1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 Chelsio Communications, Inc.
5 * All rights reserved.
6 * Written by: Navdeep Parhar <np@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_kern_tls.h"
35 #include "opt_ratelimit.h"
36 #include "opt_rss.h"
37
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/priv.h>
41 #include <sys/kernel.h>
42 #include <sys/bus.h>
43 #include <sys/eventhandler.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <sys/firmware.h>
51 #include <sys/sbuf.h>
52 #include <sys/smp.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/sysctl.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_types.h>
59 #include <net/if_dl.h>
60 #include <net/if_vlan_var.h>
61 #ifdef RSS
62 #include <net/rss_config.h>
63 #endif
64 #include <netinet/in.h>
65 #include <netinet/ip.h>
66 #ifdef KERN_TLS
67 #include <netinet/tcp_seq.h>
68 #endif
69 #if defined(__i386__) || defined(__amd64__)
70 #include <machine/md_var.h>
71 #include <machine/cputypes.h>
72 #include <vm/vm.h>
73 #include <vm/pmap.h>
74 #endif
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #include <ddb/db_lex.h>
78 #endif
79
80 #include "common/common.h"
81 #include "common/t4_msg.h"
82 #include "common/t4_regs.h"
83 #include "common/t4_regs_values.h"
84 #include "cudbg/cudbg.h"
85 #include "t4_clip.h"
86 #include "t4_ioctl.h"
87 #include "t4_l2t.h"
88 #include "t4_mp_ring.h"
89 #include "t4_if.h"
90 #include "t4_smt.h"
91
92 /* T4 bus driver interface */
93 static int t4_probe(device_t);
94 static int t4_attach(device_t);
95 static int t4_detach(device_t);
96 static int t4_child_location(device_t, device_t, struct sbuf *);
97 static int t4_ready(device_t);
98 static int t4_read_port_device(device_t, int, device_t *);
99 static int t4_suspend(device_t);
100 static int t4_resume(device_t);
101 static int t4_reset_prepare(device_t, device_t);
102 static int t4_reset_post(device_t, device_t);
103 static device_method_t t4_methods[] = {
104 DEVMETHOD(device_probe, t4_probe),
105 DEVMETHOD(device_attach, t4_attach),
106 DEVMETHOD(device_detach, t4_detach),
107 DEVMETHOD(device_suspend, t4_suspend),
108 DEVMETHOD(device_resume, t4_resume),
109
110 DEVMETHOD(bus_child_location, t4_child_location),
111 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
112 DEVMETHOD(bus_reset_post, t4_reset_post),
113
114 DEVMETHOD(t4_is_main_ready, t4_ready),
115 DEVMETHOD(t4_read_port_device, t4_read_port_device),
116
117 DEVMETHOD_END
118 };
119 static driver_t t4_driver = {
120 "t4nex",
121 t4_methods,
122 sizeof(struct adapter)
123 };
124
125
126 /* T4 port (cxgbe) interface */
127 static int cxgbe_probe(device_t);
128 static int cxgbe_attach(device_t);
129 static int cxgbe_detach(device_t);
130 device_method_t cxgbe_methods[] = {
131 DEVMETHOD(device_probe, cxgbe_probe),
132 DEVMETHOD(device_attach, cxgbe_attach),
133 DEVMETHOD(device_detach, cxgbe_detach),
134 { 0, 0 }
135 };
136 static driver_t cxgbe_driver = {
137 "cxgbe",
138 cxgbe_methods,
139 sizeof(struct port_info)
140 };
141
142 /* T4 VI (vcxgbe) interface */
143 static int vcxgbe_probe(device_t);
144 static int vcxgbe_attach(device_t);
145 static int vcxgbe_detach(device_t);
146 static device_method_t vcxgbe_methods[] = {
147 DEVMETHOD(device_probe, vcxgbe_probe),
148 DEVMETHOD(device_attach, vcxgbe_attach),
149 DEVMETHOD(device_detach, vcxgbe_detach),
150 { 0, 0 }
151 };
152 static driver_t vcxgbe_driver = {
153 "vcxgbe",
154 vcxgbe_methods,
155 sizeof(struct vi_info)
156 };
157
158 static d_ioctl_t t4_ioctl;
159
160 static struct cdevsw t4_cdevsw = {
161 .d_version = D_VERSION,
162 .d_ioctl = t4_ioctl,
163 .d_name = "t4nex",
164 };
165
166 /* T5 bus driver interface */
167 static int t5_probe(device_t);
168 static device_method_t t5_methods[] = {
169 DEVMETHOD(device_probe, t5_probe),
170 DEVMETHOD(device_attach, t4_attach),
171 DEVMETHOD(device_detach, t4_detach),
172 DEVMETHOD(device_suspend, t4_suspend),
173 DEVMETHOD(device_resume, t4_resume),
174
175 DEVMETHOD(bus_child_location, t4_child_location),
176 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
177 DEVMETHOD(bus_reset_post, t4_reset_post),
178
179 DEVMETHOD(t4_is_main_ready, t4_ready),
180 DEVMETHOD(t4_read_port_device, t4_read_port_device),
181
182 DEVMETHOD_END
183 };
184 static driver_t t5_driver = {
185 "t5nex",
186 t5_methods,
187 sizeof(struct adapter)
188 };
189
190
191 /* T5 port (cxl) interface */
192 static driver_t cxl_driver = {
193 "cxl",
194 cxgbe_methods,
195 sizeof(struct port_info)
196 };
197
198 /* T5 VI (vcxl) interface */
199 static driver_t vcxl_driver = {
200 "vcxl",
201 vcxgbe_methods,
202 sizeof(struct vi_info)
203 };
204
205 /* T6 bus driver interface */
206 static int t6_probe(device_t);
207 static device_method_t t6_methods[] = {
208 DEVMETHOD(device_probe, t6_probe),
209 DEVMETHOD(device_attach, t4_attach),
210 DEVMETHOD(device_detach, t4_detach),
211 DEVMETHOD(device_suspend, t4_suspend),
212 DEVMETHOD(device_resume, t4_resume),
213
214 DEVMETHOD(bus_child_location, t4_child_location),
215 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
216 DEVMETHOD(bus_reset_post, t4_reset_post),
217
218 DEVMETHOD(t4_is_main_ready, t4_ready),
219 DEVMETHOD(t4_read_port_device, t4_read_port_device),
220
221 DEVMETHOD_END
222 };
223 static driver_t t6_driver = {
224 "t6nex",
225 t6_methods,
226 sizeof(struct adapter)
227 };
228
229
230 /* T6 port (cc) interface */
231 static driver_t cc_driver = {
232 "cc",
233 cxgbe_methods,
234 sizeof(struct port_info)
235 };
236
237 /* T6 VI (vcc) interface */
238 static driver_t vcc_driver = {
239 "vcc",
240 vcxgbe_methods,
241 sizeof(struct vi_info)
242 };
243
244 /* ifnet interface */
245 static void cxgbe_init(void *);
246 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
247 static int cxgbe_transmit(if_t, struct mbuf *);
248 static void cxgbe_qflush(if_t);
249 #if defined(KERN_TLS) || defined(RATELIMIT)
250 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
251 struct m_snd_tag **);
252 #endif
253
254 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
255
256 /*
257 * Correct lock order when you need to acquire multiple locks is t4_list_lock,
258 * then ADAPTER_LOCK, then t4_uld_list_lock.
259 */
260 static struct sx t4_list_lock;
261 SLIST_HEAD(, adapter) t4_list;
262 #ifdef TCP_OFFLOAD
263 static struct sx t4_uld_list_lock;
264 struct uld_info *t4_uld_list[ULD_MAX + 1];
265 #endif
266
267 /*
268 * Tunables. See tweak_tunables() too.
269 *
270 * Each tunable is set to a default value here if it's known at compile-time.
271 * Otherwise it is set to -n as an indication to tweak_tunables() that it should
272 * provide a reasonable default (upto n) when the driver is loaded.
273 *
274 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to
275 * T5 are under hw.cxl.
276 */
277 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
278 "cxgbe(4) parameters");
279 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
280 "cxgbe(4) T5+ parameters");
281 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282 "cxgbe(4) TOE parameters");
283
284 /*
285 * Number of queues for tx and rx, NIC and offload.
286 */
287 #define NTXQ 16
288 int t4_ntxq = -NTXQ;
289 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
290 "Number of TX queues per port");
291 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */
292
293 #define NRXQ 8
294 int t4_nrxq = -NRXQ;
295 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
296 "Number of RX queues per port");
297 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */
298
299 #define NTXQ_VI 1
300 static int t4_ntxq_vi = -NTXQ_VI;
301 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
302 "Number of TX queues per VI");
303
304 #define NRXQ_VI 1
305 static int t4_nrxq_vi = -NRXQ_VI;
306 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
307 "Number of RX queues per VI");
308
309 static int t4_rsrv_noflowq = 0;
310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
311 0, "Reserve TX queue 0 of each VI for non-flowid packets");
312
313 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
314 #define NOFLDTXQ 8
315 static int t4_nofldtxq = -NOFLDTXQ;
316 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
317 "Number of offload TX queues per port");
318
319 #define NOFLDTXQ_VI 1
320 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
321 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
322 "Number of offload TX queues per VI");
323 #endif
324
325 #if defined(TCP_OFFLOAD)
326 #define NOFLDRXQ 2
327 static int t4_nofldrxq = -NOFLDRXQ;
328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
329 "Number of offload RX queues per port");
330
331 #define NOFLDRXQ_VI 1
332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
334 "Number of offload RX queues per VI");
335
336 #define TMR_IDX_OFLD 1
337 static int t4_tmr_idx_ofld = TMR_IDX_OFLD;
338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
339 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
340
341 #define PKTC_IDX_OFLD (-1)
342 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
344 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
345
346 /* 0 means chip/fw default, non-zero number is value in microseconds */
347 static u_long t4_toe_keepalive_idle = 0;
348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
349 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
350
351 /* 0 means chip/fw default, non-zero number is value in microseconds */
352 static u_long t4_toe_keepalive_interval = 0;
353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
354 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
355
356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
357 static int t4_toe_keepalive_count = 0;
358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
359 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
360
361 /* 0 means chip/fw default, non-zero number is value in microseconds */
362 static u_long t4_toe_rexmt_min = 0;
363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
364 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
365
366 /* 0 means chip/fw default, non-zero number is value in microseconds */
367 static u_long t4_toe_rexmt_max = 0;
368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
369 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
370
371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
372 static int t4_toe_rexmt_count = 0;
373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
374 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
375
376 /* -1 means chip/fw default, other values are raw backoff values to use */
377 static int t4_toe_rexmt_backoff[16] = {
378 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
379 };
380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
381 CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
382 "cxgbe(4) TOE retransmit backoff values");
383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
384 &t4_toe_rexmt_backoff[0], 0, "");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
386 &t4_toe_rexmt_backoff[1], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
388 &t4_toe_rexmt_backoff[2], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
390 &t4_toe_rexmt_backoff[3], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
392 &t4_toe_rexmt_backoff[4], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
394 &t4_toe_rexmt_backoff[5], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
396 &t4_toe_rexmt_backoff[6], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
398 &t4_toe_rexmt_backoff[7], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
400 &t4_toe_rexmt_backoff[8], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
402 &t4_toe_rexmt_backoff[9], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
404 &t4_toe_rexmt_backoff[10], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
406 &t4_toe_rexmt_backoff[11], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
408 &t4_toe_rexmt_backoff[12], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
410 &t4_toe_rexmt_backoff[13], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
412 &t4_toe_rexmt_backoff[14], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
414 &t4_toe_rexmt_backoff[15], 0, "");
415
416 int t4_ddp_rcvbuf_len = 256 * 1024;
417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
418 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
419
420 unsigned int t4_ddp_rcvbuf_cache = 4;
421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
422 &t4_ddp_rcvbuf_cache, 0,
423 "maximum number of free DDP RX buffers to cache per connection");
424 #endif
425
426 #ifdef DEV_NETMAP
427 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */
428 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */
429 static int t4_native_netmap = NN_EXTRA_VI;
430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
431 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs");
432
433 #define NNMTXQ 8
434 static int t4_nnmtxq = -NNMTXQ;
435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
436 "Number of netmap TX queues");
437
438 #define NNMRXQ 8
439 static int t4_nnmrxq = -NNMRXQ;
440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
441 "Number of netmap RX queues");
442
443 #define NNMTXQ_VI 2
444 static int t4_nnmtxq_vi = -NNMTXQ_VI;
445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
446 "Number of netmap TX queues per VI");
447
448 #define NNMRXQ_VI 2
449 static int t4_nnmrxq_vi = -NNMRXQ_VI;
450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
451 "Number of netmap RX queues per VI");
452 #endif
453
454 /*
455 * Holdoff parameters for ports.
456 */
457 #define TMR_IDX 1
458 int t4_tmr_idx = TMR_IDX;
459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
460 0, "Holdoff timer index");
461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */
462
463 #define PKTC_IDX (-1)
464 int t4_pktc_idx = PKTC_IDX;
465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
466 0, "Holdoff packet counter index");
467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */
468
469 /*
470 * Size (# of entries) of each tx and rx queue.
471 */
472 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
474 "Number of descriptors in each TX queue");
475
476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
478 "Number of descriptors in each RX queue");
479
480 /*
481 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
482 */
483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
485 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
486
487 /*
488 * Configuration file. All the _CF names here are special.
489 */
490 #define DEFAULT_CF "default"
491 #define BUILTIN_CF "built-in"
492 #define FLASH_CF "flash"
493 #define UWIRE_CF "uwire"
494 #define FPGA_CF "fpga"
495 static char t4_cfg_file[32] = DEFAULT_CF;
496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
497 sizeof(t4_cfg_file), "Firmware configuration file");
498
499 /*
500 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
501 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
502 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
503 * mark or when signalled to do so, 0 to never emit PAUSE.
504 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
505 * negotiated settings will override rx_pause/tx_pause.
506 * Otherwise rx_pause/tx_pause are applied forcibly.
507 */
508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
510 &t4_pause_settings, 0,
511 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
512
513 /*
514 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
515 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5)
516 * 0 to disable FEC.
517 */
518 static int t4_fec = -1;
519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
520 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
521
522 /*
523 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
524 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the
525 * driver runs as if this is set to 0.
526 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
527 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
528 * transceiver. Multiple FEC bits may not be okay but will be passed on to
529 * the firmware anyway (may result in l1cfg errors with old firmwares).
530 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
531 * means set all FEC bits that are valid for the speed.
532 */
533 static int t4_force_fec = -1;
534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
535 "Controls the use of FORCE_FEC bit in L1 configuration.");
536
537 /*
538 * Link autonegotiation.
539 * -1 to run with the firmware default.
540 * 0 to disable.
541 * 1 to enable.
542 */
543 static int t4_autoneg = -1;
544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
545 "Link autonegotiation");
546
547 /*
548 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
549 * encouraged respectively). '-n' is the same as 'n' except the firmware
550 * version used in the checks is read from the firmware bundled with the driver.
551 */
552 static int t4_fw_install = 1;
553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
554 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
555
556 /*
557 * ASIC features that will be used. Disable the ones you don't want so that the
558 * chip resources aren't wasted on features that will not be used.
559 */
560 static int t4_nbmcaps_allowed = 0;
561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
562 &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
563
564 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */
565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
566 &t4_linkcaps_allowed, 0, "Default link capabilities");
567
568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
569 FW_CAPS_CONFIG_SWITCH_EGRESS;
570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
571 &t4_switchcaps_allowed, 0, "Default switch capabilities");
572
573 #ifdef RATELIMIT
574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
575 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
576 #else
577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
578 FW_CAPS_CONFIG_NIC_HASHFILTER;
579 #endif
580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
581 &t4_niccaps_allowed, 0, "Default NIC capabilities");
582
583 static int t4_toecaps_allowed = -1;
584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
585 &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
586
587 static int t4_rdmacaps_allowed = -1;
588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
589 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
590
591 static int t4_cryptocaps_allowed = -1;
592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
593 &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
594
595 static int t4_iscsicaps_allowed = -1;
596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
597 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
598
599 static int t4_fcoecaps_allowed = 0;
600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
601 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
602
603 static int t5_write_combine = 0;
604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
605 0, "Use WC instead of UC for BAR2");
606
607 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
608 static int t4_doorbells_allowed = 0xf;
609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
610 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
611
612 static int t4_num_vis = 1;
613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
614 "Number of VIs per port");
615
616 /*
617 * PCIe Relaxed Ordering.
618 * -1: driver should figure out a good value.
619 * 0: disable RO.
620 * 1: enable RO.
621 * 2: leave RO alone.
622 */
623 static int pcie_relaxed_ordering = -1;
624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
625 &pcie_relaxed_ordering, 0,
626 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
627
628 static int t4_panic_on_fatal_err = 0;
629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
630 &t4_panic_on_fatal_err, 0, "panic on fatal errors");
631
632 static int t4_reset_on_fatal_err = 0;
633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
634 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
635
636 static int t4_reset_method = 1;
637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method,
638 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce");
639
640 static int t4_clock_gate_on_suspend = 0;
641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
642 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
643
644 static int t4_tx_vm_wr = 0;
645 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
646 "Use VM work requests to transmit packets.");
647
648 /*
649 * Set to non-zero to enable the attack filter. A packet that matches any of
650 * these conditions will get dropped on ingress:
651 * 1) IP && source address == destination address.
652 * 2) TCP/IP && source address is not a unicast address.
653 * 3) TCP/IP && destination address is not a unicast address.
654 * 4) IP && source address is loopback (127.x.y.z).
655 * 5) IP && destination address is loopback (127.x.y.z).
656 * 6) IPv6 && source address == destination address.
657 * 7) IPv6 && source address is not a unicast address.
658 * 8) IPv6 && source address is loopback (::1/128).
659 * 9) IPv6 && destination address is loopback (::1/128).
660 * 10) IPv6 && source address is unspecified (::/128).
661 * 11) IPv6 && destination address is unspecified (::/128).
662 * 12) TCP/IPv6 && source address is multicast (ff00::/8).
663 * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
664 */
665 static int t4_attack_filter = 0;
666 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
667 &t4_attack_filter, 0, "Drop suspicious traffic");
668
669 static int t4_drop_ip_fragments = 0;
670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
671 &t4_drop_ip_fragments, 0, "Drop IP fragments");
672
673 static int t4_drop_pkts_with_l2_errors = 1;
674 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
675 &t4_drop_pkts_with_l2_errors, 0,
676 "Drop all frames with Layer 2 length or checksum errors");
677
678 static int t4_drop_pkts_with_l3_errors = 0;
679 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
680 &t4_drop_pkts_with_l3_errors, 0,
681 "Drop all frames with IP version, length, or checksum errors");
682
683 static int t4_drop_pkts_with_l4_errors = 0;
684 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
685 &t4_drop_pkts_with_l4_errors, 0,
686 "Drop all frames with Layer 4 length, checksum, or other errors");
687
688 #ifdef TCP_OFFLOAD
689 /*
690 * TOE tunables.
691 */
692 static int t4_cop_managed_offloading = 0;
693 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
694 &t4_cop_managed_offloading, 0,
695 "COP (Connection Offload Policy) controls all TOE offload");
696 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
697 #endif
698
699 #ifdef KERN_TLS
700 /*
701 * This enables KERN_TLS for all adapters if set.
702 */
703 static int t4_kern_tls = 0;
704 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
705 "Enable KERN_TLS mode for T6 adapters");
706
707 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
708 "cxgbe(4) KERN_TLS parameters");
709
710 static int t4_tls_inline_keys = 0;
711 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
712 &t4_tls_inline_keys, 0,
713 "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
714 "in card memory.");
715
716 static int t4_tls_combo_wrs = 0;
717 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
718 0, "Attempt to combine TCB field updates with TLS record work requests.");
719 #endif
720
721 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
722 static int vi_mac_funcs[] = {
723 FW_VI_FUNC_ETH,
724 FW_VI_FUNC_OFLD,
725 FW_VI_FUNC_IWARP,
726 FW_VI_FUNC_OPENISCSI,
727 FW_VI_FUNC_OPENFCOE,
728 FW_VI_FUNC_FOISCSI,
729 FW_VI_FUNC_FOFCOE,
730 };
731
732 struct intrs_and_queues {
733 uint16_t intr_type; /* INTx, MSI, or MSI-X */
734 uint16_t num_vis; /* number of VIs for each port */
735 uint16_t nirq; /* Total # of vectors */
736 uint16_t ntxq; /* # of NIC txq's for each port */
737 uint16_t nrxq; /* # of NIC rxq's for each port */
738 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */
739 uint16_t nofldrxq; /* # of TOE rxq's for each port */
740 uint16_t nnmtxq; /* # of netmap txq's */
741 uint16_t nnmrxq; /* # of netmap rxq's */
742
743 /* The vcxgbe/vcxl interfaces use these and not the ones above. */
744 uint16_t ntxq_vi; /* # of NIC txq's */
745 uint16_t nrxq_vi; /* # of NIC rxq's */
746 uint16_t nofldtxq_vi; /* # of TOE txq's */
747 uint16_t nofldrxq_vi; /* # of TOE rxq's */
748 uint16_t nnmtxq_vi; /* # of netmap txq's */
749 uint16_t nnmrxq_vi; /* # of netmap rxq's */
750 };
751
752 static void setup_memwin(struct adapter *);
753 static void position_memwin(struct adapter *, int, uint32_t);
754 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
755 static int fwmtype_to_hwmtype(int);
756 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
757 uint32_t *);
758 static int fixup_devlog_params(struct adapter *);
759 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
760 static int contact_firmware(struct adapter *);
761 static int partition_resources(struct adapter *);
762 static int get_params__pre_init(struct adapter *);
763 static int set_params__pre_init(struct adapter *);
764 static int get_params__post_init(struct adapter *);
765 static int set_params__post_init(struct adapter *);
766 static void t4_set_desc(struct adapter *);
767 static bool fixed_ifmedia(struct port_info *);
768 static void build_medialist(struct port_info *);
769 static void init_link_config(struct port_info *);
770 static int fixup_link_config(struct port_info *);
771 static int apply_link_config(struct port_info *);
772 static int cxgbe_init_synchronized(struct vi_info *);
773 static int cxgbe_uninit_synchronized(struct vi_info *);
774 static int adapter_full_init(struct adapter *);
775 static void adapter_full_uninit(struct adapter *);
776 static int vi_full_init(struct vi_info *);
777 static void vi_full_uninit(struct vi_info *);
778 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
779 static void quiesce_txq(struct sge_txq *);
780 static void quiesce_wrq(struct sge_wrq *);
781 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
782 static void quiesce_vi(struct vi_info *);
783 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
784 driver_intr_t *, void *, char *);
785 static int t4_free_irq(struct adapter *, struct irq *);
786 static void t4_init_atid_table(struct adapter *);
787 static void t4_free_atid_table(struct adapter *);
788 static void stop_atid_allocator(struct adapter *);
789 static void restart_atid_allocator(struct adapter *);
790 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
791 static void vi_refresh_stats(struct vi_info *);
792 static void cxgbe_refresh_stats(struct vi_info *);
793 static void cxgbe_tick(void *);
794 static void vi_tick(void *);
795 static void cxgbe_sysctls(struct port_info *);
796 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
797 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
798 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
799 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
800 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
801 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
802 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
803 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
804 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
805 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
806 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
807 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
808 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
809 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
810 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
811 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
812 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
813 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
814 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
815 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
816 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
817 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
818 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
819 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
820 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
821 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
822 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
823 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
824 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
825 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
826 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
827 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
828 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
829 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
830 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
831 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
832 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
833 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
834 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
835 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
836 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
837 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
838 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
839 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
840 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
841 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
842 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
843 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
844 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
845 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
846 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
847 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
848 #ifdef TCP_OFFLOAD
849 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
850 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
851 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
852 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
853 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
854 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
855 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
856 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
857 #endif
858 static int get_sge_context(struct adapter *, struct t4_sge_context *);
859 static int load_fw(struct adapter *, struct t4_data *);
860 static int load_cfg(struct adapter *, struct t4_data *);
861 static int load_boot(struct adapter *, struct t4_bootrom *);
862 static int load_bootcfg(struct adapter *, struct t4_data *);
863 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
864 static void free_offload_policy(struct t4_offload_policy *);
865 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
866 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
867 static int read_i2c(struct adapter *, struct t4_i2c_data *);
868 static int clear_stats(struct adapter *, u_int);
869 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
870 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
871 static inline int stop_adapter(struct adapter *);
872 static inline void set_adapter_hwstatus(struct adapter *, const bool);
873 static int stop_lld(struct adapter *);
874 static inline int restart_adapter(struct adapter *);
875 static int restart_lld(struct adapter *);
876 #ifdef TCP_OFFLOAD
877 static int deactivate_all_uld(struct adapter *);
878 static void stop_all_uld(struct adapter *);
879 static void restart_all_uld(struct adapter *);
880 #endif
881 #ifdef KERN_TLS
882 static int ktls_capability(struct adapter *, bool);
883 #endif
884 static int mod_event(module_t, int, void *);
885 static int notify_siblings(device_t, int);
886 static uint64_t vi_get_counter(if_t, ift_counter);
887 static uint64_t cxgbe_get_counter(if_t, ift_counter);
888 static void enable_vxlan_rx(struct adapter *);
889 static void reset_adapter_task(void *, int);
890 static void fatal_error_task(void *, int);
891 static void dump_devlog(struct adapter *);
892 static void dump_cim_regs(struct adapter *);
893 static void dump_cimla(struct adapter *);
894
895 struct {
896 uint16_t device;
897 char *desc;
898 } t4_pciids[] = {
899 {0xa000, "Chelsio Terminator 4 FPGA"},
900 {0x4400, "Chelsio T440-dbg"},
901 {0x4401, "Chelsio T420-CR"},
902 {0x4402, "Chelsio T422-CR"},
903 {0x4403, "Chelsio T440-CR"},
904 {0x4404, "Chelsio T420-BCH"},
905 {0x4405, "Chelsio T440-BCH"},
906 {0x4406, "Chelsio T440-CH"},
907 {0x4407, "Chelsio T420-SO"},
908 {0x4408, "Chelsio T420-CX"},
909 {0x4409, "Chelsio T420-BT"},
910 {0x440a, "Chelsio T404-BT"},
911 {0x440e, "Chelsio T440-LP-CR"},
912 }, t5_pciids[] = {
913 {0xb000, "Chelsio Terminator 5 FPGA"},
914 {0x5400, "Chelsio T580-dbg"},
915 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */
916 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */
917 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */
918 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */
919 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */
920 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */
921 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */
922 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */
923 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */
924 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */
925 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */
926 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */
927 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */
928 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */
929 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */
930 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */
931 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */
932
933 /* Custom */
934 {0x5483, "Custom T540-CR"},
935 {0x5484, "Custom T540-BT"},
936 }, t6_pciids[] = {
937 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */
938 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */
939 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */
940 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */
941 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */
942 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */
943 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */
944 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */
945 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */
946 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */
947 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */
948 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */
949 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */
950 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */
951 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */
952 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */
953
954 /* Custom */
955 {0x6480, "Custom T6225-CR"},
956 {0x6481, "Custom T62100-CR"},
957 {0x6482, "Custom T6225-CR"},
958 {0x6483, "Custom T62100-CR"},
959 {0x6484, "Custom T64100-CR"},
960 {0x6485, "Custom T6240-SO"},
961 {0x6486, "Custom T6225-SO-CR"},
962 {0x6487, "Custom T6225-CR"},
963 };
964
965 #ifdef TCP_OFFLOAD
966 /*
967 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should
968 * be exactly the same for both rxq and ofld_rxq.
969 */
970 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
971 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
972 #endif
973 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
974
975 static int
t4_probe(device_t dev)976 t4_probe(device_t dev)
977 {
978 int i;
979 uint16_t v = pci_get_vendor(dev);
980 uint16_t d = pci_get_device(dev);
981 uint8_t f = pci_get_function(dev);
982
983 if (v != PCI_VENDOR_ID_CHELSIO)
984 return (ENXIO);
985
986 /* Attach only to PF0 of the FPGA */
987 if (d == 0xa000 && f != 0)
988 return (ENXIO);
989
990 for (i = 0; i < nitems(t4_pciids); i++) {
991 if (d == t4_pciids[i].device) {
992 device_set_desc(dev, t4_pciids[i].desc);
993 return (BUS_PROBE_DEFAULT);
994 }
995 }
996
997 return (ENXIO);
998 }
999
1000 static int
t5_probe(device_t dev)1001 t5_probe(device_t dev)
1002 {
1003 int i;
1004 uint16_t v = pci_get_vendor(dev);
1005 uint16_t d = pci_get_device(dev);
1006 uint8_t f = pci_get_function(dev);
1007
1008 if (v != PCI_VENDOR_ID_CHELSIO)
1009 return (ENXIO);
1010
1011 /* Attach only to PF0 of the FPGA */
1012 if (d == 0xb000 && f != 0)
1013 return (ENXIO);
1014
1015 for (i = 0; i < nitems(t5_pciids); i++) {
1016 if (d == t5_pciids[i].device) {
1017 device_set_desc(dev, t5_pciids[i].desc);
1018 return (BUS_PROBE_DEFAULT);
1019 }
1020 }
1021
1022 return (ENXIO);
1023 }
1024
1025 static int
t6_probe(device_t dev)1026 t6_probe(device_t dev)
1027 {
1028 int i;
1029 uint16_t v = pci_get_vendor(dev);
1030 uint16_t d = pci_get_device(dev);
1031
1032 if (v != PCI_VENDOR_ID_CHELSIO)
1033 return (ENXIO);
1034
1035 for (i = 0; i < nitems(t6_pciids); i++) {
1036 if (d == t6_pciids[i].device) {
1037 device_set_desc(dev, t6_pciids[i].desc);
1038 return (BUS_PROBE_DEFAULT);
1039 }
1040 }
1041
1042 return (ENXIO);
1043 }
1044
1045 static void
t5_attribute_workaround(device_t dev)1046 t5_attribute_workaround(device_t dev)
1047 {
1048 device_t root_port;
1049 uint32_t v;
1050
1051 /*
1052 * The T5 chips do not properly echo the No Snoop and Relaxed
1053 * Ordering attributes when replying to a TLP from a Root
1054 * Port. As a workaround, find the parent Root Port and
1055 * disable No Snoop and Relaxed Ordering. Note that this
1056 * affects all devices under this root port.
1057 */
1058 root_port = pci_find_pcie_root_port(dev);
1059 if (root_port == NULL) {
1060 device_printf(dev, "Unable to find parent root port\n");
1061 return;
1062 }
1063
1064 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1065 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1066 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1067 0)
1068 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1069 device_get_nameunit(root_port));
1070 }
1071
1072 static const struct devnames devnames[] = {
1073 {
1074 .nexus_name = "t4nex",
1075 .ifnet_name = "cxgbe",
1076 .vi_ifnet_name = "vcxgbe",
1077 .pf03_drv_name = "t4iov",
1078 .vf_nexus_name = "t4vf",
1079 .vf_ifnet_name = "cxgbev"
1080 }, {
1081 .nexus_name = "t5nex",
1082 .ifnet_name = "cxl",
1083 .vi_ifnet_name = "vcxl",
1084 .pf03_drv_name = "t5iov",
1085 .vf_nexus_name = "t5vf",
1086 .vf_ifnet_name = "cxlv"
1087 }, {
1088 .nexus_name = "t6nex",
1089 .ifnet_name = "cc",
1090 .vi_ifnet_name = "vcc",
1091 .pf03_drv_name = "t6iov",
1092 .vf_nexus_name = "t6vf",
1093 .vf_ifnet_name = "ccv"
1094 }
1095 };
1096
1097 void
t4_init_devnames(struct adapter * sc)1098 t4_init_devnames(struct adapter *sc)
1099 {
1100 int id;
1101
1102 id = chip_id(sc);
1103 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1104 sc->names = &devnames[id - CHELSIO_T4];
1105 else {
1106 device_printf(sc->dev, "chip id %d is not supported.\n", id);
1107 sc->names = NULL;
1108 }
1109 }
1110
1111 static int
t4_ifnet_unit(struct adapter * sc,struct port_info * pi)1112 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1113 {
1114 const char *parent, *name;
1115 long value;
1116 int line, unit;
1117
1118 line = 0;
1119 parent = device_get_nameunit(sc->dev);
1120 name = sc->names->ifnet_name;
1121 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1122 if (resource_long_value(name, unit, "port", &value) == 0 &&
1123 value == pi->port_id)
1124 return (unit);
1125 }
1126 return (-1);
1127 }
1128
1129 static void
t4_calibration(void * arg)1130 t4_calibration(void *arg)
1131 {
1132 struct adapter *sc;
1133 struct clock_sync *cur, *nex;
1134 uint64_t hw;
1135 sbintime_t sbt;
1136 int next_up;
1137
1138 sc = (struct adapter *)arg;
1139
1140 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration"));
1141 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1142 sbt = sbinuptime();
1143
1144 cur = &sc->cal_info[sc->cal_current];
1145 next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1146 nex = &sc->cal_info[next_up];
1147 if (__predict_false(sc->cal_count == 0)) {
1148 /* First time in, just get the values in */
1149 cur->hw_cur = hw;
1150 cur->sbt_cur = sbt;
1151 sc->cal_count++;
1152 goto done;
1153 }
1154
1155 if (cur->hw_cur == hw) {
1156 /* The clock is not advancing? */
1157 sc->cal_count = 0;
1158 atomic_store_rel_int(&cur->gen, 0);
1159 goto done;
1160 }
1161
1162 seqc_write_begin(&nex->gen);
1163 nex->hw_prev = cur->hw_cur;
1164 nex->sbt_prev = cur->sbt_cur;
1165 nex->hw_cur = hw;
1166 nex->sbt_cur = sbt;
1167 seqc_write_end(&nex->gen);
1168 sc->cal_current = next_up;
1169 done:
1170 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1171 sc, C_DIRECT_EXEC);
1172 }
1173
1174 static void
t4_calibration_start(struct adapter * sc)1175 t4_calibration_start(struct adapter *sc)
1176 {
1177 /*
1178 * Here if we have not done a calibration
1179 * then do so otherwise start the appropriate
1180 * timer.
1181 */
1182 int i;
1183
1184 for (i = 0; i < CNT_CAL_INFO; i++) {
1185 sc->cal_info[i].gen = 0;
1186 }
1187 sc->cal_current = 0;
1188 sc->cal_count = 0;
1189 sc->cal_gen = 0;
1190 t4_calibration(sc);
1191 }
1192
1193 static int
t4_attach(device_t dev)1194 t4_attach(device_t dev)
1195 {
1196 struct adapter *sc;
1197 int rc = 0, i, j, rqidx, tqidx, nports;
1198 struct make_dev_args mda;
1199 struct intrs_and_queues iaq;
1200 struct sge *s;
1201 uint32_t *buf;
1202 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1203 int ofld_tqidx;
1204 #endif
1205 #ifdef TCP_OFFLOAD
1206 int ofld_rqidx;
1207 #endif
1208 #ifdef DEV_NETMAP
1209 int nm_rqidx, nm_tqidx;
1210 #endif
1211 int num_vis;
1212
1213 sc = device_get_softc(dev);
1214 sc->dev = dev;
1215 sysctl_ctx_init(&sc->ctx);
1216 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1217
1218 if ((pci_get_device(dev) & 0xff00) == 0x5400)
1219 t5_attribute_workaround(dev);
1220 pci_enable_busmaster(dev);
1221 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1222 uint32_t v;
1223
1224 pci_set_max_read_req(dev, 4096);
1225 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1226 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1227 if (pcie_relaxed_ordering == 0 &&
1228 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1229 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1230 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1231 } else if (pcie_relaxed_ordering == 1 &&
1232 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1233 v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1234 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1235 }
1236 }
1237
1238 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1239 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1240 sc->traceq = -1;
1241 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1242 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1243 device_get_nameunit(dev));
1244
1245 snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1246 device_get_nameunit(dev));
1247 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1248 t4_add_adapter(sc);
1249
1250 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1251 TAILQ_INIT(&sc->sfl);
1252 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1253
1254 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1255
1256 sc->policy = NULL;
1257 rw_init(&sc->policy_lock, "connection offload policy");
1258
1259 callout_init(&sc->ktls_tick, 1);
1260
1261 callout_init(&sc->cal_callout, 1);
1262
1263 refcount_init(&sc->vxlan_refcount, 0);
1264
1265 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1266 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1267
1268 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1269 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1270 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1271 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1272 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1273 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1274
1275 rc = t4_map_bars_0_and_4(sc);
1276 if (rc != 0)
1277 goto done; /* error message displayed already */
1278
1279 memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1280
1281 /* Prepare the adapter for operation. */
1282 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1283 rc = -t4_prep_adapter(sc, buf);
1284 free(buf, M_CXGBE);
1285 if (rc != 0) {
1286 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1287 goto done;
1288 }
1289
1290 /*
1291 * This is the real PF# to which we're attaching. Works from within PCI
1292 * passthrough environments too, where pci_get_function() could return a
1293 * different PF# depending on the passthrough configuration. We need to
1294 * use the real PF# in all our communication with the firmware.
1295 */
1296 j = t4_read_reg(sc, A_PL_WHOAMI);
1297 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1298 sc->mbox = sc->pf;
1299
1300 t4_init_devnames(sc);
1301 if (sc->names == NULL) {
1302 rc = ENOTSUP;
1303 goto done; /* error message displayed already */
1304 }
1305
1306 /*
1307 * Do this really early, with the memory windows set up even before the
1308 * character device. The userland tool's register i/o and mem read
1309 * will work even in "recovery mode".
1310 */
1311 setup_memwin(sc);
1312 if (t4_init_devlog_params(sc, 0) == 0)
1313 fixup_devlog_params(sc);
1314 make_dev_args_init(&mda);
1315 mda.mda_devsw = &t4_cdevsw;
1316 mda.mda_uid = UID_ROOT;
1317 mda.mda_gid = GID_WHEEL;
1318 mda.mda_mode = 0600;
1319 mda.mda_si_drv1 = sc;
1320 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1321 if (rc != 0)
1322 device_printf(dev, "failed to create nexus char device: %d.\n",
1323 rc);
1324
1325 /* Go no further if recovery mode has been requested. */
1326 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1327 device_printf(dev, "recovery mode.\n");
1328 goto done;
1329 }
1330
1331 #if defined(__i386__)
1332 if ((cpu_feature & CPUID_CX8) == 0) {
1333 device_printf(dev, "64 bit atomics not available.\n");
1334 rc = ENOTSUP;
1335 goto done;
1336 }
1337 #endif
1338
1339 /* Contact the firmware and try to become the master driver. */
1340 rc = contact_firmware(sc);
1341 if (rc != 0)
1342 goto done; /* error message displayed already */
1343 MPASS(sc->flags & FW_OK);
1344
1345 rc = get_params__pre_init(sc);
1346 if (rc != 0)
1347 goto done; /* error message displayed already */
1348
1349 if (sc->flags & MASTER_PF) {
1350 rc = partition_resources(sc);
1351 if (rc != 0)
1352 goto done; /* error message displayed already */
1353 }
1354
1355 rc = get_params__post_init(sc);
1356 if (rc != 0)
1357 goto done; /* error message displayed already */
1358
1359 rc = set_params__post_init(sc);
1360 if (rc != 0)
1361 goto done; /* error message displayed already */
1362
1363 rc = t4_map_bar_2(sc);
1364 if (rc != 0)
1365 goto done; /* error message displayed already */
1366
1367 rc = t4_adj_doorbells(sc);
1368 if (rc != 0)
1369 goto done; /* error message displayed already */
1370
1371 rc = t4_create_dma_tag(sc);
1372 if (rc != 0)
1373 goto done; /* error message displayed already */
1374
1375 /*
1376 * First pass over all the ports - allocate VIs and initialize some
1377 * basic parameters like mac address, port type, etc.
1378 */
1379 for_each_port(sc, i) {
1380 struct port_info *pi;
1381
1382 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1383 sc->port[i] = pi;
1384
1385 /* These must be set before t4_port_init */
1386 pi->adapter = sc;
1387 pi->port_id = i;
1388 /*
1389 * XXX: vi[0] is special so we can't delay this allocation until
1390 * pi->nvi's final value is known.
1391 */
1392 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1393 M_ZERO | M_WAITOK);
1394
1395 /*
1396 * Allocate the "main" VI and initialize parameters
1397 * like mac addr.
1398 */
1399 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1400 if (rc != 0) {
1401 device_printf(dev, "unable to initialize port %d: %d\n",
1402 i, rc);
1403 free(pi->vi, M_CXGBE);
1404 free(pi, M_CXGBE);
1405 sc->port[i] = NULL;
1406 goto done;
1407 }
1408
1409 if (is_bt(pi->port_type))
1410 setbit(&sc->bt_map, pi->tx_chan);
1411 else
1412 MPASS(!isset(&sc->bt_map, pi->tx_chan));
1413
1414 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1415 device_get_nameunit(dev), i);
1416 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1417 sc->chan_map[pi->tx_chan] = i;
1418
1419 /*
1420 * The MPS counter for FCS errors doesn't work correctly on the
1421 * T6 so we use the MAC counter here. Which MAC is in use
1422 * depends on the link settings which will be known when the
1423 * link comes up.
1424 */
1425 if (is_t6(sc))
1426 pi->fcs_reg = -1;
1427 else {
1428 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan,
1429 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1430 }
1431 pi->fcs_base = 0;
1432
1433 /* All VIs on this port share this media. */
1434 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1435 cxgbe_media_status);
1436
1437 PORT_LOCK(pi);
1438 init_link_config(pi);
1439 fixup_link_config(pi);
1440 build_medialist(pi);
1441 if (fixed_ifmedia(pi))
1442 pi->flags |= FIXED_IFMEDIA;
1443 PORT_UNLOCK(pi);
1444
1445 pi->dev = device_add_child(dev, sc->names->ifnet_name,
1446 t4_ifnet_unit(sc, pi));
1447 if (pi->dev == NULL) {
1448 device_printf(dev,
1449 "failed to add device for port %d.\n", i);
1450 rc = ENXIO;
1451 goto done;
1452 }
1453 pi->vi[0].dev = pi->dev;
1454 device_set_softc(pi->dev, pi);
1455 }
1456
1457 /*
1458 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1459 */
1460 nports = sc->params.nports;
1461 rc = cfg_itype_and_nqueues(sc, &iaq);
1462 if (rc != 0)
1463 goto done; /* error message displayed already */
1464
1465 num_vis = iaq.num_vis;
1466 sc->intr_type = iaq.intr_type;
1467 sc->intr_count = iaq.nirq;
1468
1469 s = &sc->sge;
1470 s->nrxq = nports * iaq.nrxq;
1471 s->ntxq = nports * iaq.ntxq;
1472 if (num_vis > 1) {
1473 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1474 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1475 }
1476 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */
1477 s->neq += nports; /* ctrl queues: 1 per port */
1478 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
1479 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1480 if (is_offload(sc) || is_ethoffload(sc)) {
1481 s->nofldtxq = nports * iaq.nofldtxq;
1482 if (num_vis > 1)
1483 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1484 s->neq += s->nofldtxq;
1485
1486 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1487 M_CXGBE, M_ZERO | M_WAITOK);
1488 }
1489 #endif
1490 #ifdef TCP_OFFLOAD
1491 if (is_offload(sc)) {
1492 s->nofldrxq = nports * iaq.nofldrxq;
1493 if (num_vis > 1)
1494 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1495 s->neq += s->nofldrxq; /* free list */
1496 s->niq += s->nofldrxq;
1497
1498 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1499 M_CXGBE, M_ZERO | M_WAITOK);
1500 }
1501 #endif
1502 #ifdef DEV_NETMAP
1503 s->nnmrxq = 0;
1504 s->nnmtxq = 0;
1505 if (t4_native_netmap & NN_MAIN_VI) {
1506 s->nnmrxq += nports * iaq.nnmrxq;
1507 s->nnmtxq += nports * iaq.nnmtxq;
1508 }
1509 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1510 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1511 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1512 }
1513 s->neq += s->nnmtxq + s->nnmrxq;
1514 s->niq += s->nnmrxq;
1515
1516 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1517 M_CXGBE, M_ZERO | M_WAITOK);
1518 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1519 M_CXGBE, M_ZERO | M_WAITOK);
1520 #endif
1521 MPASS(s->niq <= s->iqmap_sz);
1522 MPASS(s->neq <= s->eqmap_sz);
1523
1524 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1525 M_ZERO | M_WAITOK);
1526 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1527 M_ZERO | M_WAITOK);
1528 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1529 M_ZERO | M_WAITOK);
1530 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1531 M_ZERO | M_WAITOK);
1532 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1533 M_ZERO | M_WAITOK);
1534
1535 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1536 M_ZERO | M_WAITOK);
1537
1538 t4_init_l2t(sc, M_WAITOK);
1539 t4_init_smt(sc, M_WAITOK);
1540 t4_init_tx_sched(sc);
1541 t4_init_atid_table(sc);
1542 #ifdef RATELIMIT
1543 t4_init_etid_table(sc);
1544 #endif
1545 #ifdef INET6
1546 t4_init_clip_table(sc);
1547 #endif
1548 if (sc->vres.key.size != 0)
1549 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1550 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1551
1552 /*
1553 * Second pass over the ports. This time we know the number of rx and
1554 * tx queues that each port should get.
1555 */
1556 rqidx = tqidx = 0;
1557 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1558 ofld_tqidx = 0;
1559 #endif
1560 #ifdef TCP_OFFLOAD
1561 ofld_rqidx = 0;
1562 #endif
1563 #ifdef DEV_NETMAP
1564 nm_rqidx = nm_tqidx = 0;
1565 #endif
1566 for_each_port(sc, i) {
1567 struct port_info *pi = sc->port[i];
1568 struct vi_info *vi;
1569
1570 if (pi == NULL)
1571 continue;
1572
1573 pi->nvi = num_vis;
1574 for_each_vi(pi, j, vi) {
1575 vi->pi = pi;
1576 vi->adapter = sc;
1577 vi->first_intr = -1;
1578 vi->qsize_rxq = t4_qsize_rxq;
1579 vi->qsize_txq = t4_qsize_txq;
1580
1581 vi->first_rxq = rqidx;
1582 vi->first_txq = tqidx;
1583 vi->tmr_idx = t4_tmr_idx;
1584 vi->pktc_idx = t4_pktc_idx;
1585 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1586 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1587
1588 rqidx += vi->nrxq;
1589 tqidx += vi->ntxq;
1590
1591 if (j == 0 && vi->ntxq > 1)
1592 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1593 else
1594 vi->rsrv_noflowq = 0;
1595
1596 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1597 vi->first_ofld_txq = ofld_tqidx;
1598 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1599 ofld_tqidx += vi->nofldtxq;
1600 #endif
1601 #ifdef TCP_OFFLOAD
1602 vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1603 vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1604 vi->first_ofld_rxq = ofld_rqidx;
1605 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1606
1607 ofld_rqidx += vi->nofldrxq;
1608 #endif
1609 #ifdef DEV_NETMAP
1610 vi->first_nm_rxq = nm_rqidx;
1611 vi->first_nm_txq = nm_tqidx;
1612 if (j == 0) {
1613 vi->nnmrxq = iaq.nnmrxq;
1614 vi->nnmtxq = iaq.nnmtxq;
1615 } else {
1616 vi->nnmrxq = iaq.nnmrxq_vi;
1617 vi->nnmtxq = iaq.nnmtxq_vi;
1618 }
1619 nm_rqidx += vi->nnmrxq;
1620 nm_tqidx += vi->nnmtxq;
1621 #endif
1622 }
1623 }
1624
1625 rc = t4_setup_intr_handlers(sc);
1626 if (rc != 0) {
1627 device_printf(dev,
1628 "failed to setup interrupt handlers: %d\n", rc);
1629 goto done;
1630 }
1631
1632 bus_identify_children(dev);
1633
1634 /*
1635 * Ensure thread-safe mailbox access (in debug builds).
1636 *
1637 * So far this was the only thread accessing the mailbox but various
1638 * ifnets and sysctls are about to be created and their handlers/ioctls
1639 * will access the mailbox from different threads.
