1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26 * Copyright 2015 RackTop Systems.
27 * Copyright (c) 2016, Intel Corporation.
28 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
29 */
30
31 /*
32 * Pool import support functions.
33 *
34 * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since
35 * these commands are expected to run in the global zone, we can assume
36 * that the devices are all readable when called.
37 *
38 * To import a pool, we rely on reading the configuration information from the
39 * ZFS label of each device. If we successfully read the label, then we
40 * organize the configuration information in the following hierarchy:
41 *
42 * pool guid -> toplevel vdev guid -> label txg
43 *
44 * Duplicate entries matching this same tuple will be discarded. Once we have
45 * examined every device, we pick the best label txg config for each toplevel
46 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
47 * update any paths that have changed. Finally, we attempt to import the pool
48 * using our derived config, and record the results.
49 */
50
51 #ifdef HAVE_AIO_H
52 #include <aio.h>
53 #endif
54 #include <ctype.h>
55 #include <dirent.h>
56 #include <errno.h>
57 #include <libintl.h>
58 #include <libgen.h>
59 #include <stddef.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <sys/stat.h>
63 #include <unistd.h>
64 #include <fcntl.h>
65 #include <sys/dktp/fdisk.h>
66 #include <sys/vdev_impl.h>
67 #include <sys/fs/zfs.h>
68
69 #include <thread_pool.h>
70 #include <libzutil.h>
71 #include <libnvpair.h>
72
73 #include "zutil_import.h"
74
75 const char *
libpc_error_description(libpc_handle_t * hdl)76 libpc_error_description(libpc_handle_t *hdl)
77 {
78 if (hdl->lpc_desc[0] != '\0')
79 return (hdl->lpc_desc);
80
81 switch (hdl->lpc_error) {
82 case LPC_BADCACHE:
83 return (dgettext(TEXT_DOMAIN, "invalid or missing cache file"));
84 case LPC_BADPATH:
85 return (dgettext(TEXT_DOMAIN, "must be an absolute path"));
86 case LPC_NOMEM:
87 return (dgettext(TEXT_DOMAIN, "out of memory"));
88 case LPC_EACCESS:
89 return (dgettext(TEXT_DOMAIN, "some devices require root "
90 "privileges"));
91 case LPC_UNKNOWN:
92 return (dgettext(TEXT_DOMAIN, "unknown error"));
93 default:
94 assert(hdl->lpc_error == 0);
95 return (dgettext(TEXT_DOMAIN, "no error"));
96 }
97 }
98
99 static __attribute__((format(printf, 2, 3))) void
zutil_error_aux(libpc_handle_t * hdl,const char * fmt,...)100 zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...)
101 {
102 va_list ap;
103
104 va_start(ap, fmt);
105
106 (void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap);
107 hdl->lpc_desc_active = B_TRUE;
108
109 va_end(ap);
110 }
111
112 static void
zutil_verror(libpc_handle_t * hdl,lpc_error_t error,const char * fmt,va_list ap)113 zutil_verror(libpc_handle_t *hdl, lpc_error_t error, const char *fmt,
114 va_list ap)
115 {
116 char action[1024];
117
118 (void) vsnprintf(action, sizeof (action), fmt, ap);
119 hdl->lpc_error = error;
120
121 if (hdl->lpc_desc_active)
122 hdl->lpc_desc_active = B_FALSE;
123 else
124 hdl->lpc_desc[0] = '\0';
125
126 if (hdl->lpc_printerr)
127 (void) fprintf(stderr, "%s: %s\n", action,
128 libpc_error_description(hdl));
129 }
130
131 static __attribute__((format(printf, 3, 4))) int
zutil_error_fmt(libpc_handle_t * hdl,lpc_error_t error,const char * fmt,...)132 zutil_error_fmt(libpc_handle_t *hdl, lpc_error_t error,
133 const char *fmt, ...)
134 {
135 va_list ap;
136
137 va_start(ap, fmt);
138
139 zutil_verror(hdl, error, fmt, ap);
140
141 va_end(ap);
142
143 return (-1);
144 }
145
146 static int
zutil_error(libpc_handle_t * hdl,lpc_error_t error,const char * msg)147 zutil_error(libpc_handle_t *hdl, lpc_error_t error, const char *msg)
148 {
149 return (zutil_error_fmt(hdl, error, "%s", msg));
150 }
151
152 static int
zutil_no_memory(libpc_handle_t * hdl)153 zutil_no_memory(libpc_handle_t *hdl)
154 {
155 zutil_error(hdl, LPC_NOMEM, "internal error");
156 exit(1);
157 }
158
159 void *
zutil_alloc(libpc_handle_t * hdl,size_t size)160 zutil_alloc(libpc_handle_t *hdl, size_t size)
161 {
162 void *data;
163
164 if ((data = calloc(1, size)) == NULL)
165 (void) zutil_no_memory(hdl);
166
167 return (data);
168 }
169
170 char *
zutil_strdup(libpc_handle_t * hdl,const char * str)171 zutil_strdup(libpc_handle_t *hdl, const char *str)
172 {
173 char *ret;
174
175 if ((ret = strdup(str)) == NULL)
176 (void) zutil_no_memory(hdl);
177
178 return (ret);
179 }
180
181 static char *
zutil_strndup(libpc_handle_t * hdl,const char * str,size_t n)182 zutil_strndup(libpc_handle_t *hdl, const char *str, size_t n)
183 {
184 char *ret;
185
186 if ((ret = strndup(str, n)) == NULL)
187 (void) zutil_no_memory(hdl);
188
189 return (ret);
190 }
191
192 /*
193 * Intermediate structures used to gather configuration information.
194 */
195 typedef struct config_entry {
196 uint64_t ce_txg;
197 nvlist_t *ce_config;
198 struct config_entry *ce_next;
199 } config_entry_t;
200
201 typedef struct vdev_entry {
202 uint64_t ve_guid;
203 config_entry_t *ve_configs;
204 struct vdev_entry *ve_next;
205 } vdev_entry_t;
206
207 typedef struct pool_entry {
208 uint64_t pe_guid;
209 vdev_entry_t *pe_vdevs;
210 struct pool_entry *pe_next;
211 } pool_entry_t;
212
213 typedef struct name_entry {
214 char *ne_name;
215 uint64_t ne_guid;
216 uint64_t ne_order;
217 uint64_t ne_num_labels;
218 struct name_entry *ne_next;
219 } name_entry_t;
220
221 typedef struct pool_list {
222 pool_entry_t *pools;
223 name_entry_t *names;
224 } pool_list_t;
225
226 /*
227 * Go through and fix up any path and/or devid information for the given vdev
228 * configuration.
229 */
230 static int
fix_paths(libpc_handle_t * hdl,nvlist_t * nv,name_entry_t * names)231 fix_paths(libpc_handle_t *hdl, nvlist_t *nv, name_entry_t *names)
232 {
233 nvlist_t **child;
234 uint_t c, children;
235 uint64_t guid;
236 name_entry_t *ne, *best;
237 const char *path;
238
239 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
240 &child, &children) == 0) {
241 for (c = 0; c < children; c++)
242 if (fix_paths(hdl, child[c], names) != 0)
243 return (-1);
244 return (0);
245 }
246
247 /*
248 * This is a leaf (file or disk) vdev. In either case, go through
249 * the name list and see if we find a matching guid. If so, replace
250 * the path and see if we can calculate a new devid.
251 *
252 * There may be multiple names associated with a particular guid, in
253 * which case we have overlapping partitions or multiple paths to the
254 * same disk. In this case we prefer to use the path name which
255 * matches the ZPOOL_CONFIG_PATH. If no matching entry is found we
256 * use the lowest order device which corresponds to the first match
257 * while traversing the ZPOOL_IMPORT_PATH search path.
258 */
259 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
260 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
261 path = NULL;
262
263 best = NULL;
264 for (ne = names; ne != NULL; ne = ne->ne_next) {
265 if (ne->ne_guid == guid) {
266 if (path == NULL) {
267 best = ne;
268 break;
269 }
270
271 if ((strlen(path) == strlen(ne->ne_name)) &&
272 strncmp(path, ne->ne_name, strlen(path)) == 0) {
273 best = ne;
274 break;
275 }
276
277 if (best == NULL) {
278 best = ne;
279 continue;
280 }
281
282 /* Prefer paths with move vdev labels. */
283 if (ne->ne_num_labels > best->ne_num_labels) {
284 best = ne;
285 continue;
286 }
287
288 /* Prefer paths earlier in the search order. */
289 if (ne->ne_num_labels == best->ne_num_labels &&
290 ne->ne_order < best->ne_order) {
291 best = ne;
292 continue;
293 }
294 }
295 }
296
297 if (best == NULL)
298 return (0);
299
300 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
301 return (-1);
302
303 update_vdev_config_dev_strs(nv);
304
305 return (0);
306 }
307
308 /*
309 * Add the given configuration to the list of known devices.
