1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sinking of negation into expression trees,
10 // as long as that can be done without increasing instruction count.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/TargetFolder.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/DebugCounter.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/InstCombine/InstCombiner.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <functional>
46 #include <type_traits>
47 #include <utility>
48
49 namespace llvm {
50 class DataLayout;
51 class LLVMContext;
52 } // namespace llvm
53
54 using namespace llvm;
55
56 #define DEBUG_TYPE "instcombine"
57
58 STATISTIC(NegatorTotalNegationsAttempted,
59 "Negator: Number of negations attempted to be sinked");
60 STATISTIC(NegatorNumTreesNegated,
61 "Negator: Number of negations successfully sinked");
62 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
63 "reached while attempting to sink negation");
64 STATISTIC(NegatorTimesDepthLimitReached,
65 "Negator: How many times did the traversal depth limit was reached "
66 "during sinking");
67 STATISTIC(
68 NegatorNumValuesVisited,
69 "Negator: Total number of values visited during attempts to sink negation");
70 STATISTIC(NegatorNumNegationsFoundInCache,
71 "Negator: How many negations did we retrieve/reuse from cache");
72 STATISTIC(NegatorMaxTotalValuesVisited,
73 "Negator: Maximal number of values ever visited while attempting to "
74 "sink negation");
75 STATISTIC(NegatorNumInstructionsCreatedTotal,
76 "Negator: Number of new negated instructions created, total");
77 STATISTIC(NegatorMaxInstructionsCreated,
78 "Negator: Maximal number of new instructions created during negation "
79 "attempt");
80 STATISTIC(NegatorNumInstructionsNegatedSuccess,
81 "Negator: Number of new negated instructions created in successful "
82 "negation sinking attempts");
83
84 DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
85 "Controls Negator transformations in InstCombine pass");
86
87 static cl::opt<bool>
88 NegatorEnabled("instcombine-negator-enabled", cl::init(true),
89 cl::desc("Should we attempt to sink negations?"));
90
91 static cl::opt<unsigned>
92 NegatorMaxDepth("instcombine-negator-max-depth",
93 cl::init(NegatorDefaultMaxDepth),
94 cl::desc("What is the maximal lookup depth when trying to "
95 "check for viability of negation sinking."));
96
Negator(LLVMContext & C,const DataLayout & DL,bool IsTrulyNegation_)97 Negator::Negator(LLVMContext &C, const DataLayout &DL, bool IsTrulyNegation_)
98 : Builder(C, TargetFolder(DL),
99 IRBuilderCallbackInserter([&](Instruction *I) {
100 ++NegatorNumInstructionsCreatedTotal;
101 NewInstructions.push_back(I);
102 })),
103 IsTrulyNegation(IsTrulyNegation_) {}
104
105 #if LLVM_ENABLE_STATS
~Negator()106 Negator::~Negator() {
107 NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
108 }
109 #endif
110
111 // Due to the InstCombine's worklist management, there are no guarantees that
112 // each instruction we'll encounter has been visited by InstCombine already.
113 // In particular, most importantly for us, that means we have to canonicalize
114 // constants to RHS ourselves, since that is helpful sometimes.
getSortedOperandsOfBinOp(Instruction * I)115 std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
116 assert(I->getNumOperands() == 2 && "Only for binops!");
117 std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
118 if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
119 InstCombiner::getComplexity(I->getOperand(1)))
120 std::swap(Ops[0], Ops[1]);
121 return Ops;
122 }
123
124 // FIXME: can this be reworked into a worklist-based algorithm while preserving
125 // the depth-first, early bailout traversal?
visitImpl(Value * V,bool IsNSW,unsigned Depth)126 [[nodiscard]] Value *Negator::visitImpl(Value *V, bool IsNSW, unsigned Depth) {
127 // -(undef) -> undef.
128 if (match(V, m_Undef()))
129 return V;
130
131 // In i1, negation can simply be ignored.
132 if (V->getType()->isIntOrIntVectorTy(1))
133 return V;
134
135 Value *X;
136
137 // -(-(X)) -> X.
138 if (match(V, m_Neg(m_Value(X))))
139 return X;
140
141 // Integral constants can be freely negated.
142 if (match(V, m_AnyIntegralConstant()))
143 return ConstantExpr::getNeg(cast<Constant>(V),
144 /*HasNSW=*/false);
145
146 // If we have a non-instruction, then give up.
