xref: /titanic_44/usr/src/common/nvpair/nvpair.c (revision e2dcee5754c56d91c6e1ff847db294541069ca0d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/stropts.h>
27 #include <sys/debug.h>
28 #include <sys/isa_defs.h>
29 #include <sys/int_limits.h>
30 #include <sys/nvpair.h>
31 #include <sys/nvpair_impl.h>
32 #include <rpc/types.h>
33 #include <rpc/xdr.h>
34 
35 #if defined(_KERNEL) && !defined(_BOOT)
36 #include <sys/varargs.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/sysmacros.h>
40 #else
41 #include <stdarg.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <strings.h>
45 #include <stddef.h>
46 #endif
47 
48 #define	skip_whitespace(p)	while ((*(p) == ' ') || (*(p) == '\t')) p++
49 
50 /*
51  * nvpair.c - Provides kernel & userland interfaces for manipulating
52  *	name-value pairs.
53  *
54  * Overview Diagram
55  *
56  *  +--------------+
57  *  |  nvlist_t    |
58  *  |--------------|
59  *  | nvl_version  |
60  *  | nvl_nvflag   |
61  *  | nvl_priv    -+-+
62  *  | nvl_flag     | |
63  *  | nvl_pad      | |
64  *  +--------------+ |
65  *                   V
66  *      +--------------+      last i_nvp in list
67  *      | nvpriv_t     |  +--------------------->
68  *      |--------------|  |
69  *   +--+- nvp_list    |  |   +------------+
70  *   |  |  nvp_last   -+--+   + nv_alloc_t |
71  *   |  |  nvp_curr    |      |------------|
72  *   |  |  nvp_nva    -+----> | nva_ops    |
73  *   |  |  nvp_stat    |      | nva_arg    |
74  *   |  +--------------+      +------------+
75  *   |
76  *   +-------+
77  *           V
78  *   +---------------------+      +-------------------+
79  *   |  i_nvp_t            |  +-->|  i_nvp_t          |  +-->
80  *   |---------------------|  |   |-------------------|  |
81  *   | nvi_next           -+--+   | nvi_next         -+--+
82  *   | nvi_prev (NULL)     | <----+ nvi_prev          |
83  *   | . . . . . . . . . . |      | . . . . . . . . . |
84  *   | nvp (nvpair_t)      |      | nvp (nvpair_t)    |
85  *   |  - nvp_size         |      |  - nvp_size       |
86  *   |  - nvp_name_sz      |      |  - nvp_name_sz    |
87  *   |  - nvp_value_elem   |      |  - nvp_value_elem |
88  *   |  - nvp_type         |      |  - nvp_type       |
89  *   |  - data ...         |      |  - data ...       |
90  *   +---------------------+      +-------------------+
91  *
92  *
93  *
94  *   +---------------------+              +---------------------+
95  *   |  i_nvp_t            |  +-->    +-->|  i_nvp_t (last)     |
96  *   |---------------------|  |       |   |---------------------|
97  *   |  nvi_next          -+--+ ... --+   | nvi_next (NULL)     |
98  * <-+- nvi_prev           |<-- ...  <----+ nvi_prev            |
99  *   | . . . . . . . . .   |              | . . . . . . . . .   |
100  *   | nvp (nvpair_t)      |              | nvp (nvpair_t)      |
101  *   |  - nvp_size         |              |  - nvp_size         |
102  *   |  - nvp_name_sz      |              |  - nvp_name_sz      |
103  *   |  - nvp_value_elem   |              |  - nvp_value_elem   |
104  *   |  - DATA_TYPE_NVLIST |              |  - nvp_type         |
105  *   |  - data (embedded)  |              |  - data ...         |
106  *   |    nvlist name      |              +---------------------+
107  *   |  +--------------+   |
108  *   |  |  nvlist_t    |   |
109  *   |  |--------------|   |
110  *   |  | nvl_version  |   |
111  *   |  | nvl_nvflag   |   |
112  *   |  | nvl_priv   --+---+---->
113  *   |  | nvl_flag     |   |
114  *   |  | nvl_pad      |   |
115  *   |  +--------------+   |
116  *   +---------------------+
117  *
118  *
119  * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
120  * allow value to be aligned on 8 byte boundary
121  *
122  * name_len is the length of the name string including the null terminator
123  * so it must be >= 1
124  */
125 #define	NVP_SIZE_CALC(name_len, data_len) \
126 	(NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
127 
128 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
129 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
130     uint_t nelem, const void *data);
131 
132 #define	NV_STAT_EMBEDDED	0x1
133 #define	EMBEDDED_NVL(nvp)	((nvlist_t *)(void *)NVP_VALUE(nvp))
134 #define	EMBEDDED_NVL_ARRAY(nvp)	((nvlist_t **)(void *)NVP_VALUE(nvp))
135 
136 #define	NVP_VALOFF(nvp)	(NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
137 #define	NVPAIR2I_NVP(nvp) \
138 	((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
139 
140 
141 int
nv_alloc_init(nv_alloc_t * nva,const nv_alloc_ops_t * nvo,...)142 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
143 {
144 	va_list valist;
145 	int err = 0;
146 
147 	nva->nva_ops = nvo;
148 	nva->nva_arg = NULL;
149 
150 	va_start(valist, nvo);
151 	if (nva->nva_ops->nv_ao_init != NULL)
152 		err = nva->nva_ops->nv_ao_init(nva, valist);
153 	va_end(valist);
154 
155 	return (err);
156 }
157 
158 void
nv_alloc_reset(nv_alloc_t * nva)159 nv_alloc_reset(nv_alloc_t *nva)
160 {
161 	if (nva->nva_ops->nv_ao_reset != NULL)
162 		nva->nva_ops->nv_ao_reset(nva);
163 }
164 
165 void
nv_alloc_fini(nv_alloc_t * nva)166 nv_alloc_fini(nv_alloc_t *nva)
167 {
168 	if (nva->nva_ops->nv_ao_fini != NULL)
169 		nva->nva_ops->nv_ao_fini(nva);
170 }
171 
172 nv_alloc_t *
nvlist_lookup_nv_alloc(nvlist_t * nvl)173 nvlist_lookup_nv_alloc(nvlist_t *nvl)
174 {
175 	nvpriv_t *priv;
176 
177 	if (nvl == NULL ||
178 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
179 		return (NULL);
180 
181 	return (priv->nvp_nva);
182 }
183 
184 static void *
nv_mem_zalloc(nvpriv_t * nvp,size_t size)185 nv_mem_zalloc(nvpriv_t *nvp, size_t size)
186 {
187 	nv_alloc_t *nva = nvp->nvp_nva;
188 	void *buf;
189 
190 	if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
191 		bzero(buf, size);
192 
193 	return (buf);
194 }
195 
196 static void
nv_mem_free(nvpriv_t * nvp,void * buf,size_t size)197 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
198 {
199 	nv_alloc_t *nva = nvp->nvp_nva;
200 
201 	nva->nva_ops->nv_ao_free(nva, buf, size);
202 }
203 
204 static void
nv_priv_init(nvpriv_t * priv,nv_alloc_t * nva,uint32_t stat)205 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
206 {
207 	bzero(priv, sizeof (nvpriv_t));
208 
209 	priv->nvp_nva = nva;
210 	priv->nvp_stat = stat;
211 }
212 
213 static nvpriv_t *
nv_priv_alloc(nv_alloc_t * nva)214 nv_priv_alloc(nv_alloc_t *nva)
215 {
216 	nvpriv_t *priv;
217 
218 	/*
219 	 * nv_mem_alloc() cannot called here because it needs the priv
220 	 * argument.
221 	 */
222 	if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
223 		return (NULL);
224 
225 	nv_priv_init(priv, nva, 0);
226 
227 	return (priv);
228 }
229 
230 /*
231  * Embedded lists need their own nvpriv_t's.  We create a new
232  * nvpriv_t using the parameters and allocator from the parent
233  * list's nvpriv_t.
234  */
235 static nvpriv_t *
nv_priv_alloc_embedded(nvpriv_t * priv)236 nv_priv_alloc_embedded(nvpriv_t *priv)
237 {
238 	nvpriv_t *emb_priv;
239 
240 	if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
241 		return (NULL);
242 
243 	nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
244 
245 	return (emb_priv);
246 }
247 
248 static void
nvlist_init(nvlist_t * nvl,uint32_t nvflag,nvpriv_t * priv)249 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
250 {
251 	nvl->nvl_version = NV_VERSION;
252 	nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
253 	nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
254 	nvl->nvl_flag = 0;
255 	nvl->nvl_pad = 0;
256 }
257 
258 uint_t
nvlist_nvflag(nvlist_t * nvl)259 nvlist_nvflag(nvlist_t *nvl)
260 {
261 	return (nvl->nvl_nvflag);
262 }
263 
264 /*
265  * nvlist_alloc - Allocate nvlist.
266  */
267 /*ARGSUSED1*/
268 int
nvlist_alloc(nvlist_t ** nvlp,uint_t nvflag,int kmflag)269 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
270 {
271 #if defined(_KERNEL) && !defined(_BOOT)
272 	return (nvlist_xalloc(nvlp, nvflag,
273 	    (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
274 #else
275 	return (nvlist_xalloc(nvlp, nvflag, nv_alloc_nosleep));
276 #endif
277 }
278 
279 int
nvlist_xalloc(nvlist_t ** nvlp,uint_t nvflag,nv_alloc_t * nva)280 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
281 {
282 	nvpriv_t *priv;
283 
284 	if (nvlp == NULL || nva == NULL)
285 		return (EINVAL);
286 
287 	if ((priv = nv_priv_alloc(nva)) == NULL)
288 		return (ENOMEM);
289 
290 	if ((*nvlp = nv_mem_zalloc(priv,
291 	    NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
292 		nv_mem_free(priv, priv, sizeof (nvpriv_t));
293 		return (ENOMEM);
294 	}
295 
296 	nvlist_init(*nvlp, nvflag, priv);
297 
298 	return (0);
299 }
300 
301 /*
302  * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
303  */
304 static nvpair_t *
nvp_buf_alloc(nvlist_t * nvl,size_t len)305 nvp_buf_alloc(nvlist_t *nvl, size_t len)
306 {
307 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
308 	i_nvp_t *buf;
309 	nvpair_t *nvp;
310 	size_t nvsize;
311 
312 	/*
313 	 * Allocate the buffer
314 	 */
315 	nvsize = len + offsetof(i_nvp_t, nvi_nvp);
316 
317 	if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
318 		return (NULL);
319 
320 	nvp = &buf->nvi_nvp;
321 	nvp->nvp_size = len;
322 
323 	return (nvp);
324 }
325 
326 /*
327  * nvp_buf_free - de-Allocate an i_nvp_t.
328  */
329 static void
nvp_buf_free(nvlist_t * nvl,nvpair_t * nvp)330 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
331 {
332 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
333 	size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
334 
335 	nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
336 }
337 
338 /*
339  * nvp_buf_link - link a new nv pair into the nvlist.
340  */
341 static void
nvp_buf_link(nvlist_t * nvl,nvpair_t * nvp)342 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
343 {
344 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
345 	i_nvp_t *curr = NVPAIR2I_NVP(nvp);
346 
347 	/* Put element at end of nvlist */
348 	if (priv->nvp_list == NULL) {
349 		priv->nvp_list = priv->nvp_last = curr;
350 	} else {
351 		curr->nvi_prev = priv->nvp_last;
352 		priv->nvp_last->nvi_next = curr;
353 		priv->nvp_last = curr;
354 	}
355 }
356 
357 /*
358  * nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
359  */
360 static void
nvp_buf_unlink(nvlist_t * nvl,nvpair_t * nvp)361 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
362 {
363 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
364 	i_nvp_t *curr = NVPAIR2I_NVP(nvp);
365 
366 	/*
367 	 * protect nvlist_next_nvpair() against walking on freed memory.
368 	 */
369 	if (priv->nvp_curr == curr)
370 		priv->nvp_curr = curr->nvi_next;
371 
372 	if (curr == priv->nvp_list)
373 		priv->nvp_list = curr->nvi_next;
374 	else
375 		curr->nvi_prev->nvi_next = curr->nvi_next;
376 
377 	if (curr == priv->nvp_last)
378 		priv->nvp_last = curr->nvi_prev;
379 	else
380 		curr->nvi_next->nvi_prev = curr->nvi_prev;
381 }
382 
383 /*
384  * take a nvpair type and number of elements and make sure the are valid
385  */
386 static int
i_validate_type_nelem(data_type_t type,uint_t nelem)387 i_validate_type_nelem(data_type_t type, uint_t nelem)
388 {
389 	switch (type) {
390 	case DATA_TYPE_BOOLEAN:
391 		if (nelem != 0)
392 			return (EINVAL);
393 		break;
394 	case DATA_TYPE_BOOLEAN_VALUE:
395 	case DATA_TYPE_BYTE:
396 	case DATA_TYPE_INT8:
397 	case DATA_TYPE_UINT8:
398 	case DATA_TYPE_INT16:
399 	case DATA_TYPE_UINT16:
400 	case DATA_TYPE_INT32:
401 	case DATA_TYPE_UINT32:
402 	case DATA_TYPE_INT64:
403 	case DATA_TYPE_UINT64:
404 	case DATA_TYPE_STRING:
405 	case DATA_TYPE_HRTIME:
406 	case DATA_TYPE_NVLIST:
407 #if !defined(_KERNEL)
408 	case DATA_TYPE_DOUBLE:
409 #endif
410 		if (nelem != 1)
411 			return (EINVAL);
412 		break;
413 	case DATA_TYPE_BOOLEAN_ARRAY:
414 	case DATA_TYPE_BYTE_ARRAY:
415 	case DATA_TYPE_INT8_ARRAY:
416 	case DATA_TYPE_UINT8_ARRAY:
417 	case DATA_TYPE_INT16_ARRAY:
418 	case DATA_TYPE_UINT16_ARRAY:
419 	case DATA_TYPE_INT32_ARRAY:
420 	case DATA_TYPE_UINT32_ARRAY:
421 	case DATA_TYPE_INT64_ARRAY:
422 	case DATA_TYPE_UINT64_ARRAY:
423 	case DATA_TYPE_STRING_ARRAY:
424 	case DATA_TYPE_NVLIST_ARRAY:
425 		/* we allow arrays with 0 elements */
426 		break;
427 	default:
428 		return (EINVAL);
429 	}
430 	return (0);
431 }
432 
433 /*
434  * Verify nvp_name_sz and check the name string length.