1640 */
1641 sc->flags |= CHK_MBOX_ACCESS;
1642
1643 bus_attach_children(dev);
1644 t4_calibration_start(sc);
1645
1646 device_printf(dev,
1647 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1648 sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1649 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1650 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1651 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1652
1653 t4_set_desc(sc);
1654
1655 notify_siblings(dev, 0);
1656
1657 done:
1658 if (rc != 0 && sc->cdev) {
1659 /* cdev was created and so cxgbetool works; recover that way. */
1660 device_printf(dev,
1661 "error during attach, adapter is now in recovery mode.\n");
1662 rc = 0;
1663 }
1664
1665 if (rc != 0)
1666 t4_detach_common(dev);
1667 else
1668 t4_sysctls(sc);
1669
1670 return (rc);
1671 }
1672
1673 static int
t4_child_location(device_t bus,device_t dev,struct sbuf * sb)1674 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1675 {
1676 struct adapter *sc;
1677 struct port_info *pi;
1678 int i;
1679
1680 sc = device_get_softc(bus);
1681 for_each_port(sc, i) {
1682 pi = sc->port[i];
1683 if (pi != NULL && pi->dev == dev) {
1684 sbuf_printf(sb, "port=%d", pi->port_id);
1685 break;
1686 }
1687 }
1688 return (0);
1689 }
1690
1691 static int
t4_ready(device_t dev)1692 t4_ready(device_t dev)
1693 {
1694 struct adapter *sc;
1695
1696 sc = device_get_softc(dev);
1697 if (sc->flags & FW_OK)
1698 return (0);
1699 return (ENXIO);
1700 }
1701
1702 static int
t4_read_port_device(device_t dev,int port,device_t * child)1703 t4_read_port_device(device_t dev, int port, device_t *child)
1704 {
1705 struct adapter *sc;
1706 struct port_info *pi;
1707
1708 sc = device_get_softc(dev);
1709 if (port < 0 || port >= MAX_NPORTS)
1710 return (EINVAL);
1711 pi = sc->port[port];
1712 if (pi == NULL || pi->dev == NULL)
1713 return (ENXIO);
1714 *child = pi->dev;
1715 return (0);
1716 }
1717
1718 static int
notify_siblings(device_t dev,int detaching)1719 notify_siblings(device_t dev, int detaching)
1720 {
1721 device_t sibling;
1722 int error, i;
1723
1724 error = 0;
1725 for (i = 0; i < PCI_FUNCMAX; i++) {
1726 if (i == pci_get_function(dev))
1727 continue;
1728 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1729 pci_get_slot(dev), i);
1730 if (sibling == NULL || !device_is_attached(sibling))
1731 continue;
1732 if (detaching)
1733 error = T4_DETACH_CHILD(sibling);
1734 else
1735 (void)T4_ATTACH_CHILD(sibling);
1736 if (error)
1737 break;
1738 }
1739 return (error);
1740 }
1741
1742 /*
1743 * Idempotent
1744 */
1745 static int
t4_detach(device_t dev)1746 t4_detach(device_t dev)
1747 {
1748 int rc;
1749
1750 rc = notify_siblings(dev, 1);
1751 if (rc) {
1752 device_printf(dev,
1753 "failed to detach sibling devices: %d\n", rc);
1754 return (rc);
1755 }
1756
1757 return (t4_detach_common(dev));
1758 }
1759
1760 int
t4_detach_common(device_t dev)1761 t4_detach_common(device_t dev)
1762 {
1763 struct adapter *sc;
1764 struct port_info *pi;
1765 int i, rc;
1766
1767 sc = device_get_softc(dev);
1768
1769 #ifdef TCP_OFFLOAD
1770 rc = deactivate_all_uld(sc);
1771 if (rc) {
1772 device_printf(dev,
1773 "failed to detach upper layer drivers: %d\n", rc);
1774 return (rc);
1775 }
1776 #endif
1777
1778 if (sc->cdev) {
1779 destroy_dev(sc->cdev);
1780 sc->cdev = NULL;
1781 }
1782
1783 sx_xlock(&t4_list_lock);
1784 SLIST_REMOVE(&t4_list, sc, adapter, link);
1785 sx_xunlock(&t4_list_lock);
1786
1787 sc->flags &= ~CHK_MBOX_ACCESS;
1788 if (sc->flags & FULL_INIT_DONE) {
1789 if (!(sc->flags & IS_VF))
1790 t4_intr_disable(sc);
1791 }
1792
1793 if (device_is_attached(dev)) {
1794 rc = bus_detach_children(dev);
1795 if (rc) {
1796 device_printf(dev,
1797 "failed to detach child devices: %d\n", rc);
1798 return (rc);
1799 }
1800 }
1801
1802 for (i = 0; i < sc->intr_count; i++)
1803 t4_free_irq(sc, &sc->irq[i]);
1804
1805 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1806 t4_free_tx_sched(sc);
1807
1808 for (i = 0; i < MAX_NPORTS; i++) {
1809 pi = sc->port[i];
1810 if (pi) {
1811 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1812
1813 mtx_destroy(&pi->pi_lock);
1814 free(pi->vi, M_CXGBE);
1815 free(pi, M_CXGBE);
1816 }
1817 }
1818 callout_stop(&sc->cal_callout);
1819 callout_drain(&sc->cal_callout);
1820 device_delete_children(dev);
1821 sysctl_ctx_free(&sc->ctx);
1822 adapter_full_uninit(sc);
1823
1824 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1825 t4_fw_bye(sc, sc->mbox);
1826
1827 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1828 pci_release_msi(dev);
1829
1830 if (sc->regs_res)
1831 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1832 sc->regs_res);
1833
1834 if (sc->udbs_res)
1835 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1836 sc->udbs_res);
1837
1838 if (sc->msix_res)
1839 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1840 sc->msix_res);
1841
1842 if (sc->l2t)
1843 t4_free_l2t(sc);
1844 if (sc->smt)
1845 t4_free_smt(sc->smt);
1846 t4_free_atid_table(sc);
1847 #ifdef RATELIMIT
1848 t4_free_etid_table(sc);
1849 #endif
1850 if (sc->key_map)
1851 vmem_destroy(sc->key_map);
1852 #ifdef INET6
1853 t4_destroy_clip_table(sc);
1854 #endif
1855
1856 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1857 free(sc->sge.ofld_txq, M_CXGBE);
1858 #endif
1859 #ifdef TCP_OFFLOAD
1860 free(sc->sge.ofld_rxq, M_CXGBE);
1861 #endif
1862 #ifdef DEV_NETMAP
1863 free(sc->sge.nm_rxq, M_CXGBE);
1864 free(sc->sge.nm_txq, M_CXGBE);
1865 #endif
1866 free(sc->irq, M_CXGBE);
1867 free(sc->sge.rxq, M_CXGBE);
1868 free(sc->sge.txq, M_CXGBE);
1869 free(sc->sge.ctrlq, M_CXGBE);
1870 free(sc->sge.iqmap, M_CXGBE);
1871 free(sc->sge.eqmap, M_CXGBE);
1872 free(sc->tids.ftid_tab, M_CXGBE);
1873 free(sc->tids.hpftid_tab, M_CXGBE);
1874 free_hftid_hash(&sc->tids);
1875 free(sc->tids.tid_tab, M_CXGBE);
1876 t4_destroy_dma_tag(sc);
1877
1878 callout_drain(&sc->ktls_tick);
1879 callout_drain(&sc->sfl_callout);
1880 if (mtx_initialized(&sc->tids.ftid_lock)) {
1881 mtx_destroy(&sc->tids.ftid_lock);
1882 cv_destroy(&sc->tids.ftid_cv);
1883 }
1884 if (mtx_initialized(&sc->tids.atid_lock))
1885 mtx_destroy(&sc->tids.atid_lock);
1886 if (mtx_initialized(&sc->ifp_lock))
1887 mtx_destroy(&sc->ifp_lock);
1888
1889 if (rw_initialized(&sc->policy_lock)) {
1890 rw_destroy(&sc->policy_lock);
1891 #ifdef TCP_OFFLOAD
1892 if (sc->policy != NULL)
1893 free_offload_policy(sc->policy);
1894 #endif
1895 }
1896
1897 for (i = 0; i < NUM_MEMWIN; i++) {
1898 struct memwin *mw = &sc->memwin[i];
1899
1900 if (rw_initialized(&mw->mw_lock))
1901 rw_destroy(&mw->mw_lock);
1902 }
1903
1904 mtx_destroy(&sc->sfl_lock);
1905 mtx_destroy(&sc->reg_lock);
1906 mtx_destroy(&sc->sc_lock);
1907
1908 bzero(sc, sizeof(*sc));
1909
1910 return (0);
1911 }
1912
1913 static inline int
stop_adapter(struct adapter * sc)1914 stop_adapter(struct adapter *sc)
1915 {
1916 struct port_info *pi;
1917 int i;
1918
1919 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1920 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1921 __func__, curthread, sc->flags, sc->error_flags);
1922 return (EALREADY);
1923 }
1924 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1925 sc->flags, sc->error_flags);
1926 t4_shutdown_adapter(sc);
1927 for_each_port(sc, i) {
1928 pi = sc->port[i];
1929 if (pi == NULL)
1930 continue;
1931 PORT_LOCK(pi);
1932 if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
1933 /*
1934 * t4_shutdown_adapter has already shut down all the
1935 * PHYs but it also disables interrupts and DMA so there
1936 * won't be a link interrupt. Update the state manually
1937 * if the link was up previously and inform the kernel.
1938 */
1939 pi->link_cfg.link_ok = false;
1940 t4_os_link_changed(pi);
1941 }
1942 PORT_UNLOCK(pi);
1943 }
1944
1945 return (0);
1946 }
1947
1948 static inline int
restart_adapter(struct adapter * sc)1949 restart_adapter(struct adapter *sc)
1950 {
1951 uint32_t val;
1952
1953 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1954 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1955 __func__, curthread, sc->flags, sc->error_flags);
1956 return (EALREADY);
1957 }
1958 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1959 sc->flags, sc->error_flags);
1960
1961 MPASS(hw_off_limits(sc));
1962 MPASS((sc->flags & FW_OK) == 0);
1963 MPASS((sc->flags & MASTER_PF) == 0);
1964 MPASS(sc->reset_thread == NULL);
1965
1966 /*
1967 * The adapter is supposed to be back on PCIE with its config space and
1968 * BARs restored to their state before reset. Register access via
1969 * t4_read_reg BAR0 should just work.
1970 */
1971 sc->reset_thread = curthread;
1972 val = t4_read_reg(sc, A_PL_WHOAMI);
1973 if (val == 0xffffffff || val == 0xeeeeeeee) {
1974 CH_ERR(sc, "%s: device registers not readable.\n", __func__);
1975 sc->reset_thread = NULL;
1976 atomic_set_int(&sc->error_flags, ADAP_STOPPED);
1977 return (ENXIO);
1978 }
1979 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
1980 atomic_add_int(&sc->incarnation, 1);
1981 atomic_add_int(&sc->num_resets, 1);
1982
1983 return (0);
1984 }
1985
1986 static inline void
set_adapter_hwstatus(struct adapter * sc,const bool usable)1987 set_adapter_hwstatus(struct adapter *sc, const bool usable)
1988 {
1989 if (usable) {
1990 /* Must be marked reusable by the designated thread. */
1991 ASSERT_SYNCHRONIZED_OP(sc);
1992 MPASS(sc->reset_thread == curthread);
1993 mtx_lock(&sc->reg_lock);
1994 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
1995 mtx_unlock(&sc->reg_lock);
1996 } else {
1997 /* Mark the adapter totally off limits. */
1998 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts");
1999 mtx_lock(&sc->reg_lock);
2000 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
2001 mtx_unlock(&sc->reg_lock);
2002 sc->flags &= ~(FW_OK | MASTER_PF);
2003 sc->reset_thread = NULL;
2004 end_synchronized_op(sc, 0);
2005 }
2006 }
2007
2008 static int
stop_lld(struct adapter * sc)2009 stop_lld(struct adapter *sc)
2010 {
2011 struct port_info *pi;
2012 struct vi_info *vi;
2013 if_t ifp;
2014 struct sge_rxq *rxq;
2015 struct sge_txq *txq;
2016 struct sge_wrq *wrq;
2017 #ifdef TCP_OFFLOAD
2018 struct sge_ofld_rxq *ofld_rxq;
2019 #endif
2020 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2021 struct sge_ofld_txq *ofld_txq;
2022 #endif
2023 int rc, i, j, k;
2024
2025 /*
2026 * XXX: Can there be a synch_op in progress that will hang because
2027 * hardware has been stopped? We'll hang too and the solution will be
2028 * to use a version of begin_synch_op that wakes up existing synch_op
2029 * with errors. Maybe stop_adapter should do this wakeup?
2030 *
2031 * I don't think any synch_op could get stranded waiting for DMA or
2032 * interrupt so I think we're okay here. Remove this comment block
2033 * after testing.
2034 */
2035 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2036 if (rc != 0)
2037 return (ENXIO);
2038
2039 /* Quiesce all activity. */
2040 for_each_port(sc, i) {
2041 pi = sc->port[i];
2042 if (pi == NULL)
2043 continue;
2044 pi->vxlan_tcam_entry = false;
2045 for_each_vi(pi, j, vi) {
2046 vi->xact_addr_filt = -1;
2047 mtx_lock(&vi->tick_mtx);
2048 vi->flags |= VI_SKIP_STATS;
2049 mtx_unlock(&vi->tick_mtx);
2050 if (!(vi->flags & VI_INIT_DONE))
2051 continue;
2052
2053 ifp = vi->ifp;
2054 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2055 mtx_lock(&vi->tick_mtx);
2056 callout_stop(&vi->tick);
2057 mtx_unlock(&vi->tick_mtx);
2058 callout_drain(&vi->tick);
2059 }
2060
2061 /*
2062 * Note that the HW is not available.
2063 */
2064 for_each_txq(vi, k, txq) {
2065 TXQ_LOCK(txq);
2066 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2067 TXQ_UNLOCK(txq);
2068 }
2069 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2070 for_each_ofld_txq(vi, k, ofld_txq) {
2071 TXQ_LOCK(&ofld_txq->wrq);
2072 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2073 TXQ_UNLOCK(&ofld_txq->wrq);
2074 }
2075 #endif
2076 for_each_rxq(vi, k, rxq) {
2077 rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2078 }
2079 #if defined(TCP_OFFLOAD)
2080 for_each_ofld_rxq(vi, k, ofld_rxq) {
2081 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2082 }
2083 #endif
2084
2085 quiesce_vi(vi);
2086 }
2087
2088 if (sc->flags & FULL_INIT_DONE) {
2089 /* Control queue */
2090 wrq = &sc->sge.ctrlq[i];
2091 TXQ_LOCK(wrq);
2092 wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2093 TXQ_UNLOCK(wrq);
2094 quiesce_wrq(wrq);
2095 }
2096
2097 if (pi->flags & HAS_TRACEQ) {
2098 pi->flags &= ~HAS_TRACEQ;
2099 sc->traceq = -1;
2100 sc->tracer_valid = 0;
2101 sc->tracer_enabled = 0;
2102 }
2103 }
2104 if (sc->flags & FULL_INIT_DONE) {
2105 /* Firmware event queue */
2106 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2107 quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2108 }
2109
2110 /* Stop calibration */
2111 callout_stop(&sc->cal_callout);
2112 callout_drain(&sc->cal_callout);
2113
2114 if (t4_clock_gate_on_suspend) {
2115 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2116 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2117 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2118 }
2119
2120 end_synchronized_op(sc, 0);
2121
2122 stop_atid_allocator(sc);
2123 t4_stop_l2t(sc);
2124
2125 return (rc);
2126 }
2127
2128 int
suspend_adapter(struct adapter * sc)2129 suspend_adapter(struct adapter *sc)
2130 {
2131 stop_adapter(sc);
2132 stop_lld(sc);
2133 #ifdef TCP_OFFLOAD
2134 stop_all_uld(sc);
2135 #endif
2136 set_adapter_hwstatus(sc, false);
2137
2138 return (0);
2139 }
2140
2141 static int
t4_suspend(device_t dev)2142 t4_suspend(device_t dev)
2143 {
2144 struct adapter *sc = device_get_softc(dev);
2145 int rc;
2146
2147 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2148 rc = suspend_adapter(sc);
2149 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2150
2151 return (rc);
2152 }
2153
2154 struct adapter_pre_reset_state {
2155 u_int flags;
2156 uint16_t nbmcaps;
2157 uint16_t linkcaps;
2158 uint16_t switchcaps;
2159 uint16_t niccaps;
2160 uint16_t toecaps;
2161 uint16_t rdmacaps;
2162 uint16_t cryptocaps;
2163 uint16_t iscsicaps;
2164 uint16_t fcoecaps;
2165
2166 u_int cfcsum;
2167 char cfg_file[32];
2168
2169 struct adapter_params params;
2170 struct t4_virt_res vres;
2171 struct tid_info tids;
2172 struct sge sge;
2173
2174 int rawf_base;
2175 int nrawf;
2176
2177 };
2178
2179 static void
save_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2180 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2181 {
2182
2183 ASSERT_SYNCHRONIZED_OP(sc);
2184
2185 o->flags = sc->flags;
2186
2187 o->nbmcaps = sc->nbmcaps;
2188 o->linkcaps = sc->linkcaps;
2189 o->switchcaps = sc->switchcaps;
2190 o->niccaps = sc->niccaps;
2191 o->toecaps = sc->toecaps;
2192 o->rdmacaps = sc->rdmacaps;
2193 o->cryptocaps = sc->cryptocaps;
2194 o->iscsicaps = sc->iscsicaps;
2195 o->fcoecaps = sc->fcoecaps;
2196
2197 o->cfcsum = sc->cfcsum;
2198 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2199 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2200
2201 o->params = sc->params;
2202 o->vres = sc->vres;
2203 o->tids = sc->tids;
2204 o->sge = sc->sge;
2205
2206 o->rawf_base = sc->rawf_base;
2207 o->nrawf = sc->nrawf;
2208 }
2209
2210 static int
compare_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2211 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2212 {
2213 int rc = 0;
2214
2215 ASSERT_SYNCHRONIZED_OP(sc);
2216
2217 /* Capabilities */
2218 #define COMPARE_CAPS(c) do { \
2219 if (o->c##caps != sc->c##caps) { \
2220 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2221 sc->c##caps); \
2222 rc = EINVAL; \
2223 } \
2224 } while (0)
2225 COMPARE_CAPS(nbm);
2226 COMPARE_CAPS(link);
2227 COMPARE_CAPS(switch);
2228 COMPARE_CAPS(nic);
2229 COMPARE_CAPS(toe);
2230 COMPARE_CAPS(rdma);
2231 COMPARE_CAPS(crypto);
2232 COMPARE_CAPS(iscsi);
2233 COMPARE_CAPS(fcoe);
2234 #undef COMPARE_CAPS
2235
2236 /* Firmware config file */
2237 if (o->cfcsum != sc->cfcsum) {
2238 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2239 o->cfcsum, sc->cfg_file, sc->cfcsum);
2240 rc = EINVAL;
2241 }
2242
2243 #define COMPARE_PARAM(p, name) do { \
2244 if (o->p != sc->p) { \
2245 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2246 rc = EINVAL; \
2247 } \
2248 } while (0)
2249 COMPARE_PARAM(sge.iq_start, iq_start);
2250 COMPARE_PARAM(sge.eq_start, eq_start);
2251 COMPARE_PARAM(tids.ftid_base, ftid_base);
2252 COMPARE_PARAM(tids.ftid_end, ftid_end);
2253 COMPARE_PARAM(tids.nftids, nftids);
2254 COMPARE_PARAM(vres.l2t.start, l2t_start);
2255 COMPARE_PARAM(vres.l2t.size, l2t_size);
2256 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2257 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2258 COMPARE_PARAM(tids.tid_base, tid_base);
2259 COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2260 COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2261 COMPARE_PARAM(tids.nhpftids, nhpftids);
2262 COMPARE_PARAM(rawf_base, rawf_base);
2263 COMPARE_PARAM(nrawf, nrawf);
2264 COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2265 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2266 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2267 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2268 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2269 COMPARE_PARAM(tids.ntids, ntids);
2270 COMPARE_PARAM(tids.etid_base, etid_base);
2271 COMPARE_PARAM(tids.etid_end, etid_end);
2272 COMPARE_PARAM(tids.netids, netids);
2273 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2274 COMPARE_PARAM(params.ethoffload, ethoffload);
2275 COMPARE_PARAM(tids.natids, natids);
2276 COMPARE_PARAM(tids.stid_base, stid_base);
2277 COMPARE_PARAM(vres.ddp.start, ddp_start);
2278 COMPARE_PARAM(vres.ddp.size, ddp_size);
2279 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2280 COMPARE_PARAM(vres.stag.start, stag_start);
2281 COMPARE_PARAM(vres.stag.size, stag_size);
2282 COMPARE_PARAM(vres.rq.start, rq_start);
2283 COMPARE_PARAM(vres.rq.size, rq_size);
2284 COMPARE_PARAM(vres.pbl.start, pbl_start);
2285 COMPARE_PARAM(vres.pbl.size, pbl_size);
2286 COMPARE_PARAM(vres.qp.start, qp_start);
2287 COMPARE_PARAM(vres.qp.size, qp_size);
2288 COMPARE_PARAM(vres.cq.start, cq_start);
2289 COMPARE_PARAM(vres.cq.size, cq_size);
2290 COMPARE_PARAM(vres.ocq.start, ocq_start);
2291 COMPARE_PARAM(vres.ocq.size, ocq_size);
2292 COMPARE_PARAM(vres.srq.start, srq_start);
2293 COMPARE_PARAM(vres.srq.size, srq_size);
2294 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2295 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2296 COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2297 COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2298 COMPARE_PARAM(vres.key.start, key_start);
2299 COMPARE_PARAM(vres.key.size, key_size);
2300 #undef COMPARE_PARAM
2301
2302 return (rc);
2303 }
2304
2305 static int
restart_lld(struct adapter * sc)2306 restart_lld(struct adapter *sc)
2307 {
2308 struct adapter_pre_reset_state *old_state = NULL;
2309 struct port_info *pi;
2310 struct vi_info *vi;
2311 if_t ifp;
2312 struct sge_txq *txq;
2313 int rc, i, j, k;
2314
2315 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2316 if (rc != 0)
2317 return (ENXIO);
2318
2319 /* Restore memory window. */
2320 setup_memwin(sc);
2321
2322 /* Go no further if recovery mode has been requested. */
2323 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2324 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2325 rc = 0;
2326 set_adapter_hwstatus(sc, true);
2327 goto done;
2328 }
2329
2330 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2331 save_caps_and_params(sc, old_state);
2332
2333 /* Reestablish contact with firmware and become the primary PF. */
2334 rc = contact_firmware(sc);
2335 if (rc != 0)
2336 goto done; /* error message displayed already */
2337 MPASS(sc->flags & FW_OK);
2338
2339 if (sc->flags & MASTER_PF) {
2340 rc = partition_resources(sc);
2341 if (rc != 0)
2342 goto done; /* error message displayed already */
2343 }
2344
2345 rc = get_params__post_init(sc);
2346 if (rc != 0)
2347 goto done; /* error message displayed already */
2348
2349 rc = set_params__post_init(sc);
2350 if (rc != 0)
2351 goto done; /* error message displayed already */
2352
2353 rc = compare_caps_and_params(sc, old_state);
2354 if (rc != 0)
2355 goto done; /* error message displayed already */
2356
2357 for_each_port(sc, i) {
2358 pi = sc->port[i];
2359 MPASS(pi != NULL);
2360 MPASS(pi->vi != NULL);
2361 MPASS(pi->vi[0].dev == pi->dev);
2362
2363 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2364 if (rc != 0) {
2365 CH_ERR(sc,
2366 "failed to re-initialize port %d: %d\n", i, rc);
2367 goto done;
2368 }
2369 MPASS(sc->chan_map[pi->tx_chan] == i);
2370
2371 PORT_LOCK(pi);
2372 fixup_link_config(pi);
2373 build_medialist(pi);
2374 PORT_UNLOCK(pi);
2375 for_each_vi(pi, j, vi) {
2376 if (IS_MAIN_VI(vi))
2377 continue;
2378 rc = alloc_extra_vi(sc, pi, vi);
2379 if (rc != 0) {
2380 CH_ERR(vi,
2381 "failed to re-allocate extra VI: %d\n", rc);
2382 goto done;
2383 }
2384 }
2385 }
2386
2387 /*
2388 * Interrupts and queues are about to be enabled and other threads will
2389 * want to access the hardware too. It is safe to do so. Note that
2390 * this thread is still in the middle of a synchronized_op.
2391 */
2392 set_adapter_hwstatus(sc, true);
2393
2394 if (sc->flags & FULL_INIT_DONE) {
2395 rc = adapter_full_init(sc);
2396 if (rc != 0) {
2397 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2398 goto done;
2399 }
2400
2401 if (sc->vxlan_refcount > 0)
2402 enable_vxlan_rx(sc);
2403
2404 for_each_port(sc, i) {
2405 pi = sc->port[i];
2406 for_each_vi(pi, j, vi) {
2407 mtx_lock(&vi->tick_mtx);
2408 vi->flags &= ~VI_SKIP_STATS;
2409 mtx_unlock(&vi->tick_mtx);
2410 if (!(vi->flags & VI_INIT_DONE))
2411 continue;
2412 rc = vi_full_init(vi);
2413 if (rc != 0) {
2414 CH_ERR(vi, "failed to re-initialize "
2415 "interface: %d\n", rc);
2416 goto done;
2417 }
2418 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
2419 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
2420 t4_write_reg(sc, is_t4(sc) ?
2421 A_MPS_TRC_RSS_CONTROL :
2422 A_MPS_T5_TRC_RSS_CONTROL,
2423 V_RSSCONTROL(pi->tx_chan) |
2424 V_QUEUENUMBER(sc->traceq));
2425 pi->flags |= HAS_TRACEQ;
2426 }
2427
2428 ifp = vi->ifp;
2429 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2430 continue;
2431 /*
2432 * Note that we do not setup multicast addresses
2433 * in the first pass. This ensures that the
2434 * unicast DMACs for all VIs on all ports get an
2435 * MPS TCAM entry.
2436 */
2437 rc = update_mac_settings(ifp, XGMAC_ALL &
2438 ~XGMAC_MCADDRS);
2439 if (rc != 0) {
2440 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2441 goto done;
2442 }
2443 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2444 true);
2445 if (rc != 0) {
2446 CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2447 goto done;
2448 }
2449 for_each_txq(vi, k, txq) {
2450 TXQ_LOCK(txq);
2451 txq->eq.flags |= EQ_ENABLED;
2452 TXQ_UNLOCK(txq);
2453 }
2454 mtx_lock(&vi->tick_mtx);
2455 callout_schedule(&vi->tick, hz);
2456 mtx_unlock(&vi->tick_mtx);
2457 }
2458 PORT_LOCK(pi);
2459 if (pi->up_vis > 0) {
2460 t4_update_port_info(pi);
2461 fixup_link_config(pi);
2462 build_medialist(pi);
2463 apply_link_config(pi);
2464 if (pi->link_cfg.link_ok)
2465 t4_os_link_changed(pi);
2466 }
2467 PORT_UNLOCK(pi);
2468 }
2469
2470 /* Now reprogram the L2 multicast addresses. */
2471 for_each_port(sc, i) {
2472 pi = sc->port[i];
2473 for_each_vi(pi, j, vi) {
2474 if (!(vi->flags & VI_INIT_DONE))
2475 continue;
2476 ifp = vi->ifp;
2477 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2478 continue;
2479 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2480 if (rc != 0) {
2481 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2482 rc = 0; /* carry on */
2483 }
2484 }
2485 }
2486 }
2487
2488 /* Reset all calibration */
2489 t4_calibration_start(sc);
2490 done:
2491 end_synchronized_op(sc, 0);
2492 free(old_state, M_CXGBE);
2493
2494 restart_atid_allocator(sc);
2495 t4_restart_l2t(sc);
2496
2497 return (rc);
2498 }
2499
2500 int
resume_adapter(struct adapter * sc)2501 resume_adapter(struct adapter *sc)
2502 {
2503 restart_adapter(sc);
2504 restart_lld(sc);
2505 #ifdef TCP_OFFLOAD
2506 restart_all_uld(sc);
2507 #endif
2508 return (0);
2509 }
2510
2511 static int
t4_resume(device_t dev)2512 t4_resume(device_t dev)
2513 {
2514 struct adapter *sc = device_get_softc(dev);
2515 int rc;
2516
2517 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2518 rc = resume_adapter(sc);
2519 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2520
2521 return (rc);
2522 }
2523
2524 static int
t4_reset_prepare(device_t dev,device_t child)2525 t4_reset_prepare(device_t dev, device_t child)
2526 {
2527 struct adapter *sc = device_get_softc(dev);
2528
2529 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2530 return (0);
2531 }
2532
2533 static int
t4_reset_post(device_t dev,device_t child)2534 t4_reset_post(device_t dev, device_t child)
2535 {
2536 struct adapter *sc = device_get_softc(dev);
2537
2538 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2539 return (0);
2540 }
2541
2542 static int
reset_adapter_with_pl_rst(struct adapter * sc)2543 reset_adapter_with_pl_rst(struct adapter *sc)
2544 {
2545 /* This is a t4_write_reg without the hw_off_limits check. */
2546 MPASS(sc->error_flags & HW_OFF_LIMITS);
2547 bus_space_write_4(sc->bt, sc->bh, A_PL_RST,
2548 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2549 pause("pl_rst", 1 * hz); /* Wait 1s for reset */
2550 return (0);
2551 }
2552
2553 static int
reset_adapter_with_pcie_sbr(struct adapter * sc)2554 reset_adapter_with_pcie_sbr(struct adapter *sc)
2555 {
2556 device_t pdev = device_get_parent(sc->dev);
2557 device_t gpdev = device_get_parent(pdev);
2558 device_t *children;
2559 int rc, i, lcap, lsta, nchildren;
2560 uint32_t v;
2561
2562 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2563 if (rc != 0) {
2564 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2565 device_get_nameunit(gpdev), rc);
2566 return (ENOTSUP);
2567 }
2568 lcap = v + PCIER_LINK_CAP;
2569 lsta = v + PCIER_LINK_STA;
2570
2571 nchildren = 0;
2572 device_get_children(pdev, &children, &nchildren);
2573 for (i = 0; i < nchildren; i++)
2574 pci_save_state(children[i]);
2575 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2);
2576 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2);
2577 pause("pcie_sbr1", hz / 10); /* 100ms */
2578 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2);
2579 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */
2580 v = pci_read_config(gpdev, lsta, 2);
2581 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2582 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2583 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2584 rc = ETIMEDOUT;
2585 else
2586 rc = 0;
2587 if (rc != 0)
2588 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2589 __func__, v);
2590 else {
2591 for (i = 0; i < nchildren; i++)
2592 pci_restore_state(children[i]);
2593 }
2594 free(children, M_TEMP);
2595
2596 return (rc);
2597 }
2598
2599 static int
reset_adapter_with_pcie_link_bounce(struct adapter * sc)2600 reset_adapter_with_pcie_link_bounce(struct adapter *sc)
2601 {
2602 device_t pdev = device_get_parent(sc->dev);
2603 device_t gpdev = device_get_parent(pdev);
2604 device_t *children;
2605 int rc, i, lcap, lctl, lsta, nchildren;
2606 uint32_t v;
2607
2608 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2609 if (rc != 0) {
2610 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2611 device_get_nameunit(gpdev), rc);
2612 return (ENOTSUP);
2613 }
2614 lcap = v + PCIER_LINK_CAP;
2615 lctl = v + PCIER_LINK_CTL;
2616 lsta = v + PCIER_LINK_STA;
2617
2618 nchildren = 0;
2619 device_get_children(pdev, &children, &nchildren);
2620 for (i = 0; i < nchildren; i++)
2621 pci_save_state(children[i]);
2622 v = pci_read_config(gpdev, lctl, 2);
2623 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2);
2624 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */
2625 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2);
2626 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */
2627 v = pci_read_config(gpdev, lsta, 2);
2628 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2629 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2630 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2631 rc = ETIMEDOUT;
2632 else
2633 rc = 0;
2634 if (rc != 0)
2635 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2636 __func__, v);
2637 else {
2638 for (i = 0; i < nchildren; i++)
2639 pci_restore_state(children[i]);
2640 }
2641 free(children, M_TEMP);
2642
2643 return (rc);
2644 }
2645
2646 static inline int
reset_adapter(struct adapter * sc)2647 reset_adapter(struct adapter *sc)
2648 {
2649 int rc;
2650 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0;
2651
2652 rc = suspend_adapter(sc);
2653 if (rc != 0)
2654 return (rc);
2655
2656 switch (reset_method) {
2657 case 1:
2658 rc = reset_adapter_with_pcie_sbr(sc);
2659 break;
2660 case 2:
2661 rc = reset_adapter_with_pcie_link_bounce(sc);
2662 break;
2663 case 0:
2664 default:
2665 rc = reset_adapter_with_pl_rst(sc);
2666 break;
2667 }
2668 if (rc == 0)
2669 rc = resume_adapter(sc);
2670 return (rc);
2671 }
2672
2673 static void
reset_adapter_task(void * arg,int pending)2674 reset_adapter_task(void *arg, int pending)
2675 {
2676 struct adapter *sc = arg;
2677 const int flags = sc->flags;
2678 const int eflags = sc->error_flags;
2679 int rc;
2680
2681 if (pending > 1)
2682 CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2683 rc = reset_adapter(sc);
2684 if (rc != 0) {
2685 CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2686 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2687 rc, flags, sc->flags, eflags, sc->error_flags);
2688 }
2689 }
2690
2691 static int
cxgbe_probe(device_t dev)2692 cxgbe_probe(device_t dev)
2693 {
2694 struct port_info *pi = device_get_softc(dev);
2695
2696 device_set_descf(dev, "port %d", pi->port_id);
2697
2698 return (BUS_PROBE_DEFAULT);
2699 }
2700
2701 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2702 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2703 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2704 IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2705 #define T4_CAP_ENABLE (T4_CAP)
2706
2707 static void
cxgbe_vi_attach(device_t dev,struct vi_info * vi)2708 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2709 {
2710 if_t ifp;
2711 struct sbuf *sb;
2712 struct sysctl_ctx_list *ctx = &vi->ctx;
2713 struct sysctl_oid_list *children;
2714 struct pfil_head_args pa;
2715 struct adapter *sc = vi->adapter;
2716
2717 sysctl_ctx_init(ctx);
2718 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2719 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2720 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2721 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2722 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2723 #ifdef DEV_NETMAP
2724 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2725 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2726 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2727 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2728 #endif
2729 #ifdef TCP_OFFLOAD
2730 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2731 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2732 #endif
2733 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2734 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2735 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2736 #endif
2737
2738 vi->xact_addr_filt = -1;
2739 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2740 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2741 if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2742 vi->flags |= TX_USES_VM_WR;
2743
2744 /* Allocate an ifnet and set it up */
2745 ifp = if_alloc_dev(IFT_ETHER, dev);
2746 vi->ifp = ifp;
2747 if_setsoftc(ifp, vi);
2748
2749 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2750 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2751
2752 if_setinitfn(ifp, cxgbe_init);
2753 if_setioctlfn(ifp, cxgbe_ioctl);
2754 if_settransmitfn(ifp, cxgbe_transmit);
2755 if_setqflushfn(ifp, cxgbe_qflush);
2756 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2757 if_setgetcounterfn(ifp, vi_get_counter);
2758 else
2759 if_setgetcounterfn(ifp, cxgbe_get_counter);
2760 #if defined(KERN_TLS) || defined(RATELIMIT)
2761 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2762 #endif
2763 #ifdef RATELIMIT
2764 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2765 #endif
2766
2767 if_setcapabilities(ifp, T4_CAP);
2768 if_setcapenable(ifp, T4_CAP_ENABLE);
2769 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2770 CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2771 if (chip_id(sc) >= CHELSIO_T6) {
2772 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2773 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2774 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2775 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2776 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2777 }
2778
2779 #ifdef TCP_OFFLOAD
2780 if (vi->nofldrxq != 0)
2781 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2782 #endif
2783 #ifdef RATELIMIT
2784 if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2785 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2786 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2787 }
2788 #endif
2789
2790 if_sethwtsomax(ifp, IP_MAXPACKET);
2791 if (vi->flags & TX_USES_VM_WR)
2792 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2793 else
2794 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2795 #ifdef RATELIMIT
2796 if (is_ethoffload(sc) && vi->nofldtxq != 0)
2797 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2798 #endif
2799 if_sethwtsomaxsegsize(ifp, 65536);
2800 #ifdef KERN_TLS
2801 if (is_ktls(sc)) {
2802 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2803 if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2804 if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2805 }
2806 #endif
2807
2808 ether_ifattach(ifp, vi->hw_addr);
2809 #ifdef DEV_NETMAP
2810 if (vi->nnmrxq != 0)
2811 cxgbe_nm_attach(vi);
2812 #endif
2813 sb = sbuf_new_auto();
2814 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2815 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2816 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2817 case IFCAP_TOE:
2818 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2819 break;
2820 case IFCAP_TOE | IFCAP_TXRTLMT:
2821 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2822 break;
2823 case IFCAP_TXRTLMT:
2824 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2825 break;
2826 }
2827 #endif
2828 #ifdef TCP_OFFLOAD
2829 if (if_getcapabilities(ifp) & IFCAP_TOE)
2830 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2831 #endif
2832 #ifdef DEV_NETMAP
2833 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2834 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2835 vi->nnmtxq, vi->nnmrxq);
2836 #endif
2837 sbuf_finish(sb);
2838 device_printf(dev, "%s\n", sbuf_data(sb));
2839 sbuf_delete(sb);
2840
2841 vi_sysctls(vi);
2842
2843 pa.pa_version = PFIL_VERSION;
2844 pa.pa_flags = PFIL_IN;
2845 pa.pa_type = PFIL_TYPE_ETHERNET;
2846 pa.pa_headname = if_name(ifp);
2847 vi->pfil = pfil_head_register(&pa);
2848 }
2849
2850 static int
cxgbe_attach(device_t dev)2851 cxgbe_attach(device_t dev)
2852 {
2853 struct port_info *pi = device_get_softc(dev);
2854 struct adapter *sc = pi->adapter;
2855 struct vi_info *vi;
2856 int i;
2857
2858 sysctl_ctx_init(&pi->ctx);
2859
2860 cxgbe_vi_attach(dev, &pi->vi[0]);
2861
2862 for_each_vi(pi, i, vi) {
2863 if (i == 0)
2864 continue;
2865 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2866 if (vi->dev == NULL) {
2867 device_printf(dev, "failed to add VI %d\n", i);
2868 continue;
2869 }
2870 device_set_softc(vi->dev, vi);
2871 }
2872
2873 cxgbe_sysctls(pi);
2874
2875 bus_attach_children(dev);
2876
2877 return (0);
2878 }
2879
2880 static void
cxgbe_vi_detach(struct vi_info * vi)2881 cxgbe_vi_detach(struct vi_info *vi)
2882 {
2883 if_t ifp = vi->ifp;
2884
2885 if (vi->pfil != NULL) {
2886 pfil_head_unregister(vi->pfil);
2887 vi->pfil = NULL;
2888 }
2889
2890 ether_ifdetach(ifp);
2891
2892 /* Let detach proceed even if these fail. */
2893 #ifdef DEV_NETMAP
2894 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2895 cxgbe_nm_detach(vi);
2896 #endif
2897 cxgbe_uninit_synchronized(vi);
2898 callout_drain(&vi->tick);
2899 mtx_destroy(&vi->tick_mtx);
2900 sysctl_ctx_free(&vi->ctx);
2901 vi_full_uninit(vi);
2902
2903 if_free(vi->ifp);
2904 vi->ifp = NULL;
2905 }
2906
2907 static int
cxgbe_detach(device_t dev)2908 cxgbe_detach(device_t dev)
2909 {
2910 struct port_info *pi = device_get_softc(dev);
2911 struct adapter *sc = pi->adapter;
2912 int rc;
2913
2914 /* Detach the extra VIs first. */
2915 rc = bus_generic_detach(dev);
2916 if (rc)
2917 return (rc);
2918
2919 sysctl_ctx_free(&pi->ctx);
2920 begin_vi_detach(sc, &pi->vi[0]);
2921 if (pi->flags & HAS_TRACEQ) {
2922 sc->traceq = -1; /* cloner should not create ifnet */
2923 t4_tracer_port_detach(sc);
2924 }
2925 cxgbe_vi_detach(&pi->vi[0]);
2926 ifmedia_removeall(&pi->media);
2927 end_vi_detach(sc, &pi->vi[0]);
2928
2929 return (0);
2930 }
2931
2932 static void
cxgbe_init(void * arg)2933 cxgbe_init(void *arg)
2934 {
2935 struct vi_info *vi = arg;
2936 struct adapter *sc = vi->adapter;
2937
2938 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2939 return;
2940 cxgbe_init_synchronized(vi);
2941 end_synchronized_op(sc, 0);
2942 }
2943
2944 static int
cxgbe_ioctl(if_t ifp,unsigned long cmd,caddr_t data)2945 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
2946 {
2947 int rc = 0, mtu, flags;
2948 struct vi_info *vi = if_getsoftc(ifp);
2949 struct port_info *pi = vi->pi;
2950 struct adapter *sc = pi->adapter;
2951 struct ifreq *ifr = (struct ifreq *)data;
2952 uint32_t mask;
2953
2954 switch (cmd) {
2955 case SIOCSIFMTU:
2956 mtu = ifr->ifr_mtu;
2957 if (mtu < ETHERMIN || mtu > MAX_MTU)
2958 return (EINVAL);
2959
2960 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2961 if (rc)
2962 return (rc);
2963 if_setmtu(ifp, mtu);
2964 if (vi->flags & VI_INIT_DONE) {
2965 t4_update_fl_bufsize(ifp);
2966 if (hw_all_ok(sc) &&
2967 if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2968 rc = update_mac_settings(ifp, XGMAC_MTU);
2969 }
2970 end_synchronized_op(sc, 0);
2971 break;
2972
2973 case SIOCSIFFLAGS:
2974 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2975 if (rc)
2976 return (rc);
2977
2978 if (!hw_all_ok(sc)) {
2979 rc = ENXIO;
2980 goto fail;
2981 }
2982
2983 if (if_getflags(ifp) & IFF_UP) {
2984 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2985 flags = vi->if_flags;
2986 if ((if_getflags(ifp) ^ flags) &
2987 (IFF_PROMISC | IFF_ALLMULTI)) {
2988 rc = update_mac_settings(ifp,
2989 XGMAC_PROMISC | XGMAC_ALLMULTI);
2990 }
2991 } else {
2992 rc = cxgbe_init_synchronized(vi);
2993 }
2994 vi->if_flags = if_getflags(ifp);
2995 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2996 rc = cxgbe_uninit_synchronized(vi);
2997 }
2998 end_synchronized_op(sc, 0);
2999 break;
3000
3001 case SIOCADDMULTI:
3002 case SIOCDELMULTI:
3003 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
3004 if (rc)
3005 return (rc);
3006 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3007 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
3008 end_synchronized_op(sc, 0);
3009 break;
3010
3011 case SIOCSIFCAP:
3012 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
3013 if (rc)
3014 return (rc);
3015
3016 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3017 if (mask & IFCAP_TXCSUM) {
3018 if_togglecapenable(ifp, IFCAP_TXCSUM);
3019 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
3020
3021 if (IFCAP_TSO4 & if_getcapenable(ifp) &&
3022 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3023 mask &= ~IFCAP_TSO4;
3024 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
3025 if_printf(ifp,
3026 "tso4 disabled due to -txcsum.\n");
3027 }
3028 }
3029 if (mask & IFCAP_TXCSUM_IPV6) {
3030 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
3031 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
3032
3033 if (IFCAP_TSO6 & if_getcapenable(ifp) &&
3034 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3035 mask &= ~IFCAP_TSO6;
3036 if_setcapenablebit(ifp, 0, IFCAP_TSO6);
3037 if_printf(ifp,
3038 "tso6 disabled due to -txcsum6.\n");
3039 }
3040 }
3041 if (mask & IFCAP_RXCSUM)
3042 if_togglecapenable(ifp, IFCAP_RXCSUM);
3043 if (mask & IFCAP_RXCSUM_IPV6)
3044 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
3045
3046 /*
3047 * Note that we leave CSUM_TSO alone (it is always set). The
3048 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
3049 * sending a TSO request our way, so it's sufficient to toggle
3050 * IFCAP_TSOx only.
3051 */
3052 if (mask & IFCAP_TSO4) {
3053 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
3054 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3055 if_printf(ifp, "enable txcsum first.\n");
3056 rc = EAGAIN;
3057 goto fail;
3058 }
3059 if_togglecapenable(ifp, IFCAP_TSO4);
3060 }
3061 if (mask & IFCAP_TSO6) {
3062 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
3063 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3064 if_printf(ifp, "enable txcsum6 first.\n");
3065 rc = EAGAIN;
3066 goto fail;
3067 }
3068 if_togglecapenable(ifp, IFCAP_TSO6);
3069 }
3070 if (mask & IFCAP_LRO) {
3071 #if defined(INET) || defined(INET6)
3072 int i;
3073 struct sge_rxq *rxq;
3074
3075 if_togglecapenable(ifp, IFCAP_LRO);
3076 for_each_rxq(vi, i, rxq) {
3077 if (if_getcapenable(ifp) & IFCAP_LRO)
3078 rxq->iq.flags |= IQ_LRO_ENABLED;
3079 else
3080 rxq->iq.flags &= ~IQ_LRO_ENABLED;
3081 }
3082 #endif
3083 }
3084 #ifdef TCP_OFFLOAD
3085 if (mask & IFCAP_TOE) {
3086 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
3087
3088 rc = toe_capability(vi, enable);
3089 if (rc != 0)
3090 goto fail;
3091
3092 if_togglecapenable(ifp, mask);
3093 }
3094 #endif
3095 if (mask & IFCAP_VLAN_HWTAGGING) {
3096 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3097 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3098 rc = update_mac_settings(ifp, XGMAC_VLANEX);
3099 }
3100 if (mask & IFCAP_VLAN_MTU) {
3101 if_togglecapenable(ifp, IFCAP_VLAN_MTU);
3102
3103 /* Need to find out how to disable auto-mtu-inflation */
3104 }
3105 if (mask & IFCAP_VLAN_HWTSO)
3106 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3107 if (mask & IFCAP_VLAN_HWCSUM)
3108 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3109 #ifdef RATELIMIT
3110 if (mask & IFCAP_TXRTLMT)
3111 if_togglecapenable(ifp, IFCAP_TXRTLMT);
3112 #endif
3113 if (mask & IFCAP_HWRXTSTMP) {
3114 int i;
3115 struct sge_rxq *rxq;
3116
3117 if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3118 for_each_rxq(vi, i, rxq) {
3119 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3120 rxq->iq.flags |= IQ_RX_TIMESTAMP;
3121 else
3122 rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3123 }
3124 }
3125 if (mask & IFCAP_MEXTPG)
3126 if_togglecapenable(ifp, IFCAP_MEXTPG);
3127
3128 #ifdef KERN_TLS
3129 if (mask & IFCAP_TXTLS) {
3130 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3131
3132 rc = ktls_capability(sc, enable);
3133 if (rc != 0)
3134 goto fail;
3135
3136 if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3137 }
3138 #endif
3139 if (mask & IFCAP_VXLAN_HWCSUM) {
3140 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3141 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3142 CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3143 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3144 }
3145 if (mask & IFCAP_VXLAN_HWTSO) {
3146 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3147 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3148 CSUM_INNER_IP_TSO);
3149 }
3150
3151 #ifdef VLAN_CAPABILITIES
3152 VLAN_CAPABILITIES(ifp);
3153 #endif
3154 fail:
3155 end_synchronized_op(sc, 0);
3156 break;
3157
3158 case SIOCSIFMEDIA:
3159 case SIOCGIFMEDIA:
3160 case SIOCGIFXMEDIA:
3161 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3162 break;
3163
3164 case SIOCGI2C: {
3165 struct ifi2creq i2c;
3166
3167 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3168 if (rc != 0)
3169 break;
3170 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3171 rc = EPERM;
3172 break;
3173 }
3174 if (i2c.len > sizeof(i2c.data)) {
3175 rc = EINVAL;
3176 break;
3177 }
3178 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3179 if (rc)
3180 return (rc);
3181 if (!hw_all_ok(sc))
3182 rc = ENXIO;
3183 else
3184 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3185 i2c.offset, i2c.len, &i2c.data[0]);
3186 end_synchronized_op(sc, 0);
3187 if (rc == 0)
3188 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3189 break;
3190 }
3191
3192 default:
3193 rc = ether_ioctl(ifp, cmd, data);
3194 }
3195
3196 return (rc);
3197 }
3198
3199 static int
cxgbe_transmit(if_t ifp,struct mbuf * m)3200 cxgbe_transmit(if_t ifp, struct mbuf *m)
3201 {
3202 struct vi_info *vi = if_getsoftc(ifp);
3203 struct port_info *pi = vi->pi;
3204 struct adapter *sc;
3205 struct sge_txq *txq;
3206 void *items[1];
3207 int rc;
3208
3209 M_ASSERTPKTHDR(m);
3210 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */
3211 #if defined(KERN_TLS) || defined(RATELIMIT)
3212 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3213 MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3214 #endif
3215
3216 if (__predict_false(pi->link_cfg.link_ok == false)) {
3217 m_freem(m);
3218 return (ENETDOWN);
3219 }
3220
3221 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3222 if (__predict_false(rc != 0)) {
3223 if (__predict_true(rc == EINPROGRESS)) {
3224 /* queued by parse_pkt */
3225 MPASS(m != NULL);
3226 return (0);
3227 }
3228
3229 MPASS(m == NULL); /* was freed already */
3230 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
3231 return (rc);
3232 }
3233
3234 /* Select a txq. */
3235 sc = vi->adapter;
3236 txq = &sc->sge.txq[vi->first_txq];
3237 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3238 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3239 vi->rsrv_noflowq);
3240
3241 items[0] = m;
3242 rc = mp_ring_enqueue(txq->r, items, 1, 256);
3243 if (__predict_false(rc != 0))
3244 m_freem(m);
3245
3246 return (rc);
3247 }
3248
3249 static void
cxgbe_qflush(if_t ifp)3250 cxgbe_qflush(if_t ifp)
3251 {
3252 struct vi_info *vi = if_getsoftc(ifp);
3253 struct sge_txq *txq;
3254 int i;
3255
3256 /* queues do not exist if !VI_INIT_DONE. */
3257 if (vi->flags & VI_INIT_DONE) {
3258 for_each_txq(vi, i, txq) {
3259 TXQ_LOCK(txq);
3260 txq->eq.flags |= EQ_QFLUSH;
3261 TXQ_UNLOCK(txq);
3262 while (!mp_ring_is_idle(txq->r)) {
3263 mp_ring_check_drainage(txq->r, 4096);
3264 pause("qflush", 1);
3265 }
3266 TXQ_LOCK(txq);
3267 txq->eq.flags &= ~EQ_QFLUSH;
3268 TXQ_UNLOCK(txq);
3269 }
3270 }
3271 if_qflush(ifp);
3272 }
3273
3274 static uint64_t
vi_get_counter(if_t ifp,ift_counter c)3275 vi_get_counter(if_t ifp, ift_counter c)
3276 {
3277 struct vi_info *vi = if_getsoftc(ifp);
3278 struct fw_vi_stats_vf *s = &vi->stats;
3279
3280 mtx_lock(&vi->tick_mtx);
3281 vi_refresh_stats(vi);
3282 mtx_unlock(&vi->tick_mtx);
3283
3284 switch (c) {
3285 case IFCOUNTER_IPACKETS:
3286 return (s->rx_bcast_frames + s->rx_mcast_frames +
3287 s->rx_ucast_frames);
3288 case IFCOUNTER_IERRORS:
3289 return (s->rx_err_frames);
3290 case IFCOUNTER_OPACKETS:
3291 return (s->tx_bcast_frames + s->tx_mcast_frames +
3292 s->tx_ucast_frames + s->tx_offload_frames);
3293 case IFCOUNTER_OERRORS:
3294 return (s->tx_drop_frames);
3295 case IFCOUNTER_IBYTES:
3296 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3297 s->rx_ucast_bytes);
3298 case IFCOUNTER_OBYTES:
3299 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3300 s->tx_ucast_bytes + s->tx_offload_bytes);
3301 case IFCOUNTER_IMCASTS:
3302 return (s->rx_mcast_frames);
3303 case IFCOUNTER_OMCASTS:
3304 return (s->tx_mcast_frames);
3305 case IFCOUNTER_OQDROPS: {
3306 uint64_t drops;
3307
3308 drops = 0;
3309 if (vi->flags & VI_INIT_DONE) {
3310 int i;
3311 struct sge_txq *txq;
3312
3313 for_each_txq(vi, i, txq)
3314 drops += counter_u64_fetch(txq->r->dropped);
3315 }
3316
3317 return (drops);
3318
3319 }
3320
3321 default:
3322 return (if_get_counter_default(ifp, c));
3323 }
3324 }
3325
3326 static uint64_t
cxgbe_get_counter(if_t ifp,ift_counter c)3327 cxgbe_get_counter(if_t ifp, ift_counter c)
3328 {
3329 struct vi_info *vi = if_getsoftc(ifp);
3330 struct port_info *pi = vi->pi;
3331 struct port_stats *s = &pi->stats;
3332
3333 mtx_lock(&vi->tick_mtx);
3334 cxgbe_refresh_stats(vi);
3335 mtx_unlock(&vi->tick_mtx);
3336
3337 switch (c) {
3338 case IFCOUNTER_IPACKETS:
3339 return (s->rx_frames);
3340
3341 case IFCOUNTER_IERRORS:
3342 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3343 s->rx_fcs_err + s->rx_len_err);
3344
3345 case IFCOUNTER_OPACKETS:
3346 return (s->tx_frames);
3347
3348 case IFCOUNTER_OERRORS:
3349 return (s->tx_error_frames);
3350
3351 case IFCOUNTER_IBYTES:
3352 return (s->rx_octets);
3353
3354 case IFCOUNTER_OBYTES:
3355 return (s->tx_octets);
3356
3357 case IFCOUNTER_IMCASTS:
3358 return (s->rx_mcast_frames);
3359
3360 case IFCOUNTER_OMCASTS:
3361 return (s->tx_mcast_frames);
3362
3363 case IFCOUNTER_IQDROPS:
3364 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3365 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3366 s->rx_trunc3 + pi->tnl_cong_drops);
3367
3368 case IFCOUNTER_OQDROPS: {
3369 uint64_t drops;
3370
3371 drops = s->tx_drop;
3372 if (vi->flags & VI_INIT_DONE) {
3373 int i;
3374 struct sge_txq *txq;
3375
3376 for_each_txq(vi, i, txq)
3377 drops += counter_u64_fetch(txq->r->dropped);
3378 }
3379
3380 return (drops);
3381
3382 }
3383
3384 default:
3385 return (if_get_counter_default(ifp, c));
3386 }
3387 }
3388
3389 #if defined(KERN_TLS) || defined(RATELIMIT)
3390 static int
cxgbe_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** pt)3391 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3392 struct m_snd_tag **pt)
3393 {
3394 int error;
3395
3396 switch (params->hdr.type) {
3397 #ifdef RATELIMIT
3398 case IF_SND_TAG_TYPE_RATE_LIMIT:
3399 error = cxgbe_rate_tag_alloc(ifp, params, pt);
3400 break;
3401 #endif
3402 #ifdef KERN_TLS
3403 case IF_SND_TAG_TYPE_TLS:
3404 {
3405 struct vi_info *vi = if_getsoftc(ifp);
3406
3407 if (is_t6(vi->pi->adapter))
3408 error = t6_tls_tag_alloc(ifp, params, pt);
3409 else
3410 error = EOPNOTSUPP;
3411 break;
3412 }
3413 #endif
3414 default:
3415 error = EOPNOTSUPP;
3416 }
3417 return (error);
3418 }
3419 #endif
3420
3421 /*
3422 * The kernel picks a media from the list we had provided but we still validate
3423 * the requeste.