147 if (!isa<Instruction>(V))
148 return nullptr;
149
150 // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
151 // got instruction that does not require recursive reasoning, we can still
152 // negate it even if it has other uses, without increasing instruction count.
153 if (!V->hasOneUse() && !IsTrulyNegation)
154 return nullptr;
155
156 auto *I = cast<Instruction>(V);
157 unsigned BitWidth = I->getType()->getScalarSizeInBits();
158
159 // We must preserve the insertion point and debug info that is set in the
160 // builder at the time this function is called.
161 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
162 // And since we are trying to negate instruction I, that tells us about the
163 // insertion point and the debug info that we need to keep.
164 Builder.SetInsertPoint(I);
165
166 // In some cases we can give the answer without further recursion.
167 switch (I->getOpcode()) {
168 case Instruction::Add: {
169 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
170 // `inc` is always negatible.
171 if (match(Ops[1], m_One()))
172 return Builder.CreateNot(Ops[0], I->getName() + ".neg");
173 break;
174 }
175 case Instruction::Xor:
176 // `not` is always negatible.
177 if (match(I, m_Not(m_Value(X))))
178 return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
179 I->getName() + ".neg");
180 break;
181 case Instruction::AShr:
182 case Instruction::LShr: {
183 // Right-shift sign bit smear is negatible.
184 const APInt *Op1Val;
185 if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
186 Value *BO = I->getOpcode() == Instruction::AShr
187 ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
188 : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
189 if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
190 NewInstr->copyIRFlags(I);
191 NewInstr->setName(I->getName() + ".neg");
192 }
193 return BO;
194 }
195 // While we could negate exact arithmetic shift:
196 // ashr exact %x, C --> sdiv exact i8 %x, -1<<C
197 // iff C != 0 and C u< bitwidth(%x), we don't want to,
198 // because division is *THAT* much worse than a shift.
199 break;
200 }
201 case Instruction::SExt:
202 case Instruction::ZExt:
203 // `*ext` of i1 is always negatible
204 if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
205 return I->getOpcode() == Instruction::SExt
206 ? Builder.CreateZExt(I->getOperand(0), I->getType(),
207 I->getName() + ".neg")
208 : Builder.CreateSExt(I->getOperand(0), I->getType(),
209 I->getName() + ".neg");
210 break;
211 case Instruction::Select: {
212 // If both arms of the select are constants, we don't need to recurse.
213 // Therefore, this transform is not limited by uses.
214 auto *Sel = cast<SelectInst>(I);
215 Constant *TrueC, *FalseC;
216 if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) &&
217 match(Sel->getFalseValue(), m_ImmConstant(FalseC))) {
218 Constant *NegTrueC = ConstantExpr::getNeg(TrueC);
219 Constant *NegFalseC = ConstantExpr::getNeg(FalseC);
220 return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC,
221 I->getName() + ".neg", /*MDFrom=*/I);
222 }
223 break;
224 }
225 case Instruction::Call:
226 if (auto *CI = dyn_cast<CmpIntrinsic>(I); CI && CI->hasOneUse())
227 return Builder.CreateIntrinsic(CI->getType(), CI->getIntrinsicID(),
228 {CI->getRHS(), CI->getLHS()});
229 break;
230 default:
231 break; // Other instructions require recursive reasoning.
232 }
233
234 if (I->getOpcode() == Instruction::Sub &&
235 (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) {
236 // `sub` is always negatible.
237 // However, only do this either if the old `sub` doesn't stick around, or
238 // it was subtracting from a constant. Otherwise, this isn't profitable.
239 return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
240 I->getName() + ".neg", /* HasNUW */ false,
241 IsNSW && I->hasNoSignedWrap());
242 }
243
244 // Some other cases, while still don't require recursion,
245 // are restricted to the one-use case.