435  */
436 static int
i_validate_nvpair_name(nvpair_t * nvp)437 i_validate_nvpair_name(nvpair_t *nvp)
438 {
439 	if ((nvp->nvp_name_sz <= 0) ||
440 	    (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
441 		return (EFAULT);
442 
443 	/* verify the name string, make sure its terminated */
444 	if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
445 		return (EFAULT);
446 
447 	return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
448 }
449 
450 static int
i_validate_nvpair_value(data_type_t type,uint_t nelem,const void * data)451 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
452 {
453 	switch (type) {
454 	case DATA_TYPE_BOOLEAN_VALUE:
455 		if (*(boolean_t *)data != B_TRUE &&
456 		    *(boolean_t *)data != B_FALSE)
457 			return (EINVAL);
458 		break;
459 	case DATA_TYPE_BOOLEAN_ARRAY: {
460 		int i;
461 
462 		for (i = 0; i < nelem; i++)
463 			if (((boolean_t *)data)[i] != B_TRUE &&
464 			    ((boolean_t *)data)[i] != B_FALSE)
465 				return (EINVAL);
466 		break;
467 	}
468 	default:
469 		break;
470 	}
471 
472 	return (0);
473 }
474 
475 /*
476  * This function takes a pointer to what should be a nvpair and it's size
477  * and then verifies that all the nvpair fields make sense and can be
478  * trusted.  This function is used when decoding packed nvpairs.
479  */
480 static int
i_validate_nvpair(nvpair_t * nvp)481 i_validate_nvpair(nvpair_t *nvp)
482 {
483 	data_type_t type = NVP_TYPE(nvp);
484 	int size1, size2;
485 
486 	/* verify nvp_name_sz, check the name string length */
487 	if (i_validate_nvpair_name(nvp) != 0)
488 		return (EFAULT);
489 
490 	if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
491 		return (EFAULT);
492 
493 	/*
494 	 * verify nvp_type, nvp_value_elem, and also possibly
495 	 * verify string values and get the value size.
496 	 */
497 	size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
498 	size1 = nvp->nvp_size - NVP_VALOFF(nvp);
499 	if (size2 < 0 || size1 != NV_ALIGN(size2))
500 		return (EFAULT);
501 
502 	return (0);
503 }
504 
505 static int
nvlist_copy_pairs(nvlist_t * snvl,nvlist_t * dnvl)506 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl)
507 {
508 	nvpriv_t *priv;
509 	i_nvp_t *curr;
510 
511 	if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
512 		return (EINVAL);
513 
514 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
515 		nvpair_t *nvp = &curr->nvi_nvp;
516 		int err;
517 
518 		if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
519 		    NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
520 			return (err);
521 	}
522 
523 	return (0);
524 }
525 
526 /*
527  * Frees all memory allocated for an nvpair (like embedded lists) with
528  * the exception of the nvpair buffer itself.
529  */
530 static void
nvpair_free(nvpair_t * nvp)531 nvpair_free(nvpair_t *nvp)
532 {
533 	switch (NVP_TYPE(nvp)) {
534 	case DATA_TYPE_NVLIST:
535 		nvlist_free(EMBEDDED_NVL(nvp));
536 		break;
537 	case DATA_TYPE_NVLIST_ARRAY: {
538 		nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
539 		int i;
540 
541 		for (i = 0; i < NVP_NELEM(nvp); i++)
542 			nvlist_free(nvlp[i]);
543 		break;
544 	}
545 	default:
546 		break;
547 	}
548 }
549 
550 /*
551  * nvlist_free - free an unpacked nvlist
552  */
553 void
nvlist_free(nvlist_t * nvl)554 nvlist_free(nvlist_t *nvl)
555 {
556 	nvpriv_t *priv;
557 	i_nvp_t *curr;
558 
559 	if (nvl == NULL ||
560 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
561 		return;
562 
563 	/*
564 	 * Unpacked nvlist are linked through i_nvp_t
565 	 */
566 	curr = priv->nvp_list;
567 	while (curr != NULL) {
568 		nvpair_t *nvp = &curr->nvi_nvp;
569 		curr = curr->nvi_next;
570 
571 		nvpair_free(nvp);
572 		nvp_buf_free(nvl, nvp);
573 	}
574 
575 	if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
576 		nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
577 	else
578 		nvl->nvl_priv = 0;
579 
580 	nv_mem_free(priv, priv, sizeof (nvpriv_t));
581 }
582 
583 static int
nvlist_contains_nvp(nvlist_t * nvl,nvpair_t * nvp)584 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp)
585 {
586 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
587 	i_nvp_t *curr;
588 
589 	if (nvp == NULL)
590 		return (0);
591 
592 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
593 		if (&curr->nvi_nvp == nvp)
594 			return (1);
595 
596 	return (0);
597 }
598 
599 /*
600  * Make a copy of nvlist
601  */
602 /*ARGSUSED1*/
603 int
nvlist_dup(nvlist_t * nvl,nvlist_t ** nvlp,int kmflag)604 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
605 {
606 #if defined(_KERNEL) && !defined(_BOOT)
607 	return (nvlist_xdup(nvl, nvlp,
608 	    (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
609 #else
610 	return (nvlist_xdup(nvl, nvlp, nv_alloc_nosleep));
611 #endif
612 }
613 
614 int
nvlist_xdup(nvlist_t * nvl,nvlist_t ** nvlp,nv_alloc_t * nva)615 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
616 {
617 	int err;
618 	nvlist_t *ret;
619 
620 	if (nvl == NULL || nvlp == NULL)
621 		return (EINVAL);
622 
623 	if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
624 		return (err);
625 
626 	if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
627 		nvlist_free(ret);
628 	else
629 		*nvlp = ret;
630 
631 	return (err);
632 }
633 
634 /*
635  * Remove all with matching name
636  */
637 int
nvlist_remove_all(nvlist_t * nvl,const char * name)638 nvlist_remove_all(nvlist_t *nvl, const char *name)
639 {
640 	nvpriv_t *priv;
641 	i_nvp_t *curr;
642 	int error = ENOENT;
643 
644 	if (nvl == NULL || name == NULL ||
645 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
646 		return (EINVAL);
647 
648 	curr = priv->nvp_list;
649 	while (curr != NULL) {
650 		nvpair_t *nvp = &curr->nvi_nvp;
651 
652 		curr = curr->nvi_next;
653 		if (strcmp(name, NVP_NAME(nvp)) != 0)
654 			continue;
655 
656 		nvp_buf_unlink(nvl, nvp);
657 		nvpair_free(nvp);
658 		nvp_buf_free(nvl, nvp);
659 
660 		error = 0;
661 	}
662 
663 	return (error);
664 }
665 
666 /*
667  * Remove first one with matching name and type
668  */
669 int
nvlist_remove(nvlist_t * nvl,const char * name,data_type_t type)670 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
671 {
672 	nvpriv_t *priv;
673 	i_nvp_t *curr;
674 
675 	if (nvl == NULL || name == NULL ||
676 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
677 		return (EINVAL);
678 
679 	curr = priv->nvp_list;
680 	while (curr != NULL) {
681 		nvpair_t *nvp = &curr->nvi_nvp;
682 
683 		if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) {
684 			nvp_buf_unlink(nvl, nvp);
685 			nvpair_free(nvp);
686 			nvp_buf_free(nvl, nvp);
687 
688 			return (0);
689 		}
690 		curr = curr->nvi_next;
691 	}
692 
693 	return (ENOENT);
694 }
695 
696 int
nvlist_remove_nvpair(nvlist_t * nvl,nvpair_t * nvp)697 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
698 {
699 	if (nvl == NULL || nvp == NULL)
700 		return (EINVAL);
701 
702 	nvp_buf_unlink(nvl, nvp);
703 	nvpair_free(nvp);
704 	nvp_buf_free(nvl, nvp);
705 	return (0);
706 }
707 
708 /*
709  * This function calculates the size of an nvpair value.
710  *
711  * The data argument controls the behavior in case of the data types
712  * 	DATA_TYPE_STRING    	and
713  *	DATA_TYPE_STRING_ARRAY
714  * Is data == NULL then the size of the string(s) is excluded.
715  */
716 static int
i_get_value_size(data_type_t type,const void * data,uint_t nelem)717 i_get_value_size(data_type_t type, const void *data, uint_t nelem)
718 {
719 	uint64_t value_sz;
720 
721 	if (i_validate_type_nelem(type, nelem) != 0)
722 		return (-1);
723 
724 	/* Calculate required size for holding value */
725 	switch (type) {
726 	case DATA_TYPE_BOOLEAN:
727 		value_sz = 0;
728 		break;
729 	case DATA_TYPE_BOOLEAN_VALUE:
730 		value_sz = sizeof (boolean_t);
731 		break;
732 	case DATA_TYPE_BYTE:
733 		value_sz = sizeof (uchar_t);
734 		break;
735 	case DATA_TYPE_INT8:
736 		value_sz = sizeof (int8_t);
737 		break;
738 	case DATA_TYPE_UINT8:
739 		value_sz = sizeof (uint8_t);
740 		break;
741 	case DATA_TYPE_INT16:
742 		value_sz = sizeof (int16_t);
743 		break;
744 	case DATA_TYPE_UINT16:
745 		value_sz = sizeof (uint16_t);
746 		break;
747 	case DATA_TYPE_INT32:
748 		value_sz = sizeof (int32_t);
749 		break;
750 	case DATA_TYPE_UINT32:
751 		value_sz = sizeof (uint32_t);
752 		break;
753 	case DATA_TYPE_INT64:
754 		value_sz = sizeof (int64_t);
755 		break;
756 	case DATA_TYPE_UINT64:
757 		value_sz = sizeof (uint64_t);
758 		break;
759 #if !defined(_KERNEL)
760 	case DATA_TYPE_DOUBLE:
761 		value_sz = sizeof (double);
762 		break;
763 #endif
764 	case DATA_TYPE_STRING:
765 		if (data == NULL)
766 			value_sz = 0;
767 		else
768 			value_sz = strlen(data) + 1;
769 		break;
770 	case DATA_TYPE_BOOLEAN_ARRAY:
771 		value_sz = (uint64_t)nelem * sizeof (boolean_t);
772 		break;
773 	case DATA_TYPE_BYTE_ARRAY:
774 		value_sz = (uint64_t)nelem * sizeof (uchar_t);
775 		break;
776 	case DATA_TYPE_INT8_ARRAY:
777 		value_sz = (uint64_t)nelem * sizeof (int8_t);
778 		break;
779 	case DATA_TYPE_UINT8_ARRAY:
780 		value_sz = (uint64_t)nelem * sizeof (uint8_t);
781 		break;
782 	case DATA_TYPE_INT16_ARRAY:
783 		value_sz = (uint64_t)nelem * sizeof (int16_t);
784 		break;
785 	case DATA_TYPE_UINT16_ARRAY:
786 		value_sz = (uint64_t)nelem * sizeof (uint16_t);
787 		break;
788 	case DATA_TYPE_INT32_ARRAY:
789 		value_sz = (uint64_t)nelem * sizeof (int32_t);
790 		break;
791 	case DATA_TYPE_UINT32_ARRAY:
792 		value_sz = (uint64_t)nelem * sizeof (uint32_t);
793 		break;
794 	case DATA_TYPE_INT64_ARRAY:
795 		value_sz = (uint64_t)nelem * sizeof (int64_t);
796 		break;
797 	case DATA_TYPE_UINT64_ARRAY:
798 		value_sz = (uint64_t)nelem * sizeof (uint64_t);
799 		break;
800 	case DATA_TYPE_STRING_ARRAY:
801 		value_sz = (uint64_t)nelem * sizeof (uint64_t);
802 
803 		if (data != NULL) {
804 			char *const *strs = data;
805 			uint_t i;
806 
807 			/* no alignment requirement for strings */
808 			for (i = 0; i < nelem; i++) {
809 				if (strs[i] == NULL)
810 					return (-1);
811 				value_sz += strlen(strs[i]) + 1;
812 			}
813 		}
814 		break;
815 	case DATA_TYPE_HRTIME:
816 		value_sz = sizeof (hrtime_t);
817 		break;
818 	case DATA_TYPE_NVLIST:
819 		value_sz = NV_ALIGN(sizeof (nvlist_t));
820 		break;
821 	case DATA_TYPE_NVLIST_ARRAY:
822 		value_sz = (uint64_t)nelem * sizeof (uint64_t) +
823 		    (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
824 		break;
825 	default:
826 		return (-1);
827 	}
828 
829 	return (value_sz > INT32_MAX ? -1 : (int)value_sz);
830 }
831 
832 static int
nvlist_copy_embedded(nvlist_t * nvl,nvlist_t * onvl,nvlist_t * emb_nvl)833 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
834 {
835 	nvpriv_t *priv;
836 	int err;
837 
838 	if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
839 	    nvl->nvl_priv)) == NULL)
840 		return (ENOMEM);
841 
842 	nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
843 
844 	if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
845 		nvlist_free(emb_nvl);
846 		emb_nvl->nvl_priv = 0;
847 	}
848 
849 	return (err);
850 }
851 
852 /*
853  * nvlist_add_common - Add new <name,value> pair to nvlist
854  */
855 static int
nvlist_add_common(nvlist_t * nvl,const char * name,data_type_t type,uint_t nelem,const void * data)856 nvlist_add_common(nvlist_t *nvl, const char *name,
857     data_type_t type, uint_t nelem, const void *data)
858 {
859 	nvpair_t *nvp;
860 	uint_t i;
861 
862 	int nvp_sz, name_sz, value_sz;
863 	int err = 0;
864 
865 	if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
866 		return (EINVAL);
867 
868 	if (nelem != 0 && data == NULL)
869 		return (EINVAL);
870 
871 	/*
872 	 * Verify type and nelem and get the value size.