3424 */
3425 int
cxgbe_media_change(if_t ifp)3426 cxgbe_media_change(if_t ifp)
3427 {
3428 struct vi_info *vi = if_getsoftc(ifp);
3429 struct port_info *pi = vi->pi;
3430 struct ifmedia *ifm = &pi->media;
3431 struct link_config *lc = &pi->link_cfg;
3432 struct adapter *sc = pi->adapter;
3433 int rc;
3434
3435 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3436 if (rc != 0)
3437 return (rc);
3438 PORT_LOCK(pi);
3439 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3440 /* ifconfig .. media autoselect */
3441 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3442 rc = ENOTSUP; /* AN not supported by transceiver */
3443 goto done;
3444 }
3445 lc->requested_aneg = AUTONEG_ENABLE;
3446 lc->requested_speed = 0;
3447 lc->requested_fc |= PAUSE_AUTONEG;
3448 } else {
3449 lc->requested_aneg = AUTONEG_DISABLE;
3450 lc->requested_speed =
3451 ifmedia_baudrate(ifm->ifm_media) / 1000000;
3452 lc->requested_fc = 0;
3453 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3454 lc->requested_fc |= PAUSE_RX;
3455 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3456 lc->requested_fc |= PAUSE_TX;
3457 }
3458 if (pi->up_vis > 0 && hw_all_ok(sc)) {
3459 fixup_link_config(pi);
3460 rc = apply_link_config(pi);
3461 }
3462 done:
3463 PORT_UNLOCK(pi);
3464 end_synchronized_op(sc, 0);
3465 return (rc);
3466 }
3467
3468 /*
3469 * Base media word (without ETHER, pause, link active, etc.) for the port at the
3470 * given speed.
3471 */
3472 static int
port_mword(struct port_info * pi,uint32_t speed)3473 port_mword(struct port_info *pi, uint32_t speed)
3474 {
3475
3476 MPASS(speed & M_FW_PORT_CAP32_SPEED);
3477 MPASS(powerof2(speed));
3478
3479 switch(pi->port_type) {
3480 case FW_PORT_TYPE_BT_SGMII:
3481 case FW_PORT_TYPE_BT_XFI:
3482 case FW_PORT_TYPE_BT_XAUI:
3483 /* BaseT */
3484 switch (speed) {
3485 case FW_PORT_CAP32_SPEED_100M:
3486 return (IFM_100_T);
3487 case FW_PORT_CAP32_SPEED_1G:
3488 return (IFM_1000_T);
3489 case FW_PORT_CAP32_SPEED_10G:
3490 return (IFM_10G_T);
3491 }
3492 break;
3493 case FW_PORT_TYPE_KX4:
3494 if (speed == FW_PORT_CAP32_SPEED_10G)
3495 return (IFM_10G_KX4);
3496 break;
3497 case FW_PORT_TYPE_CX4:
3498 if (speed == FW_PORT_CAP32_SPEED_10G)
3499 return (IFM_10G_CX4);
3500 break;
3501 case FW_PORT_TYPE_KX:
3502 if (speed == FW_PORT_CAP32_SPEED_1G)
3503 return (IFM_1000_KX);
3504 break;
3505 case FW_PORT_TYPE_KR:
3506 case FW_PORT_TYPE_BP_AP:
3507 case FW_PORT_TYPE_BP4_AP:
3508 case FW_PORT_TYPE_BP40_BA:
3509 case FW_PORT_TYPE_KR4_100G:
3510 case FW_PORT_TYPE_KR_SFP28:
3511 case FW_PORT_TYPE_KR_XLAUI:
3512 switch (speed) {
3513 case FW_PORT_CAP32_SPEED_1G:
3514 return (IFM_1000_KX);
3515 case FW_PORT_CAP32_SPEED_10G:
3516 return (IFM_10G_KR);
3517 case FW_PORT_CAP32_SPEED_25G:
3518 return (IFM_25G_KR);
3519 case FW_PORT_CAP32_SPEED_40G:
3520 return (IFM_40G_KR4);
3521 case FW_PORT_CAP32_SPEED_50G:
3522 return (IFM_50G_KR2);
3523 case FW_PORT_CAP32_SPEED_100G:
3524 return (IFM_100G_KR4);
3525 }
3526 break;
3527 case FW_PORT_TYPE_FIBER_XFI:
3528 case FW_PORT_TYPE_FIBER_XAUI:
3529 case FW_PORT_TYPE_SFP:
3530 case FW_PORT_TYPE_QSFP_10G:
3531 case FW_PORT_TYPE_QSA:
3532 case FW_PORT_TYPE_QSFP:
3533 case FW_PORT_TYPE_CR4_QSFP:
3534 case FW_PORT_TYPE_CR_QSFP:
3535 case FW_PORT_TYPE_CR2_QSFP:
3536 case FW_PORT_TYPE_SFP28:
3537 /* Pluggable transceiver */
3538 switch (pi->mod_type) {
3539 case FW_PORT_MOD_TYPE_LR:
3540 case FW_PORT_MOD_TYPE_LR_SIMPLEX:
3541 switch (speed) {
3542 case FW_PORT_CAP32_SPEED_1G:
3543 return (IFM_1000_LX);
3544 case FW_PORT_CAP32_SPEED_10G:
3545 return (IFM_10G_LR);
3546 case FW_PORT_CAP32_SPEED_25G:
3547 return (IFM_25G_LR);
3548 case FW_PORT_CAP32_SPEED_40G:
3549 return (IFM_40G_LR4);
3550 case FW_PORT_CAP32_SPEED_50G:
3551 return (IFM_50G_LR2);
3552 case FW_PORT_CAP32_SPEED_100G:
3553 return (IFM_100G_LR4);
3554 }
3555 break;
3556 case FW_PORT_MOD_TYPE_SR:
3557 switch (speed) {
3558 case FW_PORT_CAP32_SPEED_1G:
3559 return (IFM_1000_SX);
3560 case FW_PORT_CAP32_SPEED_10G:
3561 return (IFM_10G_SR);
3562 case FW_PORT_CAP32_SPEED_25G:
3563 return (IFM_25G_SR);
3564 case FW_PORT_CAP32_SPEED_40G:
3565 return (IFM_40G_SR4);
3566 case FW_PORT_CAP32_SPEED_50G:
3567 return (IFM_50G_SR2);
3568 case FW_PORT_CAP32_SPEED_100G:
3569 return (IFM_100G_SR4);
3570 }
3571 break;
3572 case FW_PORT_MOD_TYPE_ER:
3573 if (speed == FW_PORT_CAP32_SPEED_10G)
3574 return (IFM_10G_ER);
3575 break;
3576 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3577 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3578 switch (speed) {
3579 case FW_PORT_CAP32_SPEED_1G:
3580 return (IFM_1000_CX);
3581 case FW_PORT_CAP32_SPEED_10G:
3582 return (IFM_10G_TWINAX);
3583 case FW_PORT_CAP32_SPEED_25G:
3584 return (IFM_25G_CR);
3585 case FW_PORT_CAP32_SPEED_40G:
3586 return (IFM_40G_CR4);
3587 case FW_PORT_CAP32_SPEED_50G:
3588 return (IFM_50G_CR2);
3589 case FW_PORT_CAP32_SPEED_100G:
3590 return (IFM_100G_CR4);
3591 }
3592 break;
3593 case FW_PORT_MOD_TYPE_LRM:
3594 if (speed == FW_PORT_CAP32_SPEED_10G)
3595 return (IFM_10G_LRM);
3596 break;
3597 case FW_PORT_MOD_TYPE_DR:
3598 if (speed == FW_PORT_CAP32_SPEED_100G)
3599 return (IFM_100G_DR);
3600 break;
3601 case FW_PORT_MOD_TYPE_NA:
3602 MPASS(0); /* Not pluggable? */
3603 /* fall throough */
3604 case FW_PORT_MOD_TYPE_ERROR:
3605 case FW_PORT_MOD_TYPE_UNKNOWN:
3606 case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3607 break;
3608 case FW_PORT_MOD_TYPE_NONE:
3609 return (IFM_NONE);
3610 }
3611 break;
3612 case FW_PORT_TYPE_NONE:
3613 return (IFM_NONE);
3614 }
3615
3616 return (IFM_UNKNOWN);
3617 }
3618
3619 void
cxgbe_media_status(if_t ifp,struct ifmediareq * ifmr)3620 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3621 {
3622 struct vi_info *vi = if_getsoftc(ifp);
3623 struct port_info *pi = vi->pi;
3624 struct adapter *sc = pi->adapter;
3625 struct link_config *lc = &pi->link_cfg;
3626
3627 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3628 return;
3629 PORT_LOCK(pi);
3630
3631 if (pi->up_vis == 0 && hw_all_ok(sc)) {
3632 /*
3633 * If all the interfaces are administratively down the firmware
3634 * does not report transceiver changes. Refresh port info here
3635 * so that ifconfig displays accurate ifmedia at all times.
3636 * This is the only reason we have a synchronized op in this
3637 * function. Just PORT_LOCK would have been enough otherwise.
3638 */
3639 t4_update_port_info(pi);
3640 build_medialist(pi);
3641 }
3642
3643 /* ifm_status */
3644 ifmr->ifm_status = IFM_AVALID;
3645 if (lc->link_ok == false)
3646 goto done;
3647 ifmr->ifm_status |= IFM_ACTIVE;
3648
3649 /* ifm_active */
3650 ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3651 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3652 if (lc->fc & PAUSE_RX)
3653 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3654 if (lc->fc & PAUSE_TX)
3655 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3656 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3657 done:
3658 PORT_UNLOCK(pi);
3659 end_synchronized_op(sc, 0);
3660 }
3661
3662 static int
vcxgbe_probe(device_t dev)3663 vcxgbe_probe(device_t dev)
3664 {
3665 struct vi_info *vi = device_get_softc(dev);
3666
3667 device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3668 vi - vi->pi->vi);
3669
3670 return (BUS_PROBE_DEFAULT);
3671 }
3672
3673 static int
alloc_extra_vi(struct adapter * sc,struct port_info * pi,struct vi_info * vi)3674 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3675 {
3676 int func, index, rc;
3677 uint32_t param, val;
3678
3679 ASSERT_SYNCHRONIZED_OP(sc);
3680
3681 index = vi - pi->vi;
3682 MPASS(index > 0); /* This function deals with _extra_ VIs only */
3683 KASSERT(index < nitems(vi_mac_funcs),
3684 ("%s: VI %s doesn't have a MAC func", __func__,
3685 device_get_nameunit(vi->dev)));
3686 func = vi_mac_funcs[index];
3687 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3688 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3689 if (rc < 0) {
3690 CH_ERR(vi, "failed to allocate virtual interface %d"
3691 "for port %d: %d\n", index, pi->port_id, -rc);
3692 return (-rc);
3693 }
3694 vi->viid = rc;
3695
3696 if (vi->rss_size == 1) {
3697 /*
3698 * This VI didn't get a slice of the RSS table. Reduce the
3699 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3700 * configuration file (nvi, rssnvi for this PF) if this is a
3701 * problem.
3702 */
3703 device_printf(vi->dev, "RSS table not available.\n");
3704 vi->rss_base = 0xffff;
3705
3706 return (0);
3707 }
3708
3709 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3710 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3711 V_FW_PARAMS_PARAM_YZ(vi->viid);
3712 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
3713 if (rc)
3714 vi->rss_base = 0xffff;
3715 else {
3716 MPASS((val >> 16) == vi->rss_size);
3717 vi->rss_base = val & 0xffff;
3718 }
3719
3720 return (0);
3721 }
3722
3723 static int
vcxgbe_attach(device_t dev)3724 vcxgbe_attach(device_t dev)
3725 {
3726 struct vi_info *vi;
3727 struct port_info *pi;
3728 struct adapter *sc;
3729 int rc;
3730
3731 vi = device_get_softc(dev);
3732 pi = vi->pi;
3733 sc = pi->adapter;
3734
3735 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3736 if (rc)
3737 return (rc);
3738 rc = alloc_extra_vi(sc, pi, vi);
3739 end_synchronized_op(sc, 0);
3740 if (rc)
3741 return (rc);
3742
3743 cxgbe_vi_attach(dev, vi);
3744
3745 return (0);
3746 }
3747
3748 static int
vcxgbe_detach(device_t dev)3749 vcxgbe_detach(device_t dev)
3750 {
3751 struct vi_info *vi;
3752 struct adapter *sc;
3753
3754 vi = device_get_softc(dev);
3755 sc = vi->adapter;
3756
3757 begin_vi_detach(sc, vi);
3758 cxgbe_vi_detach(vi);
3759 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3760 end_vi_detach(sc, vi);
3761
3762 return (0);
3763 }
3764
3765 static struct callout fatal_callout;
3766 static struct taskqueue *reset_tq;
3767
3768 static void
delayed_panic(void * arg)3769 delayed_panic(void *arg)
3770 {
3771 struct adapter *sc = arg;
3772
3773 panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3774 }
3775
3776 static void
fatal_error_task(void * arg,int pending)3777 fatal_error_task(void *arg, int pending)
3778 {
3779 struct adapter *sc = arg;
3780 int rc;
3781
3782 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3783 dump_cim_regs(sc);
3784 dump_cimla(sc);
3785 dump_devlog(sc);
3786 }
3787
3788 if (t4_reset_on_fatal_err) {
3789 CH_ALERT(sc, "resetting adapter after fatal error.\n");
3790 rc = reset_adapter(sc);
3791 if (rc == 0 && t4_panic_on_fatal_err) {
3792 CH_ALERT(sc, "reset was successful, "
3793 "system will NOT panic.\n");
3794 return;
3795 }
3796 }
3797
3798 if (t4_panic_on_fatal_err) {
3799 CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3800 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3801 }
3802 }
3803
3804 void
t4_fatal_err(struct adapter * sc,bool fw_error)3805 t4_fatal_err(struct adapter *sc, bool fw_error)
3806 {
3807 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3808
3809 stop_adapter(sc);
3810 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3811 return;
3812 if (fw_error) {
3813 /*
3814 * We are here because of a firmware error/timeout and not
3815 * because of a hardware interrupt. It is possible (although
3816 * not very likely) that an error interrupt was also raised but
3817 * this thread ran first and inhibited t4_intr_err. We walk the
3818 * main INT_CAUSE registers here to make sure we haven't missed
3819 * anything interesting.
3820 */
3821 t4_slow_intr_handler(sc, verbose);
3822 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3823 }
3824 t4_report_fw_error(sc);
3825 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3826 device_get_nameunit(sc->dev), fw_error);
3827 taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3828 }
3829
3830 void
t4_add_adapter(struct adapter * sc)3831 t4_add_adapter(struct adapter *sc)
3832 {
3833 sx_xlock(&t4_list_lock);
3834 SLIST_INSERT_HEAD(&t4_list, sc, link);
3835 sx_xunlock(&t4_list_lock);
3836 }
3837
3838 int
t4_map_bars_0_and_4(struct adapter * sc)3839 t4_map_bars_0_and_4(struct adapter *sc)
3840 {
3841 sc->regs_rid = PCIR_BAR(0);
3842 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3843 &sc->regs_rid, RF_ACTIVE);
3844 if (sc->regs_res == NULL) {
3845 device_printf(sc->dev, "cannot map registers.\n");
3846 return (ENXIO);
3847 }
3848 sc->bt = rman_get_bustag(sc->regs_res);
3849 sc->bh = rman_get_bushandle(sc->regs_res);
3850 sc->mmio_len = rman_get_size(sc->regs_res);
3851 setbit(&sc->doorbells, DOORBELL_KDB);
3852
3853 sc->msix_rid = PCIR_BAR(4);
3854 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3855 &sc->msix_rid, RF_ACTIVE);
3856 if (sc->msix_res == NULL) {
3857 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3858 return (ENXIO);
3859 }
3860
3861 return (0);
3862 }
3863
3864 int
t4_map_bar_2(struct adapter * sc)3865 t4_map_bar_2(struct adapter *sc)
3866 {
3867
3868 /*
3869 * T4: only iWARP driver uses the userspace doorbells. There is no need
3870 * to map it if RDMA is disabled.
3871 */
3872 if (is_t4(sc) && sc->rdmacaps == 0)
3873 return (0);
3874
3875 sc->udbs_rid = PCIR_BAR(2);
3876 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3877 &sc->udbs_rid, RF_ACTIVE);
3878 if (sc->udbs_res == NULL) {
3879 device_printf(sc->dev, "cannot map doorbell BAR.\n");
3880 return (ENXIO);
3881 }
3882 sc->udbs_base = rman_get_virtual(sc->udbs_res);
3883
3884 if (chip_id(sc) >= CHELSIO_T5) {
3885 setbit(&sc->doorbells, DOORBELL_UDB);
3886 #if defined(__i386__) || defined(__amd64__)
3887 if (t5_write_combine) {
3888 int rc, mode;
3889
3890 /*
3891 * Enable write combining on BAR2. This is the
3892 * userspace doorbell BAR and is split into 128B
3893 * (UDBS_SEG_SIZE) doorbell regions, each associated
3894 * with an egress queue. The first 64B has the doorbell
3895 * and the second 64B can be used to submit a tx work
3896 * request with an implicit doorbell.
3897 */
3898
3899 rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3900 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3901 if (rc == 0) {
3902 clrbit(&sc->doorbells, DOORBELL_UDB);
3903 setbit(&sc->doorbells, DOORBELL_WCWR);
3904 setbit(&sc->doorbells, DOORBELL_UDBWC);
3905 } else {
3906 device_printf(sc->dev,
3907 "couldn't enable write combining: %d\n",
3908 rc);
3909 }
3910
3911 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3912 t4_write_reg(sc, A_SGE_STAT_CFG,
3913 V_STATSOURCE_T5(7) | mode);
3914 }
3915 #endif
3916 }
3917 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3918
3919 return (0);
3920 }
3921
3922 int
t4_adj_doorbells(struct adapter * sc)3923 t4_adj_doorbells(struct adapter *sc)
3924 {
3925 if ((sc->doorbells & t4_doorbells_allowed) != 0) {
3926 sc->doorbells &= t4_doorbells_allowed;
3927 return (0);
3928 }
3929 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
3930 sc->doorbells, t4_doorbells_allowed);
3931 return (EINVAL);
3932 }
3933
3934 struct memwin_init {
3935 uint32_t base;
3936 uint32_t aperture;
3937 };
3938
3939 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3940 { MEMWIN0_BASE, MEMWIN0_APERTURE },
3941 { MEMWIN1_BASE, MEMWIN1_APERTURE },
3942 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3943 };
3944
3945 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3946 { MEMWIN0_BASE, MEMWIN0_APERTURE },
3947 { MEMWIN1_BASE, MEMWIN1_APERTURE },
3948 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3949 };
3950
3951 static void
setup_memwin(struct adapter * sc)3952 setup_memwin(struct adapter *sc)
3953 {
3954 const struct memwin_init *mw_init;
3955 struct memwin *mw;
3956 int i;
3957 uint32_t bar0;
3958
3959 if (is_t4(sc)) {
3960 /*
3961 * Read low 32b of bar0 indirectly via the hardware backdoor
3962 * mechanism. Works from within PCI passthrough environments
3963 * too, where rman_get_start() can return a different value. We
3964 * need to program the T4 memory window decoders with the actual
3965 * addresses that will be coming across the PCIe link.
3966 */
3967 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3968 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3969
3970 mw_init = &t4_memwin[0];
3971 } else {
3972 /* T5+ use the relative offset inside the PCIe BAR */
3973 bar0 = 0;
3974
3975 mw_init = &t5_memwin[0];
3976 }
3977
3978 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3979 if (!rw_initialized(&mw->mw_lock)) {
3980 rw_init(&mw->mw_lock, "memory window access");
3981 mw->mw_base = mw_init->base;
3982 mw->mw_aperture = mw_init->aperture;
3983 mw->mw_curpos = 0;
3984 }
3985 t4_write_reg(sc,
3986 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3987 (mw->mw_base + bar0) | V_BIR(0) |
3988 V_WINDOW(ilog2(mw->mw_aperture) - 10));
3989 rw_wlock(&mw->mw_lock);
3990 position_memwin(sc, i, mw->mw_curpos);
3991 rw_wunlock(&mw->mw_lock);
3992 }
3993
3994 /* flush */
3995 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3996 }
3997
3998 /*
3999 * Positions the memory window at the given address in the card's address space.
4000 * There are some alignment requirements and the actual position may be at an
4001 * address prior to the requested address. mw->mw_curpos always has the actual
4002 * position of the window.
4003 */
4004 static void
position_memwin(struct adapter * sc,int idx,uint32_t addr)4005 position_memwin(struct adapter *sc, int idx, uint32_t addr)
4006 {
4007 struct memwin *mw;
4008 uint32_t pf;
4009 uint32_t reg;
4010
4011 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4012 mw = &sc->memwin[idx];
4013 rw_assert(&mw->mw_lock, RA_WLOCKED);
4014
4015 if (is_t4(sc)) {
4016 pf = 0;
4017 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */
4018 } else {
4019 pf = V_PFNUM(sc->pf);
4020 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */
4021 }
4022 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
4023 t4_write_reg(sc, reg, mw->mw_curpos | pf);
4024 t4_read_reg(sc, reg); /* flush */
4025 }
4026
4027 int
rw_via_memwin(struct adapter * sc,int idx,uint32_t addr,uint32_t * val,int len,int rw)4028 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
4029 int len, int rw)
4030 {
4031 struct memwin *mw;
4032 uint32_t mw_end, v;
4033
4034 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4035
4036 /* Memory can only be accessed in naturally aligned 4 byte units */
4037 if (addr & 3 || len & 3 || len <= 0)
4038 return (EINVAL);
4039
4040 mw = &sc->memwin[idx];
4041 while (len > 0) {
4042 rw_rlock(&mw->mw_lock);
4043 mw_end = mw->mw_curpos + mw->mw_aperture;
4044 if (addr >= mw_end || addr < mw->mw_curpos) {
4045 /* Will need to reposition the window */
4046 if (!rw_try_upgrade(&mw->mw_lock)) {
4047 rw_runlock(&mw->mw_lock);
4048 rw_wlock(&mw->mw_lock);
4049 }
4050 rw_assert(&mw->mw_lock, RA_WLOCKED);
4051 position_memwin(sc, idx, addr);
4052 rw_downgrade(&mw->mw_lock);
4053 mw_end = mw->mw_curpos + mw->mw_aperture;
4054 }
4055 rw_assert(&mw->mw_lock, RA_RLOCKED);
4056 while (addr < mw_end && len > 0) {
4057 if (rw == 0) {
4058 v = t4_read_reg(sc, mw->mw_base + addr -
4059 mw->mw_curpos);
4060 *val++ = le32toh(v);
4061 } else {
4062 v = *val++;
4063 t4_write_reg(sc, mw->mw_base + addr -
4064 mw->mw_curpos, htole32(v));
4065 }
4066 addr += 4;
4067 len -= 4;
4068 }
4069 rw_runlock(&mw->mw_lock);
4070 }
4071
4072 return (0);
4073 }
4074
4075 CTASSERT(M_TID_COOKIE == M_COOKIE);
4076 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
4077
4078 static void
t4_init_atid_table(struct adapter * sc)4079 t4_init_atid_table(struct adapter *sc)
4080 {
4081 struct tid_info *t;
4082 int i;
4083
4084 t = &sc->tids;
4085 if (t->natids == 0)
4086 return;
4087
4088 MPASS(t->atid_tab == NULL);
4089
4090 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
4091 M_ZERO | M_WAITOK);
4092 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
4093 t->afree = t->atid_tab;
4094 t->atids_in_use = 0;
4095 t->atid_alloc_stopped = false;
4096 for (i = 1; i < t->natids; i++)
4097 t->atid_tab[i - 1].next = &t->atid_tab[i];
4098 t->atid_tab[t->natids - 1].next = NULL;
4099 }
4100
4101 static void
t4_free_atid_table(struct adapter * sc)4102 t4_free_atid_table(struct adapter *sc)
4103 {
4104 struct tid_info *t;
4105
4106 t = &sc->tids;
4107
4108 KASSERT(t->atids_in_use == 0,
4109 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4110
4111 if (mtx_initialized(&t->atid_lock))
4112 mtx_destroy(&t->atid_lock);
4113 free(t->atid_tab, M_CXGBE);
4114 t->atid_tab = NULL;
4115 }
4116
4117 static void
stop_atid_allocator(struct adapter * sc)4118 stop_atid_allocator(struct adapter *sc)
4119 {
4120 struct tid_info *t = &sc->tids;
4121
4122 if (t->natids == 0)
4123 return;
4124 mtx_lock(&t->atid_lock);
4125 t->atid_alloc_stopped = true;
4126 mtx_unlock(&t->atid_lock);
4127 }
4128
4129 static void
restart_atid_allocator(struct adapter * sc)4130 restart_atid_allocator(struct adapter *sc)
4131 {
4132 struct tid_info *t = &sc->tids;
4133
4134 if (t->natids == 0)
4135 return;
4136 mtx_lock(&t->atid_lock);
4137 KASSERT(t->atids_in_use == 0,
4138 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4139 t->atid_alloc_stopped = false;
4140 mtx_unlock(&t->atid_lock);
4141 }
4142
4143 int
alloc_atid(struct adapter * sc,void * ctx)4144 alloc_atid(struct adapter *sc, void *ctx)
4145 {
4146 struct tid_info *t = &sc->tids;
4147 int atid = -1;
4148
4149 mtx_lock(&t->atid_lock);
4150 if (t->afree && !t->atid_alloc_stopped) {
4151 union aopen_entry *p = t->afree;
4152
4153 atid = p - t->atid_tab;
4154 MPASS(atid <= M_TID_TID);
4155 t->afree = p->next;
4156 p->data = ctx;
4157 t->atids_in_use++;
4158 }
4159 mtx_unlock(&t->atid_lock);
4160 return (atid);
4161 }
4162
4163 void *
lookup_atid(struct adapter * sc,int atid)4164 lookup_atid(struct adapter *sc, int atid)
4165 {
4166 struct tid_info *t = &sc->tids;
4167
4168 return (t->atid_tab[atid].data);
4169 }
4170
4171 void
free_atid(struct adapter * sc,int atid)4172 free_atid(struct adapter *sc, int atid)
4173 {
4174 struct tid_info *t = &sc->tids;
4175 union aopen_entry *p = &t->atid_tab[atid];
4176
4177 mtx_lock(&t->atid_lock);
4178 p->next = t->afree;
4179 t->afree = p;
4180 t->atids_in_use--;
4181 mtx_unlock(&t->atid_lock);
4182 }
4183
4184 static void
queue_tid_release(struct adapter * sc,int tid)4185 queue_tid_release(struct adapter *sc, int tid)
4186 {
4187
4188 CXGBE_UNIMPLEMENTED("deferred tid release");
4189 }
4190
4191 void
release_tid(struct adapter * sc,int tid,struct sge_wrq * ctrlq)4192 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4193 {
4194 struct wrqe *wr;
4195 struct cpl_tid_release *req;
4196
4197 wr = alloc_wrqe(sizeof(*req), ctrlq);
4198 if (wr == NULL) {
4199 queue_tid_release(sc, tid); /* defer */
4200 return;
4201 }
4202 req = wrtod(wr);
4203
4204 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4205
4206 t4_wrq_tx(sc, wr);
4207 }
4208
4209 static int
t4_range_cmp(const void * a,const void * b)4210 t4_range_cmp(const void *a, const void *b)
4211 {
4212 return ((const struct t4_range *)a)->start -
4213 ((const struct t4_range *)b)->start;
4214 }
4215
4216 /*
4217 * Verify that the memory range specified by the addr/len pair is valid within
4218 * the card's address space.
4219 */
4220 static int
validate_mem_range(struct adapter * sc,uint32_t addr,uint32_t len)4221 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4222 {
4223 struct t4_range mem_ranges[4], *r, *next;
4224 uint32_t em, addr_len;
4225 int i, n, remaining;
4226
4227 /* Memory can only be accessed in naturally aligned 4 byte units */
4228 if (addr & 3 || len & 3 || len == 0)
4229 return (EINVAL);
4230
4231 /* Enabled memories */
4232 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4233
4234 r = &mem_ranges[0];
4235 n = 0;
4236 bzero(r, sizeof(mem_ranges));
4237 if (em & F_EDRAM0_ENABLE) {
4238 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4239 r->size = G_EDRAM0_SIZE(addr_len) << 20;
4240 if (r->size > 0) {
4241 r->start = G_EDRAM0_BASE(addr_len) << 20;
4242 if (addr >= r->start &&
4243 addr + len <= r->start + r->size)
4244 return (0);
4245 r++;
4246 n++;
4247 }
4248 }
4249 if (em & F_EDRAM1_ENABLE) {
4250 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4251 r->size = G_EDRAM1_SIZE(addr_len) << 20;
4252 if (r->size > 0) {
4253 r->start = G_EDRAM1_BASE(addr_len) << 20;
4254 if (addr >= r->start &&
4255 addr + len <= r->start + r->size)
4256 return (0);
4257 r++;
4258 n++;
4259 }
4260 }
4261 if (em & F_EXT_MEM_ENABLE) {
4262 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4263 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4264 if (r->size > 0) {
4265 r->start = G_EXT_MEM_BASE(addr_len) << 20;
4266 if (addr >= r->start &&
4267 addr + len <= r->start + r->size)
4268 return (0);
4269 r++;
4270 n++;
4271 }
4272 }
4273 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4274 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4275 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4276 if (r->size > 0) {
4277 r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4278 if (addr >= r->start &&
4279 addr + len <= r->start + r->size)
4280 return (0);
4281 r++;
4282 n++;
4283 }
4284 }
4285 MPASS(n <= nitems(mem_ranges));
4286
4287 if (n > 1) {
4288 /* Sort and merge the ranges. */
4289 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4290
4291 /* Start from index 0 and examine the next n - 1 entries. */
4292 r = &mem_ranges[0];
4293 for (remaining = n - 1; remaining > 0; remaining--, r++) {
4294
4295 MPASS(r->size > 0); /* r is a valid entry. */
4296 next = r + 1;
4297 MPASS(next->size > 0); /* and so is the next one. */
4298
4299 while (r->start + r->size >= next->start) {
4300 /* Merge the next one into the current entry. */
4301 r->size = max(r->start + r->size,
4302 next->start + next->size) - r->start;
4303 n--; /* One fewer entry in total. */
4304 if (--remaining == 0)
4305 goto done; /* short circuit */
4306 next++;
4307 }
4308 if (next != r + 1) {
4309 /*
4310 * Some entries were merged into r and next
4311 * points to the first valid entry that couldn't
4312 * be merged.
4313 */
4314 MPASS(next->size > 0); /* must be valid */
4315 memcpy(r + 1, next, remaining * sizeof(*r));
4316 #ifdef INVARIANTS
4317 /*
4318 * This so that the foo->size assertion in the
4319 * next iteration of the loop do the right
4320 * thing for entries that were pulled up and are
4321 * no longer valid.
4322 */
4323 MPASS(n < nitems(mem_ranges));
4324 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4325 sizeof(struct t4_range));
4326 #endif
4327 }
4328 }
4329 done:
4330 /* Done merging the ranges. */
4331 MPASS(n > 0);
4332 r = &mem_ranges[0];
4333 for (i = 0; i < n; i++, r++) {
4334 if (addr >= r->start &&
4335 addr + len <= r->start + r->size)
4336 return (0);
4337 }
4338 }
4339
4340 return (EFAULT);
4341 }
4342
4343 static int
fwmtype_to_hwmtype(int mtype)4344 fwmtype_to_hwmtype(int mtype)
4345 {
4346
4347 switch (mtype) {
4348 case FW_MEMTYPE_EDC0:
4349 return (MEM_EDC0);
4350 case FW_MEMTYPE_EDC1:
4351 return (MEM_EDC1);
4352 case FW_MEMTYPE_EXTMEM:
4353 return (MEM_MC0);
4354 case FW_MEMTYPE_EXTMEM1:
4355 return (MEM_MC1);
4356 default:
4357 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4358 }
4359 }
4360
4361 /*
4362 * Verify that the memory range specified by the memtype/offset/len pair is
4363 * valid and lies entirely within the memtype specified. The global address of
4364 * the start of the range is returned in addr.
4365 */
4366 static int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,uint32_t len,uint32_t * addr)4367 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4368 uint32_t *addr)
4369 {
4370 uint32_t em, addr_len, maddr;
4371
4372 /* Memory can only be accessed in naturally aligned 4 byte units */
4373 if (off & 3 || len & 3 || len == 0)
4374 return (EINVAL);
4375
4376 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4377 switch (fwmtype_to_hwmtype(mtype)) {
4378 case MEM_EDC0:
4379 if (!(em & F_EDRAM0_ENABLE))
4380 return (EINVAL);
4381 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4382 maddr = G_EDRAM0_BASE(addr_len) << 20;
4383 break;
4384 case MEM_EDC1:
4385 if (!(em & F_EDRAM1_ENABLE))
4386 return (EINVAL);
4387 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4388 maddr = G_EDRAM1_BASE(addr_len) << 20;
4389 break;
4390 case MEM_MC:
4391 if (!(em & F_EXT_MEM_ENABLE))
4392 return (EINVAL);
4393 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4394 maddr = G_EXT_MEM_BASE(addr_len) << 20;
4395 break;
4396 case MEM_MC1:
4397 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4398 return (EINVAL);
4399 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4400 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4401 break;
4402 default:
4403 return (EINVAL);
4404 }
4405
4406 *addr = maddr + off; /* global address */
4407 return (validate_mem_range(sc, *addr, len));
4408 }
4409
4410 static int
fixup_devlog_params(struct adapter * sc)4411 fixup_devlog_params(struct adapter *sc)
4412 {
4413 struct devlog_params *dparams = &sc->params.devlog;
4414 int rc;
4415
4416 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4417 dparams->size, &dparams->addr);
4418
4419 return (rc);
4420 }
4421
4422 static void
update_nirq(struct intrs_and_queues * iaq,int nports)4423 update_nirq(struct intrs_and_queues *iaq, int nports)
4424 {
4425
4426 iaq->nirq = T4_EXTRA_INTR;
4427 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4428 iaq->nirq += nports * iaq->nofldrxq;
4429 iaq->nirq += nports * (iaq->num_vis - 1) *
4430 max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4431 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4432 }
4433
4434 /*
4435 * Adjust requirements to fit the number of interrupts available.
4436 */
4437 static void
calculate_iaq(struct adapter * sc,struct intrs_and_queues * iaq,int itype,int navail)4438 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4439 int navail)
4440 {
4441 int old_nirq;
4442 const int nports = sc->params.nports;
4443
4444 MPASS(nports > 0);
4445 MPASS(navail > 0);
4446
4447 bzero(iaq, sizeof(*iaq));
4448 iaq->intr_type = itype;
4449 iaq->num_vis = t4_num_vis;
4450 iaq->ntxq = t4_ntxq;
4451 iaq->ntxq_vi = t4_ntxq_vi;
4452 iaq->nrxq = t4_nrxq;
4453 iaq->nrxq_vi = t4_nrxq_vi;
4454 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4455 if (is_offload(sc) || is_ethoffload(sc)) {
4456 iaq->nofldtxq = t4_nofldtxq;
4457 iaq->nofldtxq_vi = t4_nofldtxq_vi;
4458 }
4459 #endif
4460 #ifdef TCP_OFFLOAD
4461 if (is_offload(sc)) {
4462 iaq->nofldrxq = t4_nofldrxq;
4463 iaq->nofldrxq_vi = t4_nofldrxq_vi;
4464 }
4465 #endif
4466 #ifdef DEV_NETMAP
4467 if (t4_native_netmap & NN_MAIN_VI) {
4468 iaq->nnmtxq = t4_nnmtxq;
4469 iaq->nnmrxq = t4_nnmrxq;
4470 }
4471 if (t4_native_netmap & NN_EXTRA_VI) {
4472 iaq->nnmtxq_vi = t4_nnmtxq_vi;
4473 iaq->nnmrxq_vi = t4_nnmrxq_vi;
4474 }
4475 #endif
4476
4477 update_nirq(iaq, nports);
4478 if (iaq->nirq <= navail &&
4479 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4480 /*
4481 * This is the normal case -- there are enough interrupts for
4482 * everything.
4483 */
4484 goto done;
4485 }
4486
4487 /*
4488 * If extra VIs have been configured try reducing their count and see if
4489 * that works.
4490 */
4491 while (iaq->num_vis > 1) {
4492 iaq->num_vis--;
4493 update_nirq(iaq, nports);
4494 if (iaq->nirq <= navail &&
4495 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4496 device_printf(sc->dev, "virtual interfaces per port "
4497 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, "
4498 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. "
4499 "itype %d, navail %u, nirq %d.\n",
4500 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4501 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4502 itype, navail, iaq->nirq);
4503 goto done;
4504 }
4505 }
4506
4507 /*
4508 * Extra VIs will not be created. Log a message if they were requested.
4509 */
4510 MPASS(iaq->num_vis == 1);
4511 iaq->ntxq_vi = iaq->nrxq_vi = 0;
4512 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4513 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4514 if (iaq->num_vis != t4_num_vis) {
4515 device_printf(sc->dev, "extra virtual interfaces disabled. "
4516 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4517 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n",
4518 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4519 iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4520 }
4521
4522 /*
4523 * Keep reducing the number of NIC rx queues to the next lower power of
4524 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4525 * if that works.
4526 */
4527 do {
4528 if (iaq->nrxq > 1) {
4529 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4530 if (iaq->nnmrxq > iaq->nrxq)
4531 iaq->nnmrxq = iaq->nrxq;
4532 }
4533 if (iaq->nofldrxq > 1)
4534 iaq->nofldrxq >>= 1;
4535
4536 old_nirq = iaq->nirq;
4537 update_nirq(iaq, nports);
4538 if (iaq->nirq <= navail &&
4539 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4540 device_printf(sc->dev, "running with reduced number of "
4541 "rx queues because of shortage of interrupts. "
4542 "nrxq=%u, nofldrxq=%u. "
4543 "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4544 iaq->nofldrxq, itype, navail, iaq->nirq);
4545 goto done;
4546 }
4547 } while (old_nirq != iaq->nirq);
4548
4549 /* One interrupt for everything. Ugh. */
4550 device_printf(sc->dev, "running with minimal number of queues. "
4551 "itype %d, navail %u.\n", itype, navail);
4552 iaq->nirq = 1;
4553 iaq->nrxq = 1;
4554 iaq->ntxq = 1;
4555 if (iaq->nofldrxq > 0) {
4556 iaq->nofldrxq = 1;
4557 iaq->nofldtxq = 1;
4558 }
4559 iaq->nnmtxq = 0;
4560 iaq->nnmrxq = 0;
4561 done:
4562 MPASS(iaq->num_vis > 0);
4563 if (iaq->num_vis > 1) {
4564 MPASS(iaq->nrxq_vi > 0);
4565 MPASS(iaq->ntxq_vi > 0);
4566 }
4567 MPASS(iaq->nirq > 0);
4568 MPASS(iaq->nrxq > 0);
4569 MPASS(iaq->ntxq > 0);
4570 if (itype == INTR_MSI) {
4571 MPASS(powerof2(iaq->nirq));
4572 }
4573 }
4574
4575 static int
cfg_itype_and_nqueues(struct adapter * sc,struct intrs_and_queues * iaq)4576 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4577 {
4578 int rc, itype, navail, nalloc;
4579
4580 for (itype = INTR_MSIX; itype; itype >>= 1) {
4581
4582 if ((itype & t4_intr_types) == 0)
4583 continue; /* not allowed */
4584
4585 if (itype == INTR_MSIX)
4586 navail = pci_msix_count(sc->dev);
4587 else if (itype == INTR_MSI)
4588 navail = pci_msi_count(sc->dev);
4589 else
4590 navail = 1;
4591 restart:
4592 if (navail == 0)
4593 continue;
4594
4595 calculate_iaq(sc, iaq, itype, navail);
4596 nalloc = iaq->nirq;
4597 rc = 0;
4598 if (itype == INTR_MSIX)
4599 rc = pci_alloc_msix(sc->dev, &nalloc);
4600 else if (itype == INTR_MSI)
4601 rc = pci_alloc_msi(sc->dev, &nalloc);
4602
4603 if (rc == 0 && nalloc > 0) {
4604 if (nalloc == iaq->nirq)
4605 return (0);
4606
4607 /*
4608 * Didn't get the number requested. Use whatever number
4609 * the kernel is willing to allocate.
4610 */
4611 device_printf(sc->dev, "fewer vectors than requested, "
4612 "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4613 itype, iaq->nirq, nalloc);
4614 pci_release_msi(sc->dev);
4615 navail = nalloc;
4616 goto restart;
4617 }
4618
4619 device_printf(sc->dev,
4620 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4621 itype, rc, iaq->nirq, nalloc);
4622 }
4623
4624 device_printf(sc->dev,
4625 "failed to find a usable interrupt type. "
4626 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4627 pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4628
4629 return (ENXIO);
4630 }
4631
4632 #define FW_VERSION(chip) ( \
4633 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4634 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4635 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4636 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4637 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4638
4639 /* Just enough of fw_hdr to cover all version info. */
4640 struct fw_h {
4641 __u8 ver;
4642 __u8 chip;
4643 __be16 len512;
4644 __be32 fw_ver;
4645 __be32 tp_microcode_ver;
4646 __u8 intfver_nic;
4647 __u8 intfver_vnic;
4648 __u8 intfver_ofld;
4649 __u8 intfver_ri;
4650 __u8 intfver_iscsipdu;
4651 __u8 intfver_iscsi;
4652 __u8 intfver_fcoepdu;
4653 __u8 intfver_fcoe;
4654 };
4655 /* Spot check a couple of fields. */
4656 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4657 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4658 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4659
4660 struct fw_info {
4661 uint8_t chip;
4662 char *kld_name;
4663 char *fw_mod_name;
4664 struct fw_h fw_h;
4665 } fw_info[] = {
4666 {
4667 .chip = CHELSIO_T4,
4668 .kld_name = "t4fw_cfg",
4669 .fw_mod_name = "t4fw",
4670 .fw_h = {
4671 .chip = FW_HDR_CHIP_T4,
4672 .fw_ver = htobe32(FW_VERSION(T4)),
4673 .intfver_nic = FW_INTFVER(T4, NIC),
4674 .intfver_vnic = FW_INTFVER(T4, VNIC),
4675 .intfver_ofld = FW_INTFVER(T4, OFLD),
4676 .intfver_ri = FW_INTFVER(T4, RI),
4677 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4678 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4679 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4680 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4681 },
4682 }, {
4683 .chip = CHELSIO_T5,
4684 .kld_name = "t5fw_cfg",
4685 .fw_mod_name = "t5fw",
4686 .fw_h = {
4687 .chip = FW_HDR_CHIP_T5,
4688 .fw_ver = htobe32(FW_VERSION(T5)),
4689 .intfver_nic = FW_INTFVER(T5, NIC),
4690 .intfver_vnic = FW_INTFVER(T5, VNIC),
4691 .intfver_ofld = FW_INTFVER(T5, OFLD),
4692 .intfver_ri = FW_INTFVER(T5, RI),
4693 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4694 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4695 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4696 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4697 },
4698 }, {
4699 .chip = CHELSIO_T6,
4700 .kld_name = "t6fw_cfg",
4701 .fw_mod_name = "t6fw",
4702 .fw_h = {
4703 .chip = FW_HDR_CHIP_T6,
4704 .fw_ver = htobe32(FW_VERSION(T6)),
4705 .intfver_nic = FW_INTFVER(T6, NIC),
4706 .intfver_vnic = FW_INTFVER(T6, VNIC),
4707 .intfver_ofld = FW_INTFVER(T6, OFLD),
4708 .intfver_ri = FW_INTFVER(T6, RI),
4709 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4710 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4711 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4712 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4713 },
4714 }
4715 };
4716
4717 static struct fw_info *
find_fw_info(int chip)4718 find_fw_info(int chip)
4719 {
4720 int i;
4721
4722 for (i = 0; i < nitems(fw_info); i++) {
4723 if (fw_info[i].chip == chip)
4724 return (&fw_info[i]);
4725 }
4726 return (NULL);
4727 }
4728
4729 /*
4730 * Is the given firmware API compatible with the one the driver was compiled
4731 * with?
4732 */
4733 static int
fw_compatible(const struct fw_h * hdr1,const struct fw_h * hdr2)4734 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4735 {
4736
4737 /* short circuit if it's the exact same firmware version */
4738 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4739 return (1);
4740
4741 /*
4742 * XXX: Is this too conservative? Perhaps I should limit this to the
4743 * features that are supported in the driver.
4744 */
4745 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4746 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4747 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4748 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4749 return (1);
4750 #undef SAME_INTF
4751
4752 return (0);
4753 }
4754
4755 static int
load_fw_module(struct adapter * sc,const struct firmware ** dcfg,const struct firmware ** fw)4756 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4757 const struct firmware **fw)
4758 {
4759 struct fw_info *fw_info;
4760
4761 *dcfg = NULL;
4762 if (fw != NULL)
4763 *fw = NULL;
4764
4765 fw_info = find_fw_info(chip_id(sc));
4766 if (fw_info == NULL) {
4767 device_printf(sc->dev,
4768 "unable to look up firmware information for chip %d.\n",
4769 chip_id(sc));
4770 return (EINVAL);
4771 }
4772
4773 *dcfg = firmware_get(fw_info->kld_name);
4774 if (*dcfg != NULL) {
4775 if (fw != NULL)
4776 *fw = firmware_get(fw_info->fw_mod_name);
4777 return (0);
4778 }
4779
4780 return (ENOENT);
4781 }
4782
4783 static void
unload_fw_module(struct adapter * sc,const struct firmware * dcfg,const struct firmware * fw)4784 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4785 const struct firmware *fw)
4786 {
4787
4788 if (fw != NULL)
4789 firmware_put(fw, FIRMWARE_UNLOAD);
4790 if (dcfg != NULL)
4791 firmware_put(dcfg, FIRMWARE_UNLOAD);
4792 }
4793
4794 /*
4795 * Return values:
4796 * 0 means no firmware install attempted.
