1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the declaration of the MachineInstr class, which is the 10 // basic representation for all target dependent machine instructions used by 11 // the back end. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 16 #define LLVM_CODEGEN_MACHINEINSTR_H 17 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/PointerSumType.h" 20 #include "llvm/ADT/ilist.h" 21 #include "llvm/ADT/ilist_node.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/MC/MCInstrDesc.h" 30 #include "llvm/MC/MCSymbol.h" 31 #include "llvm/Support/ArrayRecycler.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/TrailingObjects.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstdint> 37 #include <utility> 38 39 namespace llvm { 40 41 class DILabel; 42 class Instruction; 43 class MDNode; 44 class AAResults; 45 template <typename T> class ArrayRef; 46 class DIExpression; 47 class DILocalVariable; 48 class MachineBasicBlock; 49 class MachineFunction; 50 class MachineRegisterInfo; 51 class ModuleSlotTracker; 52 class raw_ostream; 53 template <typename T> class SmallVectorImpl; 54 class SmallBitVector; 55 class StringRef; 56 class TargetInstrInfo; 57 class TargetRegisterClass; 58 class TargetRegisterInfo; 59 60 //===----------------------------------------------------------------------===// 61 /// Representation of each machine instruction. 62 /// 63 /// This class isn't a POD type, but it must have a trivial destructor. When a 64 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 65 /// without having their destructor called. 66 /// 67 class MachineInstr 68 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, 69 ilist_sentinel_tracking<true>> { 70 public: 71 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator; 72 73 /// Flags to specify different kinds of comments to output in 74 /// assembly code. These flags carry semantic information not 75 /// otherwise easily derivable from the IR text. 76 /// 77 enum CommentFlag { 78 ReloadReuse = 0x1, // higher bits are reserved for target dep comments. 79 NoSchedComment = 0x2, 80 TAsmComments = 0x4 // Target Asm comments should start from this value. 81 }; 82 83 enum MIFlag { 84 NoFlags = 0, 85 FrameSetup = 1 << 0, // Instruction is used as a part of 86 // function frame setup code. 87 FrameDestroy = 1 << 1, // Instruction is used as a part of 88 // function frame destruction code. 89 BundledPred = 1 << 2, // Instruction has bundled predecessors. 90 BundledSucc = 1 << 3, // Instruction has bundled successors. 91 FmNoNans = 1 << 4, // Instruction does not support Fast 92 // math nan values. 93 FmNoInfs = 1 << 5, // Instruction does not support Fast 94 // math infinity values. 95 FmNsz = 1 << 6, // Instruction is not required to retain 96 // signed zero values. 97 FmArcp = 1 << 7, // Instruction supports Fast math 98 // reciprocal approximations. 99 FmContract = 1 << 8, // Instruction supports Fast math 100 // contraction operations like fma. 101 FmAfn = 1 << 9, // Instruction may map to Fast math 102 // intrinsic approximation. 103 FmReassoc = 1 << 10, // Instruction supports Fast math 104 // reassociation of operand order. 105 NoUWrap = 1 << 11, // Instruction supports binary operator 106 // no unsigned wrap. 107 NoSWrap = 1 << 12, // Instruction supports binary operator 108 // no signed wrap. 109 IsExact = 1 << 13, // Instruction supports division is 110 // known to be exact. 111 NoFPExcept = 1 << 14, // Instruction does not raise 112 // floatint-point exceptions. 113 NoMerge = 1 << 15, // Passes that drop source location info 114 // (e.g. branch folding) should skip 115 // this instruction. 116 Unpredictable = 1 << 16, // Instruction with unpredictable condition. 117 NoConvergent = 1 << 17, // Call does not require convergence guarantees. 118 NonNeg = 1 << 18, // The operand is non-negative. 119 Disjoint = 1 << 19, // Each bit is zero in at least one of the inputs. 120 NoUSWrap = 1 << 20, // Instruction supports geps 121 // no unsigned signed wrap. 122 }; 123 124 private: 125 const MCInstrDesc *MCID; // Instruction descriptor. 126 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. 127 128 // Operands are allocated by an ArrayRecycler. 129 MachineOperand *Operands = nullptr; // Pointer to the first operand. 130 131 #define LLVM_MI_NUMOPERANDS_BITS 24 132 #define LLVM_MI_FLAGS_BITS 24 133 #define LLVM_MI_ASMPRINTERFLAGS_BITS 8 134 135 /// Number of operands on instruction. 136 uint32_t NumOperands : LLVM_MI_NUMOPERANDS_BITS; 137 138 // OperandCapacity has uint8_t size, so it should be next to NumOperands 139 // to properly pack. 140 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 141 OperandCapacity CapOperands; // Capacity of the Operands array. 142 143 /// Various bits of additional information about the machine instruction. 144 uint32_t Flags : LLVM_MI_FLAGS_BITS; 145 146 /// Various bits of information used by the AsmPrinter to emit helpful 147 /// comments. This is *not* semantic information. Do not use this for 148 /// anything other than to convey comment information to AsmPrinter. 149 uint8_t AsmPrinterFlags : LLVM_MI_ASMPRINTERFLAGS_BITS; 150 151 /// Internal implementation detail class that provides out-of-line storage for 152 /// extra info used by the machine instruction when this info cannot be stored 153 /// in-line within the instruction itself. 154 /// 155 /// This has to be defined eagerly due to the implementation constraints of 156 /// `PointerSumType` where it is used. 157 class ExtraInfo final : TrailingObjects<ExtraInfo, MachineMemOperand *, 158 MCSymbol *, MDNode *, uint32_t> { 159 public: 160 static ExtraInfo *create(BumpPtrAllocator &Allocator, 161 ArrayRef<MachineMemOperand *> MMOs, 162 MCSymbol *PreInstrSymbol = nullptr, 163 MCSymbol *PostInstrSymbol = nullptr, 164 MDNode *HeapAllocMarker = nullptr, 165 MDNode *PCSections = nullptr, uint32_t CFIType = 0, 166 MDNode *MMRAs = nullptr) { 167 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 168 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 169 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 170 bool HasMMRAs = MMRAs != nullptr; 171 bool HasCFIType = CFIType != 0; 172 bool HasPCSections = PCSections != nullptr; 173 auto *Result = new (Allocator.Allocate( 174 totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *, uint32_t>( 175 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol, 176 HasHeapAllocMarker + HasPCSections + HasMMRAs, HasCFIType), 177 alignof(ExtraInfo))) 178 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol, 179 HasHeapAllocMarker, HasPCSections, HasCFIType, HasMMRAs); 180 181 // Copy the actual data into the trailing objects. 182 std::copy(MMOs.begin(), MMOs.end(), 183 Result->getTrailingObjects<MachineMemOperand *>()); 184 185 unsigned MDNodeIdx = 0; 186 187 if (HasPreInstrSymbol) 188 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; 189 if (HasPostInstrSymbol) 190 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = 191 PostInstrSymbol; 192 if (HasHeapAllocMarker) 193 Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = HeapAllocMarker; 194 if (HasPCSections) 195 Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = PCSections; 196 if (HasCFIType) 197 Result->getTrailingObjects<uint32_t>()[0] = CFIType; 198 if (HasMMRAs) 199 Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = MMRAs; 200 201 return Result; 202 } 203 getMMOs()204 ArrayRef<MachineMemOperand *> getMMOs() const { 205 return ArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); 206 } 207 getPreInstrSymbol()208 MCSymbol *getPreInstrSymbol() const { 209 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; 210 } 211 getPostInstrSymbol()212 MCSymbol *getPostInstrSymbol() const { 213 return HasPostInstrSymbol 214 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] 215 : nullptr; 216 } 217 getHeapAllocMarker()218 MDNode *getHeapAllocMarker() const { 219 return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr; 220 } 221 getPCSections()222 MDNode *getPCSections() const { 223 return HasPCSections 224 ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker] 225 : nullptr; 226 } 227 getCFIType()228 uint32_t getCFIType() const { 229 return HasCFIType ? getTrailingObjects<uint32_t>()[0] : 0; 230 } 231 getMMRAMetadata()232 MDNode *getMMRAMetadata() const { 233 return HasMMRAs ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker + 234 HasPCSections] 235 : nullptr; 236 } 237 238 private: 239 friend TrailingObjects; 240 241 // Description of the extra info, used to interpret the actual optional 242 // data appended. 243 // 244 // Note that this is not terribly space optimized. This leaves a great deal 245 // of flexibility to fit more in here later. 246 const int NumMMOs; 247 const bool HasPreInstrSymbol; 248 const bool HasPostInstrSymbol; 249 const bool HasHeapAllocMarker; 250 const bool HasPCSections; 251 const bool HasCFIType; 252 const bool HasMMRAs; 253 254 // Implement the `TrailingObjects` internal API. numTrailingObjects(OverloadToken<MachineMemOperand * >)255 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { 256 return NumMMOs; 257 } numTrailingObjects(OverloadToken<MCSymbol * >)258 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { 259 return HasPreInstrSymbol + HasPostInstrSymbol; 260 } numTrailingObjects(OverloadToken<MDNode * >)261 size_t numTrailingObjects(OverloadToken<MDNode *>) const { 262 return HasHeapAllocMarker + HasPCSections; 263 } numTrailingObjects(OverloadToken<uint32_t>)264 size_t numTrailingObjects(OverloadToken<uint32_t>) const { 265 return HasCFIType; 266 } 267 268 // Just a boring constructor to allow us to initialize the sizes. Always use 269 // the `create` routine above. ExtraInfo(int NumMMOs,bool HasPreInstrSymbol,bool HasPostInstrSymbol,bool HasHeapAllocMarker,bool HasPCSections,bool HasCFIType,bool HasMMRAs)270 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol, 271 bool HasHeapAllocMarker, bool HasPCSections, bool HasCFIType, 272 bool HasMMRAs) 273 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), 274 HasPostInstrSymbol(HasPostInstrSymbol), 275 HasHeapAllocMarker(HasHeapAllocMarker), HasPCSections(HasPCSections), 276 HasCFIType(HasCFIType), HasMMRAs(HasMMRAs) {} 277 }; 278 279 /// Enumeration of the kinds of inline extra info available. It is important 280 /// that the `MachineMemOperand` inline kind has a tag value of zero to make 281 /// it accessible as an `ArrayRef`. 282 enum ExtraInfoInlineKinds { 283 EIIK_MMO = 0, 284 EIIK_PreInstrSymbol, 285 EIIK_PostInstrSymbol, 286 EIIK_OutOfLine 287 }; 288 289 // We store extra information about the instruction here. The common case is 290 // expected to be nothing or a single pointer (typically a MMO or a symbol). 