xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp (revision 5f757f3ff9144b609b3c433dfd370cc6bdc191ad)
1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 //                  Set Load/Store Alignments From Assumptions
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a ScalarEvolution-based transformation to set
11 // the alignments of load, stores and memory intrinsics based on the truth
12 // expressions of assume intrinsics. The primary motivation is to handle
13 // complex alignment assumptions that apply to vector loads and stores that
14 // appear after vectorization and unrolling.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 
34 #define DEBUG_TYPE "alignment-from-assumptions"
35 using namespace llvm;
36 
37 STATISTIC(NumLoadAlignChanged,
38   "Number of loads changed by alignment assumptions");
39 STATISTIC(NumStoreAlignChanged,
40   "Number of stores changed by alignment assumptions");
41 STATISTIC(NumMemIntAlignChanged,
42   "Number of memory intrinsics changed by alignment assumptions");
43 
44 // Given an expression for the (constant) alignment, AlignSCEV, and an
45 // expression for the displacement between a pointer and the aligned address,
46 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
47 // to a constant. Using SCEV to compute alignment handles the case where
48 // DiffSCEV is a recurrence with constant start such that the aligned offset
49 // is constant. e.g. {16,+,32} % 32 -> 16.
50 static MaybeAlign getNewAlignmentDiff(const SCEV *DiffSCEV,
51                                       const SCEV *AlignSCEV,
52                                       ScalarEvolution *SE) {
53   // DiffUnits = Diff % int64_t(Alignment)
54   const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);
55 
56   LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
57                     << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
58 
59   if (const SCEVConstant *ConstDUSCEV =
60       dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
61     int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
62 
63     // If the displacement is an exact multiple of the alignment, then the
64     // displaced pointer has the same alignment as the aligned pointer, so
65     // return the alignment value.
66     if (!DiffUnits)
67       return cast<SCEVConstant>(AlignSCEV)->getValue()->getAlignValue();
68 
69     // If the displacement is not an exact multiple, but the remainder is a
70     // constant, then return this remainder (but only if it is a power of 2).
71     uint64_t DiffUnitsAbs = std::abs(DiffUnits);
72     if (isPowerOf2_64(DiffUnitsAbs))
73       return Align(DiffUnitsAbs);
74   }
75 
76   return std::nullopt;
77 }
78 
79 // There is an address given by an offset OffSCEV from AASCEV which has an
80 // alignment AlignSCEV. Use that information, if possible, to compute a new
81 // alignment for Ptr.
82 static Align getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
83                              const SCEV *OffSCEV, Value *Ptr,
84                              ScalarEvolution *SE) {
85   const SCEV *PtrSCEV = SE->getSCEV(Ptr);
86 
87   const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
88   if (isa<SCEVCouldNotCompute>(DiffSCEV))
89     return Align(1);
90 
91   // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
92   // sign-extended OffSCEV to i64, so make sure they agree again.
93   DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
94 
95   // What we really want to know is the overall offset to the aligned
96   // address. This address is displaced by the provided offset.
97   DiffSCEV = SE->getAddExpr(DiffSCEV, OffSCEV);
98 
99   LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
100                     << *AlignSCEV << " and offset " << *OffSCEV
101                     << " using diff " << *DiffSCEV << "\n");
102 
103   if (MaybeAlign NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE)) {
104     LLVM_DEBUG(dbgs() << "\tnew alignment: " << DebugStr(NewAlignment) << "\n");
105     return *NewAlignment;
106   }
107 
108   if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
109     // The relative offset to the alignment assumption did not yield a constant,
110     // but we should try harder: if we assume that a is 32-byte aligned, then in
111     // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
112     // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
113     // As a result, the new alignment will not be a constant, but can still
114     // be improved over the default (of 4) to 16.
115 
116     const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
117     const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
118 
119     LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
120                       << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
121 
122     // Now compute the new alignment using the displacement to the value in the
123     // first iteration, and also the alignment using the per-iteration delta.
124     // If these are the same, then use that answer. Otherwise, use the smaller
125     // one, but only if it divides the larger one.
126     MaybeAlign NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
127     MaybeAlign NewIncAlignment =
128         getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
129 
130     LLVM_DEBUG(dbgs() << "\tnew start alignment: " << DebugStr(NewAlignment)
131                       << "\n");
132     LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << DebugStr(NewIncAlignment)
133                       << "\n");
134 
135     if (!NewAlignment || !NewIncAlignment)
136       return Align(1);
137 
138     const Align NewAlign = *NewAlignment;
139     const Align NewIncAlign = *NewIncAlignment;
140     if (NewAlign > NewIncAlign) {
141       LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: "
142                         << DebugStr(NewIncAlign) << "\n");
143       return NewIncAlign;
144     }
145     if (NewIncAlign > NewAlign) {
146       LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
147                         << "\n");
148       return NewAlign;
149     }
150     assert(NewIncAlign == NewAlign);
151     LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
152                       << "\n");
153     return NewAlign;
154   }
155 
156   return Align(1);
157 }
158 
159 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
160                                                         unsigned Idx,
161                                                         Value *&AAPtr,
162                                                         const SCEV *&AlignSCEV,
163                                                         const SCEV *&OffSCEV) {
164   Type *Int64Ty = Type::getInt64Ty(I->getContext());
165   OperandBundleUse AlignOB = I->getOperandBundleAt(Idx);
166   if (AlignOB.getTagName() != "align")
167     return false;
168   assert(AlignOB.Inputs.size() >= 2);
169   AAPtr = AlignOB.Inputs[0].get();
170   // TODO: Consider accumulating the offset to the base.
