1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Metadata classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/IR/Metadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/DebugProgramInstruction.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/ProfDataUtils.h"
44 #include "llvm/IR/TrackingMDRef.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MathExtras.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstddef>
53 #include <cstdint>
54 #include <type_traits>
55 #include <utility>
56 #include <vector>
57
58 using namespace llvm;
59
MetadataAsValue(Type * Ty,Metadata * MD)60 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
61 : Value(Ty, MetadataAsValueVal), MD(MD) {
62 track();
63 }
64
~MetadataAsValue()65 MetadataAsValue::~MetadataAsValue() {
66 getType()->getContext().pImpl->MetadataAsValues.erase(MD);
67 untrack();
68 }
69
70 /// Canonicalize metadata arguments to intrinsics.
71 ///
72 /// To support bitcode upgrades (and assembly semantic sugar) for \a
73 /// MetadataAsValue, we need to canonicalize certain metadata.
74 ///
75 /// - nullptr is replaced by an empty MDNode.
76 /// - An MDNode with a single null operand is replaced by an empty MDNode.
77 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
78 ///
79 /// This maintains readability of bitcode from when metadata was a type of
80 /// value, and these bridges were unnecessary.
canonicalizeMetadataForValue(LLVMContext & Context,Metadata * MD)81 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
82 Metadata *MD) {
83 if (!MD)
84 // !{}
85 return MDNode::get(Context, std::nullopt);
86
87 // Return early if this isn't a single-operand MDNode.
88 auto *N = dyn_cast<MDNode>(MD);
89 if (!N || N->getNumOperands() != 1)
90 return MD;
91
92 if (!N->getOperand(0))
93 // !{}
94 return MDNode::get(Context, std::nullopt);
95
96 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
97 // Look through the MDNode.
98 return C;
99
100 return MD;
101 }
102
get(LLVMContext & Context,Metadata * MD)103 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
104 MD = canonicalizeMetadataForValue(Context, MD);
105 auto *&Entry = Context.pImpl->MetadataAsValues[MD];
106 if (!Entry)
107 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
108 return Entry;
109 }
110
getIfExists(LLVMContext & Context,Metadata * MD)111 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
112 Metadata *MD) {
113 MD = canonicalizeMetadataForValue(Context, MD);
114 auto &Store = Context.pImpl->MetadataAsValues;
115 return Store.lookup(MD);
116 }
117
handleChangedMetadata(Metadata * MD)118 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
119 LLVMContext &Context = getContext();
120 MD = canonicalizeMetadataForValue(Context, MD);
121 auto &Store = Context.pImpl->MetadataAsValues;
122
123 // Stop tracking the old metadata.
124 Store.erase(this->MD);
125 untrack();
126 this->MD = nullptr;
127
128 // Start tracking MD, or RAUW if necessary.
129 auto *&Entry = Store[MD];
130 if (Entry) {
131 replaceAllUsesWith(Entry);
132 delete this;
133 return;
134 }
135
136 this->MD = MD;
137 track();
138 Entry = this;
139 }
140
track()141 void MetadataAsValue::track() {
142 if (MD)
143 MetadataTracking::track(&MD, *MD, *this);
144 }
145
untrack()146 void MetadataAsValue::untrack() {
147 if (MD)
148 MetadataTracking::untrack(MD);
149 }
150
getUser()151 DbgVariableRecord *DebugValueUser::getUser() {
152 return static_cast<DbgVariableRecord *>(this);
153 }
getUser() const154 const DbgVariableRecord *DebugValueUser::getUser() const {
155 return static_cast<const DbgVariableRecord *>(this);
156 }
157
handleChangedValue(void * Old,Metadata * New)158 void DebugValueUser::handleChangedValue(void *Old, Metadata *New) {
159 // NOTE: We could inform the "owner" that a value has changed through
160 // getOwner, if needed.
161 auto OldMD = static_cast<Metadata **>(Old);
162 ptrdiff_t Idx = std::distance(&*DebugValues.begin(), OldMD);
163 // If replacing a ValueAsMetadata with a nullptr, replace it with a
164 // PoisonValue instead.
165 if (OldMD && isa<ValueAsMetadata>(*OldMD) && !New) {
166 auto *OldVAM = cast<ValueAsMetadata>(*OldMD);
167 New = ValueAsMetadata::get(PoisonValue::get(OldVAM->getValue()->getType()));
168 }
169 resetDebugValue(Idx, New);
170 }
171
trackDebugValue(size_t Idx)172 void DebugValueUser::trackDebugValue(size_t Idx) {
173 assert(Idx < 3 && "Invalid debug value index.");
174 Metadata *&MD = DebugValues[Idx];
175 if (MD)
176 MetadataTracking::track(&MD, *MD, *this);
177 }
178
trackDebugValues()179 void DebugValueUser::trackDebugValues() {
180 for (Metadata *&MD : DebugValues)
181 if (MD)
182 MetadataTracking::track(&MD, *MD, *this);
183 }
184
untrackDebugValue(size_t Idx)185 void DebugValueUser::untrackDebugValue(size_t Idx) {
186 assert(Idx < 3 && "Invalid debug value index.");
187 Metadata *&MD = DebugValues[Idx];
188 if (MD)
189 MetadataTracking::untrack(MD);
190 }
191
untrackDebugValues()192 void DebugValueUser::untrackDebugValues() {
193 for (Metadata *&MD : DebugValues)
194 if (MD)
195 MetadataTracking::untrack(MD);
196 }
197
retrackDebugValues(DebugValueUser & X)198 void DebugValueUser::retrackDebugValues(DebugValueUser &X) {
199 assert(DebugValueUser::operator==(X) && "Expected values to match");
200 for (const auto &[MD, XMD] : zip(DebugValues, X.DebugValues))
201 if (XMD)
202 MetadataTracking::retrack(XMD, MD);
203 X.DebugValues.fill(nullptr);
204 }
205
track(void * Ref,Metadata & MD,OwnerTy Owner)206 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
207 assert(Ref && "Expected live reference");
208 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
209 "Reference without owner must be direct");
210 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) {
211 R->addRef(Ref, Owner);
212 return true;
213 }
214 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) {
215 assert(!PH->Use && "Placeholders can only be used once");
216 assert(!Owner && "Unexpected callback to owner");
217 PH->Use = static_cast<Metadata **>(Ref);
218 return true;
219 }
220 return false;
221 }
222
untrack(void * Ref,Metadata & MD)223 void MetadataTracking::untrack(void *Ref, Metadata &MD) {
224 assert(Ref && "Expected live reference");
225 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD))
226 R->dropRef(Ref);
227 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD))
228 PH->Use = nullptr;
229 }
230
retrack(void * Ref,Metadata & MD,void * New)231 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
232 assert(Ref && "Expected live reference");
233 assert(New && "Expected live reference");
234 assert(Ref != New && "Expected change");
235 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) {
236 R->moveRef(Ref, New, MD);
237 return true;
238 }
239 assert(!isa<DistinctMDOperandPlaceholder>(MD) &&
240 "Unexpected move of an MDOperand");
241 assert(!isReplaceable(MD) &&
242 "Expected un-replaceable metadata, since we didn't move a reference");
243 return false;
244 }
245
isReplaceable(const Metadata & MD)246 bool MetadataTracking::isReplaceable(const Metadata &MD) {
247 return ReplaceableMetadataImpl::isReplaceable(MD);
248 }
249
getAllArgListUsers()250 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() {
251 SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID;
252 for (auto Pair : UseMap) {
253 OwnerTy Owner = Pair.second.first;
254 if (Owner.isNull())
255 continue;
256 if (!isa<Metadata *>(Owner))
257 continue;
258 Metadata *OwnerMD = cast<Metadata *>(Owner);
259 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind)
260 MDUsersWithID.push_back(&UseMap[Pair.first]);
261 }
262 llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) {
263 return UserA->second < UserB->second;
264 });
265 SmallVector<Metadata *> MDUsers;
266 for (auto *UserWithID : MDUsersWithID)
267 MDUsers.push_back(cast<Metadata *>(UserWithID->first));
268 return MDUsers;
269 }
270
271 SmallVector<DbgVariableRecord *>
getAllDbgVariableRecordUsers()272 ReplaceableMetadataImpl::getAllDbgVariableRecordUsers() {
273 SmallVector<std::pair<OwnerTy, uint64_t> *> DVRUsersWithID;
274 for (auto Pair : UseMap) {
275 OwnerTy Owner = Pair.second.first;
276 if (Owner.isNull())
277 continue;
278 if (!Owner.is<DebugValueUser *>())
279 continue;
280 DVRUsersWithID.push_back(&UseMap[Pair.first]);
281 }
282 // Order DbgVariableRecord users in reverse-creation order. Normal dbg.value
283 // users of MetadataAsValues are ordered by their UseList, i.e. reverse order
284 // of when they were added: we need to replicate that here. The structure of
285 // debug-info output depends on the ordering of intrinsics, thus we need
286 // to keep them consistent for comparisons sake.
