1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 #include <net/neighbour_tables.h>
56
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct kernel_hwtstamp_config;
61 struct phy_device;
62 struct dsa_port;
63 struct ip_tunnel_parm_kern;
64 struct macsec_context;
65 struct macsec_ops;
66 struct netdev_config;
67 struct netdev_name_node;
68 struct sd_flow_limit;
69 struct sfp_bus;
70 /* 802.11 specific */
71 struct wireless_dev;
72 /* 802.15.4 specific */
73 struct wpan_dev;
74 struct mpls_dev;
75 /* UDP Tunnel offloads */
76 struct udp_tunnel_info;
77 struct udp_tunnel_nic_info;
78 struct udp_tunnel_nic;
79 struct bpf_prog;
80 struct xdp_buff;
81 struct xdp_frame;
82 struct xdp_metadata_ops;
83 struct xdp_md;
84 struct ethtool_netdev_state;
85 struct phy_link_topology;
86 struct hwtstamp_provider;
87
88 typedef u32 xdp_features_t;
89
90 void synchronize_net(void);
91 void netdev_set_default_ethtool_ops(struct net_device *dev,
92 const struct ethtool_ops *ops);
93 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
94
95 /* Backlog congestion levels */
96 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
97 #define NET_RX_DROP 1 /* packet dropped */
98
99 #define MAX_NEST_DEV 8
100
101 /*
102 * Transmit return codes: transmit return codes originate from three different
103 * namespaces:
104 *
105 * - qdisc return codes
106 * - driver transmit return codes
107 * - errno values
108 *
109 * Drivers are allowed to return any one of those in their hard_start_xmit()
110 * function. Real network devices commonly used with qdiscs should only return
111 * the driver transmit return codes though - when qdiscs are used, the actual
112 * transmission happens asynchronously, so the value is not propagated to
113 * higher layers. Virtual network devices transmit synchronously; in this case
114 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
115 * others are propagated to higher layers.
116 */
117
118 /* qdisc ->enqueue() return codes. */
119 #define NET_XMIT_SUCCESS 0x00
120 #define NET_XMIT_DROP 0x01 /* skb dropped */
121 #define NET_XMIT_CN 0x02 /* congestion notification */
122 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
123
124 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
125 * indicates that the device will soon be dropping packets, or already drops
126 * some packets of the same priority; prompting us to send less aggressively. */
127 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
128 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
129
130 /* Driver transmit return codes */
131 #define NETDEV_TX_MASK 0xf0
132
133 enum netdev_tx {
134 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
135 NETDEV_TX_OK = 0x00, /* driver took care of packet */
136 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
137 };
138 typedef enum netdev_tx netdev_tx_t;
139
140 /*
141 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
142 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
143 */
dev_xmit_complete(int rc)144 static inline bool dev_xmit_complete(int rc)
145 {
146 /*
147 * Positive cases with an skb consumed by a driver:
148 * - successful transmission (rc == NETDEV_TX_OK)
149 * - error while transmitting (rc < 0)
150 * - error while queueing to a different device (rc & NET_XMIT_MASK)
151 */
152 if (likely(rc < NET_XMIT_MASK))
153 return true;
154
155 return false;
156 }
157
158 /*
159 * Compute the worst-case header length according to the protocols
160 * used.
161 */
162
163 #if defined(CONFIG_HYPERV_NET)
164 # define LL_MAX_HEADER 128
165 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
166 # if defined(CONFIG_MAC80211_MESH)
167 # define LL_MAX_HEADER 128
168 # else
169 # define LL_MAX_HEADER 96
170 # endif
171 #else
172 # define LL_MAX_HEADER 32
173 #endif
174
175 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
176 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
177 #define MAX_HEADER LL_MAX_HEADER
178 #else
179 #define MAX_HEADER (LL_MAX_HEADER + 48)
180 #endif
181
182 /*
183 * Old network device statistics. Fields are native words
184 * (unsigned long) so they can be read and written atomically.