4797 * ERESTART means a firmware install was attempted and was successful.
4798 * +ve errno means a firmware install was attempted but failed.
4799 */
4800 static int
install_kld_firmware(struct adapter * sc,struct fw_h * card_fw,const struct fw_h * drv_fw,const char * reason,int * already)4801 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4802 const struct fw_h *drv_fw, const char *reason, int *already)
4803 {
4804 const struct firmware *cfg, *fw;
4805 const uint32_t c = be32toh(card_fw->fw_ver);
4806 uint32_t d, k;
4807 int rc, fw_install;
4808 struct fw_h bundled_fw;
4809 bool load_attempted;
4810
4811 cfg = fw = NULL;
4812 load_attempted = false;
4813 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4814
4815 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4816 if (t4_fw_install < 0) {
4817 rc = load_fw_module(sc, &cfg, &fw);
4818 if (rc != 0 || fw == NULL) {
4819 device_printf(sc->dev,
4820 "failed to load firmware module: %d. cfg %p, fw %p;"
4821 " will use compiled-in firmware version for"
4822 "hw.cxgbe.fw_install checks.\n",
4823 rc, cfg, fw);
4824 } else {
4825 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4826 }
4827 load_attempted = true;
4828 }
4829 d = be32toh(bundled_fw.fw_ver);
4830
4831 if (reason != NULL)
4832 goto install;
4833
4834 if ((sc->flags & FW_OK) == 0) {
4835
4836 if (c == 0xffffffff) {
4837 reason = "missing";
4838 goto install;
4839 }
4840
4841 rc = 0;
4842 goto done;
4843 }
4844
4845 if (!fw_compatible(card_fw, &bundled_fw)) {
4846 reason = "incompatible or unusable";
4847 goto install;
4848 }
4849
4850 if (d > c) {
4851 reason = "older than the version bundled with this driver";
4852 goto install;
4853 }
4854
4855 if (fw_install == 2 && d != c) {
4856 reason = "different than the version bundled with this driver";
4857 goto install;
4858 }
4859
4860 /* No reason to do anything to the firmware already on the card. */
4861 rc = 0;
4862 goto done;
4863
4864 install:
4865 rc = 0;
4866 if ((*already)++)
4867 goto done;
4868
4869 if (fw_install == 0) {
4870 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4871 "but the driver is prohibited from installing a firmware "
4872 "on the card.\n",
4873 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4874 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4875
4876 goto done;
4877 }
4878
4879 /*
4880 * We'll attempt to install a firmware. Load the module first (if it
4881 * hasn't been loaded already).
4882 */
4883 if (!load_attempted) {
4884 rc = load_fw_module(sc, &cfg, &fw);
4885 if (rc != 0 || fw == NULL) {
4886 device_printf(sc->dev,
4887 "failed to load firmware module: %d. cfg %p, fw %p\n",
4888 rc, cfg, fw);
4889 /* carry on */
4890 }
4891 }
4892 if (fw == NULL) {
4893 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4894 "but the driver cannot take corrective action because it "
4895 "is unable to load the firmware module.\n",
4896 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4897 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4898 rc = sc->flags & FW_OK ? 0 : ENOENT;
4899 goto done;
4900 }
4901 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4902 if (k != d) {
4903 MPASS(t4_fw_install > 0);
4904 device_printf(sc->dev,
4905 "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4906 "expecting (%u.%u.%u.%u) and will not be used.\n",
4907 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4908 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4909 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4910 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4911 rc = sc->flags & FW_OK ? 0 : EINVAL;
4912 goto done;
4913 }
4914
4915 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4916 "installing firmware %u.%u.%u.%u on card.\n",
4917 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4918 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4919 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4920 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4921
4922 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4923 if (rc != 0) {
4924 device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4925 } else {
4926 /* Installed successfully, update the cached header too. */
4927 rc = ERESTART;
4928 memcpy(card_fw, fw->data, sizeof(*card_fw));
4929 }
4930 done:
4931 unload_fw_module(sc, cfg, fw);
4932
4933 return (rc);
4934 }
4935
4936 /*
4937 * Establish contact with the firmware and attempt to become the master driver.
4938 *
4939 * A firmware will be installed to the card if needed (if the driver is allowed
4940 * to do so).
4941 */
4942 static int
contact_firmware(struct adapter * sc)4943 contact_firmware(struct adapter *sc)
4944 {
4945 int rc, already = 0;
4946 enum dev_state state;
4947 struct fw_info *fw_info;
4948 struct fw_hdr *card_fw; /* fw on the card */
4949 const struct fw_h *drv_fw;
4950
4951 fw_info = find_fw_info(chip_id(sc));
4952 if (fw_info == NULL) {
4953 device_printf(sc->dev,
4954 "unable to look up firmware information for chip %d.\n",
4955 chip_id(sc));
4956 return (EINVAL);
4957 }
4958 drv_fw = &fw_info->fw_h;
4959
4960 /* Read the header of the firmware on the card */
4961 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4962 restart:
4963 rc = -t4_get_fw_hdr(sc, card_fw);
4964 if (rc != 0) {
4965 device_printf(sc->dev,
4966 "unable to read firmware header from card's flash: %d\n",
4967 rc);
4968 goto done;
4969 }
4970
4971 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4972 &already);
4973 if (rc == ERESTART)
4974 goto restart;
4975 if (rc != 0)
4976 goto done;
4977
4978 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4979 if (rc < 0 || state == DEV_STATE_ERR) {
4980 rc = -rc;
4981 device_printf(sc->dev,
4982 "failed to connect to the firmware: %d, %d. "
4983 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4984 #if 0
4985 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4986 "not responding properly to HELLO", &already) == ERESTART)
4987 goto restart;
4988 #endif
4989 goto done;
4990 }
4991 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4992 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */
4993
4994 if (rc == sc->pf) {
4995 sc->flags |= MASTER_PF;
4996 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4997 NULL, &already);
4998 if (rc == ERESTART)
4999 rc = 0;
5000 else if (rc != 0)
5001 goto done;
5002 } else if (state == DEV_STATE_UNINIT) {
5003 /*
5004 * We didn't get to be the master so we definitely won't be
5005 * configuring the chip. It's a bug if someone else hasn't
5006 * configured it already.
5007 */
5008 device_printf(sc->dev, "couldn't be master(%d), "
5009 "device not already initialized either(%d). "
5010 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5011 rc = EPROTO;
5012 goto done;
5013 } else {
5014 /*
5015 * Some other PF is the master and has configured the chip.
5016 * This is allowed but untested.
5017 */
5018 device_printf(sc->dev, "PF%d is master, device state %d. "
5019 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5020 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
5021 sc->cfcsum = 0;
5022 rc = 0;
5023 }
5024 done:
5025 if (rc != 0 && sc->flags & FW_OK) {
5026 t4_fw_bye(sc, sc->mbox);
5027 sc->flags &= ~FW_OK;
5028 }
5029 free(card_fw, M_CXGBE);
5030 return (rc);
5031 }
5032
5033 static int
copy_cfg_file_to_card(struct adapter * sc,char * cfg_file,uint32_t mtype,uint32_t moff)5034 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
5035 uint32_t mtype, uint32_t moff)
5036 {
5037 struct fw_info *fw_info;
5038 const struct firmware *dcfg, *rcfg = NULL;
5039 const uint32_t *cfdata;
5040 uint32_t cflen, addr;
5041 int rc;
5042
5043 load_fw_module(sc, &dcfg, NULL);
5044
5045 /* Card specific interpretation of "default". */
5046 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5047 if (pci_get_device(sc->dev) == 0x440a)
5048 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
5049 if (is_fpga(sc))
5050 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
5051 }
5052
5053 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5054 if (dcfg == NULL) {
5055 device_printf(sc->dev,
5056 "KLD with default config is not available.\n");
5057 rc = ENOENT;
5058 goto done;
5059 }
5060 cfdata = dcfg->data;
5061 cflen = dcfg->datasize & ~3;
5062 } else {
5063 char s[32];
5064
5065 fw_info = find_fw_info(chip_id(sc));
5066 if (fw_info == NULL) {
5067 device_printf(sc->dev,
5068 "unable to look up firmware information for chip %d.\n",
5069 chip_id(sc));
5070 rc = EINVAL;
5071 goto done;
5072 }
5073 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
5074
5075 rcfg = firmware_get(s);
5076 if (rcfg == NULL) {
5077 device_printf(sc->dev,
5078 "unable to load module \"%s\" for configuration "
5079 "profile \"%s\".\n", s, cfg_file);
5080 rc = ENOENT;
5081 goto done;
5082 }
5083 cfdata = rcfg->data;
5084 cflen = rcfg->datasize & ~3;
5085 }
5086
5087 if (cflen > FLASH_CFG_MAX_SIZE) {
5088 device_printf(sc->dev,
5089 "config file too long (%d, max allowed is %d).\n",
5090 cflen, FLASH_CFG_MAX_SIZE);
5091 rc = EINVAL;
5092 goto done;
5093 }
5094
5095 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
5096 if (rc != 0) {
5097 device_printf(sc->dev,
5098 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
5099 __func__, mtype, moff, cflen, rc);
5100 rc = EINVAL;
5101 goto done;
5102 }
5103 write_via_memwin(sc, 2, addr, cfdata, cflen);
5104 done:
5105 if (rcfg != NULL)
5106 firmware_put(rcfg, FIRMWARE_UNLOAD);
5107 unload_fw_module(sc, dcfg, NULL);
5108 return (rc);
5109 }
5110
5111 struct caps_allowed {
5112 uint16_t nbmcaps;
5113 uint16_t linkcaps;
5114 uint16_t switchcaps;
5115 uint16_t niccaps;
5116 uint16_t toecaps;
5117 uint16_t rdmacaps;
5118 uint16_t cryptocaps;
5119 uint16_t iscsicaps;
5120 uint16_t fcoecaps;
5121 };
5122
5123 #define FW_PARAM_DEV(param) \
5124 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5125 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5126 #define FW_PARAM_PFVF(param) \
5127 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5128 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5129
5130 /*
5131 * Provide a configuration profile to the firmware and have it initialize the
5132 * chip accordingly. This may involve uploading a configuration file to the
5133 * card.
5134 */
5135 static int
apply_cfg_and_initialize(struct adapter * sc,char * cfg_file,const struct caps_allowed * caps_allowed)5136 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5137 const struct caps_allowed *caps_allowed)
5138 {
5139 int rc;
5140 struct fw_caps_config_cmd caps;
5141 uint32_t mtype, moff, finicsum, cfcsum, param, val;
5142
5143 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5144 if (rc != 0) {
5145 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5146 return (rc);
5147 }
5148
5149 bzero(&caps, sizeof(caps));
5150 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5151 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5152 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5153 mtype = 0;
5154 moff = 0;
5155 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5156 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5157 mtype = FW_MEMTYPE_FLASH;
5158 moff = t4_flash_cfg_addr(sc);
5159 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5160 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5161 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5162 FW_LEN16(caps));
5163 } else {
5164 /*
5165 * Ask the firmware where it wants us to upload the config file.
5166 */
5167 param = FW_PARAM_DEV(CF);
5168 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5169 if (rc != 0) {
5170 /* No support for config file? Shouldn't happen. */
5171 device_printf(sc->dev,
5172 "failed to query config file location: %d.\n", rc);
5173 goto done;
5174 }
5175 mtype = G_FW_PARAMS_PARAM_Y(val);
5176 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5177 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5178 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5179 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5180 FW_LEN16(caps));
5181
5182 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
5183 if (rc != 0) {
5184 device_printf(sc->dev,
5185 "failed to upload config file to card: %d.\n", rc);
5186 goto done;
5187 }
5188 }
5189 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5190 if (rc != 0) {
5191 device_printf(sc->dev, "failed to pre-process config file: %d "
5192 "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5193 goto done;
5194 }
5195
5196 finicsum = be32toh(caps.finicsum);
5197 cfcsum = be32toh(caps.cfcsum); /* actual */
5198 if (finicsum != cfcsum) {
5199 device_printf(sc->dev,
5200 "WARNING: config file checksum mismatch: %08x %08x\n",
5201 finicsum, cfcsum);
5202 }
5203 sc->cfcsum = cfcsum;
5204 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5205
5206 /*
5207 * Let the firmware know what features will (not) be used so it can tune
5208 * things accordingly.
5209 */
5210 #define LIMIT_CAPS(x) do { \
5211 caps.x##caps &= htobe16(caps_allowed->x##caps); \
5212 } while (0)
5213 LIMIT_CAPS(nbm);
5214 LIMIT_CAPS(link);
5215 LIMIT_CAPS(switch);
5216 LIMIT_CAPS(nic);
5217 LIMIT_CAPS(toe);
5218 LIMIT_CAPS(rdma);
5219 LIMIT_CAPS(crypto);
5220 LIMIT_CAPS(iscsi);
5221 LIMIT_CAPS(fcoe);
5222 #undef LIMIT_CAPS
5223 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5224 /*
5225 * TOE and hashfilters are mutually exclusive. It is a config
5226 * file or firmware bug if both are reported as available. Try
5227 * to cope with the situation in non-debug builds by disabling
5228 * TOE.
5229 */
5230 MPASS(caps.toecaps == 0);
5231
5232 caps.toecaps = 0;
5233 caps.rdmacaps = 0;
5234 caps.iscsicaps = 0;
5235 }
5236
5237 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5238 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5239 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5240 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5241 if (rc != 0) {
5242 device_printf(sc->dev,
5243 "failed to process config file: %d.\n", rc);
5244 goto done;
5245 }
5246
5247 t4_tweak_chip_settings(sc);
5248 set_params__pre_init(sc);
5249
5250 /* get basic stuff going */
5251 rc = -t4_fw_initialize(sc, sc->mbox);
5252 if (rc != 0) {
5253 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5254 goto done;
5255 }
5256 done:
5257 return (rc);
5258 }
5259
5260 /*
5261 * Partition chip resources for use between various PFs, VFs, etc.
5262 */
5263 static int
partition_resources(struct adapter * sc)5264 partition_resources(struct adapter *sc)
5265 {
5266 char cfg_file[sizeof(t4_cfg_file)];
5267 struct caps_allowed caps_allowed;
5268 int rc;
5269 bool fallback;
5270
5271 /* Only the master driver gets to configure the chip resources. */
5272 MPASS(sc->flags & MASTER_PF);
5273
5274 #define COPY_CAPS(x) do { \
5275 caps_allowed.x##caps = t4_##x##caps_allowed; \
5276 } while (0)
5277 bzero(&caps_allowed, sizeof(caps_allowed));
5278 COPY_CAPS(nbm);
5279 COPY_CAPS(link);
5280 COPY_CAPS(switch);
5281 COPY_CAPS(nic);
5282 COPY_CAPS(toe);
5283 COPY_CAPS(rdma);
5284 COPY_CAPS(crypto);
5285 COPY_CAPS(iscsi);
5286 COPY_CAPS(fcoe);
5287 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5288 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5289 retry:
5290 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5291 if (rc != 0 && fallback) {
5292 dump_devlog(sc);
5293 device_printf(sc->dev,
5294 "failed (%d) to configure card with \"%s\" profile, "
5295 "will fall back to a basic configuration and retry.\n",
5296 rc, cfg_file);
5297 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5298 bzero(&caps_allowed, sizeof(caps_allowed));
5299 COPY_CAPS(switch);
5300 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5301 fallback = false;
5302 goto retry;
5303 }
5304 #undef COPY_CAPS
5305 return (rc);
5306 }
5307
5308 /*
5309 * Retrieve parameters that are needed (or nice to have) very early.
5310 */
5311 static int
get_params__pre_init(struct adapter * sc)5312 get_params__pre_init(struct adapter *sc)
5313 {
5314 int rc;
5315 uint32_t param[2], val[2];
5316
5317 t4_get_version_info(sc);
5318
5319 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5320 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5321 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5322 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5323 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5324
5325 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5326 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5327 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5328 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5329 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5330
5331 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5332 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5333 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5334 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5335 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5336
5337 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5338 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5339 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5340 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5341 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5342
5343 param[0] = FW_PARAM_DEV(PORTVEC);
5344 param[1] = FW_PARAM_DEV(CCLK);
5345 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5346 if (rc != 0) {
5347 device_printf(sc->dev,
5348 "failed to query parameters (pre_init): %d.\n", rc);
5349 return (rc);
5350 }
5351
5352 sc->params.portvec = val[0];
5353 sc->params.nports = bitcount32(val[0]);
5354 sc->params.vpd.cclk = val[1];
5355
5356 /* Read device log parameters. */
5357 rc = -t4_init_devlog_params(sc, 1);
5358 if (rc == 0)
5359 fixup_devlog_params(sc);
5360 else {
5361 device_printf(sc->dev,
5362 "failed to get devlog parameters: %d.\n", rc);
5363 rc = 0; /* devlog isn't critical for device operation */
5364 }
5365
5366 return (rc);
5367 }
5368
5369 /*
5370 * Any params that need to be set before FW_INITIALIZE.
5371 */
5372 static int
set_params__pre_init(struct adapter * sc)5373 set_params__pre_init(struct adapter *sc)
5374 {
5375 int rc = 0;
5376 uint32_t param, val;
5377
5378 if (chip_id(sc) >= CHELSIO_T6) {
5379 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5380 val = 1;
5381 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5382 /* firmwares < 1.20.1.0 do not have this param. */
5383 if (rc == FW_EINVAL &&
5384 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5385 rc = 0;
5386 }
5387 if (rc != 0) {
5388 device_printf(sc->dev,
5389 "failed to enable high priority filters :%d.\n",
5390 rc);
5391 }
5392
5393 param = FW_PARAM_DEV(PPOD_EDRAM);
5394 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5395 if (rc == 0 && val == 1) {
5396 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m,
5397 &val);
5398 if (rc != 0) {
5399 device_printf(sc->dev,
5400 "failed to set PPOD_EDRAM: %d.\n", rc);
5401 }
5402 }
5403 }
5404
5405 /* Enable opaque VIIDs with firmwares that support it. */
5406 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5407 val = 1;
5408 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5409 if (rc == 0 && val == 1)
5410 sc->params.viid_smt_extn_support = true;
5411 else
5412 sc->params.viid_smt_extn_support = false;
5413
5414 return (rc);
5415 }
5416
5417 /*
5418 * Retrieve various parameters that are of interest to the driver. The device
5419 * has been initialized by the firmware at this point.
5420 */
5421 static int
get_params__post_init(struct adapter * sc)5422 get_params__post_init(struct adapter *sc)
5423 {
5424 int rc;
5425 uint32_t param[7], val[7];
5426 struct fw_caps_config_cmd caps;
5427
5428 param[0] = FW_PARAM_PFVF(IQFLINT_START);
5429 param[1] = FW_PARAM_PFVF(EQ_START);
5430 param[2] = FW_PARAM_PFVF(FILTER_START);
5431 param[3] = FW_PARAM_PFVF(FILTER_END);
5432 param[4] = FW_PARAM_PFVF(L2T_START);
5433 param[5] = FW_PARAM_PFVF(L2T_END);
5434 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5435 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5436 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5437 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5438 if (rc != 0) {
5439 device_printf(sc->dev,
5440 "failed to query parameters (post_init): %d.\n", rc);
5441 return (rc);
5442 }
5443
5444 sc->sge.iq_start = val[0];
5445 sc->sge.eq_start = val[1];
5446 if ((int)val[3] > (int)val[2]) {
5447 sc->tids.ftid_base = val[2];
5448 sc->tids.ftid_end = val[3];
5449 sc->tids.nftids = val[3] - val[2] + 1;
5450 }
5451 sc->vres.l2t.start = val[4];
5452 sc->vres.l2t.size = val[5] - val[4] + 1;
5453 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5454 if (sc->vres.l2t.size > 0)
5455 MPASS(fls(val[5]) <= S_SYNC_WR);
5456 sc->params.core_vdd = val[6];
5457
5458 param[0] = FW_PARAM_PFVF(IQFLINT_END);
5459 param[1] = FW_PARAM_PFVF(EQ_END);
5460 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5461 if (rc != 0) {
5462 device_printf(sc->dev,
5463 "failed to query parameters (post_init2): %d.\n", rc);
5464 return (rc);
5465 }
5466 MPASS((int)val[0] >= sc->sge.iq_start);
5467 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5468 MPASS((int)val[1] >= sc->sge.eq_start);
5469 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5470
5471 if (chip_id(sc) >= CHELSIO_T6) {
5472
5473 sc->tids.tid_base = t4_read_reg(sc,
5474 A_LE_DB_ACTIVE_TABLE_START_INDEX);
5475
5476 param[0] = FW_PARAM_PFVF(HPFILTER_START);
5477 param[1] = FW_PARAM_PFVF(HPFILTER_END);
5478 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5479 if (rc != 0) {
5480 device_printf(sc->dev,
5481 "failed to query hpfilter parameters: %d.\n", rc);
5482 return (rc);
5483 }
5484 if ((int)val[1] > (int)val[0]) {
5485 sc->tids.hpftid_base = val[0];
5486 sc->tids.hpftid_end = val[1];
5487 sc->tids.nhpftids = val[1] - val[0] + 1;
5488
5489 /*
5490 * These should go off if the layout changes and the
5491 * driver needs to catch up.
5492 */
5493 MPASS(sc->tids.hpftid_base == 0);
5494 MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5495 }
5496
5497 param[0] = FW_PARAM_PFVF(RAWF_START);
5498 param[1] = FW_PARAM_PFVF(RAWF_END);
5499 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5500 if (rc != 0) {
5501 device_printf(sc->dev,
5502 "failed to query rawf parameters: %d.\n", rc);
5503 return (rc);
5504 }
5505 if ((int)val[1] > (int)val[0]) {
5506 sc->rawf_base = val[0];
5507 sc->nrawf = val[1] - val[0] + 1;
5508 }
5509 }
5510
5511 /*
5512 * The parameters that follow may not be available on all firmwares. We
5513 * query them individually rather than in a compound query because old
5514 * firmwares fail the entire query if an unknown parameter is queried.
5515 */
5516
5517 /*
5518 * MPS buffer group configuration.
5519 */
5520 param[0] = FW_PARAM_DEV(MPSBGMAP);
5521 val[0] = 0;
5522 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5523 if (rc == 0)
5524 sc->params.mps_bg_map = val[0];
5525 else
5526 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */
5527
5528 param[0] = FW_PARAM_DEV(TPCHMAP);
5529 val[0] = 0;
5530 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5531 if (rc == 0)
5532 sc->params.tp_ch_map = val[0];
5533 else
5534 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */
5535
5536 /*
5537 * Determine whether the firmware supports the filter2 work request.
5538 */
5539 param[0] = FW_PARAM_DEV(FILTER2_WR);
5540 val[0] = 0;
5541 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5542 if (rc == 0)
5543 sc->params.filter2_wr_support = val[0] != 0;
5544 else
5545 sc->params.filter2_wr_support = 0;
5546
5547 /*
5548 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5549 */
5550 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5551 val[0] = 0;
5552 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5553 if (rc == 0)
5554 sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5555 else
5556 sc->params.ulptx_memwrite_dsgl = false;
5557
5558 /* FW_RI_FR_NSMR_TPTE_WR support */
5559 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5560 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5561 if (rc == 0)
5562 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5563 else
5564 sc->params.fr_nsmr_tpte_wr_support = false;
5565
5566 /* Support for 512 SGL entries per FR MR. */
5567 param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5568 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5569 if (rc == 0)
5570 sc->params.dev_512sgl_mr = val[0] != 0;
5571 else
5572 sc->params.dev_512sgl_mr = false;
5573
5574 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5575 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5576 if (rc == 0)
5577 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5578 else
5579 sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5580
5581 param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5582 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5583 if (rc == 0) {
5584 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */
5585 sc->params.nsched_cls = val[0];
5586 } else
5587 sc->params.nsched_cls = sc->chip_params->nsched_cls;
5588
5589 /* get capabilites */
5590 bzero(&caps, sizeof(caps));
5591 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5592 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5593 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5594 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5595 if (rc != 0) {
5596 device_printf(sc->dev,
5597 "failed to get card capabilities: %d.\n", rc);
5598 return (rc);
5599 }
5600
5601 #define READ_CAPS(x) do { \
5602 sc->x = htobe16(caps.x); \
5603 } while (0)
5604 READ_CAPS(nbmcaps);
5605 READ_CAPS(linkcaps);
5606 READ_CAPS(switchcaps);
5607 READ_CAPS(niccaps);
5608 READ_CAPS(toecaps);
5609 READ_CAPS(rdmacaps);
5610 READ_CAPS(cryptocaps);
5611 READ_CAPS(iscsicaps);
5612 READ_CAPS(fcoecaps);
5613
5614 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5615 MPASS(chip_id(sc) > CHELSIO_T4);
5616 MPASS(sc->toecaps == 0);
5617 sc->toecaps = 0;
5618
5619 param[0] = FW_PARAM_DEV(NTID);
5620 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5621 if (rc != 0) {
5622 device_printf(sc->dev,
5623 "failed to query HASHFILTER parameters: %d.\n", rc);
5624 return (rc);
5625 }
5626 sc->tids.ntids = val[0];
5627 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5628 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5629 sc->tids.ntids -= sc->tids.nhpftids;
5630 }
5631 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5632 sc->params.hash_filter = 1;
5633 }
5634 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5635 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5636 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5637 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5638 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5639 if (rc != 0) {
5640 device_printf(sc->dev,
5641 "failed to query NIC parameters: %d.\n", rc);
5642 return (rc);
5643 }
5644 if ((int)val[1] > (int)val[0]) {
5645 sc->tids.etid_base = val[0];
5646 sc->tids.etid_end = val[1];
5647 sc->tids.netids = val[1] - val[0] + 1;
5648 sc->params.eo_wr_cred = val[2];
5649 sc->params.ethoffload = 1;
5650 }
5651 }
5652 if (sc->toecaps) {
5653 /* query offload-related parameters */
5654 param[0] = FW_PARAM_DEV(NTID);
5655 param[1] = FW_PARAM_PFVF(SERVER_START);
5656 param[2] = FW_PARAM_PFVF(SERVER_END);
5657 param[3] = FW_PARAM_PFVF(TDDP_START);
5658 param[4] = FW_PARAM_PFVF(TDDP_END);
5659 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5660 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5661 if (rc != 0) {
5662 device_printf(sc->dev,
5663 "failed to query TOE parameters: %d.\n", rc);
5664 return (rc);
5665 }
5666 sc->tids.ntids = val[0];
5667 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5668 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5669 sc->tids.ntids -= sc->tids.nhpftids;
5670 }
5671 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5672 if ((int)val[2] > (int)val[1]) {
5673 sc->tids.stid_base = val[1];
5674 sc->tids.nstids = val[2] - val[1] + 1;
5675 }
5676 sc->vres.ddp.start = val[3];
5677 sc->vres.ddp.size = val[4] - val[3] + 1;
5678 sc->params.ofldq_wr_cred = val[5];
5679 sc->params.offload = 1;
5680 } else {
5681 /*
5682 * The firmware attempts memfree TOE configuration for -SO cards
5683 * and will report toecaps=0 if it runs out of resources (this
5684 * depends on the config file). It may not report 0 for other
5685 * capabilities dependent on the TOE in this case. Set them to
5686 * 0 here so that the driver doesn't bother tracking resources
5687 * that will never be used.
5688 */
5689 sc->iscsicaps = 0;
5690 sc->rdmacaps = 0;
5691 }
5692 if (sc->rdmacaps) {
5693 param[0] = FW_PARAM_PFVF(STAG_START);
5694 param[1] = FW_PARAM_PFVF(STAG_END);
5695 param[2] = FW_PARAM_PFVF(RQ_START);
5696 param[3] = FW_PARAM_PFVF(RQ_END);
5697 param[4] = FW_PARAM_PFVF(PBL_START);
5698 param[5] = FW_PARAM_PFVF(PBL_END);
5699 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5700 if (rc != 0) {
5701 device_printf(sc->dev,
5702 "failed to query RDMA parameters(1): %d.\n", rc);
5703 return (rc);
5704 }
5705 sc->vres.stag.start = val[0];
5706 sc->vres.stag.size = val[1] - val[0] + 1;
5707 sc->vres.rq.start = val[2];
5708 sc->vres.rq.size = val[3] - val[2] + 1;
5709 sc->vres.pbl.start = val[4];
5710 sc->vres.pbl.size = val[5] - val[4] + 1;
5711
5712 param[0] = FW_PARAM_PFVF(SQRQ_START);
5713 param[1] = FW_PARAM_PFVF(SQRQ_END);
5714 param[2] = FW_PARAM_PFVF(CQ_START);
5715 param[3] = FW_PARAM_PFVF(CQ_END);
5716 param[4] = FW_PARAM_PFVF(OCQ_START);
5717 param[5] = FW_PARAM_PFVF(OCQ_END);
5718 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5719 if (rc != 0) {
5720 device_printf(sc->dev,
5721 "failed to query RDMA parameters(2): %d.\n", rc);
5722 return (rc);
5723 }
5724 sc->vres.qp.start = val[0];
5725 sc->vres.qp.size = val[1] - val[0] + 1;
5726 sc->vres.cq.start = val[2];
5727 sc->vres.cq.size = val[3] - val[2] + 1;
5728 sc->vres.ocq.start = val[4];
5729 sc->vres.ocq.size = val[5] - val[4] + 1;
5730
5731 param[0] = FW_PARAM_PFVF(SRQ_START);
5732 param[1] = FW_PARAM_PFVF(SRQ_END);
5733 param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5734 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5735 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5736 if (rc != 0) {
5737 device_printf(sc->dev,
5738 "failed to query RDMA parameters(3): %d.\n", rc);
5739 return (rc);
5740 }
5741 sc->vres.srq.start = val[0];
5742 sc->vres.srq.size = val[1] - val[0] + 1;
5743 sc->params.max_ordird_qp = val[2];
5744 sc->params.max_ird_adapter = val[3];
5745 }
5746 if (sc->iscsicaps) {
5747 param[0] = FW_PARAM_PFVF(ISCSI_START);
5748 param[1] = FW_PARAM_PFVF(ISCSI_END);
5749 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5750 if (rc != 0) {
5751 device_printf(sc->dev,
5752 "failed to query iSCSI parameters: %d.\n", rc);
5753 return (rc);
5754 }
5755 sc->vres.iscsi.start = val[0];
5756 sc->vres.iscsi.size = val[1] - val[0] + 1;
5757 }
5758 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5759 param[0] = FW_PARAM_PFVF(TLS_START);
5760 param[1] = FW_PARAM_PFVF(TLS_END);
5761 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5762 if (rc != 0) {
5763 device_printf(sc->dev,
5764 "failed to query TLS parameters: %d.\n", rc);
5765 return (rc);
5766 }
5767 sc->vres.key.start = val[0];
5768 sc->vres.key.size = val[1] - val[0] + 1;
5769 }
5770
5771 /*
5772 * We've got the params we wanted to query directly from the firmware.
5773 * Grab some others via other means.
5774 */
5775 t4_init_sge_params(sc);
5776 t4_init_tp_params(sc);
5777 t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5778 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5779
5780 rc = t4_verify_chip_settings(sc);
5781 if (rc != 0)
5782 return (rc);
5783 t4_init_rx_buf_info(sc);
5784
5785 return (rc);
5786 }
5787
5788 #ifdef KERN_TLS
5789 static void
ktls_tick(void * arg)5790 ktls_tick(void *arg)
5791 {
5792 struct adapter *sc;
5793 uint32_t tstamp;
5794
5795 sc = arg;
5796 tstamp = tcp_ts_getticks();
5797 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5798 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5799 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5800 }
5801
5802 static int
t6_config_kern_tls(struct adapter * sc,bool enable)5803 t6_config_kern_tls(struct adapter *sc, bool enable)
5804 {
5805 int rc;
5806 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5807 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5808 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5809 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5810
5811 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m);
5812 if (rc != 0) {
5813 CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5814 enable ? "enable" : "disable", rc);
5815 return (rc);
5816 }
5817
5818 if (enable) {
5819 sc->flags |= KERN_TLS_ON;
5820 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5821 C_HARDCLOCK);
5822 } else {
5823 sc->flags &= ~KERN_TLS_ON;
5824 callout_stop(&sc->ktls_tick);
5825 }
5826
5827 return (rc);
5828 }
5829 #endif
5830
5831 static int
set_params__post_init(struct adapter * sc)5832 set_params__post_init(struct adapter *sc)
5833 {
5834 uint32_t mask, param, val;
5835 #ifdef TCP_OFFLOAD
5836 int i, v, shift;
5837 #endif
5838
5839 /* ask for encapsulated CPLs */
5840 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5841 val = 1;
5842 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5843
5844 /* Enable 32b port caps if the firmware supports it. */
5845 param = FW_PARAM_PFVF(PORT_CAPS32);
5846 val = 1;
5847 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0)
5848 sc->params.port_caps32 = 1;
5849
5850 /* Let filter + maskhash steer to a part of the VI's RSS region. */
5851 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5852 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5853 V_MASKFILTER(val - 1));
5854
5855 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5856 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5857 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5858 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5859 val = 0;
5860 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5861 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5862 F_ATTACKFILTERENABLE);
5863 val |= F_DROPERRORATTACK;
5864 }
5865 if (t4_drop_ip_fragments != 0) {
5866 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5867 F_FRAGMENTDROP);
5868 val |= F_DROPERRORFRAG;
5869 }
5870 if (t4_drop_pkts_with_l2_errors != 0)
5871 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5872 if (t4_drop_pkts_with_l3_errors != 0) {
5873 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5874 F_DROPERRORCSUMIP;
5875 }
5876 if (t4_drop_pkts_with_l4_errors != 0) {
5877 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5878 F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5879 }
5880 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5881
5882 #ifdef TCP_OFFLOAD
5883 /*
5884 * Override the TOE timers with user provided tunables. This is not the
5885 * recommended way to change the timers (the firmware config file is) so
5886 * these tunables are not documented.
5887 *
5888 * All the timer tunables are in microseconds.
5889 */
5890 if (t4_toe_keepalive_idle != 0) {
5891 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5892 v &= M_KEEPALIVEIDLE;
5893 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5894 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5895 }
5896 if (t4_toe_keepalive_interval != 0) {
5897 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5898 v &= M_KEEPALIVEINTVL;
5899 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5900 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5901 }
5902 if (t4_toe_keepalive_count != 0) {
5903 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5904 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5905 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5906 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5907 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5908 }
5909 if (t4_toe_rexmt_min != 0) {
5910 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5911 v &= M_RXTMIN;
5912 t4_set_reg_field(sc, A_TP_RXT_MIN,
5913 V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5914 }
5915 if (t4_toe_rexmt_max != 0) {
5916 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5917 v &= M_RXTMAX;
5918 t4_set_reg_field(sc, A_TP_RXT_MAX,
5919 V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5920 }
5921 if (t4_toe_rexmt_count != 0) {
5922 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5923 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5924 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5925 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5926 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5927 }
5928 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5929 if (t4_toe_rexmt_backoff[i] != -1) {
5930 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5931 shift = (i & 3) << 3;
5932 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5933 M_TIMERBACKOFFINDEX0 << shift, v << shift);
5934 }
5935 }
5936 #endif
5937
5938 /*
5939 * Limit TOE connections to 2 reassembly "islands". This is
5940 * required to permit migrating TOE connections to either
5941 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
5942 */
5943 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
5944 V_PASSMODE(2));
5945
5946 #ifdef KERN_TLS
5947 if (is_ktls(sc)) {
5948 sc->tlst.inline_keys = t4_tls_inline_keys;
5949 sc->tlst.combo_wrs = t4_tls_combo_wrs;
5950 if (t4_kern_tls != 0 && is_t6(sc))
5951 t6_config_kern_tls(sc, true);
5952 }
5953 #endif
5954 return (0);
5955 }
5956
5957 #undef FW_PARAM_PFVF
5958 #undef FW_PARAM_DEV
5959
5960 static void
t4_set_desc(struct adapter * sc)5961 t4_set_desc(struct adapter *sc)
5962 {
5963 struct adapter_params *p = &sc->params;
5964
5965 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
5966 }
5967
5968 static inline void
ifmedia_add4(struct ifmedia * ifm,int m)5969 ifmedia_add4(struct ifmedia *ifm, int m)
5970 {
5971
5972 ifmedia_add(ifm, m, 0, NULL);
5973 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5974 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5975 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5976 }
5977
5978 /*
5979 * This is the selected media, which is not quite the same as the active media.
5980 * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5981 * and active are not the same, and "media: Ethernet selected" otherwise.
5982 */
5983 static void
set_current_media(struct port_info * pi)5984 set_current_media(struct port_info *pi)
5985 {
5986 struct link_config *lc;
5987 struct ifmedia *ifm;
5988 int mword;
5989 u_int speed;
5990
5991 PORT_LOCK_ASSERT_OWNED(pi);
5992
5993 /* Leave current media alone if it's already set to IFM_NONE. */
5994 ifm = &pi->media;
5995 if (ifm->ifm_cur != NULL &&
5996 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5997 return;
5998
5999 lc = &pi->link_cfg;
6000 if (lc->requested_aneg != AUTONEG_DISABLE &&
6001 lc->pcaps & FW_PORT_CAP32_ANEG) {
6002 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
6003 return;
6004 }
6005 mword = IFM_ETHER | IFM_FDX;
6006 if (lc->requested_fc & PAUSE_TX)
6007 mword |= IFM_ETH_TXPAUSE;
6008 if (lc->requested_fc & PAUSE_RX)
6009 mword |= IFM_ETH_RXPAUSE;
6010 if (lc->requested_speed == 0)
6011 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */
6012 else
6013 speed = lc->requested_speed;
6014 mword |= port_mword(pi, speed_to_fwcap(speed));
6015 ifmedia_set(ifm, mword);
6016 }
6017
6018 /*
6019 * Returns true if the ifmedia list for the port cannot change.
6020 */
6021 static bool
fixed_ifmedia(struct port_info * pi)6022 fixed_ifmedia(struct port_info *pi)
6023 {
6024
6025 return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
6026 pi->port_type == FW_PORT_TYPE_BT_XFI ||
6027 pi->port_type == FW_PORT_TYPE_BT_XAUI ||
6028 pi->port_type == FW_PORT_TYPE_KX4 ||
6029 pi->port_type == FW_PORT_TYPE_KX ||
6030 pi->port_type == FW_PORT_TYPE_KR ||
6031 pi->port_type == FW_PORT_TYPE_BP_AP ||
6032 pi->port_type == FW_PORT_TYPE_BP4_AP ||
6033 pi->port_type == FW_PORT_TYPE_BP40_BA ||
6034 pi->port_type == FW_PORT_TYPE_KR4_100G ||
6035 pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
6036 pi->port_type == FW_PORT_TYPE_KR_XLAUI);
6037 }
6038
6039 static void
build_medialist(struct port_info * pi)6040 build_medialist(struct port_info *pi)
6041 {
6042 uint32_t ss, speed;
6043 int unknown, mword, bit;
6044 struct link_config *lc;
6045 struct ifmedia *ifm;
6046
6047 PORT_LOCK_ASSERT_OWNED(pi);
6048
6049 if (pi->flags & FIXED_IFMEDIA)
6050 return;
6051
6052 /*
6053 * Rebuild the ifmedia list.
6054 */
6055 ifm = &pi->media;
6056 ifmedia_removeall(ifm);
6057 lc = &pi->link_cfg;
6058 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
6059 if (__predict_false(ss == 0)) { /* not supposed to happen. */
6060 MPASS(ss != 0);
6061 no_media:
6062 MPASS(LIST_EMPTY(&ifm->ifm_list));
6063 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
6064 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
6065 return;
6066 }
6067
6068 unknown = 0;
6069 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
6070 speed = 1 << bit;
6071 MPASS(speed & M_FW_PORT_CAP32_SPEED);
6072 if (ss & speed) {
6073 mword = port_mword(pi, speed);
6074 if (mword == IFM_NONE) {
6075 goto no_media;
6076 } else if (mword == IFM_UNKNOWN)
6077 unknown++;
6078 else
6079 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
6080 }
6081 }
6082 if (unknown > 0) /* Add one unknown for all unknown media types. */
6083 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
6084 if (lc->pcaps & FW_PORT_CAP32_ANEG)
6085 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
6086
6087 set_current_media(pi);
6088 }
6089
6090 /*
6091 * Initialize the requested fields in the link config based on driver tunables.
6092 */
6093 static void
init_link_config(struct port_info * pi)6094 init_link_config(struct port_info *pi)
6095 {
6096 struct link_config *lc = &pi->link_cfg;
6097
6098 PORT_LOCK_ASSERT_OWNED(pi);
6099
6100 lc->requested_caps = 0;
6101 lc->requested_speed = 0;
6102
6103 if (t4_autoneg == 0)
6104 lc->requested_aneg = AUTONEG_DISABLE;
6105 else if (t4_autoneg == 1)
6106 lc->requested_aneg = AUTONEG_ENABLE;
6107 else
6108 lc->requested_aneg = AUTONEG_AUTO;
6109
6110 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
6111 PAUSE_AUTONEG);
6112
6113 if (t4_fec & FEC_AUTO)
6114 lc->requested_fec = FEC_AUTO;
6115 else if (t4_fec == 0)
6116 lc->requested_fec = FEC_NONE;
6117 else {
6118 /* -1 is handled by the FEC_AUTO block above and not here. */
6119 lc->requested_fec = t4_fec &
6120 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6121 if (lc->requested_fec == 0)
6122 lc->requested_fec = FEC_AUTO;
6123 }
6124 if (t4_force_fec < 0)
6125 lc->force_fec = -1;
6126 else if (t4_force_fec > 0)
6127 lc->force_fec = 1;
6128 else
6129 lc->force_fec = 0;
6130 }
6131
6132 /*
6133 * Makes sure that all requested settings comply with what's supported by the
6134 * port. Returns the number of settings that were invalid and had to be fixed.
6135 */
6136 static int
fixup_link_config(struct port_info * pi)6137 fixup_link_config(struct port_info *pi)
6138 {
6139 int n = 0;
6140 struct link_config *lc = &pi->link_cfg;
6141 uint32_t fwspeed;
6142
6143 PORT_LOCK_ASSERT_OWNED(pi);
6144
6145 /* Speed (when not autonegotiating) */
6146 if (lc->requested_speed != 0) {
6147 fwspeed = speed_to_fwcap(lc->requested_speed);
6148 if ((fwspeed & lc->pcaps) == 0) {
6149 n++;
6150 lc->requested_speed = 0;
6151 }
6152 }
6153
6154 /* Link autonegotiation */
6155 MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6156 lc->requested_aneg == AUTONEG_DISABLE ||
6157 lc->requested_aneg == AUTONEG_AUTO);
6158 if (lc->requested_aneg == AUTONEG_ENABLE &&
6159 !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6160 n++;
6161 lc->requested_aneg = AUTONEG_AUTO;
6162 }
6163
6164 /* Flow control */
6165 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6166 if (lc->requested_fc & PAUSE_TX &&
6167 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6168 n++;
6169 lc->requested_fc &= ~PAUSE_TX;
6170 }
6171 if (lc->requested_fc & PAUSE_RX &&
6172 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6173 n++;
6174 lc->requested_fc &= ~PAUSE_RX;
6175 }
6176 if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6177 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6178 n++;
6179 lc->requested_fc |= PAUSE_AUTONEG;
6180 }
6181
6182 /* FEC */
6183 if ((lc->requested_fec & FEC_RS &&
6184 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6185 (lc->requested_fec & FEC_BASER_RS &&
6186 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6187 n++;
6188 lc->requested_fec = FEC_AUTO;
6189 }
6190
6191 return (n);
6192 }
6193
6194 /*
6195 * Apply the requested L1 settings, which are expected to be valid, to the
6196 * hardware.
6197 */
6198 static int
apply_link_config(struct port_info * pi)6199 apply_link_config(struct port_info *pi)
6200 {
6201 struct adapter *sc = pi->adapter;
6202 struct link_config *lc = &pi->link_cfg;
6203 int rc;
6204
6205 #ifdef INVARIANTS
6206 ASSERT_SYNCHRONIZED_OP(sc);
6207 PORT_LOCK_ASSERT_OWNED(pi);
6208
6209 if (lc->requested_aneg == AUTONEG_ENABLE)
6210 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6211 if (!(lc->requested_fc & PAUSE_AUTONEG))
6212 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6213 if (lc->requested_fc & PAUSE_TX)
6214 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6215 if (lc->requested_fc & PAUSE_RX)
6216 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6217 if (lc->requested_fec & FEC_RS)
6218 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6219 if (lc->requested_fec & FEC_BASER_RS)
6220 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6221 #endif
6222 if (!(sc->flags & IS_VF)) {
6223 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6224 if (rc != 0) {
6225 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6226 return (rc);
6227 }
6228 }
6229
6230 /*
6231 * An L1_CFG will almost always result in a link-change event if the
6232 * link is up, and the driver will refresh the actual fec/fc/etc. when
6233 * the notification is processed. If the link is down then the actual
6234 * settings are meaningless.
6235 *
6236 * This takes care of the case where a change in the L1 settings may not
6237 * result in a notification.
6238 */
6239 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6240 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6241
6242 return (0);
6243 }
6244
6245 #define FW_MAC_EXACT_CHUNK 7
6246 struct mcaddr_ctx {
6247 if_t ifp;
6248 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6249 uint64_t hash;
6250 int i;
6251 int del;
6252 int rc;
6253 };
6254
6255 static u_int
add_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)6256 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6257 {
6258 struct mcaddr_ctx *ctx = arg;
6259 struct vi_info *vi = if_getsoftc(ctx->ifp);
6260 struct port_info *pi = vi->pi;
6261 struct adapter *sc = pi->adapter;
6262
6263 if (ctx->rc < 0)
6264 return (0);
6265
6266 ctx->mcaddr[ctx->i] = LLADDR(sdl);
6267 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6268 ctx->i++;
6269
6270 if (ctx->i == FW_MAC_EXACT_CHUNK) {
6271 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6272 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6273 if (ctx->rc < 0) {
6274 int j;
6275
6276 for (j = 0; j < ctx->i; j++) {
6277 if_printf(ctx->ifp,
6278 "failed to add mc address"
6279 " %02x:%02x:%02x:"
6280 "%02x:%02x:%02x rc=%d\n",
6281 ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6282 ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6283 ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6284 -ctx->rc);
6285 }
6286 return (0);
6287 }
6288 ctx->del = 0;
6289 ctx->i = 0;
6290 }
6291
6292 return (1);
6293 }
6294
6295 /*
6296 * Program the port's XGMAC based on parameters in ifnet. The caller also
6297 * indicates which parameters should be programmed (the rest are left alone).
6298 */
6299 int
update_mac_settings(if_t ifp,int flags)6300 update_mac_settings(if_t ifp, int flags)
6301 {
6302 int rc = 0;
6303 struct vi_info *vi = if_getsoftc(ifp);
6304 struct port_info *pi = vi->pi;
6305 struct adapter *sc = pi->adapter;
6306 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6307 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6308
6309 ASSERT_SYNCHRONIZED_OP(sc);
6310 KASSERT(flags, ("%s: not told what to update.", __func__));
6311
6312 if (flags & XGMAC_MTU)
6313 mtu = if_getmtu(ifp);
6314
6315 if (flags & XGMAC_PROMISC)
6316 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6317
6318 if (flags & XGMAC_ALLMULTI)
6319 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6320
6321 if (flags & XGMAC_VLANEX)
6322 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6323
6324 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6325 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6326 allmulti, 1, vlanex, false);
6327 if (rc) {
6328 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6329 rc);
6330 return (rc);
6331 }
6332 }
6333
6334 if (flags & XGMAC_UCADDR) {
6335 uint8_t ucaddr[ETHER_ADDR_LEN];
6336
6337 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6338 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6339 ucaddr, true, &vi->smt_idx);
6340 if (rc < 0) {
6341 rc = -rc;
6342 if_printf(ifp, "change_mac failed: %d\n", rc);
6343 return (rc);
6344 } else {
6345 vi->xact_addr_filt = rc;
6346 rc = 0;
6347 }
6348 }
6349
6350 if (flags & XGMAC_MCADDRS) {
6351 struct epoch_tracker et;
6352 struct mcaddr_ctx ctx;
6353 int j;
6354
6355 ctx.ifp = ifp;
6356 ctx.hash = 0;
6357 ctx.i = 0;
6358 ctx.del = 1;
6359 ctx.rc = 0;
6360 /*
6361 * Unlike other drivers, we accumulate list of pointers into
6362 * interface address lists and we need to keep it safe even
6363 * after if_foreach_llmaddr() returns, thus we must enter the
6364 * network epoch.
6365 */
6366 NET_EPOCH_ENTER(et);
6367 if_foreach_llmaddr(ifp, add_maddr, &ctx);
6368 if (ctx.rc < 0) {
6369 NET_EPOCH_EXIT(et);
6370 rc = -ctx.rc;
6371 return (rc);
6372 }
6373 if (ctx.i > 0) {
6374 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6375 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6376 NET_EPOCH_EXIT(et);
6377 if (rc < 0) {
6378 rc = -rc;
6379 for (j = 0; j < ctx.i; j++) {
6380 if_printf(ifp,
6381 "failed to add mcast address"
6382 " %02x:%02x:%02x:"
6383 "%02x:%02x:%02x rc=%d\n",
6384 ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6385 ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6386 ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6387 rc);
6388 }
6389 return (rc);
6390 }
6391 ctx.del = 0;
6392 } else
6393 NET_EPOCH_EXIT(et);
6394
6395 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6396 if (rc != 0)
6397 if_printf(ifp, "failed to set mcast address hash: %d\n",
6398 rc);
6399 if (ctx.del == 0) {
6400 /* We clobbered the VXLAN entry if there was one. */
6401 pi->vxlan_tcam_entry = false;
6402 }
6403 }
6404
6405 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6406 pi->vxlan_tcam_entry == false) {
6407 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6408 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6409 true);
6410 if (rc < 0) {
6411 rc = -rc;
6412 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6413 rc);
6414 } else {
6415 MPASS(rc == sc->rawf_base + pi->port_id);
6416 rc = 0;
6417 pi->vxlan_tcam_entry = true;
6418 }
6419 }
6420
6421 return (rc);
6422 }
6423
6424 /*
6425 * {begin|end}_synchronized_op must be called from the same thread.