287 llvm::sort(DVRUsersWithID, [](auto UserA, auto UserB) {
288 return UserA->second > UserB->second;
289 });
290 SmallVector<DbgVariableRecord *> DVRUsers;
291 for (auto UserWithID : DVRUsersWithID)
292 DVRUsers.push_back(UserWithID->first.get<DebugValueUser *>()->getUser());
293 return DVRUsers;
294 }
295
addRef(void * Ref,OwnerTy Owner)296 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
297 bool WasInserted =
298 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
299 .second;
300 (void)WasInserted;
301 assert(WasInserted && "Expected to add a reference");
302
303 ++NextIndex;
304 assert(NextIndex != 0 && "Unexpected overflow");
305 }
306
dropRef(void * Ref)307 void ReplaceableMetadataImpl::dropRef(void *Ref) {
308 bool WasErased = UseMap.erase(Ref);
309 (void)WasErased;
310 assert(WasErased && "Expected to drop a reference");
311 }
312
moveRef(void * Ref,void * New,const Metadata & MD)313 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
314 const Metadata &MD) {
315 auto I = UseMap.find(Ref);
316 assert(I != UseMap.end() && "Expected to move a reference");
317 auto OwnerAndIndex = I->second;
318 UseMap.erase(I);
319 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
320 (void)WasInserted;
321 assert(WasInserted && "Expected to add a reference");
322
323 // Check that the references are direct if there's no owner.
324 (void)MD;
325 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
326 "Reference without owner must be direct");
327 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
328 "Reference without owner must be direct");
329 }
330
SalvageDebugInfo(const Constant & C)331 void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant &C) {
332 if (!C.isUsedByMetadata()) {
333 return;
334 }
335
336 LLVMContext &Context = C.getType()->getContext();
337 auto &Store = Context.pImpl->ValuesAsMetadata;
338 auto I = Store.find(&C);
339 ValueAsMetadata *MD = I->second;
340 using UseTy =
341 std::pair<void *, std::pair<MetadataTracking::OwnerTy, uint64_t>>;
342 // Copy out uses and update value of Constant used by debug info metadata with undef below
343 SmallVector<UseTy, 8> Uses(MD->UseMap.begin(), MD->UseMap.end());
344
345 for (const auto &Pair : Uses) {
346 MetadataTracking::OwnerTy Owner = Pair.second.first;
347 if (!Owner)
348 continue;
349 if (!isa<Metadata *>(Owner))
350 continue;
351 auto *OwnerMD = dyn_cast_if_present<MDNode>(cast<Metadata *>(Owner));
352 if (!OwnerMD)
353 continue;
354 if (isa<DINode>(OwnerMD)) {
355 OwnerMD->handleChangedOperand(
356 Pair.first, ValueAsMetadata::get(UndefValue::get(C.getType())));
357 }
358 }
359 }
360
replaceAllUsesWith(Metadata * MD)361 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
362 if (UseMap.empty())
363 return;
364
365 // Copy out uses since UseMap will get touched below.
366 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
367 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
368 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
369 return L.second.second < R.second.second;
370 });
371 for (const auto &Pair : Uses) {
372 // Check that this Ref hasn't disappeared after RAUW (when updating a
373 // previous Ref).
374 if (!UseMap.count(Pair.first))
375 continue;
376
377 OwnerTy Owner = Pair.second.first;
378 if (!Owner) {
379 // Update unowned tracking references directly.
380 Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
381 Ref = MD;
382 if (MD)
383 MetadataTracking::track(Ref);
384 UseMap.erase(Pair.first);
385 continue;
386 }
387
388 // Check for MetadataAsValue.
389 if (isa<MetadataAsValue *>(Owner)) {
390 cast<MetadataAsValue *>(Owner)->handleChangedMetadata(MD);
391 continue;
392 }
393
394 if (Owner.is<DebugValueUser *>()) {
395 Owner.get<DebugValueUser *>()->handleChangedValue(Pair.first, MD);
396 continue;
397 }
398
399 // There's a Metadata owner -- dispatch.
400 Metadata *OwnerMD = cast<Metadata *>(Owner);
401 switch (OwnerMD->getMetadataID()) {
402 #define HANDLE_METADATA_LEAF(CLASS) \
403 case Metadata::CLASS##Kind: \
404 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
405 continue;
406 #include "llvm/IR/Metadata.def"
407 default:
408 llvm_unreachable("Invalid metadata subclass");
409 }
410 }
411 assert(UseMap.empty() && "Expected all uses to be replaced");
412 }
413
resolveAllUses(bool ResolveUsers)414 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
415 if (UseMap.empty())
416 return;
417
418 if (!ResolveUsers) {
419 UseMap.clear();
420 return;
421 }
422
423 // Copy out uses since UseMap could get touched below.
424 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
425 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
426 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
427 return L.second.second < R.second.second;
428 });
429 UseMap.clear();
430 for (const auto &Pair : Uses) {
431 auto Owner = Pair.second.first;
432 if (!Owner)
433 continue;
434 if (!Owner.is<Metadata *>())
435 continue;
436
437 // Resolve MDNodes that point at this.
438 auto *OwnerMD = dyn_cast_if_present<MDNode>(cast<Metadata *>(Owner));
439 if (!OwnerMD)
440 continue;
441 if (OwnerMD->isResolved())
442 continue;
443 OwnerMD->decrementUnresolvedOperandCount();
444 }
445 }
446
447 // Special handing of DIArgList is required in the RemoveDIs project, see
448 // commentry in DIArgList::handleChangedOperand for details. Hidden behind
449 // conditional compilation to avoid a compile time regression.
getOrCreate(Metadata & MD)450 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) {
451 if (auto *N = dyn_cast<MDNode>(&MD)) {
452 return !N->isResolved() || N->isAlwaysReplaceable()
453 ? N->Context.getOrCreateReplaceableUses()
454 : nullptr;
455 }
456 if (auto ArgList = dyn_cast<DIArgList>(&MD))
457 return ArgList;
458 return dyn_cast<ValueAsMetadata>(&MD);
459 }
460
getIfExists(Metadata & MD)461 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) {
462 if (auto *N = dyn_cast<MDNode>(&MD)) {
463 return !N->isResolved() || N->isAlwaysReplaceable()
464 ? N->Context.getReplaceableUses()
465 : nullptr;
466 }
467 if (auto ArgList = dyn_cast<DIArgList>(&MD))
468 return ArgList;
469 return dyn_cast<ValueAsMetadata>(&MD);
470 }
471
isReplaceable(const Metadata & MD)472 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) {
473 if (auto *N = dyn_cast<MDNode>(&MD))
474 return !N->isResolved() || N->isAlwaysReplaceable();
475 return isa<ValueAsMetadata>(&MD) || isa<DIArgList>(&MD);
476 }
477
getLocalFunctionMetadata(Value * V)478 static DISubprogram *getLocalFunctionMetadata(Value *V) {
479 assert(V && "Expected value");
480 if (auto *A = dyn_cast<Argument>(V)) {
481 if (auto *Fn = A->getParent())
482 return Fn->getSubprogram();
483 return nullptr;
484 }
485
486 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) {
487 if (auto *Fn = BB->getParent())
488 return Fn->getSubprogram();
489 return nullptr;
490 }
491
492 return nullptr;
493 }
494
get(Value * V)495 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
496 assert(V && "Unexpected null Value");
497
498 auto &Context = V->getContext();
499 auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
500 if (!Entry) {
501 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
502 "Expected constant or function-local value");
503 assert(!V->IsUsedByMD && "Expected this to be the only metadata use");
504 V->IsUsedByMD = true;
505 if (auto *C = dyn_cast<Constant>(V))
506 Entry = new ConstantAsMetadata(C);
507 else
508 Entry = new LocalAsMetadata(V);
509 }
510
511 return Entry;
512 }
513
getIfExists(Value * V)514 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
515 assert(V && "Unexpected null Value");
516 return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
517 }
518
handleDeletion(Value * V)519 void ValueAsMetadata::handleDeletion(Value *V) {
520 assert(V && "Expected valid value");
521
522 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
523 auto I = Store.find(V);
524 if (I == Store.end())
525 return;
526
527 // Remove old entry from the map.