310 */
311 static int
add_config(libpc_handle_t * hdl,pool_list_t * pl,const char * path,int order,int num_labels,nvlist_t * config)312 add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path,
313 int order, int num_labels, nvlist_t *config)
314 {
315 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
316 pool_entry_t *pe;
317 vdev_entry_t *ve;
318 config_entry_t *ce;
319 name_entry_t *ne;
320
321 /*
322 * If this is a hot spare not currently in use or level 2 cache
323 * device, add it to the list of names to translate, but don't do
324 * anything else.
325 */
326 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
327 &state) == 0 &&
328 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
329 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
330 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL)
331 return (-1);
332
333 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) {
334 free(ne);
335 return (-1);
336 }
337 ne->ne_guid = vdev_guid;
338 ne->ne_order = order;
339 ne->ne_num_labels = num_labels;
340 ne->ne_next = pl->names;
341 pl->names = ne;
342
343 return (0);
344 }
345
346 /*
347 * If we have a valid config but cannot read any of these fields, then
348 * it means we have a half-initialized label. In vdev_label_init()
349 * we write a label with txg == 0 so that we can identify the device
350 * in case the user refers to the same disk later on. If we fail to
351 * create the pool, we'll be left with a label in this state
352 * which should not be considered part of a valid pool.
353 */
354 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
355 &pool_guid) != 0 ||
356 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
357 &vdev_guid) != 0 ||
358 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
359 &top_guid) != 0 ||
360 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
361 &txg) != 0 || txg == 0) {
362 return (0);
363 }
364
365 /*
366 * First, see if we know about this pool. If not, then add it to the
367 * list of known pools.
368 */
369 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
370 if (pe->pe_guid == pool_guid)
371 break;
372 }
373
374 if (pe == NULL) {
375 if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
376 return (-1);
377 }
378 pe->pe_guid = pool_guid;
379 pe->pe_next = pl->pools;
380 pl->pools = pe;
381 }
382
383 /*
384 * Second, see if we know about this toplevel vdev. Add it if its
385 * missing.
386 */
387 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
388 if (ve->ve_guid == top_guid)
389 break;
390 }
391
392 if (ve == NULL) {
393 if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
394 return (-1);
395 }
396 ve->ve_guid = top_guid;
397 ve->ve_next = pe->pe_vdevs;
398 pe->pe_vdevs = ve;
399 }
400
401 /*
402 * Third, see if we have a config with a matching transaction group. If
403 * so, then we do nothing. Otherwise, add it to the list of known
404 * configs.
405 */
406 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
407 if (ce->ce_txg == txg)
408 break;
409 }
410
411 if (ce == NULL) {
412 if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) {
413 return (-1);
414 }
415 ce->ce_txg = txg;
416 ce->ce_config = fnvlist_dup(config);
417 ce->ce_next = ve->ve_configs;
418 ve->ve_configs = ce;
419 }
420
421 /*
422 * At this point we've successfully added our config to the list of
423 * known configs. The last thing to do is add the vdev guid -> path
424 * mappings so that we can fix up the configuration as necessary before
425 * doing the import.
426 */
427 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL)
428 return (-1);
429
430 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) {
431 free(ne);
432 return (-1);
433 }
434
435 ne->ne_guid = vdev_guid;
436 ne->ne_order = order;
437 ne->ne_num_labels = num_labels;
438 ne->ne_next = pl->names;
439 pl->names = ne;
440
441 return (0);
442 }
443
444 static int
zutil_pool_active(libpc_handle_t * hdl,const char * name,uint64_t guid,boolean_t * isactive)445 zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid,
446 boolean_t *isactive)
447 {
448 ASSERT(hdl->lpc_ops->pco_pool_active != NULL);
449
450 int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name,
451 guid, isactive);
452
453 return (error);
454 }
455
456 static nvlist_t *
zutil_refresh_config(libpc_handle_t * hdl,nvlist_t * tryconfig)457 zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig)
458 {
459 ASSERT(hdl->lpc_ops->pco_refresh_config != NULL);
460
461 return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle,
462 tryconfig));
463 }
464
465 /*
466 * Determine if the vdev id is a hole in the namespace.
467 */
468 static boolean_t
vdev_is_hole(uint64_t * hole_array,uint_t holes,uint_t id)469 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
470 {
471 int c;
472
473 for (c = 0; c < holes; c++) {
474
475 /* Top-level is a hole */
476 if (hole_array[c] == id)
477 return (B_TRUE);
478 }
479 return (B_FALSE);
480 }
481
482 /*
483 * Convert our list of pools into the definitive set of configurations. We
484 * start by picking the best config for each toplevel vdev. Once that's done,
485 * we assemble the toplevel vdevs into a full config for the pool. We make a
486 * pass to fix up any incorrect paths, and then add it to the main list to
487 * return to the user.
488 */
489 static nvlist_t *
get_configs(libpc_handle_t * hdl,pool_list_t * pl,boolean_t active_ok,nvlist_t * policy)490 get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
491 nvlist_t *policy)
492 {
493 pool_entry_t *pe;
494 vdev_entry_t *ve;
495 config_entry_t *ce;
496 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
497 nvlist_t **spares, **l2cache;
498 uint_t i, nspares, nl2cache;
499 boolean_t config_seen;
500 uint64_t best_txg;
501 const char *name, *hostname = NULL;
502 uint64_t guid;
503 uint_t children = 0;
504 nvlist_t **child = NULL;
505 uint64_t *hole_array, max_id;
506 uint_t c;
507 boolean_t isactive;
508 nvlist_t *nvl;
509 boolean_t valid_top_config = B_FALSE;
510
511 if (nvlist_alloc(&ret, 0, 0) != 0)
512 goto nomem;
513
514 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
515 uint64_t id, max_txg = 0, hostid = 0;
516 uint_t holes = 0;
517
518 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
519 goto nomem;
520 config_seen = B_FALSE;
521
522 /*
523 * Iterate over all toplevel vdevs. Grab the pool configuration
524 * from the first one we find, and then go through the rest and
525 * add them as necessary to the 'vdevs' member of the config.
526 */
527 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
528
529 /*
530 * Determine the best configuration for this vdev by
531 * selecting the config with the latest transaction
532 * group.
533 */
534 best_txg = 0;
535 for (ce = ve->ve_configs; ce != NULL;
536 ce = ce->ce_next) {
537
538 if (ce->ce_txg > best_txg) {
539 tmp = ce->ce_config;
540 best_txg = ce->ce_txg;
541 }
542 }
543
544 /*
545 * We rely on the fact that the max txg for the
546 * pool will contain the most up-to-date information
547 * about the valid top-levels in the vdev namespace.