185 */
186
187 #define NET_DEV_STAT(FIELD) \
188 union { \
189 unsigned long FIELD; \
190 atomic_long_t __##FIELD; \
191 }
192
193 struct net_device_stats {
194 NET_DEV_STAT(rx_packets);
195 NET_DEV_STAT(tx_packets);
196 NET_DEV_STAT(rx_bytes);
197 NET_DEV_STAT(tx_bytes);
198 NET_DEV_STAT(rx_errors);
199 NET_DEV_STAT(tx_errors);
200 NET_DEV_STAT(rx_dropped);
201 NET_DEV_STAT(tx_dropped);
202 NET_DEV_STAT(multicast);
203 NET_DEV_STAT(collisions);
204 NET_DEV_STAT(rx_length_errors);
205 NET_DEV_STAT(rx_over_errors);
206 NET_DEV_STAT(rx_crc_errors);
207 NET_DEV_STAT(rx_frame_errors);
208 NET_DEV_STAT(rx_fifo_errors);
209 NET_DEV_STAT(rx_missed_errors);
210 NET_DEV_STAT(tx_aborted_errors);
211 NET_DEV_STAT(tx_carrier_errors);
212 NET_DEV_STAT(tx_fifo_errors);
213 NET_DEV_STAT(tx_heartbeat_errors);
214 NET_DEV_STAT(tx_window_errors);
215 NET_DEV_STAT(rx_compressed);
216 NET_DEV_STAT(tx_compressed);
217 };
218 #undef NET_DEV_STAT
219
220 /* per-cpu stats, allocated on demand.
221 * Try to fit them in a single cache line, for dev_get_stats() sake.
222 */
223 struct net_device_core_stats {
224 unsigned long rx_dropped;
225 unsigned long tx_dropped;
226 unsigned long rx_nohandler;
227 unsigned long rx_otherhost_dropped;
228 } __aligned(4 * sizeof(unsigned long));
229
230 #include <linux/cache.h>
231 #include <linux/skbuff.h>
232
233 struct neighbour;
234 struct neigh_parms;
235 struct sk_buff;
236
237 struct netdev_hw_addr {
238 struct list_head list;
239 struct rb_node node;
240 unsigned char addr[MAX_ADDR_LEN];
241 unsigned char type;
242 #define NETDEV_HW_ADDR_T_LAN 1
243 #define NETDEV_HW_ADDR_T_SAN 2
244 #define NETDEV_HW_ADDR_T_UNICAST 3
245 #define NETDEV_HW_ADDR_T_MULTICAST 4
246 bool global_use;
247 int sync_cnt;
248 int refcount;
249 int synced;
250 struct rcu_head rcu_head;
251 };
252
253 struct netdev_hw_addr_list {
254 struct list_head list;
255 int count;
256
257 /* Auxiliary tree for faster lookup on addition and deletion */
258 struct rb_root tree;
259 };
260
261 #define netdev_hw_addr_list_count(l) ((l)->count)
262 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
263 #define netdev_hw_addr_list_for_each(ha, l) \
264 list_for_each_entry(ha, &(l)->list, list)
265
266 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
267 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
268 #define netdev_for_each_uc_addr(ha, dev) \
269 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
270 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
271 netdev_for_each_uc_addr((_ha), (_dev)) \
272 if ((_ha)->sync_cnt)
273
274 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
275 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
276 #define netdev_for_each_mc_addr(ha, dev) \
277 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
278 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
279 netdev_for_each_mc_addr((_ha), (_dev)) \
280 if ((_ha)->sync_cnt)
281
282 struct hh_cache {
283 unsigned int hh_len;
284 seqlock_t hh_lock;
285
286 /* cached hardware header; allow for machine alignment needs. */
287 #define HH_DATA_MOD 16
288 #define HH_DATA_OFF(__len) \
289 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
290 #define HH_DATA_ALIGN(__len) \
291 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
292 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
293 };
294
295 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
296 * Alternative is:
297 * dev->hard_header_len ? (dev->hard_header_len +
298 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
299 *
300 * We could use other alignment values, but we must maintain the
301 * relationship HH alignment <= LL alignment.