873 	 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
874 	 * is the size of the string(s) included.
875 	 */
876 	if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
877 		return (EINVAL);
878 
879 	if (i_validate_nvpair_value(type, nelem, data) != 0)
880 		return (EINVAL);
881 
882 	/*
883 	 * If we're adding an nvlist or nvlist array, ensure that we are not
884 	 * adding the input nvlist to itself, which would cause recursion,
885 	 * and ensure that no NULL nvlist pointers are present.
886 	 */
887 	switch (type) {
888 	case DATA_TYPE_NVLIST:
889 		if (data == nvl || data == NULL)
890 			return (EINVAL);
891 		break;
892 	case DATA_TYPE_NVLIST_ARRAY: {
893 		nvlist_t **onvlp = (nvlist_t **)data;
894 		for (i = 0; i < nelem; i++) {
895 			if (onvlp[i] == nvl || onvlp[i] == NULL)
896 				return (EINVAL);
897 		}
898 		break;
899 	}
900 	default:
901 		break;
902 	}
903 
904 	/* calculate sizes of the nvpair elements and the nvpair itself */
905 	name_sz = strlen(name) + 1;
906 
907 	nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
908 
909 	if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
910 		return (ENOMEM);
911 
912 	ASSERT(nvp->nvp_size == nvp_sz);
913 	nvp->nvp_name_sz = name_sz;
914 	nvp->nvp_value_elem = nelem;
915 	nvp->nvp_type = type;
916 	bcopy(name, NVP_NAME(nvp), name_sz);
917 
918 	switch (type) {
919 	case DATA_TYPE_BOOLEAN:
920 		break;
921 	case DATA_TYPE_STRING_ARRAY: {
922 		char *const *strs = data;
923 		char *buf = NVP_VALUE(nvp);
924 		char **cstrs = (void *)buf;
925 
926 		/* skip pre-allocated space for pointer array */
927 		buf += nelem * sizeof (uint64_t);
928 		for (i = 0; i < nelem; i++) {
929 			int slen = strlen(strs[i]) + 1;
930 			bcopy(strs[i], buf, slen);
931 			cstrs[i] = buf;
932 			buf += slen;
933 		}
934 		break;
935 	}
936 	case DATA_TYPE_NVLIST: {
937 		nvlist_t *nnvl = EMBEDDED_NVL(nvp);
938 		nvlist_t *onvl = (nvlist_t *)data;
939 
940 		if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
941 			nvp_buf_free(nvl, nvp);
942 			return (err);
943 		}
944 		break;
945 	}
946 	case DATA_TYPE_NVLIST_ARRAY: {
947 		nvlist_t **onvlp = (nvlist_t **)data;
948 		nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
949 		nvlist_t *embedded = (nvlist_t *)
950 		    ((uintptr_t)nvlp + nelem * sizeof (uint64_t));
951 
952 		for (i = 0; i < nelem; i++) {
953 			if ((err = nvlist_copy_embedded(nvl,
954 			    onvlp[i], embedded)) != 0) {
955 				/*
956 				 * Free any successfully created lists
957 				 */
958 				nvpair_free(nvp);
959 				nvp_buf_free(nvl, nvp);
960 				return (err);
961 			}
962 
963 			nvlp[i] = embedded++;
964 		}
965 		break;
966 	}
967 	default:
968 		bcopy(data, NVP_VALUE(nvp), value_sz);
969 	}
970 
971 	/* if unique name, remove before add */
972 	if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
973 		(void) nvlist_remove_all(nvl, name);
974 	else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
975 		(void) nvlist_remove(nvl, name, type);
976 
977 	nvp_buf_link(nvl, nvp);
978 
979 	return (0);
980 }
981 
982 int
nvlist_add_boolean(nvlist_t * nvl,const char * name)983 nvlist_add_boolean(nvlist_t *nvl, const char *name)
984 {
985 	return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
986 }
987 
988 int
nvlist_add_boolean_value(nvlist_t * nvl,const char * name,boolean_t val)989 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
990 {
991 	return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
992 }
993 
994 int
nvlist_add_byte(nvlist_t * nvl,const char * name,uchar_t val)995 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
996 {
997 	return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
998 }
999 
1000 int
nvlist_add_int8(nvlist_t * nvl,const char * name,int8_t val)1001 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
1002 {
1003 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
1004 }
1005 
1006 int
nvlist_add_uint8(nvlist_t * nvl,const char * name,uint8_t val)1007 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
1008 {
1009 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
1010 }
1011 
1012 int
nvlist_add_int16(nvlist_t * nvl,const char * name,int16_t val)1013 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
1014 {
1015 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
1016 }
1017 
1018 int
nvlist_add_uint16(nvlist_t * nvl,const char * name,uint16_t val)1019 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
1020 {
1021 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
1022 }
1023 
1024 int
nvlist_add_int32(nvlist_t * nvl,const char * name,int32_t val)1025 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
1026 {
1027 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
1028 }
1029 
1030 int
nvlist_add_uint32(nvlist_t * nvl,const char * name,uint32_t val)1031 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
1032 {
1033 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
1034 }
1035 
1036 int
nvlist_add_int64(nvlist_t * nvl,const char * name,int64_t val)1037 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
1038 {
1039 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
1040 }
1041 
1042 int
nvlist_add_uint64(nvlist_t * nvl,const char * name,uint64_t val)1043 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
1044 {
1045 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
1046 }
1047 
1048 #if !defined(_KERNEL)
1049 int
nvlist_add_double(nvlist_t * nvl,const char * name,double val)1050 nvlist_add_double(nvlist_t *nvl, const char *name, double val)
1051 {
1052 	return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val));
1053 }
1054 #endif
1055 
1056 int
nvlist_add_string(nvlist_t * nvl,const char * name,const char * val)1057 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
1058 {
1059 	return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
1060 }
1061 
1062 int
nvlist_add_boolean_array(nvlist_t * nvl,const char * name,boolean_t * a,uint_t n)1063 nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
1064     boolean_t *a, uint_t n)
1065 {
1066 	return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
1067 }
1068 
1069 int
nvlist_add_byte_array(nvlist_t * nvl,const char * name,uchar_t * a,uint_t n)1070 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n)
1071 {
1072 	return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1073 }
1074 
1075 int
nvlist_add_int8_array(nvlist_t * nvl,const char * name,int8_t * a,uint_t n)1076 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n)
1077 {
1078 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1079 }
1080 
1081 int
nvlist_add_uint8_array(nvlist_t * nvl,const char * name,uint8_t * a,uint_t n)1082 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n)
1083 {
1084 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1085 }
1086 
1087 int
nvlist_add_int16_array(nvlist_t * nvl,const char * name,int16_t * a,uint_t n)1088 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n)
1089 {
1090 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1091 }
1092 
1093 int
nvlist_add_uint16_array(nvlist_t * nvl,const char * name,uint16_t * a,uint_t n)1094 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n)
1095 {
1096 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1097 }
1098 
1099 int
nvlist_add_int32_array(nvlist_t * nvl,const char * name,int32_t * a,uint_t n)1100 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n)
1101 {
1102 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1103 }
1104 
1105 int
nvlist_add_uint32_array(nvlist_t * nvl,const char * name,uint32_t * a,uint_t n)1106 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n)
1107 {
1108 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1109 }
1110 
1111 int
nvlist_add_int64_array(nvlist_t * nvl,const char * name,int64_t * a,uint_t n)1112 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n)
1113 {
1114 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1115 }
1116 
1117 int
nvlist_add_uint64_array(nvlist_t * nvl,const char * name,uint64_t * a,uint_t n)1118 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n)
1119 {
1120 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1121 }
1122 
1123 int
nvlist_add_string_array(nvlist_t * nvl,const char * name,char * const * a,uint_t n)1124 nvlist_add_string_array(nvlist_t *nvl, const char *name,
1125     char *const *a, uint_t n)
1126 {
1127 	return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1128 }
1129 
1130 int
nvlist_add_hrtime(nvlist_t * nvl,const char * name,hrtime_t val)1131 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
1132 {
1133 	return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
1134 }
1135 
1136 int
nvlist_add_nvlist(nvlist_t * nvl,const char * name,nvlist_t * val)1137 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val)
1138 {
1139 	return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
1140 }
1141 
1142 int
nvlist_add_nvlist_array(nvlist_t * nvl,const char * name,nvlist_t ** a,uint_t n)1143 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n)
1144 {
1145 	return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1146 }
1147 
1148 /* reading name-value pairs */
1149 nvpair_t *
nvlist_next_nvpair(nvlist_t * nvl,nvpair_t * nvp)1150 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1151 {
1152 	nvpriv_t *priv;
1153 	i_nvp_t *curr;
1154 
1155 	if (nvl == NULL ||
1156 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1157 		return (NULL);
1158 
1159 	curr = NVPAIR2I_NVP(nvp);
1160 
1161 	/*
1162 	 * Ensure that nvp is a valid nvpair on this nvlist.
1163 	 * NB: nvp_curr is used only as a hint so that we don't always
1164 	 * have to walk the list to determine if nvp is still on the list.
1165 	 */
1166 	if (nvp == NULL)
1167 		curr = priv->nvp_list;
1168 	else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1169 		curr = curr->nvi_next;
1170 	else
1171 		curr = NULL;
1172 
1173 	priv->nvp_curr = curr;
1174 
1175 	return (curr != NULL ? &curr->nvi_nvp : NULL);
1176 }
1177 
1178 nvpair_t *
nvlist_prev_nvpair(nvlist_t * nvl,nvpair_t * nvp)1179 nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1180 {
1181 	nvpriv_t *priv;
1182 	i_nvp_t *curr;
1183 
1184 	if (nvl == NULL ||
1185 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1186 		return (NULL);
1187 
1188 	curr = NVPAIR2I_NVP(nvp);
1189 
1190 	if (nvp == NULL)
1191 		curr = priv->nvp_last;
1192 	else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1193 		curr = curr->nvi_prev;
1194 	else
1195 		curr = NULL;
1196 
1197 	priv->nvp_curr = curr;
1198 
1199 	return (curr != NULL ? &curr->nvi_nvp : NULL);
1200 }
1201 
1202 boolean_t
nvlist_empty(nvlist_t * nvl)1203 nvlist_empty(nvlist_t *nvl)
1204 {
1205 	nvpriv_t *priv;
1206 
1207 	if (nvl == NULL ||
1208 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1209 		return (B_TRUE);
1210 
1211 	return (priv->nvp_list == NULL);
1212 }
1213 
1214 char *
nvpair_name(nvpair_t * nvp)1215 nvpair_name(nvpair_t *nvp)
1216 {
1217 	return (NVP_NAME(nvp));
1218 }
1219 
1220 data_type_t
nvpair_type(nvpair_t * nvp)1221 nvpair_type(nvpair_t *nvp)
1222 {
1223 	return (NVP_TYPE(nvp));
1224 }
1225 
1226 int
nvpair_type_is_array(nvpair_t * nvp)1227 nvpair_type_is_array(nvpair_t *nvp)
1228 {
1229 	data_type_t type = NVP_TYPE(nvp);
1230 
1231 	if ((type == DATA_TYPE_BYTE_ARRAY) ||
1232 	    (type == DATA_TYPE_UINT8_ARRAY) ||
1233 	    (type == DATA_TYPE_INT16_ARRAY) ||
1234 	    (type == DATA_TYPE_UINT16_ARRAY) ||
1235 	    (type == DATA_TYPE_INT32_ARRAY) ||
1236 	    (type == DATA_TYPE_UINT32_ARRAY) ||
1237 	    (type == DATA_TYPE_INT64_ARRAY) ||
1238 	    (type == DATA_TYPE_UINT64_ARRAY) ||
1239 	    (type == DATA_TYPE_BOOLEAN_ARRAY) ||
1240 	    (type == DATA_TYPE_STRING_ARRAY) ||
1241 	    (type == DATA_TYPE_NVLIST_ARRAY))
1242 		return (1);
1243 	return (0);
1244 
1245 }
1246 
1247 static int
nvpair_value_common(nvpair_t * nvp,data_type_t type,uint_t * nelem,void * data)1248 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data)
1249 {
1250 	if (nvp == NULL || nvpair_type(nvp) != type)
1251 		return (EINVAL);
1252 
1253 	/*
1254 	 * For non-array types, we copy the data.
