation(DAI->getAddress())) {
1669       DebugIntrinsicsToDelete.push_back(DVI);
1670       continue;
1671     }
1672     // If the variable was in the scope of the old function, i.e. it was not
1673     // inlined, point the intrinsic to a fresh variable within the new function.
1674     if (!DVI->getDebugLoc().getInlinedAt())
1675       DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable()));
1676   }
1677 
1678   for (auto *DII : DebugIntrinsicsToDelete)
1679     DII->eraseFromParent();
1680   for (auto *DVR : DVRsToDelete)
1681     DVR->getMarker()->MarkedInstr->dropOneDbgRecord(DVR);
1682   DIB.finalizeSubprogram(NewSP);
1683 
1684   // Fix up the scope information attached to the line locations and the
1685   // debug assignment metadata in the new function.
1686   DenseMap<DIAssignID *, DIAssignID *> AssignmentIDMap;
1687   for (Instruction &I : instructions(NewFunc)) {
1688     if (const DebugLoc &DL = I.getDebugLoc())
1689       I.setDebugLoc(
1690           DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1691     for (DbgRecord &DR : I.getDbgRecordRange())
1692       DR.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DR.getDebugLoc(),
1693                                                           *NewSP, Ctx, Cache));
1694 
1695     // Loop info metadata may contain line locations. Fix them up.
1696     auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1697       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1698         return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1699       return MD;
1700     };
1701     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1702     at::remapAssignID(AssignmentIDMap, I);
1703   }
1704   if (!TheCall.getDebugLoc())
1705     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1706 
1707   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1708 }
1709 
1710 Function *
extractCodeRegion(const CodeExtractorAnalysisCache & CEAC)1711 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1712   ValueSet Inputs, Outputs;
1713   return extractCodeRegion(CEAC, Inputs, Outputs);
1714 }
1715 
1716 Function *
extractCodeRegion(const CodeExtractorAnalysisCache & CEAC,ValueSet & inputs,ValueSet & outputs)1717 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1718                                  ValueSet &inputs, ValueSet &outputs) {
1719   if (!isEligible())
1720     return nullptr;
1721 
1722   // Assumption: this is a single-entry code region, and the header is the first
1723   // block in the region.
1724   BasicBlock *header = *Blocks.begin();
1725   Function *oldFunction = header->getParent();
1726 
1727   // Calculate the entry frequency of the new function before we change the root
1728   //   block.
1729   BlockFrequency EntryFreq;
1730   if (BFI) {
1731     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1732     for (BasicBlock *Pred : predecessors(header)) {
1733       if (Blocks.count(Pred))
1734         continue;
1735       EntryFreq +=
1736           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1737     }
1738   }
1739 
1740   // Remove @llvm.assume calls that will be moved to the new function from the
1741   // old function's assumption cache.
1742   for (BasicBlock *Block : Blocks) {
1743     for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1744       if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1745         if (AC)
1746           AC->unregisterAssumption(AI);
1747         AI->eraseFromParent();
1748       }
1749     }
1750   }
1751 
1752   // If we have any return instructions in the region, split those blocks so
1753   // that the return is not in the region.
1754   splitReturnBlocks();
1755 
1756   // Calculate the exit blocks for the extracted region and the total exit
1757   // weights for each of those blocks.
1758   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1759   SetVector<BasicBlock *> ExitBlocks;
1760   for (BasicBlock *Block : Blocks) {
1761     for (BasicBlock *Succ : successors(Block)) {
1762       if (!Blocks.count(Succ)) {
1763         // Update the branch weight for this successor.
1764         if (BFI) {
1765           BlockFrequency &BF = ExitWeights[Succ];
1766           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1767         }
1768         ExitBlocks.insert(Succ);
1769       }
1770     }
1771   }
1772   NumExitBlocks = ExitBlocks.size();
1773 
1774   for (BasicBlock *Block : Blocks) {
1775     for (BasicBlock *OldTarget : successors(Block))
1776       if (!Blocks.contains(OldTarget))
1777         OldTargets.push_back(OldTarget);
1778   }
1779 
1780   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1781   severSplitPHINodesOfEntry(header);
1782   severSplitPHINodesOfExits(ExitBlocks);
1783 
1784   // This takes place of the original loop
1785   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1786                                                 "codeRepl", oldFunction,
1787                                                 header);
1788   codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1789 
1790   // The new function needs a root node because other nodes can branch to the
1791   // head of the region, but the entry node of a function cannot have preds.
1792   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1793                                                "newFuncRoot");
1794   newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1795 
1796   auto *BranchI = BranchInst::Create(header);
1797   // If the original function has debug info, we have to add a debug location
1798   // to the new branch instruction from the artificial entry block.
1799   // We use the debug location of the first instruction in the extracted
1800   // blocks, as there is no other equivalent line in the source code.
1801   if (oldFunction->getSubprogram()) {
1802     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1803       return any_of(*BB, [&BranchI](const Instruction &I) {
1804         if (!I.getDebugLoc())
1805           return false;
1806         // Don't use source locations attached to debug-intrinsics: they could
1807         // be from completely unrelated scopes.