246 if (!V->hasOneUse())
247 return nullptr;
248
249 switch (I->getOpcode()) {
250 case Instruction::ZExt: {
251 // Negation of zext of signbit is signbit splat:
252 // 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN
253 Value *SrcOp = I->getOperand(0);
254 unsigned SrcWidth = SrcOp->getType()->getScalarSizeInBits();
255 const APInt &FullShift = APInt(SrcWidth, SrcWidth - 1);
256 if (IsTrulyNegation &&
257 match(SrcOp, m_LShr(m_Value(X), m_SpecificIntAllowPoison(FullShift)))) {
258 Value *Ashr = Builder.CreateAShr(X, FullShift);
259 return Builder.CreateSExt(Ashr, I->getType());
260 }
261 break;
262 }
263 case Instruction::And: {
264 Constant *ShAmt;
265 // sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y)
266 if (match(I, m_And(m_OneUse(m_TruncOrSelf(
267 m_LShr(m_Value(X), m_ImmConstant(ShAmt)))),
268 m_One()))) {
269 unsigned BW = X->getType()->getScalarSizeInBits();
270 Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1);
271 Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt));
272 R = Builder.CreateAShr(R, BWMinusOne);
273 return Builder.CreateTruncOrBitCast(R, I->getType());
274 }
275 break;
276 }
277 case Instruction::SDiv:
278 // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
279 // While this is normally not behind a use-check,
280 // let's consider division to be special since it's costly.
281 if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
282 if (!Op1C->containsUndefOrPoisonElement() &&
283 Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) {
284 Value *BO =
285 Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
286 I->getName() + ".neg");
287 if (auto *NewInstr = dyn_cast<Instruction>(BO))
288 NewInstr->setIsExact(I->isExact());
289 return BO;
290 }
291 }
292 break;
293 }
294
295 // Rest of the logic is recursive, so if it's time to give up then it's time.
296 if (Depth > NegatorMaxDepth) {
297 LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
298 << *V << ". Giving up.\n");
299 ++NegatorTimesDepthLimitReached;
300 return nullptr;
301 }
302
303 switch (I->getOpcode()) {
304 case Instruction::Freeze: {
305 // `freeze` is negatible if its operand is negatible.
306 Value *NegOp = negate(I->getOperand(0), IsNSW, Depth + 1);
307 if (!NegOp) // Early return.
308 return nullptr;
309 return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
310 }
311 case Instruction::PHI: {
312 // `phi` is negatible if all the incoming values are negatible.
313 auto *PHI = cast<PHINode>(I);
314 SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
315 for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
316 if (!(std::get<1>(I) =
317 negate(std::get<0>(I), IsNSW, Depth + 1))) // Early return.
318 return nullptr;
319 }
320 // All incoming values are indeed negatible. Create negated PHI node.
321 PHINode *NegatedPHI = Builder.CreatePHI(
322 PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
323 for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
324 NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
325 return NegatedPHI;
326 }
327 case Instruction::Select: {
328 if (isKnownNegation(I->getOperand(1), I->getOperand(2), /*NeedNSW=*/false,
329 /*AllowPoison=*/false)) {
330 // Of one hand of select is known to be negation of another hand,
331 // just swap the hands around.
332 auto *NewSelect = cast<SelectInst>(I->clone());
333 // Just swap the operands of the select.
334 NewSelect->swapValues();
335 // Don't swap prof metadata, we didn't change the branch behavior.
336 NewSelect->setName(I->getName() + ".neg");
337 // Poison-generating flags should be dropped
338 Value *TV = NewSelect->getTrueValue();
339 Value *FV = NewSelect->getFalseValue();
340 if (match(TV, m_Neg(m_Specific(FV))))
341 cast<Instruction>(TV)->dropPoisonGeneratingFlags();
342 else if (match(FV, m_Neg(m_Specific(TV))))
343 cast<Instruction>(FV)->dropPoisonGeneratingFlags();
344 else {
345 cast<Instruction>(TV)->dropPoisonGeneratingFlags();
346 cast<Instruction>(FV)->dropPoisonGeneratingFlags();
347 }
348 Builder.Insert(NewSelect);
349 return NewSelect;
350 }
351 // `select` is negatible if both hands of `select` are negatible.
352 Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1);
353 if (!NegOp1) // Early return.
354 return nullptr;
355 Value *NegOp2 = negate(I->getOperand(2), IsNSW, Depth + 1);
356 if (!NegOp2)
357 return nullptr;
358 // Do preserve the metadata!
359 return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
360 I->getName() + ".neg", /*MDFrom=*/I);
361 }
362 case Instruction::ShuffleVector: {
363 // `shufflevector` is negatible if both operands are negatible.
364 auto *Shuf = cast<ShuffleVectorInst>(I);
365 Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1);
366 if (!NegOp0) // Early return.