291 // We work to optimize this common case by storing it inline here rather than 292 // requiring a separate allocation, but we fall back to an allocation when 293 // multiple pointers are needed. 294 PointerSumType<ExtraInfoInlineKinds, 295 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, 296 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, 297 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, 298 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> 299 Info; 300 301 DebugLoc DbgLoc; // Source line information. 302 303 /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values 304 /// defined by this instruction. 305 unsigned DebugInstrNum; 306 307 /// Cached opcode from MCID. 308 uint16_t Opcode; 309 310 // Intrusive list support 311 friend struct ilist_traits<MachineInstr>; 312 friend struct ilist_callback_traits<MachineBasicBlock>; 313 void setParent(MachineBasicBlock *P) { Parent = P; } 314 315 /// This constructor creates a copy of the given 316 /// MachineInstr in the given MachineFunction. 317 MachineInstr(MachineFunction &, const MachineInstr &); 318 319 /// This constructor create a MachineInstr and add the implicit operands. 320 /// It reserves space for number of operands specified by 321 /// MCInstrDesc. An explicit DebugLoc is supplied. 322 MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL, 323 bool NoImp = false); 324 325 // MachineInstrs are pool-allocated and owned by MachineFunction. 326 friend class MachineFunction; 327 328 void 329 dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 330 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const; 331 332 static bool opIsRegDef(const MachineOperand &Op) { 333 return Op.isReg() && Op.isDef(); 334 } 335 336 static bool opIsRegUse(const MachineOperand &Op) { 337 return Op.isReg() && Op.isUse(); 338 } 339 340 public: 341 MachineInstr(const MachineInstr &) = delete; 342 MachineInstr &operator=(const MachineInstr &) = delete; 343 // Use MachineFunction::DeleteMachineInstr() instead. 344 ~MachineInstr() = delete; 345 346 const MachineBasicBlock* getParent() const { return Parent; } 347 MachineBasicBlock* getParent() { return Parent; } 348 349 /// Move the instruction before \p MovePos. 350 void moveBefore(MachineInstr *MovePos); 351 352 /// Return the function that contains the basic block that this instruction 353 /// belongs to. 354 /// 355 /// Note: this is undefined behaviour if the instruction does not have a 356 /// parent. 357 const MachineFunction *getMF() const; 358 MachineFunction *getMF() { 359 return const_cast<MachineFunction *>( 360 static_cast<const MachineInstr *>(this)->getMF()); 361 } 362 363 /// Return the asm printer flags bitvector. 364 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 365 366 /// Clear the AsmPrinter bitvector. 367 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 368 369 /// Return whether an AsmPrinter flag is set. 370 bool getAsmPrinterFlag(CommentFlag Flag) const { 371 assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) && 372 "Flag is out of range for the AsmPrinterFlags field"); 373 return AsmPrinterFlags & Flag; 374 } 375 376 /// Set a flag for the AsmPrinter. 377 void setAsmPrinterFlag(uint8_t Flag) { 378 assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) && 379 "Flag is out of range for the AsmPrinterFlags field"); 380 AsmPrinterFlags |= Flag; 381 } 382 383 /// Clear specific AsmPrinter flags. 384 void clearAsmPrinterFlag(CommentFlag Flag) { 385 assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) && 386 "Flag is out of range for the AsmPrinterFlags field"); 387 AsmPrinterFlags &= ~Flag; 388 } 389 390 /// Return the MI flags bitvector. 391 uint32_t getFlags() const { 392 return Flags; 393 } 394 395 /// Return whether an MI flag is set. 396 bool getFlag(MIFlag Flag) const { 397 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) && 398 "Flag is out of range for the Flags field"); 399 return Flags & Flag; 400 } 401 402 /// Set a MI flag. 403 void setFlag(MIFlag Flag) { 404 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) && 405 "Flag is out of range for the Flags field"); 406 Flags |= (uint32_t)Flag; 407 } 408 409 void setFlags(unsigned flags) { 410 assert(isUInt<LLVM_MI_FLAGS_BITS>(flags) && 411 "flags to be set are out of range for the Flags field"); 412 // Filter out the automatically maintained flags. 413 unsigned Mask = BundledPred | BundledSucc; 414 Flags = (Flags & Mask) | (flags & ~Mask); 415 } 416 417 /// clearFlag - Clear a MI flag. 418 void clearFlag(MIFlag Flag) { 419 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) && 420 "Flag to clear is out of range for the Flags field"); 421 Flags &= ~((uint32_t)Flag); 422 } 423 424 void clearFlags(unsigned flags) { 425 assert(isUInt<LLVM_MI_FLAGS_BITS>(flags) && 426 "flags to be cleared are out of range for the Flags field"); 427 Flags &= ~flags; 428 } 429 430 /// Return true if MI is in a bundle (but not the first MI in a bundle). 431 /// 432 /// A bundle looks like this before it's finalized: 433 /// ---------------- 434 /// | MI | 435 /// ---------------- 436 /// | 437 /// ---------------- 438 /// | MI * | 439 /// ---------------- 440 /// | 441 /// ---------------- 442 /// | MI * | 443 /// ---------------- 444 /// In this case, the first MI starts a bundle but is not inside a bundle, the 445 /// next 2 MIs are considered "inside" the bundle. 446 /// 447 /// After a bundle is finalized, it looks like this: 448 /// ---------------- 449 /// | Bundle | 450 /// ---------------- 451 /// | 452 /// ---------------- 453 /// | MI * | 454 /// ---------------- 455 /// | 456 /// ---------------- 457 /// | MI * | 458 /// ---------------- 459 /// | 460 /// ---------------- 461 /// | MI * | 462 /// ---------------- 463 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 464 /// a bundle, but the next three MIs are. 465 bool isInsideBundle() const { 466 return getFlag(BundledPred); 467 } 468 469 /// Return true if this instruction part of a bundle. This is true 470 /// if either itself or its following instruction is marked "InsideBundle". 471 bool isBundled() const { 472 return isBundledWithPred() || isBundledWithSucc(); 473 } 474 475 /// Return true if this instruction is part of a bundle, and it is not the 476 /// first instruction in the bundle. 477 bool isBundledWithPred() const { return getFlag(BundledPred); } 478 479 /// Return true if this instruction is part of a bundle, and it is not the 480 /// last instruction in the bundle. 481 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 482 483 /// Bundle this instruction with its predecessor. This can be an unbundled 484 /// instruction, or it can be the first instruction in a bundle. 485 void bundleWithPred(); 486 487 /// Bundle this instruction with its successor. This can be an unbundled 488 /// instruction, or it can be the last instruction in a bundle. 489 void bundleWithSucc(); 490 491 /// Break bundle above this instruction. 492 void unbundleFromPred(); 493 494 /// Break bundle below this instruction. 495 void unbundleFromSucc(); 496 497 /// Returns the debug location id of this MachineInstr. 498 const DebugLoc &getDebugLoc() const { return DbgLoc; } 499 500 /// Return the operand containing the offset to be used if this DBG_VALUE 501 /// instruction is indirect; will be an invalid register if this value is 502 /// not indirect, and an immediate with value 0 otherwise. 503 const MachineOperand &getDebugOffset() const { 504 assert(isNonListDebugValue() && "not a DBG_VALUE"); 505 return getOperand(1); 506 } 507 MachineOperand &getDebugOffset() { 508 assert(isNonListDebugValue() && "not a DBG_VALUE"); 509 return getOperand(1); 510 } 511 512 /// Return the operand for the debug variable referenced by 513 /// this DBG_VALUE instruction. 514 const MachineOperand &getDebugVariableOp() const; 515 MachineOperand &getDebugVariableOp(); 516 517 /// Return the debug variable referenced by 518 /// this DBG_VALUE instruction. 519 const DILocalVariable *getDebugVariable() const; 520 521 /// Return the operand for the complex address expression referenced by 522 /// this DBG_VALUE instruction. 523 const MachineOperand &getDebugExpressionOp() const; 524 MachineOperand &getDebugExpressionOp(); 525 526 /// Return the complex address expression referenced by 527 /// this DBG_VALUE instruction. 528 const DIExpression *getDebugExpression() const; 529 530 /// Return the debug label referenced by 531 /// this DBG_LABEL instruction. 532 const DILabel *getDebugLabel() const; 533 534 /// Fetch the instruction number of this MachineInstr. If it does not have 535 /// one already, a new and unique number will be assigned. 536 unsigned getDebugInstrNum(); 537 538 /// Fetch instruction number of this MachineInstr -- but before it's inserted 539 /// into \p MF. Needed for transformations that create an instruction but 540 /// don't immediately insert them. 541 unsigned getDebugInstrNum(MachineFunction &MF); 542 543 /// Examine the instruction number of this MachineInstr. May be zero if 544 /// it hasn't been assigned a number yet. 545 unsigned peekDebugInstrNum() const { return DebugInstrNum; } 546 547 /// Set instruction number of this MachineInstr. Avoid using unless you're 548 /// deserializing this information. 549 void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; } 550 551 /// Drop any variable location debugging information associated with this 552 /// instruction. Use when an instruction is modified in such a way that it no 553 /// longer defines the value it used to. Variable locations using that value 554 /// will be dropped. 555 void dropDebugNumber() { DebugInstrNum = 0; } 556 557 /// Emit an error referring to the source location of this instruction. 558 /// This should only be used for inline assembly that is somehow 559 /// impossible to compile. Other errors should have been handled much 560 /// earlier. 561 /// 562 /// If this method returns, the caller should try to recover from the error. 563 void emitError(StringRef Msg) const; 564 565 /// Returns the target instruction descriptor of this MachineInstr. 566 const MCInstrDesc &getDesc() const { return *MCID; } 567 568 /// Returns the opcode of this MachineInstr. 569 unsigned getOpcode() const { return Opcode; } 570 571 /// Retuns the total number of operands. 572 unsigned getNumOperands() const { return NumOperands; } 573 574 /// Returns the total number of operands which are debug locations. 