548 */
549 if (best_txg > max_txg) {
550 (void) nvlist_remove(config,
551 ZPOOL_CONFIG_VDEV_CHILDREN,
552 DATA_TYPE_UINT64);
553 (void) nvlist_remove(config,
554 ZPOOL_CONFIG_HOLE_ARRAY,
555 DATA_TYPE_UINT64_ARRAY);
556
557 max_txg = best_txg;
558 hole_array = NULL;
559 holes = 0;
560 max_id = 0;
561 valid_top_config = B_FALSE;
562
563 if (nvlist_lookup_uint64(tmp,
564 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
565 verify(nvlist_add_uint64(config,
566 ZPOOL_CONFIG_VDEV_CHILDREN,
567 max_id) == 0);
568 valid_top_config = B_TRUE;
569 }
570
571 if (nvlist_lookup_uint64_array(tmp,
572 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
573 &holes) == 0) {
574 verify(nvlist_add_uint64_array(config,
575 ZPOOL_CONFIG_HOLE_ARRAY,
576 hole_array, holes) == 0);
577 }
578 }
579
580 if (!config_seen) {
581 /*
582 * Copy the relevant pieces of data to the pool
583 * configuration:
584 *
585 * version
586 * pool guid
587 * name
588 * comment (if available)
589 * compatibility features (if available)
590 * pool state
591 * hostid (if available)
592 * hostname (if available)
593 */
594 uint64_t state, version;
595 const char *comment = NULL;
596 const char *compatibility = NULL;
597
598 version = fnvlist_lookup_uint64(tmp,
599 ZPOOL_CONFIG_VERSION);
600 fnvlist_add_uint64(config,
601 ZPOOL_CONFIG_VERSION, version);
602 guid = fnvlist_lookup_uint64(tmp,
603 ZPOOL_CONFIG_POOL_GUID);
604 fnvlist_add_uint64(config,
605 ZPOOL_CONFIG_POOL_GUID, guid);
606 name = fnvlist_lookup_string(tmp,
607 ZPOOL_CONFIG_POOL_NAME);
608 fnvlist_add_string(config,
609 ZPOOL_CONFIG_POOL_NAME, name);
610
611 if (nvlist_lookup_string(tmp,
612 ZPOOL_CONFIG_COMMENT, &comment) == 0)
613 fnvlist_add_string(config,
614 ZPOOL_CONFIG_COMMENT, comment);
615
616 if (nvlist_lookup_string(tmp,
617 ZPOOL_CONFIG_COMPATIBILITY,
618 &compatibility) == 0)
619 fnvlist_add_string(config,
620 ZPOOL_CONFIG_COMPATIBILITY,
621 compatibility);
622
623 state = fnvlist_lookup_uint64(tmp,
624 ZPOOL_CONFIG_POOL_STATE);
625 fnvlist_add_uint64(config,
626 ZPOOL_CONFIG_POOL_STATE, state);
627
628 hostid = 0;
629 if (nvlist_lookup_uint64(tmp,
630 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
631 fnvlist_add_uint64(config,
632 ZPOOL_CONFIG_HOSTID, hostid);
633 hostname = fnvlist_lookup_string(tmp,
634 ZPOOL_CONFIG_HOSTNAME);
635 fnvlist_add_string(config,
636 ZPOOL_CONFIG_HOSTNAME, hostname);
637 }
638
639 config_seen = B_TRUE;
640 }
641
642 /*
643 * Add this top-level vdev to the child array.
644 */
645 verify(nvlist_lookup_nvlist(tmp,
646 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
647 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
648 &id) == 0);
649
650 if (id >= children) {
651 nvlist_t **newchild;
652
653 newchild = zutil_alloc(hdl, (id + 1) *
654 sizeof (nvlist_t *));
655 if (newchild == NULL)
656 goto nomem;
657
658 for (c = 0; c < children; c++)
659 newchild[c] = child[c];
660
661 free(child);
662 child = newchild;
663 children = id + 1;
664 }
665 if (nvlist_dup(nvtop, &child[id], 0) != 0)
666 goto nomem;
667
668 }
669
670 /*
671 * If we have information about all the top-levels then
672 * clean up the nvlist which we've constructed. This
673 * means removing any extraneous devices that are
674 * beyond the valid range or adding devices to the end
675 * of our array which appear to be missing.
676 */
677 if (valid_top_config) {
678 if (max_id < children) {
679 for (c = max_id; c < children; c++)
680 nvlist_free(child[c]);
681 children = max_id;
682 } else if (max_id > children) {
683 nvlist_t **newchild;
684
685 newchild = zutil_alloc(hdl, (max_id) *
686 sizeof (nvlist_t *));
687 if (newchild == NULL)
688 goto nomem;
689
690 for (c = 0; c < children; c++)
691 newchild[c] = child[c];
692
693 free(child);
694 child = newchild;
695 children = max_id;
696 }
697 }
698
699 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
700 &guid) == 0);
701
702 /*
703 * The vdev namespace may contain holes as a result of
704 * device removal. We must add them back into the vdev
705 * tree before we process any missing devices.
706 */
707 if (holes > 0) {
708 ASSERT(valid_top_config);
709
710 for (c = 0; c < children; c++) {
711 nvlist_t *holey;
712
713 if (child[c] != NULL ||
714 !vdev_is_hole(hole_array, holes, c))
715 continue;
716
717 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
718 0) != 0)
719 goto nomem;
720
721 /*
722 * Holes in the namespace are treated as
723 * "hole" top-level vdevs and have a
724 * special flag set on them.
725 */
726 if (nvlist_add_string(holey,
727 ZPOOL_CONFIG_TYPE,
728 VDEV_TYPE_HOLE) != 0 ||
729 nvlist_add_uint64(holey,
730 ZPOOL_CONFIG_ID, c) != 0 ||
731 nvlist_add_uint64(holey,
732 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
733 nvlist_free(holey);
734 goto nomem;
735 }
736 child[c] = holey;
737 }
738 }
739
740 /*
741 * Look for any missing top-level vdevs. If this is the case,
742 * create a faked up 'missing' vdev as a placeholder. We cannot
743 * simply compress the child array, because the kernel performs
744 * certain checks to make sure the vdev IDs match their location
745 * in the configuration.
746 */
747 for (c = 0; c < children; c++) {
748 if (child[c] == NULL) {
749 nvlist_t *missing;
750 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
751 0) != 0)
752 goto nomem;
753 if (nvlist_add_string(missing,
754 ZPOOL_CONFIG_TYPE,
755 VDEV_TYPE_MISSING) != 0 ||
756 nvlist_add_uint64(missing,
757 ZPOOL_CONFIG_ID, c) != 0 ||
758 nvlist_add_uint64(missing,
759 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
760 nvlist_free(missing);
761 goto nomem;
762 }
763 child[c] = missing;
764 }
765 }
766
767 /*
768 * Put all of this pool's top-level vdevs into a root vdev.
769 */
770 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
771 goto nomem;
772 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
773 VDEV_TYPE_ROOT) != 0 ||
774 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
775 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
776 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
777 (const nvlist_t **)child, children) != 0) {
778 nvlist_free(nvroot);
779 goto nomem;
780 }
781
782 for (c = 0; c < children; c++)
783 nvlist_free(child[c]);
784 free(child);
785 children = 0;
786 child = NULL;
787
788 /*
789 * Go through and fix up any paths and/or devids based on our
790 * known list of vdev GUID -> path mappings.
791 */
792 if (fix_paths(hdl, nvroot, pl->names) != 0) {
793 nvlist_free(nvroot);
794 goto nomem;
795 }
796
797 /*
798 * Add the root vdev to this pool's configuration.
799 */
800 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
801 nvroot) != 0) {
802 nvlist_free(nvroot);
803 goto nomem;
804 }
805 nvlist_free(nvroot);
806
807 /*
808 * zdb uses this path to report on active pools that were
809 * imported or created using -R.
810 */
811 if (active_ok)
812 goto add_pool;
813
814 /*
815 * Determine if this pool is currently active, in which case we
816 * can't actually import it.
817 */
818 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
819 &name) == 0);
820 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
821 &guid) == 0);
822
823 if (zutil_pool_active(hdl, name, guid, &isactive) != 0)
824 goto error;
825
826 if (isactive) {
827 nvlist_free(config);
828 config = NULL;
829 continue;
830 }
831
832 if (policy != NULL) {
833 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY,
834 policy) != 0)
835 goto nomem;
836 }
837
838 if ((nvl = zutil_refresh_config(hdl, config)) == NULL) {
839 nvlist_free(config);
840 config = NULL;
841 continue;
842 }
843
844 nvlist_free(config);
845 config = nvl;
846
847 /*
848 * Go through and update the paths for spares, now that we have
849 * them.
850 */
851 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
852 &nvroot) == 0);
853 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
854 &spares, &nspares) == 0) {
855 for (i = 0; i < nspares; i++) {
856 if (fix_paths(hdl, spares[i], pl->names) != 0)
857 goto nomem;
858 }
859 }
860
861 /*
862 * Update the paths for l2cache devices.
863 */
864 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
865 &l2cache, &nl2cache) == 0) {
866 for (i = 0; i < nl2cache; i++) {
867 if (fix_paths(hdl, l2cache[i], pl->names) != 0)
868 goto nomem;
869 }
870 }
871
872 /*
873 * Restore the original information read from the actual label.
874 */
875 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
876 DATA_TYPE_UINT64);
877 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
878 DATA_TYPE_STRING);
879 if (hostid != 0) {
880 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
881 hostid) == 0);
882 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
883 hostname) == 0);
884 }
885
886 add_pool:
887 /*
888 * Add this pool to the list of configs.