302 */
303 #define LL_RESERVED_SPACE(dev) \
304 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
305 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309
310 struct header_ops {
311 int (*create) (struct sk_buff *skb, struct net_device *dev,
312 unsigned short type, const void *daddr,
313 const void *saddr, unsigned int len);
314 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
315 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
316 void (*cache_update)(struct hh_cache *hh,
317 const struct net_device *dev,
318 const unsigned char *haddr);
319 bool (*validate)(const char *ll_header, unsigned int len);
320 __be16 (*parse_protocol)(const struct sk_buff *skb);
321 };
322
323 /* These flag bits are private to the generic network queueing
324 * layer; they may not be explicitly referenced by any other
325 * code.
326 */
327
328 enum netdev_state_t {
329 __LINK_STATE_START,
330 __LINK_STATE_PRESENT,
331 __LINK_STATE_NOCARRIER,
332 __LINK_STATE_LINKWATCH_PENDING,
333 __LINK_STATE_DORMANT,
334 __LINK_STATE_TESTING,
335 };
336
337 struct gro_list {
338 struct list_head list;
339 int count;
340 };
341
342 /*
343 * size of gro hash buckets, must be <= the number of bits in
344 * gro_node::bitmask
345 */
346 #define GRO_HASH_BUCKETS 8
347
348 /**
349 * struct gro_node - structure to support Generic Receive Offload
350 * @bitmask: bitmask to indicate used buckets in @hash
351 * @hash: hashtable of pending aggregated skbs, separated by flows
352 * @rx_list: list of pending ``GRO_NORMAL`` skbs
353 * @rx_count: cached current length of @rx_list
354 * @cached_napi_id: napi_struct::napi_id cached for hotpath, 0 for standalone
355 */
356 struct gro_node {
357 unsigned long bitmask;
358 struct gro_list hash[GRO_HASH_BUCKETS];
359 struct list_head rx_list;
360 u32 rx_count;
361 u32 cached_napi_id;
362 };
363
364 /*
365 * Structure for per-NAPI config
366 */
367 struct napi_config {
368 u64 gro_flush_timeout;
369 u64 irq_suspend_timeout;
370 u32 defer_hard_irqs;
371 cpumask_t affinity_mask;
372 unsigned int napi_id;
373 };
374
375 /*
376 * Structure for NAPI scheduling similar to tasklet but with weighting
377 */
378 struct napi_struct {
379 /* The poll_list must only be managed by the entity which
380 * changes the state of the NAPI_STATE_SCHED bit. This means
381 * whoever atomically sets that bit can add this napi_struct
382 * to the per-CPU poll_list, and whoever clears that bit
383 * can remove from the list right before clearing the bit.