1255 	 * For array types (including string), we set a pointer.
1256 	 */
1257 	switch (type) {
1258 	case DATA_TYPE_BOOLEAN:
1259 		if (nelem != NULL)
1260 			*nelem = 0;
1261 		break;
1262 
1263 	case DATA_TYPE_BOOLEAN_VALUE:
1264 	case DATA_TYPE_BYTE:
1265 	case DATA_TYPE_INT8:
1266 	case DATA_TYPE_UINT8:
1267 	case DATA_TYPE_INT16:
1268 	case DATA_TYPE_UINT16:
1269 	case DATA_TYPE_INT32:
1270 	case DATA_TYPE_UINT32:
1271 	case DATA_TYPE_INT64:
1272 	case DATA_TYPE_UINT64:
1273 	case DATA_TYPE_HRTIME:
1274 #if !defined(_KERNEL)
1275 	case DATA_TYPE_DOUBLE:
1276 #endif
1277 		if (data == NULL)
1278 			return (EINVAL);
1279 		bcopy(NVP_VALUE(nvp), data,
1280 		    (size_t)i_get_value_size(type, NULL, 1));
1281 		if (nelem != NULL)
1282 			*nelem = 1;
1283 		break;
1284 
1285 	case DATA_TYPE_NVLIST:
1286 	case DATA_TYPE_STRING:
1287 		if (data == NULL)
1288 			return (EINVAL);
1289 		*(void **)data = (void *)NVP_VALUE(nvp);
1290 		if (nelem != NULL)
1291 			*nelem = 1;
1292 		break;
1293 
1294 	case DATA_TYPE_BOOLEAN_ARRAY:
1295 	case DATA_TYPE_BYTE_ARRAY:
1296 	case DATA_TYPE_INT8_ARRAY:
1297 	case DATA_TYPE_UINT8_ARRAY:
1298 	case DATA_TYPE_INT16_ARRAY:
1299 	case DATA_TYPE_UINT16_ARRAY:
1300 	case DATA_TYPE_INT32_ARRAY:
1301 	case DATA_TYPE_UINT32_ARRAY:
1302 	case DATA_TYPE_INT64_ARRAY:
1303 	case DATA_TYPE_UINT64_ARRAY:
1304 	case DATA_TYPE_STRING_ARRAY:
1305 	case DATA_TYPE_NVLIST_ARRAY:
1306 		if (nelem == NULL || data == NULL)
1307 			return (EINVAL);
1308 		if ((*nelem = NVP_NELEM(nvp)) != 0)
1309 			*(void **)data = (void *)NVP_VALUE(nvp);
1310 		else
1311 			*(void **)data = NULL;
1312 		break;
1313 
1314 	default:
1315 		return (ENOTSUP);
1316 	}
1317 
1318 	return (0);
1319 }
1320 
1321 static int
nvlist_lookup_common(nvlist_t * nvl,const char * name,data_type_t type,uint_t * nelem,void * data)1322 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type,
1323     uint_t *nelem, void *data)
1324 {
1325 	nvpriv_t *priv;
1326 	nvpair_t *nvp;
1327 	i_nvp_t *curr;
1328 
1329 	if (name == NULL || nvl == NULL ||
1330 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1331 		return (EINVAL);
1332 
1333 	if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
1334 		return (ENOTSUP);
1335 
1336 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1337 		nvp = &curr->nvi_nvp;
1338 
1339 		if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type)
1340 			return (nvpair_value_common(nvp, type, nelem, data));
1341 	}
1342 
1343 	return (ENOENT);
1344 }
1345 
1346 int
nvlist_lookup_boolean(nvlist_t * nvl,const char * name)1347 nvlist_lookup_boolean(nvlist_t *nvl, const char *name)
1348 {
1349 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
1350 }
1351 
1352 int
nvlist_lookup_boolean_value(nvlist_t * nvl,const char * name,boolean_t * val)1353 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val)
1354 {
1355 	return (nvlist_lookup_common(nvl, name,
1356 	    DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1357 }
1358 
1359 int
nvlist_lookup_byte(nvlist_t * nvl,const char * name,uchar_t * val)1360 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val)
1361 {
1362 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
1363 }
1364 
1365 int
nvlist_lookup_int8(nvlist_t * nvl,const char * name,int8_t * val)1366 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val)
1367 {
1368 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
1369 }
1370 
1371 int
nvlist_lookup_uint8(nvlist_t * nvl,const char * name,uint8_t * val)1372 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val)
1373 {
1374 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
1375 }
1376 
1377 int
nvlist_lookup_int16(nvlist_t * nvl,const char * name,int16_t * val)1378 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val)
1379 {
1380 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
1381 }
1382 
1383 int
nvlist_lookup_uint16(nvlist_t * nvl,const char * name,uint16_t * val)1384 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val)
1385 {
1386 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
1387 }
1388 
1389 int
nvlist_lookup_int32(nvlist_t * nvl,const char * name,int32_t * val)1390 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val)
1391 {
1392 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
1393 }
1394 
1395 int
nvlist_lookup_uint32(nvlist_t * nvl,const char * name,uint32_t * val)1396 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val)
1397 {
1398 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
1399 }
1400 
1401 int
nvlist_lookup_int64(nvlist_t * nvl,const char * name,int64_t * val)1402 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val)
1403 {
1404 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
1405 }
1406 
1407 int
nvlist_lookup_uint64(nvlist_t * nvl,const char * name,uint64_t * val)1408 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val)
1409 {
1410 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
1411 }
1412 
1413 #if !defined(_KERNEL)
1414 int
nvlist_lookup_double(nvlist_t * nvl,const char * name,double * val)1415 nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val)
1416 {
1417 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val));
1418 }
1419 #endif
1420 
1421 int
nvlist_lookup_string(nvlist_t * nvl,const char * name,char ** val)1422 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val)
1423 {
1424 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
1425 }
1426 
1427 int
nvlist_lookup_nvlist(nvlist_t * nvl,const char * name,nvlist_t ** val)1428 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
1429 {
1430 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
1431 }
1432 
1433 int
nvlist_lookup_boolean_array(nvlist_t * nvl,const char * name,boolean_t ** a,uint_t * n)1434 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
1435     boolean_t **a, uint_t *n)
1436 {
1437 	return (nvlist_lookup_common(nvl, name,
1438 	    DATA_TYPE_BOOLEAN_ARRAY, n, a));
1439 }
1440 
1441 int
nvlist_lookup_byte_array(nvlist_t * nvl,const char * name,uchar_t ** a,uint_t * n)1442 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
1443     uchar_t **a, uint_t *n)
1444 {
1445 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1446 }
1447 
1448 int
nvlist_lookup_int8_array(nvlist_t * nvl,const char * name,int8_t ** a,uint_t * n)1449 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
1450 {
1451 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1452 }
1453 
1454 int
nvlist_lookup_uint8_array(nvlist_t * nvl,const char * name,uint8_t ** a,uint_t * n)1455 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
1456     uint8_t **a, uint_t *n)
1457 {
1458 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1459 }
1460 
1461 int
nvlist_lookup_int16_array(nvlist_t * nvl,const char * name,int16_t ** a,uint_t * n)1462 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
1463     int16_t **a, uint_t *n)
1464 {
1465 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1466 }
1467 
1468 int
nvlist_lookup_uint16_array(nvlist_t * nvl,const char * name,uint16_t ** a,uint_t * n)1469 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
1470     uint16_t **a, uint_t *n)
1471 {
1472 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1473 }
1474 
1475 int
nvlist_lookup_int32_array(nvlist_t * nvl,const char * name,int32_t ** a,uint_t * n)1476 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
1477     int32_t **a, uint_t *n)
1478 {
1479 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1480 }
1481 
1482 int
nvlist_lookup_uint32_array(nvlist_t * nvl,const char * name,uint32_t ** a,uint_t * n)1483 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
1484     uint32_t **a, uint_t *n)
1485 {
1486 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1487 }
1488 
1489 int
nvlist_lookup_int64_array(nvlist_t * nvl,const char * name,int64_t ** a,uint_t * n)1490 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
1491     int64_t **a, uint_t *n)
1492 {
1493 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1494 }
1495 
1496 int
nvlist_lookup_uint64_array(nvlist_t * nvl,const char * name,uint64_t ** a,uint_t * n)1497 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
1498     uint64_t **a, uint_t *n)
1499 {
1500 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1501 }
1502 
1503 int
nvlist_lookup_string_array(nvlist_t * nvl,const char * name,char *** a,uint_t * n)1504 nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
1505     char ***a, uint_t *n)
1506 {
1507 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1508 }
1509 
1510 int
nvlist_lookup_nvlist_array(nvlist_t * nvl,const char * name,nvlist_t *** a,uint_t * n)1511 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
1512     nvlist_t ***a, uint_t *n)
1513 {
1514 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1515 }
1516 
1517 int
nvlist_lookup_hrtime(nvlist_t * nvl,const char * name,hrtime_t * val)1518 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
1519 {
1520 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
1521 }
1522 
1523 int
nvlist_lookup_pairs(nvlist_t * nvl,int flag,...)1524 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
1525 {
1526 	va_list ap;
1527 	char *name;
1528 	int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
1529 	int ret = 0;
1530 
1531 	va_start(ap, flag);
1532 	while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
1533 		data_type_t type;
1534 		void *val;
1535 		uint_t *nelem;
1536 
1537 		switch (type = va_arg(ap, data_type_t)) {
1538 		case DATA_TYPE_BOOLEAN:
1539 			ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
1540 			break;
1541 
1542 		case DATA_TYPE_BOOLEAN_VALUE:
1543 		case DATA_TYPE_BYTE:
1544 		case DATA_TYPE_INT8:
1545 		case DATA_TYPE_UINT8:
1546 		case DATA_TYPE_INT16:
1547 		case DATA_TYPE_UINT16:
1548 		case DATA_TYPE_INT32:
1549 		case DATA_TYPE_UINT32:
1550 		case DATA_TYPE_INT64:
1551 		case DATA_TYPE_UINT64:
1552 		case DATA_TYPE_HRTIME:
1553 		case DATA_TYPE_STRING:
1554 		case DATA_TYPE_NVLIST:
1555 #if !defined(_KERNEL)
1556 		case DATA_TYPE_DOUBLE:
1557 #endif
1558 			val = va_arg(ap, void *);
1559 			ret = nvlist_lookup_common(nvl, name, type, NULL, val);
1560 			break;
1561 
1562 		case DATA_TYPE_BYTE_ARRAY:
1563 		case DATA_TYPE_BOOLEAN_ARRAY:
1564 		case DATA_TYPE_INT8_ARRAY:
1565 		case DATA_TYPE_UINT8_ARRAY:
1566 		case DATA_TYPE_INT16_ARRAY:
1567 		case DATA_TYPE_UINT16_ARRAY:
1568 		case DATA_TYPE_INT32_ARRAY:
1569 		case DATA_TYPE_UINT32_ARRAY:
1570 		case DATA_TYPE_INT64_ARRAY:
1571 		case DATA_TYPE_UINT64_ARRAY:
1572 		case DATA_TYPE_STRING_ARRAY:
1573 		case DATA_TYPE_NVLIST_ARRAY:
1574 			val = va_arg(ap, void *);
1575 			nelem = va_arg(ap, uint_t *);
1576 			ret = nvlist_lookup_common(nvl, name, type, nelem, val);
1577 			break;
1578 
1579 		default:
1580 			ret = EINVAL;
1581 		}
1582 
1583 		if (ret == ENOENT && noentok)
1584 			ret = 0;
1585 	}
1586 	va_end(ap);
1587 
1588 	return (ret);
1589 }
1590 
1591 /*
1592  * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function
1593  * returns zero and a pointer to the matching nvpair is returned in '*ret'
1594  * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate
1595  * multiple levels of embedded nvlists, with 'sep' as the separator. As an
1596  * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or
1597  * "a.d[3].e[1]".  This matches the C syntax for array embed (for convience,
1598  * code also supports "a.d[3]e[1]" syntax).
1599  *
1600  * If 'ip' is non-NULL and the last name component is an array, return the
1601  * value of the "...[index]" array index in *ip. For an array reference that
1602  * is not indexed, *ip will be returned as -1. If there is a syntax error in
1603  * 'name', and 'ep' is non-NULL then *ep will be set to point to the location
1604  * inside the 'name' string where the syntax error was detected.
1605  */
1606 static int
nvlist_lookup_nvpair_ei_sep(nvlist_t * nvl,const char * name,const char sep,nvpair_t ** ret,int * ip,char ** ep)1607 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep,
1608     nvpair_t **ret, int *ip, char **ep)
1609 {
1610 	nvpair_t	*nvp;
1611 	const char	*np;
1612 	char		*sepp;
1613 	char		*idxp, *idxep;
1614 	nvlist_t	**nva;
1615 	long		idx;
1616 	int		n;
1617 
1618 	if (ip)
1619 		*ip = -1;			/* not indexed */
1620 	if (ep)
1621 		*ep = NULL;
1622 
1623 	if ((nvl == NULL) || (name == NULL))
1624 		return (EINVAL);
1625 
1626 	/* step through components of name */
1627 	for (np = name; np && *np; np = sepp) {
1628 		/* ensure unique names */
1629 		if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
1630 			return (ENOTSUP);
1631 
1632 		/* skip white space */
1633 		skip_whitespace(np);
1634 		if (*np == 0)
1635 			break;
1636 
1637 		/* set 'sepp' to end of current component 'np' */
1638 		if (sep)
1639 			sepp = strchr(np, sep);
1640 		else
1641 			sepp = NULL;
1642 
1643 		/* find start of next "[ index ]..." */
1644 		idxp = strchr(np, '[');
1645 
1646 		/* if sepp comes first, set idxp to NULL */
1647 		if (sepp && idxp && (sepp < idxp))
1648 			idxp = NULL;
1649 
1650 		/*
1651 		 * At this point 'idxp' is set if there is an index
1652 		 * expected for the current component.