528 ValueAsMetadata *MD = I->second;
529 assert(MD && "Expected valid metadata");
530 assert(MD->getValue() == V && "Expected valid mapping");
531 Store.erase(I);
532
533 // Delete the metadata.
534 MD->replaceAllUsesWith(nullptr);
535 delete MD;
536 }
537
handleRAUW(Value * From,Value * To)538 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
539 assert(From && "Expected valid value");
540 assert(To && "Expected valid value");
541 assert(From != To && "Expected changed value");
542 assert(&From->getContext() == &To->getContext() && "Expected same context");
543
544 LLVMContext &Context = From->getType()->getContext();
545 auto &Store = Context.pImpl->ValuesAsMetadata;
546 auto I = Store.find(From);
547 if (I == Store.end()) {
548 assert(!From->IsUsedByMD && "Expected From not to be used by metadata");
549 return;
550 }
551
552 // Remove old entry from the map.
553 assert(From->IsUsedByMD && "Expected From to be used by metadata");
554 From->IsUsedByMD = false;
555 ValueAsMetadata *MD = I->second;
556 assert(MD && "Expected valid metadata");
557 assert(MD->getValue() == From && "Expected valid mapping");
558 Store.erase(I);
559
560 if (isa<LocalAsMetadata>(MD)) {
561 if (auto *C = dyn_cast<Constant>(To)) {
562 // Local became a constant.
563 MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
564 delete MD;
565 return;
566 }
567 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) &&
568 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) {
569 // DISubprogram changed.
570 MD->replaceAllUsesWith(nullptr);
571 delete MD;
572 return;
573 }
574 } else if (!isa<Constant>(To)) {
575 // Changed to function-local value.
576 MD->replaceAllUsesWith(nullptr);
577 delete MD;
578 return;
579 }
580
581 auto *&Entry = Store[To];
582 if (Entry) {
583 // The target already exists.
584 MD->replaceAllUsesWith(Entry);
585 delete MD;
586 return;
587 }
588
589 // Update MD in place (and update the map entry).
590 assert(!To->IsUsedByMD && "Expected this to be the only metadata use");
591 To->IsUsedByMD = true;
592 MD->V = To;
593 Entry = MD;
594 }
595
596 //===----------------------------------------------------------------------===//
597 // MDString implementation.
598 //
599
get(LLVMContext & Context,StringRef Str)600 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
601 auto &Store = Context.pImpl->MDStringCache;
602 auto I = Store.try_emplace(Str);
603 auto &MapEntry = I.first->getValue();
604 if (!I.second)
605 return &MapEntry;
606 MapEntry.Entry = &*I.first;
607 return &MapEntry;
608 }
609
getString() const610 StringRef MDString::getString() const {
611 assert(Entry && "Expected to find string map entry");
612 return Entry->first();
613 }
614
615 //===----------------------------------------------------------------------===//
616 // MDNode implementation.
617 //
618
619 // Assert that the MDNode types will not be unaligned by the objects
620 // prepended to them.
621 #define HANDLE_MDNODE_LEAF(CLASS) \
622 static_assert( \
623 alignof(uint64_t) >= alignof(CLASS), \
624 "Alignment is insufficient after objects prepended to " #CLASS);
625 #include "llvm/IR/Metadata.def"
626
operator new(size_t Size,size_t NumOps,StorageType Storage)627 void *MDNode::operator new(size_t Size, size_t NumOps, StorageType Storage) {
628 // uint64_t is the most aligned type we need support (ensured by static_assert
629 // above)
630 size_t AllocSize =
631 alignTo(Header::getAllocSize(Storage, NumOps), alignof(uint64_t));
632 char *Mem = reinterpret_cast<char *>(::operator new(AllocSize + Size));
633 Header *H = new (Mem + AllocSize - sizeof(Header)) Header(NumOps, Storage);
634 return reinterpret_cast<void *>(H + 1);
635 }
636
operator delete(void * N)637 void MDNode::operator delete(void *N) {
638 Header *H = reinterpret_cast<Header *>(N) - 1;
639 void *Mem = H->getAllocation();
640 H->~Header();
641 ::operator delete(Mem);
642 }
643
MDNode(LLVMContext & Context,unsigned ID,StorageType Storage,ArrayRef<Metadata * > Ops1,ArrayRef<Metadata * > Ops2)644 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
645 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
646 : Metadata(ID, Storage), Context(Context) {
647 unsigned Op = 0;
648 for (Metadata *MD : Ops1)
649 setOperand(Op++, MD);
650 for (Metadata *MD : Ops2)
651 setOperand(Op++, MD);
652
653 if (!isUniqued())
654 return;
655
656 // Count the unresolved operands. If there are any, RAUW support will be
657 // added lazily on first reference.
658 countUnresolvedOperands();
659 }
660
clone() const661 TempMDNode MDNode::clone() const {
662 switch (getMetadataID()) {
663 default:
664 llvm_unreachable("Invalid MDNode subclass");
665 #define HANDLE_MDNODE_LEAF(CLASS) \
666 case CLASS##Kind: \
667 return cast<CLASS>(this)->cloneImpl();
668 #include "llvm/IR/Metadata.def"
669 }
670 }
671
Header(size_t NumOps,StorageType Storage)672 MDNode::Header::Header(size_t NumOps, StorageType Storage) {
673 IsLarge = isLarge(NumOps);
674 IsResizable = isResizable(Storage);
675 SmallSize = getSmallSize(NumOps, IsResizable, IsLarge);
676 if (IsLarge) {
677 SmallNumOps = 0;
678 new (getLargePtr()) LargeStorageVector();
679 getLarge().resize(NumOps);
680 return;
681 }
682 SmallNumOps = NumOps;
683 MDOperand *O = reinterpret_cast<MDOperand *>(this) - SmallSize;
684 for (MDOperand *E = O + SmallSize; O != E;)
685 (void)new (O++) MDOperand();
686 }
687
~Header()688 MDNode::Header::~Header() {
689 if (IsLarge) {
690 getLarge().~LargeStorageVector();
691 return;
692 }
693 MDOperand *O = reinterpret_cast<MDOperand *>(this);
694 for (MDOperand *E = O - SmallSize; O != E; --O)
695 (void)(O - 1)->~MDOperand();
696 }
697
getSmallPtr()698 void *MDNode::Header::getSmallPtr() {
699 static_assert(alignof(MDOperand) <= alignof(Header),
700 "MDOperand too strongly aligned");
701 return reinterpret_cast<char *>(const_cast<Header *>(this)) -
702 sizeof(MDOperand) * SmallSize;
703 }
704
resize(size_t NumOps)705 void MDNode::Header::resize(size_t NumOps) {
706 assert(IsResizable && "Node is not resizable");
707 if (operands().size() == NumOps)
708 return;
709
710 if (IsLarge)
711 getLarge().resize(NumOps);
712 else if (NumOps <= SmallSize)
713 resizeSmall(NumOps);
714 else
715 resizeSmallToLarge(NumOps);
716 }
717
resizeSmall(size_t NumOps)718 void MDNode::Header::resizeSmall(size_t NumOps) {
719 assert(!IsLarge && "Expected a small MDNode");
720 assert(NumOps <= SmallSize && "NumOps too large for small resize");
721
722 MutableArrayRef<MDOperand> ExistingOps = operands();
723 assert(NumOps != ExistingOps.size() && "Expected a different size");
724
725 int NumNew = (int)NumOps - (int)ExistingOps.size();
726 MDOperand *O = ExistingOps.end();
727 for (int I = 0, E = NumNew; I < E; ++I)
728 (O++)->reset();
729 for (int I = 0, E = NumNew; I > E; --I)
730 (--O)->reset();
731 SmallNumOps = NumOps;
732 assert(O == operands().end() && "Operands not (un)initialized until the end");
733 }
734
resizeSmallToLarge(size_t NumOps)735 void MDNode::Header::resizeSmallToLarge(size_t NumOps) {
736 assert(!IsLarge && "Expected a small MDNode");
737 assert(NumOps > SmallSize && "Expected NumOps to be larger than allocation");
738 LargeStorageVector NewOps;
739 NewOps.resize(NumOps);
740 llvm::move(operands(), NewOps.begin());
741 resizeSmall(0);
742 new (getLargePtr()) LargeStorageVector(std::move(NewOps));
743 IsLarge = true;
744 }
745
isOperandUnresolved(Metadata * Op)746 static bool isOperandUnresolved(Metadata *Op) {
747 if (auto *N = dyn_cast_or_null<MDNode>(Op))
748 return !N->isResolved();
749 return false;
750 }
751
countUnresolvedOperands()752 void MDNode::countUnresolvedOperands() {
753 assert(getNumUnresolved() == 0 && "Expected unresolved ops to be uncounted");
754 assert(isUniqued() && "Expected this to be uniqued");
755 setNumUnresolved(count_if(operands(), isOperandUnresolved));
756 }
757
makeUniqued()758 void MDNode::makeUniqued() {
759 assert(isTemporary() && "Expected this to be temporary");
760 assert(!isResolved() && "Expected this to be unresolved");
761
762 // Enable uniquing callbacks.