384 */
385 struct list_head poll_list;
386
387 unsigned long state;
388 int weight;
389 u32 defer_hard_irqs_count;
390 int (*poll)(struct napi_struct *, int);
391 #ifdef CONFIG_NETPOLL
392 /* CPU actively polling if netpoll is configured */
393 int poll_owner;
394 #endif
395 /* CPU on which NAPI has been scheduled for processing */
396 int list_owner;
397 struct net_device *dev;
398 struct sk_buff *skb;
399 struct gro_node gro;
400 struct hrtimer timer;
401 /* all fields past this point are write-protected by netdev_lock */
402 struct task_struct *thread;
403 unsigned long gro_flush_timeout;
404 unsigned long irq_suspend_timeout;
405 u32 defer_hard_irqs;
406 /* control-path-only fields follow */
407 u32 napi_id;
408 struct list_head dev_list;
409 struct hlist_node napi_hash_node;
410 int irq;
411 struct irq_affinity_notify notify;
412 int napi_rmap_idx;
413 int index;
414 struct napi_config *config;
415 };
416
417 enum {
418 NAPI_STATE_SCHED, /* Poll is scheduled */
419 NAPI_STATE_MISSED, /* reschedule a napi */
420 NAPI_STATE_DISABLE, /* Disable pending */
421 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
422 NAPI_STATE_LISTED, /* NAPI added to system lists */
423 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */
424 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */
425 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/
426 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/
427 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */
428 NAPI_STATE_HAS_NOTIFIER, /* Napi has an IRQ notifier */
429 };
430
431 enum {
432 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
433 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
434 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
435 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
436 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
437 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
438 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
439 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL),
440 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED),
441 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED),
442 NAPIF_STATE_HAS_NOTIFIER = BIT(NAPI_STATE_HAS_NOTIFIER),
443 };
444
445 enum gro_result {
446 GRO_MERGED,
447 GRO_MERGED_FREE,
448 GRO_HELD,
449 GRO_NORMAL,
450 GRO_CONSUMED,
451 };
452 typedef enum gro_result gro_result_t;
453
454 /*
455 * enum rx_handler_result - Possible return values for rx_handlers.
456 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
457 * further.
458 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
459 * case skb->dev was changed by rx_handler.
460 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
461 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
462 *
463 * rx_handlers are functions called from inside __netif_receive_skb(), to do
464 * special processing of the skb, prior to delivery to protocol handlers.
465 *
466 * Currently, a net_device can only have a single rx_handler registered. Trying
467 * to register a second rx_handler will return -EBUSY.
468 *
469 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
470 * To unregister a rx_handler on a net_device, use
471 * netdev_rx_handler_unregister().
472 *
473 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
474 * do with the skb.
475 *
476 * If the rx_handler consumed the skb in some way, it should return
477 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
478 * the skb to be delivered in some other way.
479 *
480 * If the rx_handler changed skb->dev, to divert the skb to another
481 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
482 * new device will be called if it exists.
483 *
484 * If the rx_handler decides the skb should be ignored, it should return
485 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
486 * are registered on exact device (ptype->dev == skb->dev).
487 *
488 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
489 * delivered, it should return RX_HANDLER_PASS.
490 *
491 * A device without a registered rx_handler will behave as if rx_handler
492 * returned RX_HANDLER_PASS.
493 */
494
495 enum rx_handler_result {
496 RX_HANDLER_CONSUMED,
497 RX_HANDLER_ANOTHER,
498 RX_HANDLER_EXACT,
499 RX_HANDLER_PASS,
500 };
501 typedef enum rx_handler_result rx_handler_result_t;
502 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
503
504 void __napi_schedule(struct napi_struct *n);
505 void __napi_schedule_irqoff(struct napi_struct *n);
506
napi_disable_pending(struct napi_struct * n)507 static inline bool napi_disable_pending(struct napi_struct *n)
508 {
509 return test_bit(NAPI_STATE_DISABLE, &n->state);
510 }
511
napi_prefer_busy_poll(struct napi_struct * n)512 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
513 {
514 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
515 }
516
517 /**
518 * napi_is_scheduled - test if NAPI is scheduled
519 * @n: NAPI context
520 *
521 * This check is "best-effort". With no locking implemented,
522 * a NAPI can be scheduled or terminate right after this check
523 * and produce not precise results.
524 *
525 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
526 * should not be used normally and napi_schedule should be
527 * used instead.
528 *
529 * Use only if the driver really needs to check if a NAPI
530 * is scheduled for example in the context of delayed timer
531 * that can be skipped if a NAPI is already scheduled.
532 *
533 * Return: True if NAPI is scheduled, False otherwise.