6426 */
6427 int
begin_synchronized_op(struct adapter * sc,struct vi_info * vi,int flags,char * wmesg)6428 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6429 char *wmesg)
6430 {
6431 int rc;
6432
6433 #ifdef WITNESS
6434 /* the caller thinks it's ok to sleep, but is it really? */
6435 if (flags & SLEEP_OK)
6436 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
6437 #endif
6438 ADAPTER_LOCK(sc);
6439 for (;;) {
6440
6441 if (vi && IS_DETACHING(vi)) {
6442 rc = ENXIO;
6443 goto done;
6444 }
6445
6446 if (!IS_BUSY(sc)) {
6447 rc = 0;
6448 break;
6449 }
6450
6451 if (!(flags & SLEEP_OK)) {
6452 rc = EBUSY;
6453 goto done;
6454 }
6455
6456 if (mtx_sleep(&sc->flags, &sc->sc_lock,
6457 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) {
6458 rc = EINTR;
6459 goto done;
6460 }
6461 }
6462
6463 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6464 SET_BUSY(sc);
6465 #ifdef INVARIANTS
6466 sc->last_op = wmesg;
6467 sc->last_op_thr = curthread;
6468 sc->last_op_flags = flags;
6469 #endif
6470
6471 done:
6472 if (!(flags & HOLD_LOCK) || rc)
6473 ADAPTER_UNLOCK(sc);
6474
6475 return (rc);
6476 }
6477
6478 /*
6479 * Tell if_ioctl and if_init that the VI is going away. This is
6480 * special variant of begin_synchronized_op and must be paired with a
6481 * call to end_vi_detach.
6482 */
6483 void
begin_vi_detach(struct adapter * sc,struct vi_info * vi)6484 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6485 {
6486 ADAPTER_LOCK(sc);
6487 SET_DETACHING(vi);
6488 wakeup(&sc->flags);
6489 while (IS_BUSY(sc))
6490 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6491 SET_BUSY(sc);
6492 #ifdef INVARIANTS
6493 sc->last_op = "t4detach";
6494 sc->last_op_thr = curthread;
6495 sc->last_op_flags = 0;
6496 #endif
6497 ADAPTER_UNLOCK(sc);
6498 }
6499
6500 void
end_vi_detach(struct adapter * sc,struct vi_info * vi)6501 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6502 {
6503 ADAPTER_LOCK(sc);
6504 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6505 CLR_BUSY(sc);
6506 CLR_DETACHING(vi);
6507 wakeup(&sc->flags);
6508 ADAPTER_UNLOCK(sc);
6509 }
6510
6511 /*
6512 * {begin|end}_synchronized_op must be called from the same thread.
6513 */
6514 void
end_synchronized_op(struct adapter * sc,int flags)6515 end_synchronized_op(struct adapter *sc, int flags)
6516 {
6517
6518 if (flags & LOCK_HELD)
6519 ADAPTER_LOCK_ASSERT_OWNED(sc);
6520 else
6521 ADAPTER_LOCK(sc);
6522
6523 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6524 CLR_BUSY(sc);
6525 wakeup(&sc->flags);
6526 ADAPTER_UNLOCK(sc);
6527 }
6528
6529 static int
cxgbe_init_synchronized(struct vi_info * vi)6530 cxgbe_init_synchronized(struct vi_info *vi)
6531 {
6532 struct port_info *pi = vi->pi;
6533 struct adapter *sc = pi->adapter;
6534 if_t ifp = vi->ifp;
6535 int rc = 0, i;
6536 struct sge_txq *txq;
6537
6538 ASSERT_SYNCHRONIZED_OP(sc);
6539
6540 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6541 return (0); /* already running */
6542
6543 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6544 return (rc); /* error message displayed already */
6545
6546 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6547 return (rc); /* error message displayed already */
6548
6549 rc = update_mac_settings(ifp, XGMAC_ALL);
6550 if (rc)
6551 goto done; /* error message displayed already */
6552
6553 PORT_LOCK(pi);
6554 if (pi->up_vis == 0) {
6555 t4_update_port_info(pi);
6556 fixup_link_config(pi);
6557 build_medialist(pi);
6558 apply_link_config(pi);
6559 }
6560
6561 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6562 if (rc != 0) {
6563 if_printf(ifp, "enable_vi failed: %d\n", rc);
6564 PORT_UNLOCK(pi);
6565 goto done;
6566 }
6567
6568 /*
6569 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized
6570 * if this changes.
6571 */
6572
6573 for_each_txq(vi, i, txq) {
6574 TXQ_LOCK(txq);
6575 txq->eq.flags |= EQ_ENABLED;
6576 TXQ_UNLOCK(txq);
6577 }
6578
6579 /*
6580 * The first iq of the first port to come up is used for tracing.
6581 */
6582 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6583 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6584 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL :
6585 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6586 V_QUEUENUMBER(sc->traceq));
6587 pi->flags |= HAS_TRACEQ;
6588 }
6589
6590 /* all ok */
6591 pi->up_vis++;
6592 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6593 if (pi->link_cfg.link_ok)
6594 t4_os_link_changed(pi);
6595 PORT_UNLOCK(pi);
6596
6597 mtx_lock(&vi->tick_mtx);
6598 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6599 callout_reset(&vi->tick, hz, vi_tick, vi);
6600 else
6601 callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6602 mtx_unlock(&vi->tick_mtx);
6603 done:
6604 if (rc != 0)
6605 cxgbe_uninit_synchronized(vi);
6606
6607 return (rc);
6608 }
6609
6610 /*
6611 * Idempotent.
6612 */
6613 static int
cxgbe_uninit_synchronized(struct vi_info * vi)6614 cxgbe_uninit_synchronized(struct vi_info *vi)
6615 {
6616 struct port_info *pi = vi->pi;
6617 struct adapter *sc = pi->adapter;
6618 if_t ifp = vi->ifp;
6619 int rc, i;
6620 struct sge_txq *txq;
6621
6622 ASSERT_SYNCHRONIZED_OP(sc);
6623
6624 if (!(vi->flags & VI_INIT_DONE)) {
6625 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6626 KASSERT(0, ("uninited VI is running"));
6627 if_printf(ifp, "uninited VI with running ifnet. "
6628 "vi->flags 0x%016lx, if_flags 0x%08x, "
6629 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6630 if_getdrvflags(ifp));
6631 }
6632 return (0);
6633 }
6634
6635 /*
6636 * Disable the VI so that all its data in either direction is discarded
6637 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz
6638 * tick) intact as the TP can deliver negative advice or data that it's
6639 * holding in its RAM (for an offloaded connection) even after the VI is
6640 * disabled.
6641 */
6642 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6643 if (rc) {
6644 if_printf(ifp, "disable_vi failed: %d\n", rc);
6645 return (rc);
6646 }
6647
6648 for_each_txq(vi, i, txq) {
6649 TXQ_LOCK(txq);
6650 txq->eq.flags &= ~EQ_ENABLED;
6651 TXQ_UNLOCK(txq);
6652 }
6653
6654 mtx_lock(&vi->tick_mtx);
6655 callout_stop(&vi->tick);
6656 mtx_unlock(&vi->tick_mtx);
6657
6658 PORT_LOCK(pi);
6659 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6660 PORT_UNLOCK(pi);
6661 return (0);
6662 }
6663 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6664 pi->up_vis--;
6665 if (pi->up_vis > 0) {
6666 PORT_UNLOCK(pi);
6667 return (0);
6668 }
6669
6670 pi->link_cfg.link_ok = false;
6671 pi->link_cfg.speed = 0;
6672 pi->link_cfg.link_down_rc = 255;
6673 t4_os_link_changed(pi);
6674 PORT_UNLOCK(pi);
6675
6676 return (0);
6677 }
6678
6679 /*
6680 * It is ok for this function to fail midway and return right away. t4_detach
6681 * will walk the entire sc->irq list and clean up whatever is valid.
6682 */
6683 int
t4_setup_intr_handlers(struct adapter * sc)6684 t4_setup_intr_handlers(struct adapter *sc)
6685 {
6686 int rc, rid, p, q, v;
6687 char s[8];
6688 struct irq *irq;
6689 struct port_info *pi;
6690 struct vi_info *vi;
6691 struct sge *sge = &sc->sge;
6692 struct sge_rxq *rxq;
6693 #ifdef TCP_OFFLOAD
6694 struct sge_ofld_rxq *ofld_rxq;
6695 #endif
6696 #ifdef DEV_NETMAP
6697 struct sge_nm_rxq *nm_rxq;
6698 #endif
6699 #ifdef RSS
6700 int nbuckets = rss_getnumbuckets();
6701 #endif
6702
6703 /*
6704 * Setup interrupts.
6705 */
6706 irq = &sc->irq[0];
6707 rid = sc->intr_type == INTR_INTX ? 0 : 1;
6708 if (forwarding_intr_to_fwq(sc))
6709 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6710
6711 /* Multiple interrupts. */
6712 if (sc->flags & IS_VF)
6713 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6714 ("%s: too few intr.", __func__));
6715 else
6716 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6717 ("%s: too few intr.", __func__));
6718
6719 /* The first one is always error intr on PFs */
6720 if (!(sc->flags & IS_VF)) {
6721 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6722 if (rc != 0)
6723 return (rc);
6724 irq++;
6725 rid++;
6726 }
6727
6728 /* The second one is always the firmware event queue (first on VFs) */
6729 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6730 if (rc != 0)
6731 return (rc);
6732 irq++;
6733 rid++;
6734
6735 for_each_port(sc, p) {
6736 pi = sc->port[p];
6737 for_each_vi(pi, v, vi) {
6738 vi->first_intr = rid - 1;
6739
6740 if (vi->nnmrxq > 0) {
6741 int n = max(vi->nrxq, vi->nnmrxq);
6742
6743 rxq = &sge->rxq[vi->first_rxq];
6744 #ifdef DEV_NETMAP
6745 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6746 #endif
6747 for (q = 0; q < n; q++) {
6748 snprintf(s, sizeof(s), "%x%c%x", p,
6749 'a' + v, q);
6750 if (q < vi->nrxq)
6751 irq->rxq = rxq++;
6752 #ifdef DEV_NETMAP
6753 if (q < vi->nnmrxq)
6754 irq->nm_rxq = nm_rxq++;
6755
6756 if (irq->nm_rxq != NULL &&
6757 irq->rxq == NULL) {
6758 /* Netmap rx only */
6759 rc = t4_alloc_irq(sc, irq, rid,
6760 t4_nm_intr, irq->nm_rxq, s);
6761 }
6762 if (irq->nm_rxq != NULL &&
6763 irq->rxq != NULL) {
6764 /* NIC and Netmap rx */
6765 rc = t4_alloc_irq(sc, irq, rid,
6766 t4_vi_intr, irq, s);
6767 }
6768 #endif
6769 if (irq->rxq != NULL &&
6770 irq->nm_rxq == NULL) {
6771 /* NIC rx only */
6772 rc = t4_alloc_irq(sc, irq, rid,
6773 t4_intr, irq->rxq, s);
6774 }
6775 if (rc != 0)
6776 return (rc);
6777 #ifdef RSS
6778 if (q < vi->nrxq) {
6779 bus_bind_intr(sc->dev, irq->res,
6780 rss_getcpu(q % nbuckets));
6781 }
6782 #endif
6783 irq++;
6784 rid++;
6785 vi->nintr++;
6786 }
6787 } else {
6788 for_each_rxq(vi, q, rxq) {
6789 snprintf(s, sizeof(s), "%x%c%x", p,
6790 'a' + v, q);
6791 rc = t4_alloc_irq(sc, irq, rid,
6792 t4_intr, rxq, s);
6793 if (rc != 0)
6794 return (rc);
6795 #ifdef RSS
6796 bus_bind_intr(sc->dev, irq->res,
6797 rss_getcpu(q % nbuckets));
6798 #endif
6799 irq++;
6800 rid++;
6801 vi->nintr++;
6802 }
6803 }
6804 #ifdef TCP_OFFLOAD
6805 for_each_ofld_rxq(vi, q, ofld_rxq) {
6806 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6807 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6808 ofld_rxq, s);
6809 if (rc != 0)
6810 return (rc);
6811 irq++;
6812 rid++;
6813 vi->nintr++;
6814 }
6815 #endif
6816 }
6817 }
6818 MPASS(irq == &sc->irq[sc->intr_count]);
6819
6820 return (0);
6821 }
6822
6823 static void
write_global_rss_key(struct adapter * sc)6824 write_global_rss_key(struct adapter *sc)
6825 {
6826 #ifdef RSS
6827 int i;
6828 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6829 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6830
6831 CTASSERT(RSS_KEYSIZE == 40);
6832
6833 rss_getkey((void *)&raw_rss_key[0]);
6834 for (i = 0; i < nitems(rss_key); i++) {
6835 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6836 }
6837 t4_write_rss_key(sc, &rss_key[0], -1, 1);
6838 #endif
6839 }
6840
6841 /*
6842 * Idempotent.
6843 */
6844 static int
adapter_full_init(struct adapter * sc)6845 adapter_full_init(struct adapter *sc)
6846 {
6847 int rc, i;
6848
6849 ASSERT_SYNCHRONIZED_OP(sc);
6850
6851 /*
6852 * queues that belong to the adapter (not any particular port).
6853 */
6854 rc = t4_setup_adapter_queues(sc);
6855 if (rc != 0)
6856 return (rc);
6857
6858 MPASS(sc->params.nports <= nitems(sc->tq));
6859 for (i = 0; i < sc->params.nports; i++) {
6860 if (sc->tq[i] != NULL)
6861 continue;
6862 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6863 taskqueue_thread_enqueue, &sc->tq[i]);
6864 if (sc->tq[i] == NULL) {
6865 CH_ERR(sc, "failed to allocate task queue %d\n", i);
6866 return (ENOMEM);
6867 }
6868 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6869 device_get_nameunit(sc->dev), i);
6870 }
6871
6872 if (!(sc->flags & IS_VF)) {
6873 write_global_rss_key(sc);
6874 t4_intr_enable(sc);
6875 }
6876 return (0);
6877 }
6878
6879 int
adapter_init(struct adapter * sc)6880 adapter_init(struct adapter *sc)
6881 {
6882 int rc;
6883
6884 ASSERT_SYNCHRONIZED_OP(sc);
6885 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6886 KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6887 ("%s: FULL_INIT_DONE already", __func__));
6888
6889 rc = adapter_full_init(sc);
6890 if (rc != 0)
6891 adapter_full_uninit(sc);
6892 else
6893 sc->flags |= FULL_INIT_DONE;
6894
6895 return (rc);
6896 }
6897
6898 /*
6899 * Idempotent.
6900 */
6901 static void
adapter_full_uninit(struct adapter * sc)6902 adapter_full_uninit(struct adapter *sc)
6903 {
6904 int i;
6905
6906 t4_teardown_adapter_queues(sc);
6907
6908 for (i = 0; i < nitems(sc->tq); i++) {
6909 if (sc->tq[i] == NULL)
6910 continue;
6911 taskqueue_free(sc->tq[i]);
6912 sc->tq[i] = NULL;
6913 }
6914
6915 sc->flags &= ~FULL_INIT_DONE;
6916 }
6917
6918 #ifdef RSS
6919 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6920 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6921 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6922 RSS_HASHTYPE_RSS_UDP_IPV6)
6923
6924 /* Translates kernel hash types to hardware. */
6925 static int
hashconfig_to_hashen(int hashconfig)6926 hashconfig_to_hashen(int hashconfig)
6927 {
6928 int hashen = 0;
6929
6930 if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6931 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6932 if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6933 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6934 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6935 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6936 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6937 }
6938 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6939 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6940 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6941 }
6942 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6943 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6944 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6945 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6946
6947 return (hashen);
6948 }
6949
6950 /* Translates hardware hash types to kernel. */
6951 static int
hashen_to_hashconfig(int hashen)6952 hashen_to_hashconfig(int hashen)
6953 {
6954 int hashconfig = 0;
6955
6956 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6957 /*
6958 * If UDP hashing was enabled it must have been enabled for
6959 * either IPv4 or IPv6 (inclusive or). Enabling UDP without
6960 * enabling any 4-tuple hash is nonsense configuration.
6961 */
6962 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6963 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6964
6965 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6966 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6967 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6968 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6969 }
6970 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6971 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6972 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6973 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6974 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6975 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6976 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6977 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6978
6979 return (hashconfig);
6980 }
6981 #endif
6982
6983 /*
6984 * Idempotent.
6985 */
6986 static int
vi_full_init(struct vi_info * vi)6987 vi_full_init(struct vi_info *vi)
6988 {
6989 struct adapter *sc = vi->adapter;
6990 struct sge_rxq *rxq;
6991 int rc, i, j;
6992 #ifdef RSS
6993 int nbuckets = rss_getnumbuckets();
6994 int hashconfig = rss_gethashconfig();
6995 int extra;
6996 #endif
6997
6998 ASSERT_SYNCHRONIZED_OP(sc);
6999
7000 /*
7001 * Allocate tx/rx/fl queues for this VI.
7002 */
7003 rc = t4_setup_vi_queues(vi);
7004 if (rc != 0)
7005 return (rc);
7006
7007 /*
7008 * Setup RSS for this VI. Save a copy of the RSS table for later use.
7009 */
7010 if (vi->nrxq > vi->rss_size) {
7011 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
7012 "some queues will never receive traffic.\n", vi->nrxq,
7013 vi->rss_size);
7014 } else if (vi->rss_size % vi->nrxq) {
7015 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
7016 "expect uneven traffic distribution.\n", vi->nrxq,
7017 vi->rss_size);
7018 }
7019 #ifdef RSS
7020 if (vi->nrxq != nbuckets) {
7021 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
7022 "performance will be impacted.\n", vi->nrxq, nbuckets);
7023 }
7024 #endif
7025 if (vi->rss == NULL)
7026 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
7027 M_ZERO | M_WAITOK);
7028 for (i = 0; i < vi->rss_size;) {
7029 #ifdef RSS
7030 j = rss_get_indirection_to_bucket(i);
7031 j %= vi->nrxq;
7032 rxq = &sc->sge.rxq[vi->first_rxq + j];
7033 vi->rss[i++] = rxq->iq.abs_id;
7034 #else
7035 for_each_rxq(vi, j, rxq) {
7036 vi->rss[i++] = rxq->iq.abs_id;
7037 if (i == vi->rss_size)
7038 break;
7039 }
7040 #endif
7041 }
7042
7043 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
7044 vi->rss, vi->rss_size);
7045 if (rc != 0) {
7046 CH_ERR(vi, "rss_config failed: %d\n", rc);
7047 return (rc);
7048 }
7049
7050 #ifdef RSS
7051 vi->hashen = hashconfig_to_hashen(hashconfig);
7052
7053 /*
7054 * We may have had to enable some hashes even though the global config
7055 * wants them disabled. This is a potential problem that must be
7056 * reported to the user.
7057 */
7058 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
7059
7060 /*
7061 * If we consider only the supported hash types, then the enabled hashes
7062 * are a superset of the requested hashes. In other words, there cannot
7063 * be any supported hash that was requested but not enabled, but there
7064 * can be hashes that were not requested but had to be enabled.
7065 */
7066 extra &= SUPPORTED_RSS_HASHTYPES;
7067 MPASS((extra & hashconfig) == 0);
7068
7069 if (extra) {
7070 CH_ALERT(vi,
7071 "global RSS config (0x%x) cannot be accommodated.\n",
7072 hashconfig);
7073 }
7074 if (extra & RSS_HASHTYPE_RSS_IPV4)
7075 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
7076 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
7077 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
7078 if (extra & RSS_HASHTYPE_RSS_IPV6)
7079 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
7080 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
7081 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
7082 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
7083 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
7084 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
7085 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
7086 #else
7087 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
7088 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
7089 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
7090 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
7091 #endif
7092 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
7093 0, 0);
7094 if (rc != 0) {
7095 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
7096 return (rc);
7097 }
7098
7099 return (0);
7100 }
7101
7102 int
vi_init(struct vi_info * vi)7103 vi_init(struct vi_info *vi)
7104 {
7105 int rc;
7106
7107 ASSERT_SYNCHRONIZED_OP(vi->adapter);
7108 KASSERT((vi->flags & VI_INIT_DONE) == 0,
7109 ("%s: VI_INIT_DONE already", __func__));
7110
7111 rc = vi_full_init(vi);
7112 if (rc != 0)
7113 vi_full_uninit(vi);
7114 else
7115 vi->flags |= VI_INIT_DONE;
7116
7117 return (rc);
7118 }
7119
7120 /*
7121 * Idempotent.
7122 */
7123 static void
vi_full_uninit(struct vi_info * vi)7124 vi_full_uninit(struct vi_info *vi)
7125 {
7126
7127 if (vi->flags & VI_INIT_DONE) {
7128 quiesce_vi(vi);
7129 free(vi->rss, M_CXGBE);
7130 free(vi->nm_rss, M_CXGBE);
7131 }
7132
7133 t4_teardown_vi_queues(vi);
7134 vi->flags &= ~VI_INIT_DONE;
7135 }
7136
7137 static void
quiesce_txq(struct sge_txq * txq)7138 quiesce_txq(struct sge_txq *txq)
7139 {
7140 struct sge_eq *eq = &txq->eq;
7141 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7142
7143 MPASS(eq->flags & EQ_SW_ALLOCATED);
7144 MPASS(!(eq->flags & EQ_ENABLED));
7145
7146 /* Wait for the mp_ring to empty. */
7147 while (!mp_ring_is_idle(txq->r)) {
7148 mp_ring_check_drainage(txq->r, 4096);
7149 pause("rquiesce", 1);
7150 }
7151 MPASS(txq->txp.npkt == 0);
7152
7153 if (eq->flags & EQ_HW_ALLOCATED) {
7154 /*
7155 * Hardware is alive and working normally. Wait for it to
7156 * finish and then wait for the driver to catch up and reclaim
7157 * all descriptors.
7158 */
7159 while (spg->cidx != htobe16(eq->pidx))
7160 pause("equiesce", 1);
7161 while (eq->cidx != eq->pidx)
7162 pause("dquiesce", 1);
7163 } else {
7164 /*
7165 * Hardware is unavailable. Discard all pending tx and reclaim
7166 * descriptors directly.
7167 */
7168 TXQ_LOCK(txq);
7169 while (eq->cidx != eq->pidx) {
7170 struct mbuf *m, *nextpkt;
7171 struct tx_sdesc *txsd;
7172
7173 txsd = &txq->sdesc[eq->cidx];
7174 for (m = txsd->m; m != NULL; m = nextpkt) {
7175 nextpkt = m->m_nextpkt;
7176 m->m_nextpkt = NULL;
7177 m_freem(m);
7178 }
7179 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7180 }
7181 spg->pidx = spg->cidx = htobe16(eq->cidx);
7182 TXQ_UNLOCK(txq);
7183 }
7184 }
7185
7186 static void
quiesce_wrq(struct sge_wrq * wrq)7187 quiesce_wrq(struct sge_wrq *wrq)
7188 {
7189 struct wrqe *wr;
7190
7191 TXQ_LOCK(wrq);
7192 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7193 STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7194 #ifdef INVARIANTS
7195 wrq->nwr_pending--;
7196 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7197 #endif
7198 free(wr, M_CXGBE);
7199 }
7200 MPASS(wrq->nwr_pending == 0);
7201 MPASS(wrq->ndesc_needed == 0);
7202 wrq->nwr_pending = 0;
7203 wrq->ndesc_needed = 0;
7204 TXQ_UNLOCK(wrq);
7205 }
7206
7207 static void
quiesce_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)7208 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7209 {
7210 /* Synchronize with the interrupt handler */
7211 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7212 pause("iqfree", 1);
7213
7214 if (fl != NULL) {
7215 MPASS(iq->flags & IQ_HAS_FL);
7216
7217 mtx_lock(&sc->sfl_lock);
7218 FL_LOCK(fl);
7219 fl->flags |= FL_DOOMED;
7220 FL_UNLOCK(fl);
7221 callout_stop(&sc->sfl_callout);
7222 mtx_unlock(&sc->sfl_lock);
7223
7224 KASSERT((fl->flags & FL_STARVING) == 0,
7225 ("%s: still starving", __func__));
7226
7227 /* Release all buffers if hardware is no longer available. */
7228 if (!(iq->flags & IQ_HW_ALLOCATED))
7229 free_fl_buffers(sc, fl);
7230 }
7231 }
7232
7233 /*
7234 * Wait for all activity on all the queues of the VI to complete. It is assumed
7235 * that no new work is being enqueued by the hardware or the driver. That part
7236 * should be arranged before calling this function.
7237 */
7238 static void
quiesce_vi(struct vi_info * vi)7239 quiesce_vi(struct vi_info *vi)
7240 {
7241 int i;
7242 struct adapter *sc = vi->adapter;
7243 struct sge_rxq *rxq;
7244 struct sge_txq *txq;
7245 #ifdef TCP_OFFLOAD
7246 struct sge_ofld_rxq *ofld_rxq;
7247 #endif
7248 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7249 struct sge_ofld_txq *ofld_txq;
7250 #endif
7251
7252 if (!(vi->flags & VI_INIT_DONE))
7253 return;
7254
7255 for_each_txq(vi, i, txq) {
7256 quiesce_txq(txq);
7257 }
7258
7259 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7260 for_each_ofld_txq(vi, i, ofld_txq) {
7261 quiesce_wrq(&ofld_txq->wrq);
7262 }
7263 #endif
7264
7265 for_each_rxq(vi, i, rxq) {
7266 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7267 }
7268
7269 #ifdef TCP_OFFLOAD
7270 for_each_ofld_rxq(vi, i, ofld_rxq) {
7271 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7272 }
7273 #endif
7274 }
7275
7276 static int
t4_alloc_irq(struct adapter * sc,struct irq * irq,int rid,driver_intr_t * handler,void * arg,char * name)7277 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7278 driver_intr_t *handler, void *arg, char *name)
7279 {
7280 int rc;
7281
7282 irq->rid = rid;
7283 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7284 RF_SHAREABLE | RF_ACTIVE);
7285 if (irq->res == NULL) {
7286 device_printf(sc->dev,
7287 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7288 return (ENOMEM);
7289 }
7290
7291 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7292 NULL, handler, arg, &irq->tag);
7293 if (rc != 0) {
7294 device_printf(sc->dev,
7295 "failed to setup interrupt for rid %d, name %s: %d\n",
7296 rid, name, rc);
7297 } else if (name)
7298 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7299
7300 return (rc);
7301 }
7302
7303 static int
t4_free_irq(struct adapter * sc,struct irq * irq)7304 t4_free_irq(struct adapter *sc, struct irq *irq)
7305 {
7306 if (irq->tag)
7307 bus_teardown_intr(sc->dev, irq->res, irq->tag);
7308 if (irq->res)
7309 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7310
7311 bzero(irq, sizeof(*irq));
7312
7313 return (0);
7314 }
7315
7316 static void
get_regs(struct adapter * sc,struct t4_regdump * regs,uint8_t * buf)7317 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7318 {
7319
7320 regs->version = chip_id(sc) | chip_rev(sc) << 10;
7321 t4_get_regs(sc, buf, regs->len);
7322 }
7323
7324 #define A_PL_INDIR_CMD 0x1f8
7325
7326 #define S_PL_AUTOINC 31
7327 #define M_PL_AUTOINC 0x1U
7328 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
7329 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7330
7331 #define S_PL_VFID 20
7332 #define M_PL_VFID 0xffU
7333 #define V_PL_VFID(x) ((x) << S_PL_VFID)
7334 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID)
7335
7336 #define S_PL_ADDR 0
7337 #define M_PL_ADDR 0xfffffU
7338 #define V_PL_ADDR(x) ((x) << S_PL_ADDR)
7339 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR)
7340
7341 #define A_PL_INDIR_DATA 0x1fc
7342
7343 static uint64_t
read_vf_stat(struct adapter * sc,u_int vin,int reg)7344 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7345 {
7346 u32 stats[2];
7347
7348 if (sc->flags & IS_VF) {
7349 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7350 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7351 } else {
7352 mtx_assert(&sc->reg_lock, MA_OWNED);
7353 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7354 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7355 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7356 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7357 }
7358 return (((uint64_t)stats[1]) << 32 | stats[0]);
7359 }
7360
7361 static void
t4_get_vi_stats(struct adapter * sc,u_int vin,struct fw_vi_stats_vf * stats)7362 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7363 {
7364
7365 #define GET_STAT(name) \
7366 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7367
7368 if (!(sc->flags & IS_VF))
7369 mtx_lock(&sc->reg_lock);
7370 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES);
7371 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
7372 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES);
7373 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
7374 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES);
7375 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
7376 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES);
7377 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES);
7378 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7379 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES);
7380 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
7381 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES);
7382 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
7383 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES);
7384 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
7385 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES);
7386 if (!(sc->flags & IS_VF))
7387 mtx_unlock(&sc->reg_lock);
7388
7389 #undef GET_STAT
7390 }
7391
7392 static void
t4_clr_vi_stats(struct adapter * sc,u_int vin)7393 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7394 {
7395 int reg;
7396
7397 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7398 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7399 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7400 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7401 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7402 }
7403
7404 static void
vi_refresh_stats(struct vi_info * vi)7405 vi_refresh_stats(struct vi_info *vi)
7406 {
7407 struct timeval tv;
7408 const struct timeval interval = {0, 250000}; /* 250ms */
7409
7410 mtx_assert(&vi->tick_mtx, MA_OWNED);
7411
7412 if (vi->flags & VI_SKIP_STATS)
7413 return;
7414
7415 getmicrotime(&tv);
7416 timevalsub(&tv, &interval);
7417 if (timevalcmp(&tv, &vi->last_refreshed, <))
7418 return;
7419
7420 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7421 getmicrotime(&vi->last_refreshed);
7422 }
7423
7424 static void
cxgbe_refresh_stats(struct vi_info * vi)7425 cxgbe_refresh_stats(struct vi_info *vi)
7426 {
7427 u_int i, v, tnl_cong_drops, chan_map;
7428 struct timeval tv;
7429 const struct timeval interval = {0, 250000}; /* 250ms */
7430 struct port_info *pi;
7431 struct adapter *sc;
7432
7433 mtx_assert(&vi->tick_mtx, MA_OWNED);
7434
7435 if (vi->flags & VI_SKIP_STATS)
7436 return;
7437
7438 getmicrotime(&tv);
7439 timevalsub(&tv, &interval);
7440 if (timevalcmp(&tv, &vi->last_refreshed, <))
7441 return;
7442
7443 pi = vi->pi;
7444 sc = vi->adapter;
7445 tnl_cong_drops = 0;
7446 t4_get_port_stats(sc, pi->port_id, &pi->stats);
7447 chan_map = pi->rx_e_chan_map;
7448 while (chan_map) {
7449 i = ffs(chan_map) - 1;
7450 mtx_lock(&sc->reg_lock);
7451 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7452 A_TP_MIB_TNL_CNG_DROP_0 + i);
7453 mtx_unlock(&sc->reg_lock);
7454 tnl_cong_drops += v;
7455 chan_map &= ~(1 << i);
7456 }
7457 pi->tnl_cong_drops = tnl_cong_drops;
7458 getmicrotime(&vi->last_refreshed);
7459 }
7460
7461 static void
cxgbe_tick(void * arg)7462 cxgbe_tick(void *arg)
7463 {
7464 struct vi_info *vi = arg;
7465
7466 MPASS(IS_MAIN_VI(vi));
7467 mtx_assert(&vi->tick_mtx, MA_OWNED);
7468
7469 cxgbe_refresh_stats(vi);
7470 callout_schedule(&vi->tick, hz);
7471 }
7472
7473 static void
vi_tick(void * arg)7474 vi_tick(void *arg)
7475 {
7476 struct vi_info *vi = arg;
7477
7478 mtx_assert(&vi->tick_mtx, MA_OWNED);
7479
7480 vi_refresh_stats(vi);
7481 callout_schedule(&vi->tick, hz);
7482 }
7483
7484 /*
7485 * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7486 */
7487 static char *caps_decoder[] = {
7488 "\20\001IPMI\002NCSI", /* 0: NBM */
7489 "\20\001PPP\002QFC\003DCBX", /* 1: link */
7490 "\20\001INGRESS\002EGRESS", /* 2: switch */
7491 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */
7492 "\006HASHFILTER\007ETHOFLD",
7493 "\20\001TOE", /* 4: TOE */
7494 "\20\001RDDP\002RDMAC", /* 5: RDMA */
7495 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */
7496 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7497 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7498 "\007T10DIF"
7499 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7500 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */
7501 "\004TLS_HW",
7502 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */
7503 "\004PO_INITIATOR\005PO_TARGET",
7504 };
7505
7506 void
t4_sysctls(struct adapter * sc)7507 t4_sysctls(struct adapter *sc)
7508 {
7509 struct sysctl_ctx_list *ctx = &sc->ctx;
7510 struct sysctl_oid *oid;
7511 struct sysctl_oid_list *children, *c0;
7512 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7513
7514 /*
7515 * dev.t4nex.X.
7516 */
7517 oid = device_get_sysctl_tree(sc->dev);
7518 c0 = children = SYSCTL_CHILDREN(oid);
7519
7520 sc->sc_do_rxcopy = 1;
7521 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7522 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7523
7524 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7525 sc->params.nports, "# of ports");
7526
7527 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7528 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7529 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7530 "available doorbells");
7531
7532 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7533 sc->params.vpd.cclk, "core clock frequency (in KHz)");
7534
7535 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7536 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7537 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7538 sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7539
7540 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7541 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7542 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7543 sysctl_int_array, "A", "interrupt holdoff packet counter values");
7544
7545 t4_sge_sysctls(sc, ctx, children);
7546
7547 sc->lro_timeout = 100;
7548 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7549 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7550
7551 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7552 &sc->debug_flags, 0, "flags to enable runtime debugging");
7553
7554 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7555 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7556
7557 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7558 CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7559
7560 if (sc->flags & IS_VF)
7561 return;
7562
7563 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7564 NULL, chip_rev(sc), "chip hardware revision");
7565
7566 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7567 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7568
7569 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7570 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7571
7572 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7573 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7574
7575 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7576 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7577
7578 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7579 CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7580
7581 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7582 sc->er_version, 0, "expansion ROM version");
7583
7584 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7585 sc->bs_version, 0, "bootstrap firmware version");
7586
7587 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7588 NULL, sc->params.scfg_vers, "serial config version");
7589
7590 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7591 NULL, sc->params.vpd_vers, "VPD version");
7592
7593 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7594 CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7595
7596 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7597 sc->cfcsum, "config file checksum");
7598
7599 #define SYSCTL_CAP(name, n, text) \
7600 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7601 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7602 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7603 "available " text " capabilities")
7604
7605 SYSCTL_CAP(nbmcaps, 0, "NBM");
7606 SYSCTL_CAP(linkcaps, 1, "link");
7607 SYSCTL_CAP(switchcaps, 2, "switch");
7608 SYSCTL_CAP(niccaps, 3, "NIC");
7609 SYSCTL_CAP(toecaps, 4, "TCP offload");
7610 SYSCTL_CAP(rdmacaps, 5, "RDMA");
7611 SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7612 SYSCTL_CAP(cryptocaps, 7, "crypto");
7613 SYSCTL_CAP(fcoecaps, 8, "FCoE");
7614 #undef SYSCTL_CAP
7615
7616 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7617 NULL, sc->tids.nftids, "number of filters");
7618
7619 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7620 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7621 sysctl_temperature, "I", "chip temperature (in Celsius)");
7622 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7623 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7624 sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7625
7626 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7627 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7628 sysctl_loadavg, "A",
7629 "microprocessor load averages (debug firmwares only)");
7630
7631 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7632 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7633 "I", "core Vdd (in mV)");
7634
7635 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7636 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7637 sysctl_cpus, "A", "local CPUs");
7638
7639 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7640 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7641 sysctl_cpus, "A", "preferred CPUs for interrupts");
7642
7643 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7644 &sc->swintr, 0, "software triggered interrupts");
7645
7646 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7647 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7648 "1 = reset adapter, 0 = zero reset counter");
7649
7650 /*
7651 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload.
7652 */
7653 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7654 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7655 "logs and miscellaneous information");
7656 children = SYSCTL_CHILDREN(oid);
7657
7658 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7659 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7660 sysctl_cctrl, "A", "congestion control");
7661
7662 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7663 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7664 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7665
7666 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7667 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7668 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7669
7670 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7671 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7672 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7673
7674 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7675 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7676 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7677
7678 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7679 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7680 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7681
7682 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7683 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7684 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7685
7686 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7687 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7688 sysctl_cim_la, "A", "CIM logic analyzer");
7689
7690 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7691 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7692 sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7693
7694 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7695 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7696 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7697
7698 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7699 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7700 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7701
7702 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7703 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7704 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7705
7706 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7707 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7708 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7709
7710 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7711 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7712 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7713
7714 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7715 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7716 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7717
7718 if (chip_id(sc) > CHELSIO_T4) {
7719 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7720 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7721 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7722 "CIM OBQ 6 (SGE0-RX)");
7723
7724 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7725 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7726 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7727 "CIM OBQ 7 (SGE1-RX)");
7728 }
7729
7730 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7731 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7732 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7733
7734 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7735 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7736 sysctl_cim_qcfg, "A", "CIM queue configuration");
7737
7738 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7739 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7740 sysctl_cpl_stats, "A", "CPL statistics");
7741
7742 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7743 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7744 sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7745
7746 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7747 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7748 sysctl_tid_stats, "A", "tid stats");
7749
7750 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7751 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7752 sysctl_devlog, "A", "firmware's device log");
7753
7754 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7755 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7756 sysctl_fcoe_stats, "A", "FCoE statistics");
7757
7758 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7759 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7760 sysctl_hw_sched, "A", "hardware scheduler ");
7761
7762 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7763 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7764 sysctl_l2t, "A", "hardware L2 table");
7765
7766 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7767 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7768 sysctl_smt, "A", "hardware source MAC table");
7769
7770 #ifdef INET6
7771 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7772 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7773 sysctl_clip, "A", "active CLIP table entries");
7774 #endif
7775
7776 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7777 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7778 sysctl_lb_stats, "A", "loopback statistics");
7779
7780 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7781 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7782 sysctl_meminfo, "A", "memory regions");
7783
7784 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7785 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7786 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7787 "A", "MPS TCAM entries");
7788
7789 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7790 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7791 sysctl_path_mtus, "A", "path MTUs");
7792
7793 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7794 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7795 sysctl_pm_stats, "A", "PM statistics");
7796
7797 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7798 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7799 sysctl_rdma_stats, "A", "RDMA statistics");
7800
7801 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7802 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7803 sysctl_tcp_stats, "A", "TCP statistics");
7804
7805 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7806 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7807 sysctl_tids, "A", "TID information");
7808
7809 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7810 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7811 sysctl_tp_err_stats, "A", "TP error statistics");
7812
7813 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7814 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7815 sysctl_tnl_stats, "A", "TP tunnel statistics");
7816
7817 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7818 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7819 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7820
7821 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7822 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7823 sysctl_tp_la, "A", "TP logic analyzer");
7824
7825 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7826 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7827 sysctl_tx_rate, "A", "Tx rate");
7828
7829 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7830 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7831 sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7832
7833 if (chip_id(sc) >= CHELSIO_T5) {
7834 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7835 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7836 sysctl_wcwr_stats, "A", "write combined work requests");
7837 }
7838
7839 #ifdef KERN_TLS
7840 if (is_ktls(sc)) {
7841 /*
7842 * dev.t4nex.0.tls.
7843 */
7844 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7845 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7846 children = SYSCTL_CHILDREN(oid);
7847
7848 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7849 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7850 "keys in work requests (1) or attempt to store TLS keys "
7851 "in card memory.");
7852
7853 if (is_t6(sc))
7854 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7855 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
7856 "combine TCB field updates with TLS record work "
7857 "requests.");
7858 }
7859 #endif
7860
7861 #ifdef TCP_OFFLOAD
7862 if (is_offload(sc)) {
7863 int i;
7864 char s[4];
7865
7866 /*
7867 * dev.t4nex.X.toe.
7868 */
7869 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7870 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7871 children = SYSCTL_CHILDREN(oid);
7872
7873 sc->tt.cong_algorithm = -1;
7874 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7875 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7876 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7877 "3 = highspeed)");
7878
7879 sc->tt.sndbuf = -1;
7880 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7881 &sc->tt.sndbuf, 0, "hardware send buffer");
7882
7883 sc->tt.ddp = 0;
7884 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7885 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7886 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7887 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7888
7889 sc->tt.rx_coalesce = -1;
7890 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7891 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7892
7893 sc->tt.tls = 1;
7894 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7895 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7896 "Inline TLS allowed");
7897
7898 sc->tt.tx_align = -1;
7899 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7900 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7901
7902 sc->tt.tx_zcopy = 0;
7903 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7904 CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7905 "Enable zero-copy aio_write(2)");
7906
7907 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7908 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7909 "cop_managed_offloading", CTLFLAG_RW,
7910 &sc->tt.cop_managed_offloading, 0,
7911 "COP (Connection Offload Policy) controls all TOE offload");
7912
7913 sc->tt.autorcvbuf_inc = 16 * 1024;
7914 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7915 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7916 "autorcvbuf increment");
7917
7918 sc->tt.update_hc_on_pmtu_change = 1;
7919 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7920 "update_hc_on_pmtu_change", CTLFLAG_RW,
7921 &sc->tt.update_hc_on_pmtu_change, 0,
7922 "Update hostcache entry if the PMTU changes");
7923
7924 sc->tt.iso = 1;
7925 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7926 &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7927
7928 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7929 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7930 sysctl_tp_tick, "A", "TP timer tick (us)");
7931
7932 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7933 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7934 sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7935
7936 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7937 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7938 sysctl_tp_tick, "A", "DACK tick (us)");
7939
7940 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7941 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7942 sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7943
7944 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7945 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7946 A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7947 "Minimum retransmit interval (us)");
7948
7949 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7950 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7951 A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7952 "Maximum retransmit interval (us)");
7953
7954 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7955 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7956 A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7957 "Persist timer min (us)");
7958
7959 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7960 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7961 A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7962 "Persist timer max (us)");
7963
7964 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7965 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7966 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7967 "Keepalive idle timer (us)");
7968
7969 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7970 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7971 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7972 "Keepalive interval timer (us)");
7973
7974 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7975 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7976 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7977
7978 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7979 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7980 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7981 "FINWAIT2 timer (us)");
7982
7983 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7984 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7985 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7986 "Number of SYN retransmissions before abort");
7987
7988 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7989 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7990 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7991 "Number of retransmissions before abort");
7992
7993 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7994 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7995 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7996 "Number of keepalive probes before abort");
7997
7998 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7999 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8000 "TOE retransmit backoffs");
8001 children = SYSCTL_CHILDREN(oid);
8002 for (i = 0; i < 16; i++) {
8003 snprintf(s, sizeof(s), "%u", i);
8004 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
8005 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8006 i, sysctl_tp_backoff, "IU",
8007 "TOE retransmit backoff");
8008 }
8009 }
8010 #endif
8011 }
8012
8013 void
vi_sysctls(struct vi_info * vi)8014 vi_sysctls(struct vi_info *vi)
8015 {
8016 struct sysctl_ctx_list *ctx = &vi->ctx;
8017 struct sysctl_oid *oid;
8018 struct sysctl_oid_list *children;
8019
8020 /*
8021 * dev.v?(cxgbe|cxl).X.
8022 */
8023 oid = device_get_sysctl_tree(vi->dev);
8024 children = SYSCTL_CHILDREN(oid);
8025
8026 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
8027 vi->viid, "VI identifer");
8028 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
8029 &vi->nrxq, 0, "# of rx queues");
8030 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
8031 &vi->ntxq, 0, "# of tx queues");
8032 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
8033 &vi->first_rxq, 0, "index of first rx queue");
8034 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
8035 &vi->first_txq, 0, "index of first tx queue");
8036 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
8037 vi->rss_base, "start of RSS indirection table");
8038 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
8039 vi->rss_size, "size of RSS indirection table");
8040
8041 if (IS_MAIN_VI(vi)) {
8042 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
8043 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8044 sysctl_noflowq, "IU",
8045 "Reserve queue 0 for non-flowid packets");
8046 }
8047
8048 if (vi->adapter->flags & IS_VF) {
8049 MPASS(vi->flags & TX_USES_VM_WR);
8050 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
8051 NULL, 1, "use VM work requests for transmit");
8052 } else {
8053 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
8054 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8055 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
8056 }
8057
8058 #ifdef TCP_OFFLOAD
8059 if (vi->nofldrxq != 0) {
8060 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
8061 &vi->nofldrxq, 0,
8062 "# of rx queues for offloaded TCP connections");
8063 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
8064 CTLFLAG_RD, &vi->first_ofld_rxq, 0,
8065 "index of first TOE rx queue");
8066 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
8067 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8068 sysctl_holdoff_tmr_idx_ofld, "I",
8069 "holdoff timer index for TOE queues");
8070 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
8071 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8072 sysctl_holdoff_pktc_idx_ofld, "I",
8073 "holdoff packet counter index for TOE queues");
8074 }
8075 #endif
8076 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
8077 if (vi->nofldtxq != 0) {
8078 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
8079 &vi->nofldtxq, 0,
8080 "# of tx queues for TOE/ETHOFLD");
8081 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
8082 CTLFLAG_RD, &vi->first_ofld_txq, 0,
8083 "index of first TOE/ETHOFLD tx queue");
8084 }
8085 #endif
8086 #ifdef DEV_NETMAP
8087 if (vi->nnmrxq != 0) {
8088 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
8089 &vi->nnmrxq, 0, "# of netmap rx queues");
8090 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
8091 &vi->nnmtxq, 0, "# of netmap tx queues");
8092 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
8093 CTLFLAG_RD, &vi->first_nm_rxq, 0,
8094 "index of first netmap rx queue");
8095 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
8096 CTLFLAG_RD, &vi->first_nm_txq, 0,
8097 "index of first netmap tx queue");
8098 }
8099 #endif
8100
8101 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
8102 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8103 sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
8104 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
8105 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8106 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
8107
8108 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
8109 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8110 sysctl_qsize_rxq, "I", "rx queue size");
8111 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8112 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8113 sysctl_qsize_txq, "I", "tx queue size");
8114 }
8115
8116 static void
cxgbe_sysctls(struct port_info * pi)8117 cxgbe_sysctls(struct port_info *pi)
8118 {
8119 struct sysctl_ctx_list *ctx = &pi->ctx;
8120 struct sysctl_oid *oid;
8121 struct sysctl_oid_list *children, *children2;
8122 struct adapter *sc = pi->adapter;
8123 int i;
8124 char name[16];
8125 static char *tc_flags = {"\20\1USER"};
8126
8127 /*
8128 * dev.cxgbe.X.
8129 */
8130 oid = device_get_sysctl_tree(pi->dev);
8131 children = SYSCTL_CHILDREN(oid);
8132
8133 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8134 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8135 sysctl_linkdnrc, "A", "reason why link is down");
8136 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8137 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8138 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8139 sysctl_btphy, "I", "PHY temperature (in Celsius)");
8140 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8141 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8142 sysctl_btphy, "I", "PHY firmware version");
8143 }
8144
8145 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8146 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8147 sysctl_pause_settings, "A",
8148 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8149 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8150 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8151 "FEC in use on the link");
8152 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8153 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8154 sysctl_requested_fec, "A",
8155 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8156 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8157 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8158 "FEC recommended by the cable/transceiver");
8159 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8160 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8161 sysctl_autoneg, "I",
8162 "autonegotiation (-1 = not supported)");
8163 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8164 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8165 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8166
8167 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8168 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8169 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8170 &pi->link_cfg.pcaps, 0, "port capabilities");
8171 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8172 &pi->link_cfg.acaps, 0, "advertised capabilities");
8173 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8174 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8175
8176 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8177 port_top_speed(pi), "max speed (in Gbps)");
8178 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8179 pi->mps_bg_map, "MPS buffer group map");
8180 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8181 NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8182 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8183 pi->tx_chan, "TP tx c-channel");
8184 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8185 pi->rx_chan, "TP rx c-channel");
8186
8187 if (sc->flags & IS_VF)
8188 return;
8189
8190 /*
8191 * dev.(cxgbe|cxl).X.tc.
8192 */
8193 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8194 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8195 "Tx scheduler traffic classes (cl_rl)");
8196 children2 = SYSCTL_CHILDREN(oid);
8197 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8198 CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8199 "pktsize for per-flow cl-rl (0 means up to the driver )");
8200 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8201 CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8202 "burstsize for per-flow cl-rl (0 means up to the driver)");
8203 for (i = 0; i < sc->params.nsched_cls; i++) {
8204 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8205
8206 snprintf(name, sizeof(name), "%d", i);
8207 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8208 SYSCTL_CHILDREN(oid), OID_AUTO, name,
8209 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8210 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8211 CTLFLAG_RD, &tc->state, 0, "current state");
8212 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8213 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8214 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8215 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8216 CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8217 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8218 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8219 (pi->port_id << 16) | i, sysctl_tc_params, "A",
8220 "traffic class parameters");
8221 }
8222
8223 /*
8224 * dev.cxgbe.X.stats.