575 unsigned getNumDebugOperands() const { 576 return std::distance(debug_operands().begin(), debug_operands().end()); 577 } 578 579 const MachineOperand& getOperand(unsigned i) const { 580 assert(i < getNumOperands() && "getOperand() out of range!"); 581 return Operands[i]; 582 } 583 MachineOperand& getOperand(unsigned i) { 584 assert(i < getNumOperands() && "getOperand() out of range!"); 585 return Operands[i]; 586 } 587 588 MachineOperand &getDebugOperand(unsigned Index) { 589 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); 590 return *(debug_operands().begin() + Index); 591 } 592 const MachineOperand &getDebugOperand(unsigned Index) const { 593 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); 594 return *(debug_operands().begin() + Index); 595 } 596 597 /// Returns whether this debug value has at least one debug operand with the 598 /// register \p Reg. 599 bool hasDebugOperandForReg(Register Reg) const { 600 return any_of(debug_operands(), [Reg](const MachineOperand &Op) { 601 return Op.isReg() && Op.getReg() == Reg; 602 }); 603 } 604 605 /// Returns a range of all of the operands that correspond to a debug use of 606 /// \p Reg. 607 template <typename Operand, typename Instruction> 608 static iterator_range< 609 filter_iterator<Operand *, std::function<bool(Operand &Op)>>> 610 getDebugOperandsForReg(Instruction *MI, Register Reg) { 611 std::function<bool(Operand & Op)> OpUsesReg( 612 [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; }); 613 return make_filter_range(MI->debug_operands(), OpUsesReg); 614 } 615 iterator_range<filter_iterator<const MachineOperand *, 616 std::function<bool(const MachineOperand &Op)>>> 617 getDebugOperandsForReg(Register Reg) const { 618 return MachineInstr::getDebugOperandsForReg<const MachineOperand, 619 const MachineInstr>(this, Reg); 620 } 621 iterator_range<filter_iterator<MachineOperand *, 622 std::function<bool(MachineOperand &Op)>>> 623 getDebugOperandsForReg(Register Reg) { 624 return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>( 625 this, Reg); 626 } 627 628 bool isDebugOperand(const MachineOperand *Op) const { 629 return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands()); 630 } 631 632 unsigned getDebugOperandIndex(const MachineOperand *Op) const { 633 assert(isDebugOperand(Op) && "Expected a debug operand."); 634 return std::distance(adl_begin(debug_operands()), Op); 635 } 636 637 /// Returns the total number of definitions. 638 unsigned getNumDefs() const { 639 return getNumExplicitDefs() + MCID->implicit_defs().size(); 640 } 641 642 /// Returns true if the instruction has implicit definition. 643 bool hasImplicitDef() const { 644 for (const MachineOperand &MO : implicit_operands()) 645 if (MO.isDef() && MO.isImplicit()) 646 return true; 647 return false; 648 } 649 650 /// Returns the implicit operands number. 651 unsigned getNumImplicitOperands() const { 652 return getNumOperands() - getNumExplicitOperands(); 653 } 654 655 /// Return true if operand \p OpIdx is a subregister index. 656 bool isOperandSubregIdx(unsigned OpIdx) const { 657 assert(getOperand(OpIdx).isImm() && "Expected MO_Immediate operand type."); 658 if (isExtractSubreg() && OpIdx == 2) 659 return true; 660 if (isInsertSubreg() && OpIdx == 3) 661 return true; 662 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) 663 return true; 664 if (isSubregToReg() && OpIdx == 3) 665 return true; 666 return false; 667 } 668 669 /// Returns the number of non-implicit operands. 670 unsigned getNumExplicitOperands() const; 671 672 /// Returns the number of non-implicit definitions. 673 unsigned getNumExplicitDefs() const; 674 675 /// iterator/begin/end - Iterate over all operands of a machine instruction. 676 using mop_iterator = MachineOperand *; 677 using const_mop_iterator = const MachineOperand *; 678 679 mop_iterator operands_begin() { return Operands; } 680 mop_iterator operands_end() { return Operands + NumOperands; } 681 682 const_mop_iterator operands_begin() const { return Operands; } 683 const_mop_iterator operands_end() const { return Operands + NumOperands; } 684 685 iterator_range<mop_iterator> operands() { 686 return make_range(operands_begin(), operands_end()); 687 } 688 iterator_range<const_mop_iterator> operands() const { 689 return make_range(operands_begin(), operands_end()); 690 } 691 iterator_range<mop_iterator> explicit_operands() { 692 return make_range(operands_begin(), 693 operands_begin() + getNumExplicitOperands()); 694 } 695 iterator_range<const_mop_iterator> explicit_operands() const { 696 return make_range(operands_begin(), 697 operands_begin() + getNumExplicitOperands()); 698 } 699 iterator_range<mop_iterator> implicit_operands() { 700 return make_range(explicit_operands().end(), operands_end()); 701 } 702 iterator_range<const_mop_iterator> implicit_operands() const { 703 return make_range(explicit_operands().end(), operands_end()); 704 } 705 /// Returns a range over all operands that are used to determine the variable 706 /// location for this DBG_VALUE instruction. 707 iterator_range<mop_iterator> debug_operands() { 708 assert((isDebugValueLike()) && "Must be a debug value instruction."); 709 return isNonListDebugValue() 710 ? make_range(operands_begin(), operands_begin() + 1) 711 : make_range(operands_begin() + 2, operands_end()); 712 } 713 /// \copydoc debug_operands() 714 iterator_range<const_mop_iterator> debug_operands() const { 715 assert((isDebugValueLike()) && "Must be a debug value instruction."); 716 return isNonListDebugValue() 717 ? make_range(operands_begin(), operands_begin() + 1) 718 : make_range(operands_begin() + 2, operands_end()); 719 } 720 /// Returns a range over all explicit operands that are register definitions. 721 /// Implicit definition are not included! 722 iterator_range<mop_iterator> defs() { 723 return make_range(operands_begin(), 724 operands_begin() + getNumExplicitDefs()); 725 } 726 /// \copydoc defs() 727 iterator_range<const_mop_iterator> defs() const { 728 return make_range(operands_begin(), 729 operands_begin() + getNumExplicitDefs()); 730 } 731 /// Returns a range that includes all operands that are register uses. 732 /// This may include unrelated operands which are not register uses. 733 iterator_range<mop_iterator> uses() { 734 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 735 } 736 /// \copydoc uses() 737 iterator_range<const_mop_iterator> uses() const { 738 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 739 } 740 iterator_range<mop_iterator> explicit_uses() { 741 return make_range(operands_begin() + getNumExplicitDefs(), 742 operands_begin() + getNumExplicitOperands()); 743 } 744 iterator_range<const_mop_iterator> explicit_uses() const { 745 return make_range(operands_begin() + getNumExplicitDefs(), 746 operands_begin() + getNumExplicitOperands()); 747 } 748 749 using filtered_mop_iterator = 750 filter_iterator<mop_iterator, bool (*)(const MachineOperand &)>; 751 using filtered_const_mop_iterator = 752 filter_iterator<const_mop_iterator, bool (*)(const MachineOperand &)>; 753 754 /// Returns an iterator range over all operands that are (explicit or 755 /// implicit) register defs. 756 iterator_range<filtered_mop_iterator> all_defs() { 757 return make_filter_range(operands(), opIsRegDef); 758 } 759 /// \copydoc all_defs() 760 iterator_range<filtered_const_mop_iterator> all_defs() const { 761 return make_filter_range(operands(), opIsRegDef); 762 } 763 764 /// Returns an iterator range over all operands that are (explicit or 765 /// implicit) register uses. 766 iterator_range<filtered_mop_iterator> all_uses() { 767 return make_filter_range(uses(), opIsRegUse); 768 } 769 /// \copydoc all_uses() 770 iterator_range<filtered_const_mop_iterator> all_uses() const { 771 return make_filter_range(uses(), opIsRegUse); 772 } 773 774 /// Returns the number of the operand iterator \p I points to. 775 unsigned getOperandNo(const_mop_iterator I) const { 776 return I - operands_begin(); 777 } 778 779 /// Access to memory operands of the instruction. If there are none, that does 780 /// not imply anything about whether the function accesses memory. Instead, 781 /// the caller must behave conservatively. 782 ArrayRef<MachineMemOperand *> memoperands() const { 783 if (!Info) 784 return {}; 785 786 if (Info.is<EIIK_MMO>()) 787 return ArrayRef(Info.getAddrOfZeroTagPointer(), 1); 788 789 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 790 return EI->getMMOs(); 791 792 return {}; 793 } 794 795 /// Access to memory operands of the instruction. 796 /// 797 /// If `memoperands_begin() == memoperands_end()`, that does not imply 798 /// anything about whether the function accesses memory. Instead, the caller 799 /// must behave conservatively. 800 mmo_iterator memoperands_begin() const { return memoperands().begin(); } 801 802 /// Access to memory operands of the instruction. 803 /// 804 /// If `memoperands_begin() == memoperands_end()`, that does not imply 805 /// anything about whether the function accesses memory. Instead, the caller 806 /// must behave conservatively. 807 mmo_iterator memoperands_end() const { return memoperands().end(); } 808 809 /// Return true if we don't have any memory operands which described the 810 /// memory access done by this instruction. If this is true, calling code 811 /// must be conservative. 812 bool memoperands_empty() const { return memoperands().empty(); } 813 814 /// Return true if this instruction has exactly one MachineMemOperand. 815 bool hasOneMemOperand() const { return memoperands().size() == 1; } 816 817 /// Return the number of memory operands. 818 unsigned getNumMemOperands() const { return memoperands().size(); } 819 820 /// Helper to extract a pre-instruction symbol if one has been added. 821 MCSymbol *getPreInstrSymbol() const { 822 if (!Info) 823 return nullptr; 824 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) 825 return S; 826 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 827 return EI->getPreInstrSymbol(); 828 829 return nullptr; 830 } 831 832 /// Helper to extract a post-instruction symbol if one has been added. 833 MCSymbol *getPostInstrSymbol() const { 834 if (!Info) 835 return nullptr; 836 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) 837 return S; 838 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 839 return EI->getPostInstrSymbol(); 840 841 return nullptr; 842 } 843 844 /// Helper to extract a heap alloc marker if one has been added. 845 MDNode *getHeapAllocMarker() const { 846 if (!Info) 847 return nullptr; 848 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 849 return EI->getHeapAllocMarker(); 850 851 return nullptr; 852 } 853 854 /// Helper to extract PCSections metadata target sections. 