534 */
napi_is_scheduled(struct napi_struct * n)535 static inline bool napi_is_scheduled(struct napi_struct *n)
536 {
537 return test_bit(NAPI_STATE_SCHED, &n->state);
538 }
539
540 bool napi_schedule_prep(struct napi_struct *n);
541
542 /**
543 * napi_schedule - schedule NAPI poll
544 * @n: NAPI context
545 *
546 * Schedule NAPI poll routine to be called if it is not already
547 * running.
548 * Return: true if we schedule a NAPI or false if not.
549 * Refer to napi_schedule_prep() for additional reason on why
550 * a NAPI might not be scheduled.
551 */
napi_schedule(struct napi_struct * n)552 static inline bool napi_schedule(struct napi_struct *n)
553 {
554 if (napi_schedule_prep(n)) {
555 __napi_schedule(n);
556 return true;
557 }
558
559 return false;
560 }
561
562 /**
563 * napi_schedule_irqoff - schedule NAPI poll
564 * @n: NAPI context
565 *
566 * Variant of napi_schedule(), assuming hard irqs are masked.
567 */
napi_schedule_irqoff(struct napi_struct * n)568 static inline void napi_schedule_irqoff(struct napi_struct *n)
569 {
570 if (napi_schedule_prep(n))
571 __napi_schedule_irqoff(n);
572 }
573
574 /**
575 * napi_complete_done - NAPI processing complete
576 * @n: NAPI context
577 * @work_done: number of packets processed
578 *
579 * Mark NAPI processing as complete. Should only be called if poll budget
580 * has not been completely consumed.
581 * Prefer over napi_complete().
582 * Return: false if device should avoid rearming interrupts.
583 */
584 bool napi_complete_done(struct napi_struct *n, int work_done);
585
napi_complete(struct napi_struct * n)586 static inline bool napi_complete(struct napi_struct *n)
587 {
588 return napi_complete_done(n, 0);
589 }
590
591 int dev_set_threaded(struct net_device *dev, bool threaded);
592
593 void napi_disable(struct napi_struct *n);
594 void napi_disable_locked(struct napi_struct *n);
595
596 void napi_enable(struct napi_struct *n);
597 void napi_enable_locked(struct napi_struct *n);
598
599 /**
600 * napi_synchronize - wait until NAPI is not running
601 * @n: NAPI context
602 *
603 * Wait until NAPI is done being scheduled on this context.
604 * Waits till any outstanding processing completes but
605 * does not disable future activations.
606 */
napi_synchronize(const struct napi_struct * n)607 static inline void napi_synchronize(const struct napi_struct *n)
608 {
609 if (IS_ENABLED(CONFIG_SMP))
610 while (test_bit(NAPI_STATE_SCHED, &n->state))
611 msleep(1);
612 else
613 barrier();
614 }
615
616 /**
617 * napi_if_scheduled_mark_missed - if napi is running, set the
618 * NAPIF_STATE_MISSED
619 * @n: NAPI context
620 *
621 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
622 * NAPI is scheduled.
623 **/
napi_if_scheduled_mark_missed(struct napi_struct * n)624 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
625 {
626 unsigned long val, new;
627
628 val = READ_ONCE(n->state);
629 do {
630 if (val & NAPIF_STATE_DISABLE)
631 return true;
632
633 if (!(val & NAPIF_STATE_SCHED))
634 return false;
635
636 new = val | NAPIF_STATE_MISSED;
637 } while (!try_cmpxchg(&n->state, &val, new));
638
639 return true;
640 }
641
642 enum netdev_queue_state_t {
643 __QUEUE_STATE_DRV_XOFF,
644 __QUEUE_STATE_STACK_XOFF,
645 __QUEUE_STATE_FROZEN,
646 };
647
648 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
649 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
650 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
651
652 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
653 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
654 QUEUE_STATE_FROZEN)
655 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
656 QUEUE_STATE_FROZEN)
657
658 /*
659 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
660 * netif_tx_* functions below are used to manipulate this flag. The
661 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
662 * queue independently. The netif_xmit_*stopped functions below are called
663 * to check if the queue has been stopped by the driver or stack (either
664 * of the XOFF bits are set in the state). Drivers should not need to call
665 * netif_xmit*stopped functions, they should only be using netif_tx_*.