367 return nullptr;
368 Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1);
369 if (!NegOp1)
370 return nullptr;
371 return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
372 I->getName() + ".neg");
373 }
374 case Instruction::ExtractElement: {
375 // `extractelement` is negatible if source operand is negatible.
376 auto *EEI = cast<ExtractElementInst>(I);
377 Value *NegVector = negate(EEI->getVectorOperand(), IsNSW, Depth + 1);
378 if (!NegVector) // Early return.
379 return nullptr;
380 return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
381 I->getName() + ".neg");
382 }
383 case Instruction::InsertElement: {
384 // `insertelement` is negatible if both the source vector and
385 // element-to-be-inserted are negatible.
386 auto *IEI = cast<InsertElementInst>(I);
387 Value *NegVector = negate(IEI->getOperand(0), IsNSW, Depth + 1);
388 if (!NegVector) // Early return.
389 return nullptr;
390 Value *NegNewElt = negate(IEI->getOperand(1), IsNSW, Depth + 1);
391 if (!NegNewElt) // Early return.
392 return nullptr;
393 return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
394 I->getName() + ".neg");
395 }
396 case Instruction::Trunc: {
397 // `trunc` is negatible if its operand is negatible.
398 Value *NegOp = negate(I->getOperand(0), /* IsNSW */ false, Depth + 1);
399 if (!NegOp) // Early return.
400 return nullptr;
401 return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
402 }
403 case Instruction::Shl: {
404 // `shl` is negatible if the first operand is negatible.
405 IsNSW &= I->hasNoSignedWrap();
406 if (Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1))
407 return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg",
408 /* HasNUW */ false, IsNSW);
409 // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
410 Constant *Op1C;
411 if (!match(I->getOperand(1), m_ImmConstant(Op1C)) || !IsTrulyNegation)
412 return nullptr;
413 return Builder.CreateMul(
414 I->getOperand(0),
415 Builder.CreateShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
416 I->getName() + ".neg", /* HasNUW */ false, IsNSW);
417 }
418 case Instruction::Or: {
419 if (!cast<PossiblyDisjointInst>(I)->isDisjoint())
420 return nullptr; // Don't know how to handle `or` in general.
421 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
422 // `or`/`add` are interchangeable when operands have no common bits set.
423 // `inc` is always negatible.
424 if (match(Ops[1], m_One()))
425 return Builder.CreateNot(Ops[0], I->getName() + ".neg");
426 // Else, just defer to Instruction::Add handling.
427 [[fallthrough]];
428 }
429 case Instruction::Add: {
430 // `add` is negatible if both of its operands are negatible.
431 SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
432 for (Value *Op : I->operands()) {
433 // Can we sink the negation into this operand?
434 if (Value *NegOp = negate(Op, /* IsNSW */ false, Depth + 1)) {
435 NegatedOps.emplace_back(NegOp); // Successfully negated operand!
436 continue;
437 }
438 // Failed to sink negation into this operand. IFF we started from negation
439 // and we manage to sink negation into one operand, we can still do this.
440 if (!IsTrulyNegation)
441 return nullptr;
442 NonNegatedOps.emplace_back(Op); // Just record which operand that was.
443 }
444 assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
445 "Internal consistency check failed.");
446 // Did we manage to sink negation into both of the operands?
447 if (NegatedOps.size() == 2) // Then we get to keep the `add`!
448 return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
449 I->getName() + ".neg");
450 assert(IsTrulyNegation && "We should have early-exited then.");
451 // Completely failed to sink negation?
452 if (NonNegatedOps.size() == 2)
453 return nullptr;
454 // 0-(a+b) --> (-a)-b
455 return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
456 I->getName() + ".neg");
457 }
458 case Instruction::Xor: {
459 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
460 // `xor` is negatible if one of its operands is invertible.
461 // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
462 if (auto *C = dyn_cast<Constant>(Ops[1])) {
463 if (IsTrulyNegation) {
464 Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
465 return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
466 I->getName() + ".neg");
467 }
468 }
469 return nullptr;
470 }
471 case Instruction::Mul: {
472 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
473 // `mul` is negatible if one of its operands is negatible.
474 Value *NegatedOp, *OtherOp;
475 // First try the second operand, in case it's a constant it will be best to
476 // just invert it instead of sinking the `neg` deeper.