855 MDNode *getPCSections() const { 856 if (!Info) 857 return nullptr; 858 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 859 return EI->getPCSections(); 860 861 return nullptr; 862 } 863 864 /// Helper to extract mmra.op metadata. 865 MDNode *getMMRAMetadata() const { 866 if (!Info) 867 return nullptr; 868 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 869 return EI->getMMRAMetadata(); 870 return nullptr; 871 } 872 873 /// Helper to extract a CFI type hash if one has been added. 874 uint32_t getCFIType() const { 875 if (!Info) 876 return 0; 877 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 878 return EI->getCFIType(); 879 880 return 0; 881 } 882 883 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 884 /// queries but they are bundle aware. 885 886 enum QueryType { 887 IgnoreBundle, // Ignore bundles 888 AnyInBundle, // Return true if any instruction in bundle has property 889 AllInBundle // Return true if all instructions in bundle have property 890 }; 891 892 /// Return true if the instruction (or in the case of a bundle, 893 /// the instructions inside the bundle) has the specified property. 894 /// The first argument is the property being queried. 895 /// The second argument indicates whether the query should look inside 896 /// instruction bundles. 897 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 898 assert(MCFlag < 64 && 899 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); 900 // Inline the fast path for unbundled or bundle-internal instructions. 901 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 902 return getDesc().getFlags() & (1ULL << MCFlag); 903 904 // If this is the first instruction in a bundle, take the slow path. 905 return hasPropertyInBundle(1ULL << MCFlag, Type); 906 } 907 908 /// Return true if this is an instruction that should go through the usual 909 /// legalization steps. 910 bool isPreISelOpcode(QueryType Type = IgnoreBundle) const { 911 return hasProperty(MCID::PreISelOpcode, Type); 912 } 913 914 /// Return true if this instruction can have a variable number of operands. 915 /// In this case, the variable operands will be after the normal 916 /// operands but before the implicit definitions and uses (if any are 917 /// present). 918 bool isVariadic(QueryType Type = IgnoreBundle) const { 919 return hasProperty(MCID::Variadic, Type); 920 } 921 922 /// Set if this instruction has an optional definition, e.g. 923 /// ARM instructions which can set condition code if 's' bit is set. 924 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 925 return hasProperty(MCID::HasOptionalDef, Type); 926 } 927 928 /// Return true if this is a pseudo instruction that doesn't 929 /// correspond to a real machine instruction. 930 bool isPseudo(QueryType Type = IgnoreBundle) const { 931 return hasProperty(MCID::Pseudo, Type); 932 } 933 934 /// Return true if this instruction doesn't produce any output in the form of 935 /// executable instructions. 936 bool isMetaInstruction(QueryType Type = IgnoreBundle) const { 937 return hasProperty(MCID::Meta, Type); 938 } 939 940 bool isReturn(QueryType Type = AnyInBundle) const { 941 return hasProperty(MCID::Return, Type); 942 } 943 944 /// Return true if this is an instruction that marks the end of an EH scope, 945 /// i.e., a catchpad or a cleanuppad instruction. 946 bool isEHScopeReturn(QueryType Type = AnyInBundle) const { 947 return hasProperty(MCID::EHScopeReturn, Type); 948 } 949 950 bool isCall(QueryType Type = AnyInBundle) const { 951 return hasProperty(MCID::Call, Type); 952 } 953 954 /// Return true if this is a call instruction that may have an associated 955 /// call site entry in the debug info. 956 bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const; 957 /// Return true if copying, moving, or erasing this instruction requires 958 /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo, 959 /// \ref eraseCallSiteInfo). 960 bool shouldUpdateCallSiteInfo() const; 961 962 /// Returns true if the specified instruction stops control flow 963 /// from executing the instruction immediately following it. Examples include 964 /// unconditional branches and return instructions. 965 bool isBarrier(QueryType Type = AnyInBundle) const { 966 return hasProperty(MCID::Barrier, Type); 967 } 968 969 /// Returns true if this instruction part of the terminator for a basic block. 970 /// Typically this is things like return and branch instructions. 971 /// 972 /// Various passes use this to insert code into the bottom of a basic block, 973 /// but before control flow occurs. 974 bool isTerminator(QueryType Type = AnyInBundle) const { 975 return hasProperty(MCID::Terminator, Type); 976 } 977 978 /// Returns true if this is a conditional, unconditional, or indirect branch. 979 /// Predicates below can be used to discriminate between 980 /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to 981 /// get more information. 982 bool isBranch(QueryType Type = AnyInBundle) const { 983 return hasProperty(MCID::Branch, Type); 984 } 985 986 /// Return true if this is an indirect branch, such as a 987 /// branch through a register. 988 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 989 return hasProperty(MCID::IndirectBranch, Type); 990 } 991 992 /// Return true if this is a branch which may fall 993 /// through to the next instruction or may transfer control flow to some other 994 /// block. The TargetInstrInfo::analyzeBranch method can be used to get more 995 /// information about this branch. 996 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 997 return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type); 998 } 999 1000 /// Return true if this is a branch which always 1001 /// transfers control flow to some other block. The 1002 /// TargetInstrInfo::analyzeBranch method can be used to get more information 1003 /// about this branch. 1004 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 1005 return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type); 1006 } 1007 1008 /// Return true if this instruction has a predicate operand that 1009 /// controls execution. It may be set to 'always', or may be set to other 1010 /// values. There are various methods in TargetInstrInfo that can be used to 1011 /// control and modify the predicate in this instruction. 1012 bool isPredicable(QueryType Type = AllInBundle) const { 1013 // If it's a bundle than all bundled instructions must be predicable for this 1014 // to return true. 1015 return hasProperty(MCID::Predicable, Type); 1016 } 1017 1018 /// Return true if this instruction is a comparison. 1019 bool isCompare(QueryType Type = IgnoreBundle) const { 1020 return hasProperty(MCID::Compare, Type); 1021 } 1022 1023 /// Return true if this instruction is a move immediate 1024 /// (including conditional moves) instruction. 1025 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 1026 return hasProperty(MCID::MoveImm, Type); 1027 } 1028 1029 /// Return true if this instruction is a register move. 1030 /// (including moving values from subreg to reg) 1031 bool isMoveReg(QueryType Type = IgnoreBundle) const { 1032 return hasProperty(MCID::MoveReg, Type); 1033 } 1034 1035 /// Return true if this instruction is a bitcast instruction. 1036 bool isBitcast(QueryType Type = IgnoreBundle) const { 1037 return hasProperty(MCID::Bitcast, Type); 1038 } 1039 1040 /// Return true if this instruction is a select instruction. 1041 bool isSelect(QueryType Type = IgnoreBundle) const { 1042 return hasProperty(MCID::Select, Type); 1043 } 1044 1045 /// Return true if this instruction cannot be safely duplicated. 1046 /// For example, if the instruction has a unique labels attached 1047 /// to it, duplicating it would cause multiple definition errors. 1048 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 1049 if (getPreInstrSymbol() || getPostInstrSymbol()) 1050 return true; 1051 return hasProperty(MCID::NotDuplicable, Type); 1052 } 1053 1054 /// Return true if this instruction is convergent. 1055 /// Convergent instructions can not be made control-dependent on any 1056 /// additional values. 1057 bool isConvergent(QueryType Type = AnyInBundle) const { 1058 if (isInlineAsm()) { 1059 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1060 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1061 return true; 1062 } 1063 if (getFlag(NoConvergent)) 1064 return false; 1065 return hasProperty(MCID::Convergent, Type); 1066 } 1067 1068 /// Returns true if the specified instruction has a delay slot 1069 /// which must be filled by the code generator. 1070 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 1071 return hasProperty(MCID::DelaySlot, Type); 1072 } 1073 1074 /// Return true for instructions that can be folded as 1075 /// memory operands in other instructions. The most common use for this 1076 /// is instructions that are simple loads from memory that don't modify 1077 /// the loaded value in any way, but it can also be used for instructions 1078 /// that can be expressed as constant-pool loads, such as V_SETALLONES 1079 /// on x86, to allow them to be folded when it is beneficial. 1080 /// This should only be set on instructions that return a value in their 1081 /// only virtual register definition. 1082 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 1083 return hasProperty(MCID::FoldableAsLoad, Type); 1084 } 1085 1086 /// Return true if this instruction behaves 1087 /// the same way as the generic REG_SEQUENCE instructions. 1088 /// E.g., on ARM, 1089 /// dX VMOVDRR rY, rZ 1090 /// is equivalent to 1091 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 1092 /// 1093 /// Note that for the optimizers to be able to take advantage of 1094 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 1095 /// override accordingly. 1096 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 1097 return hasProperty(MCID::RegSequence, Type); 1098 } 1099 1100 /// Return true if this instruction behaves 1101 /// the same way as the generic EXTRACT_SUBREG instructions. 1102 /// E.g., on ARM, 1103 /// rX, rY VMOVRRD dZ 1104 /// is equivalent to two EXTRACT_SUBREG: 1105 /// rX = EXTRACT_SUBREG dZ, ssub_0 1106 /// rY = EXTRACT_SUBREG dZ, ssub_1 1107 /// 1108 /// Note that for the optimizers to be able to take advantage of 1109 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 1110 /// override accordingly. 1111 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 1112 return hasProperty(MCID::ExtractSubreg, Type); 1113 } 1114 1115 /// Return true if this instruction behaves 1116 /// the same way as the generic INSERT_SUBREG instructions. 