666 */
667
668 struct netdev_queue {
669 /*
670 * read-mostly part
671 */
672 struct net_device *dev;
673 netdevice_tracker dev_tracker;
674
675 struct Qdisc __rcu *qdisc;
676 struct Qdisc __rcu *qdisc_sleeping;
677 #ifdef CONFIG_SYSFS
678 struct kobject kobj;
679 const struct attribute_group **groups;
680 #endif
681 unsigned long tx_maxrate;
682 /*
683 * Number of TX timeouts for this queue
684 * (/sys/class/net/DEV/Q/trans_timeout)
685 */
686 atomic_long_t trans_timeout;
687
688 /* Subordinate device that the queue has been assigned to */
689 struct net_device *sb_dev;
690 #ifdef CONFIG_XDP_SOCKETS
691 struct xsk_buff_pool *pool;
692 #endif
693
694 /*
695 * write-mostly part
696 */
697 #ifdef CONFIG_BQL
698 struct dql dql;
699 #endif
700 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
701 int xmit_lock_owner;
702 /*
703 * Time (in jiffies) of last Tx
704 */
705 unsigned long trans_start;
706
707 unsigned long state;
708
709 /*
710 * slow- / control-path part
711 */
712 /* NAPI instance for the queue
713 * "ops protected", see comment about net_device::lock
714 */
715 struct napi_struct *napi;
716
717 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
718 int numa_node;
719 #endif
720 } ____cacheline_aligned_in_smp;
721
722 extern int sysctl_fb_tunnels_only_for_init_net;
723 extern int sysctl_devconf_inherit_init_net;
724
725 /*
726 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
727 * == 1 : For initns only
728 * == 2 : For none.
729 */
net_has_fallback_tunnels(const struct net * net)730 static inline bool net_has_fallback_tunnels(const struct net *net)
731 {
732 #if IS_ENABLED(CONFIG_SYSCTL)
733 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
734
735 return !fb_tunnels_only_for_init_net ||
736 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
737 #else
738 return true;
739 #endif
740 }
741
net_inherit_devconf(void)742 static inline int net_inherit_devconf(void)
743 {
744 #if IS_ENABLED(CONFIG_SYSCTL)
745 return READ_ONCE(sysctl_devconf_inherit_init_net);
746 #else
747 return 0;
748 #endif
749 }
750
netdev_queue_numa_node_read(const struct netdev_queue * q)751 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
752 {
753 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
754 return q->numa_node;
755 #else
756 return NUMA_NO_NODE;
757 #endif
758 }
759
netdev_queue_numa_node_write(struct netdev_queue * q,int node)760 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
761 {
762 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
763 q->numa_node = node;
764 #endif
765 }
766
767 #ifdef CONFIG_RFS_ACCEL
768 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
769 u16 filter_id);
770 #endif
771
772 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
773 enum xps_map_type {
774 XPS_CPUS = 0,
775 XPS_RXQS,
776 XPS_MAPS_MAX,
777 };
778
779 #ifdef CONFIG_XPS
780 /*
781 * This structure holds an XPS map which can be of variable length. The
782 * map is an array of queues.
783 */
784 struct xps_map {
785 unsigned int len;
786 unsigned int alloc_len;
787 struct rcu_head rcu;
788 u16 queues[];
789 };
790 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
791 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
792 - sizeof(struct xps_map)) / sizeof(u16))
793
794 /*
795 * This structure holds all XPS maps for device. Maps are indexed by CPU.
796 *
797 * We keep track of the number of cpus/rxqs used when the struct is allocated,
798 * in nr_ids. This will help not accessing out-of-bound memory.