1653 		 */
1654 		if (idxp) {
1655 			/* set 'n' to length of current 'np' name component */
1656 			n = idxp++ - np;
1657 
1658 			/* keep sepp up to date for *ep use as we advance */
1659 			skip_whitespace(idxp);
1660 			sepp = idxp;
1661 
1662 			/* determine the index value */
1663 #if defined(_KERNEL) && !defined(_BOOT)
1664 			if (ddi_strtol(idxp, &idxep, 0, &idx))
1665 				goto fail;
1666 #else
1667 			idx = strtol(idxp, &idxep, 0);
1668 #endif
1669 			if (idxep == idxp)
1670 				goto fail;
1671 
1672 			/* keep sepp up to date for *ep use as we advance */
1673 			sepp = idxep;
1674 
1675 			/* skip white space index value and check for ']' */
1676 			skip_whitespace(sepp);
1677 			if (*sepp++ != ']')
1678 				goto fail;
1679 
1680 			/* for embedded arrays, support C syntax: "a[1].b" */
1681 			skip_whitespace(sepp);
1682 			if (sep && (*sepp == sep))
1683 				sepp++;
1684 		} else if (sepp) {
1685 			n = sepp++ - np;
1686 		} else {
1687 			n = strlen(np);
1688 		}
1689 
1690 		/* trim trailing whitespace by reducing length of 'np' */
1691 		if (n == 0)
1692 			goto fail;
1693 		for (n--; (np[n] == ' ') || (np[n] == '\t'); n--)
1694 			;
1695 		n++;
1696 
1697 		/* skip whitespace, and set sepp to NULL if complete */
1698 		if (sepp) {
1699 			skip_whitespace(sepp);
1700 			if (*sepp == 0)
1701 				sepp = NULL;
1702 		}
1703 
1704 		/*
1705 		 * At this point:
1706 		 * o  'n' is the length of current 'np' component.
1707 		 * o  'idxp' is set if there was an index, and value 'idx'.
1708 		 * o  'sepp' is set to the beginning of the next component,
1709 		 *    and set to NULL if we have no more components.
1710 		 *
1711 		 * Search for nvpair with matching component name.
1712 		 */
1713 		for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
1714 		    nvp = nvlist_next_nvpair(nvl, nvp)) {
1715 
1716 			/* continue if no match on name */
1717 			if (strncmp(np, nvpair_name(nvp), n) ||
1718 			    (strlen(nvpair_name(nvp)) != n))
1719 				continue;
1720 
1721 			/* if indexed, verify type is array oriented */
1722 			if (idxp && !nvpair_type_is_array(nvp))
1723 				goto fail;
1724 
1725 			/*
1726 			 * Full match found, return nvp and idx if this
1727 			 * was the last component.
1728 			 */
1729 			if (sepp == NULL) {
1730 				if (ret)
1731 					*ret = nvp;
1732 				if (ip && idxp)
1733 					*ip = (int)idx;	/* return index */
1734 				return (0);		/* found */
1735 			}
1736 
1737 			/*
1738 			 * More components: current match must be
1739 			 * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY
1740 			 * to support going deeper.
1741 			 */
1742 			if (nvpair_type(nvp) == DATA_TYPE_NVLIST) {
1743 				nvl = EMBEDDED_NVL(nvp);
1744 				break;
1745 			} else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) {
1746 				(void) nvpair_value_nvlist_array(nvp,
1747 				    &nva, (uint_t *)&n);
1748 				if ((n < 0) || (idx >= n))
1749 					goto fail;
1750 				nvl = nva[idx];
1751 				break;
1752 			}
1753 
1754 			/* type does not support more levels */
1755 			goto fail;
1756 		}
1757 		if (nvp == NULL)
1758 			goto fail;		/* 'name' not found */
1759 
1760 		/* search for match of next component in embedded 'nvl' list */
1761 	}
1762 
1763 fail:	if (ep && sepp)
1764 		*ep = sepp;
1765 	return (EINVAL);
1766 }
1767 
1768 /*
1769  * Return pointer to nvpair with specified 'name'.
1770  */
1771 int
nvlist_lookup_nvpair(nvlist_t * nvl,const char * name,nvpair_t ** ret)1772 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
1773 {
1774 	return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL));
1775 }
1776 
1777 /*
1778  * Determine if named nvpair exists in nvlist (use embedded separator of '.'
1779  * and return array index).  See nvlist_lookup_nvpair_ei_sep for more detailed
1780  * description.
1781  */
nvlist_lookup_nvpair_embedded_index(nvlist_t * nvl,const char * name,nvpair_t ** ret,int * ip,char ** ep)1782 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl,
1783     const char *name, nvpair_t **ret, int *ip, char **ep)
1784 {
1785 	return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep));
1786 }
1787 
1788 boolean_t
nvlist_exists(nvlist_t * nvl,const char * name)1789 nvlist_exists(nvlist_t *nvl, const char *name)
1790 {
1791 	nvpriv_t *priv;
1792 	nvpair_t *nvp;
1793 	i_nvp_t *curr;
1794 
1795 	if (name == NULL || nvl == NULL ||
1796 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1797 		return (B_FALSE);
1798 
1799 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1800 		nvp = &curr->nvi_nvp;
1801 
1802 		if (strcmp(name, NVP_NAME(nvp)) == 0)
1803 			return (B_TRUE);
1804 	}
1805 
1806 	return (B_FALSE);
1807 }
1808 
1809 int
nvpair_value_boolean_value(nvpair_t * nvp,boolean_t * val)1810 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val)
1811 {
1812 	return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1813 }
1814 
1815 int
nvpair_value_byte(nvpair_t * nvp,uchar_t * val)1816 nvpair_value_byte(nvpair_t *nvp, uchar_t *val)
1817 {
1818 	return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
1819 }
1820 
1821 int
nvpair_value_int8(nvpair_t * nvp,int8_t * val)1822 nvpair_value_int8(nvpair_t *nvp, int8_t *val)
1823 {
1824 	return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
1825 }
1826 
1827 int
nvpair_value_uint8(nvpair_t * nvp,uint8_t * val)1828 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val)
1829 {
1830 	return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
1831 }
1832 
1833 int
nvpair_value_int16(nvpair_t * nvp,int16_t * val)1834 nvpair_value_int16(nvpair_t *nvp, int16_t *val)
1835 {
1836 	return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
1837 }
1838 
1839 int
nvpair_value_uint16(nvpair_t * nvp,uint16_t * val)1840 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val)
1841 {
1842 	return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
1843 }
1844 
1845 int
nvpair_value_int32(nvpair_t * nvp,int32_t * val)1846 nvpair_value_int32(nvpair_t *nvp, int32_t *val)
1847 {
1848 	return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
1849 }
1850 
1851 int
nvpair_value_uint32(nvpair_t * nvp,uint32_t * val)1852 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val)
1853 {
1854 	return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
1855 }
1856 
1857 int
nvpair_value_int64(nvpair_t * nvp,int64_t * val)1858 nvpair_value_int64(nvpair_t *nvp, int64_t *val)
1859 {
1860 	return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
1861 }
1862 
1863 int
nvpair_value_uint64(nvpair_t * nvp,uint64_t * val)1864 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val)
1865 {
1866 	return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
1867 }
1868 
1869 #if !defined(_KERNEL)
1870 int
nvpair_value_double(nvpair_t * nvp,double * val)1871 nvpair_value_double(nvpair_t *nvp, double *val)
1872 {
1873 	return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val));
1874 }
1875 #endif
1876 
1877 int
nvpair_value_string(nvpair_t * nvp,char ** val)1878 nvpair_value_string(nvpair_t *nvp, char **val)
1879 {
1880 	return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
1881 }
1882 
1883 int
nvpair_value_nvlist(nvpair_t * nvp,nvlist_t ** val)1884 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
1885 {
1886 	return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
1887 }
1888 
1889 int
nvpair_value_boolean_array(nvpair_t * nvp,boolean_t ** val,uint_t * nelem)1890 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
1891 {
1892 	return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
1893 }
1894 
1895 int
nvpair_value_byte_array(nvpair_t * nvp,uchar_t ** val,uint_t * nelem)1896 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
1897 {
1898 	return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
1899 }
1900 
1901 int
nvpair_value_int8_array(nvpair_t * nvp,int8_t ** val,uint_t * nelem)1902 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
1903 {
1904 	return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
1905 }
1906 
1907 int
nvpair_value_uint8_array(nvpair_t * nvp,uint8_t ** val,uint_t * nelem)1908 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
1909 {
1910 	return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
1911 }
1912 
1913 int
nvpair_value_int16_array(nvpair_t * nvp,int16_t ** val,uint_t * nelem)1914 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
1915 {
1916 	return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
1917 }
1918 
1919 int
nvpair_value_uint16_array(nvpair_t * nvp,uint16_t ** val,uint_t * nelem)1920 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
1921 {
1922 	return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
1923 }
1924 
1925 int
nvpair_value_int32_array(nvpair_t * nvp,int32_t ** val,uint_t * nelem)1926 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
1927 {
1928 	return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
1929 }
1930 
1931 int
nvpair_value_uint32_array(nvpair_t * nvp,uint32_t ** val,uint_t * nelem)1932 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
1933 {
1934 	return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
1935 }
1936 
1937 int
nvpair_value_int64_array(nvpair_t * nvp,int64_t ** val,uint_t * nelem)1938 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
1939 {
1940 	return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
1941 }
1942 
1943 int
nvpair_value_uint64_array(nvpair_t * nvp,uint64_t ** val,uint_t * nelem)1944 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
1945 {
1946 	return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
1947 }
1948 
1949 int
nvpair_value_string_array(nvpair_t * nvp,char *** val,uint_t * nelem)1950 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem)
1951 {
1952 	return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
1953 }
1954 
1955 int
nvpair_value_nvlist_array(nvpair_t * nvp,nvlist_t *** val,uint_t * nelem)1956 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
1957 {
1958 	return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
1959 }
1960 
1961 int
nvpair_value_hrtime(nvpair_t * nvp,hrtime_t * val)1962 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
1963 {
1964 	return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
1965 }
1966 
1967 /*
1968  * Add specified pair to the list.
1969  */
1970 int
nvlist_add_nvpair(nvlist_t * nvl,nvpair_t * nvp)1971 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1972 {
1973 	if (nvl == NULL || nvp == NULL)
1974 		return (EINVAL);
1975 
1976 	return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
1977 	    NVP_NELEM(nvp), NVP_VALUE(nvp)));
1978 }
1979 
1980 /*
1981  * Merge the supplied nvlists and put the result in dst.
1982  * The merged list will contain all names specified in both lists,
1983  * the values are taken from nvl in the case of duplicates.
1984  * Return 0 on success.
1985  */
1986 /*ARGSUSED*/
1987 int
nvlist_merge(nvlist_t * dst,nvlist_t * nvl,int flag)1988 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
1989 {
1990 	if (nvl == NULL || dst == NULL)
1991 		return (EINVAL);
1992 
1993 	if (dst != nvl)
1994 		return (nvlist_copy_pairs(nvl, dst));
1995 
1996 	return (0);
1997 }
1998 
1999 /*
2000  * Encoding related routines
2001  */
2002 #define	NVS_OP_ENCODE	0
2003 #define	NVS_OP_DECODE	1
2004 #define	NVS_OP_GETSIZE	2
2005 
2006 typedef struct nvs_ops nvs_ops_t;
2007 
2008 typedef struct {
2009 	int		nvs_op;
2010 	const nvs_ops_t	*nvs_ops;
2011 	void		*nvs_private;
2012 	nvpriv_t	*nvs_priv;
2013 } nvstream_t;
2014 
2015 /*
2016  * nvs operations are:
2017  *   - nvs_nvlist
2018  *     encoding / decoding of a nvlist header (nvlist_t)
2019  *     calculates the size used for header and end detection
2020  *
2021  *   - nvs_nvpair
2022  *     responsible for the first part of encoding / decoding of an nvpair
2023  *     calculates the decoded size of an nvpair
2024  *
2025  *   - nvs_nvp_op
2026  *     second part of encoding / decoding of an nvpair
2027  *
2028  *   - nvs_nvp_size
2029  *     calculates the encoding size of an nvpair
2030  *
2031  *   - nvs_nvl_fini
2032  *     encodes the end detection mark (zeros).