8225 */
8226 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8227 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8228 children = SYSCTL_CHILDREN(oid);
8229 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8230 &pi->tx_parse_error, 0,
8231 "# of tx packets with invalid length or # of segments");
8232
8233 #define T4_REGSTAT(name, stat, desc) \
8234 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8235 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8236 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8237 sysctl_handle_t4_reg64, "QU", desc)
8238
8239 /* We get these from port_stats and they may be stale by up to 1s */
8240 #define T4_PORTSTAT(name, desc) \
8241 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
8242 &pi->stats.name, desc)
8243
8244 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8245 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8246 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8247 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8248 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8249 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8250 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8251 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8252 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8253 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8254 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8255 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8256 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8257 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8258 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8259 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8260 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8261 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8262 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8263 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8264 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8265 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8266 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8267
8268 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8269 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8270 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8271 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8272 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8273 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8274 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8275 if (is_t6(sc)) {
8276 T4_PORTSTAT(rx_fcs_err,
8277 "# of frames received with bad FCS since last link up");
8278 } else {
8279 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8280 "# of frames received with bad FCS");
8281 }
8282 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8283 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8284 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8285 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8286 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8287 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8288 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8289 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8290 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8291 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8292 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8293 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8294 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8295 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8296 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8297 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8298 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8299 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8300 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8301
8302 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
8303 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
8304 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
8305 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
8306 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
8307 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
8308 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
8309 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
8310
8311 #undef T4_REGSTAT
8312 #undef T4_PORTSTAT
8313 }
8314
8315 static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)8316 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8317 {
8318 int rc, *i, space = 0;
8319 struct sbuf sb;
8320
8321 sbuf_new_for_sysctl(&sb, NULL, 64, req);
8322 for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8323 if (space)
8324 sbuf_printf(&sb, " ");
8325 sbuf_printf(&sb, "%d", *i);
8326 space = 1;
8327 }
8328 rc = sbuf_finish(&sb);
8329 sbuf_delete(&sb);
8330 return (rc);
8331 }
8332
8333 static int
sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)8334 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8335 {
8336 int rc;
8337 struct sbuf *sb;
8338
8339 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8340 if (sb == NULL)
8341 return (ENOMEM);
8342
8343 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8344 rc = sbuf_finish(sb);
8345 sbuf_delete(sb);
8346
8347 return (rc);
8348 }
8349
8350 static int
sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)8351 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8352 {
8353 int rc;
8354 struct sbuf *sb;
8355
8356 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8357 if (sb == NULL)
8358 return (ENOMEM);
8359
8360 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8361 rc = sbuf_finish(sb);
8362 sbuf_delete(sb);
8363
8364 return (rc);
8365 }
8366
8367 static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)8368 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8369 {
8370 struct port_info *pi = arg1;
8371 int op = arg2;
8372 struct adapter *sc = pi->adapter;
8373 u_int v;
8374 int rc;
8375
8376 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8377 if (rc)
8378 return (rc);
8379 if (!hw_all_ok(sc))
8380 rc = ENXIO;
8381 else {
8382 /* XXX: magic numbers */
8383 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8384 op ? 0x20 : 0xc820, &v);
8385 }
8386 end_synchronized_op(sc, 0);
8387 if (rc)
8388 return (rc);
8389 if (op == 0)
8390 v /= 256;
8391
8392 rc = sysctl_handle_int(oidp, &v, 0, req);
8393 return (rc);
8394 }
8395
8396 static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)8397 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8398 {
8399 struct vi_info *vi = arg1;
8400 int rc, val;
8401
8402 val = vi->rsrv_noflowq;
8403 rc = sysctl_handle_int(oidp, &val, 0, req);
8404 if (rc != 0 || req->newptr == NULL)
8405 return (rc);
8406
8407 if ((val >= 1) && (vi->ntxq > 1))
8408 vi->rsrv_noflowq = 1;
8409 else
8410 vi->rsrv_noflowq = 0;
8411
8412 return (rc);
8413 }
8414
8415 static int
sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)8416 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8417 {
8418 struct vi_info *vi = arg1;
8419 struct adapter *sc = vi->adapter;
8420 int rc, val, i;
8421
8422 MPASS(!(sc->flags & IS_VF));
8423
8424 val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8425 rc = sysctl_handle_int(oidp, &val, 0, req);
8426 if (rc != 0 || req->newptr == NULL)
8427 return (rc);
8428
8429 if (val != 0 && val != 1)
8430 return (EINVAL);
8431
8432 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8433 "t4txvm");
8434 if (rc)
8435 return (rc);
8436 if (!hw_all_ok(sc))
8437 rc = ENXIO;
8438 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8439 /*
8440 * We don't want parse_pkt to run with one setting (VF or PF)
8441 * and then eth_tx to see a different setting but still use
8442 * stale information calculated by parse_pkt.
8443 */
8444 rc = EBUSY;
8445 } else {
8446 struct port_info *pi = vi->pi;
8447 struct sge_txq *txq;
8448 uint32_t ctrl0;
8449 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8450
8451 if (val) {
8452 vi->flags |= TX_USES_VM_WR;
8453 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8454 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8455 V_TXPKT_INTF(pi->tx_chan));
8456 if (!(sc->flags & IS_VF))
8457 npkt--;
8458 } else {
8459 vi->flags &= ~TX_USES_VM_WR;
8460 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8461 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8462 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8463 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8464 }
8465 for_each_txq(vi, i, txq) {
8466 txq->cpl_ctrl0 = ctrl0;
8467 txq->txp.max_npkt = npkt;
8468 }
8469 }
8470 end_synchronized_op(sc, LOCK_HELD);
8471 return (rc);
8472 }
8473
8474 static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)8475 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8476 {
8477 struct vi_info *vi = arg1;
8478 struct adapter *sc = vi->adapter;
8479 int idx, rc, i;
8480 struct sge_rxq *rxq;
8481 uint8_t v;
8482
8483 idx = vi->tmr_idx;
8484
8485 rc = sysctl_handle_int(oidp, &idx, 0, req);
8486 if (rc != 0 || req->newptr == NULL)
8487 return (rc);
8488
8489 if (idx < 0 || idx >= SGE_NTIMERS)
8490 return (EINVAL);
8491
8492 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8493 "t4tmr");
8494 if (rc)
8495 return (rc);
8496
8497 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8498 for_each_rxq(vi, i, rxq) {
8499 #ifdef atomic_store_rel_8
8500 atomic_store_rel_8(&rxq->iq.intr_params, v);
8501 #else
8502 rxq->iq.intr_params = v;
8503 #endif
8504 }
8505 vi->tmr_idx = idx;
8506
8507 end_synchronized_op(sc, LOCK_HELD);
8508 return (0);
8509 }
8510
8511 static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)8512 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8513 {
8514 struct vi_info *vi = arg1;
8515 struct adapter *sc = vi->adapter;
8516 int idx, rc;
8517
8518 idx = vi->pktc_idx;
8519
8520 rc = sysctl_handle_int(oidp, &idx, 0, req);
8521 if (rc != 0 || req->newptr == NULL)
8522 return (rc);
8523
8524 if (idx < -1 || idx >= SGE_NCOUNTERS)
8525 return (EINVAL);
8526
8527 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8528 "t4pktc");
8529 if (rc)
8530 return (rc);
8531
8532 if (vi->flags & VI_INIT_DONE)
8533 rc = EBUSY; /* cannot be changed once the queues are created */
8534 else
8535 vi->pktc_idx = idx;
8536
8537 end_synchronized_op(sc, LOCK_HELD);
8538 return (rc);
8539 }
8540
8541 static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)8542 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8543 {
8544 struct vi_info *vi = arg1;
8545 struct adapter *sc = vi->adapter;
8546 int qsize, rc;
8547
8548 qsize = vi->qsize_rxq;
8549
8550 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8551 if (rc != 0 || req->newptr == NULL)
8552 return (rc);
8553
8554 if (qsize < 128 || (qsize & 7))
8555 return (EINVAL);
8556
8557 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8558 "t4rxqs");
8559 if (rc)
8560 return (rc);
8561
8562 if (vi->flags & VI_INIT_DONE)
8563 rc = EBUSY; /* cannot be changed once the queues are created */
8564 else
8565 vi->qsize_rxq = qsize;
8566
8567 end_synchronized_op(sc, LOCK_HELD);
8568 return (rc);
8569 }
8570
8571 static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)8572 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8573 {
8574 struct vi_info *vi = arg1;
8575 struct adapter *sc = vi->adapter;
8576 int qsize, rc;
8577
8578 qsize = vi->qsize_txq;
8579
8580 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8581 if (rc != 0 || req->newptr == NULL)
8582 return (rc);
8583
8584 if (qsize < 128 || qsize > 65536)
8585 return (EINVAL);
8586
8587 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8588 "t4txqs");
8589 if (rc)
8590 return (rc);
8591
8592 if (vi->flags & VI_INIT_DONE)
8593 rc = EBUSY; /* cannot be changed once the queues are created */
8594 else
8595 vi->qsize_txq = qsize;
8596
8597 end_synchronized_op(sc, LOCK_HELD);
8598 return (rc);
8599 }
8600
8601 static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)8602 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8603 {
8604 struct port_info *pi = arg1;
8605 struct adapter *sc = pi->adapter;
8606 struct link_config *lc = &pi->link_cfg;
8607 int rc;
8608
8609 if (req->newptr == NULL) {
8610 struct sbuf *sb;
8611 static char *bits = "\20\1RX\2TX\3AUTO";
8612
8613 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8614 if (sb == NULL)
8615 return (ENOMEM);
8616
8617 if (lc->link_ok) {
8618 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8619 (lc->requested_fc & PAUSE_AUTONEG), bits);
8620 } else {
8621 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8622 PAUSE_RX | PAUSE_AUTONEG), bits);
8623 }
8624 rc = sbuf_finish(sb);
8625 sbuf_delete(sb);
8626 } else {
8627 char s[2];
8628 int n;
8629
8630 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8631 PAUSE_AUTONEG));
8632 s[1] = 0;
8633
8634 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8635 if (rc != 0)
8636 return(rc);
8637
8638 if (s[1] != 0)
8639 return (EINVAL);
8640 if (s[0] < '0' || s[0] > '9')
8641 return (EINVAL); /* not a number */
8642 n = s[0] - '0';
8643 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8644 return (EINVAL); /* some other bit is set too */
8645
8646 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8647 "t4PAUSE");
8648 if (rc)
8649 return (rc);
8650 if (hw_all_ok(sc)) {
8651 PORT_LOCK(pi);
8652 lc->requested_fc = n;
8653 fixup_link_config(pi);
8654 if (pi->up_vis > 0)
8655 rc = apply_link_config(pi);
8656 set_current_media(pi);
8657 PORT_UNLOCK(pi);
8658 }
8659 end_synchronized_op(sc, 0);
8660 }
8661
8662 return (rc);
8663 }
8664
8665 static int
sysctl_link_fec(SYSCTL_HANDLER_ARGS)8666 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8667 {
8668 struct port_info *pi = arg1;
8669 struct link_config *lc = &pi->link_cfg;
8670 int rc;
8671 struct sbuf *sb;
8672 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8673
8674 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8675 if (sb == NULL)
8676 return (ENOMEM);
8677 if (lc->link_ok)
8678 sbuf_printf(sb, "%b", lc->fec, bits);
8679 else
8680 sbuf_printf(sb, "no link");
8681 rc = sbuf_finish(sb);
8682 sbuf_delete(sb);
8683
8684 return (rc);
8685 }
8686
8687 static int
sysctl_requested_fec(SYSCTL_HANDLER_ARGS)8688 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8689 {
8690 struct port_info *pi = arg1;
8691 struct adapter *sc = pi->adapter;
8692 struct link_config *lc = &pi->link_cfg;
8693 int rc;
8694 int8_t old;
8695
8696 if (req->newptr == NULL) {
8697 struct sbuf *sb;
8698 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8699 "\5RSVD3\6auto\7module";
8700
8701 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8702 if (sb == NULL)
8703 return (ENOMEM);
8704
8705 sbuf_printf(sb, "%b", lc->requested_fec, bits);
8706 rc = sbuf_finish(sb);
8707 sbuf_delete(sb);
8708 } else {
8709 char s[8];
8710 int n;
8711
8712 snprintf(s, sizeof(s), "%d",
8713 lc->requested_fec == FEC_AUTO ? -1 :
8714 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8715
8716 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8717 if (rc != 0)
8718 return(rc);
8719
8720 n = strtol(&s[0], NULL, 0);
8721 if (n < 0 || n & FEC_AUTO)
8722 n = FEC_AUTO;
8723 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8724 return (EINVAL);/* some other bit is set too */
8725
8726 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8727 "t4reqf");
8728 if (rc)
8729 return (rc);
8730 PORT_LOCK(pi);
8731 old = lc->requested_fec;
8732 if (n == FEC_AUTO)
8733 lc->requested_fec = FEC_AUTO;
8734 else if (n == 0 || n == FEC_NONE)
8735 lc->requested_fec = FEC_NONE;
8736 else {
8737 if ((lc->pcaps |
8738 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8739 lc->pcaps) {
8740 rc = ENOTSUP;
8741 goto done;
8742 }
8743 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8744 FEC_MODULE);
8745 }
8746 if (hw_all_ok(sc)) {
8747 fixup_link_config(pi);
8748 if (pi->up_vis > 0) {
8749 rc = apply_link_config(pi);
8750 if (rc != 0) {
8751 lc->requested_fec = old;
8752 if (rc == FW_EPROTO)
8753 rc = ENOTSUP;
8754 }
8755 }
8756 }
8757 done:
8758 PORT_UNLOCK(pi);
8759 end_synchronized_op(sc, 0);
8760 }
8761
8762 return (rc);
8763 }
8764
8765 static int
sysctl_module_fec(SYSCTL_HANDLER_ARGS)8766 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8767 {
8768 struct port_info *pi = arg1;
8769 struct adapter *sc = pi->adapter;
8770 struct link_config *lc = &pi->link_cfg;
8771 int rc;
8772 int8_t fec;
8773 struct sbuf *sb;
8774 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8775
8776 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8777 if (sb == NULL)
8778 return (ENOMEM);
8779
8780 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8781 rc = EBUSY;
8782 goto done;
8783 }
8784 if (!hw_all_ok(sc)) {
8785 rc = ENXIO;
8786 goto done;
8787 }
8788 PORT_LOCK(pi);
8789 if (pi->up_vis == 0) {
8790 /*
8791 * If all the interfaces are administratively down the firmware
8792 * does not report transceiver changes. Refresh port info here.
8793 * This is the only reason we have a synchronized op in this
8794 * function. Just PORT_LOCK would have been enough otherwise.
8795 */
8796 t4_update_port_info(pi);
8797 }
8798
8799 fec = lc->fec_hint;
8800 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8801 !fec_supported(lc->pcaps)) {
8802 PORT_UNLOCK(pi);
8803 sbuf_printf(sb, "n/a");
8804 } else {
8805 if (fec == 0)
8806 fec = FEC_NONE;
8807 PORT_UNLOCK(pi);
8808 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8809 }
8810 rc = sbuf_finish(sb);
8811 done:
8812 sbuf_delete(sb);
8813 end_synchronized_op(sc, 0);
8814
8815 return (rc);
8816 }
8817
8818 static int
sysctl_autoneg(SYSCTL_HANDLER_ARGS)8819 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8820 {
8821 struct port_info *pi = arg1;
8822 struct adapter *sc = pi->adapter;
8823 struct link_config *lc = &pi->link_cfg;
8824 int rc, val;
8825
8826 if (lc->pcaps & FW_PORT_CAP32_ANEG)
8827 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8828 else
8829 val = -1;
8830 rc = sysctl_handle_int(oidp, &val, 0, req);
8831 if (rc != 0 || req->newptr == NULL)
8832 return (rc);
8833 if (val == 0)
8834 val = AUTONEG_DISABLE;
8835 else if (val == 1)
8836 val = AUTONEG_ENABLE;
8837 else
8838 val = AUTONEG_AUTO;
8839
8840 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8841 "t4aneg");
8842 if (rc)
8843 return (rc);
8844 PORT_LOCK(pi);
8845 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8846 rc = ENOTSUP;
8847 goto done;
8848 }
8849 lc->requested_aneg = val;
8850 if (hw_all_ok(sc)) {
8851 fixup_link_config(pi);
8852 if (pi->up_vis > 0)
8853 rc = apply_link_config(pi);
8854 set_current_media(pi);
8855 }
8856 done:
8857 PORT_UNLOCK(pi);
8858 end_synchronized_op(sc, 0);
8859 return (rc);
8860 }
8861
8862 static int
sysctl_force_fec(SYSCTL_HANDLER_ARGS)8863 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8864 {
8865 struct port_info *pi = arg1;
8866 struct adapter *sc = pi->adapter;
8867 struct link_config *lc = &pi->link_cfg;
8868 int rc, val;
8869
8870 val = lc->force_fec;
8871 MPASS(val >= -1 && val <= 1);
8872 rc = sysctl_handle_int(oidp, &val, 0, req);
8873 if (rc != 0 || req->newptr == NULL)
8874 return (rc);
8875 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8876 return (ENOTSUP);
8877 if (val < -1 || val > 1)
8878 return (EINVAL);
8879
8880 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8881 if (rc)
8882 return (rc);
8883 PORT_LOCK(pi);
8884 lc->force_fec = val;
8885 if (hw_all_ok(sc)) {
8886 fixup_link_config(pi);
8887 if (pi->up_vis > 0)
8888 rc = apply_link_config(pi);
8889 }
8890 PORT_UNLOCK(pi);
8891 end_synchronized_op(sc, 0);
8892 return (rc);
8893 }
8894
8895 static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)8896 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8897 {
8898 struct adapter *sc = arg1;
8899 int rc, reg = arg2;
8900 uint64_t val;
8901
8902 mtx_lock(&sc->reg_lock);
8903 if (hw_off_limits(sc))
8904 rc = ENXIO;
8905 else {
8906 rc = 0;
8907 val = t4_read_reg64(sc, reg);
8908 }
8909 mtx_unlock(&sc->reg_lock);
8910 if (rc == 0)
8911 rc = sysctl_handle_64(oidp, &val, 0, req);
8912 return (rc);
8913 }
8914
8915 static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)8916 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8917 {
8918 struct adapter *sc = arg1;
8919 int rc, t;
8920 uint32_t param, val;
8921
8922 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8923 if (rc)
8924 return (rc);
8925 if (!hw_all_ok(sc))
8926 rc = ENXIO;
8927 else {
8928 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8929 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8930 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8931 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
8932 }
8933 end_synchronized_op(sc, 0);
8934 if (rc)
8935 return (rc);
8936
8937 /* unknown is returned as 0 but we display -1 in that case */
8938 t = val == 0 ? -1 : val;
8939
8940 rc = sysctl_handle_int(oidp, &t, 0, req);
8941 return (rc);
8942 }
8943
8944 static int
sysctl_vdd(SYSCTL_HANDLER_ARGS)8945 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8946 {
8947 struct adapter *sc = arg1;
8948 int rc;
8949 uint32_t param, val;
8950
8951 if (sc->params.core_vdd == 0) {
8952 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8953 "t4vdd");
8954 if (rc)
8955 return (rc);
8956 if (!hw_all_ok(sc))
8957 rc = ENXIO;
8958 else {
8959 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8960 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8961 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8962 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8963 ¶m, &val);
8964 }
8965 end_synchronized_op(sc, 0);
8966 if (rc)
8967 return (rc);
8968 sc->params.core_vdd = val;
8969 }
8970
8971 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8972 }
8973
8974 static int
sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)8975 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8976 {
8977 struct adapter *sc = arg1;
8978 int rc, v;
8979 uint32_t param, val;
8980
8981 v = sc->sensor_resets;
8982 rc = sysctl_handle_int(oidp, &v, 0, req);
8983 if (rc != 0 || req->newptr == NULL || v <= 0)
8984 return (rc);
8985
8986 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8987 chip_id(sc) < CHELSIO_T5)
8988 return (ENOTSUP);
8989
8990 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8991 if (rc)
8992 return (rc);
8993 if (!hw_all_ok(sc))
8994 rc = ENXIO;
8995 else {
8996 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8997 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8998 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8999 val = 1;
9000 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9001 }
9002 end_synchronized_op(sc, 0);
9003 if (rc == 0)
9004 sc->sensor_resets++;
9005 return (rc);
9006 }
9007
9008 static int
sysctl_loadavg(SYSCTL_HANDLER_ARGS)9009 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
9010 {
9011 struct adapter *sc = arg1;
9012 struct sbuf *sb;
9013 int rc;
9014 uint32_t param, val;
9015
9016 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
9017 if (rc)
9018 return (rc);
9019 if (hw_all_ok(sc))
9020 rc = ENXIO;
9021 else {
9022 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9023 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
9024 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9025 }
9026 end_synchronized_op(sc, 0);
9027 if (rc)
9028 return (rc);
9029
9030 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9031 if (sb == NULL)
9032 return (ENOMEM);
9033
9034 if (val == 0xffffffff) {
9035 /* Only debug and custom firmwares report load averages. */
9036 sbuf_printf(sb, "not available");
9037 } else {
9038 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
9039 (val >> 16) & 0xff);
9040 }
9041 rc = sbuf_finish(sb);
9042 sbuf_delete(sb);
9043
9044 return (rc);
9045 }
9046
9047 static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)9048 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
9049 {
9050 struct adapter *sc = arg1;
9051 struct sbuf *sb;
9052 int rc, i;
9053 uint16_t incr[NMTUS][NCCTRL_WIN];
9054 static const char *dec_fac[] = {
9055 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
9056 "0.9375"
9057 };
9058
9059 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9060 if (sb == NULL)
9061 return (ENOMEM);
9062
9063 rc = 0;
9064 mtx_lock(&sc->reg_lock);
9065 if (hw_off_limits(sc))
9066 rc = ENXIO;
9067 else
9068 t4_read_cong_tbl(sc, incr);
9069 mtx_unlock(&sc->reg_lock);
9070 if (rc)
9071 goto done;
9072
9073 for (i = 0; i < NCCTRL_WIN; ++i) {
9074 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
9075 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
9076 incr[5][i], incr[6][i], incr[7][i]);
9077 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
9078 incr[8][i], incr[9][i], incr[10][i], incr[11][i],
9079 incr[12][i], incr[13][i], incr[14][i], incr[15][i],
9080 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
9081 }
9082
9083 rc = sbuf_finish(sb);
9084 done:
9085 sbuf_delete(sb);
9086 return (rc);
9087 }
9088
9089 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
9090 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */
9091 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
9092 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */
9093 };
9094
9095 static int
sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)9096 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
9097 {
9098 struct adapter *sc = arg1;
9099 struct sbuf *sb;
9100 int rc, i, n, qid = arg2;
9101 uint32_t *buf, *p;
9102 char *qtype;
9103 u_int cim_num_obq = sc->chip_params->cim_num_obq;
9104
9105 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
9106 ("%s: bad qid %d\n", __func__, qid));
9107
9108 if (qid < CIM_NUM_IBQ) {
9109 /* inbound queue */
9110 qtype = "IBQ";
9111 n = 4 * CIM_IBQ_SIZE;
9112 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9113 mtx_lock(&sc->reg_lock);
9114 if (hw_off_limits(sc))
9115 rc = -ENXIO;
9116 else
9117 rc = t4_read_cim_ibq(sc, qid, buf, n);
9118 mtx_unlock(&sc->reg_lock);
9119 } else {
9120 /* outbound queue */
9121 qtype = "OBQ";
9122 qid -= CIM_NUM_IBQ;
9123 n = 4 * cim_num_obq * CIM_OBQ_SIZE;
9124 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9125 mtx_lock(&sc->reg_lock);
9126 if (hw_off_limits(sc))
9127 rc = -ENXIO;
9128 else
9129 rc = t4_read_cim_obq(sc, qid, buf, n);
9130 mtx_unlock(&sc->reg_lock);
9131 }
9132
9133 if (rc < 0) {
9134 rc = -rc;
9135 goto done;
9136 }
9137 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9138
9139 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9140 if (sb == NULL) {
9141 rc = ENOMEM;
9142 goto done;
9143 }
9144
9145 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
9146 for (i = 0, p = buf; i < n; i += 16, p += 4)
9147 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9148 p[2], p[3]);
9149
9150 rc = sbuf_finish(sb);
9151 sbuf_delete(sb);
9152 done:
9153 free(buf, M_CXGBE);
9154 return (rc);
9155 }
9156
9157 static void
sbuf_cim_la4(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9158 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9159 {
9160 uint32_t *p;
9161
9162 sbuf_printf(sb, "Status Data PC%s",
9163 cfg & F_UPDBGLACAPTPCONLY ? "" :
9164 " LS0Stat LS0Addr LS0Data");
9165
9166 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9167 if (cfg & F_UPDBGLACAPTPCONLY) {
9168 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff,
9169 p[6], p[7]);
9170 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x",
9171 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9172 p[4] & 0xff, p[5] >> 8);
9173 sbuf_printf(sb, "\n %02x %x%07x %x%07x",
9174 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9175 p[1] & 0xf, p[2] >> 4);
9176 } else {
9177 sbuf_printf(sb,
9178 "\n %02x %x%07x %x%07x %08x %08x "
9179 "%08x%08x%08x%08x",
9180 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9181 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9182 p[6], p[7]);
9183 }
9184 }
9185 }
9186
9187 static void
sbuf_cim_la6(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9188 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9189 {
9190 uint32_t *p;
9191
9192 sbuf_printf(sb, "Status Inst Data PC%s",
9193 cfg & F_UPDBGLACAPTPCONLY ? "" :
9194 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data");
9195
9196 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9197 if (cfg & F_UPDBGLACAPTPCONLY) {
9198 sbuf_printf(sb, "\n %02x %08x %08x %08x",
9199 p[3] & 0xff, p[2], p[1], p[0]);
9200 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x",
9201 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9202 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9203 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x",
9204 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9205 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9206 p[6] >> 16);
9207 } else {
9208 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x "
9209 "%08x %08x %08x %08x %08x %08x",
9210 (p[9] >> 16) & 0xff,
9211 p[9] & 0xffff, p[8] >> 16,
9212 p[8] & 0xffff, p[7] >> 16,
9213 p[7] & 0xffff, p[6] >> 16,
9214 p[2], p[1], p[0], p[5], p[4], p[3]);
9215 }
9216 }
9217 }
9218
9219 static int
sbuf_cim_la(struct adapter * sc,struct sbuf * sb,int flags)9220 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
9221 {
9222 uint32_t cfg, *buf;
9223 int rc;
9224
9225 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9226 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9227 M_ZERO | flags);
9228 if (buf == NULL)
9229 return (ENOMEM);
9230
9231 mtx_lock(&sc->reg_lock);
9232 if (hw_off_limits(sc))
9233 rc = ENXIO;
9234 else {
9235 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9236 if (rc == 0)
9237 rc = -t4_cim_read_la(sc, buf, NULL);
9238 }
9239 mtx_unlock(&sc->reg_lock);
9240 if (rc == 0) {
9241 if (chip_id(sc) < CHELSIO_T6)
9242 sbuf_cim_la4(sc, sb, buf, cfg);
9243 else
9244 sbuf_cim_la6(sc, sb, buf, cfg);
9245 }
9246 free(buf, M_CXGBE);
9247 return (rc);
9248 }
9249
9250 static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)9251 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9252 {
9253 struct adapter *sc = arg1;
9254 struct sbuf *sb;
9255 int rc;
9256
9257 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9258 if (sb == NULL)
9259 return (ENOMEM);
9260
9261 rc = sbuf_cim_la(sc, sb, M_WAITOK);
9262 if (rc == 0)
9263 rc = sbuf_finish(sb);
9264 sbuf_delete(sb);
9265 return (rc);
9266 }
9267
9268 static void
dump_cim_regs(struct adapter * sc)9269 dump_cim_regs(struct adapter *sc)
9270 {
9271 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9272 device_get_nameunit(sc->dev),
9273 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9274 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9275 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9276 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9277 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9278 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9279 device_get_nameunit(sc->dev),
9280 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9281 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9282 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9283 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9284 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9285 }
9286
9287 static void
dump_cimla(struct adapter * sc)9288 dump_cimla(struct adapter *sc)
9289 {
9290 struct sbuf sb;
9291 int rc;
9292
9293 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9294 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9295 device_get_nameunit(sc->dev));
9296 return;
9297 }
9298 rc = sbuf_cim_la(sc, &sb, M_WAITOK);
9299 if (rc == 0) {
9300 rc = sbuf_finish(&sb);
9301 if (rc == 0) {
9302 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9303 device_get_nameunit(sc->dev), sbuf_data(&sb));
9304 }
9305 }
9306 sbuf_delete(&sb);
9307 }
9308
9309 void
t4_os_cim_err(struct adapter * sc)9310 t4_os_cim_err(struct adapter *sc)
9311 {
9312 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9313 }
9314
9315 static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)9316 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9317 {
9318 struct adapter *sc = arg1;
9319 u_int i;
9320 struct sbuf *sb;
9321 uint32_t *buf, *p;
9322 int rc;
9323
9324 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9325 if (sb == NULL)
9326 return (ENOMEM);
9327
9328 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9329 M_ZERO | M_WAITOK);
9330
9331 rc = 0;
9332 mtx_lock(&sc->reg_lock);
9333 if (hw_off_limits(sc))
9334 rc = ENXIO;
9335 else
9336 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9337 mtx_unlock(&sc->reg_lock);
9338 if (rc)
9339 goto done;
9340
9341 p = buf;
9342 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9343 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9344 p[1], p[0]);
9345 }
9346
9347 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD");
9348 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9349 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u",
9350 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9351 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9352 (p[1] >> 2) | ((p[2] & 3) << 30),
9353 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9354 p[0] & 1);
9355 }
9356 rc = sbuf_finish(sb);
9357 done:
9358 sbuf_delete(sb);
9359 free(buf, M_CXGBE);
9360 return (rc);
9361 }
9362
9363 static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)9364 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9365 {
9366 struct adapter *sc = arg1;
9367 u_int i;
9368 struct sbuf *sb;
9369 uint32_t *buf, *p;
9370 int rc;
9371
9372 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9373 if (sb == NULL)
9374 return (ENOMEM);
9375
9376 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9377 M_ZERO | M_WAITOK);
9378
9379 rc = 0;
9380 mtx_lock(&sc->reg_lock);
9381 if (hw_off_limits(sc))
9382 rc = ENXIO;
9383 else
9384 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9385 mtx_unlock(&sc->reg_lock);
9386 if (rc)
9387 goto done;
9388
9389 p = buf;
9390 sbuf_printf(sb, "Cntl ID DataBE Addr Data");
9391 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9392 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x",
9393 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9394 p[4], p[3], p[2], p[1], p[0]);
9395 }
9396
9397 sbuf_printf(sb, "\n\nCntl ID Data");
9398 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9399 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x",
9400 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9401 }
9402
9403 rc = sbuf_finish(sb);
9404 done:
9405 sbuf_delete(sb);
9406 free(buf, M_CXGBE);
9407 return (rc);
9408 }
9409
9410 static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)9411 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9412 {
9413 struct adapter *sc = arg1;
9414 struct sbuf *sb;
9415 int rc, i;
9416 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9417 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9418 uint16_t thres[CIM_NUM_IBQ];
9419 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9420 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9421 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9422
9423 cim_num_obq = sc->chip_params->cim_num_obq;
9424 if (is_t4(sc)) {
9425 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9426 obq_rdaddr = A_UP_OBQ_0_REALADDR;
9427 } else {
9428 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9429 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9430 }
9431 nq = CIM_NUM_IBQ + cim_num_obq;
9432
9433 mtx_lock(&sc->reg_lock);
9434 if (hw_off_limits(sc))
9435 rc = ENXIO;
9436 else {
9437 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9438 if (rc == 0) {
9439 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9440 obq_wr);
9441 if (rc == 0)
9442 t4_read_cimq_cfg(sc, base, size, thres);
9443 }
9444 }
9445 mtx_unlock(&sc->reg_lock);
9446 if (rc)
9447 return (rc);
9448
9449 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9450 if (sb == NULL)
9451 return (ENOMEM);
9452
9453 sbuf_printf(sb,
9454 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9455
9456 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9457 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9458 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9459 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9460 G_QUEREMFLITS(p[2]) * 16);
9461 for ( ; i < nq; i++, p += 4, wr += 2)
9462 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i],
9463 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9464 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9465 G_QUEREMFLITS(p[2]) * 16);
9466
9467 rc = sbuf_finish(sb);
9468 sbuf_delete(sb);
9469
9470 return (rc);
9471 }
9472
9473 static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)9474 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9475 {
9476 struct adapter *sc = arg1;
9477 struct sbuf *sb;
9478 int rc;
9479 struct tp_cpl_stats stats;
9480
9481 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9482 if (sb == NULL)
9483 return (ENOMEM);
9484
9485 rc = 0;
9486 mtx_lock(&sc->reg_lock);
9487 if (hw_off_limits(sc))
9488 rc = ENXIO;
9489 else
9490 t4_tp_get_cpl_stats(sc, &stats, 0);
9491 mtx_unlock(&sc->reg_lock);
9492 if (rc)
9493 goto done;
9494
9495 if (sc->chip_params->nchan > 2) {
9496 sbuf_printf(sb, " channel 0 channel 1"
9497 " channel 2 channel 3");
9498 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u",
9499 stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9500 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u",
9501 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9502 } else {
9503 sbuf_printf(sb, " channel 0 channel 1");
9504 sbuf_printf(sb, "\nCPL requests: %10u %10u",
9505 stats.req[0], stats.req[1]);
9506 sbuf_printf(sb, "\nCPL responses: %10u %10u",
9507 stats.rsp[0], stats.rsp[1]);
9508 }
9509
9510 rc = sbuf_finish(sb);
9511 done:
9512 sbuf_delete(sb);
9513 return (rc);
9514 }
9515
9516 static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)9517 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9518 {
9519 struct adapter *sc = arg1;
9520 struct sbuf *sb;
9521 int rc;
9522 struct tp_usm_stats stats;
9523
9524 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9525 if (sb == NULL)
9526 return (ENOMEM);
9527
9528 rc = 0;
9529 mtx_lock(&sc->reg_lock);
9530 if (hw_off_limits(sc))
9531 rc = ENXIO;
9532 else
9533 t4_get_usm_stats(sc, &stats, 1);
9534 mtx_unlock(&sc->reg_lock);
9535 if (rc == 0) {
9536 sbuf_printf(sb, "Frames: %u\n", stats.frames);
9537 sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9538 sbuf_printf(sb, "Drops: %u", stats.drops);
9539 rc = sbuf_finish(sb);
9540 }
9541 sbuf_delete(sb);
9542
9543 return (rc);
9544 }
9545
9546 static int
sysctl_tid_stats(SYSCTL_HANDLER_ARGS)9547 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9548 {
9549 struct adapter *sc = arg1;
9550 struct sbuf *sb;
9551 int rc;
9552 struct tp_tid_stats stats;
9553
9554 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9555 if (sb == NULL)
9556 return (ENOMEM);
9557
9558 rc = 0;
9559 mtx_lock(&sc->reg_lock);
9560 if (hw_off_limits(sc))
9561 rc = ENXIO;
9562 else
9563 t4_tp_get_tid_stats(sc, &stats, 1);
9564 mtx_unlock(&sc->reg_lock);
9565 if (rc == 0) {
9566 sbuf_printf(sb, "Delete: %u\n", stats.del);
9567 sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9568 sbuf_printf(sb, "Active: %u\n", stats.act);
9569 sbuf_printf(sb, "Passive: %u", stats.pas);
9570 rc = sbuf_finish(sb);
9571 }
9572 sbuf_delete(sb);
9573
9574 return (rc);
9575 }
9576
9577 static const char * const devlog_level_strings[] = {
9578 [FW_DEVLOG_LEVEL_EMERG] = "EMERG",
9579 [FW_DEVLOG_LEVEL_CRIT] = "CRIT",
9580 [FW_DEVLOG_LEVEL_ERR] = "ERR",
9581 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
9582 [FW_DEVLOG_LEVEL_INFO] = "INFO",
9583 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
9584 };
9585
9586 static const char * const devlog_facility_strings[] = {
9587 [FW_DEVLOG_FACILITY_CORE] = "CORE",
9588 [FW_DEVLOG_FACILITY_CF] = "CF",
9589 [FW_DEVLOG_FACILITY_SCHED] = "SCHED",
9590 [FW_DEVLOG_FACILITY_TIMER] = "TIMER",
9591 [FW_DEVLOG_FACILITY_RES] = "RES",
9592 [FW_DEVLOG_FACILITY_HW] = "HW",
9593 [FW_DEVLOG_FACILITY_FLR] = "FLR",
9594 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
9595 [FW_DEVLOG_FACILITY_PHY] = "PHY",
9596 [FW_DEVLOG_FACILITY_MAC] = "MAC",
9597 [FW_DEVLOG_FACILITY_PORT] = "PORT",
9598 [FW_DEVLOG_FACILITY_VI] = "VI",
9599 [FW_DEVLOG_FACILITY_FILTER] = "FILTER",
9600 [FW_DEVLOG_FACILITY_ACL] = "ACL",
9601 [FW_DEVLOG_FACILITY_TM] = "TM",
9602 [FW_DEVLOG_FACILITY_QFC] = "QFC",
9603 [FW_DEVLOG_FACILITY_DCB] = "DCB",
9604 [FW_DEVLOG_FACILITY_ETH] = "ETH",
9605 [FW_DEVLOG_FACILITY_OFLD] = "OFLD",
9606 [FW_DEVLOG_FACILITY_RI] = "RI",
9607 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
9608 [FW_DEVLOG_FACILITY_FCOE] = "FCOE",
9609 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
9610 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE",
9611 [FW_DEVLOG_FACILITY_CHNET] = "CHNET",
9612 };
9613
9614 static int
sbuf_devlog(struct adapter * sc,struct sbuf * sb,int flags)9615 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9616 {
9617 int i, j, rc, nentries, first = 0;
9618 struct devlog_params *dparams = &sc->params.devlog;
9619 struct fw_devlog_e *buf, *e;
9620 uint64_t ftstamp = UINT64_MAX;
9621
9622 if (dparams->addr == 0)
9623 return (ENXIO);
9624
9625 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9626 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9627 if (buf == NULL)
9628 return (ENOMEM);
9629
9630 mtx_lock(&sc->reg_lock);
9631 if (hw_off_limits(sc))
9632 rc = ENXIO;
9633 else
9634 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9635 dparams->size);
9636 mtx_unlock(&sc->reg_lock);
9637 if (rc != 0)
9638 goto done;
9639
9640 nentries = dparams->size / sizeof(struct fw_devlog_e);
9641 for (i = 0; i < nentries; i++) {
9642 e = &buf[i];
9643
9644 if (e->timestamp == 0)
9645 break; /* end */
9646
9647 e->timestamp = be64toh(e->timestamp);
9648 e->seqno = be32toh(e->seqno);
9649 for (j = 0; j < 8; j++)
9650 e->params[j] = be32toh(e->params[j]);
9651
9652 if (e->timestamp < ftstamp) {
9653 ftstamp = e->timestamp;
9654 first = i;
9655 }
9656 }
9657
9658 if (buf[first].timestamp == 0)
9659 goto done; /* nothing in the log */
9660
9661 sbuf_printf(sb, "%10s %15s %8s %8s %s\n",
9662 "Seq#", "Tstamp", "Level", "Facility", "Message");
9663
9664 i = first;
9665 do {
9666 e = &buf[i];
9667 if (e->timestamp == 0)
9668 break; /* end */
9669
9670 sbuf_printf(sb, "%10d %15ju %8s %8s ",
9671 e->seqno, e->timestamp,
9672 (e->level < nitems(devlog_level_strings) ?
9673 devlog_level_strings[e->level] : "UNKNOWN"),
9674 (e->facility < nitems(devlog_facility_strings) ?