889 */
890 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
891 &name) == 0);
892
893 if (nvlist_add_nvlist(ret, name, config) != 0)
894 goto nomem;
895
896 nvlist_free(config);
897 config = NULL;
898 }
899
900 return (ret);
901
902 nomem:
903 (void) zutil_no_memory(hdl);
904 error:
905 nvlist_free(config);
906 nvlist_free(ret);
907 for (c = 0; c < children; c++)
908 nvlist_free(child[c]);
909 free(child);
910
911 return (NULL);
912 }
913
914 /*
915 * Return the offset of the given label.
916 */
917 static uint64_t
label_offset(uint64_t size,int l)918 label_offset(uint64_t size, int l)
919 {
920 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
921 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
922 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
923 }
924
925 /*
926 * The same description applies as to zpool_read_label below,
927 * except here we do it without aio, presumably because an aio call
928 * errored out in a way we think not using it could circumvent.
929 */
930 static int
zpool_read_label_slow(int fd,nvlist_t ** config,int * num_labels)931 zpool_read_label_slow(int fd, nvlist_t **config, int *num_labels)
932 {
933 struct stat64 statbuf;
934 int l, count = 0;
935 vdev_phys_t *label;
936 nvlist_t *expected_config = NULL;
937 uint64_t expected_guid = 0, size;
938
939 *config = NULL;
940
941 if (fstat64_blk(fd, &statbuf) == -1)
942 return (0);
943 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
944
945 label = (vdev_phys_t *)umem_alloc_aligned(sizeof (*label), PAGESIZE,
946 UMEM_DEFAULT);
947 if (label == NULL)
948 return (-1);
949
950 for (l = 0; l < VDEV_LABELS; l++) {
951 uint64_t state, guid, txg;
952 off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE;
953
954 if (pread64(fd, label, sizeof (vdev_phys_t),
955 offset) != sizeof (vdev_phys_t))
956 continue;
957
958 if (nvlist_unpack(label->vp_nvlist,
959 sizeof (label->vp_nvlist), config, 0) != 0)
960 continue;
961
962 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID,
963 &guid) != 0 || guid == 0) {
964 nvlist_free(*config);
965 continue;
966 }
967
968 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
969 &state) != 0 || state > POOL_STATE_L2CACHE) {
970 nvlist_free(*config);
971 continue;
972 }
973
974 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
975 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
976 &txg) != 0 || txg == 0)) {
977 nvlist_free(*config);
978 continue;
979 }
980
981 if (expected_guid) {
982 if (expected_guid == guid)
983 count++;
984
985 nvlist_free(*config);
986 } else {
987 expected_config = *config;
988 expected_guid = guid;
989 count++;
990 }
991 }
992
993 if (num_labels != NULL)
994 *num_labels = count;
995
996 umem_free_aligned(label, sizeof (*label));
997 *config = expected_config;
998
999 return (0);
1000 }
1001
1002 /*
1003 * Given a file descriptor, read the label information and return an nvlist
1004 * describing the configuration, if there is one. The number of valid
1005 * labels found will be returned in num_labels when non-NULL.
1006 */
1007 int
zpool_read_label(int fd,nvlist_t ** config,int * num_labels)1008 zpool_read_label(int fd, nvlist_t **config, int *num_labels)
1009 {
1010 #ifndef HAVE_AIO_H
1011 return (zpool_read_label_slow(fd, config, num_labels));
1012 #else
1013 struct stat64 statbuf;
1014 struct aiocb aiocbs[VDEV_LABELS];
1015 struct aiocb *aiocbps[VDEV_LABELS];
1016 vdev_phys_t *labels;
1017 nvlist_t *expected_config = NULL;
1018 uint64_t expected_guid = 0, size;
1019 int error, l, count = 0;
1020
1021 *config = NULL;
1022
1023 if (fstat64_blk(fd, &statbuf) == -1)
1024 return (0);
1025 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1026
1027 labels = (vdev_phys_t *)umem_alloc_aligned(
1028 VDEV_LABELS * sizeof (*labels), PAGESIZE, UMEM_DEFAULT);
1029 if (labels == NULL)
1030 return (-1);
1031
1032 memset(aiocbs, 0, sizeof (aiocbs));
1033 for (l = 0; l < VDEV_LABELS; l++) {
1034 off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE;
1035
1036 aiocbs[l].aio_fildes = fd;
1037 aiocbs[l].aio_offset = offset;
1038 aiocbs[l].aio_buf = &labels[l];
1039 aiocbs[l].aio_nbytes = sizeof (vdev_phys_t);
1040 aiocbs[l].aio_lio_opcode = LIO_READ;
1041 aiocbps[l] = &aiocbs[l];
1042 }
1043
1044 if (lio_listio(LIO_WAIT, aiocbps, VDEV_LABELS, NULL) != 0) {
1045 int saved_errno = errno;
1046 boolean_t do_slow = B_FALSE;
1047 error = -1;
1048
1049 if (errno == EAGAIN || errno == EINTR || errno == EIO) {
1050 /*
1051 * A portion of the requests may have been submitted.
1052 * Clean them up.
1053 */
1054 for (l = 0; l < VDEV_LABELS; l++) {
1055 errno = 0;
1056 switch (aio_error(&aiocbs[l])) {
1057 case EINVAL:
1058 break;
1059 case EINPROGRESS:
1060 /*
1061 * This shouldn't be possible to
1062 * encounter, die if we do.
1063 */
1064 ASSERT(B_FALSE);
1065 zfs_fallthrough;
1066 case EREMOTEIO:
1067 /*
1068 * May be returned by an NVMe device
1069 * which is visible in /dev/ but due
1070 * to a low-level format change, or
1071 * other error, needs to be rescanned.
1072 * Try the slow method.
1073 */
1074 zfs_fallthrough;
1075 case EAGAIN:
1076 case EOPNOTSUPP:
1077 case ENOSYS:
1078 do_slow = B_TRUE;
1079 zfs_fallthrough;
1080 case 0:
1081 default:
1082 (void) aio_return(&aiocbs[l]);
1083 }
1084 }
1085 }
1086 if (do_slow) {
1087 /*
1088 * At least some IO involved access unsafe-for-AIO
1089 * files. Let's try again, without AIO this time.
1090 */
1091 error = zpool_read_label_slow(fd, config, num_labels);
1092 saved_errno = errno;
1093 }
1094 umem_free_aligned(labels, VDEV_LABELS * sizeof (*labels));
1095 errno = saved_errno;
1096 return (error);
1097 }
1098
1099 for (l = 0; l < VDEV_LABELS; l++) {
1100 uint64_t state, guid, txg;
1101
1102 if (aio_return(&aiocbs[l]) != sizeof (vdev_phys_t))
1103 continue;
1104
1105 if (nvlist_unpack(labels[l].vp_nvlist,
1106 sizeof (labels[l].vp_nvlist), config, 0) != 0)
1107 continue;
1108
1109 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID,
1110 &guid) != 0 || guid == 0) {
1111 nvlist_free(*config);
1112 continue;
1113 }
1114
1115 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
1116 &state) != 0 || state > POOL_STATE_L2CACHE) {
1117 nvlist_free(*config);
1118 continue;
1119 }
1120
1121 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
1122 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
1123 &txg) != 0 || txg == 0)) {
1124 nvlist_free(*config);
1125 continue;
1126 }
1127
1128 if (expected_guid) {
1129 if (expected_guid == guid)
1130 count++;
1131
1132 nvlist_free(*config);
1133 } else {
1134 expected_config = *config;
1135 expected_guid = guid;
1136 count++;
1137 }
1138 }
1139
1140 if (num_labels != NULL)
1141 *num_labels = count;
1142
1143 umem_free_aligned(labels, VDEV_LABELS * sizeof (*labels));
1144 *config = expected_config;
1145
1146 return (0);
1147 #endif
1148 }
1149
1150 /*
1151 * Sorted by full path and then vdev guid to allow for multiple entries with
1152 * the same full path name. This is required because it's possible to
1153 * have multiple block devices with labels that refer to the same
1154 * ZPOOL_CONFIG_PATH yet have different vdev guids. In this case both
1155 * entries need to be added to the cache. Scenarios where this can occur
1156 * include overwritten pool labels, devices which are visible from multiple
1157 * hosts and multipath devices.