2033  */
2034 struct nvs_ops {
2035 	int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
2036 	int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
2037 	int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
2038 	int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
2039 	int (*nvs_nvl_fini)(nvstream_t *);
2040 };
2041 
2042 typedef struct {
2043 	char	nvh_encoding;	/* nvs encoding method */
2044 	char	nvh_endian;	/* nvs endian */
2045 	char	nvh_reserved1;	/* reserved for future use */
2046 	char	nvh_reserved2;	/* reserved for future use */
2047 } nvs_header_t;
2048 
2049 static int
nvs_encode_pairs(nvstream_t * nvs,nvlist_t * nvl)2050 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2051 {
2052 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2053 	i_nvp_t *curr;
2054 
2055 	/*
2056 	 * Walk nvpair in list and encode each nvpair
2057 	 */
2058 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
2059 		if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
2060 			return (EFAULT);
2061 
2062 	return (nvs->nvs_ops->nvs_nvl_fini(nvs));
2063 }
2064 
2065 static int
nvs_decode_pairs(nvstream_t * nvs,nvlist_t * nvl)2066 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2067 {
2068 	nvpair_t *nvp;
2069 	size_t nvsize;
2070 	int err;
2071 
2072 	/*
2073 	 * Get decoded size of next pair in stream, alloc
2074 	 * memory for nvpair_t, then decode the nvpair
2075 	 */
2076 	while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
2077 		if (nvsize == 0) /* end of list */
2078 			break;
2079 
2080 		/* make sure len makes sense */
2081 		if (nvsize < NVP_SIZE_CALC(1, 0))
2082 			return (EFAULT);
2083 
2084 		if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
2085 			return (ENOMEM);
2086 
2087 		if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
2088 			nvp_buf_free(nvl, nvp);
2089 			return (err);
2090 		}
2091 
2092 		if (i_validate_nvpair(nvp) != 0) {
2093 			nvpair_free(nvp);
2094 			nvp_buf_free(nvl, nvp);
2095 			return (EFAULT);
2096 		}
2097 
2098 		nvp_buf_link(nvl, nvp);
2099 	}
2100 	return (err);
2101 }
2102 
2103 static int
nvs_getsize_pairs(nvstream_t * nvs,nvlist_t * nvl,size_t * buflen)2104 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2105 {
2106 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2107 	i_nvp_t *curr;
2108 	uint64_t nvsize = *buflen;
2109 	size_t size;
2110 
2111 	/*
2112 	 * Get encoded size of nvpairs in nvlist
2113 	 */
2114 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2115 		if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
2116 			return (EINVAL);
2117 
2118 		if ((nvsize += size) > INT32_MAX)
2119 			return (EINVAL);
2120 	}
2121 
2122 	*buflen = nvsize;
2123 	return (0);
2124 }
2125 
2126 static int
nvs_operation(nvstream_t * nvs,nvlist_t * nvl,size_t * buflen)2127 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2128 {
2129 	int err;
2130 
2131 	if (nvl->nvl_priv == 0)
2132 		return (EFAULT);
2133 
2134 	/*
2135 	 * Perform the operation, starting with header, then each nvpair
2136 	 */
2137 	if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
2138 		return (err);
2139 
2140 	switch (nvs->nvs_op) {
2141 	case NVS_OP_ENCODE:
2142 		err = nvs_encode_pairs(nvs, nvl);
2143 		break;
2144 
2145 	case NVS_OP_DECODE:
2146 		err = nvs_decode_pairs(nvs, nvl);
2147 		break;
2148 
2149 	case NVS_OP_GETSIZE:
2150 		err = nvs_getsize_pairs(nvs, nvl, buflen);
2151 		break;
2152 
2153 	default:
2154 		err = EINVAL;
2155 	}
2156 
2157 	return (err);
2158 }
2159 
2160 static int
nvs_embedded(nvstream_t * nvs,nvlist_t * embedded)2161 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
2162 {
2163 	switch (nvs->nvs_op) {
2164 	case NVS_OP_ENCODE:
2165 		return (nvs_operation(nvs, embedded, NULL));
2166 
2167 	case NVS_OP_DECODE: {
2168 		nvpriv_t *priv;
2169 		int err;
2170 
2171 		if (embedded->nvl_version != NV_VERSION)
2172 			return (ENOTSUP);
2173 
2174 		if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
2175 			return (ENOMEM);
2176 
2177 		nvlist_init(embedded, embedded->nvl_nvflag, priv);
2178 
2179 		if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
2180 			nvlist_free(embedded);
2181 		return (err);
2182 	}
2183 	default:
2184 		break;
2185 	}
2186 
2187 	return (EINVAL);
2188 }
2189 
2190 static int
nvs_embedded_nvl_array(nvstream_t * nvs,nvpair_t * nvp,size_t * size)2191 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2192 {
2193 	size_t nelem = NVP_NELEM(nvp);
2194 	nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
2195 	int i;
2196 
2197 	switch (nvs->nvs_op) {
2198 	case NVS_OP_ENCODE:
2199 		for (i = 0; i < nelem; i++)
2200 			if (nvs_embedded(nvs, nvlp[i]) != 0)
2201 				return (EFAULT);
2202 		break;
2203 
2204 	case NVS_OP_DECODE: {
2205 		size_t len = nelem * sizeof (uint64_t);
2206 		nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
2207 
2208 		bzero(nvlp, len);	/* don't trust packed data */
2209 		for (i = 0; i < nelem; i++) {
2210 			if (nvs_embedded(nvs, embedded) != 0) {
2211 				nvpair_free(nvp);
2212 				return (EFAULT);
2213 			}
2214 
2215 			nvlp[i] = embedded++;
2216 		}
2217 		break;
2218 	}
2219 	case NVS_OP_GETSIZE: {
2220 		uint64_t nvsize = 0;
2221 
2222 		for (i = 0; i < nelem; i++) {
2223 			size_t nvp_sz = 0;
2224 
2225 			if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
2226 				return (EINVAL);
2227 
2228 			if ((nvsize += nvp_sz) > INT32_MAX)
2229 				return (EINVAL);
2230 		}
2231 
2232 		*size = nvsize;
2233 		break;
2234 	}
2235 	default:
2236 		return (EINVAL);
2237 	}
2238 
2239 	return (0);
2240 }
2241 
2242 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
2243 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
2244 
2245 /*
2246  * Common routine for nvlist operations:
2247  * encode, decode, getsize (encoded size).
2248  */
2249 static int
nvlist_common(nvlist_t * nvl,char * buf,size_t * buflen,int encoding,int nvs_op)2250 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
2251     int nvs_op)
2252 {
2253 	int err = 0;
2254 	nvstream_t nvs;
2255 	int nvl_endian;
2256 #ifdef	_LITTLE_ENDIAN
2257 	int host_endian = 1;
2258 #else
2259 	int host_endian = 0;
2260 #endif	/* _LITTLE_ENDIAN */
2261 	nvs_header_t *nvh = (void *)buf;
2262 
2263 	if (buflen == NULL || nvl == NULL ||
2264 	    (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2265 		return (EINVAL);
2266 
2267 	nvs.nvs_op = nvs_op;
2268 
2269 	/*
2270 	 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
2271 	 * a buffer is allocated.  The first 4 bytes in the buffer are
2272 	 * used for encoding method and host endian.
2273 	 */
2274 	switch (nvs_op) {
2275 	case NVS_OP_ENCODE:
2276 		if (buf == NULL || *buflen < sizeof (nvs_header_t))
2277 			return (EINVAL);
2278 
2279 		nvh->nvh_encoding = encoding;
2280 		nvh->nvh_endian = nvl_endian = host_endian;
2281 		nvh->nvh_reserved1 = 0;
2282 		nvh->nvh_reserved2 = 0;
2283 		break;
2284 
2285 	case NVS_OP_DECODE:
2286 		if (buf == NULL || *buflen < sizeof (nvs_header_t))
2287 			return (EINVAL);
2288 
2289 		/* get method of encoding from first byte */
2290 		encoding = nvh->nvh_encoding;
2291 		nvl_endian = nvh->nvh_endian;
2292 		break;
2293 
2294 	case NVS_OP_GETSIZE:
2295 		nvl_endian = host_endian;
2296 
2297 		/*
2298 		 * add the size for encoding
2299 		 */
2300 		*buflen = sizeof (nvs_header_t);
2301 		break;
2302 
2303 	default:
2304 		return (ENOTSUP);
2305 	}
2306 
2307 	/*
2308 	 * Create an nvstream with proper encoding method
2309 	 */
2310 	switch (encoding) {
2311 	case NV_ENCODE_NATIVE:
2312 		/*
2313 		 * check endianness, in case we are unpacking
2314 		 * from a file
2315 		 */
2316 		if (nvl_endian != host_endian)
2317 			return (ENOTSUP);
2318 		err = nvs_native(&nvs, nvl, buf, buflen);
2319 		break;
2320 	case NV_ENCODE_XDR:
2321 		err = nvs_xdr(&nvs, nvl, buf, buflen);
2322 		break;
2323 	default:
2324 		err = ENOTSUP;
2325 		break;
2326 	}
2327 
2328 	return (err);
2329 }
2330 
2331 int
nvlist_size(nvlist_t * nvl,size_t * size,int encoding)2332 nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
2333 {
2334 	return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
2335 }
2336 
2337 /*
2338  * Pack nvlist into contiguous memory
2339  */
2340 /*ARGSUSED1*/
2341 int
nvlist_pack(nvlist_t * nvl,char ** bufp,size_t * buflen,int encoding,int kmflag)2342 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2343     int kmflag)
2344 {
2345 #if defined(_KERNEL) && !defined(_BOOT)
2346 	return (nvlist_xpack(nvl, bufp, buflen, encoding,
2347 	    (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2348 #else
2349 	return (nvlist_xpack(nvl, bufp, buflen, encoding, nv_alloc_nosleep));
2350 #endif
2351 }
2352 
2353 int
nvlist_xpack(nvlist_t * nvl,char ** bufp,size_t * buflen,int encoding,nv_alloc_t * nva)2354 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2355     nv_alloc_t *nva)
2356 {
2357 	nvpriv_t nvpriv;
2358 	size_t alloc_size;
2359 	char *buf;
2360 	int err;
2361 
2362 	if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
2363 		return (EINVAL);
2364 
2365 	if (*bufp != NULL)
2366 		return (nvlist_common(nvl, *bufp, buflen, encoding,
2367 		    NVS_OP_ENCODE));
2368 
2369 	/*
2370 	 * Here is a difficult situation:
2371 	 * 1. The nvlist has fixed allocator properties.
2372 	 *    All other nvlist routines (like nvlist_add_*, ...) use
2373 	 *    these properties.
2374 	 * 2. When using nvlist_pack() the user can specify his own
2375 	 *    allocator properties (e.g. by using KM_NOSLEEP).
2376 	 *
2377 	 * We use the user specified properties (2). A clearer solution
2378 	 * will be to remove the kmflag from nvlist_pack(), but we will
2379 	 * not change the interface.
2380 	 */
2381 	nv_priv_init(&nvpriv, nva, 0);
2382 
2383 	if (err = nvlist_size(nvl, &alloc_size, encoding))
2384 		return (err);
2385 
2386 	if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
2387 		return (ENOMEM);
2388 
2389 	if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
2390 	    NVS_OP_ENCODE)) != 0) {
2391 		nv_mem_free(&nvpriv, buf, alloc_size);
2392 	} else {
2393 		*buflen = alloc_size;
2394 		*bufp = buf;
2395 	}
2396 
2397 	return (err);
2398 }
2399 
2400 /*
2401  * Unpack buf into an nvlist_t
2402  */
2403 /*ARGSUSED1*/
2404 int
nvlist_unpack(char * buf,size_t buflen,nvlist_t ** nvlp,int kmflag)2405 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
2406 {
2407 #if defined(_KERNEL) && !defined(_BOOT)
2408 	return (nvlist_xunpack(buf, buflen, nvlp,
2409 	    (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2410 #else
2411 	return (nvlist_xunpack(buf, buflen, nvlp, nv_alloc_nosleep));
2412 #endif
2413 }
2414 
2415 int
nvlist_xunpack(char * buf,size_t buflen,nvlist_t ** nvlp,nv_alloc_t * nva)2416 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
2417 {
2418 	nvlist_t *nvl;
2419 	int err;
2420 
2421 	if (nvlp == NULL)
2422 		return (EINVAL);
2423 
2424 	if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
2425 		return (err);
2426 
2427 	if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0)
2428 		nvlist_free(nvl);
2429 	else
2430 		*nvlp = nvl;
2431 
2432 	return (err);
2433 }
2434 
2435 /*
2436  * Native encoding functions
2437  */
2438 typedef struct {
2439 	/*
2440 	 * This structure is used when decoding a packed nvpair in
2441 	 * the native format.  n_base points to a buffer containing the
2442 	 * packed nvpair.  n_end is a pointer to the end of the buffer.
2443 	 * (n_end actually points to the first byte past the end of the
2444 	 * buffer.)  n_curr is a pointer that lies between n_base and n_end.
2445 	 * It points to the current data that we are decoding.
2446 	 * The amount of data left in the buffer is equal to n_end - n_curr.
2447 	 * n_flag is used to recognize a packed embedded list.
2448 	 */
2449 	caddr_t n_base;
2450 	caddr_t n_end;
2451 	caddr_t n_curr;
2452 	uint_t  n_flag;
2453 } nvs_native_t;
2454 
2455 static int
nvs_native_create(nvstream_t * nvs,nvs_native_t * native,char * buf,size_t buflen)2456 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
2457     size_t buflen)
2458 {
2459 	switch (nvs->nvs_op) {
2460 	case NVS_OP_ENCODE:
2461 	case NVS_OP_DECODE:
2462 		nvs->nvs_private = native;
2463 		native->n_curr = native->n_base = buf;
2464 		native->n_end = buf + buflen;
2465 		native->n_flag = 0;
2466 		return (0);
2467 
2468 	case NVS_OP_GETSIZE:
2469 		nvs->nvs_private = native;
2470 		native->n_curr = native->n_base = native->n_end = NULL;
2471 		native->n_flag = 0;
2472 		return (0);
2473 	default:
2474 		return (EINVAL);
2475 	}
2476 }
2477 
2478 /*ARGSUSED*/
2479 static void
nvs_native_destroy(nvstream_t * nvs)2480 nvs_native_destroy(nvstream_t *nvs)
2481 {
2482 }
2483 
2484 static int
native_cp(nvstream_t * nvs,void * buf,size_t size)2485 native_cp(nvstream_t *nvs, void *buf, size_t size)
2486 {
2487 	nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2488 
2489 	if (native->n_curr + size > native->n_end)
2490 		return (EFAULT);
2491 
2492 	/*
2493 	 * The bcopy() below eliminates alignment requirement
2494 	 * on the buffer (stream) and is preferred over direct access.