9675 devlog_facility_strings[e->facility] : "UNKNOWN"));
9676 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9677 e->params[2], e->params[3], e->params[4],
9678 e->params[5], e->params[6], e->params[7]);
9679
9680 if (++i == nentries)
9681 i = 0;
9682 } while (i != first);
9683 done:
9684 free(buf, M_CXGBE);
9685 return (rc);
9686 }
9687
9688 static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)9689 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9690 {
9691 struct adapter *sc = arg1;
9692 int rc;
9693 struct sbuf *sb;
9694
9695 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9696 if (sb == NULL)
9697 return (ENOMEM);
9698
9699 rc = sbuf_devlog(sc, sb, M_WAITOK);
9700 if (rc == 0)
9701 rc = sbuf_finish(sb);
9702 sbuf_delete(sb);
9703 return (rc);
9704 }
9705
9706 static void
dump_devlog(struct adapter * sc)9707 dump_devlog(struct adapter *sc)
9708 {
9709 int rc;
9710 struct sbuf sb;
9711
9712 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9713 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
9714 device_get_nameunit(sc->dev));
9715 return;
9716 }
9717 rc = sbuf_devlog(sc, &sb, M_WAITOK);
9718 if (rc == 0) {
9719 rc = sbuf_finish(&sb);
9720 if (rc == 0) {
9721 log(LOG_DEBUG, "%s: device log follows.\n%s",
9722 device_get_nameunit(sc->dev), sbuf_data(&sb));
9723 }
9724 }
9725 sbuf_delete(&sb);
9726 }
9727
9728 static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)9729 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9730 {
9731 struct adapter *sc = arg1;
9732 struct sbuf *sb;
9733 int rc;
9734 struct tp_fcoe_stats stats[MAX_NCHAN];
9735 int i, nchan = sc->chip_params->nchan;
9736
9737 rc = 0;
9738 mtx_lock(&sc->reg_lock);
9739 if (hw_off_limits(sc))
9740 rc = ENXIO;
9741 else {
9742 for (i = 0; i < nchan; i++)
9743 t4_get_fcoe_stats(sc, i, &stats[i], 1);
9744 }
9745 mtx_unlock(&sc->reg_lock);
9746 if (rc != 0)
9747 return (rc);
9748
9749 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9750 if (sb == NULL)
9751 return (ENOMEM);
9752
9753 if (nchan > 2) {
9754 sbuf_printf(sb, " channel 0 channel 1"
9755 " channel 2 channel 3");
9756 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju",
9757 stats[0].octets_ddp, stats[1].octets_ddp,
9758 stats[2].octets_ddp, stats[3].octets_ddp);
9759 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u",
9760 stats[0].frames_ddp, stats[1].frames_ddp,
9761 stats[2].frames_ddp, stats[3].frames_ddp);
9762 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9763 stats[0].frames_drop, stats[1].frames_drop,
9764 stats[2].frames_drop, stats[3].frames_drop);
9765 } else {
9766 sbuf_printf(sb, " channel 0 channel 1");
9767 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju",
9768 stats[0].octets_ddp, stats[1].octets_ddp);
9769 sbuf_printf(sb, "\nframesDDP: %16u %16u",
9770 stats[0].frames_ddp, stats[1].frames_ddp);
9771 sbuf_printf(sb, "\nframesDrop: %16u %16u",
9772 stats[0].frames_drop, stats[1].frames_drop);
9773 }
9774
9775 rc = sbuf_finish(sb);
9776 sbuf_delete(sb);
9777
9778 return (rc);
9779 }
9780
9781 static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)9782 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9783 {
9784 struct adapter *sc = arg1;
9785 struct sbuf *sb;
9786 int rc, i;
9787 unsigned int map, kbps, ipg, mode;
9788 unsigned int pace_tab[NTX_SCHED];
9789
9790 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9791 if (sb == NULL)
9792 return (ENOMEM);
9793
9794 mtx_lock(&sc->reg_lock);
9795 if (hw_off_limits(sc)) {
9796 mtx_unlock(&sc->reg_lock);
9797 rc = ENXIO;
9798 goto done;
9799 }
9800
9801 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9802 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9803 t4_read_pace_tbl(sc, pace_tab);
9804 mtx_unlock(&sc->reg_lock);
9805
9806 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) "
9807 "Class IPG (0.1 ns) Flow IPG (us)");
9808
9809 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9810 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9811 sbuf_printf(sb, "\n %u %-5s %u ", i,
9812 (mode & (1 << i)) ? "flow" : "class", map & 3);
9813 if (kbps)
9814 sbuf_printf(sb, "%9u ", kbps);
9815 else
9816 sbuf_printf(sb, " disabled ");
9817
9818 if (ipg)
9819 sbuf_printf(sb, "%13u ", ipg);
9820 else
9821 sbuf_printf(sb, " disabled ");
9822
9823 if (pace_tab[i])
9824 sbuf_printf(sb, "%10u", pace_tab[i]);
9825 else
9826 sbuf_printf(sb, " disabled");
9827 }
9828 rc = sbuf_finish(sb);
9829 done:
9830 sbuf_delete(sb);
9831 return (rc);
9832 }
9833
9834 static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)9835 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9836 {
9837 struct adapter *sc = arg1;
9838 struct sbuf *sb;
9839 int rc, i, j;
9840 uint64_t *p0, *p1;
9841 struct lb_port_stats s[2];
9842 static const char *stat_name[] = {
9843 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9844 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9845 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
9846 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9847 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9848 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9849 "BG2FramesTrunc:", "BG3FramesTrunc:"
9850 };
9851
9852 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9853 if (sb == NULL)
9854 return (ENOMEM);
9855
9856 memset(s, 0, sizeof(s));
9857
9858 rc = 0;
9859 for (i = 0; i < sc->chip_params->nchan; i += 2) {
9860 mtx_lock(&sc->reg_lock);
9861 if (hw_off_limits(sc))
9862 rc = ENXIO;
9863 else {
9864 t4_get_lb_stats(sc, i, &s[0]);
9865 t4_get_lb_stats(sc, i + 1, &s[1]);
9866 }
9867 mtx_unlock(&sc->reg_lock);
9868 if (rc != 0)
9869 break;
9870
9871 p0 = &s[0].octets;
9872 p1 = &s[1].octets;
9873 sbuf_printf(sb, "%s Loopback %u"
9874 " Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9875
9876 for (j = 0; j < nitems(stat_name); j++)
9877 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9878 *p0++, *p1++);
9879 }
9880
9881 if (rc == 0)
9882 rc = sbuf_finish(sb);
9883 sbuf_delete(sb);
9884
9885 return (rc);
9886 }
9887
9888 static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)9889 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9890 {
9891 int rc = 0;
9892 struct port_info *pi = arg1;
9893 struct link_config *lc = &pi->link_cfg;
9894 struct sbuf *sb;
9895
9896 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9897 if (sb == NULL)
9898 return (ENOMEM);
9899
9900 if (lc->link_ok || lc->link_down_rc == 255)
9901 sbuf_printf(sb, "n/a");
9902 else
9903 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9904
9905 rc = sbuf_finish(sb);
9906 sbuf_delete(sb);
9907
9908 return (rc);
9909 }
9910
9911 struct mem_desc {
9912 u_int base;
9913 u_int limit;
9914 u_int idx;
9915 };
9916
9917 static int
mem_desc_cmp(const void * a,const void * b)9918 mem_desc_cmp(const void *a, const void *b)
9919 {
9920 const u_int v1 = ((const struct mem_desc *)a)->base;
9921 const u_int v2 = ((const struct mem_desc *)b)->base;
9922
9923 if (v1 < v2)
9924 return (-1);
9925 else if (v1 > v2)
9926 return (1);
9927
9928 return (0);
9929 }
9930
9931 static void
mem_region_show(struct sbuf * sb,const char * name,unsigned int from,unsigned int to)9932 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9933 unsigned int to)
9934 {
9935 unsigned int size;
9936
9937 if (from == to)
9938 return;
9939
9940 size = to - from + 1;
9941 if (size == 0)
9942 return;
9943
9944 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9945 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9946 }
9947
9948 static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)9949 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9950 {
9951 struct adapter *sc = arg1;
9952 struct sbuf *sb;
9953 int rc, i, n;
9954 uint32_t lo, hi, used, free, alloc;
9955 static const char *memory[] = {
9956 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9957 };
9958 static const char *region[] = {
9959 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9960 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9961 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9962 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9963 "RQUDP region:", "PBL region:", "TXPBL region:",
9964 "TLSKey region:", "DBVFIFO region:", "ULPRX state:",
9965 "ULPTX state:", "On-chip queues:",
9966 };
9967 struct mem_desc avail[4];
9968 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */
9969 struct mem_desc *md = mem;
9970
9971 rc = sysctl_wire_old_buffer(req, 0);
9972 if (rc != 0)
9973 return (rc);
9974
9975 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9976 if (sb == NULL)
9977 return (ENOMEM);
9978
9979 for (i = 0; i < nitems(mem); i++) {
9980 mem[i].limit = 0;
9981 mem[i].idx = i;
9982 }
9983
9984 mtx_lock(&sc->reg_lock);
9985 if (hw_off_limits(sc)) {
9986 rc = ENXIO;
9987 goto done;
9988 }
9989
9990 /* Find and sort the populated memory ranges */
9991 i = 0;
9992 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9993 if (lo & F_EDRAM0_ENABLE) {
9994 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9995 avail[i].base = G_EDRAM0_BASE(hi) << 20;
9996 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9997 avail[i].idx = 0;
9998 i++;
9999 }
10000 if (lo & F_EDRAM1_ENABLE) {
10001 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
10002 avail[i].base = G_EDRAM1_BASE(hi) << 20;
10003 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
10004 avail[i].idx = 1;
10005 i++;
10006 }
10007 if (lo & F_EXT_MEM_ENABLE) {
10008 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
10009 avail[i].base = G_EXT_MEM_BASE(hi) << 20;
10010 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
10011 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */
10012 i++;
10013 }
10014 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
10015 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10016 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
10017 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
10018 avail[i].idx = 4;
10019 i++;
10020 }
10021 if (is_t6(sc) && lo & F_HMA_MUX) {
10022 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10023 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
10024 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
10025 avail[i].idx = 5;
10026 i++;
10027 }
10028 MPASS(i <= nitems(avail));
10029 if (!i) /* no memory available */
10030 goto done;
10031 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
10032
10033 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
10034 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
10035 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
10036 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10037 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
10038 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
10039 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
10040 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
10041 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
10042
10043 /* the next few have explicit upper bounds */
10044 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
10045 md->limit = md->base - 1 +
10046 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
10047 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
10048 md++;
10049
10050 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
10051 md->limit = md->base - 1 +
10052 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
10053 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
10054 md++;
10055
10056 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10057 if (chip_id(sc) <= CHELSIO_T5)
10058 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
10059 else
10060 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
10061 md->limit = 0;
10062 } else {
10063 md->base = 0;
10064 md->idx = nitems(region); /* hide it */
10065 }
10066 md++;
10067
10068 #define ulp_region(reg) \
10069 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
10070 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
10071
10072 ulp_region(RX_ISCSI);
10073 ulp_region(RX_TDDP);
10074 ulp_region(TX_TPT);
10075 ulp_region(RX_STAG);
10076 ulp_region(RX_RQ);
10077 ulp_region(RX_RQUDP);
10078 ulp_region(RX_PBL);
10079 ulp_region(TX_PBL);
10080 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
10081 ulp_region(RX_TLS_KEY);
10082 }
10083 #undef ulp_region
10084
10085 md->base = 0;
10086 if (is_t4(sc))
10087 md->idx = nitems(region);
10088 else {
10089 uint32_t size = 0;
10090 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
10091 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
10092
10093 if (is_t5(sc)) {
10094 if (sge_ctrl & F_VFIFO_ENABLE)
10095 size = fifo_size << 2;
10096 } else
10097 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
10098
10099 if (size) {
10100 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
10101 md->limit = md->base + size - 1;
10102 } else
10103 md->idx = nitems(region);
10104 }
10105 md++;
10106
10107 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
10108 md->limit = 0;
10109 md++;
10110 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10111 md->limit = 0;
10112 md++;
10113
10114 md->base = sc->vres.ocq.start;
10115 if (sc->vres.ocq.size)
10116 md->limit = md->base + sc->vres.ocq.size - 1;
10117 else
10118 md->idx = nitems(region); /* hide it */
10119 md++;
10120
10121 /* add any address-space holes, there can be up to 3 */
10122 for (n = 0; n < i - 1; n++)
10123 if (avail[n].limit < avail[n + 1].base)
10124 (md++)->base = avail[n].limit;
10125 if (avail[n].limit)
10126 (md++)->base = avail[n].limit;
10127
10128 n = md - mem;
10129 MPASS(n <= nitems(mem));
10130 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10131
10132 for (lo = 0; lo < i; lo++)
10133 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10134 avail[lo].limit - 1);
10135
10136 sbuf_printf(sb, "\n");
10137 for (i = 0; i < n; i++) {
10138 if (mem[i].idx >= nitems(region))
10139 continue; /* skip holes */
10140 if (!mem[i].limit)
10141 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10142 mem_region_show(sb, region[mem[i].idx], mem[i].base,
10143 mem[i].limit);
10144 }
10145
10146 sbuf_printf(sb, "\n");
10147 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10148 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10149 mem_region_show(sb, "uP RAM:", lo, hi);
10150
10151 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10152 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10153 mem_region_show(sb, "uP Extmem2:", lo, hi);
10154
10155 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10156 for (i = 0, free = 0; i < 2; i++)
10157 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10158 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10159 G_PMRXMAXPAGE(lo), free,
10160 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
10161 (lo & F_PMRXNUMCHN) ? 2 : 1);
10162
10163 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10164 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10165 for (i = 0, free = 0; i < 4; i++)
10166 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10167 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10168 G_PMTXMAXPAGE(lo), free,
10169 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10170 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
10171 sbuf_printf(sb, "%u p-structs (%u free)\n",
10172 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10173 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10174
10175 for (i = 0; i < 4; i++) {
10176 if (chip_id(sc) > CHELSIO_T5)
10177 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10178 else
10179 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10180 if (is_t5(sc)) {
10181 used = G_T5_USED(lo);
10182 alloc = G_T5_ALLOC(lo);
10183 } else {
10184 used = G_USED(lo);
10185 alloc = G_ALLOC(lo);
10186 }
10187 /* For T6 these are MAC buffer groups */
10188 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10189 i, used, alloc);
10190 }
10191 for (i = 0; i < sc->chip_params->nchan; i++) {
10192 if (chip_id(sc) > CHELSIO_T5)
10193 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10194 else
10195 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10196 if (is_t5(sc)) {
10197 used = G_T5_USED(lo);
10198 alloc = G_T5_ALLOC(lo);
10199 } else {
10200 used = G_USED(lo);
10201 alloc = G_ALLOC(lo);
10202 }
10203 /* For T6 these are MAC buffer groups */
10204 sbuf_printf(sb,
10205 "\nLoopback %d using %u pages out of %u allocated",
10206 i, used, alloc);
10207 }
10208 done:
10209 mtx_unlock(&sc->reg_lock);
10210 if (rc == 0)
10211 rc = sbuf_finish(sb);
10212 sbuf_delete(sb);
10213 return (rc);
10214 }
10215
10216 static inline void
tcamxy2valmask(uint64_t x,uint64_t y,uint8_t * addr,uint64_t * mask)10217 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10218 {
10219 *mask = x | y;
10220 y = htobe64(y);
10221 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10222 }
10223
10224 static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)10225 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10226 {
10227 struct adapter *sc = arg1;
10228 struct sbuf *sb;
10229 int rc, i;
10230
10231 MPASS(chip_id(sc) <= CHELSIO_T5);
10232
10233 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10234 if (sb == NULL)
10235 return (ENOMEM);
10236
10237 sbuf_printf(sb,
10238 "Idx Ethernet address Mask Vld Ports PF"
10239 " VF Replication P0 P1 P2 P3 ML");
10240 rc = 0;
10241 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10242 uint64_t tcamx, tcamy, mask;
10243 uint32_t cls_lo, cls_hi;
10244 uint8_t addr[ETHER_ADDR_LEN];
10245
10246 mtx_lock(&sc->reg_lock);
10247 if (hw_off_limits(sc))
10248 rc = ENXIO;
10249 else {
10250 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10251 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10252 }
10253 mtx_unlock(&sc->reg_lock);
10254 if (rc != 0)
10255 break;
10256 if (tcamx & tcamy)
10257 continue;
10258 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10259 mtx_lock(&sc->reg_lock);
10260 if (hw_off_limits(sc))
10261 rc = ENXIO;
10262 else {
10263 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10264 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10265 }
10266 mtx_unlock(&sc->reg_lock);
10267 if (rc != 0)
10268 break;
10269 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10270 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2],
10271 addr[3], addr[4], addr[5], (uintmax_t)mask,
10272 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10273 G_PORTMAP(cls_hi), G_PF(cls_lo),
10274 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10275
10276 if (cls_lo & F_REPLICATE) {
10277 struct fw_ldst_cmd ldst_cmd;
10278
10279 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10280 ldst_cmd.op_to_addrspace =
10281 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10282 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10283 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10284 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10285 ldst_cmd.u.mps.rplc.fid_idx =
10286 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10287 V_FW_LDST_CMD_IDX(i));
10288
10289 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10290 "t4mps");
10291 if (rc)
10292 break;
10293 if (hw_off_limits(sc))
10294 rc = ENXIO;
10295 else
10296 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10297 sizeof(ldst_cmd), &ldst_cmd);
10298 end_synchronized_op(sc, 0);
10299 if (rc != 0)
10300 break;
10301 else {
10302 sbuf_printf(sb, " %08x %08x %08x %08x",
10303 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10304 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10305 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10306 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10307 }
10308 } else
10309 sbuf_printf(sb, "%36s", "");
10310
10311 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10312 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10313 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10314 }
10315
10316 if (rc)
10317 (void) sbuf_finish(sb);
10318 else
10319 rc = sbuf_finish(sb);
10320 sbuf_delete(sb);
10321
10322 return (rc);
10323 }
10324
10325 static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)10326 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10327 {
10328 struct adapter *sc = arg1;
10329 struct sbuf *sb;
10330 int rc, i;
10331
10332 MPASS(chip_id(sc) > CHELSIO_T5);
10333
10334 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10335 if (sb == NULL)
10336 return (ENOMEM);
10337
10338 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
10339 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
10340 " Replication"
10341 " P0 P1 P2 P3 ML\n");
10342
10343 rc = 0;
10344 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10345 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10346 uint16_t ivlan;
10347 uint64_t tcamx, tcamy, val, mask;
10348 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10349 uint8_t addr[ETHER_ADDR_LEN];
10350
10351 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10352 if (i < 256)
10353 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10354 else
10355 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10356 mtx_lock(&sc->reg_lock);
10357 if (hw_off_limits(sc))
10358 rc = ENXIO;
10359 else {
10360 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10361 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10362 tcamy = G_DMACH(val) << 32;
10363 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10364 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10365 }
10366 mtx_unlock(&sc->reg_lock);
10367 if (rc != 0)
10368 break;
10369
10370 lookup_type = G_DATALKPTYPE(data2);
10371 port_num = G_DATAPORTNUM(data2);
10372 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10373 /* Inner header VNI */
10374 vniy = ((data2 & F_DATAVIDH2) << 23) |
10375 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10376 dip_hit = data2 & F_DATADIPHIT;
10377 vlan_vld = 0;
10378 } else {
10379 vniy = 0;
10380 dip_hit = 0;
10381 vlan_vld = data2 & F_DATAVIDH2;
10382 ivlan = G_VIDL(val);
10383 }
10384
10385 ctl |= V_CTLXYBITSEL(1);
10386 mtx_lock(&sc->reg_lock);
10387 if (hw_off_limits(sc))
10388 rc = ENXIO;
10389 else {
10390 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10391 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10392 tcamx = G_DMACH(val) << 32;
10393 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10394 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10395 }
10396 mtx_unlock(&sc->reg_lock);
10397 if (rc != 0)
10398 break;
10399
10400 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10401 /* Inner header VNI mask */
10402 vnix = ((data2 & F_DATAVIDH2) << 23) |
10403 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10404 } else
10405 vnix = 0;
10406
10407 if (tcamx & tcamy)
10408 continue;
10409 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10410
10411 mtx_lock(&sc->reg_lock);
10412 if (hw_off_limits(sc))
10413 rc = ENXIO;
10414 else {
10415 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10416 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10417 }
10418 mtx_unlock(&sc->reg_lock);
10419 if (rc != 0)
10420 break;
10421
10422 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10423 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10424 "%012jx %06x %06x - - %3c"
10425 " I %4x %3c %#x%4u%4d", i, addr[0],
10426 addr[1], addr[2], addr[3], addr[4], addr[5],
10427 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10428 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10429 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10430 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10431 } else {
10432 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10433 "%012jx - - ", i, addr[0], addr[1],
10434 addr[2], addr[3], addr[4], addr[5],
10435 (uintmax_t)mask);
10436
10437 if (vlan_vld)
10438 sbuf_printf(sb, "%4u Y ", ivlan);
10439 else
10440 sbuf_printf(sb, " - N ");
10441
10442 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
10443 lookup_type ? 'I' : 'O', port_num,
10444 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10445 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10446 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10447 }
10448
10449
10450 if (cls_lo & F_T6_REPLICATE) {
10451 struct fw_ldst_cmd ldst_cmd;
10452
10453 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10454 ldst_cmd.op_to_addrspace =
10455 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10456 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10457 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10458 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10459 ldst_cmd.u.mps.rplc.fid_idx =
10460 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10461 V_FW_LDST_CMD_IDX(i));
10462
10463 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10464 "t6mps");
10465 if (rc)
10466 break;
10467 if (hw_off_limits(sc))
10468 rc = ENXIO;
10469 else
10470 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10471 sizeof(ldst_cmd), &ldst_cmd);
10472 end_synchronized_op(sc, 0);
10473 if (rc != 0)
10474 break;
10475 else {
10476 sbuf_printf(sb, " %08x %08x %08x %08x"
10477 " %08x %08x %08x %08x",
10478 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10479 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10480 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10481 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10482 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10483 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10484 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10485 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10486 }
10487 } else
10488 sbuf_printf(sb, "%72s", "");
10489
10490 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10491 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10492 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10493 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10494 }
10495
10496 if (rc)
10497 (void) sbuf_finish(sb);
10498 else
10499 rc = sbuf_finish(sb);
10500 sbuf_delete(sb);
10501
10502 return (rc);
10503 }
10504
10505 static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)10506 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10507 {
10508 struct adapter *sc = arg1;
10509 struct sbuf *sb;
10510 int rc;
10511 uint16_t mtus[NMTUS];
10512
10513 rc = 0;
10514 mtx_lock(&sc->reg_lock);
10515 if (hw_off_limits(sc))
10516 rc = ENXIO;
10517 else
10518 t4_read_mtu_tbl(sc, mtus, NULL);
10519 mtx_unlock(&sc->reg_lock);
10520 if (rc != 0)
10521 return (rc);
10522
10523 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10524 if (sb == NULL)
10525 return (ENOMEM);
10526
10527 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10528 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10529 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10530 mtus[14], mtus[15]);
10531
10532 rc = sbuf_finish(sb);
10533 sbuf_delete(sb);
10534
10535 return (rc);
10536 }
10537
10538 static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)10539 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10540 {
10541 struct adapter *sc = arg1;
10542 struct sbuf *sb;
10543 int rc, i;
10544 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10545 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10546 static const char *tx_stats[MAX_PM_NSTATS] = {
10547 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10548 "Tx FIFO wait", NULL, "Tx latency"
10549 };
10550 static const char *rx_stats[MAX_PM_NSTATS] = {
10551 "Read:", "Write bypass:", "Write mem:", "Flush:",
10552 "Rx FIFO wait", NULL, "Rx latency"
10553 };
10554
10555 rc = 0;
10556 mtx_lock(&sc->reg_lock);
10557 if (hw_off_limits(sc))
10558 rc = ENXIO;
10559 else {
10560 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10561 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10562 }
10563 mtx_unlock(&sc->reg_lock);
10564 if (rc != 0)
10565 return (rc);
10566
10567 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10568 if (sb == NULL)
10569 return (ENOMEM);
10570
10571 sbuf_printf(sb, " Tx pcmds Tx bytes");
10572 for (i = 0; i < 4; i++) {
10573 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10574 tx_cyc[i]);
10575 }
10576
10577 sbuf_printf(sb, "\n Rx pcmds Rx bytes");
10578 for (i = 0; i < 4; i++) {
10579 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10580 rx_cyc[i]);
10581 }
10582
10583 if (chip_id(sc) > CHELSIO_T5) {
10584 sbuf_printf(sb,
10585 "\n Total wait Total occupancy");
10586 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10587 tx_cyc[i]);
10588 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10589 rx_cyc[i]);
10590
10591 i += 2;
10592 MPASS(i < nitems(tx_stats));
10593
10594 sbuf_printf(sb,
10595 "\n Reads Total wait");
10596 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10597 tx_cyc[i]);
10598 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10599 rx_cyc[i]);
10600 }
10601
10602 rc = sbuf_finish(sb);
10603 sbuf_delete(sb);
10604
10605 return (rc);
10606 }
10607
10608 static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)10609 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10610 {
10611 struct adapter *sc = arg1;
10612 struct sbuf *sb;
10613 int rc;
10614 struct tp_rdma_stats stats;
10615
10616 rc = 0;
10617 mtx_lock(&sc->reg_lock);
10618 if (hw_off_limits(sc))
10619 rc = ENXIO;
10620 else
10621 t4_tp_get_rdma_stats(sc, &stats, 0);
10622 mtx_unlock(&sc->reg_lock);
10623 if (rc != 0)
10624 return (rc);
10625
10626 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10627 if (sb == NULL)
10628 return (ENOMEM);
10629
10630 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10631 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10632
10633 rc = sbuf_finish(sb);
10634 sbuf_delete(sb);
10635
10636 return (rc);
10637 }
10638
10639 static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)10640 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10641 {
10642 struct adapter *sc = arg1;
10643 struct sbuf *sb;
10644 int rc;
10645 struct tp_tcp_stats v4, v6;
10646
10647 rc = 0;
10648 mtx_lock(&sc->reg_lock);
10649 if (hw_off_limits(sc))
10650 rc = ENXIO;
10651 else
10652 t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10653 mtx_unlock(&sc->reg_lock);
10654 if (rc != 0)
10655 return (rc);
10656
10657 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10658 if (sb == NULL)
10659 return (ENOMEM);
10660
10661 sbuf_printf(sb,
10662 " IP IPv6\n");
10663 sbuf_printf(sb, "OutRsts: %20u %20u\n",
10664 v4.tcp_out_rsts, v6.tcp_out_rsts);
10665 sbuf_printf(sb, "InSegs: %20ju %20ju\n",
10666 v4.tcp_in_segs, v6.tcp_in_segs);
10667 sbuf_printf(sb, "OutSegs: %20ju %20ju\n",
10668 v4.tcp_out_segs, v6.tcp_out_segs);
10669 sbuf_printf(sb, "RetransSegs: %20ju %20ju",
10670 v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10671
10672 rc = sbuf_finish(sb);
10673 sbuf_delete(sb);
10674
10675 return (rc);
10676 }
10677
10678 static int
sysctl_tids(SYSCTL_HANDLER_ARGS)10679 sysctl_tids(SYSCTL_HANDLER_ARGS)
10680 {
10681 struct adapter *sc = arg1;
10682 struct sbuf *sb;
10683 int rc;
10684 uint32_t x, y;
10685 struct tid_info *t = &sc->tids;
10686
10687 rc = 0;
10688 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10689 if (sb == NULL)
10690 return (ENOMEM);
10691
10692 if (t->natids) {
10693 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10694 t->atids_in_use);
10695 }
10696
10697 if (t->nhpftids) {
10698 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10699 t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10700 }
10701
10702 if (t->ntids) {
10703 bool hashen = false;
10704
10705 mtx_lock(&sc->reg_lock);
10706 if (hw_off_limits(sc))
10707 rc = ENXIO;
10708 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10709 hashen = true;
10710 if (chip_id(sc) <= CHELSIO_T5) {
10711 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10712 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10713 } else {
10714 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10715 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10716 }
10717 }
10718 mtx_unlock(&sc->reg_lock);
10719 if (rc != 0)
10720 goto done;
10721
10722 sbuf_printf(sb, "TID range: ");
10723 if (hashen) {
10724 if (x)
10725 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10726 sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10727 } else {
10728 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10729 t->ntids - 1);
10730 }
10731 sbuf_printf(sb, ", in use: %u\n",
10732 atomic_load_acq_int(&t->tids_in_use));
10733 }
10734
10735 if (t->nstids) {
10736 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10737 t->stid_base + t->nstids - 1, t->stids_in_use);
10738 }
10739
10740 if (t->nftids) {
10741 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10742 t->ftid_end, t->ftids_in_use);
10743 }
10744
10745 if (t->netids) {
10746 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10747 t->etid_base + t->netids - 1, t->etids_in_use);
10748 }
10749
10750 mtx_lock(&sc->reg_lock);
10751 if (hw_off_limits(sc))
10752 rc = ENXIO;
10753 else {
10754 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10755 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10756 }
10757 mtx_unlock(&sc->reg_lock);
10758 if (rc != 0)
10759 goto done;
10760 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10761 done:
10762 if (rc == 0)
10763 rc = sbuf_finish(sb);
10764 else
10765 (void)sbuf_finish(sb);
10766 sbuf_delete(sb);
10767
10768 return (rc);
10769 }
10770
10771 static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)10772 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10773 {
10774 struct adapter *sc = arg1;
10775 struct sbuf *sb;
10776 int rc;
10777 struct tp_err_stats stats;
10778
10779 rc = 0;
10780 mtx_lock(&sc->reg_lock);
10781 if (hw_off_limits(sc))
10782 rc = ENXIO;
10783 else
10784 t4_tp_get_err_stats(sc, &stats, 0);
10785 mtx_unlock(&sc->reg_lock);
10786 if (rc != 0)
10787 return (rc);
10788
10789 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10790 if (sb == NULL)
10791 return (ENOMEM);
10792
10793 if (sc->chip_params->nchan > 2) {
10794 sbuf_printf(sb, " channel 0 channel 1"
10795 " channel 2 channel 3\n");
10796 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n",
10797 stats.mac_in_errs[0], stats.mac_in_errs[1],
10798 stats.mac_in_errs[2], stats.mac_in_errs[3]);
10799 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n",
10800 stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10801 stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10802 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n",
10803 stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10804 stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10805 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n",
10806 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10807 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10808 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n",
10809 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10810 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10811 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n",
10812 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10813 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10814 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n",
10815 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10816 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10817 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n",
10818 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10819 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10820 } else {
10821 sbuf_printf(sb, " channel 0 channel 1\n");
10822 sbuf_printf(sb, "macInErrs: %10u %10u\n",
10823 stats.mac_in_errs[0], stats.mac_in_errs[1]);
10824 sbuf_printf(sb, "hdrInErrs: %10u %10u\n",
10825 stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10826 sbuf_printf(sb, "tcpInErrs: %10u %10u\n",
10827 stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10828 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n",
10829 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10830 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n",
10831 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10832 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n",
10833 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10834 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n",
10835 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10836 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n",
10837 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10838 }
10839
10840 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u",
10841 stats.ofld_no_neigh, stats.ofld_cong_defer);
10842
10843 rc = sbuf_finish(sb);
10844 sbuf_delete(sb);
10845
10846 return (rc);
10847 }
10848
10849 static int
sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)10850 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10851 {
10852 struct adapter *sc = arg1;
10853 struct sbuf *sb;
10854 int rc;
10855 struct tp_tnl_stats stats;
10856
10857 rc = 0;
10858 mtx_lock(&sc->reg_lock);
10859 if (hw_off_limits(sc))
10860 rc = ENXIO;
10861 else
10862 t4_tp_get_tnl_stats(sc, &stats, 1);
10863 mtx_unlock(&sc->reg_lock);
10864 if (rc != 0)
10865 return (rc);
10866
10867 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10868 if (sb == NULL)
10869 return (ENOMEM);
10870
10871 if (sc->chip_params->nchan > 2) {
10872 sbuf_printf(sb, " channel 0 channel 1"
10873 " channel 2 channel 3\n");
10874 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n",
10875 stats.out_pkt[0], stats.out_pkt[1],
10876 stats.out_pkt[2], stats.out_pkt[3]);
10877 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u",
10878 stats.in_pkt[0], stats.in_pkt[1],
10879 stats.in_pkt[2], stats.in_pkt[3]);
10880 } else {
10881 sbuf_printf(sb, " channel 0 channel 1\n");
10882 sbuf_printf(sb, "OutPkts: %10u %10u\n",
10883 stats.out_pkt[0], stats.out_pkt[1]);
10884 sbuf_printf(sb, "InPkts: %10u %10u",
10885 stats.in_pkt[0], stats.in_pkt[1]);
10886 }
10887
10888 rc = sbuf_finish(sb);
10889 sbuf_delete(sb);
10890
10891 return (rc);
10892 }
10893
10894 static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)10895 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10896 {
10897 struct adapter *sc = arg1;
10898 struct tp_params *tpp = &sc->params.tp;
10899 u_int mask;
10900 int rc;
10901
10902 mask = tpp->la_mask >> 16;
10903 rc = sysctl_handle_int(oidp, &mask, 0, req);
10904 if (rc != 0 || req->newptr == NULL)
10905 return (rc);
10906 if (mask > 0xffff)
10907 return (EINVAL);
10908 mtx_lock(&sc->reg_lock);
10909 if (hw_off_limits(sc))
10910 rc = ENXIO;
10911 else {
10912 tpp->la_mask = mask << 16;
10913 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10914 tpp->la_mask);
10915 }
10916 mtx_unlock(&sc->reg_lock);
10917
10918 return (rc);
10919 }
10920
10921 struct field_desc {
10922 const char *name;
10923 u_int start;
10924 u_int width;
10925 };
10926
10927 static void
field_desc_show(struct sbuf * sb,uint64_t v,const struct field_desc * f)10928 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10929 {
10930 char buf[32];
10931 int line_size = 0;
10932
10933 while (f->name) {
10934 uint64_t mask = (1ULL << f->width) - 1;
10935 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10936 ((uintmax_t)v >> f->start) & mask);
10937
10938 if (line_size + len >= 79) {
10939 line_size = 8;
10940 sbuf_printf(sb, "\n ");
10941 }
10942 sbuf_printf(sb, "%s ", buf);
10943 line_size += len + 1;
10944 f++;
10945 }
10946 sbuf_printf(sb, "\n");
10947 }
10948
10949 static const struct field_desc tp_la0[] = {
10950 { "RcfOpCodeOut", 60, 4 },
10951 { "State", 56, 4 },
10952 { "WcfState", 52, 4 },
10953 { "RcfOpcSrcOut", 50, 2 },
10954 { "CRxError", 49, 1 },
10955 { "ERxError", 48, 1 },
10956 { "SanityFailed", 47, 1 },
10957 { "SpuriousMsg", 46, 1 },
10958 { "FlushInputMsg", 45, 1 },
10959 { "FlushInputCpl", 44, 1 },
10960 { "RssUpBit", 43, 1 },
10961 { "RssFilterHit", 42, 1 },
10962 { "Tid", 32, 10 },
10963 { "InitTcb", 31, 1 },
10964 { "LineNumber", 24, 7 },
10965 { "Emsg", 23, 1 },
10966 { "EdataOut", 22, 1 },
10967 { "Cmsg", 21, 1 },
10968 { "CdataOut", 20, 1 },
10969 { "EreadPdu", 19, 1 },
10970 { "CreadPdu", 18, 1 },
10971 { "TunnelPkt", 17, 1 },
10972 { "RcfPeerFin", 16, 1 },
10973 { "RcfReasonOut", 12, 4 },
10974 { "TxCchannel", 10, 2 },
10975 { "RcfTxChannel", 8, 2 },
10976 { "RxEchannel", 6, 2 },
10977 { "RcfRxChannel", 5, 1 },
10978 { "RcfDataOutSrdy", 4, 1 },
10979 { "RxDvld", 3, 1 },
10980 { "RxOoDvld", 2, 1 },
10981 { "RxCongestion", 1, 1 },
10982 { "TxCongestion", 0, 1 },
10983 { NULL }
10984 };
10985
10986 static const struct field_desc tp_la1[] = {
10987 { "CplCmdIn", 56, 8 },
10988 { "CplCmdOut", 48, 8 },
10989 { "ESynOut", 47, 1 },
10990 { "EAckOut", 46, 1 },
10991 { "EFinOut", 45, 1 },
10992 { "ERstOut", 44, 1 },
10993 { "SynIn", 43, 1 },
10994 { "AckIn", 42, 1 },
10995 { "FinIn", 41, 1 },
10996 { "RstIn", 40, 1 },
10997 { "DataIn", 39, 1 },
10998 { "DataInVld", 38, 1 },
10999 { "PadIn", 37, 1 },
11000 { "RxBufEmpty", 36, 1 },
11001 { "RxDdp", 35, 1 },
11002 { "RxFbCongestion", 34, 1 },
11003 { "TxFbCongestion", 33, 1 },
11004 { "TxPktSumSrdy", 32, 1 },
11005 { "RcfUlpType", 28, 4 },
11006 { "Eread", 27, 1 },
11007 { "Ebypass", 26, 1 },
11008 { "Esave", 25, 1 },
11009 { "Static0", 24, 1 },
11010 { "Cread", 23, 1 },
11011 { "Cbypass", 22, 1 },
11012 { "Csave", 21, 1 },
11013 { "CPktOut", 20, 1 },
11014 { "RxPagePoolFull", 18, 2 },
11015 { "RxLpbkPkt", 17, 1 },
11016 { "TxLpbkPkt", 16, 1 },
11017 { "RxVfValid", 15, 1 },
11018 { "SynLearned", 14, 1 },
11019 { "SetDelEntry", 13, 1 },
11020 { "SetInvEntry", 12, 1 },
11021 { "CpcmdDvld", 11, 1 },
11022 { "CpcmdSave", 10, 1 },
11023 { "RxPstructsFull", 8, 2 },
11024 { "EpcmdDvld", 7, 1 },
11025 { "EpcmdFlush", 6, 1 },
11026 { "EpcmdTrimPrefix", 5, 1 },
11027 { "EpcmdTrimPostfix", 4, 1 },
11028 { "ERssIp4Pkt", 3, 1 },
11029 { "ERssIp6Pkt", 2, 1 },
11030 { "ERssTcpUdpPkt", 1, 1 },
11031 { "ERssFceFipPkt", 0, 1 },
11032 { NULL }
11033 };
11034
11035 static const struct field_desc tp_la2[] = {
11036 { "CplCmdIn", 56, 8 },
11037 { "MpsVfVld", 55, 1 },
11038 { "MpsPf", 52, 3 },
11039 { "MpsVf", 44, 8 },
11040 { "SynIn", 43, 1 },
11041 { "AckIn", 42, 1 },
11042 { "FinIn", 41, 1 },
11043 { "RstIn", 40, 1 },
11044 { "DataIn", 39, 1 },
11045 { "DataInVld", 38, 1 },
11046 { "PadIn", 37, 1 },
11047 { "RxBufEmpty", 36, 1 },
11048 { "RxDdp", 35, 1 },
11049 { "RxFbCongestion", 34, 1 },
11050 { "TxFbCongestion", 33, 1 },
11051 { "TxPktSumSrdy", 32, 1 },
11052 { "RcfUlpType", 28, 4 },
11053 { "Eread", 27, 1 },
11054 { "Ebypass", 26, 1 },
11055 { "Esave", 25, 1 },
11056 { "Static0", 24, 1 },
11057 { "Cread", 23, 1 },
11058 { "Cbypass", 22, 1 },
11059 { "Csave", 21, 1 },
11060 { "CPktOut", 20, 1 },
11061 { "RxPagePoolFull", 18, 2 },
11062 { "RxLpbkPkt", 17, 1 },
11063 { "TxLpbkPkt", 16, 1 },
11064 { "RxVfValid", 15, 1 },
11065 { "SynLearned", 14, 1 },
11066 { "SetDelEntry", 13, 1 },
11067 { "SetInvEntry", 12, 1 },
11068 { "CpcmdDvld", 11, 1 },
11069 { "CpcmdSave", 10, 1 },
11070 { "RxPstructsFull", 8, 2 },
11071 { "EpcmdDvld", 7, 1 },
11072 { "EpcmdFlush", 6, 1 },
11073 { "EpcmdTrimPrefix", 5, 1 },
11074 { "EpcmdTrimPostfix", 4, 1 },
11075 { "ERssIp4Pkt", 3, 1 },
11076 { "ERssIp6Pkt", 2, 1 },
11077 { "ERssTcpUdpPkt", 1, 1 },
11078 { "ERssFceFipPkt", 0, 1 },
11079 { NULL }
11080 };
11081
11082 static void
tp_la_show(struct sbuf * sb,uint64_t * p,int idx)11083 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
11084 {
11085
11086 field_desc_show(sb, *p, tp_la0);
11087 }
11088
11089 static void
tp_la_show2(struct sbuf * sb,uint64_t * p,int idx)11090 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
11091 {
11092
11093 if (idx)
11094 sbuf_printf(sb, "\n");
11095 field_desc_show(sb, p[0], tp_la0);
11096 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11097 field_desc_show(sb, p[1], tp_la0);
11098 }
11099
11100 static void
tp_la_show3(struct sbuf * sb,uint64_t * p,int idx)11101 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
11102 {
11103
11104 if (idx)
11105 sbuf_printf(sb, "\n");
11106 field_desc_show(sb, p[0], tp_la0);
11107 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11108 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11109 }
11110
11111 static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)11112 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11113 {
11114 struct adapter *sc = arg1;
11115 struct sbuf *sb;
11116 uint64_t *buf, *p;
11117 int rc;
11118 u_int i, inc;
11119 void (*show_func)(struct sbuf *, uint64_t *, int);
11120
11121 rc = 0;
11122 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11123 if (sb == NULL)
11124 return (ENOMEM);
11125
11126 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11127
11128 mtx_lock(&sc->reg_lock);
11129 if (hw_off_limits(sc))
11130 rc = ENXIO;
11131 else {
11132 t4_tp_read_la(sc, buf, NULL);
11133 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11134 case 2:
11135 inc = 2;
11136 show_func = tp_la_show2;
11137 break;
11138 case 3:
11139 inc = 2;
11140 show_func = tp_la_show3;
11141 break;
11142 default:
11143 inc = 1;
11144 show_func = tp_la_show;
11145 }
11146 }
11147 mtx_unlock(&sc->reg_lock);
11148 if (rc != 0)
11149 goto done;
11150
11151 p = buf;
11152 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
11153 (*show_func)(sb, p, i);
11154 rc = sbuf_finish(sb);
11155 done:
11156 sbuf_delete(sb);
11157 free(buf, M_CXGBE);
11158 return (rc);
11159 }
11160
11161 static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)11162 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
11163 {
11164 struct adapter *sc = arg1;
11165 struct sbuf *sb;
11166 int rc;
11167 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
11168
11169 rc = 0;
11170 mtx_lock(&sc->reg_lock);
11171 if (hw_off_limits(sc))
11172 rc = ENXIO;
11173 else
11174 t4_get_chan_txrate(sc, nrate, orate);
11175 mtx_unlock(&sc->reg_lock);
11176 if (rc != 0)
11177 return (rc);
11178
11179 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11180 if (sb == NULL)
11181 return (ENOMEM);
11182
11183 if (sc->chip_params->nchan > 2) {
11184 sbuf_printf(sb, " channel 0 channel 1"
11185 " channel 2 channel 3\n");
11186 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n",
11187 nrate[0], nrate[1], nrate[2], nrate[3]);
11188 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju",
11189 orate[0], orate[1], orate[2], orate[3]);
11190 } else {
11191 sbuf_printf(sb, " channel 0 channel 1\n");
11192 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n",
11193 nrate[0], nrate[1]);
11194 sbuf_printf(sb, "Offload B/s: %10ju %10ju",
11195 orate[0], orate[1]);
11196 }
11197
11198 rc = sbuf_finish(sb);
11199 sbuf_delete(sb);
11200
11201 return (rc);
11202 }
11203
11204 static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)11205 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
11206 {
11207 struct adapter *sc = arg1;
11208 struct sbuf *sb;
11209 uint32_t *buf, *p;
11210 int rc, i;
11211
11212 rc = 0;
11213 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11214 if (sb == NULL)
11215 return (ENOMEM);
11216
11217 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
11218 M_ZERO | M_WAITOK);
11219
11220 mtx_lock(&sc->reg_lock);
11221 if (hw_off_limits(sc))
11222 rc = ENXIO;
11223 else
11224 t4_ulprx_read_la(sc, buf);
11225 mtx_unlock(&sc->reg_lock);
11226 if (rc != 0)
11227 goto done;
11228
11229 p = buf;
11230 sbuf_printf(sb, " Pcmd Type Message"
11231 " Data");
11232 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
11233 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x",
11234 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
11235 }
11236 rc = sbuf_finish(sb);
11237 done:
11238 sbuf_delete(sb);
11239 free(buf, M_CXGBE);
11240 return (rc);
11241 }
11242
11243 static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)11244 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
11245 {
11246 struct adapter *sc = arg1;
11247 struct sbuf *sb;
11248 int rc;
11249 uint32_t cfg, s1, s2;
11250
11251 MPASS(chip_id(sc) >= CHELSIO_T5);
11252
11253 rc = 0;
11254 mtx_lock(&sc->reg_lock);
11255 if (hw_off_limits(sc))
11256 rc = ENXIO;
11257 else {
11258 cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
11259 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
11260 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
11261 }
11262 mtx_unlock(&sc->reg_lock);
11263 if (rc != 0)
11264 return (rc);
11265
11266 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11267 if (sb == NULL)
11268 return (ENOMEM);
11269
11270 if (G_STATSOURCE_T5(cfg) == 7) {
11271 int mode;
11272
11273 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
11274 if (mode == 0)
11275 sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
11276 else if (mode == 1)
11277 sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
11278 else
11279 sbuf_printf(sb, "unknown mode %d", mode);
11280 }
11281 rc = sbuf_finish(sb);
11282 sbuf_delete(sb);
11283
11284 return (rc);
11285 }
11286
11287 static int
sysctl_cpus(SYSCTL_HANDLER_ARGS)11288 sysctl_cpus(SYSCTL_HANDLER_ARGS)
11289 {
11290 struct adapter *sc = arg1;
11291 enum cpu_sets op = arg2;
11292 cpuset_t cpuset;
11293 struct sbuf *sb;
11294 int i, rc;
11295
11296 MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11297
11298 CPU_ZERO(&cpuset);
11299 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11300 if (rc != 0)
11301 return (rc);
11302
11303 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11304 if (sb == NULL)
11305 return (ENOMEM);
11306
11307 CPU_FOREACH(i)
11308 sbuf_printf(sb, "%d ", i);
11309 rc = sbuf_finish(sb);
11310 sbuf_delete(sb);
11311
11312 return (rc);
11313 }
11314
11315 static int
sysctl_reset(SYSCTL_HANDLER_ARGS)11316 sysctl_reset(SYSCTL_HANDLER_ARGS)
11317 {
11318 struct adapter *sc = arg1;
11319 u_int val;
11320 int rc;
11321
11322 val = atomic_load_int(&sc->num_resets);
11323 rc = sysctl_handle_int(oidp, &val, 0, req);
11324 if (rc != 0 || req->newptr == NULL)
11325 return (rc);
11326
11327 if (val == 0) {
11328 /* Zero out the counter that tracks reset. */
11329 atomic_store_int(&sc->num_resets, 0);
11330 return (0);
11331 }
11332
11333 if (val != 1)
11334 return (EINVAL); /* 0 or 1 are the only legal values */
11335
11336 if (hw_off_limits(sc)) /* harmless race */
11337 return (EALREADY);
11338
11339 taskqueue_enqueue(reset_tq, &sc->reset_task);
11340 return (0);
11341 }
11342
11343 #ifdef TCP_OFFLOAD
11344 static int
sysctl_tls(SYSCTL_HANDLER_ARGS)11345 sysctl_tls(SYSCTL_HANDLER_ARGS)
11346 {
11347 struct adapter *sc = arg1;
11348 int i, j, v, rc;
11349 struct vi_info *vi;
11350
11351 v = sc->tt.tls;
11352 rc = sysctl_handle_int(oidp, &v, 0, req);
11353 if (rc != 0 || req->newptr == NULL)
11354 return (rc);
11355
11356 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11357 return (ENOTSUP);
11358
11359 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11360 if (rc)
11361 return (rc);
11362 if (hw_off_limits(sc))
11363 rc = ENXIO;
11364 else {
11365 sc->tt.tls = !!v;
11366 for_each_port(sc, i) {
11367 for_each_vi(sc->port[i], j, vi) {
11368 if (vi->flags & VI_INIT_DONE)
11369 t4_update_fl_bufsize(vi->ifp);
11370 }
11371 }
11372 }
11373 end_synchronized_op(sc, 0);
11374
11375 return (rc);
11376
11377 }
11378
11379 static void
unit_conv(char * buf,size_t len,u_int val,u_int factor)11380 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11381 {
11382 u_int rem = val % factor;
11383
11384 if (rem == 0)
11385 snprintf(buf, len, "%u", val / factor);
11386 else {
11387 while (rem % 10 == 0)
11388 rem /= 10;
11389 snprintf(buf, len, "%u.%u", val / factor, rem);
11390 }
11391 }
11392
11393 static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)11394 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11395 {
11396 struct adapter *sc = arg1;
11397 char buf[16];
11398 u_int res, re;
11399 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11400
11401 mtx_lock(&sc->reg_lock);
11402 if (hw_off_limits(sc))
11403 res = (u_int)-1;
11404 else
11405 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11406 mtx_unlock(&sc->reg_lock);
11407 if (res == (u_int)-1)
11408 return (ENXIO);
11409
11410 switch (arg2) {
11411 case 0:
11412 /* timer_tick */
11413 re = G_TIMERRESOLUTION(res);
11414 break;
11415 case 1:
11416 /* TCP timestamp tick */
11417 re = G_TIMESTAMPRESOLUTION(res);
11418 break;
11419 case 2:
11420 /* DACK tick */
11421 re = G_DELAYEDACKRESOLUTION(res);
11422 break;
11423 default:
11424 return (EDOOFUS);
11425 }
11426
11427 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11428
11429 return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11430 }
11431
11432 static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)11433 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11434 {
11435 struct adapter *sc = arg1;
11436 int rc;
11437 u_int dack_tmr, dack_re, v;
11438 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11439
11440 mtx_lock(&sc->reg_lock);
11441 if (hw_off_limits(sc))
11442 rc = ENXIO;
11443 else {
11444 rc = 0;
11445 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11446 A_TP_TIMER_RESOLUTION));
11447 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11448 }
11449 mtx_unlock(&sc->reg_lock);
11450 if (rc != 0)
11451 return (rc);
11452
11453 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11454
11455 return (sysctl_handle_int(oidp, &v, 0, req));
11456 }
11457
11458 static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)11459 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11460 {
11461 struct adapter *sc = arg1;
11462 int rc, reg = arg2;
11463 u_int tre;
11464 u_long tp_tick_us, v;
11465 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11466
11467 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11468 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX ||
11469 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11470 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11471
11472 mtx_lock(&sc->reg_lock);
11473 if (hw_off_limits(sc))
11474 rc = ENXIO;
11475 else {
11476 rc = 0;
11477 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11478 tp_tick_us = (cclk_ps << tre) / 1000000;
11479 if (reg == A_TP_INIT_SRTT)
11480 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11481 else
11482 v = tp_tick_us * t4_read_reg(sc, reg);
11483 }
11484 mtx_unlock(&sc->reg_lock);
11485 if (rc != 0)
11486 return (rc);
11487 else
11488 return (sysctl_handle_long(oidp, &v, 0, req));
11489 }
11490
11491 /*
11492 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11493 * passed to this function.
11494 */
11495 static int
sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)11496 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11497 {
11498 struct adapter *sc = arg1;
11499 int rc, idx = arg2;
11500 u_int v;
11501
11502 MPASS(idx >= 0 && idx <= 24);
11503
11504 mtx_lock(&sc->reg_lock);
11505 if (hw_off_limits(sc))
11506 rc = ENXIO;
11507 else {
11508 rc = 0;
11509 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11510 }
11511 mtx_unlock(&sc->reg_lock);
11512 if (rc != 0)
11513 return (rc);
11514 else
11515 return (sysctl_handle_int(oidp, &v, 0, req));
11516 }
11517
11518 static int
sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)11519 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11520 {
11521 struct adapter *sc = arg1;
11522 int rc, idx = arg2;
11523 u_int shift, v, r;
11524
11525 MPASS(idx >= 0 && idx < 16);
11526
11527 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11528 shift = (idx & 3) << 3;
11529 mtx_lock(&sc->reg_lock);
11530 if (hw_off_limits(sc))
11531 rc = ENXIO;
11532 else {
11533 rc = 0;
11534 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11535 }
11536 mtx_unlock(&sc->reg_lock);
11537 if (rc != 0)
11538 return (rc);
11539 else
11540 return (sysctl_handle_int(oidp, &v, 0, req));
11541 }
11542
11543 static int
sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)11544 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11545 {
11546 struct vi_info *vi = arg1;
11547 struct adapter *sc = vi->adapter;
11548 int idx, rc, i;
11549 struct sge_ofld_rxq *ofld_rxq;
11550 uint8_t v;
11551
11552 idx = vi->ofld_tmr_idx;
11553
11554 rc = sysctl_handle_int(oidp, &idx, 0, req);
11555 if (rc != 0 || req->newptr == NULL)
11556 return (rc);
11557
11558 if (idx < 0 || idx >= SGE_NTIMERS)
11559 return (EINVAL);
11560
11561 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11562 "t4otmr");
11563 if (rc)
11564 return (rc);
11565
11566 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11567 for_each_ofld_rxq(vi, i, ofld_rxq) {
11568 #ifdef atomic_store_rel_8
11569 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11570 #else
11571 ofld_rxq->iq.intr_params = v;
11572 #endif
11573 }
11574 vi->ofld_tmr_idx = idx;
11575
11576 end_synchronized_op(sc, LOCK_HELD);
11577 return (0);
11578 }
11579
11580 static int
sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)11581 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11582 {
11583 struct vi_info *vi = arg1;
11584 struct adapter *sc = vi->adapter;
11585 int idx, rc;
11586
11587 idx = vi->ofld_pktc_idx;
11588
11589 rc = sysctl_handle_int(oidp, &idx, 0, req);
11590 if (rc != 0 || req->newptr == NULL)
11591 return (rc);
11592
11593 if (idx < -1 || idx >= SGE_NCOUNTERS)
11594 return (EINVAL);
11595
11596 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11597 "t4opktc");
11598 if (rc)
11599 return (rc);
11600
11601 if (vi->flags & VI_INIT_DONE)
11602 rc = EBUSY; /* cannot be changed once the queues are created */
11603 else
11604 vi->ofld_pktc_idx = idx;
11605
11606 end_synchronized_op(sc, LOCK_HELD);
11607 return (rc);
11608 }
11609 #endif
11610
11611 static int
get_sge_context(struct adapter * sc,struct t4_sge_context * cntxt)11612 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11613 {
11614 int rc;
11615
11616 if (cntxt->cid > M_CTXTQID)
11617 return (EINVAL);
11618
11619 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11620 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11621 return (EINVAL);
11622
11623 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11624 if (rc)
11625 return (rc);
11626
11627 if (hw_off_limits(sc)) {
11628 rc = ENXIO;
11629 goto done;
11630 }
11631
11632 if (sc->flags & FW_OK) {
11633 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11634 &cntxt->data[0]);
11635 if (rc == 0)
11636 goto done;
11637 }
11638
11639 /*
11640 * Read via firmware failed or wasn't even attempted. Read directly via
11641 * the backdoor.
11642 */
11643 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11644 done:
11645 end_synchronized_op(sc, 0);
11646 return (rc);
11647 }
11648
11649 static int
load_fw(struct adapter * sc,struct t4_data * fw)11650 load_fw(struct adapter *sc, struct t4_data *fw)
11651 {
11652 int rc;
11653 uint8_t *fw_data;
11654
11655 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11656 if (rc)
11657 return (rc);
11658
11659 if (hw_off_limits(sc)) {
11660 rc = ENXIO;
11661 goto done;
11662 }
11663
11664 /*
11665 * The firmware, with the sole exception of the memory parity error
11666 * handler, runs from memory and not flash. It is almost always safe to
11667 * install a new firmware on a running system. Just set bit 1 in
11668 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11669 */
11670 if (sc->flags & FULL_INIT_DONE &&
11671 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11672 rc = EBUSY;
11673 goto done;
11674 }
11675
11676 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11677
11678 rc = copyin(fw->data, fw_data, fw->len);
11679 if (rc == 0)
11680 rc = -t4_load_fw(sc, fw_data, fw->len);
11681
11682 free(fw_data, M_CXGBE);
11683 done:
11684 end_synchronized_op(sc, 0);
11685 return (rc);
11686 }
11687
11688 static int
load_cfg(struct adapter * sc,struct t4_data * cfg)11689 load_cfg(struct adapter *sc, struct t4_data *cfg)
11690 {
11691 int rc;
11692 uint8_t *cfg_data = NULL;
11693
11694 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11695 if (rc)
11696 return (rc);
11697
11698 if (hw_off_limits(sc)) {
11699 rc = ENXIO;
11700 goto done;
11701 }
11702
11703 if (cfg->len == 0) {
11704 /* clear */
11705 rc = -t4_load_cfg(sc, NULL, 0);
11706 goto done;
11707 }
11708
11709 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11710
11711 rc = copyin(cfg->data, cfg_data, cfg->len);
11712 if (rc == 0)
11713 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11714
11715 free(cfg_data, M_CXGBE);
11716 done:
11717 end_synchronized_op(sc, 0);
11718 return (rc);
11719 }
11720
11721 static int
load_boot(struct adapter * sc,struct t4_bootrom * br)11722 load_boot(struct adapter *sc, struct t4_bootrom *br)
11723 {
11724 int rc;
11725 uint8_t *br_data = NULL;
11726 u_int offset;
11727
11728 if (br->len > 1024 * 1024)
11729 return (EFBIG);
11730
11731 if (br->pf_offset == 0) {
11732 /* pfidx */
11733 if (br->pfidx_addr > 7)
11734 return (EINVAL);
11735 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11736 A_PCIE_PF_EXPROM_OFST)));
11737 } else if (br->pf_offset == 1) {
11738 /* offset */
11739 offset = G_OFFSET(br->pfidx_addr);
11740 } else {
11741 return (EINVAL);
11742 }
11743
11744 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11745 if (rc)
11746 return (rc);
11747
11748 if (hw_off_limits(sc)) {
11749 rc = ENXIO;
11750 goto done;
11751 }
11752
11753 if (br->len == 0) {
11754 /* clear */
11755 rc = -t4_load_boot(sc, NULL, offset, 0);
11756 goto done;
11757 }
11758
11759 br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11760
11761 rc = copyin(br->data, br_data, br->len);
11762 if (rc == 0)
11763 rc = -t4_load_boot(sc, br_data, offset, br->len);
11764
11765 free(br_data, M_CXGBE);
11766 done:
11767 end_synchronized_op(sc, 0);
11768 return (rc);
11769 }
11770
11771 static int
load_bootcfg(struct adapter * sc,struct t4_data * bc)11772 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11773 {
11774 int rc;
11775 uint8_t *bc_data = NULL;
11776
11777 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11778 if (rc)
11779 return (rc);
11780
11781 if (hw_off_limits(sc)) {
11782 rc = ENXIO;
11783 goto done;
11784 }
11785
11786 if (bc->len == 0) {
11787 /* clear */
11788 rc = -t4_load_bootcfg(sc, NULL, 0);
11789 goto done;
11790 }
11791
11792 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11793
11794 rc = copyin(bc->data, bc_data, bc->len);
11795 if (rc == 0)
11796 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11797
11798 free(bc_data, M_CXGBE);
11799 done:
11800 end_synchronized_op(sc, 0);
11801 return (rc);
11802 }
11803
11804 static int
cudbg_dump(struct adapter * sc,struct t4_cudbg_dump * dump)11805 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11806 {
11807 int rc;
11808 struct cudbg_init *cudbg;
11809 void *handle, *buf;
11810
11811 /* buf is large, don't block if no memory is available */
11812 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11813 if (buf == NULL)
11814 return (ENOMEM);
11815
11816 handle = cudbg_alloc_handle();
11817 if (handle == NULL) {
11818 rc = ENOMEM;
11819 goto done;
11820 }
11821
11822 cudbg = cudbg_get_init(handle);
11823 cudbg->adap = sc;
11824 cudbg->print = (cudbg_print_cb)printf;
11825
11826 #ifndef notyet
11827 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11828 __func__, dump->wr_flash, dump->len, dump->data);
11829 #endif
11830
11831 if (dump->wr_flash)
11832 cudbg->use_flash = 1;
11833 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11834 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11835
11836 rc = cudbg_collect(handle, buf, &dump->len);
11837 if (rc != 0)
11838 goto done;
11839
11840 rc = copyout(buf, dump->data, dump->len);
11841 done:
11842 cudbg_free_handle(handle);
11843 free(buf, M_CXGBE);
11844 return (rc);
11845 }
11846
11847 static void
free_offload_policy(struct t4_offload_policy * op)11848 free_offload_policy(struct t4_offload_policy *op)
11849 {
11850 struct offload_rule *r;
11851 int i;
11852
11853 if (op == NULL)
11854 return;
11855
11856 r = &op->rule[0];
11857 for (i = 0; i < op->nrules; i++, r++) {
11858 free(r->bpf_prog.bf_insns, M_CXGBE);
11859 }
11860 free(op->rule, M_CXGBE);
11861 free(op, M_CXGBE);
11862 }
11863
11864 static int
set_offload_policy(struct adapter * sc,struct t4_offload_policy * uop)11865 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11866 {
11867 int i, rc, len;
11868 struct t4_offload_policy *op, *old;
11869 struct bpf_program *bf;
11870 const struct offload_settings *s;
11871 struct offload_rule *r;
11872 void *u;
11873
11874 if (!is_offload(sc))
11875 return (ENODEV);
11876
11877 if (uop->nrules == 0) {
11878 /* Delete installed policies. */
11879 op = NULL;
11880 goto set_policy;
11881 } else if (uop->nrules > 256) { /* arbitrary */
11882 return (E2BIG);
11883 }
11884
11885 /* Copy userspace offload policy to kernel */
11886 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11887 op->nrules = uop->nrules;
11888 len = op->nrules * sizeof(struct offload_rule);
11889 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11890 rc = copyin(uop->rule, op->rule, len);
11891 if (rc) {
11892 free(op->rule, M_CXGBE);
11893 free(op, M_CXGBE);
11894 return (rc);
11895 }
11896
11897 r = &op->rule[0];
11898 for (i = 0; i < op->nrules; i++, r++) {
11899
11900 /* Validate open_type */
11901 if (r->open_type != OPEN_TYPE_LISTEN &&
11902 r->open_type != OPEN_TYPE_ACTIVE &&
11903 r->open_type != OPEN_TYPE_PASSIVE &&
11904 r->open_type != OPEN_TYPE_DONTCARE) {
11905 error:
11906 /*
11907 * Rules 0 to i have malloc'd filters that need to be
11908 * freed. Rules i+1 to nrules have userspace pointers
11909 * and should be left alone.