763 for (auto &Op : mutable_operands())
764 Op.reset(Op.get(), this);
765
766 // Make this 'uniqued'.
767 Storage = Uniqued;
768 countUnresolvedOperands();
769 if (!getNumUnresolved()) {
770 dropReplaceableUses();
771 assert(isResolved() && "Expected this to be resolved");
772 }
773
774 assert(isUniqued() && "Expected this to be uniqued");
775 }
776
makeDistinct()777 void MDNode::makeDistinct() {
778 assert(isTemporary() && "Expected this to be temporary");
779 assert(!isResolved() && "Expected this to be unresolved");
780
781 // Drop RAUW support and store as a distinct node.
782 dropReplaceableUses();
783 storeDistinctInContext();
784
785 assert(isDistinct() && "Expected this to be distinct");
786 assert(isResolved() && "Expected this to be resolved");
787 }
788
resolve()789 void MDNode::resolve() {
790 assert(isUniqued() && "Expected this to be uniqued");
791 assert(!isResolved() && "Expected this to be unresolved");
792
793 setNumUnresolved(0);
794 dropReplaceableUses();
795
796 assert(isResolved() && "Expected this to be resolved");
797 }
798
dropReplaceableUses()799 void MDNode::dropReplaceableUses() {
800 assert(!getNumUnresolved() && "Unexpected unresolved operand");
801
802 // Drop any RAUW support.
803 if (Context.hasReplaceableUses())
804 Context.takeReplaceableUses()->resolveAllUses();
805 }
806
resolveAfterOperandChange(Metadata * Old,Metadata * New)807 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
808 assert(isUniqued() && "Expected this to be uniqued");
809 assert(getNumUnresolved() != 0 && "Expected unresolved operands");
810
811 // Check if an operand was resolved.
812 if (!isOperandUnresolved(Old)) {
813 if (isOperandUnresolved(New))
814 // An operand was un-resolved!
815 setNumUnresolved(getNumUnresolved() + 1);
816 } else if (!isOperandUnresolved(New))
817 decrementUnresolvedOperandCount();
818 }
819
decrementUnresolvedOperandCount()820 void MDNode::decrementUnresolvedOperandCount() {
821 assert(!isResolved() && "Expected this to be unresolved");
822 if (isTemporary())
823 return;
824
825 assert(isUniqued() && "Expected this to be uniqued");
826 setNumUnresolved(getNumUnresolved() - 1);
827 if (getNumUnresolved())
828 return;
829
830 // Last unresolved operand has just been resolved.
831 dropReplaceableUses();
832 assert(isResolved() && "Expected this to become resolved");
833 }
834
resolveCycles()835 void MDNode::resolveCycles() {
836 if (isResolved())
837 return;
838
839 // Resolve this node immediately.
840 resolve();
841
842 // Resolve all operands.
843 for (const auto &Op : operands()) {
844 auto *N = dyn_cast_or_null<MDNode>(Op);
845 if (!N)
846 continue;
847
848 assert(!N->isTemporary() &&
849 "Expected all forward declarations to be resolved");
850 if (!N->isResolved())
851 N->resolveCycles();
852 }
853 }
854
hasSelfReference(MDNode * N)855 static bool hasSelfReference(MDNode *N) {
856 return llvm::is_contained(N->operands(), N);
857 }
858
replaceWithPermanentImpl()859 MDNode *MDNode::replaceWithPermanentImpl() {
860 switch (getMetadataID()) {
861 default:
862 // If this type isn't uniquable, replace with a distinct node.
863 return replaceWithDistinctImpl();
864
865 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
866 case CLASS##Kind: \
867 break;
868 #include "llvm/IR/Metadata.def"
869 }
870
871 // Even if this type is uniquable, self-references have to be distinct.
872 if (hasSelfReference(this))
873 return replaceWithDistinctImpl();
874 return replaceWithUniquedImpl();
875 }
876
replaceWithUniquedImpl()877 MDNode *MDNode::replaceWithUniquedImpl() {
878 // Try to uniquify in place.
879 MDNode *UniquedNode = uniquify();
880
881 if (UniquedNode == this) {
882 makeUniqued();
883 return this;
884 }
885
886 // Collision, so RAUW instead.
887 replaceAllUsesWith(UniquedNode);
888 deleteAsSubclass();
889 return UniquedNode;
890 }
891
replaceWithDistinctImpl()892 MDNode *MDNode::replaceWithDistinctImpl() {
893 makeDistinct();
894 return this;
895 }
896
recalculateHash()897 void MDTuple::recalculateHash() {
898 setHash(MDTupleInfo::KeyTy::calculateHash(this));
899 }
900
dropAllReferences()901 void MDNode::dropAllReferences() {
902 for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
903 setOperand(I, nullptr);
904 if (Context.hasReplaceableUses()) {
905 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
906 (void)Context.takeReplaceableUses();
907 }
908 }
909
handleChangedOperand(void * Ref,Metadata * New)910 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
911 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
912 assert(Op < getNumOperands() && "Expected valid operand");
913
914 if (!isUniqued()) {
915 // This node is not uniqued. Just set the operand and be done with it.
916 setOperand(Op, New);
917 return;
918 }
919
920 // This node is uniqued.
921 eraseFromStore();
922
923 Metadata *Old = getOperand(Op);
924 setOperand(Op, New);
925
926 // Drop uniquing for self-reference cycles and deleted constants.
927 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) {
928 if (!isResolved())
929 resolve();
930 storeDistinctInContext();
931 return;
932 }
933
934 // Re-unique the node.
935 auto *Uniqued = uniquify();
936 if (Uniqued == this) {
937 if (!isResolved())
938 resolveAfterOperandChange(Old, New);
939 return;
940 }
941
942 // Collision.
943 if (!isResolved()) {
944 // Still unresolved, so RAUW.
945 //
946 // First, clear out all operands to prevent any recursion (similar to
947 // dropAllReferences(), but we still need the use-list).
948 for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
949 setOperand(O, nullptr);
950 if (Context.hasReplaceableUses())
951 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
952 deleteAsSubclass();
953 return;
954 }
955
956 // Store in non-uniqued form if RAUW isn't possible.
957 storeDistinctInContext();
958 }
959
deleteAsSubclass()960 void MDNode::deleteAsSubclass() {
961 switch (getMetadataID()) {
962 default:
963 llvm_unreachable("Invalid subclass of MDNode");
964 #define HANDLE_MDNODE_LEAF(CLASS) \
965 case CLASS##Kind: \
966 delete cast<CLASS>(this); \
967 break;
968 #include "llvm/IR/Metadata.def"
969 }
970 }
971
972 template <class T, class InfoT>
uniquifyImpl(T * N,DenseSet<T *,InfoT> & Store)973 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
974 if (T *U = getUniqued(Store, N))
975 return U;
976
977 Store.insert(N);
978 return N;
979 }
980
981 template <class NodeTy> struct MDNode::HasCachedHash {
982 using Yes = char[1];
983 using No = char[2];
984 template <class U, U Val> struct SFINAE {};
985
986 template <class U>
987 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
988 template <class U> static No &check(...);
989
990 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
991 };
992
uniquify()993 MDNode *MDNode::uniquify() {
994 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
995
996 // Try to insert into uniquing store.