1158 */
1159 int
slice_cache_compare(const void * arg1,const void * arg2)1160 slice_cache_compare(const void *arg1, const void *arg2)
1161 {
1162 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
1163 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
1164 uint64_t guid1 = ((rdsk_node_t *)arg1)->rn_vdev_guid;
1165 uint64_t guid2 = ((rdsk_node_t *)arg2)->rn_vdev_guid;
1166 int rv;
1167
1168 rv = TREE_ISIGN(strcmp(nm1, nm2));
1169 if (rv)
1170 return (rv);
1171
1172 return (TREE_CMP(guid1, guid2));
1173 }
1174
1175 static int
label_paths_impl(libpc_handle_t * hdl,nvlist_t * nvroot,uint64_t pool_guid,uint64_t vdev_guid,const char ** path,const char ** devid)1176 label_paths_impl(libpc_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid,
1177 uint64_t vdev_guid, const char **path, const char **devid)
1178 {
1179 nvlist_t **child;
1180 uint_t c, children;
1181 uint64_t guid;
1182 const char *val;
1183 int error;
1184
1185 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1186 &child, &children) == 0) {
1187 for (c = 0; c < children; c++) {
1188 error = label_paths_impl(hdl, child[c],
1189 pool_guid, vdev_guid, path, devid);
1190 if (error)
1191 return (error);
1192 }
1193 return (0);
1194 }
1195
1196 if (nvroot == NULL)
1197 return (0);
1198
1199 error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid);
1200 if ((error != 0) || (guid != vdev_guid))
1201 return (0);
1202
1203 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val);
1204 if (error == 0)
1205 *path = val;
1206
1207 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val);
1208 if (error == 0)
1209 *devid = val;
1210
1211 return (0);
1212 }
1213
1214 /*
1215 * Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID
1216 * and store these strings as config_path and devid_path respectively.
1217 * The returned pointers are only valid as long as label remains valid.
1218 */
1219 int
label_paths(libpc_handle_t * hdl,nvlist_t * label,const char ** path,const char ** devid)1220 label_paths(libpc_handle_t *hdl, nvlist_t *label, const char **path,
1221 const char **devid)
1222 {
1223 nvlist_t *nvroot;
1224 uint64_t pool_guid;
1225 uint64_t vdev_guid;
1226 uint64_t state;
1227
1228 *path = NULL;
1229 *devid = NULL;
1230 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid) != 0)
1231 return (ENOENT);
1232
1233 /*
1234 * In case of spare or l2cache, we directly return path/devid from the
1235 * label.
1236 */
1237 if (!(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state)) &&
1238 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE)) {
1239 (void) nvlist_lookup_string(label, ZPOOL_CONFIG_PATH, path);
1240 (void) nvlist_lookup_string(label, ZPOOL_CONFIG_DEVID, devid);
1241 return (0);
1242 }
1243
1244 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1245 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1246 return (ENOENT);
1247
1248 return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path,
1249 devid));
1250 }
1251
1252 static void
zpool_find_import_scan_add_slice(libpc_handle_t * hdl,pthread_mutex_t * lock,avl_tree_t * cache,const char * path,const char * name,int order)1253 zpool_find_import_scan_add_slice(libpc_handle_t *hdl, pthread_mutex_t *lock,
1254 avl_tree_t *cache, const char *path, const char *name, int order)
1255 {
1256 avl_index_t where;
1257 rdsk_node_t *slice;
1258
1259 slice = zutil_alloc(hdl, sizeof (rdsk_node_t));
1260 if (asprintf(&slice->rn_name, "%s/%s", path, name) == -1) {
1261 free(slice);
1262 return;
1263 }
1264 slice->rn_vdev_guid = 0;
1265 slice->rn_lock = lock;
1266 slice->rn_avl = cache;
1267 slice->rn_hdl = hdl;
1268 slice->rn_order = order + IMPORT_ORDER_SCAN_OFFSET;
1269 slice->rn_labelpaths = B_FALSE;
1270
1271 pthread_mutex_lock(lock);
1272 if (avl_find(cache, slice, &where)) {
1273 free(slice->rn_name);
1274 free(slice);
1275 } else {
1276 avl_insert(cache, slice, where);
1277 }
1278 pthread_mutex_unlock(lock);
1279 }
1280
1281 static int
zpool_find_import_scan_dir(libpc_handle_t * hdl,pthread_mutex_t * lock,avl_tree_t * cache,const char * dir,int order)1282 zpool_find_import_scan_dir(libpc_handle_t *hdl, pthread_mutex_t *lock,
1283 avl_tree_t *cache, const char *dir, int order)
1284 {
1285 int error;
1286 char path[MAXPATHLEN];
1287 struct dirent64 *dp;
1288 DIR *dirp;
1289
1290 if (realpath(dir, path) == NULL) {
1291 error = errno;
1292 if (error == ENOENT)
1293 return (0);
1294
1295 zutil_error_aux(hdl, "%s", zfs_strerror(error));
1296 (void) zutil_error_fmt(hdl, LPC_BADPATH, dgettext(TEXT_DOMAIN,
1297 "cannot resolve path '%s'"), dir);
1298 return (error);
1299 }
1300
1301 dirp = opendir(path);
1302 if (dirp == NULL) {
1303 error = errno;
1304 zutil_error_aux(hdl, "%s", zfs_strerror(error));
1305 (void) zutil_error_fmt(hdl, LPC_BADPATH, dgettext(TEXT_DOMAIN,
1306 "cannot open '%s'"), path);
1307 return (error);
1308 }
1309
1310 while ((dp = readdir64(dirp)) != NULL) {
1311 const char *name = dp->d_name;
1312 if (strcmp(name, ".") == 0 || strcmp(name, "..") == 0)
1313 continue;
1314
1315 switch (dp->d_type) {
1316 case DT_UNKNOWN:
1317 case DT_BLK:
1318 case DT_LNK:
1319 #ifdef __FreeBSD__
1320 case DT_CHR:
1321 #endif
1322 case DT_REG:
1323 break;
1324 default:
1325 continue;
1326 }
1327
1328 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name,
1329 order);
1330 }
1331
1332 (void) closedir(dirp);
1333 return (0);
1334 }
1335
1336 static int
zpool_find_import_scan_path(libpc_handle_t * hdl,pthread_mutex_t * lock,avl_tree_t * cache,const char * dir,int order)1337 zpool_find_import_scan_path(libpc_handle_t *hdl, pthread_mutex_t *lock,
1338 avl_tree_t *cache, const char *dir, int order)
1339 {
1340 int error = 0;
1341 char path[MAXPATHLEN];
1342 char *d = NULL;
1343 ssize_t dl;
1344 const char *dpath, *name;
1345
1346 /*
1347 * Separate the directory and the basename.
1348 * We do this so that we can get the realpath of
1349 * the directory. We don't get the realpath on the
1350 * whole path because if it's a symlink, we want the
1351 * path of the symlink not where it points to.
1352 */
1353 name = zfs_basename(dir);
1354 if ((dl = zfs_dirnamelen(dir)) == -1)
1355 dpath = ".";
1356 else
1357 dpath = d = zutil_strndup(hdl, dir, dl);
1358
1359 if (realpath(dpath, path) == NULL) {
1360 error = errno;
1361 if (error == ENOENT) {
1362 error = 0;
1363 goto out;
1364 }
1365
1366 zutil_error_aux(hdl, "%s", zfs_strerror(error));
1367 (void) zutil_error_fmt(hdl, LPC_BADPATH, dgettext(TEXT_DOMAIN,
1368 "cannot resolve path '%s'"), dir);
1369 goto out;
1370 }
1371
1372 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, order);
1373
1374 out:
1375 free(d);
1376 return (error);
1377 }
1378
1379 /*
1380 * Scan a list of directories for zfs devices.
1381 */
1382 static int
zpool_find_import_scan(libpc_handle_t * hdl,pthread_mutex_t * lock,avl_tree_t ** slice_cache,const char * const * dir,size_t dirs)1383 zpool_find_import_scan(libpc_handle_t *hdl, pthread_mutex_t *lock,
1384 avl_tree_t **slice_cache, const char * const *dir, size_t dirs)
1385 {
1386 avl_tree_t *cache;
1387 rdsk_node_t *slice;
1388 void *cookie;
1389 int i, error;
1390
1391 *slice_cache = NULL;
1392 cache = zutil_alloc(hdl, sizeof (avl_tree_t));
1393 avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t),
1394 offsetof(rdsk_node_t, rn_node));
1395
1396 for (i = 0; i < dirs; i++) {
1397 struct stat sbuf;
1398
1399 if (stat(dir[i], &sbuf) != 0) {
1400 error = errno;
1401 if (error == ENOENT)
1402 continue;
1403
1404 zutil_error_aux(hdl, "%s", zfs_strerror(error));
1405 (void) zutil_error_fmt(hdl, LPC_BADPATH, dgettext(
1406 TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]);
1407 goto error;
1408 }
1409
1410 /*
1411 * If dir[i] is a directory, we walk through it and add all
1412 * the entries to the cache. If it's not a directory, we just
1413 * add it to the cache.