11910 */
11911 op->nrules = i;
11912 free_offload_policy(op);
11913 return (rc);
11914 }
11915
11916 /* Validate settings */
11917 s = &r->settings;
11918 if ((s->offload != 0 && s->offload != 1) ||
11919 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11920 s->sched_class < -1 ||
11921 s->sched_class >= sc->params.nsched_cls) {
11922 rc = EINVAL;
11923 goto error;
11924 }
11925
11926 bf = &r->bpf_prog;
11927 u = bf->bf_insns; /* userspace ptr */
11928 bf->bf_insns = NULL;
11929 if (bf->bf_len == 0) {
11930 /* legal, matches everything */
11931 continue;
11932 }
11933 len = bf->bf_len * sizeof(*bf->bf_insns);
11934 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11935 rc = copyin(u, bf->bf_insns, len);
11936 if (rc != 0)
11937 goto error;
11938
11939 if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11940 rc = EINVAL;
11941 goto error;
11942 }
11943 }
11944 set_policy:
11945 rw_wlock(&sc->policy_lock);
11946 old = sc->policy;
11947 sc->policy = op;
11948 rw_wunlock(&sc->policy_lock);
11949 free_offload_policy(old);
11950
11951 return (0);
11952 }
11953
11954 #define MAX_READ_BUF_SIZE (128 * 1024)
11955 static int
read_card_mem(struct adapter * sc,int win,struct t4_mem_range * mr)11956 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11957 {
11958 uint32_t addr, remaining, n;
11959 uint32_t *buf;
11960 int rc;
11961 uint8_t *dst;
11962
11963 mtx_lock(&sc->reg_lock);
11964 if (hw_off_limits(sc))
11965 rc = ENXIO;
11966 else
11967 rc = validate_mem_range(sc, mr->addr, mr->len);
11968 mtx_unlock(&sc->reg_lock);
11969 if (rc != 0)
11970 return (rc);
11971
11972 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11973 addr = mr->addr;
11974 remaining = mr->len;
11975 dst = (void *)mr->data;
11976
11977 while (remaining) {
11978 n = min(remaining, MAX_READ_BUF_SIZE);
11979 mtx_lock(&sc->reg_lock);
11980 if (hw_off_limits(sc))
11981 rc = ENXIO;
11982 else
11983 read_via_memwin(sc, 2, addr, buf, n);
11984 mtx_unlock(&sc->reg_lock);
11985 if (rc != 0)
11986 break;
11987
11988 rc = copyout(buf, dst, n);
11989 if (rc != 0)
11990 break;
11991
11992 dst += n;
11993 remaining -= n;
11994 addr += n;
11995 }
11996
11997 free(buf, M_CXGBE);
11998 return (rc);
11999 }
12000 #undef MAX_READ_BUF_SIZE
12001
12002 static int
read_i2c(struct adapter * sc,struct t4_i2c_data * i2cd)12003 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
12004 {
12005 int rc;
12006
12007 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
12008 return (EINVAL);
12009
12010 if (i2cd->len > sizeof(i2cd->data))
12011 return (EFBIG);
12012
12013 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
12014 if (rc)
12015 return (rc);
12016 if (hw_off_limits(sc))
12017 rc = ENXIO;
12018 else
12019 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
12020 i2cd->offset, i2cd->len, &i2cd->data[0]);
12021 end_synchronized_op(sc, 0);
12022
12023 return (rc);
12024 }
12025
12026 static int
clear_stats(struct adapter * sc,u_int port_id)12027 clear_stats(struct adapter *sc, u_int port_id)
12028 {
12029 int i, v, chan_map;
12030 struct port_info *pi;
12031 struct vi_info *vi;
12032 struct sge_rxq *rxq;
12033 struct sge_txq *txq;
12034 struct sge_wrq *wrq;
12035 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12036 struct sge_ofld_txq *ofld_txq;
12037 #endif
12038 #ifdef TCP_OFFLOAD
12039 struct sge_ofld_rxq *ofld_rxq;
12040 #endif
12041
12042 if (port_id >= sc->params.nports)
12043 return (EINVAL);
12044 pi = sc->port[port_id];
12045 if (pi == NULL)
12046 return (EIO);
12047
12048 mtx_lock(&sc->reg_lock);
12049 if (!hw_off_limits(sc)) {
12050 /* MAC stats */
12051 t4_clr_port_stats(sc, pi->tx_chan);
12052 if (is_t6(sc)) {
12053 if (pi->fcs_reg != -1)
12054 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12055 else
12056 pi->stats.rx_fcs_err = 0;
12057 }
12058 for_each_vi(pi, v, vi) {
12059 if (vi->flags & VI_INIT_DONE)
12060 t4_clr_vi_stats(sc, vi->vin);
12061 }
12062 chan_map = pi->rx_e_chan_map;
12063 v = 0; /* reuse */
12064 while (chan_map) {
12065 i = ffs(chan_map) - 1;
12066 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
12067 1, A_TP_MIB_TNL_CNG_DROP_0 + i);
12068 chan_map &= ~(1 << i);
12069 }
12070 }
12071 mtx_unlock(&sc->reg_lock);
12072 pi->tx_parse_error = 0;
12073 pi->tnl_cong_drops = 0;
12074
12075 /*
12076 * Since this command accepts a port, clear stats for
12077 * all VIs on this port.
12078 */
12079 for_each_vi(pi, v, vi) {
12080 if (vi->flags & VI_INIT_DONE) {
12081
12082 for_each_rxq(vi, i, rxq) {
12083 #if defined(INET) || defined(INET6)
12084 rxq->lro.lro_queued = 0;
12085 rxq->lro.lro_flushed = 0;
12086 #endif
12087 rxq->rxcsum = 0;
12088 rxq->vlan_extraction = 0;
12089 rxq->vxlan_rxcsum = 0;
12090
12091 rxq->fl.cl_allocated = 0;
12092 rxq->fl.cl_recycled = 0;
12093 rxq->fl.cl_fast_recycled = 0;
12094 }
12095
12096 for_each_txq(vi, i, txq) {
12097 txq->txcsum = 0;
12098 txq->tso_wrs = 0;
12099 txq->vlan_insertion = 0;
12100 txq->imm_wrs = 0;
12101 txq->sgl_wrs = 0;
12102 txq->txpkt_wrs = 0;
12103 txq->txpkts0_wrs = 0;
12104 txq->txpkts1_wrs = 0;
12105 txq->txpkts0_pkts = 0;
12106 txq->txpkts1_pkts = 0;
12107 txq->txpkts_flush = 0;
12108 txq->raw_wrs = 0;
12109 txq->vxlan_tso_wrs = 0;
12110 txq->vxlan_txcsum = 0;
12111 txq->kern_tls_records = 0;
12112 txq->kern_tls_short = 0;
12113 txq->kern_tls_partial = 0;
12114 txq->kern_tls_full = 0;
12115 txq->kern_tls_octets = 0;
12116 txq->kern_tls_waste = 0;
12117 txq->kern_tls_options = 0;
12118 txq->kern_tls_header = 0;
12119 txq->kern_tls_fin = 0;
12120 txq->kern_tls_fin_short = 0;
12121 txq->kern_tls_cbc = 0;
12122 txq->kern_tls_gcm = 0;
12123 mp_ring_reset_stats(txq->r);
12124 }
12125
12126 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12127 for_each_ofld_txq(vi, i, ofld_txq) {
12128 ofld_txq->wrq.tx_wrs_direct = 0;
12129 ofld_txq->wrq.tx_wrs_copied = 0;
12130 counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12131 counter_u64_zero(ofld_txq->tx_iscsi_octets);
12132 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12133 counter_u64_zero(ofld_txq->tx_aio_jobs);
12134 counter_u64_zero(ofld_txq->tx_aio_octets);
12135 counter_u64_zero(ofld_txq->tx_toe_tls_records);
12136 counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12137 }
12138 #endif
12139 #ifdef TCP_OFFLOAD
12140 for_each_ofld_rxq(vi, i, ofld_rxq) {
12141 ofld_rxq->fl.cl_allocated = 0;
12142 ofld_rxq->fl.cl_recycled = 0;
12143 ofld_rxq->fl.cl_fast_recycled = 0;
12144 counter_u64_zero(
12145 ofld_rxq->rx_iscsi_ddp_setup_ok);
12146 counter_u64_zero(
12147 ofld_rxq->rx_iscsi_ddp_setup_error);
12148 ofld_rxq->rx_iscsi_ddp_pdus = 0;
12149 ofld_rxq->rx_iscsi_ddp_octets = 0;
12150 ofld_rxq->rx_iscsi_fl_pdus = 0;
12151 ofld_rxq->rx_iscsi_fl_octets = 0;
12152 ofld_rxq->rx_aio_ddp_jobs = 0;
12153 ofld_rxq->rx_aio_ddp_octets = 0;
12154 ofld_rxq->rx_toe_tls_records = 0;
12155 ofld_rxq->rx_toe_tls_octets = 0;
12156 ofld_rxq->rx_toe_ddp_octets = 0;
12157 counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
12158 counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
12159 counter_u64_zero(ofld_rxq->ddp_buffer_free);
12160 }
12161 #endif
12162
12163 if (IS_MAIN_VI(vi)) {
12164 wrq = &sc->sge.ctrlq[pi->port_id];
12165 wrq->tx_wrs_direct = 0;
12166 wrq->tx_wrs_copied = 0;
12167 }
12168 }
12169 }
12170
12171 return (0);
12172 }
12173
12174 static int
hold_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)12175 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12176 {
12177 #ifdef INET6
12178 struct in6_addr in6;
12179
12180 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12181 if (t4_get_clip_entry(sc, &in6, true) != NULL)
12182 return (0);
12183 else
12184 return (EIO);
12185 #else
12186 return (ENOTSUP);
12187 #endif
12188 }
12189
12190 static int
release_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)12191 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12192 {
12193 #ifdef INET6
12194 struct in6_addr in6;
12195
12196 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12197 return (t4_release_clip_addr(sc, &in6));
12198 #else
12199 return (ENOTSUP);
12200 #endif
12201 }
12202
12203 int
t4_os_find_pci_capability(struct adapter * sc,int cap)12204 t4_os_find_pci_capability(struct adapter *sc, int cap)
12205 {
12206 int i;
12207
12208 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12209 }
12210
12211 void
t4_os_portmod_changed(struct port_info * pi)12212 t4_os_portmod_changed(struct port_info *pi)
12213 {
12214 struct adapter *sc = pi->adapter;
12215 struct vi_info *vi;
12216 if_t ifp;
12217 static const char *mod_str[] = {
12218 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM",
12219 "LR_SIMPLEX", "DR"
12220 };
12221
12222 KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12223 ("%s: port_type %u", __func__, pi->port_type));
12224
12225 vi = &pi->vi[0];
12226 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12227 PORT_LOCK(pi);
12228 build_medialist(pi);
12229 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12230 fixup_link_config(pi);
12231 apply_link_config(pi);
12232 }
12233 PORT_UNLOCK(pi);
12234 end_synchronized_op(sc, LOCK_HELD);
12235 }
12236
12237 ifp = vi->ifp;
12238 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12239 if_printf(ifp, "transceiver unplugged.\n");
12240 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12241 if_printf(ifp, "unknown transceiver inserted.\n");
12242 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12243 if_printf(ifp, "unsupported transceiver inserted.\n");
12244 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12245 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12246 port_top_speed(pi), mod_str[pi->mod_type]);
12247 } else {
12248 if_printf(ifp, "transceiver (type %d) inserted.\n",
12249 pi->mod_type);
12250 }
12251 }
12252
12253 void
t4_os_link_changed(struct port_info * pi)12254 t4_os_link_changed(struct port_info *pi)
12255 {
12256 struct vi_info *vi;
12257 if_t ifp;
12258 struct link_config *lc = &pi->link_cfg;
12259 struct adapter *sc = pi->adapter;
12260 int v;
12261
12262 PORT_LOCK_ASSERT_OWNED(pi);
12263
12264 if (is_t6(sc)) {
12265 if (lc->link_ok) {
12266 if (lc->speed > 25000 ||
12267 (lc->speed == 25000 && lc->fec == FEC_RS)) {
12268 pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12269 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12270 } else {
12271 pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12272 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12273 }
12274 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12275 pi->stats.rx_fcs_err = 0;
12276 } else {
12277 pi->fcs_reg = -1;
12278 }
12279 } else {
12280 MPASS(pi->fcs_reg != -1);
12281 MPASS(pi->fcs_base == 0);
12282 }
12283
12284 for_each_vi(pi, v, vi) {
12285 ifp = vi->ifp;
12286 if (ifp == NULL || IS_DETACHING(vi))
12287 continue;
12288
12289 if (lc->link_ok) {
12290 if_setbaudrate(ifp, IF_Mbps(lc->speed));
12291 if_link_state_change(ifp, LINK_STATE_UP);
12292 } else {
12293 if_link_state_change(ifp, LINK_STATE_DOWN);
12294 }
12295 }
12296 }
12297
12298 void
t4_iterate(void (* func)(struct adapter *,void *),void * arg)12299 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12300 {
12301 struct adapter *sc;
12302
12303 sx_slock(&t4_list_lock);
12304 SLIST_FOREACH(sc, &t4_list, link) {
12305 /*
12306 * func should not make any assumptions about what state sc is
12307 * in - the only guarantee is that sc->sc_lock is a valid lock.
12308 */
12309 func(sc, arg);
12310 }
12311 sx_sunlock(&t4_list_lock);
12312 }
12313
12314 static int
t4_ioctl(struct cdev * dev,unsigned long cmd,caddr_t data,int fflag,struct thread * td)12315 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12316 struct thread *td)
12317 {
12318 int rc;
12319 struct adapter *sc = dev->si_drv1;
12320
12321 rc = priv_check(td, PRIV_DRIVER);
12322 if (rc != 0)
12323 return (rc);
12324
12325 switch (cmd) {
12326 case CHELSIO_T4_GETREG: {
12327 struct t4_reg *edata = (struct t4_reg *)data;
12328
12329 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12330 return (EFAULT);
12331
12332 mtx_lock(&sc->reg_lock);
12333 if (hw_off_limits(sc))
12334 rc = ENXIO;
12335 else if (edata->size == 4)
12336 edata->val = t4_read_reg(sc, edata->addr);
12337 else if (edata->size == 8)
12338 edata->val = t4_read_reg64(sc, edata->addr);
12339 else
12340 rc = EINVAL;
12341 mtx_unlock(&sc->reg_lock);
12342
12343 break;
12344 }
12345 case CHELSIO_T4_SETREG: {
12346 struct t4_reg *edata = (struct t4_reg *)data;
12347
12348 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12349 return (EFAULT);
12350
12351 mtx_lock(&sc->reg_lock);
12352 if (hw_off_limits(sc))
12353 rc = ENXIO;
12354 else if (edata->size == 4) {
12355 if (edata->val & 0xffffffff00000000)
12356 rc = EINVAL;
12357 t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12358 } else if (edata->size == 8)
12359 t4_write_reg64(sc, edata->addr, edata->val);
12360 else
12361 rc = EINVAL;
12362 mtx_unlock(&sc->reg_lock);
12363
12364 break;
12365 }
12366 case CHELSIO_T4_REGDUMP: {
12367 struct t4_regdump *regs = (struct t4_regdump *)data;
12368 int reglen = t4_get_regs_len(sc);
12369 uint8_t *buf;
12370
12371 if (regs->len < reglen) {
12372 regs->len = reglen; /* hint to the caller */
12373 return (ENOBUFS);
12374 }
12375
12376 regs->len = reglen;
12377 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12378 mtx_lock(&sc->reg_lock);
12379 if (hw_off_limits(sc))
12380 rc = ENXIO;
12381 else
12382 get_regs(sc, regs, buf);
12383 mtx_unlock(&sc->reg_lock);
12384 if (rc == 0)
12385 rc = copyout(buf, regs->data, reglen);
12386 free(buf, M_CXGBE);
12387 break;
12388 }
12389 case CHELSIO_T4_GET_FILTER_MODE:
12390 rc = get_filter_mode(sc, (uint32_t *)data);
12391 break;
12392 case CHELSIO_T4_SET_FILTER_MODE:
12393 rc = set_filter_mode(sc, *(uint32_t *)data);
12394 break;
12395 case CHELSIO_T4_SET_FILTER_MASK:
12396 rc = set_filter_mask(sc, *(uint32_t *)data);
12397 break;
12398 case CHELSIO_T4_GET_FILTER:
12399 rc = get_filter(sc, (struct t4_filter *)data);
12400 break;
12401 case CHELSIO_T4_SET_FILTER:
12402 rc = set_filter(sc, (struct t4_filter *)data);
12403 break;
12404 case CHELSIO_T4_DEL_FILTER:
12405 rc = del_filter(sc, (struct t4_filter *)data);
12406 break;
12407 case CHELSIO_T4_GET_SGE_CONTEXT:
12408 rc = get_sge_context(sc, (struct t4_sge_context *)data);
12409 break;
12410 case CHELSIO_T4_LOAD_FW:
12411 rc = load_fw(sc, (struct t4_data *)data);
12412 break;
12413 case CHELSIO_T4_GET_MEM:
12414 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12415 break;
12416 case CHELSIO_T4_GET_I2C:
12417 rc = read_i2c(sc, (struct t4_i2c_data *)data);
12418 break;
12419 case CHELSIO_T4_CLEAR_STATS:
12420 rc = clear_stats(sc, *(uint32_t *)data);
12421 break;
12422 case CHELSIO_T4_SCHED_CLASS:
12423 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12424 break;
12425 case CHELSIO_T4_SCHED_QUEUE:
12426 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12427 break;
12428 case CHELSIO_T4_GET_TRACER:
12429 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12430 break;
12431 case CHELSIO_T4_SET_TRACER:
12432 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12433 break;
12434 case CHELSIO_T4_LOAD_CFG:
12435 rc = load_cfg(sc, (struct t4_data *)data);
12436 break;
12437 case CHELSIO_T4_LOAD_BOOT:
12438 rc = load_boot(sc, (struct t4_bootrom *)data);
12439 break;
12440 case CHELSIO_T4_LOAD_BOOTCFG:
12441 rc = load_bootcfg(sc, (struct t4_data *)data);
12442 break;
12443 case CHELSIO_T4_CUDBG_DUMP:
12444 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12445 break;
12446 case CHELSIO_T4_SET_OFLD_POLICY:
12447 rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12448 break;
12449 case CHELSIO_T4_HOLD_CLIP_ADDR:
12450 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12451 break;
12452 case CHELSIO_T4_RELEASE_CLIP_ADDR:
12453 rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12454 break;
12455 default:
12456 rc = ENOTTY;
12457 }
12458
12459 return (rc);
12460 }
12461
12462 #ifdef TCP_OFFLOAD
12463 int
toe_capability(struct vi_info * vi,bool enable)12464 toe_capability(struct vi_info *vi, bool enable)
12465 {
12466 int rc;
12467 struct port_info *pi = vi->pi;
12468 struct adapter *sc = pi->adapter;
12469
12470 ASSERT_SYNCHRONIZED_OP(sc);
12471
12472 if (!is_offload(sc))
12473 return (ENODEV);
12474 if (!hw_all_ok(sc))
12475 return (ENXIO);
12476
12477 if (enable) {
12478 #ifdef KERN_TLS
12479 if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
12480 int i, j, n;
12481 struct port_info *p;
12482 struct vi_info *v;
12483
12484 /*
12485 * Reconfigure hardware for TOE if TXTLS is not enabled
12486 * on any ifnet.
12487 */
12488 n = 0;
12489 for_each_port(sc, i) {
12490 p = sc->port[i];
12491 for_each_vi(p, j, v) {
12492 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
12493 CH_WARN(sc,
12494 "%s has NIC TLS enabled.\n",
12495 device_get_nameunit(v->dev));
12496 n++;
12497 }
12498 }
12499 }
12500 if (n > 0) {
12501 CH_WARN(sc, "Disable NIC TLS on all interfaces "
12502 "associated with this adapter before "
12503 "trying to enable TOE.\n");
12504 return (EAGAIN);
12505 }
12506 rc = t6_config_kern_tls(sc, false);
12507 if (rc)
12508 return (rc);
12509 }
12510 #endif
12511 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
12512 /* TOE is already enabled. */
12513 return (0);
12514 }
12515
12516 /*
12517 * We need the port's queues around so that we're able to send
12518 * and receive CPLs to/from the TOE even if the ifnet for this
12519 * port has never been UP'd administratively.
12520 */
12521 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12522 return (rc);
12523 if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12524 ((rc = vi_init(&pi->vi[0])) != 0))
12525 return (rc);
12526
12527 if (isset(&sc->offload_map, pi->port_id)) {
12528 /* TOE is enabled on another VI of this port. */
12529 MPASS(pi->uld_vis > 0);
12530 pi->uld_vis++;
12531 return (0);
12532 }
12533
12534 if (!uld_active(sc, ULD_TOM)) {
12535 rc = t4_activate_uld(sc, ULD_TOM);
12536 if (rc == EAGAIN) {
12537 log(LOG_WARNING,
12538 "You must kldload t4_tom.ko before trying "
12539 "to enable TOE on a cxgbe interface.\n");
12540 }
12541 if (rc != 0)
12542 return (rc);
12543 KASSERT(sc->tom_softc != NULL,
12544 ("%s: TOM activated but softc NULL", __func__));
12545 KASSERT(uld_active(sc, ULD_TOM),
12546 ("%s: TOM activated but flag not set", __func__));
12547 }
12548
12549 /* Activate iWARP and iSCSI too, if the modules are loaded. */
12550 if (!uld_active(sc, ULD_IWARP))
12551 (void) t4_activate_uld(sc, ULD_IWARP);
12552 if (!uld_active(sc, ULD_ISCSI))
12553 (void) t4_activate_uld(sc, ULD_ISCSI);
12554
12555 if (pi->uld_vis++ == 0)
12556 setbit(&sc->offload_map, pi->port_id);
12557 } else {
12558 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) {
12559 /* TOE is already disabled. */
12560 return (0);
12561 }
12562 MPASS(isset(&sc->offload_map, pi->port_id));
12563 MPASS(pi->uld_vis > 0);
12564 if (--pi->uld_vis == 0)
12565 clrbit(&sc->offload_map, pi->port_id);
12566 }
12567
12568 return (0);
12569 }
12570
12571 /*
12572 * Add an upper layer driver to the global list.
12573 */
12574 int
t4_register_uld(struct uld_info * ui,int id)12575 t4_register_uld(struct uld_info *ui, int id)
12576 {
12577 int rc;
12578
12579 if (id < 0 || id > ULD_MAX)
12580 return (EINVAL);
12581 sx_xlock(&t4_uld_list_lock);
12582 if (t4_uld_list[id] != NULL)
12583 rc = EEXIST;
12584 else {
12585 t4_uld_list[id] = ui;
12586 rc = 0;
12587 }
12588 sx_xunlock(&t4_uld_list_lock);
12589 return (rc);
12590 }
12591
12592 int
t4_unregister_uld(struct uld_info * ui,int id)12593 t4_unregister_uld(struct uld_info *ui, int id)
12594 {
12595
12596 if (id < 0 || id > ULD_MAX)
12597 return (EINVAL);
12598 sx_xlock(&t4_uld_list_lock);
12599 MPASS(t4_uld_list[id] == ui);
12600 t4_uld_list[id] = NULL;
12601 sx_xunlock(&t4_uld_list_lock);
12602 return (0);
12603 }
12604
12605 int
t4_activate_uld(struct adapter * sc,int id)12606 t4_activate_uld(struct adapter *sc, int id)
12607 {
12608 int rc;
12609
12610 ASSERT_SYNCHRONIZED_OP(sc);
12611
12612 if (id < 0 || id > ULD_MAX)
12613 return (EINVAL);
12614
12615 /* Adapter needs to be initialized before any ULD can be activated. */
12616 if (!(sc->flags & FULL_INIT_DONE)) {
12617 rc = adapter_init(sc);
12618 if (rc != 0)
12619 return (rc);
12620 }
12621
12622 sx_slock(&t4_uld_list_lock);
12623 if (t4_uld_list[id] == NULL)
12624 rc = EAGAIN; /* load the KLD with this ULD and try again. */
12625 else {
12626 rc = t4_uld_list[id]->uld_activate(sc);
12627 if (rc == 0)
12628 setbit(&sc->active_ulds, id);
12629 }
12630 sx_sunlock(&t4_uld_list_lock);
12631
12632 return (rc);
12633 }
12634
12635 int
t4_deactivate_uld(struct adapter * sc,int id)12636 t4_deactivate_uld(struct adapter *sc, int id)
12637 {
12638 int rc;
12639
12640 ASSERT_SYNCHRONIZED_OP(sc);
12641
12642 if (id < 0 || id > ULD_MAX)
12643 return (EINVAL);
12644
12645 sx_slock(&t4_uld_list_lock);
12646 if (t4_uld_list[id] == NULL)
12647 rc = ENXIO;
12648 else {
12649 rc = t4_uld_list[id]->uld_deactivate(sc);
12650 if (rc == 0)
12651 clrbit(&sc->active_ulds, id);
12652 }
12653 sx_sunlock(&t4_uld_list_lock);
12654
12655 return (rc);
12656 }
12657
12658 static int
deactivate_all_uld(struct adapter * sc)12659 deactivate_all_uld(struct adapter *sc)
12660 {
12661 int i, rc;
12662
12663 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
12664 if (rc != 0)
12665 return (ENXIO);
12666 sx_slock(&t4_uld_list_lock);
12667 for (i = 0; i <= ULD_MAX; i++) {
12668 if (t4_uld_list[i] == NULL || !uld_active(sc, i))
12669 continue;
12670 rc = t4_uld_list[i]->uld_deactivate(sc);
12671 if (rc != 0)
12672 break;
12673 clrbit(&sc->active_ulds, i);
12674 }
12675 sx_sunlock(&t4_uld_list_lock);
12676 end_synchronized_op(sc, 0);
12677
12678 return (rc);
12679 }
12680
12681 static void
stop_all_uld(struct adapter * sc)12682 stop_all_uld(struct adapter *sc)
12683 {
12684 int i;
12685
12686 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
12687 return;
12688 sx_slock(&t4_uld_list_lock);
12689 for (i = 0; i <= ULD_MAX; i++) {
12690 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12691 t4_uld_list[i]->uld_stop == NULL)
12692 continue;
12693 (void) t4_uld_list[i]->uld_stop(sc);
12694 }
12695 sx_sunlock(&t4_uld_list_lock);
12696 end_synchronized_op(sc, 0);
12697 }
12698
12699 static void
restart_all_uld(struct adapter * sc)12700 restart_all_uld(struct adapter *sc)
12701 {
12702 int i;
12703
12704 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
12705 return;
12706 sx_slock(&t4_uld_list_lock);
12707 for (i = 0; i <= ULD_MAX; i++) {
12708 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12709 t4_uld_list[i]->uld_restart == NULL)
12710 continue;
12711 (void) t4_uld_list[i]->uld_restart(sc);
12712 }
12713 sx_sunlock(&t4_uld_list_lock);
12714 end_synchronized_op(sc, 0);
12715 }
12716
12717 int
uld_active(struct adapter * sc,int id)12718 uld_active(struct adapter *sc, int id)
12719 {
12720
12721 MPASS(id >= 0 && id <= ULD_MAX);
12722
12723 return (isset(&sc->active_ulds, id));
12724 }
12725 #endif
12726
12727 #ifdef KERN_TLS
12728 static int
ktls_capability(struct adapter * sc,bool enable)12729 ktls_capability(struct adapter *sc, bool enable)
12730 {
12731 ASSERT_SYNCHRONIZED_OP(sc);
12732
12733 if (!is_ktls(sc))
12734 return (ENODEV);
12735 if (!is_t6(sc))
12736 return (0);
12737 if (!hw_all_ok(sc))
12738 return (ENXIO);
12739
12740 if (enable) {
12741 if (sc->flags & KERN_TLS_ON)
12742 return (0); /* already on */
12743 if (sc->offload_map != 0) {
12744 CH_WARN(sc,
12745 "Disable TOE on all interfaces associated with "
12746 "this adapter before trying to enable NIC TLS.\n");
12747 return (EAGAIN);
12748 }
12749 return (t6_config_kern_tls(sc, true));
12750 } else {
12751 /*
12752 * Nothing to do for disable. If TOE is enabled sometime later
12753 * then toe_capability will reconfigure the hardware.
12754 */
12755 return (0);
12756 }
12757 }
12758 #endif
12759
12760 /*
12761 * t = ptr to tunable.
12762 * nc = number of CPUs.
12763 * c = compiled in default for that tunable.
12764 */
12765 static void
calculate_nqueues(int * t,int nc,const int c)12766 calculate_nqueues(int *t, int nc, const int c)
12767 {
12768 int nq;
12769
12770 if (*t > 0)
12771 return;
12772 nq = *t < 0 ? -*t : c;
12773 *t = min(nc, nq);
12774 }
12775
12776 /*
12777 * Come up with reasonable defaults for some of the tunables, provided they're
12778 * not set by the user (in which case we'll use the values as is).
12779 */
12780 static void
tweak_tunables(void)12781 tweak_tunables(void)
12782 {
12783 int nc = mp_ncpus; /* our snapshot of the number of CPUs */
12784
12785 if (t4_ntxq < 1) {
12786 #ifdef RSS
12787 t4_ntxq = rss_getnumbuckets();
12788 #else
12789 calculate_nqueues(&t4_ntxq, nc, NTXQ);
12790 #endif
12791 }
12792
12793 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12794
12795 if (t4_nrxq < 1) {
12796 #ifdef RSS
12797 t4_nrxq = rss_getnumbuckets();
12798 #else
12799 calculate_nqueues(&t4_nrxq, nc, NRXQ);
12800 #endif
12801 }
12802
12803 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12804
12805 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12806 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12807 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12808 #endif
12809 #ifdef TCP_OFFLOAD
12810 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12811 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12812 #endif
12813
12814 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12815 if (t4_toecaps_allowed == -1)
12816 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12817 #else
12818 if (t4_toecaps_allowed == -1)
12819 t4_toecaps_allowed = 0;
12820 #endif
12821
12822 #ifdef TCP_OFFLOAD
12823 if (t4_rdmacaps_allowed == -1) {
12824 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12825 FW_CAPS_CONFIG_RDMA_RDMAC;
12826 }
12827
12828 if (t4_iscsicaps_allowed == -1) {
12829 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12830 FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12831 FW_CAPS_CONFIG_ISCSI_T10DIF;
12832 }
12833
12834 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12835 t4_tmr_idx_ofld = TMR_IDX_OFLD;
12836
12837 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12838 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12839 #else
12840 if (t4_rdmacaps_allowed == -1)
12841 t4_rdmacaps_allowed = 0;
12842
12843 if (t4_iscsicaps_allowed == -1)
12844 t4_iscsicaps_allowed = 0;
12845 #endif
12846
12847 #ifdef DEV_NETMAP
12848 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12849 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12850 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12851 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12852 #endif
12853
12854 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12855 t4_tmr_idx = TMR_IDX;
12856
12857 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12858 t4_pktc_idx = PKTC_IDX;
12859
12860 if (t4_qsize_txq < 128)
12861 t4_qsize_txq = 128;
12862
12863 if (t4_qsize_rxq < 128)
12864 t4_qsize_rxq = 128;
12865 while (t4_qsize_rxq & 7)
12866 t4_qsize_rxq++;
12867
12868 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12869
12870 /*
12871 * Number of VIs to create per-port. The first VI is the "main" regular
12872 * VI for the port. The rest are additional virtual interfaces on the
12873 * same physical port. Note that the main VI does not have native
12874 * netmap support but the extra VIs do.
12875 *
12876 * Limit the number of VIs per port to the number of available
12877 * MAC addresses per port.
12878 */
12879 if (t4_num_vis < 1)
12880 t4_num_vis = 1;
12881 if (t4_num_vis > nitems(vi_mac_funcs)) {
12882 t4_num_vis = nitems(vi_mac_funcs);
12883 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12884 }
12885
12886 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12887 pcie_relaxed_ordering = 1;
12888 #if defined(__i386__) || defined(__amd64__)
12889 if (cpu_vendor_id == CPU_VENDOR_INTEL)
12890 pcie_relaxed_ordering = 0;
12891 #endif
12892 }
12893 }
12894
12895 #ifdef DDB
12896 static void
t4_dump_mem(struct adapter * sc,u_int addr,u_int len)12897 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
12898 {
12899 uint32_t base, j, off, pf, reg, save, win_pos;
12900
12901 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12902 save = t4_read_reg(sc, reg);
12903 base = sc->memwin[2].mw_base;
12904
12905 if (is_t4(sc)) {
12906 pf = 0;
12907 win_pos = addr & ~0xf; /* start must be 16B aligned */
12908 } else {
12909 pf = V_PFNUM(sc->pf);
12910 win_pos = addr & ~0x7f; /* start must be 128B aligned */
12911 }
12912 off = addr - win_pos;
12913 t4_write_reg(sc, reg, win_pos | pf);
12914 t4_read_reg(sc, reg);
12915
12916 while (len > 0 && !db_pager_quit) {
12917 uint32_t buf[8];
12918 for (j = 0; j < 8; j++, off += 4)
12919 buf[j] = htonl(t4_read_reg(sc, base + off));
12920
12921 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12922 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12923 buf[7]);
12924 if (len <= sizeof(buf))
12925 len = 0;
12926 else
12927 len -= sizeof(buf);
12928 }
12929
12930 t4_write_reg(sc, reg, save);
12931 t4_read_reg(sc, reg);
12932 }
12933
12934 static void
t4_dump_tcb(struct adapter * sc,int tid)12935 t4_dump_tcb(struct adapter *sc, int tid)
12936 {
12937 uint32_t tcb_addr;
12938
12939 /* Dump TCB for the tid */
12940 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12941 tcb_addr += tid * TCB_SIZE;
12942 t4_dump_mem(sc, tcb_addr, TCB_SIZE);
12943 }
12944
12945 static void
t4_dump_devlog(struct adapter * sc)12946 t4_dump_devlog(struct adapter *sc)
12947 {
12948 struct devlog_params *dparams = &sc->params.devlog;
12949 struct fw_devlog_e e;
12950 int i, first, j, m, nentries, rc;
12951 uint64_t ftstamp = UINT64_MAX;
12952
12953 if (dparams->start == 0) {
12954 db_printf("devlog params not valid\n");
12955 return;
12956 }
12957
12958 nentries = dparams->size / sizeof(struct fw_devlog_e);
12959 m = fwmtype_to_hwmtype(dparams->memtype);
12960
12961 /* Find the first entry. */
12962 first = -1;
12963 for (i = 0; i < nentries && !db_pager_quit; i++) {
12964 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12965 sizeof(e), (void *)&e);
12966 if (rc != 0)
12967 break;
12968
12969 if (e.timestamp == 0)
12970 break;
12971
12972 e.timestamp = be64toh(e.timestamp);
12973 if (e.timestamp < ftstamp) {
12974 ftstamp = e.timestamp;
12975 first = i;
12976 }
12977 }
12978
12979 if (first == -1)
12980 return;
12981
12982 i = first;
12983 do {
12984 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12985 sizeof(e), (void *)&e);
12986 if (rc != 0)
12987 return;
12988
12989 if (e.timestamp == 0)
12990 return;
12991
12992 e.timestamp = be64toh(e.timestamp);
12993 e.seqno = be32toh(e.seqno);
12994 for (j = 0; j < 8; j++)
12995 e.params[j] = be32toh(e.params[j]);
12996
12997 db_printf("%10d %15ju %8s %8s ",
12998 e.seqno, e.timestamp,
12999 (e.level < nitems(devlog_level_strings) ?
13000 devlog_level_strings[e.level] : "UNKNOWN"),
13001 (e.facility < nitems(devlog_facility_strings) ?
13002 devlog_facility_strings[e.facility] : "UNKNOWN"));
13003 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
13004 e.params[3], e.params[4], e.params[5], e.params[6],
13005 e.params[7]);
13006
13007 if (++i == nentries)
13008 i = 0;
13009 } while (i != first && !db_pager_quit);
13010 }
13011
13012 static DB_DEFINE_TABLE(show, t4, show_t4);
13013
DB_TABLE_COMMAND_FLAGS(show_t4,devlog,db_show_devlog,CS_OWN)13014 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
13015 {
13016 device_t dev;
13017 int t;
13018 bool valid;
13019
13020 valid = false;
13021 t = db_read_token();
13022 if (t == tIDENT) {
13023 dev = device_lookup_by_name(db_tok_string);
13024 valid = true;
13025 }
13026 db_skip_to_eol();
13027 if (!valid) {
13028 db_printf("usage: show t4 devlog <nexus>\n");
13029 return;
13030 }
13031
13032 if (dev == NULL) {
13033 db_printf("device not found\n");
13034 return;
13035 }
13036
13037 t4_dump_devlog(device_get_softc(dev));
13038 }
13039
DB_TABLE_COMMAND_FLAGS(show_t4,tcb,db_show_t4tcb,CS_OWN)13040 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
13041 {
13042 device_t dev;
13043 int radix, tid, t;
13044 bool valid;
13045
13046 valid = false;
13047 radix = db_radix;
13048 db_radix = 10;
13049 t = db_read_token();
13050 if (t == tIDENT) {
13051 dev = device_lookup_by_name(db_tok_string);
13052 t = db_read_token();
13053 if (t == tNUMBER) {
13054 tid = db_tok_number;
13055 valid = true;
13056 }
13057 }
13058 db_radix = radix;
13059 db_skip_to_eol();
13060 if (!valid) {
13061 db_printf("usage: show t4 tcb <nexus> <tid>\n");
13062 return;
13063 }
13064
13065 if (dev == NULL) {
13066 db_printf("device not found\n");
13067 return;
13068 }
13069 if (tid < 0) {
13070 db_printf("invalid tid\n");
13071 return;
13072 }
13073
13074 t4_dump_tcb(device_get_softc(dev), tid);
13075 }
13076
DB_TABLE_COMMAND_FLAGS(show_t4,memdump,db_show_memdump,CS_OWN)13077 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
13078 {
13079 device_t dev;
13080 int radix, t;
13081 bool valid;
13082
13083 valid = false;
13084 radix = db_radix;
13085 db_radix = 10;
13086 t = db_read_token();
13087 if (t == tIDENT) {
13088 dev = device_lookup_by_name(db_tok_string);
13089 t = db_read_token();
13090 if (t == tNUMBER) {
13091 addr = db_tok_number;
13092 t = db_read_token();
13093 if (t == tNUMBER) {
13094 count = db_tok_number;
13095 valid = true;
13096 }
13097 }
13098 }
13099 db_radix = radix;
13100 db_skip_to_eol();
13101 if (!valid) {
13102 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
13103 return;
13104 }
13105
13106 if (dev == NULL) {
13107 db_printf("device not found\n");
13108 return;
13109 }
13110 if (addr < 0) {
13111 db_printf("invalid address\n");
13112 return;
13113 }
13114 if (count <= 0) {
13115 db_printf("invalid length\n");
13116 return;
13117 }
13118
13119 t4_dump_mem(device_get_softc(dev), addr, count);
13120 }
13121 #endif
13122
13123 static eventhandler_tag vxlan_start_evtag;
13124 static eventhandler_tag vxlan_stop_evtag;
13125
13126 struct vxlan_evargs {
13127 if_t ifp;
13128 uint16_t port;
13129 };
13130
13131 static void
enable_vxlan_rx(struct adapter * sc)13132 enable_vxlan_rx(struct adapter *sc)
13133 {
13134 int i, rc;
13135 struct port_info *pi;
13136 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
13137
13138 ASSERT_SYNCHRONIZED_OP(sc);
13139
13140 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
13141 F_VXLAN_EN);
13142 for_each_port(sc, i) {
13143 pi = sc->port[i];
13144 if (pi->vxlan_tcam_entry == true)
13145 continue;
13146 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
13147 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
13148 true);
13149 if (rc < 0) {
13150 rc = -rc;
13151 CH_ERR(&pi->vi[0],
13152 "failed to add VXLAN TCAM entry: %d.\n", rc);
13153 } else {
13154 MPASS(rc == sc->rawf_base + pi->port_id);
13155 pi->vxlan_tcam_entry = true;
13156 }
13157 }
13158 }
13159
13160 static void
t4_vxlan_start(struct adapter * sc,void * arg)13161 t4_vxlan_start(struct adapter *sc, void *arg)
13162 {
13163 struct vxlan_evargs *v = arg;
13164
13165 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13166 return;
13167 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
13168 return;
13169
13170 if (sc->vxlan_refcount == 0) {
13171 sc->vxlan_port = v->port;
13172 sc->vxlan_refcount = 1;
13173 if (!hw_off_limits(sc))
13174 enable_vxlan_rx(sc);
13175 } else if (sc->vxlan_port == v->port) {
13176 sc->vxlan_refcount++;
13177 } else {
13178 CH_ERR(sc, "VXLAN already configured on port %d; "
13179 "ignoring attempt to configure it on port %d\n",
13180 sc->vxlan_port, v->port);
13181 }
13182 end_synchronized_op(sc, 0);
13183 }
13184
13185 static void
t4_vxlan_stop(struct adapter * sc,void * arg)13186 t4_vxlan_stop(struct adapter *sc, void *arg)
13187 {
13188 struct vxlan_evargs *v = arg;
13189
13190 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13191 return;
13192 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
13193 return;
13194
13195 /*
13196 * VXLANs may have been configured before the driver was loaded so we
13197 * may see more stops than starts. This is not handled cleanly but at
13198 * least we keep the refcount sane.
13199 */
13200 if (sc->vxlan_port != v->port)
13201 goto done;
13202 if (sc->vxlan_refcount == 0) {
13203 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
13204 "ignoring attempt to stop it again.\n", sc->vxlan_port);
13205 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
13206 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
13207 done:
13208 end_synchronized_op(sc, 0);
13209 }
13210
13211 static void
t4_vxlan_start_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)13212 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
13213 sa_family_t family, u_int port)
13214 {
13215 struct vxlan_evargs v;
13216
13217 MPASS(family == AF_INET || family == AF_INET6);
13218 v.ifp = ifp;
13219 v.port = port;
13220
13221 t4_iterate(t4_vxlan_start, &v);
13222 }
13223
13224 static void
t4_vxlan_stop_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)13225 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
13226 u_int port)
13227 {
13228 struct vxlan_evargs v;
13229
13230 MPASS(family == AF_INET || family == AF_INET6);
13231 v.ifp = ifp;
13232 v.port = port;
13233
13234 t4_iterate(t4_vxlan_stop, &v);
13235 }
13236
13237
13238 static struct sx mlu; /* mod load unload */
13239 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
13240
13241 static int
mod_event(module_t mod,int cmd,void * arg)13242 mod_event(module_t mod, int cmd, void *arg)
13243 {
13244 int rc = 0;
13245 static int loaded = 0;
13246
13247 switch (cmd) {
13248 case MOD_LOAD:
13249 sx_xlock(&mlu);
13250 if (loaded++ == 0) {
13251 t4_sge_modload();
13252 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13253 t4_filter_rpl, CPL_COOKIE_FILTER);
13254 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13255 do_l2t_write_rpl, CPL_COOKIE_FILTER);
13256 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13257 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13258 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13259 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13260 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13261 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13262 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13263 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13264 t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13265 do_smt_write_rpl);
13266 sx_init(&t4_list_lock, "T4/T5 adapters");
13267 SLIST_INIT(&t4_list);
13268 callout_init(&fatal_callout, 1);
13269 #ifdef TCP_OFFLOAD
13270 sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13271 #endif
13272 #ifdef INET6
13273 t4_clip_modload();
13274 #endif
13275 #ifdef KERN_TLS
13276 t6_ktls_modload();
13277 #endif
13278 t4_tracer_modload();
13279 tweak_tunables();
13280 vxlan_start_evtag =
13281 EVENTHANDLER_REGISTER(vxlan_start,
13282 t4_vxlan_start_handler, NULL,
13283 EVENTHANDLER_PRI_ANY);
13284 vxlan_stop_evtag =
13285 EVENTHANDLER_REGISTER(vxlan_stop,
13286 t4_vxlan_stop_handler, NULL,
13287 EVENTHANDLER_PRI_ANY);
13288 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13289 taskqueue_thread_enqueue, &reset_tq);
13290 taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13291 "t4_rst_thr");
13292 }
13293 sx_xunlock(&mlu);
13294 break;
13295
13296 case MOD_UNLOAD:
13297 sx_xlock(&mlu);
13298 if (--loaded == 0) {
13299 #ifdef TCP_OFFLOAD
13300 int i;
13301 #endif
13302 int tries;
13303
13304 taskqueue_free(reset_tq);
13305
13306 tries = 0;
13307 while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13308 uprintf("%ju clusters with custom free routine "
13309 "still is use.\n", t4_sge_extfree_refs());
13310 pause("t4unload", 2 * hz);
13311 }
13312
13313 sx_slock(&t4_list_lock);
13314 if (!SLIST_EMPTY(&t4_list)) {
13315 rc = EBUSY;
13316 sx_sunlock(&t4_list_lock);
13317 goto done_unload;
13318 }
13319 #ifdef TCP_OFFLOAD
13320 sx_slock(&t4_uld_list_lock);
13321 for (i = 0; i <= ULD_MAX; i++) {
13322 if (t4_uld_list[i] != NULL) {
13323 rc = EBUSY;
13324 sx_sunlock(&t4_uld_list_lock);
13325 sx_sunlock(&t4_list_lock);
13326 goto done_unload;
13327 }
13328 }
13329 sx_sunlock(&t4_uld_list_lock);
13330 #endif
13331 sx_sunlock(&t4_list_lock);
13332
13333 if (t4_sge_extfree_refs() == 0) {
13334 EVENTHANDLER_DEREGISTER(vxlan_start,
13335 vxlan_start_evtag);
13336 EVENTHANDLER_DEREGISTER(vxlan_stop,
13337 vxlan_stop_evtag);
13338 t4_tracer_modunload();
13339 #ifdef KERN_TLS
13340 t6_ktls_modunload();
13341 #endif
13342 #ifdef INET6
13343 t4_clip_modunload();
13344 #endif
13345 #ifdef TCP_OFFLOAD
13346 sx_destroy(&t4_uld_list_lock);
13347 #endif
13348 sx_destroy(&t4_list_lock);
13349 t4_sge_modunload();
13350 loaded = 0;
13351 } else {
13352 rc = EBUSY;
13353 loaded++; /* undo earlier decrement */
13354 }
13355 }
13356 done_unload:
13357 sx_xunlock(&mlu);
13358 break;
13359 }
13360
13361 return (rc);
13362 }
13363
13364 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
13365 MODULE_VERSION(t4nex, 1);
13366 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13367 #ifdef DEV_NETMAP
13368 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13369 #endif /* DEV_NETMAP */
13370
13371 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
13372 MODULE_VERSION(t5nex, 1);
13373 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13374 #ifdef DEV_NETMAP
13375 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13376 #endif /* DEV_NETMAP */
13377
13378 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
13379 MODULE_VERSION(t6nex, 1);
13380 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
13381 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13382 #ifdef DEV_NETMAP
13383 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13384 #endif /* DEV_NETMAP */
13385
13386 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
13387 MODULE_VERSION(cxgbe, 1);
13388
13389 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
13390 MODULE_VERSION(cxl, 1);
13391
13392 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
13393 MODULE_VERSION(cc, 1);
13394
13395 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
13396 MODULE_VERSION(vcxgbe, 1);
13397
13398 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
13399 MODULE_VERSION(vcxl, 1);
13400
13401 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
13402 MODULE_VERSION(vcc, 1);
13403