997 switch (getMetadataID()) {
998 default:
999 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
1000 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
1001 case CLASS##Kind: { \
1002 CLASS *SubclassThis = cast<CLASS>(this); \
1003 std::integral_constant<bool, HasCachedHash<CLASS>::value> \
1004 ShouldRecalculateHash; \
1005 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \
1006 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \
1007 }
1008 #include "llvm/IR/Metadata.def"
1009 }
1010 }
1011
eraseFromStore()1012 void MDNode::eraseFromStore() {
1013 switch (getMetadataID()) {
1014 default:
1015 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
1016 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
1017 case CLASS##Kind: \
1018 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \
1019 break;
1020 #include "llvm/IR/Metadata.def"
1021 }
1022 }
1023
getImpl(LLVMContext & Context,ArrayRef<Metadata * > MDs,StorageType Storage,bool ShouldCreate)1024 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1025 StorageType Storage, bool ShouldCreate) {
1026 unsigned Hash = 0;
1027 if (Storage == Uniqued) {
1028 MDTupleInfo::KeyTy Key(MDs);
1029 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
1030 return N;
1031 if (!ShouldCreate)
1032 return nullptr;
1033 Hash = Key.getHash();
1034 } else {
1035 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
1036 }
1037
1038 return storeImpl(new (MDs.size(), Storage)
1039 MDTuple(Context, Storage, Hash, MDs),
1040 Storage, Context.pImpl->MDTuples);
1041 }
1042
deleteTemporary(MDNode * N)1043 void MDNode::deleteTemporary(MDNode *N) {
1044 assert(N->isTemporary() && "Expected temporary node");
1045 N->replaceAllUsesWith(nullptr);
1046 N->deleteAsSubclass();
1047 }
1048
storeDistinctInContext()1049 void MDNode::storeDistinctInContext() {
1050 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses");
1051 assert(!getNumUnresolved() && "Unexpected unresolved nodes");
1052 Storage = Distinct;
1053 assert(isResolved() && "Expected this to be resolved");
1054
1055 // Reset the hash.
1056 switch (getMetadataID()) {
1057 default:
1058 llvm_unreachable("Invalid subclass of MDNode");
1059 #define HANDLE_MDNODE_LEAF(CLASS) \
1060 case CLASS##Kind: { \
1061 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
1062 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \
1063 break; \
1064 }
1065 #include "llvm/IR/Metadata.def"
1066 }
1067
1068 getContext().pImpl->DistinctMDNodes.push_back(this);
1069 }
1070
replaceOperandWith(unsigned I,Metadata * New)1071 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
1072 if (getOperand(I) == New)
1073 return;
1074
1075 if (!isUniqued()) {
1076 setOperand(I, New);
1077 return;
1078 }
1079
1080 handleChangedOperand(mutable_begin() + I, New);
1081 }
1082
setOperand(unsigned I,Metadata * New)1083 void MDNode::setOperand(unsigned I, Metadata *New) {
1084 assert(I < getNumOperands());
1085 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
1086 }
1087
1088 /// Get a node or a self-reference that looks like it.
1089 ///
1090 /// Special handling for finding self-references, for use by \a
1091 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
1092 /// when self-referencing nodes were still uniqued. If the first operand has
1093 /// the same operands as \c Ops, return the first operand instead.
getOrSelfReference(LLVMContext & Context,ArrayRef<Metadata * > Ops)1094 static MDNode *getOrSelfReference(LLVMContext &Context,
1095 ArrayRef<Metadata *> Ops) {
1096 if (!Ops.empty())
1097 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
1098 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
1099 for (unsigned I = 1, E = Ops.size(); I != E; ++I)
1100 if (Ops[I] != N->getOperand(I))
1101 return MDNode::get(Context, Ops);
1102 return N;
1103 }
1104
1105 return MDNode::get(Context, Ops);
1106 }
1107
concatenate(MDNode * A,MDNode * B)1108 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
1109 if (!A)
1110 return B;
1111 if (!B)
1112 return A;
1113
1114 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
1115 MDs.insert(B->op_begin(), B->op_end());
1116
1117 // FIXME: This preserves long-standing behaviour, but is it really the right
1118 // behaviour? Or was that an unintended side-effect of node uniquing?
1119 return getOrSelfReference(A->getContext(), MDs.getArrayRef());
1120 }
1121
intersect(MDNode * A,MDNode * B)1122 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
1123 if (!A || !B)
1124 return nullptr;
1125
1126 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
1127 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end());
1128 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); });
1129
1130 // FIXME: This preserves long-standing behaviour, but is it really the right
1131 // behaviour? Or was that an unintended side-effect of node uniquing?
1132 return getOrSelfReference(A->getContext(), MDs.getArrayRef());
1133 }
1134
getMostGenericAliasScope(MDNode * A,MDNode * B)1135 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
1136 if (!A || !B)
1137 return nullptr;
1138
1139 // Take the intersection of domains then union the scopes
1140 // within those domains
1141 SmallPtrSet<const MDNode *, 16> ADomains;
1142 SmallPtrSet<const MDNode *, 16> IntersectDomains;
1143 SmallSetVector<Metadata *, 4> MDs;
1144 for (const MDOperand &MDOp : A->operands())
1145 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1146 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1147 ADomains.insert(Domain);
1148
1149 for (const MDOperand &MDOp : B->operands())
1150 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1151 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1152 if (ADomains.contains(Domain)) {
1153 IntersectDomains.insert(Domain);
1154 MDs.insert(MDOp);
1155 }
1156
1157 for (const MDOperand &MDOp : A->operands())
1158 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1159 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1160 if (IntersectDomains.contains(Domain))
1161 MDs.insert(MDOp);
1162
1163 return MDs.empty() ? nullptr
1164 : getOrSelfReference(A->getContext(), MDs.getArrayRef());
1165 }
1166
getMostGenericFPMath(MDNode * A,MDNode * B)1167 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
1168 if (!A || !B)
1169 return nullptr;
1170
1171 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
1172 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
1173 if (AVal < BVal)
1174 return A;
1175 return B;
1176 }
1177
1178 // Call instructions with branch weights are only used in SamplePGO as
1179 // documented in
1180 /// https://llvm.org/docs/BranchWeightMetadata.html#callinst).
mergeDirectCallProfMetadata(MDNode * A,MDNode * B,const Instruction * AInstr,const Instruction * BInstr)1181 MDNode *MDNode::mergeDirectCallProfMetadata(MDNode *A, MDNode *B,
1182 const Instruction *AInstr,
1183 const Instruction *BInstr) {
1184 assert(A && B && AInstr && BInstr && "Caller should guarantee");
1185 auto &Ctx = AInstr->getContext();
1186 MDBuilder MDHelper(Ctx);
1187
1188 // LLVM IR verifier verifies !prof metadata has at least 2 operands.
1189 assert(A->getNumOperands() >= 2 && B->getNumOperands() >= 2 &&
1190 "!prof annotations should have no less than 2 operands");
1191 MDString *AMDS = dyn_cast<MDString>(A->getOperand(0));
1192 MDString *BMDS = dyn_cast<MDString>(B->getOperand(0));
1193 // LLVM IR verfier verifies first operand is MDString.
1194 assert(AMDS != nullptr && BMDS != nullptr &&
1195 "first operand should be a non-null MDString");
1196 StringRef AProfName = AMDS->getString();
1197 StringRef BProfName = BMDS->getString();
1198 if (AProfName == "branch_weights" && BProfName == "branch_weights") {
1199 ConstantInt *AInstrWeight = mdconst::dyn_extract<ConstantInt>(
1200 A->getOperand(getBranchWeightOffset(A)));
1201 ConstantInt *BInstrWeight = mdconst::dyn_extract<ConstantInt>(
1202 B->getOperand(getBranchWeightOffset(B)));
1203 assert(AInstrWeight && BInstrWeight && "verified by LLVM verifier");
1204 return MDNode::get(Ctx,
1205 {MDHelper.createString("branch_weights"),
1206 MDHelper.createConstant(ConstantInt::get(
1207 Type::getInt64Ty(Ctx),
1208 SaturatingAdd(AInstrWeight->getZExtValue(),
1209 BInstrWeight->getZExtValue())))});
1210 }
1211 return nullptr;
1212 }
1213
1214 // Pass in both instructions and nodes. Instruction information (e.g.,
1215 // instruction type) helps interpret profiles and make implementation clearer.
getMergedProfMetadata(MDNode * A,MDNode * B,const Instruction * AInstr,const Instruction * BInstr)1216 MDNode *MDNode::getMergedProfMetadata(MDNode *A, MDNode *B,
1217 const Instruction *AInstr,
1218 const Instruction *BInstr) {
1219 if (!(A && B)) {
1220 return A ? A : B;
1221 }
1222
1223 assert(AInstr->getMetadata(LLVMContext::MD_prof) == A &&
1224 "Caller should guarantee");
1225 assert(BInstr->getMetadata(LLVMContext::MD_prof) == B &&
1226 "Caller should guarantee");
1227
1228 const CallInst *ACall = dyn_cast<CallInst>(AInstr);
1229 const CallInst *BCall = dyn_cast<CallInst>(BInstr);
1230
1231 // Both ACall and BCall are direct callsites.