1414 */
1415 if (S_ISDIR(sbuf.st_mode)) {
1416 if ((error = zpool_find_import_scan_dir(hdl, lock,
1417 cache, dir[i], i)) != 0)
1418 goto error;
1419 } else {
1420 if ((error = zpool_find_import_scan_path(hdl, lock,
1421 cache, dir[i], i)) != 0)
1422 goto error;
1423 }
1424 }
1425
1426 *slice_cache = cache;
1427 return (0);
1428
1429 error:
1430 cookie = NULL;
1431 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) {
1432 free(slice->rn_name);
1433 free(slice);
1434 }
1435 free(cache);
1436
1437 return (error);
1438 }
1439
1440 /*
1441 * Given a list of directories to search, find all pools stored on disk. This
1442 * includes partial pools which are not available to import. If no args are
1443 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1444 * poolname or guid (but not both) are provided by the caller when trying
1445 * to import a specific pool.
1446 */
1447 static nvlist_t *
zpool_find_import_impl(libpc_handle_t * hdl,importargs_t * iarg,pthread_mutex_t * lock,avl_tree_t * cache)1448 zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg,
1449 pthread_mutex_t *lock, avl_tree_t *cache)
1450 {
1451 (void) lock;
1452 nvlist_t *ret = NULL;
1453 pool_list_t pools = { 0 };
1454 pool_entry_t *pe, *penext;
1455 vdev_entry_t *ve, *venext;
1456 config_entry_t *ce, *cenext;
1457 name_entry_t *ne, *nenext;
1458 rdsk_node_t *slice;
1459 void *cookie;
1460 tpool_t *t;
1461
1462 verify(iarg->poolname == NULL || iarg->guid == 0);
1463
1464 /*
1465 * Create a thread pool to parallelize the process of reading and
1466 * validating labels, a large number of threads can be used due to
1467 * minimal contention.
1468 */
1469 long threads = 2 * sysconf(_SC_NPROCESSORS_ONLN);
1470 #ifdef HAVE_AIO_H
1471 long am;
1472 #ifdef _SC_AIO_LISTIO_MAX
1473 am = sysconf(_SC_AIO_LISTIO_MAX);
1474 if (am >= VDEV_LABELS)
1475 threads = MIN(threads, am / VDEV_LABELS);
1476 #endif
1477 #ifdef _SC_AIO_MAX
1478 am = sysconf(_SC_AIO_MAX);
1479 if (am >= VDEV_LABELS)
1480 threads = MIN(threads, am / VDEV_LABELS);
1481 #endif
1482 #endif
1483 t = tpool_create(1, threads, 0, NULL);
1484 for (slice = avl_first(cache); slice;
1485 (slice = avl_walk(cache, slice, AVL_AFTER)))
1486 (void) tpool_dispatch(t, zpool_open_func, slice);
1487
1488 tpool_wait(t);
1489 tpool_destroy(t);
1490
1491 /*
1492 * Process the cache, filtering out any entries which are not
1493 * for the specified pool then adding matching label configs.
1494 */
1495 cookie = NULL;
1496 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) {
1497 if (slice->rn_config != NULL) {
1498 nvlist_t *config = slice->rn_config;
1499 boolean_t matched = B_TRUE;
1500 boolean_t aux = B_FALSE;
1501 int fd;
1502
1503 /*
1504 * Check if it's a spare or l2cache device. If it is,
1505 * we need to skip the name and guid check since they
1506 * don't exist on aux device label.
1507 */
1508 if (iarg->poolname != NULL || iarg->guid != 0) {
1509 uint64_t state;
1510 aux = nvlist_lookup_uint64(config,
1511 ZPOOL_CONFIG_POOL_STATE, &state) == 0 &&
1512 (state == POOL_STATE_SPARE ||
1513 state == POOL_STATE_L2CACHE);
1514 }
1515
1516 if (iarg->poolname != NULL && !aux) {
1517 const char *pname;
1518
1519 matched = nvlist_lookup_string(config,
1520 ZPOOL_CONFIG_POOL_NAME, &pname) == 0 &&
1521 strcmp(iarg->poolname, pname) == 0;
1522 } else if (iarg->guid != 0 && !aux) {
1523 uint64_t this_guid;
1524
1525 matched = nvlist_lookup_uint64(config,
1526 ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 &&
1527 iarg->guid == this_guid;
1528 }
1529 if (matched) {
1530 /*
1531 * Verify all remaining entries can be opened
1532 * exclusively. This will prune all underlying
1533 * multipath devices which otherwise could
1534 * result in the vdev appearing as UNAVAIL.
1535 *
1536 * Under zdb, this step isn't required and
1537 * would prevent a zdb -e of active pools with
1538 * no cachefile.
1539 */
1540 fd = open(slice->rn_name,
1541 O_RDONLY | O_EXCL | O_CLOEXEC);
1542 if (fd >= 0 || iarg->can_be_active) {
1543 if (fd >= 0)
1544 close(fd);
1545 add_config(hdl, &pools,
1546 slice->rn_name, slice->rn_order,
1547 slice->rn_num_labels, config);
1548 }
1549 }
1550 nvlist_free(config);
1551 }
1552 free(slice->rn_name);
1553 free(slice);
1554 }
1555 avl_destroy(cache);
1556 free(cache);
1557
1558 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);
1559
1560 for (pe = pools.pools; pe != NULL; pe = penext) {
1561 penext = pe->pe_next;
1562 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1563 venext = ve->ve_next;
1564 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1565 cenext = ce->ce_next;
1566 nvlist_free(ce->ce_config);
1567 free(ce);
1568 }
1569 free(ve);
1570 }
1571 free(pe);
1572 }
1573
1574 for (ne = pools.names; ne != NULL; ne = nenext) {
1575 nenext = ne->ne_next;
1576 free(ne->ne_name);
1577 free(ne);
1578 }
1579
1580 return (ret);
1581 }
1582
1583 /*
1584 * Given a config, discover the paths for the devices which
1585 * exist in the config.
1586 */
1587 static int
discover_cached_paths(libpc_handle_t * hdl,nvlist_t * nv,avl_tree_t * cache,pthread_mutex_t * lock)1588 discover_cached_paths(libpc_handle_t *hdl, nvlist_t *nv,
1589 avl_tree_t *cache, pthread_mutex_t *lock)
1590 {
1591 const char *path = NULL;
1592 ssize_t dl;
1593 uint_t children;
1594 nvlist_t **child;
1595
1596 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1597 &child, &children) == 0) {
1598 for (int c = 0; c < children; c++) {
1599 discover_cached_paths(hdl, child[c], cache, lock);
1600 }
1601 }
1602
1603 /*
1604 * Once we have the path, we need to add the directory to
1605 * our directory cache.
1606 */
1607 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0) {
1608 int ret;
1609 char c = '\0';
1610 if ((dl = zfs_dirnamelen(path)) == -1) {
1611 path = ".";
1612 } else {
1613 c = path[dl];
1614 ((char *)path)[dl] = '\0';
1615
1616 }
1617 ret = zpool_find_import_scan_dir(hdl, lock, cache,
1618 path, 0);
1619 if (c != '\0')
1620 ((char *)path)[dl] = c;
1621
1622 return (ret);
1623 }
1624 return (0);
1625 }
1626
1627 /*
1628 * Given a cache file, return the contents as a list of importable pools.
1629 * poolname or guid (but not both) are provided by the caller when trying
1630 * to import a specific pool.