477 if (Value *NegOp1 = negate(Ops[1], /* IsNSW */ false, Depth + 1)) {
478 NegatedOp = NegOp1;
479 OtherOp = Ops[0];
480 } else if (Value *NegOp0 = negate(Ops[0], /* IsNSW */ false, Depth + 1)) {
481 NegatedOp = NegOp0;
482 OtherOp = Ops[1];
483 } else
484 // Can't negate either of them.
485 return nullptr;
486 return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg",
487 /* HasNUW */ false, IsNSW && I->hasNoSignedWrap());
488 }
489 default:
490 return nullptr; // Don't know, likely not negatible for free.
491 }
492
493 llvm_unreachable("Can't get here. We always return from switch.");
494 }
495
negate(Value * V,bool IsNSW,unsigned Depth)496 [[nodiscard]] Value *Negator::negate(Value *V, bool IsNSW, unsigned Depth) {
497 NegatorMaxDepthVisited.updateMax(Depth);
498 ++NegatorNumValuesVisited;
499
500 #if LLVM_ENABLE_STATS
501 ++NumValuesVisitedInThisNegator;
502 #endif
503
504 #ifndef NDEBUG
505 // We can't ever have a Value with such an address.
506 Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
507 #endif
508
509 // Did we already try to negate this value?
510 auto NegationsCacheIterator = NegationsCache.find(V);
511 if (NegationsCacheIterator != NegationsCache.end()) {
512 ++NegatorNumNegationsFoundInCache;
513 Value *NegatedV = NegationsCacheIterator->second;
514 assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
515 return NegatedV;
516 }
517
518 #ifndef NDEBUG
519 // We did not find a cached result for negation of V. While there,
520 // let's temporairly cache a placeholder value, with the idea that if later
521 // during negation we fetch it from cache, we'll know we're in a cycle.
522 NegationsCache[V] = Placeholder;
523 #endif
524
525 // No luck. Try negating it for real.
526 Value *NegatedV = visitImpl(V, IsNSW, Depth);
527 // And cache the (real) result for the future.
528 NegationsCache[V] = NegatedV;
529
530 return NegatedV;
531 }
532
run(Value * Root,bool IsNSW)533 [[nodiscard]] std::optional<Negator::Result> Negator::run(Value *Root,
534 bool IsNSW) {
535 Value *Negated = negate(Root, IsNSW, /*Depth=*/0);
536 if (!Negated) {
537 // We must cleanup newly-inserted instructions, to avoid any potential
538 // endless combine looping.
539 for (Instruction *I : llvm::reverse(NewInstructions))
540 I->eraseFromParent();
541 return std::nullopt;
542 }
543 return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
544 }
545
Negate(bool LHSIsZero,bool IsNSW,Value * Root,InstCombinerImpl & IC)546 [[nodiscard]] Value *Negator::Negate(bool LHSIsZero, bool IsNSW, Value *Root,
547 InstCombinerImpl &IC) {
548 ++NegatorTotalNegationsAttempted;
549 LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
550 << "\n");
551
552 if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
553 return nullptr;
554
555 Negator N(Root->getContext(), IC.getDataLayout(), LHSIsZero);
556 std::optional<Result> Res = N.run(Root, IsNSW);
557 if (!Res) { // Negation failed.
558 LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
559 << "\n");
560 return nullptr;
561 }
562
563 LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
564 << "\n NEW: " << *Res->second << "\n");
565 ++NegatorNumTreesNegated;
566
567 // We must temporarily unset the 'current' insertion point and DebugLoc of the
568 // InstCombine's IRBuilder so that it won't interfere with the ones we have
569 // already specified when producing negated instructions.
570 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
571 IC.Builder.ClearInsertionPoint();
572 IC.Builder.SetCurrentDebugLocation(DebugLoc());
573
574 // And finally, we must add newly-created instructions into the InstCombine's
575 // worklist (in a proper order!) so it can attempt to combine them.
576 LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
577 << " instrs to InstCombine\n");
578 NegatorMaxInstructionsCreated.updateMax(Res->first.size());
579 NegatorNumInstructionsNegatedSuccess += Res->first.size();
580
581 // They are in def-use order, so nothing fancy, just insert them in order.
582 for (Instruction *I : Res->first)
583 IC.Builder.Insert(I, I->getName());
584
585 // And return the new root.
586 return Res->second;
587 }
588