1232 if (ACall && BCall && ACall->getCalledFunction() &&
1233 BCall->getCalledFunction())
1234 return mergeDirectCallProfMetadata(A, B, AInstr, BInstr);
1235
1236 // The rest of the cases are not implemented but could be added
1237 // when there are use cases.
1238 return nullptr;
1239 }
1240
isContiguous(const ConstantRange & A,const ConstantRange & B)1241 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1242 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1243 }
1244
canBeMerged(const ConstantRange & A,const ConstantRange & B)1245 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
1246 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
1247 }
1248
tryMergeRange(SmallVectorImpl<ConstantInt * > & EndPoints,ConstantInt * Low,ConstantInt * High)1249 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
1250 ConstantInt *Low, ConstantInt *High) {
1251 ConstantRange NewRange(Low->getValue(), High->getValue());
1252 unsigned Size = EndPoints.size();
1253 APInt LB = EndPoints[Size - 2]->getValue();
1254 APInt LE = EndPoints[Size - 1]->getValue();
1255 ConstantRange LastRange(LB, LE);
1256 if (canBeMerged(NewRange, LastRange)) {
1257 ConstantRange Union = LastRange.unionWith(NewRange);
1258 Type *Ty = High->getType();
1259 EndPoints[Size - 2] =
1260 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
1261 EndPoints[Size - 1] =
1262 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
1263 return true;
1264 }
1265 return false;
1266 }
1267
addRange(SmallVectorImpl<ConstantInt * > & EndPoints,ConstantInt * Low,ConstantInt * High)1268 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
1269 ConstantInt *Low, ConstantInt *High) {
1270 if (!EndPoints.empty())
1271 if (tryMergeRange(EndPoints, Low, High))
1272 return;
1273
1274 EndPoints.push_back(Low);
1275 EndPoints.push_back(High);
1276 }
1277
getMostGenericRange(MDNode * A,MDNode * B)1278 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
1279 // Given two ranges, we want to compute the union of the ranges. This
1280 // is slightly complicated by having to combine the intervals and merge
1281 // the ones that overlap.
1282
1283 if (!A || !B)
1284 return nullptr;
1285
1286 if (A == B)
1287 return A;
1288
1289 // First, walk both lists in order of the lower boundary of each interval.
1290 // At each step, try to merge the new interval to the last one we added.
1291 SmallVector<ConstantInt *, 4> EndPoints;
1292 unsigned AI = 0;
1293 unsigned BI = 0;
1294 unsigned AN = A->getNumOperands() / 2;
1295 unsigned BN = B->getNumOperands() / 2;
1296 while (AI < AN && BI < BN) {
1297 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
1298 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
1299
1300 if (ALow->getValue().slt(BLow->getValue())) {
1301 addRange(EndPoints, ALow,
1302 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1303 ++AI;
1304 } else {
1305 addRange(EndPoints, BLow,
1306 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1307 ++BI;
1308 }
1309 }
1310 while (AI < AN) {
1311 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
1312 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1313 ++AI;
1314 }
1315 while (BI < BN) {
1316 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
1317 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1318 ++BI;
1319 }
1320
1321 // We haven't handled wrap in the previous merge,
1322 // if we have at least 2 ranges (4 endpoints) we have to try to merge
1323 // the last and first ones.
1324 unsigned Size = EndPoints.size();
1325 if (Size > 2) {
1326 ConstantInt *FB = EndPoints[0];
1327 ConstantInt *FE = EndPoints[1];
1328 if (tryMergeRange(EndPoints, FB, FE)) {
1329 for (unsigned i = 0; i < Size - 2; ++i) {
1330 EndPoints[i] = EndPoints[i + 2];
1331 }
1332 EndPoints.resize(Size - 2);
1333 }
1334 }
1335
1336 // If in the end we have a single range, it is possible that it is now the
1337 // full range. Just drop the metadata in that case.
1338 if (EndPoints.size() == 2) {
1339 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
1340 if (Range.isFullSet())
1341 return nullptr;
1342 }
1343
1344 SmallVector<Metadata *, 4> MDs;
1345 MDs.reserve(EndPoints.size());
1346 for (auto *I : EndPoints)
1347 MDs.push_back(ConstantAsMetadata::get(I));
1348 return MDNode::get(A->getContext(), MDs);
1349 }
1350
getMostGenericAlignmentOrDereferenceable(MDNode * A,MDNode * B)1351 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
1352 if (!A || !B)
1353 return nullptr;
1354
1355 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
1356 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
1357 if (AVal->getZExtValue() < BVal->getZExtValue())
1358 return A;
1359 return B;
1360 }
1361
1362 //===----------------------------------------------------------------------===//
1363 // NamedMDNode implementation.
1364 //
1365
getNMDOps(void * Operands)1366 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
1367 return *(SmallVector<TrackingMDRef, 4> *)Operands;
1368 }
1369
NamedMDNode(const Twine & N)1370 NamedMDNode::NamedMDNode(const Twine &N)
1371 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {}
1372
~NamedMDNode()1373 NamedMDNode::~NamedMDNode() {
1374 dropAllReferences();
1375 delete &getNMDOps(Operands);
1376 }
1377
getNumOperands() const1378 unsigned NamedMDNode::getNumOperands() const {
1379 return (unsigned)getNMDOps(Operands).size();
1380 }
1381
getOperand(unsigned i) const1382 MDNode *NamedMDNode::getOperand(unsigned i) const {
1383 assert(i < getNumOperands() && "Invalid Operand number!");
1384 auto *N = getNMDOps(Operands)[i].get();
1385 return cast_or_null<MDNode>(N);
1386 }
1387
addOperand(MDNode * M)1388 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
1389
setOperand(unsigned I,MDNode * New)1390 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
1391 assert(I < getNumOperands() && "Invalid operand number");
1392 getNMDOps(Operands)[I].reset(New);
1393 }
1394
eraseFromParent()1395 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); }
1396
clearOperands()1397 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); }
1398
getName() const1399 StringRef NamedMDNode::getName() const { return StringRef(Name); }
1400
1401 //===----------------------------------------------------------------------===//
1402 // Instruction Metadata method implementations.
1403 //
1404
lookup(unsigned ID) const1405 MDNode *MDAttachments::lookup(unsigned ID) const {
1406 for (const auto &A : Attachments)
1407 if (A.MDKind == ID)
1408 return A.Node;
1409 return nullptr;
1410 }
1411
get(unsigned ID,SmallVectorImpl<MDNode * > & Result) const1412 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const {
1413 for (const auto &A : Attachments)
1414 if (A.MDKind == ID)
1415 Result.push_back(A.Node);
1416 }
1417
getAll(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1418 void MDAttachments::getAll(
1419 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1420 for (const auto &A : Attachments)
1421 Result.emplace_back(A.MDKind, A.Node);
1422
1423 // Sort the resulting array so it is stable with respect to metadata IDs. We
1424 // need to preserve the original insertion order though.
1425 if (Result.size() > 1)
1426 llvm::stable_sort(Result, less_first());
1427 }
1428
set(unsigned ID,MDNode * MD)1429 void MDAttachments::set(unsigned ID, MDNode *MD) {
1430 erase(ID);
1431 if (MD)
1432 insert(ID, *MD);
1433 }
1434
insert(unsigned ID,MDNode & MD)1435 void MDAttachments::insert(unsigned ID, MDNode &MD) {
1436 Attachments.push_back({ID, TrackingMDNodeRef(&MD)});
1437 }
1438
erase(unsigned ID)1439 bool MDAttachments::erase(unsigned ID) {
1440 if (empty())
1441 return false;
1442
1443 // Common case is one value.