799 *
800 * We keep track of the number of traffic classes used when the struct is
801 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
802 * not crossing its upper bound, as the original dev->num_tc can be updated in
803 * the meantime.
804 */
805 struct xps_dev_maps {
806 struct rcu_head rcu;
807 unsigned int nr_ids;
808 s16 num_tc;
809 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
810 };
811
812 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
813 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
814
815 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
816 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
817
818 #endif /* CONFIG_XPS */
819
820 #define TC_MAX_QUEUE 16
821 #define TC_BITMASK 15
822 /* HW offloaded queuing disciplines txq count and offset maps */
823 struct netdev_tc_txq {
824 u16 count;
825 u16 offset;
826 };
827
828 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
829 /*
830 * This structure is to hold information about the device
831 * configured to run FCoE protocol stack.
832 */
833 struct netdev_fcoe_hbainfo {
834 char manufacturer[64];
835 char serial_number[64];
836 char hardware_version[64];
837 char driver_version[64];
838 char optionrom_version[64];
839 char firmware_version[64];
840 char model[256];
841 char model_description[256];
842 };
843 #endif
844
845 #define MAX_PHYS_ITEM_ID_LEN 32
846
847 /* This structure holds a unique identifier to identify some
848 * physical item (port for example) used by a netdevice.
849 */
850 struct netdev_phys_item_id {
851 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
852 unsigned char id_len;
853 };
854
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)855 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
856 struct netdev_phys_item_id *b)
857 {
858 return a->id_len == b->id_len &&
859 memcmp(a->id, b->id, a->id_len) == 0;
860 }
861
862 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
863 struct sk_buff *skb,
864 struct net_device *sb_dev);
865
866 enum net_device_path_type {
867 DEV_PATH_ETHERNET = 0,
868 DEV_PATH_VLAN,
869 DEV_PATH_BRIDGE,
870 DEV_PATH_PPPOE,
871 DEV_PATH_DSA,
872 DEV_PATH_MTK_WDMA,
873 };
874
875 struct net_device_path {
876 enum net_device_path_type type;
877 const struct net_device *dev;
878 union {
879 struct {
880 u16 id;
881 __be16 proto;
882 u8 h_dest[ETH_ALEN];
883 } encap;
884 struct {
885 enum {
886 DEV_PATH_BR_VLAN_KEEP,
887 DEV_PATH_BR_VLAN_TAG,
888 DEV_PATH_BR_VLAN_UNTAG,
889 DEV_PATH_BR_VLAN_UNTAG_HW,
890 } vlan_mode;
891 u16 vlan_id;
892 __be16 vlan_proto;
893 } bridge;
894 struct {
895 int port;
896 u16 proto;
897 } dsa;
898 struct {
899 u8 wdma_idx;
900 u8 queue;
901 u16 wcid;
902 u8 bss;
903 u8 amsdu;
904 } mtk_wdma;
905 };
906 };
907
908 #define NET_DEVICE_PATH_STACK_MAX 5
909 #define NET_DEVICE_PATH_VLAN_MAX 2
910
911 struct net_device_path_stack {
912 int num_paths;
913 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX];
914 };
915
916 struct net_device_path_ctx {
917 const struct net_device *dev;
918 u8 daddr[ETH_ALEN];
919
920 int num_vlans;
921 struct {
922 u16 id;
923 __be16 proto;
924 } vlan[NET_DEVICE_PATH_VLAN_MAX];
925 };
926
927 enum tc_setup_type {
928 TC_QUERY_CAPS,
929 TC_SETUP_QDISC_MQPRIO,
930 TC_SETUP_CLSU32,
931 TC_SETUP_CLSFLOWER,
932 TC_SETUP_CLSMATCHALL,
933 TC_SETUP_CLSBPF,
934 TC_SETUP_BLOCK,
935 TC_SETUP_QDISC_CBS,
936 TC_SETUP_QDISC_RED,
937 TC_SETUP_QDISC_PRIO,
938 TC_SETUP_QDISC_MQ,
939 TC_SETUP_QDISC_ETF,
940 TC_SETUP_ROOT_QDISC,
941 TC_SETUP_QDISC_GRED,
942 TC_SETUP_QDISC_TAPRIO,
943 TC_SETUP_FT,
944 TC_SETUP_QDISC_ETS,
945 TC_SETUP_QDISC_TBF,
946 TC_SETUP_QDISC_FIFO,
947 TC_SETUP_QDISC_HTB,
948 TC_SETUP_ACT,
949 };
950
951 /* These structures hold the attributes of bpf state that are being passed
952 * to the netdevice through the bpf op.