1117 /// E.g., on ARM, 1118 /// dX = VSETLNi32 dY, rZ, Imm 1119 /// is equivalent to a INSERT_SUBREG: 1120 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 1121 /// 1122 /// Note that for the optimizers to be able to take advantage of 1123 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 1124 /// override accordingly. 1125 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 1126 return hasProperty(MCID::InsertSubreg, Type); 1127 } 1128 1129 //===--------------------------------------------------------------------===// 1130 // Side Effect Analysis 1131 //===--------------------------------------------------------------------===// 1132 1133 /// Return true if this instruction could possibly read memory. 1134 /// Instructions with this flag set are not necessarily simple load 1135 /// instructions, they may load a value and modify it, for example. 1136 bool mayLoad(QueryType Type = AnyInBundle) const { 1137 if (isInlineAsm()) { 1138 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1139 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1140 return true; 1141 } 1142 return hasProperty(MCID::MayLoad, Type); 1143 } 1144 1145 /// Return true if this instruction could possibly modify memory. 1146 /// Instructions with this flag set are not necessarily simple store 1147 /// instructions, they may store a modified value based on their operands, or 1148 /// may not actually modify anything, for example. 1149 bool mayStore(QueryType Type = AnyInBundle) const { 1150 if (isInlineAsm()) { 1151 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1152 if (ExtraInfo & InlineAsm::Extra_MayStore) 1153 return true; 1154 } 1155 return hasProperty(MCID::MayStore, Type); 1156 } 1157 1158 /// Return true if this instruction could possibly read or modify memory. 1159 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 1160 return mayLoad(Type) || mayStore(Type); 1161 } 1162 1163 /// Return true if this instruction could possibly raise a floating-point 1164 /// exception. This is the case if the instruction is a floating-point 1165 /// instruction that can in principle raise an exception, as indicated 1166 /// by the MCID::MayRaiseFPException property, *and* at the same time, 1167 /// the instruction is used in a context where we expect floating-point 1168 /// exceptions are not disabled, as indicated by the NoFPExcept MI flag. 1169 bool mayRaiseFPException() const { 1170 return hasProperty(MCID::MayRaiseFPException) && 1171 !getFlag(MachineInstr::MIFlag::NoFPExcept); 1172 } 1173 1174 //===--------------------------------------------------------------------===// 1175 // Flags that indicate whether an instruction can be modified by a method. 1176 //===--------------------------------------------------------------------===// 1177 1178 /// Return true if this may be a 2- or 3-address 1179 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 1180 /// result if Y and Z are exchanged. If this flag is set, then the 1181 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 1182 /// instruction. 1183 /// 1184 /// Note that this flag may be set on instructions that are only commutable 1185 /// sometimes. In these cases, the call to commuteInstruction will fail. 1186 /// Also note that some instructions require non-trivial modification to 1187 /// commute them. 1188 bool isCommutable(QueryType Type = IgnoreBundle) const { 1189 return hasProperty(MCID::Commutable, Type); 1190 } 1191 1192 /// Return true if this is a 2-address instruction 1193 /// which can be changed into a 3-address instruction if needed. Doing this 1194 /// transformation can be profitable in the register allocator, because it 1195 /// means that the instruction can use a 2-address form if possible, but 1196 /// degrade into a less efficient form if the source and dest register cannot 1197 /// be assigned to the same register. For example, this allows the x86 1198 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 1199 /// is the same speed as the shift but has bigger code size. 1200 /// 1201 /// If this returns true, then the target must implement the 1202 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 1203 /// is allowed to fail if the transformation isn't valid for this specific 1204 /// instruction (e.g. shl reg, 4 on x86). 1205 /// 1206 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 1207 return hasProperty(MCID::ConvertibleTo3Addr, Type); 1208 } 1209 1210 /// Return true if this instruction requires 1211 /// custom insertion support when the DAG scheduler is inserting it into a 1212 /// machine basic block. If this is true for the instruction, it basically 1213 /// means that it is a pseudo instruction used at SelectionDAG time that is 1214 /// expanded out into magic code by the target when MachineInstrs are formed. 1215 /// 1216 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 1217 /// is used to insert this into the MachineBasicBlock. 1218 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 1219 return hasProperty(MCID::UsesCustomInserter, Type); 1220 } 1221 1222 /// Return true if this instruction requires *adjustment* 1223 /// after instruction selection by calling a target hook. For example, this 1224 /// can be used to fill in ARM 's' optional operand depending on whether 1225 /// the conditional flag register is used. 1226 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 1227 return hasProperty(MCID::HasPostISelHook, Type); 1228 } 1229 1230 /// Returns true if this instruction is a candidate for remat. 1231 /// This flag is deprecated, please don't use it anymore. If this 1232 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 1233 /// verify the instruction is really rematerializable. 1234 bool isRematerializable(QueryType Type = AllInBundle) const { 1235 // It's only possible to re-mat a bundle if all bundled instructions are 1236 // re-materializable. 1237 return hasProperty(MCID::Rematerializable, Type); 1238 } 1239 1240 /// Returns true if this instruction has the same cost (or less) than a move 1241 /// instruction. This is useful during certain types of optimizations 1242 /// (e.g., remat during two-address conversion or machine licm) 1243 /// where we would like to remat or hoist the instruction, but not if it costs 1244 /// more than moving the instruction into the appropriate register. Note, we 1245 /// are not marking copies from and to the same register class with this flag. 1246 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 1247 // Only returns true for a bundle if all bundled instructions are cheap. 1248 return hasProperty(MCID::CheapAsAMove, Type); 1249 } 1250 1251 /// Returns true if this instruction source operands 1252 /// have special register allocation requirements that are not captured by the 1253 /// operand register classes. e.g. ARM::STRD's two source registers must be an 1254 /// even / odd pair, ARM::STM registers have to be in ascending order. 1255 /// Post-register allocation passes should not attempt to change allocations 1256 /// for sources of instructions with this flag. 1257 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 1258 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 1259 } 1260 1261 /// Returns true if this instruction def operands 1262 /// have special register allocation requirements that are not captured by the 1263 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 1264 /// even / odd pair, ARM::LDM registers have to be in ascending order. 1265 /// Post-register allocation passes should not attempt to change allocations 1266 /// for definitions of instructions with this flag. 1267 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 1268 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 1269 } 1270 1271 enum MICheckType { 1272 CheckDefs, // Check all operands for equality 1273 CheckKillDead, // Check all operands including kill / dead markers 1274 IgnoreDefs, // Ignore all definitions 1275 IgnoreVRegDefs // Ignore virtual register definitions 1276 }; 1277 1278 /// Return true if this instruction is identical to \p Other. 1279 /// Two instructions are identical if they have the same opcode and all their 1280 /// operands are identical (with respect to MachineOperand::isIdenticalTo()). 1281 /// Note that this means liveness related flags (dead, undef, kill) do not 1282 /// affect the notion of identical. 1283 bool isIdenticalTo(const MachineInstr &Other, 1284 MICheckType Check = CheckDefs) const; 1285 1286 /// Returns true if this instruction is a debug instruction that represents an 1287 /// identical debug value to \p Other. 1288 /// This function considers these debug instructions equivalent if they have 1289 /// identical variables, debug locations, and debug operands, and if the 1290 /// DIExpressions combined with the directness flags are equivalent. 1291 bool isEquivalentDbgInstr(const MachineInstr &Other) const; 1292 1293 /// Unlink 'this' from the containing basic block, and return it without 1294 /// deleting it. 1295 /// 1296 /// This function can not be used on bundled instructions, use 1297 /// removeFromBundle() to remove individual instructions from a bundle. 1298 MachineInstr *removeFromParent(); 1299 1300 /// Unlink this instruction from its basic block and return it without 1301 /// deleting it. 1302 /// 1303 /// If the instruction is part of a bundle, the other instructions in the 1304 /// bundle remain bundled. 1305 MachineInstr *removeFromBundle(); 1306 1307 /// Unlink 'this' from the containing basic block and delete it. 1308 /// 1309 /// If this instruction is the header of a bundle, the whole bundle is erased. 1310 /// This function can not be used for instructions inside a bundle, use 1311 /// eraseFromBundle() to erase individual bundled instructions. 1312 void eraseFromParent(); 1313 1314 /// Unlink 'this' from its basic block and delete it. 1315 /// 1316 /// If the instruction is part of a bundle, the other instructions in the 1317 /// bundle remain bundled. 1318 void eraseFromBundle(); 1319 1320 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 1321 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 1322 bool isAnnotationLabel() const { 1323 return getOpcode() == TargetOpcode::ANNOTATION_LABEL; 1324 } 1325 1326 /// Returns true if the MachineInstr represents a label. 1327 bool isLabel() const { 1328 return isEHLabel() || isGCLabel() || isAnnotationLabel(); 1329 } 1330 1331 bool isCFIInstruction() const { 1332 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 1333 } 1334 1335 bool isPseudoProbe() const { 1336 return getOpcode() == TargetOpcode::PSEUDO_PROBE; 1337 } 1338 1339 // True if the instruction represents a position in the function. 