1444 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) {
1445 Attachments.pop_back();
1446 return true;
1447 }
1448
1449 auto OldSize = Attachments.size();
1450 llvm::erase_if(Attachments,
1451 [ID](const Attachment &A) { return A.MDKind == ID; });
1452 return OldSize != Attachments.size();
1453 }
1454
getMetadata(StringRef Kind) const1455 MDNode *Value::getMetadata(StringRef Kind) const {
1456 if (!hasMetadata())
1457 return nullptr;
1458 unsigned KindID = getContext().getMDKindID(Kind);
1459 return getMetadataImpl(KindID);
1460 }
1461
getMetadataImpl(unsigned KindID) const1462 MDNode *Value::getMetadataImpl(unsigned KindID) const {
1463 const LLVMContext &Ctx = getContext();
1464 const MDAttachments &Attachements = Ctx.pImpl->ValueMetadata.at(this);
1465 return Attachements.lookup(KindID);
1466 }
1467
getMetadata(unsigned KindID,SmallVectorImpl<MDNode * > & MDs) const1468 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const {
1469 if (hasMetadata())
1470 getContext().pImpl->ValueMetadata.at(this).get(KindID, MDs);
1471 }
1472
getMetadata(StringRef Kind,SmallVectorImpl<MDNode * > & MDs) const1473 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const {
1474 if (hasMetadata())
1475 getMetadata(getContext().getMDKindID(Kind), MDs);
1476 }
1477
getAllMetadata(SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs) const1478 void Value::getAllMetadata(
1479 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1480 if (hasMetadata()) {
1481 assert(getContext().pImpl->ValueMetadata.count(this) &&
1482 "bit out of sync with hash table");
1483 const MDAttachments &Info = getContext().pImpl->ValueMetadata.at(this);
1484 Info.getAll(MDs);
1485 }
1486 }
1487
setMetadata(unsigned KindID,MDNode * Node)1488 void Value::setMetadata(unsigned KindID, MDNode *Node) {
1489 assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1490
1491 // Handle the case when we're adding/updating metadata on a value.
1492 if (Node) {
1493 MDAttachments &Info = getContext().pImpl->ValueMetadata[this];
1494 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table");
1495 if (Info.empty())
1496 HasMetadata = true;
1497 Info.set(KindID, Node);
1498 return;
1499 }
1500
1501 // Otherwise, we're removing metadata from an instruction.
1502 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) &&
1503 "bit out of sync with hash table");
1504 if (!HasMetadata)
1505 return; // Nothing to remove!
1506 MDAttachments &Info = getContext().pImpl->ValueMetadata.find(this)->second;
1507
1508 // Handle removal of an existing value.
1509 Info.erase(KindID);
1510 if (!Info.empty())
1511 return;
1512 getContext().pImpl->ValueMetadata.erase(this);
1513 HasMetadata = false;
1514 }
1515
setMetadata(StringRef Kind,MDNode * Node)1516 void Value::setMetadata(StringRef Kind, MDNode *Node) {
1517 if (!Node && !HasMetadata)
1518 return;
1519 setMetadata(getContext().getMDKindID(Kind), Node);
1520 }
1521
addMetadata(unsigned KindID,MDNode & MD)1522 void Value::addMetadata(unsigned KindID, MDNode &MD) {
1523 assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1524 if (!HasMetadata)
1525 HasMetadata = true;
1526 getContext().pImpl->ValueMetadata[this].insert(KindID, MD);
1527 }
1528
addMetadata(StringRef Kind,MDNode & MD)1529 void Value::addMetadata(StringRef Kind, MDNode &MD) {
1530 addMetadata(getContext().getMDKindID(Kind), MD);
1531 }
1532
eraseMetadata(unsigned KindID)1533 bool Value::eraseMetadata(unsigned KindID) {
1534 // Nothing to unset.
1535 if (!HasMetadata)
1536 return false;
1537
1538 MDAttachments &Store = getContext().pImpl->ValueMetadata.find(this)->second;
1539 bool Changed = Store.erase(KindID);
1540 if (Store.empty())
1541 clearMetadata();
1542 return Changed;
1543 }
1544
eraseMetadataIf(function_ref<bool (unsigned,MDNode *)> Pred)1545 void Value::eraseMetadataIf(function_ref<bool(unsigned, MDNode *)> Pred) {
1546 if (!HasMetadata)
1547 return;
1548
1549 auto &MetadataStore = getContext().pImpl->ValueMetadata;
1550 MDAttachments &Info = MetadataStore.find(this)->second;
1551 assert(!Info.empty() && "bit out of sync with hash table");
1552 Info.remove_if([Pred](const MDAttachments::Attachment &I) {
1553 return Pred(I.MDKind, I.Node);
1554 });
1555
1556 if (Info.empty())
1557 clearMetadata();
1558 }
1559
clearMetadata()1560 void Value::clearMetadata() {
1561 if (!HasMetadata)
1562 return;
1563 assert(getContext().pImpl->ValueMetadata.count(this) &&
1564 "bit out of sync with hash table");
1565 getContext().pImpl->ValueMetadata.erase(this);
1566 HasMetadata = false;
1567 }
1568
setMetadata(StringRef Kind,MDNode * Node)1569 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1570 if (!Node && !hasMetadata())
1571 return;
1572 setMetadata(getContext().getMDKindID(Kind), Node);
1573 }
1574
getMetadataImpl(StringRef Kind) const1575 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1576 const LLVMContext &Ctx = getContext();
1577 unsigned KindID = Ctx.getMDKindID(Kind);
1578 if (KindID == LLVMContext::MD_dbg)
1579 return DbgLoc.getAsMDNode();
1580 return Value::getMetadata(KindID);
1581 }
1582
eraseMetadataIf(function_ref<bool (unsigned,MDNode *)> Pred)1583 void Instruction::eraseMetadataIf(function_ref<bool(unsigned, MDNode *)> Pred) {
1584 if (DbgLoc && Pred(LLVMContext::MD_dbg, DbgLoc.getAsMDNode()))
1585 DbgLoc = {};
1586
1587 Value::eraseMetadataIf(Pred);
1588 }
1589
dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs)1590 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
1591 if (!Value::hasMetadata())
1592 return; // Nothing to remove!
1593
1594 SmallSet<unsigned, 32> KnownSet;
1595 KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1596
1597 // A DIAssignID attachment is debug metadata, don't drop it.
1598 KnownSet.insert(LLVMContext::MD_DIAssignID);
1599
1600 Value::eraseMetadataIf([&KnownSet](unsigned MDKind, MDNode *Node) {
1601 return !KnownSet.count(MDKind);
1602 });
1603 }
1604
updateDIAssignIDMapping(DIAssignID * ID)1605 void Instruction::updateDIAssignIDMapping(DIAssignID *ID) {
1606 auto &IDToInstrs = getContext().pImpl->AssignmentIDToInstrs;
1607 if (const DIAssignID *CurrentID =
1608 cast_or_null<DIAssignID>(getMetadata(LLVMContext::MD_DIAssignID))) {
1609 // Nothing to do if the ID isn't changing.
1610 if (ID == CurrentID)
1611 return;
1612
1613 // Unmap this instruction from its current ID.
1614 auto InstrsIt = IDToInstrs.find(CurrentID);
1615 assert(InstrsIt != IDToInstrs.end() &&
1616 "Expect existing attachment to be mapped");
1617
1618 auto &InstVec = InstrsIt->second;
1619 auto *InstIt = llvm::find(InstVec, this);
1620 assert(InstIt != InstVec.end() &&
1621 "Expect instruction to be mapped to attachment");
1622 // The vector contains a ptr to this. If this is the only element in the
1623 // vector, remove the ID:vector entry, otherwise just remove the
1624 // instruction from the vector.
1625 if (InstVec.size() == 1)
1626 IDToInstrs.erase(InstrsIt);
1627 else
1628 InstVec.erase(InstIt);
1629 }
1630
1631 // Map this instruction to the new ID.
1632 if (ID)
1633 IDToInstrs[ID].push_back(this);
1634 }
1635
setMetadata(unsigned KindID,MDNode * Node)1636 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1637 if (!Node && !hasMetadata())
1638 return;
1639
1640 // Handle 'dbg' as a special case since it is not stored in the hash table.
1641 if (KindID == LLVMContext::MD_dbg) {
1642 DbgLoc = DebugLoc(Node);
1643 return;
1644 }
1645
1646 // Update DIAssignID to Instruction(s) mapping.
1647 if (KindID == LLVMContext::MD_DIAssignID) {
1648 // The DIAssignID tracking infrastructure doesn't support RAUWing temporary
1649 // nodes with DIAssignIDs. The cast_or_null below would also catch this, but
1650 // having a dedicated assert helps make this obvious.