171   AAPtr = AAPtr->stripPointerCastsSameRepresentation();
172   AlignSCEV = SE->getSCEV(AlignOB.Inputs[1].get());
173   AlignSCEV = SE->getTruncateOrZeroExtend(AlignSCEV, Int64Ty);
174   if (!isa<SCEVConstant>(AlignSCEV))
175     // Added to suppress a crash because consumer doesn't expect non-constant
176     // alignments in the assume bundle.  TODO: Consider generalizing caller.
177     return false;
178   if (!cast<SCEVConstant>(AlignSCEV)->getAPInt().isPowerOf2())
179     // Only power of two alignments are supported.
180     return false;
181   if (AlignOB.Inputs.size() == 3)
182     OffSCEV = SE->getSCEV(AlignOB.Inputs[2].get());
183   else
184     OffSCEV = SE->getZero(Int64Ty);
185   OffSCEV = SE->getTruncateOrZeroExtend(OffSCEV, Int64Ty);
186   return true;
187 }
188 
189 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall,
190                                                      unsigned Idx) {
191   Value *AAPtr;
192   const SCEV *AlignSCEV, *OffSCEV;
193   if (!extractAlignmentInfo(ACall, Idx, AAPtr, AlignSCEV, OffSCEV))
194     return false;
195 
196   // Skip ConstantPointerNull and UndefValue.  Assumptions on these shouldn't
197   // affect other users.
198   if (isa<ConstantData>(AAPtr))
199     return false;
200 
201   const SCEV *AASCEV = SE->getSCEV(AAPtr);
202 
203   // Apply the assumption to all other users of the specified pointer.
204   SmallPtrSet<Instruction *, 32> Visited;
205   SmallVector<Instruction*, 16> WorkList;
206   for (User *J : AAPtr->users()) {
207     if (J == ACall)
208       continue;
209 
210     if (Instruction *K = dyn_cast<Instruction>(J))
211         WorkList.push_back(K);
212   }
213 
214   while (!WorkList.empty()) {
215     Instruction *J = WorkList.pop_back_val();
216     if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
217       if (!isValidAssumeForContext(ACall, J, DT))
218         continue;
219       Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
220                                            LI->getPointerOperand(), SE);
221       if (NewAlignment > LI->getAlign()) {
222         LI->setAlignment(NewAlignment);
223         ++NumLoadAlignChanged;
224       }
225     } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
226       if (!isValidAssumeForContext(ACall, J, DT))
227         continue;
228       Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
229                                            SI->getPointerOperand(), SE);
230       if (NewAlignment > SI->getAlign()) {
231         SI->setAlignment(NewAlignment);
232         ++NumStoreAlignChanged;
233       }
234     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
235       if (!isValidAssumeForContext(ACall, J, DT))
236         continue;
237       Align NewDestAlignment =
238           getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE);
239 
240       LLVM_DEBUG(dbgs() << "\tmem inst: " << DebugStr(NewDestAlignment)
241                         << "\n";);
242       if (NewDestAlignment > *MI->getDestAlign()) {
243         MI->setDestAlignment(NewDestAlignment);
244         ++NumMemIntAlignChanged;
245       }
246 
247       // For memory transfers, there is also a source alignment that
248       // can be set.
249       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
250         Align NewSrcAlignment =
251             getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE);
252 
253         LLVM_DEBUG(dbgs() << "\tmem trans: " << DebugStr(NewSrcAlignment)
254                           << "\n";);
255 
256         if (NewSrcAlignment > *MTI->getSourceAlign()) {
257           MTI->setSourceAlignment(NewSrcAlignment);
258           ++NumMemIntAlignChanged;
259         }
260       }
261     }
262 
263     // Now that we've updated that use of the pointer, look for other uses of
264     // the pointer to update.
265     Visited.insert(J);
266     if (isa<GetElementPtrInst>(J) || isa<PHINode>(J))
267       for (auto &U : J->uses()) {
268         if (U->getType()->isPointerTy()) {
269           Instruction *K = cast<Instruction>(U.getUser());
270           StoreInst *SI = dyn_cast<StoreInst>(K);
271           if (SI && SI->getPointerOperandIndex() != U.getOperandNo())
272             continue;
273           if (!Visited.count(K))
274             WorkList.push_back(K);
275         }
276       }
277   }
278 
279   return true;
280 }
281 
282 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
283                                            ScalarEvolution *SE_,
284                                            DominatorTree *DT_) {
285   SE = SE_;
286   DT = DT_;
287 
288   bool Changed = false;
289   for (auto &AssumeVH : AC.assumptions())
290     if (AssumeVH) {
291       CallInst *Call = cast<CallInst>(AssumeVH);
292       for (unsigned Idx = 0; Idx < Call->getNumOperandBundles(); Idx++)
293         Changed |= processAssumption(Call, Idx);
294     }
295 
296   return Changed;
297 }
298 
299 PreservedAnalyses
300 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
301 
302   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
303   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
304   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
305   if (!runImpl(F, AC, &SE, &DT))
306     return PreservedAnalyses::all();
307 
308   PreservedAnalyses PA;
309   PA.preserveSet<CFGAnalyses>();
310   PA.preserve<ScalarEvolutionAnalysis>();
311   return PA;
312 }
313