2495 	 */
2496 	switch (nvs->nvs_op) {
2497 	case NVS_OP_ENCODE:
2498 		bcopy(buf, native->n_curr, size);
2499 		break;
2500 	case NVS_OP_DECODE:
2501 		bcopy(native->n_curr, buf, size);
2502 		break;
2503 	default:
2504 		return (EINVAL);
2505 	}
2506 
2507 	native->n_curr += size;
2508 	return (0);
2509 }
2510 
2511 /*
2512  * operate on nvlist_t header
2513  */
2514 static int
nvs_native_nvlist(nvstream_t * nvs,nvlist_t * nvl,size_t * size)2515 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2516 {
2517 	nvs_native_t *native = nvs->nvs_private;
2518 
2519 	switch (nvs->nvs_op) {
2520 	case NVS_OP_ENCODE:
2521 	case NVS_OP_DECODE:
2522 		if (native->n_flag)
2523 			return (0);	/* packed embedded list */
2524 
2525 		native->n_flag = 1;
2526 
2527 		/* copy version and nvflag of the nvlist_t */
2528 		if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
2529 		    native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
2530 			return (EFAULT);
2531 
2532 		return (0);
2533 
2534 	case NVS_OP_GETSIZE:
2535 		/*
2536 		 * if calculate for packed embedded list
2537 		 * 	4 for end of the embedded list
2538 		 * else
2539 		 * 	2 * sizeof (int32_t) for nvl_version and nvl_nvflag
2540 		 * 	and 4 for end of the entire list
2541 		 */
2542 		if (native->n_flag) {
2543 			*size += 4;
2544 		} else {
2545 			native->n_flag = 1;
2546 			*size += 2 * sizeof (int32_t) + 4;
2547 		}
2548 
2549 		return (0);
2550 
2551 	default:
2552 		return (EINVAL);
2553 	}
2554 }
2555 
2556 static int
nvs_native_nvl_fini(nvstream_t * nvs)2557 nvs_native_nvl_fini(nvstream_t *nvs)
2558 {
2559 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2560 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2561 		/*
2562 		 * Add 4 zero bytes at end of nvlist. They are used
2563 		 * for end detection by the decode routine.
2564 		 */
2565 		if (native->n_curr + sizeof (int) > native->n_end)
2566 			return (EFAULT);
2567 
2568 		bzero(native->n_curr, sizeof (int));
2569 		native->n_curr += sizeof (int);
2570 	}
2571 
2572 	return (0);
2573 }
2574 
2575 static int
nvpair_native_embedded(nvstream_t * nvs,nvpair_t * nvp)2576 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
2577 {
2578 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2579 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2580 		nvlist_t *packed = (void *)
2581 		    (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2582 		/*
2583 		 * Null out the pointer that is meaningless in the packed
2584 		 * structure. The address may not be aligned, so we have
2585 		 * to use bzero.
2586 		 */
2587 		bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2588 	}
2589 
2590 	return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
2591 }
2592 
2593 static int
nvpair_native_embedded_array(nvstream_t * nvs,nvpair_t * nvp)2594 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
2595 {
2596 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2597 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2598 		char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
2599 		size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
2600 		nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
2601 		int i;
2602 		/*
2603 		 * Null out pointers that are meaningless in the packed
2604 		 * structure. The addresses may not be aligned, so we have
2605 		 * to use bzero.
2606 		 */
2607 		bzero(value, len);
2608 
2609 		for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
2610 			/*
2611 			 * Null out the pointer that is meaningless in the
2612 			 * packed structure. The address may not be aligned,
2613 			 * so we have to use bzero.
2614 			 */
2615 			bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2616 	}
2617 
2618 	return (nvs_embedded_nvl_array(nvs, nvp, NULL));
2619 }
2620 
2621 static void
nvpair_native_string_array(nvstream_t * nvs,nvpair_t * nvp)2622 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
2623 {
2624 	switch (nvs->nvs_op) {
2625 	case NVS_OP_ENCODE: {
2626 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2627 		uint64_t *strp = (void *)
2628 		    (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2629 		/*
2630 		 * Null out pointers that are meaningless in the packed
2631 		 * structure. The addresses may not be aligned, so we have
2632 		 * to use bzero.
2633 		 */
2634 		bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t));
2635 		break;
2636 	}
2637 	case NVS_OP_DECODE: {
2638 		char **strp = (void *)NVP_VALUE(nvp);
2639 		char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
2640 		int i;
2641 
2642 		for (i = 0; i < NVP_NELEM(nvp); i++) {
2643 			strp[i] = buf;
2644 			buf += strlen(buf) + 1;
2645 		}
2646 		break;
2647 	}
2648 	}
2649 }
2650 
2651 static int
nvs_native_nvp_op(nvstream_t * nvs,nvpair_t * nvp)2652 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2653 {
2654 	data_type_t type;
2655 	int value_sz;
2656 	int ret = 0;
2657 
2658 	/*
2659 	 * We do the initial bcopy of the data before we look at
2660 	 * the nvpair type, because when we're decoding, we won't
2661 	 * have the correct values for the pair until we do the bcopy.
2662 	 */
2663 	switch (nvs->nvs_op) {
2664 	case NVS_OP_ENCODE:
2665 	case NVS_OP_DECODE:
2666 		if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
2667 			return (EFAULT);
2668 		break;
2669 	default:
2670 		return (EINVAL);
2671 	}
2672 
2673 	/* verify nvp_name_sz, check the name string length */
2674 	if (i_validate_nvpair_name(nvp) != 0)
2675 		return (EFAULT);
2676 
2677 	type = NVP_TYPE(nvp);
2678 
2679 	/*
2680 	 * Verify type and nelem and get the value size.
2681 	 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2682 	 * is the size of the string(s) excluded.
2683 	 */
2684 	if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
2685 		return (EFAULT);
2686 
2687 	if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
2688 		return (EFAULT);
2689 
2690 	switch (type) {
2691 	case DATA_TYPE_NVLIST:
2692 		ret = nvpair_native_embedded(nvs, nvp);
2693 		break;
2694 	case DATA_TYPE_NVLIST_ARRAY:
2695 		ret = nvpair_native_embedded_array(nvs, nvp);
2696 		break;
2697 	case DATA_TYPE_STRING_ARRAY:
2698 		nvpair_native_string_array(nvs, nvp);
2699 		break;
2700 	default:
2701 		break;
2702 	}
2703 
2704 	return (ret);
2705 }
2706 
2707 static int
nvs_native_nvp_size(nvstream_t * nvs,nvpair_t * nvp,size_t * size)2708 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2709 {
2710 	uint64_t nvp_sz = nvp->nvp_size;
2711 
2712 	switch (NVP_TYPE(nvp)) {
2713 	case DATA_TYPE_NVLIST: {
2714 		size_t nvsize = 0;
2715 
2716 		if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
2717 			return (EINVAL);
2718 
2719 		nvp_sz += nvsize;
2720 		break;
2721 	}
2722 	case DATA_TYPE_NVLIST_ARRAY: {
2723 		size_t nvsize;
2724 
2725 		if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
2726 			return (EINVAL);
2727 
2728 		nvp_sz += nvsize;
2729 		break;
2730 	}
2731 	default:
2732 		break;
2733 	}
2734 
2735 	if (nvp_sz > INT32_MAX)
2736 		return (EINVAL);
2737 
2738 	*size = nvp_sz;
2739 
2740 	return (0);
2741 }
2742 
2743 static int
nvs_native_nvpair(nvstream_t * nvs,nvpair_t * nvp,size_t * size)2744 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2745 {
2746 	switch (nvs->nvs_op) {
2747 	case NVS_OP_ENCODE:
2748 		return (nvs_native_nvp_op(nvs, nvp));
2749 
2750 	case NVS_OP_DECODE: {
2751 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2752 		int32_t decode_len;
2753 
2754 		/* try to read the size value from the stream */
2755 		if (native->n_curr + sizeof (int32_t) > native->n_end)
2756 			return (EFAULT);
2757 		bcopy(native->n_curr, &decode_len, sizeof (int32_t));
2758 
2759 		/* sanity check the size value */
2760 		if (decode_len < 0 ||
2761 		    decode_len > native->n_end - native->n_curr)
2762 			return (EFAULT);
2763 
2764 		*size = decode_len;
2765 
2766 		/*
2767 		 * If at the end of the stream then move the cursor
2768 		 * forward, otherwise nvpair_native_op() will read
2769 		 * the entire nvpair at the same cursor position.
2770 		 */
2771 		if (*size == 0)
2772 			native->n_curr += sizeof (int32_t);
2773 		break;
2774 	}
2775 
2776 	default:
2777 		return (EINVAL);
2778 	}
2779 
2780 	return (0);
2781 }
2782 
2783 static const nvs_ops_t nvs_native_ops = {
2784 	nvs_native_nvlist,
2785 	nvs_native_nvpair,
2786 	nvs_native_nvp_op,
2787 	nvs_native_nvp_size,
2788 	nvs_native_nvl_fini
2789 };
2790 
2791 static int
nvs_native(nvstream_t * nvs,nvlist_t * nvl,char * buf,size_t * buflen)2792 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
2793 {
2794 	nvs_native_t native;
2795 	int err;
2796 
2797 	nvs->nvs_ops = &nvs_native_ops;
2798 
2799 	if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
2800 	    *buflen - sizeof (nvs_header_t))) != 0)
2801 		return (err);
2802 
2803 	err = nvs_operation(nvs, nvl, buflen);
2804 
2805 	nvs_native_destroy(nvs);
2806 
2807 	return (err);
2808 }
2809 
2810 /*
2811  * XDR encoding functions
2812  *
2813  * An xdr packed nvlist is encoded as:
2814  *
2815  *  - encoding methode and host endian (4 bytes)
2816  *  - nvl_version (4 bytes)
2817  *  - nvl_nvflag (4 bytes)
2818  *
2819  *  - encoded nvpairs, the format of one xdr encoded nvpair is:
2820  *	- encoded size of the nvpair (4 bytes)
2821  *	- decoded size of the nvpair (4 bytes)
2822  *	- name string, (4 + sizeof(NV_ALIGN4(string))
2823  *	  a string is coded as size (4 bytes) and data
2824  *	- data type (4 bytes)
2825  *	- number of elements in the nvpair (4 bytes)
2826  *	- data
2827  *
2828  *  - 2 zero's for end of the entire list (8 bytes)
2829  */
2830 static int
nvs_xdr_create(nvstream_t * nvs,XDR * xdr,char * buf,size_t buflen)2831 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
2832 {
2833 	/* xdr data must be 4 byte aligned */
2834 	if ((ulong_t)buf % 4 != 0)
2835 		return (EFAULT);
2836 
2837 	switch (nvs->nvs_op) {
2838 	case NVS_OP_ENCODE:
2839 		xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
2840 		nvs->nvs_private = xdr;
2841 		return (0);
2842 	case NVS_OP_DECODE:
2843 		xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
2844 		nvs->nvs_private = xdr;
2845 		return (0);
2846 	case NVS_OP_GETSIZE:
2847 		nvs->nvs_private = NULL;
2848 		return (0);
2849 	default:
2850 		return (EINVAL);
2851 	}
2852 }
2853 
2854 static void
nvs_xdr_destroy(nvstream_t * nvs)2855 nvs_xdr_destroy(nvstream_t *nvs)
2856 {
2857 	switch (nvs->nvs_op) {
2858 	case NVS_OP_ENCODE:
2859 	case NVS_OP_DECODE:
2860 		xdr_destroy((XDR *)nvs->nvs_private);
2861 		break;
2862 	default:
2863 		break;
2864 	}
2865 }
2866 
2867 static int
nvs_xdr_nvlist(nvstream_t * nvs,nvlist_t * nvl,size_t * size)2868 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2869 {
2870 	switch (nvs->nvs_op) {
2871 	case NVS_OP_ENCODE:
2872 	case NVS_OP_DECODE: {
2873 		XDR 	*xdr = nvs->nvs_private;
2874 
2875 		if (!xdr_int(xdr, &nvl->nvl_version) ||
2876 		    !xdr_u_int(xdr, &nvl->nvl_nvflag))
2877 			return (EFAULT);
2878 		break;
2879 	}
2880 	case NVS_OP_GETSIZE: {
2881 		/*
2882 		 * 2 * 4 for nvl_version + nvl_nvflag
2883 		 * and 8 for end of the entire list
2884 		 */
2885 		*size += 2 * 4 + 8;
2886 		break;
2887 	}
2888 	default:
2889 		return (EINVAL);
2890 	}
2891 	return (0);
2892 }
2893 
2894 static int
nvs_xdr_nvl_fini(nvstream_t * nvs)2895 nvs_xdr_nvl_fini(nvstream_t *nvs)
2896 {
2897 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2898 		XDR *xdr = nvs->nvs_private;
2899 		int zero = 0;
2900 
2901 		if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
2902 			return (EFAULT);
2903 	}
2904 
2905 	return (0);
2906 }
2907 
2908 /*
2909  * The format of xdr encoded nvpair is:
2910  * encode_size, decode_size, name string, data type, nelem, data
2911  */
2912 static int
nvs_xdr_nvp_op(nvstream_t * nvs,nvpair_t * nvp)2913 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2914 {
2915 	data_type_t type;
2916 	char	*buf;
2917 	char	*buf_end = (char *)nvp + nvp->nvp_size;
2918 	int	value_sz;
2919 	uint_t	nelem, buflen;
2920 	bool_t	ret = FALSE;
2921 	XDR	*xdr = nvs->nvs_private;
2922 
2923 	ASSERT(xdr != NULL && nvp != NULL);
2924 
2925 	/* name string */
2926 	if ((buf = NVP_NAME(nvp)) >= buf_end)
2927 		return (EFAULT);
2928 	buflen = buf_end - buf;
2929 
2930 	if (!xdr_string(xdr, &buf, buflen - 1))
2931 		return (EFAULT);
2932 	nvp->nvp_name_sz = strlen(buf) + 1;
2933 
2934 	/* type and nelem */
2935 	if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
2936 	    !xdr_int(xdr, &nvp->nvp_value_elem))
2937 		return (EFAULT);
2938 
2939 	type = NVP_TYPE(nvp);
2940 	nelem = nvp->nvp_value_elem;
2941 
2942 	/*
2943 	 * Verify type and nelem and get the value size.