1651 assert((!Node || !Node->isTemporary()) &&
1652 "Temporary DIAssignIDs are invalid");
1653 updateDIAssignIDMapping(cast_or_null<DIAssignID>(Node));
1654 }
1655
1656 Value::setMetadata(KindID, Node);
1657 }
1658
addAnnotationMetadata(SmallVector<StringRef> Annotations)1659 void Instruction::addAnnotationMetadata(SmallVector<StringRef> Annotations) {
1660 SmallVector<Metadata *, 4> Names;
1661 if (auto *Existing = getMetadata(LLVMContext::MD_annotation)) {
1662 SmallSetVector<StringRef, 2> AnnotationsSet(Annotations.begin(),
1663 Annotations.end());
1664 auto *Tuple = cast<MDTuple>(Existing);
1665 for (auto &N : Tuple->operands()) {
1666 if (isa<MDString>(N.get())) {
1667 Names.push_back(N);
1668 continue;
1669 }
1670 auto *MDAnnotationTuple = cast<MDTuple>(N);
1671 if (any_of(MDAnnotationTuple->operands(), [&AnnotationsSet](auto &Op) {
1672 return AnnotationsSet.contains(cast<MDString>(Op)->getString());
1673 }))
1674 return;
1675 Names.push_back(N);
1676 }
1677 }
1678
1679 MDBuilder MDB(getContext());
1680 SmallVector<Metadata *> MDAnnotationStrings;
1681 for (StringRef Annotation : Annotations)
1682 MDAnnotationStrings.push_back(MDB.createString(Annotation));
1683 MDNode *InfoTuple = MDTuple::get(getContext(), MDAnnotationStrings);
1684 Names.push_back(InfoTuple);
1685 MDNode *MD = MDTuple::get(getContext(), Names);
1686 setMetadata(LLVMContext::MD_annotation, MD);
1687 }
1688
addAnnotationMetadata(StringRef Name)1689 void Instruction::addAnnotationMetadata(StringRef Name) {
1690 SmallVector<Metadata *, 4> Names;
1691 if (auto *Existing = getMetadata(LLVMContext::MD_annotation)) {
1692 auto *Tuple = cast<MDTuple>(Existing);
1693 for (auto &N : Tuple->operands()) {
1694 if (isa<MDString>(N.get()) &&
1695 cast<MDString>(N.get())->getString() == Name)
1696 return;
1697 Names.push_back(N.get());
1698 }
1699 }
1700
1701 MDBuilder MDB(getContext());
1702 Names.push_back(MDB.createString(Name));
1703 MDNode *MD = MDTuple::get(getContext(), Names);
1704 setMetadata(LLVMContext::MD_annotation, MD);
1705 }
1706
getAAMetadata() const1707 AAMDNodes Instruction::getAAMetadata() const {
1708 AAMDNodes Result;
1709 // Not using Instruction::hasMetadata() because we're not interested in
1710 // DebugInfoMetadata.
1711 if (Value::hasMetadata()) {
1712 const MDAttachments &Info = getContext().pImpl->ValueMetadata.at(this);
1713 Result.TBAA = Info.lookup(LLVMContext::MD_tbaa);
1714 Result.TBAAStruct = Info.lookup(LLVMContext::MD_tbaa_struct);
1715 Result.Scope = Info.lookup(LLVMContext::MD_alias_scope);
1716 Result.NoAlias = Info.lookup(LLVMContext::MD_noalias);
1717 }
1718 return Result;
1719 }
1720
setAAMetadata(const AAMDNodes & N)1721 void Instruction::setAAMetadata(const AAMDNodes &N) {
1722 setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1723 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct);
1724 setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1725 setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1726 }
1727
setNoSanitizeMetadata()1728 void Instruction::setNoSanitizeMetadata() {
1729 setMetadata(llvm::LLVMContext::MD_nosanitize,
1730 llvm::MDNode::get(getContext(), std::nullopt));
1731 }
1732
getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1733 void Instruction::getAllMetadataImpl(
1734 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1735 Result.clear();
1736
1737 // Handle 'dbg' as a special case since it is not stored in the hash table.
1738 if (DbgLoc) {
1739 Result.push_back(
1740 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1741 }
1742 Value::getAllMetadata(Result);
1743 }
1744
extractProfTotalWeight(uint64_t & TotalVal) const1745 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const {
1746 assert(
1747 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select ||
1748 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke ||
1749 getOpcode() == Instruction::IndirectBr ||
1750 getOpcode() == Instruction::Switch) &&
1751 "Looking for branch weights on something besides branch");
1752
1753 return ::extractProfTotalWeight(*this, TotalVal);
1754 }
1755
copyMetadata(const GlobalObject * Other,unsigned Offset)1756 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) {
1757 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
1758 Other->getAllMetadata(MDs);
1759 for (auto &MD : MDs) {
1760 // We need to adjust the type metadata offset.
1761 if (Offset != 0 && MD.first == LLVMContext::MD_type) {
1762 auto *OffsetConst = cast<ConstantInt>(
1763 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue());
1764 Metadata *TypeId = MD.second->getOperand(1);
1765 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get(
1766 OffsetConst->getType(), OffsetConst->getValue() + Offset));
1767 addMetadata(LLVMContext::MD_type,
1768 *MDNode::get(getContext(), {NewOffsetMD, TypeId}));
1769 continue;
1770 }
1771 // If an offset adjustment was specified we need to modify the DIExpression
1772 // to prepend the adjustment:
1773 // !DIExpression(DW_OP_plus, Offset, [original expr])
1774 auto *Attachment = MD.second;
1775 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) {
1776 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment);
1777 DIExpression *E = nullptr;
1778 if (!GV) {
1779 auto *GVE = cast<DIGlobalVariableExpression>(Attachment);
1780 GV = GVE->getVariable();
1781 E = GVE->getExpression();
1782 }
1783 ArrayRef<uint64_t> OrigElements;
1784 if (E)
1785 OrigElements = E->getElements();
1786 std::vector<uint64_t> Elements(OrigElements.size() + 2);
1787 Elements[0] = dwarf::DW_OP_plus_uconst;
1788 Elements[1] = Offset;
1789 llvm::copy(OrigElements, Elements.begin() + 2);
1790 E = DIExpression::get(getContext(), Elements);
1791 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E);
1792 }
1793 addMetadata(MD.first, *Attachment);
1794 }
1795 }
1796
addTypeMetadata(unsigned Offset,Metadata * TypeID)1797 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) {
1798 addMetadata(
1799 LLVMContext::MD_type,
1800 *MDTuple::get(getContext(),
1801 {ConstantAsMetadata::get(ConstantInt::get(
1802 Type::getInt64Ty(getContext()), Offset)),
1803 TypeID}));
1804 }
1805
setVCallVisibilityMetadata(VCallVisibility Visibility)1806 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) {
1807 // Remove any existing vcall visibility metadata first in case we are
1808 // updating.
1809 eraseMetadata(LLVMContext::MD_vcall_visibility);
1810 addMetadata(LLVMContext::MD_vcall_visibility,
1811 *MDNode::get(getContext(),
1812 {ConstantAsMetadata::get(ConstantInt::get(
1813 Type::getInt64Ty(getContext()), Visibility))}));
1814 }
1815
getVCallVisibility() const1816 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const {
1817 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) {
1818 uint64_t Val = cast<ConstantInt>(
1819 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue())
1820 ->getZExtValue();
1821 assert(Val <= 2 && "unknown vcall visibility!");
1822 return (VCallVisibility)Val;
1823 }
1824 return VCallVisibility::VCallVisibilityPublic;
1825 }
1826
setSubprogram(DISubprogram * SP)1827 void Function::setSubprogram(DISubprogram *SP) {
1828 setMetadata(LLVMContext::MD_dbg, SP);
1829 }
1830
getSubprogram() const1831 DISubprogram *Function::getSubprogram() const {
1832 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
1833 }
1834
shouldEmitDebugInfoForProfiling() const1835 bool Function::shouldEmitDebugInfoForProfiling() const {
1836 if (DISubprogram *SP = getSubprogram()) {
1837 if (DICompileUnit *CU = SP->getUnit()) {
1838 return CU->getDebugInfoForProfiling();
1839 }
1840 }
1841 return false;
1842 }
1843
addDebugInfo(DIGlobalVariableExpression * GV)1844 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) {
1845 addMetadata(LLVMContext::MD_dbg, *GV);
1846 }
1847
getDebugInfo(SmallVectorImpl<DIGlobalVariableExpression * > & GVs) const1848 void GlobalVariable::getDebugInfo(
1849 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const {
1850 SmallVector<MDNode *, 1> MDs;
1851 getMetadata(LLVMContext::MD_dbg, MDs);
1852 for (MDNode *MD : MDs)
1853 GVs.push_back(cast<DIGlobalVariableExpression>(MD));
1854 }
1855