1631 */
1632 static nvlist_t *
zpool_find_import_cached(libpc_handle_t * hdl,importargs_t * iarg)1633 zpool_find_import_cached(libpc_handle_t *hdl, importargs_t *iarg)
1634 {
1635 char *buf;
1636 int fd;
1637 struct stat64 statbuf;
1638 nvlist_t *raw, *src, *dst;
1639 nvlist_t *pools;
1640 nvpair_t *elem;
1641 const char *name;
1642 uint64_t this_guid;
1643 boolean_t active;
1644
1645 verify(iarg->poolname == NULL || iarg->guid == 0);
1646
1647 if ((fd = open(iarg->cachefile, O_RDONLY | O_CLOEXEC)) < 0) {
1648 zutil_error_aux(hdl, "%s", zfs_strerror(errno));
1649 (void) zutil_error(hdl, LPC_BADCACHE, dgettext(TEXT_DOMAIN,
1650 "failed to open cache file"));
1651 return (NULL);
1652 }
1653
1654 if (fstat64(fd, &statbuf) != 0) {
1655 zutil_error_aux(hdl, "%s", zfs_strerror(errno));
1656 (void) close(fd);
1657 (void) zutil_error(hdl, LPC_BADCACHE, dgettext(TEXT_DOMAIN,
1658 "failed to get size of cache file"));
1659 return (NULL);
1660 }
1661
1662 if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) {
1663 (void) close(fd);
1664 return (NULL);
1665 }
1666
1667 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1668 (void) close(fd);
1669 free(buf);
1670 (void) zutil_error(hdl, LPC_BADCACHE, dgettext(TEXT_DOMAIN,
1671 "failed to read cache file contents"));
1672 return (NULL);
1673 }
1674
1675 (void) close(fd);
1676
1677 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1678 free(buf);
1679 (void) zutil_error(hdl, LPC_BADCACHE, dgettext(TEXT_DOMAIN,
1680 "invalid or corrupt cache file contents"));
1681 return (NULL);
1682 }
1683
1684 free(buf);
1685
1686 /*
1687 * Go through and get the current state of the pools and refresh their
1688 * state.
1689 */
1690 if (nvlist_alloc(&pools, 0, 0) != 0) {
1691 (void) zutil_no_memory(hdl);
1692 nvlist_free(raw);
1693 return (NULL);
1694 }
1695
1696 elem = NULL;
1697 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1698 src = fnvpair_value_nvlist(elem);
1699
1700 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1701 if (iarg->poolname != NULL && strcmp(iarg->poolname, name) != 0)
1702 continue;
1703
1704 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1705 if (iarg->guid != 0 && iarg->guid != this_guid)
1706 continue;
1707
1708 if (zutil_pool_active(hdl, name, this_guid, &active) != 0) {
1709 nvlist_free(raw);
1710 nvlist_free(pools);
1711 return (NULL);
1712 }
1713
1714 if (active)
1715 continue;
1716
1717 if (iarg->scan) {
1718 uint64_t saved_guid = iarg->guid;
1719 const char *saved_poolname = iarg->poolname;
1720 pthread_mutex_t lock;
1721
1722 /*
1723 * Create the device cache that will hold the
1724 * devices we will scan based on the cachefile.
1725 * This will get destroyed and freed by
1726 * zpool_find_import_impl.
1727 */
1728 avl_tree_t *cache = zutil_alloc(hdl,
1729 sizeof (avl_tree_t));
1730 avl_create(cache, slice_cache_compare,
1731 sizeof (rdsk_node_t),
1732 offsetof(rdsk_node_t, rn_node));
1733 nvlist_t *nvroot = fnvlist_lookup_nvlist(src,
1734 ZPOOL_CONFIG_VDEV_TREE);
1735
1736 /*
1737 * We only want to find the pool with this_guid.
1738 * We will reset these values back later.
1739 */
1740 iarg->guid = this_guid;
1741 iarg->poolname = NULL;
1742
1743 /*
1744 * We need to build up a cache of devices that exists
1745 * in the paths pointed to by the cachefile. This allows
1746 * us to preserve the device namespace that was
1747 * originally specified by the user but also lets us
1748 * scan devices in those directories in case they had
1749 * been renamed.
1750 */
1751 pthread_mutex_init(&lock, NULL);
1752 discover_cached_paths(hdl, nvroot, cache, &lock);
1753 nvlist_t *nv = zpool_find_import_impl(hdl, iarg,
1754 &lock, cache);
1755 pthread_mutex_destroy(&lock);
1756
1757 /*
1758 * zpool_find_import_impl will return back
1759 * a list of pools that it found based on the
1760 * device cache. There should only be one pool
1761 * since we're looking for a specific guid.
1762 * We will use that pool to build up the final
1763 * pool nvlist which is returned back to the
1764 * caller.
1765 */
1766 nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
1767 if (pair == NULL)
1768 continue;
1769 fnvlist_add_nvlist(pools, nvpair_name(pair),
1770 fnvpair_value_nvlist(pair));
1771
1772 VERIFY3P(nvlist_next_nvpair(nv, pair), ==, NULL);
1773
1774 iarg->guid = saved_guid;
1775 iarg->poolname = saved_poolname;
1776 continue;
1777 }
1778
1779 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
1780 iarg->cachefile) != 0) {
1781 (void) zutil_no_memory(hdl);
1782 nvlist_free(raw);
1783 nvlist_free(pools);
1784 return (NULL);
1785 }
1786
1787 update_vdevs_config_dev_sysfs_path(src);
1788
1789 if ((dst = zutil_refresh_config(hdl, src)) == NULL) {
1790 nvlist_free(raw);
1791 nvlist_free(pools);
1792 return (NULL);
1793 }
1794
1795 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1796 (void) zutil_no_memory(hdl);
1797 nvlist_free(dst);
1798 nvlist_free(raw);
1799 nvlist_free(pools);
1800 return (NULL);
1801 }
1802 nvlist_free(dst);
1803 }
1804 nvlist_free(raw);
1805 return (pools);
1806 }
1807
1808 static nvlist_t *
zpool_find_import(libpc_handle_t * hdl,importargs_t * iarg)1809 zpool_find_import(libpc_handle_t *hdl, importargs_t *iarg)
1810 {
1811 pthread_mutex_t lock;
1812 avl_tree_t *cache;
1813 nvlist_t *pools = NULL;
1814
1815 verify(iarg->poolname == NULL || iarg->guid == 0);
1816 pthread_mutex_init(&lock, NULL);
1817
1818 /*
1819 * Locate pool member vdevs by blkid or by directory scanning.
1820 * On success a newly allocated AVL tree which is populated with an
1821 * entry for each discovered vdev will be returned in the cache.
1822 * It's the caller's responsibility to consume and destroy this tree.