2944 	 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2945 	 * is the size of the string(s) excluded.
2946 	 */
2947 	if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
2948 		return (EFAULT);
2949 
2950 	/* if there is no data to extract then return */
2951 	if (nelem == 0)
2952 		return (0);
2953 
2954 	/* value */
2955 	if ((buf = NVP_VALUE(nvp)) >= buf_end)
2956 		return (EFAULT);
2957 	buflen = buf_end - buf;
2958 
2959 	if (buflen < value_sz)
2960 		return (EFAULT);
2961 
2962 	switch (type) {
2963 	case DATA_TYPE_NVLIST:
2964 		if (nvs_embedded(nvs, (void *)buf) == 0)
2965 			return (0);
2966 		break;
2967 
2968 	case DATA_TYPE_NVLIST_ARRAY:
2969 		if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
2970 			return (0);
2971 		break;
2972 
2973 	case DATA_TYPE_BOOLEAN:
2974 		ret = TRUE;
2975 		break;
2976 
2977 	case DATA_TYPE_BYTE:
2978 	case DATA_TYPE_INT8:
2979 	case DATA_TYPE_UINT8:
2980 		ret = xdr_char(xdr, buf);
2981 		break;
2982 
2983 	case DATA_TYPE_INT16:
2984 		ret = xdr_short(xdr, (void *)buf);
2985 		break;
2986 
2987 	case DATA_TYPE_UINT16:
2988 		ret = xdr_u_short(xdr, (void *)buf);
2989 		break;
2990 
2991 	case DATA_TYPE_BOOLEAN_VALUE:
2992 	case DATA_TYPE_INT32:
2993 		ret = xdr_int(xdr, (void *)buf);
2994 		break;
2995 
2996 	case DATA_TYPE_UINT32:
2997 		ret = xdr_u_int(xdr, (void *)buf);
2998 		break;
2999 
3000 	case DATA_TYPE_INT64:
3001 		ret = xdr_longlong_t(xdr, (void *)buf);
3002 		break;
3003 
3004 	case DATA_TYPE_UINT64:
3005 		ret = xdr_u_longlong_t(xdr, (void *)buf);
3006 		break;
3007 
3008 	case DATA_TYPE_HRTIME:
3009 		/*
3010 		 * NOTE: must expose the definition of hrtime_t here
3011 		 */
3012 		ret = xdr_longlong_t(xdr, (void *)buf);
3013 		break;
3014 #if !defined(_KERNEL)
3015 	case DATA_TYPE_DOUBLE:
3016 		ret = xdr_double(xdr, (void *)buf);
3017 		break;
3018 #endif
3019 	case DATA_TYPE_STRING:
3020 		ret = xdr_string(xdr, &buf, buflen - 1);
3021 		break;
3022 
3023 	case DATA_TYPE_BYTE_ARRAY:
3024 		ret = xdr_opaque(xdr, buf, nelem);
3025 		break;
3026 
3027 	case DATA_TYPE_INT8_ARRAY:
3028 	case DATA_TYPE_UINT8_ARRAY:
3029 		ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
3030 		    (xdrproc_t)xdr_char);
3031 		break;
3032 
3033 	case DATA_TYPE_INT16_ARRAY:
3034 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
3035 		    sizeof (int16_t), (xdrproc_t)xdr_short);
3036 		break;
3037 
3038 	case DATA_TYPE_UINT16_ARRAY:
3039 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
3040 		    sizeof (uint16_t), (xdrproc_t)xdr_u_short);
3041 		break;
3042 
3043 	case DATA_TYPE_BOOLEAN_ARRAY:
3044 	case DATA_TYPE_INT32_ARRAY:
3045 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
3046 		    sizeof (int32_t), (xdrproc_t)xdr_int);
3047 		break;
3048 
3049 	case DATA_TYPE_UINT32_ARRAY:
3050 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
3051 		    sizeof (uint32_t), (xdrproc_t)xdr_u_int);
3052 		break;
3053 
3054 	case DATA_TYPE_INT64_ARRAY:
3055 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
3056 		    sizeof (int64_t), (xdrproc_t)xdr_longlong_t);
3057 		break;
3058 
3059 	case DATA_TYPE_UINT64_ARRAY:
3060 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
3061 		    sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t);
3062 		break;
3063 
3064 	case DATA_TYPE_STRING_ARRAY: {
3065 		size_t len = nelem * sizeof (uint64_t);
3066 		char **strp = (void *)buf;
3067 		int i;
3068 
3069 		if (nvs->nvs_op == NVS_OP_DECODE)
3070 			bzero(buf, len);	/* don't trust packed data */
3071 
3072 		for (i = 0; i < nelem; i++) {
3073 			if (buflen <= len)
3074 				return (EFAULT);
3075 
3076 			buf += len;
3077 			buflen -= len;
3078 
3079 			if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
3080 				return (EFAULT);
3081 
3082 			if (nvs->nvs_op == NVS_OP_DECODE)
3083 				strp[i] = buf;
3084 			len = strlen(buf) + 1;
3085 		}
3086 		ret = TRUE;
3087 		break;
3088 	}
3089 	default:
3090 		break;
3091 	}
3092 
3093 	return (ret == TRUE ? 0 : EFAULT);
3094 }
3095 
3096 static int
nvs_xdr_nvp_size(nvstream_t * nvs,nvpair_t * nvp,size_t * size)3097 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3098 {
3099 	data_type_t type = NVP_TYPE(nvp);
3100 	/*
3101 	 * encode_size + decode_size + name string size + data type + nelem
3102 	 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
3103 	 */
3104 	uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
3105 
3106 	switch (type) {
3107 	case DATA_TYPE_BOOLEAN:
3108 		break;
3109 
3110 	case DATA_TYPE_BOOLEAN_VALUE:
3111 	case DATA_TYPE_BYTE:
3112 	case DATA_TYPE_INT8:
3113 	case DATA_TYPE_UINT8:
3114 	case DATA_TYPE_INT16:
3115 	case DATA_TYPE_UINT16:
3116 	case DATA_TYPE_INT32:
3117 	case DATA_TYPE_UINT32:
3118 		nvp_sz += 4;	/* 4 is the minimum xdr unit */
3119 		break;
3120 
3121 	case DATA_TYPE_INT64:
3122 	case DATA_TYPE_UINT64:
3123 	case DATA_TYPE_HRTIME:
3124 #if !defined(_KERNEL)
3125 	case DATA_TYPE_DOUBLE:
3126 #endif
3127 		nvp_sz += 8;
3128 		break;
3129 
3130 	case DATA_TYPE_STRING:
3131 		nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
3132 		break;
3133 
3134 	case DATA_TYPE_BYTE_ARRAY:
3135 		nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
3136 		break;
3137 
3138 	case DATA_TYPE_BOOLEAN_ARRAY:
3139 	case DATA_TYPE_INT8_ARRAY:
3140 	case DATA_TYPE_UINT8_ARRAY:
3141 	case DATA_TYPE_INT16_ARRAY:
3142 	case DATA_TYPE_UINT16_ARRAY:
3143 	case DATA_TYPE_INT32_ARRAY:
3144 	case DATA_TYPE_UINT32_ARRAY:
3145 		nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
3146 		break;
3147 
3148 	case DATA_TYPE_INT64_ARRAY:
3149 	case DATA_TYPE_UINT64_ARRAY:
3150 		nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
3151 		break;
3152 
3153 	case DATA_TYPE_STRING_ARRAY: {
3154 		int i;
3155 		char **strs = (void *)NVP_VALUE(nvp);
3156 
3157 		for (i = 0; i < NVP_NELEM(nvp); i++)
3158 			nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
3159 
3160 		break;
3161 	}
3162 
3163 	case DATA_TYPE_NVLIST:
3164 	case DATA_TYPE_NVLIST_ARRAY: {
3165 		size_t nvsize = 0;
3166 		int old_nvs_op = nvs->nvs_op;
3167 		int err;
3168 
3169 		nvs->nvs_op = NVS_OP_GETSIZE;
3170 		if (type == DATA_TYPE_NVLIST)
3171 			err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
3172 		else
3173 			err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
3174 		nvs->nvs_op = old_nvs_op;
3175 
3176 		if (err != 0)
3177 			return (EINVAL);
3178 
3179 		nvp_sz += nvsize;
3180 		break;
3181 	}
3182 
3183 	default:
3184 		return (EINVAL);
3185 	}
3186 
3187 	if (nvp_sz > INT32_MAX)
3188 		return (EINVAL);
3189 
3190 	*size = nvp_sz;
3191 
3192 	return (0);
3193 }
3194 
3195 
3196 /*
3197  * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
3198  * the largest nvpair that could be encoded in the buffer.
3199  *
3200  * See comments above nvpair_xdr_op() for the format of xdr encoding.
3201  * The size of a xdr packed nvpair without any data is 5 words.
3202  *
3203  * Using the size of the data directly as an estimate would be ok
3204  * in all cases except one.  If the data type is of DATA_TYPE_STRING_ARRAY
3205  * then the actual nvpair has space for an array of pointers to index
3206  * the strings.  These pointers are not encoded into the packed xdr buffer.
3207  *
3208  * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
3209  * of length 0, then each string is endcoded in xdr format as a single word.
3210  * Therefore when expanded to an nvpair there will be 2.25 word used for
3211  * each string.  (a int64_t allocated for pointer usage, and a single char
3212  * for the null termination.)
3213  *
3214  * This is the calculation performed by the NVS_XDR_MAX_LEN macro.
3215  */
3216 #define	NVS_XDR_HDR_LEN		((size_t)(5 * 4))
3217 #define	NVS_XDR_DATA_LEN(y)	(((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
3218 					0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
3219 #define	NVS_XDR_MAX_LEN(x)	(NVP_SIZE_CALC(1, 0) + \
3220 					(NVS_XDR_DATA_LEN(x) * 2) + \
3221 					NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
3222 
3223 static int
nvs_xdr_nvpair(nvstream_t * nvs,nvpair_t * nvp,size_t * size)3224 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3225 {
3226 	XDR 	*xdr = nvs->nvs_private;
3227 	int32_t	encode_len, decode_len;
3228 
3229 	switch (nvs->nvs_op) {
3230 	case NVS_OP_ENCODE: {
3231 		size_t nvsize;
3232 
3233 		if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
3234 			return (EFAULT);
3235 
3236 		decode_len = nvp->nvp_size;
3237 		encode_len = nvsize;
3238 		if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3239 			return (EFAULT);
3240 
3241 		return (nvs_xdr_nvp_op(nvs, nvp));
3242 	}
3243 	case NVS_OP_DECODE: {
3244 		struct xdr_bytesrec bytesrec;
3245 
3246 		/* get the encode and decode size */
3247 		if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3248 			return (EFAULT);
3249 		*size = decode_len;
3250 
3251 		/* are we at the end of the stream? */
3252 		if (*size == 0)
3253 			return (0);
3254 
3255 		/* sanity check the size parameter */
3256 		if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
3257 			return (EFAULT);
3258 
3259 		if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
3260 			return (EFAULT);
3261 		break;
3262 	}
3263 
3264 	default:
3265 		return (EINVAL);
3266 	}
3267 	return (0);
3268 }
3269 
3270 static const struct nvs_ops nvs_xdr_ops = {
3271 	nvs_xdr_nvlist,
3272 	nvs_xdr_nvpair,
3273 	nvs_xdr_nvp_op,
3274 	nvs_xdr_nvp_size,
3275 	nvs_xdr_nvl_fini
3276 };
3277 
3278 static int
nvs_xdr(nvstream_t * nvs,nvlist_t * nvl,char * buf,size_t * buflen)3279 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3280 {
3281 	XDR xdr;
3282 	int err;
3283 
3284 	nvs->nvs_ops = &nvs_xdr_ops;
3285 
3286 	if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
3287 	    *buflen - sizeof (nvs_header_t))) != 0)
3288 		return (err);
3289 
3290 	err = nvs_operation(nvs, nvl, buflen);
3291 
3292 	nvs_xdr_destroy(nvs);
3293 
3294 	return (err);
3295 }
3296