1340 bool isPosition() const { return isLabel() || isCFIInstruction(); } 1341 1342 bool isNonListDebugValue() const { 1343 return getOpcode() == TargetOpcode::DBG_VALUE; 1344 } 1345 bool isDebugValueList() const { 1346 return getOpcode() == TargetOpcode::DBG_VALUE_LIST; 1347 } 1348 bool isDebugValue() const { 1349 return isNonListDebugValue() || isDebugValueList(); 1350 } 1351 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } 1352 bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; } 1353 bool isDebugValueLike() const { return isDebugValue() || isDebugRef(); } 1354 bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; } 1355 bool isDebugInstr() const { 1356 return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI(); 1357 } 1358 bool isDebugOrPseudoInstr() const { 1359 return isDebugInstr() || isPseudoProbe(); 1360 } 1361 1362 bool isDebugOffsetImm() const { 1363 return isNonListDebugValue() && getDebugOffset().isImm(); 1364 } 1365 1366 /// A DBG_VALUE is indirect iff the location operand is a register and 1367 /// the offset operand is an immediate. 1368 bool isIndirectDebugValue() const { 1369 return isDebugOffsetImm() && getDebugOperand(0).isReg(); 1370 } 1371 1372 /// A DBG_VALUE is an entry value iff its debug expression contains the 1373 /// DW_OP_LLVM_entry_value operation. 1374 bool isDebugEntryValue() const; 1375 1376 /// Return true if the instruction is a debug value which describes a part of 1377 /// a variable as unavailable. 1378 bool isUndefDebugValue() const { 1379 if (!isDebugValue()) 1380 return false; 1381 // If any $noreg locations are given, this DV is undef. 1382 for (const MachineOperand &Op : debug_operands()) 1383 if (Op.isReg() && !Op.getReg().isValid()) 1384 return true; 1385 return false; 1386 } 1387 1388 bool isJumpTableDebugInfo() const { 1389 return getOpcode() == TargetOpcode::JUMP_TABLE_DEBUG_INFO; 1390 } 1391 1392 bool isPHI() const { 1393 return getOpcode() == TargetOpcode::PHI || 1394 getOpcode() == TargetOpcode::G_PHI; 1395 } 1396 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 1397 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 1398 bool isInlineAsm() const { 1399 return getOpcode() == TargetOpcode::INLINEASM || 1400 getOpcode() == TargetOpcode::INLINEASM_BR; 1401 } 1402 /// Returns true if the register operand can be folded with a load or store 1403 /// into a frame index. Does so by checking the InlineAsm::Flag immediate 1404 /// operand at OpId - 1. 1405 bool mayFoldInlineAsmRegOp(unsigned OpId) const; 1406 1407 bool isStackAligningInlineAsm() const; 1408 InlineAsm::AsmDialect getInlineAsmDialect() const; 1409 1410 bool isInsertSubreg() const { 1411 return getOpcode() == TargetOpcode::INSERT_SUBREG; 1412 } 1413 1414 bool isSubregToReg() const { 1415 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 1416 } 1417 1418 bool isRegSequence() const { 1419 return getOpcode() == TargetOpcode::REG_SEQUENCE; 1420 } 1421 1422 bool isBundle() const { 1423 return getOpcode() == TargetOpcode::BUNDLE; 1424 } 1425 1426 bool isCopy() const { 1427 return getOpcode() == TargetOpcode::COPY; 1428 } 1429 1430 bool isFullCopy() const { 1431 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 1432 } 1433 1434 bool isExtractSubreg() const { 1435 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 1436 } 1437 1438 /// Return true if the instruction behaves like a copy. 1439 /// This does not include native copy instructions. 1440 bool isCopyLike() const { 1441 return isCopy() || isSubregToReg(); 1442 } 1443 1444 /// Return true is the instruction is an identity copy. 1445 bool isIdentityCopy() const { 1446 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 1447 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 1448 } 1449 1450 /// Return true if this is a transient instruction that is either very likely 1451 /// to be eliminated during register allocation (such as copy-like 1452 /// instructions), or if this instruction doesn't have an execution-time cost. 1453 bool isTransient() const { 1454 switch (getOpcode()) { 1455 default: 1456 return isMetaInstruction(); 1457 // Copy-like instructions are usually eliminated during register allocation. 1458 case TargetOpcode::PHI: 1459 case TargetOpcode::G_PHI: 1460 case TargetOpcode::COPY: 1461 case TargetOpcode::INSERT_SUBREG: 1462 case TargetOpcode::SUBREG_TO_REG: 1463 case TargetOpcode::REG_SEQUENCE: 1464 return true; 1465 } 1466 } 1467 1468 /// Return the number of instructions inside the MI bundle, excluding the 1469 /// bundle header. 1470 /// 1471 /// This is the number of instructions that MachineBasicBlock::iterator 1472 /// skips, 0 for unbundled instructions. 1473 unsigned getBundleSize() const; 1474 1475 /// Return true if the MachineInstr reads the specified register. 1476 /// If TargetRegisterInfo is non-null, then it also checks if there 1477 /// is a read of a super-register. 1478 /// This does not count partial redefines of virtual registers as reads: 1479 /// %reg1024:6 = OP. 1480 bool readsRegister(Register Reg, const TargetRegisterInfo *TRI) const { 1481 return findRegisterUseOperandIdx(Reg, TRI, false) != -1; 1482 } 1483 1484 /// Return true if the MachineInstr reads the specified virtual register. 1485 /// Take into account that a partial define is a 1486 /// read-modify-write operation. 1487 bool readsVirtualRegister(Register Reg) const { 1488 return readsWritesVirtualRegister(Reg).first; 1489 } 1490 1491 /// Return a pair of bools (reads, writes) indicating if this instruction 1492 /// reads or writes Reg. This also considers partial defines. 1493 /// If Ops is not null, all operand indices for Reg are added. 1494 std::pair<bool,bool> readsWritesVirtualRegister(Register Reg, 1495 SmallVectorImpl<unsigned> *Ops = nullptr) const; 1496 1497 /// Return true if the MachineInstr kills the specified register. 1498 /// If TargetRegisterInfo is non-null, then it also checks if there is 1499 /// a kill of a super-register. 1500 bool killsRegister(Register Reg, const TargetRegisterInfo *TRI) const { 1501 return findRegisterUseOperandIdx(Reg, TRI, true) != -1; 1502 } 1503 1504 /// Return true if the MachineInstr fully defines the specified register. 1505 /// If TargetRegisterInfo is non-null, then it also checks 1506 /// if there is a def of a super-register. 1507 /// NOTE: It's ignoring subreg indices on virtual registers. 1508 bool definesRegister(Register Reg, const TargetRegisterInfo *TRI) const { 1509 return findRegisterDefOperandIdx(Reg, TRI, false, false) != -1; 1510 } 1511 1512 /// Return true if the MachineInstr modifies (fully define or partially 1513 /// define) the specified register. 1514 /// NOTE: It's ignoring subreg indices on virtual registers. 1515 bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI) const { 1516 return findRegisterDefOperandIdx(Reg, TRI, false, true) != -1; 1517 } 1518 1519 /// Returns true if the register is dead in this machine instruction. 1520 /// If TargetRegisterInfo is non-null, then it also checks 1521 /// if there is a dead def of a super-register. 1522 bool registerDefIsDead(Register Reg, const TargetRegisterInfo *TRI) const { 1523 return findRegisterDefOperandIdx(Reg, TRI, true, false) != -1; 1524 } 1525 1526 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1527 /// the given register (not considering sub/super-registers). 1528 bool hasRegisterImplicitUseOperand(Register Reg) const; 1529 1530 /// Returns the operand index that is a use of the specific register or -1 1531 /// if it is not found. It further tightens the search criteria to a use 1532 /// that kills the register if isKill is true. 1533 int findRegisterUseOperandIdx(Register Reg, const TargetRegisterInfo *TRI, 1534 bool isKill = false) const; 1535 1536 /// Wrapper for findRegisterUseOperandIdx, it returns 1537 /// a pointer to the MachineOperand rather than an index. 1538 MachineOperand *findRegisterUseOperand(Register Reg, 1539 const TargetRegisterInfo *TRI, 1540 bool isKill = false) { 1541 int Idx = findRegisterUseOperandIdx(Reg, TRI, isKill); 1542 return (Idx == -1) ? nullptr : &getOperand(Idx); 1543 } 1544 1545 const MachineOperand *findRegisterUseOperand(Register Reg, 1546 const TargetRegisterInfo *TRI, 1547 bool isKill = false) const { 1548 return const_cast<MachineInstr *>(this)->findRegisterUseOperand(Reg, TRI, 1549 isKill); 1550 } 1551 1552 /// Returns the operand index that is a def of the specified register or 1553 /// -1 if it is not found. If isDead is true, defs that are not dead are 1554 /// skipped. If Overlap is true, then it also looks for defs that merely 1555 /// overlap the specified register. If TargetRegisterInfo is non-null, 1556 /// then it also checks if there is a def of a super-register. 1557 /// This may also return a register mask operand when Overlap is true. 1558 int findRegisterDefOperandIdx(Register Reg, const TargetRegisterInfo *TRI, 1559 bool isDead = false, 1560 bool Overlap = false) const; 1561 1562 /// Wrapper for findRegisterDefOperandIdx, it returns 1563 /// a pointer to the MachineOperand rather than an index. 1564 MachineOperand *findRegisterDefOperand(Register Reg, 1565 const TargetRegisterInfo *TRI, 1566 bool isDead = false, 1567 bool Overlap = false) { 1568 int Idx = findRegisterDefOperandIdx(Reg, TRI, isDead, Overlap); 1569 return (Idx == -1) ? nullptr : &getOperand(Idx); 1570 } 1571 1572 const MachineOperand *findRegisterDefOperand(Register Reg, 1573 const TargetRegisterInfo *TRI, 1574 bool isDead = false, 1575 bool Overlap = false) const { 1576 return const_cast<MachineInstr *>(this)->findRegisterDefOperand( 1577 Reg, TRI, isDead, Overlap); 1578 } 1579 1580 /// Find the index of the first operand in the 1581 /// operand list that is used to represent the predicate. It returns -1 if 1582 /// none is found. 1583 int findFirstPredOperandIdx() const; 1584 1585 /// Find the index of the flag word operand that 1586 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 1587 /// getOperand(OpIdx) does not belong to an inline asm operand group. 1588 /// 1589 /// If GroupNo is not NULL, it will receive the number of the operand group 1590 /// containing OpIdx. 1591 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 1592 1593 /// Compute the static register class constraint for operand OpIdx. 1594 /// For normal instructions, this is derived from the MCInstrDesc. 1595 /// For inline assembly it is derived from the flag words. 1596 /// 1597 /// Returns NULL if the static register class constraint cannot be 1598 /// determined. 