1808         if (isa<DbgInfoIntrinsic>(I))
1809           return false;
1810         BranchI->setDebugLoc(I.getDebugLoc());
1811         return true;
1812       });
1813     });
1814   }
1815   BranchI->insertInto(newFuncRoot, newFuncRoot->end());
1816 
1817   ValueSet SinkingCands, HoistingCands;
1818   BasicBlock *CommonExit = nullptr;
1819   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1820   assert(HoistingCands.empty() || CommonExit);
1821 
1822   // Find inputs to, outputs from the code region.
1823   findInputsOutputs(inputs, outputs, SinkingCands);
1824 
1825   // Now sink all instructions which only have non-phi uses inside the region.
1826   // Group the allocas at the start of the block, so that any bitcast uses of
1827   // the allocas are well-defined.
1828   AllocaInst *FirstSunkAlloca = nullptr;
1829   for (auto *II : SinkingCands) {
1830     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1831       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1832       if (!FirstSunkAlloca)
1833         FirstSunkAlloca = AI;
1834     }
1835   }
1836   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1837          "Did not expect a sink candidate without any allocas");
1838   for (auto *II : SinkingCands) {
1839     if (!isa<AllocaInst>(II)) {
1840       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1841     }
1842   }
1843 
1844   if (!HoistingCands.empty()) {
1845     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1846     Instruction *TI = HoistToBlock->getTerminator();
1847     for (auto *II : HoistingCands)
1848       cast<Instruction>(II)->moveBefore(TI);
1849   }
1850 
1851   // Collect objects which are inputs to the extraction region and also
1852   // referenced by lifetime start markers within it. The effects of these
1853   // markers must be replicated in the calling function to prevent the stack
1854   // coloring pass from merging slots which store input objects.
1855   ValueSet LifetimesStart;
1856   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1857 
1858   // Construct new function based on inputs/outputs & add allocas for all defs.
1859   Function *newFunction =
1860       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1861                         oldFunction, oldFunction->getParent());
1862 
1863   // Update the entry count of the function.
1864   if (BFI) {
1865     auto Count = BFI->getProfileCountFromFreq(EntryFreq);
1866     if (Count)
1867       newFunction->setEntryCount(
1868           ProfileCount(*Count, Function::PCT_Real)); // FIXME
1869     BFI->setBlockFreq(codeReplacer, EntryFreq);
1870   }
1871 
1872   CallInst *TheCall =
1873       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1874 
1875   moveCodeToFunction(newFunction);
1876 
1877   // Replicate the effects of any lifetime start/end markers which referenced
1878   // input objects in the extraction region by placing markers around the call.
1879   insertLifetimeMarkersSurroundingCall(
1880       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1881 
1882   // Propagate personality info to the new function if there is one.
1883   if (oldFunction->hasPersonalityFn())
1884     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1885 
1886   // Update the branch weights for the exit block.
1887   if (BFI && NumExitBlocks > 1)
1888     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1889 
1890   // Loop over all of the PHI nodes in the header and exit blocks, and change
1891   // any references to the old incoming edge to be the new incoming edge.
1892   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1893     PHINode *PN = cast<PHINode>(I);
1894     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1895       if (!Blocks.count(PN->getIncomingBlock(i)))
1896         PN->setIncomingBlock(i, newFuncRoot);
1897   }
1898 
1899   for (BasicBlock *ExitBB : ExitBlocks)
1900     for (PHINode &PN : ExitBB->phis()) {
1901       Value *IncomingCodeReplacerVal = nullptr;
1902       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1903         // Ignore incoming values from outside of the extracted region.
1904         if (!Blocks.count(PN.getIncomingBlock(i)))
1905           continue;
1906 
1907         // Ensure that there is only one incoming value from codeReplacer.
1908         if (!IncomingCodeReplacerVal) {
1909           PN.setIncomingBlock(i, codeReplacer);
1910           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1911         } else
1912           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1913                  "PHI has two incompatbile incoming values from codeRepl");
1914       }
1915     }
1916 
1917   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1918 
1919   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1920     newFunction->dump();
1921     report_fatal_error("verification of newFunction failed!");
1922   });
1923   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1924              report_fatal_error("verification of oldFunction failed!"));
1925   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1926                  report_fatal_error("Stale Asumption cache for old Function!"));
1927   return newFunction;
1928 }
1929 
verifyAssumptionCache(const Function & OldFunc,const Function & NewFunc,AssumptionCache * AC)1930 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1931                                           const Function &NewFunc,
1932                                           AssumptionCache *AC) {
1933   for (auto AssumeVH : AC->assumptions()) {
1934     auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1935     if (!I)
1936       continue;
1937 
1938     // There shouldn't be any llvm.assume intrinsics in the new function.
1939     if (I->getFunction() != &OldFunc)
1940       return true;
1941 
1942     // There shouldn't be any stale affected values in the assumption cache
1943     // that were previously in the old function, but that have now been moved
1944     // to the new function.
1945     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1946       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1947       if (!AffectedCI)
1948         continue;
1949       if (AffectedCI->getFunction() != &OldFunc)
1950         return true;
1951       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1952       if (AssumedInst->getFunction() != &OldFunc)
1953         return true;
1954     }
1955   }
1956   return false;
1957 }
1958 
excludeArgFromAggregate(Value * Arg)1959 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1960   ExcludeArgsFromAggregate.insert(Arg);
1961 }
1962