1823 */
1824 if (iarg->scan || iarg->paths != 0) {
1825 size_t dirs = iarg->paths;
1826 const char * const *dir = (const char * const *)iarg->path;
1827
1828 if (dirs == 0)
1829 dir = zpool_default_search_paths(&dirs);
1830
1831 if (zpool_find_import_scan(hdl, &lock, &cache,
1832 dir, dirs) != 0) {
1833 pthread_mutex_destroy(&lock);
1834 return (NULL);
1835 }
1836 } else {
1837 if (zpool_find_import_blkid(hdl, &lock, &cache) != 0) {
1838 pthread_mutex_destroy(&lock);
1839 return (NULL);
1840 }
1841 }
1842
1843 pools = zpool_find_import_impl(hdl, iarg, &lock, cache);
1844 pthread_mutex_destroy(&lock);
1845 return (pools);
1846 }
1847
1848
1849 nvlist_t *
zpool_search_import(libpc_handle_t * hdl,importargs_t * import)1850 zpool_search_import(libpc_handle_t *hdl, importargs_t *import)
1851 {
1852 nvlist_t *pools = NULL;
1853
1854 verify(import->poolname == NULL || import->guid == 0);
1855
1856 if (import->cachefile != NULL)
1857 pools = zpool_find_import_cached(hdl, import);
1858 else
1859 pools = zpool_find_import(hdl, import);
1860
1861 if ((pools == NULL || nvlist_empty(pools)) &&
1862 hdl->lpc_open_access_error && geteuid() != 0) {
1863 (void) zutil_error(hdl, LPC_EACCESS, dgettext(TEXT_DOMAIN,
1864 "no pools found"));
1865 }
1866
1867 return (pools);
1868 }
1869
1870 static boolean_t
pool_match(nvlist_t * cfg,const char * tgt)1871 pool_match(nvlist_t *cfg, const char *tgt)
1872 {
1873 uint64_t v, guid = strtoull(tgt, NULL, 0);
1874 const char *s;
1875
1876 if (guid != 0) {
1877 if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0)
1878 return (v == guid);
1879 } else {
1880 if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0)
1881 return (strcmp(s, tgt) == 0);
1882 }
1883 return (B_FALSE);
1884 }
1885
1886 int
zpool_find_config(libpc_handle_t * hdl,const char * target,nvlist_t ** configp,importargs_t * args)1887 zpool_find_config(libpc_handle_t *hdl, const char *target, nvlist_t **configp,
1888 importargs_t *args)
1889 {
1890 nvlist_t *pools;
1891 nvlist_t *match = NULL;
1892 nvlist_t *config = NULL;
1893 char *sepp = NULL;
1894 int count = 0;
1895 char *targetdup = strdup(target);
1896
1897 if (targetdup == NULL)
1898 return (ENOMEM);
1899
1900 *configp = NULL;
1901
1902 if ((sepp = strpbrk(targetdup, "/@")) != NULL)
1903 *sepp = '\0';
1904
1905 pools = zpool_search_import(hdl, args);
1906
1907 if (pools != NULL) {
1908 nvpair_t *elem = NULL;
1909 while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) {
1910 VERIFY0(nvpair_value_nvlist(elem, &config));
1911 if (pool_match(config, targetdup)) {
1912 count++;
1913 if (match != NULL) {
1914 /* multiple matches found */
1915 continue;
1916 } else {
1917 match = fnvlist_dup(config);
1918 }
1919 }
1920 }
1921 fnvlist_free(pools);
1922 }
1923
1924 if (count == 0) {
1925 free(targetdup);
1926 return (ENOENT);
1927 }
1928
1929 if (count > 1) {
1930 free(targetdup);
1931 fnvlist_free(match);
1932 return (EINVAL);
1933 }
1934
1935 *configp = match;
1936 free(targetdup);
1937
1938 return (0);
1939 }
1940
1941 /* Return if a vdev is a leaf vdev. Note: draid spares are leaf vdevs. */
1942 static boolean_t
vdev_is_leaf(nvlist_t * nv)1943 vdev_is_leaf(nvlist_t *nv)
1944 {
1945 uint_t children = 0;
1946 nvlist_t **child;
1947
1948 (void) nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1949 &child, &children);
1950
1951 return (children == 0);
1952 }
1953
1954 /* Return if a vdev is a leaf vdev and a real device (disk or file) */
1955 static boolean_t
vdev_is_real_leaf(nvlist_t * nv)1956 vdev_is_real_leaf(nvlist_t *nv)
1957 {
1958 const char *type = NULL;
1959 if (!vdev_is_leaf(nv))
1960 return (B_FALSE);
1961
1962 (void) nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type);
1963 if ((strcmp(type, VDEV_TYPE_DISK) == 0) ||
1964 (strcmp(type, VDEV_TYPE_FILE) == 0)) {
1965 return (B_TRUE);
1966 }
1967
1968 return (B_FALSE);
1969 }
1970
1971 /*
1972 * This function is called by our FOR_EACH_VDEV() macros.
1973 *
1974 * state: State machine status (stored inside of a (nvlist_t *))
1975 * nv: The current vdev nvlist_t we are iterating over.
1976 * last_nv: The previous vdev nvlist_t we returned to the user in
1977 * the last iteration of FOR_EACH_VDEV(). We use it
1978 * to find the next vdev nvlist_t we should return.
1979 * real_leaves_only: Only return leaf vdevs.
1980 *
1981 * Returns 1 if we found the next vdev nvlist_t for this iteration. 0 if
1982 * we're still searching for it.
1983 */
1984 static int
__for_each_vdev_macro_helper_func(void * state,nvlist_t * nv,void * last_nv,boolean_t real_leaves_only)1985 __for_each_vdev_macro_helper_func(void *state, nvlist_t *nv, void *last_nv,
1986 boolean_t real_leaves_only)
1987 {
1988 enum {FIRST_NV = 0, NEXT_IS_MATCH = 1, STOP_LOOKING = 2};
1989
1990 /* The very first entry in the NV list is a special case */
1991 if (*((nvlist_t **)state) == (nvlist_t *)FIRST_NV) {
1992 if (real_leaves_only && !vdev_is_real_leaf(nv))
1993 return (0);
1994
1995 *((nvlist_t **)last_nv) = nv;
1996 *((nvlist_t **)state) = (nvlist_t *)STOP_LOOKING;
1997 return (1);
1998 }
1999
2000 /*
2001 * We came across our last_nv, meaning the next one is the one we
2002 * want
2003 */
2004 if (nv == *((nvlist_t **)last_nv)) {
2005 /* Next iteration of this function will return the nvlist_t */
2006 *((nvlist_t **)state) = (nvlist_t *)NEXT_IS_MATCH;
2007 return (0);
2008 }
2009
2010 /*
2011 * We marked NEXT_IS_MATCH on the previous iteration, so this is the one
2012 * we want.
2013 */
2014 if (*(nvlist_t **)state == (nvlist_t *)NEXT_IS_MATCH) {
2015 if (real_leaves_only && !vdev_is_real_leaf(nv))
2016 return (0);
2017
2018 *((nvlist_t **)last_nv) = nv;
2019 *((nvlist_t **)state) = (nvlist_t *)STOP_LOOKING;
2020 return (1);
2021 }
2022
2023 return (0);
2024 }
2025
2026 int
for_each_vdev_macro_helper_func(void * state,nvlist_t * nv,void * last_nv)2027 for_each_vdev_macro_helper_func(void *state, nvlist_t *nv, void *last_nv)
2028 {
2029 return (__for_each_vdev_macro_helper_func(state, nv, last_nv, B_FALSE));
2030 }
2031
2032 int
for_each_real_leaf_vdev_macro_helper_func(void * state,nvlist_t * nv,void * last_nv)2033 for_each_real_leaf_vdev_macro_helper_func(void *state, nvlist_t *nv,
2034 void *last_nv)
2035 {
2036 return (__for_each_vdev_macro_helper_func(state, nv, last_nv, B_TRUE));
2037 }
2038
2039 /*
2040 * Internal function for iterating over the vdevs.
2041 *
2042 * For each vdev, func() will be called and will be passed 'zhp' (which is
2043 * typically the zpool_handle_t cast as a void pointer), the vdev's nvlist, and
2044 * a user-defined data pointer).
2045 *
2046 * The return values from all the func() calls will be OR'd together and
2047 * returned.
2048 */
2049 int
for_each_vdev_cb(void * zhp,nvlist_t * nv,pool_vdev_iter_f func,void * data)2050 for_each_vdev_cb(void *zhp, nvlist_t *nv, pool_vdev_iter_f func,
2051 void *data)
2052 {
2053 nvlist_t **child;
2054 uint_t c, children;
2055 int ret = 0;
2056 int i;
2057 const char *type;
2058
2059 const char *list[] = {
2060 ZPOOL_CONFIG_SPARES,
2061 ZPOOL_CONFIG_L2CACHE,
2062 ZPOOL_CONFIG_CHILDREN
2063 };
2064
2065 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
2066 return (ret);
2067
2068 /* Don't run our function on indirect vdevs */
2069 if (strcmp(type, VDEV_TYPE_INDIRECT) != 0) {
2070 ret |= func(zhp, nv, data);
2071 }
2072
2073 for (i = 0; i < ARRAY_SIZE(list); i++) {
2074 if (nvlist_lookup_nvlist_array(nv, list[i], &child,
2075 &children) == 0) {
2076 for (c = 0; c < children; c++) {
2077 uint64_t ishole = 0;
2078
2079 (void) nvlist_lookup_uint64(child[c],
2080 ZPOOL_CONFIG_IS_HOLE, &ishole);
2081
2082 if (ishole)
2083 continue;
2084
2085 ret |= for_each_vdev_cb(zhp, child[c],
2086 func, data);
2087 }
2088 }
2089 }
2090
2091 return (ret);
2092 }
2093
2094 /*
2095 * Given an ZPOOL_CONFIG_VDEV_TREE nvpair, iterate over all the vdevs, calling
2096 * func() for each one. func() is passed the vdev's nvlist and an optional
2097 * user-defined 'data' pointer.
2098 */
2099 int
for_each_vdev_in_nvlist(nvlist_t * nvroot,pool_vdev_iter_f func,void * data)2100 for_each_vdev_in_nvlist(nvlist_t *nvroot, pool_vdev_iter_f func, void *data)
2101 {
2102 return (for_each_vdev_cb(NULL, nvroot, func, data));
2103 }
2104