1599 const TargetRegisterClass* 1600 getRegClassConstraint(unsigned OpIdx, 1601 const TargetInstrInfo *TII, 1602 const TargetRegisterInfo *TRI) const; 1603 1604 /// Applies the constraints (def/use) implied by this MI on \p Reg to 1605 /// the given \p CurRC. 1606 /// If \p ExploreBundle is set and MI is part of a bundle, all the 1607 /// instructions inside the bundle will be taken into account. In other words, 1608 /// this method accumulates all the constraints of the operand of this MI and 1609 /// the related bundle if MI is a bundle or inside a bundle. 1610 /// 1611 /// Returns the register class that satisfies both \p CurRC and the 1612 /// constraints set by MI. Returns NULL if such a register class does not 1613 /// exist. 1614 /// 1615 /// \pre CurRC must not be NULL. 1616 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 1617 Register Reg, const TargetRegisterClass *CurRC, 1618 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1619 bool ExploreBundle = false) const; 1620 1621 /// Applies the constraints (def/use) implied by the \p OpIdx operand 1622 /// to the given \p CurRC. 1623 /// 1624 /// Returns the register class that satisfies both \p CurRC and the 1625 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 1626 /// does not exist. 1627 /// 1628 /// \pre CurRC must not be NULL. 1629 /// \pre The operand at \p OpIdx must be a register. 1630 const TargetRegisterClass * 1631 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 1632 const TargetInstrInfo *TII, 1633 const TargetRegisterInfo *TRI) const; 1634 1635 /// Add a tie between the register operands at DefIdx and UseIdx. 1636 /// The tie will cause the register allocator to ensure that the two 1637 /// operands are assigned the same physical register. 1638 /// 1639 /// Tied operands are managed automatically for explicit operands in the 1640 /// MCInstrDesc. This method is for exceptional cases like inline asm. 1641 void tieOperands(unsigned DefIdx, unsigned UseIdx); 1642 1643 /// Given the index of a tied register operand, find the 1644 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1645 /// index of the tied operand which must exist. 1646 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1647 1648 /// Given the index of a register def operand, 1649 /// check if the register def is tied to a source operand, due to either 1650 /// two-address elimination or inline assembly constraints. Returns the 1651 /// first tied use operand index by reference if UseOpIdx is not null. 1652 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1653 unsigned *UseOpIdx = nullptr) const { 1654 const MachineOperand &MO = getOperand(DefOpIdx); 1655 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1656 return false; 1657 if (UseOpIdx) 1658 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1659 return true; 1660 } 1661 1662 /// Return true if the use operand of the specified index is tied to a def 1663 /// operand. It also returns the def operand index by reference if DefOpIdx 1664 /// is not null. 1665 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1666 unsigned *DefOpIdx = nullptr) const { 1667 const MachineOperand &MO = getOperand(UseOpIdx); 1668 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1669 return false; 1670 if (DefOpIdx) 1671 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1672 return true; 1673 } 1674 1675 /// Clears kill flags on all operands. 1676 void clearKillInfo(); 1677 1678 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1679 /// properly composing subreg indices where necessary. 1680 void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, 1681 const TargetRegisterInfo &RegInfo); 1682 1683 /// We have determined MI kills a register. Look for the 1684 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1685 /// add a implicit operand if it's not found. Returns true if the operand 1686 /// exists / is added. 1687 bool addRegisterKilled(Register IncomingReg, 1688 const TargetRegisterInfo *RegInfo, 1689 bool AddIfNotFound = false); 1690 1691 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes 1692 /// all aliasing registers. 1693 void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo); 1694 1695 /// We have determined MI defined a register without a use. 1696 /// Look for the operand that defines it and mark it as IsDead. If 1697 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1698 /// true if the operand exists / is added. 1699 bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, 1700 bool AddIfNotFound = false); 1701 1702 /// Clear all dead flags on operands defining register @p Reg. 1703 void clearRegisterDeads(Register Reg); 1704 1705 /// Mark all subregister defs of register @p Reg with the undef flag. 1706 /// This function is used when we determined to have a subregister def in an 1707 /// otherwise undefined super register. 1708 void setRegisterDefReadUndef(Register Reg, bool IsUndef = true); 1709 1710 /// We have determined MI defines a register. Make sure there is an operand 1711 /// defining Reg. 1712 void addRegisterDefined(Register Reg, 1713 const TargetRegisterInfo *RegInfo = nullptr); 1714 1715 /// Mark every physreg used by this instruction as 1716 /// dead except those in the UsedRegs list. 1717 /// 1718 /// On instructions with register mask operands, also add implicit-def 1719 /// operands for all registers in UsedRegs. 1720 void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 1721 const TargetRegisterInfo &TRI); 1722 1723 /// Return true if it is safe to move this instruction. If 1724 /// SawStore is set to true, it means that there is a store (or call) between 1725 /// the instruction's location and its intended destination. 1726 bool isSafeToMove(AAResults *AA, bool &SawStore) const; 1727 1728 /// Returns true if this instruction's memory access aliases the memory 1729 /// access of Other. 1730 // 1731 /// Assumes any physical registers used to compute addresses 1732 /// have the same value for both instructions. Returns false if neither 1733 /// instruction writes to memory. 1734 /// 1735 /// @param AA Optional alias analysis, used to compare memory operands. 1736 /// @param Other MachineInstr to check aliasing against. 1737 /// @param UseTBAA Whether to pass TBAA information to alias analysis. 1738 bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const; 1739 1740 /// Return true if this instruction may have an ordered 1741 /// or volatile memory reference, or if the information describing the memory 1742 /// reference is not available. Return false if it is known to have no 1743 /// ordered or volatile memory references. 1744 bool hasOrderedMemoryRef() const; 1745 1746 /// Return true if this load instruction never traps and points to a memory 1747 /// location whose value doesn't change during the execution of this function. 1748 /// 1749 /// Examples include loading a value from the constant pool or from the 1750 /// argument area of a function (if it does not change). If the instruction 1751 /// does multiple loads, this returns true only if all of the loads are 1752 /// dereferenceable and invariant. 1753 bool isDereferenceableInvariantLoad() const; 1754 1755 /// If the specified instruction is a PHI that always merges together the 1756 /// same virtual register, return the register, otherwise return 0. 1757 unsigned isConstantValuePHI() const; 1758 1759 /// Return true if this instruction has side effects that are not modeled 1760 /// by mayLoad / mayStore, etc. 1761 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1762 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1763 /// INLINEASM instruction, in which case the side effect property is encoded 1764 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1765 /// 1766 bool hasUnmodeledSideEffects() const; 1767 1768 /// Returns true if it is illegal to fold a load across this instruction. 1769 bool isLoadFoldBarrier() const; 1770 1771 /// Return true if all the defs of this instruction are dead. 1772 bool allDefsAreDead() const; 1773 1774 /// Return true if all the implicit defs of this instruction are dead. 1775 bool allImplicitDefsAreDead() const; 1776 1777 /// Return a valid size if the instruction is a spill instruction. 1778 std::optional<LocationSize> getSpillSize(const TargetInstrInfo *TII) const; 1779 1780 /// Return a valid size if the instruction is a folded spill instruction. 1781 std::optional<LocationSize> 1782 getFoldedSpillSize(const TargetInstrInfo *TII) const; 1783 1784 /// Return a valid size if the instruction is a restore instruction. 1785 std::optional<LocationSize> getRestoreSize(const TargetInstrInfo *TII) const; 1786 1787 /// Return a valid size if the instruction is a folded restore instruction. 1788 std::optional<LocationSize> 1789 getFoldedRestoreSize(const TargetInstrInfo *TII) const; 1790 1791 /// Copy implicit register operands from specified 1792 /// instruction to this instruction. 1793 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); 1794 1795 /// Debugging support 1796 /// @{ 1797 /// Determine the generic type to be printed (if needed) on uses and defs. 1798 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1799 const MachineRegisterInfo &MRI) const; 1800 1801 /// Return true when an instruction has tied register that can't be determined 1802 /// by the instruction's descriptor. This is useful for MIR printing, to 1803 /// determine whether we need to print the ties or not. 1804 bool hasComplexRegisterTies() const; 1805 1806 /// Print this MI to \p OS. 1807 /// Don't print information that can be inferred from other instructions if 1808 /// \p IsStandalone is false. It is usually true when only a fragment of the 1809 /// function is printed. 1810 /// Only print the defs and the opcode if \p SkipOpers is true. 1811 /// Otherwise, also print operands if \p SkipDebugLoc is true. 1812 /// Otherwise, also print the debug loc, with a terminating newline. 1813 /// \p TII is used to print the opcode name. If it's not present, but the 1814 /// MI is in a function, the opcode will be printed using the function's TII. 1815 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, 1816 bool SkipDebugLoc = false, bool AddNewLine = true, 1817 const TargetInstrInfo *TII = nullptr) const; 1818 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, 1819 bool SkipOpers = false, bool SkipDebugLoc = false, 1820 bool AddNewLine = true, 1821 const TargetInstrInfo *TII = nullptr) const; 1822 void dump() const; 1823 /// Print on dbgs() the current instruction and the instructions defining its 1824 /// operands and so on until we reach \p MaxDepth. 1825 void dumpr(const MachineRegisterInfo &MRI, 1826 unsigned MaxDepth = UINT_MAX) const; 1827 /// @} 1828 1829 //===--------------------------------------------------------------------===// 1830 // Accessors used to build up machine instructions. 1831 1832 /// Add the specified operand to the instruction. If it is an implicit 1833 /// operand, it is added to the end of the operand list. If it is an 1834 /// explicit operand it is added at the end of the explicit operand list 1835 /// (before the first implicit operand). 1836 /// 1837 /// MF must be the machine function that was used to allocate this 1838 /// instruction. 1839 /// 1840 /// MachineInstrBuilder provides a more convenient interface for creating 1841 /// instructions and adding operands. 1842 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1843 1844 /// Add an operand without providing an MF reference. This only works for 1845 /// instructions that are inserted in a basic block. 1846 /// 1847 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1848 /// preferred. 1849 void addOperand(const MachineOperand &Op); 1850 1851 /// Inserts Ops BEFORE It. Can untie/retie tied operands. 1852 void insert(mop_iterator InsertBefore, ArrayRef<MachineOperand> Ops); 1853 1854 /// Replace the instruction descriptor (thus opcode) of 1855 /// the current instruction with a new one. 1856 void setDesc(const MCInstrDesc &TID); 1857 1858 /// Replace current source information with new such. 1859 /// Avoid using this, the constructor argument is preferable. 1860 void setDebugLoc(DebugLoc DL) { 1861 DbgLoc = std::move(DL); 1862 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1863 } 1864 1865 /// Erase an operand from an instruction, leaving it with one 1866 /// fewer operand than it started with. 1867 void removeOperand(unsigned OpNo); 1868 1869 /// Clear this MachineInstr's memory reference descriptor list. This resets 1870 /// the memrefs to their most conservative state. This should be used only 1871 /// as a last resort since it greatly pessimizes our knowledge of the memory 1872 /// access performed by the instruction. 1873 void dropMemRefs(MachineFunction &MF); 1874 1875 /// Assign this MachineInstr's memory reference descriptor list. 1876 /// 1877 /// Unlike other methods, this *will* allocate them into a new array 1878 /// associated with the provided `MachineFunction`. 1879 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs); 1880 1881 /// Add a MachineMemOperand to the machine instruction. 1882 /// This function should be used only occasionally. The setMemRefs function 1883 /// is the primary method for setting up a MachineInstr's MemRefs list. 1884 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1885 1886 /// Clone another MachineInstr's memory reference descriptor list and replace 1887 /// ours with it. 1888 /// 1889 /// Note that `*this` may be the incoming MI! 1890 /// 1891 /// Prefer this API whenever possible as it can avoid allocations in common 1892 /// cases. 1893 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); 1894 1895 /// Clone the merge of multiple MachineInstrs' memory reference descriptors 1896 /// list and replace ours with it. 1897 /// 1898 /// Note that `*this` may be one of the incoming MIs! 1899 /// 1900 /// Prefer this API whenever possible as it can avoid allocations in common 1901 /// cases. 1902 void cloneMergedMemRefs(MachineFunction &MF, 1903 ArrayRef<const MachineInstr *> MIs); 1904 1905 /// Set a symbol that will be emitted just prior to the instruction itself. 1906 /// 1907 /// Setting this to a null pointer will remove any such symbol. 1908 /// 1909 /// FIXME: This is not fully implemented yet. 1910 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1911 1912 /// Set a symbol that will be emitted just after the instruction itself. 1913 /// 1914 /// Setting this to a null pointer will remove any such symbol. 1915 /// 1916 /// FIXME: This is not fully implemented yet. 1917 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1918 1919 /// Clone another MachineInstr's pre- and post- instruction symbols and 1920 /// replace ours with it. 1921 void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI); 1922 1923 /// Set a marker on instructions that denotes where we should create and emit 1924 /// heap alloc site labels. This waits until after instruction selection and 1925 /// optimizations to create the label, so it should still work if the 1926 /// instruction is removed or duplicated. 1927 void setHeapAllocMarker(MachineFunction &MF, MDNode *MD); 1928 1929 // Set metadata on instructions that say which sections to emit instruction 1930 // addresses into. 1931 void setPCSections(MachineFunction &MF, MDNode *MD); 1932 1933 void setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs); 1934 1935 /// Set the CFI type for the instruction. 1936 void setCFIType(MachineFunction &MF, uint32_t Type); 1937 1938 /// Return the MIFlags which represent both MachineInstrs. This 1939 /// should be used when merging two MachineInstrs into one. This routine does 1940 /// not modify the MIFlags of this MachineInstr. 1941 uint32_t mergeFlagsWith(const MachineInstr& Other) const; 1942 1943 static uint32_t copyFlagsFromInstruction(const Instruction &I); 1944 1945 /// Copy all flags to MachineInst MIFlags 1946 void copyIRFlags(const Instruction &I); 1947 1948 /// Break any tie involving OpIdx. 1949 void untieRegOperand(unsigned OpIdx) { 1950 MachineOperand &MO = getOperand(OpIdx); 1951 if (MO.isReg() && MO.isTied()) { 1952 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1953 MO.TiedTo = 0; 1954 } 1955 } 1956 1957 /// Add all implicit def and use operands to this instruction. 1958 void addImplicitDefUseOperands(MachineFunction &MF); 1959 1960 /// Scan instructions immediately following MI and collect any matching 1961 /// DBG_VALUEs. 1962 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues); 1963 1964 /// Find all DBG_VALUEs that point to the register def in this instruction 1965 /// and point them to \p Reg instead. 1966 void changeDebugValuesDefReg(Register Reg); 1967 1968 /// Sets all register debug operands in this debug value instruction to be 1969 /// undef. 1970 void setDebugValueUndef() { 1971 assert(isDebugValue() && "Must be a debug value instruction."); 1972 for (MachineOperand &MO : debug_operands()) { 1973 if (MO.isReg()) { 1974 MO.setReg(0); 1975 MO.setSubReg(0); 1976 } 1977 } 1978 } 1979 1980 std::tuple<Register, Register> getFirst2Regs() const { 1981 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg()); 1982 } 1983 1984 std::tuple<Register, Register, Register> getFirst3Regs() const { 1985 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(), 1986 getOperand(2).getReg()); 1987 } 1988 1989 std::tuple<Register, Register, Register, Register> getFirst4Regs() const { 1990 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(), 1991 getOperand(2).getReg(), getOperand(3).getReg()); 1992 } 1993 1994 std::tuple<Register, Register, Register, Register, Register> 1995 getFirst5Regs() const { 1996 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(), 1997 getOperand(2).getReg(), getOperand(3).getReg(), 1998 getOperand(4).getReg()); 1999 } 2000 2001 std::tuple<LLT, LLT> getFirst2LLTs() const; 2002 std::tuple<LLT, LLT, LLT> getFirst3LLTs() const; 2003 std::tuple<LLT, LLT, LLT, LLT> getFirst4LLTs() const; 2004 std::tuple<LLT, LLT, LLT, LLT, LLT> getFirst5LLTs() const; 2005 2006 std::tuple<Register, LLT, Register, LLT> getFirst2RegLLTs() const; 2007 std::tuple<Register, LLT, Register, LLT, Register, LLT> 2008 getFirst3RegLLTs() const; 2009 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> 2010 getFirst4RegLLTs() const; 2011 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, 2012 Register, LLT> 2013 getFirst5RegLLTs() const; 2014 2015 private: 2016 /// If this instruction is embedded into a MachineFunction, return the 2017 /// MachineRegisterInfo object for the current function, otherwise 2018 /// return null. 2019 MachineRegisterInfo *getRegInfo(); 2020 const MachineRegisterInfo *getRegInfo() const; 2021 2022 /// Unlink all of the register operands in this instruction from their 2023 /// respective use lists. This requires that the operands already be on their 2024 /// use lists. 2025 void removeRegOperandsFromUseLists(MachineRegisterInfo&); 2026 2027 /// Add all of the register operands in this instruction from their 2028 /// respective use lists. This requires that the operands not be on their 2029 /// use lists yet. 2030 void addRegOperandsToUseLists(MachineRegisterInfo&); 2031 2032 /// Slow path for hasProperty when we're dealing with a bundle. 2033 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; 2034 2035 /// Implements the logic of getRegClassConstraintEffectForVReg for the 2036 /// this MI and the given operand index \p OpIdx. 2037 /// If the related operand does not constrained Reg, this returns CurRC. 2038 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 2039 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 2040 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 2041 2042 /// Stores extra instruction information inline or allocates as ExtraInfo 2043 /// based on the number of pointers. 2044 void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs, 2045 MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol, 2046 MDNode *HeapAllocMarker, MDNode *PCSections, 2047 uint32_t CFIType, MDNode *MMRAs); 2048 }; 2049 2050 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 2051 /// instruction rather than by pointer value. 2052 /// The hashing and equality testing functions ignore definitions so this is 2053 /// useful for CSE, etc. 2054 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 2055 static inline MachineInstr *getEmptyKey() { 2056 return nullptr; 2057 } 2058 2059 static inline MachineInstr *getTombstoneKey() { 2060 return reinterpret_cast<MachineInstr*>(-1); 2061 } 2062 2063 static unsigned getHashValue(const MachineInstr* const &MI); 2064 2065 static bool isEqual(const MachineInstr* const &LHS, 2066 const MachineInstr* const &RHS) { 2067 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 2068 LHS == getEmptyKey() || LHS == getTombstoneKey()) 2069 return LHS == RHS; 2070 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); 2071 } 2072 }; 2073 2074 //===----------------------------------------------------------------------===// 2075 // Debugging Support 2076 2077 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 2078 MI.print(OS); 2079 return OS; 2080 } 2081 2082 } // end namespace llvm 2083 2084 #endif // LLVM_CODEGEN_MACHINEINSTR_H 2085