953 */
954 enum bpf_netdev_command {
955 /* Set or clear a bpf program used in the earliest stages of packet
956 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
957 * is responsible for calling bpf_prog_put on any old progs that are
958 * stored. In case of error, the callee need not release the new prog
959 * reference, but on success it takes ownership and must bpf_prog_put
960 * when it is no longer used.
961 */
962 XDP_SETUP_PROG,
963 XDP_SETUP_PROG_HW,
964 /* BPF program for offload callbacks, invoked at program load time. */
965 BPF_OFFLOAD_MAP_ALLOC,
966 BPF_OFFLOAD_MAP_FREE,
967 XDP_SETUP_XSK_POOL,
968 };
969
970 struct bpf_prog_offload_ops;
971 struct netlink_ext_ack;
972 struct xdp_umem;
973 struct xdp_dev_bulk_queue;
974 struct bpf_xdp_link;
975
976 enum bpf_xdp_mode {
977 XDP_MODE_SKB = 0,
978 XDP_MODE_DRV = 1,
979 XDP_MODE_HW = 2,
980 __MAX_XDP_MODE
981 };
982
983 struct bpf_xdp_entity {
984 struct bpf_prog *prog;
985 struct bpf_xdp_link *link;
986 };
987
988 struct netdev_bpf {
989 enum bpf_netdev_command command;
990 union {
991 /* XDP_SETUP_PROG */
992 struct {
993 u32 flags;
994 struct bpf_prog *prog;
995 struct netlink_ext_ack *extack;
996 };
997 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
998 struct {
999 struct bpf_offloaded_map *offmap;
1000 };
1001 /* XDP_SETUP_XSK_POOL */
1002 struct {
1003 struct xsk_buff_pool *pool;
1004 u16 queue_id;
1005 } xsk;
1006 };
1007 };
1008
1009 /* Flags for ndo_xsk_wakeup. */
1010 #define XDP_WAKEUP_RX (1 << 0)
1011 #define XDP_WAKEUP_TX (1 << 1)
1012
1013 #ifdef CONFIG_XFRM_OFFLOAD
1014 struct xfrmdev_ops {
1015 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1016 void (*xdo_dev_state_delete) (struct xfrm_state *x);
1017 void (*xdo_dev_state_free) (struct xfrm_state *x);
1018 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
1019 struct xfrm_state *x);
1020 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1021 void (*xdo_dev_state_update_stats) (struct xfrm_state *x);
1022 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1023 void (*xdo_dev_policy_delete) (struct xfrm_policy *x);
1024 void (*xdo_dev_policy_free) (struct xfrm_policy *x);
1025 };
1026 #endif
1027
1028 struct dev_ifalias {
1029 struct rcu_head rcuhead;
1030 char ifalias[];
1031 };
1032
1033 struct devlink;
1034 struct tlsdev_ops;
1035
1036 struct netdev_net_notifier {
1037 struct list_head list;
1038 struct notifier_block *nb;
1039 };
1040
1041 /*
1042 * This structure defines the management hooks for network devices.
1043 * The following hooks can be defined; unless noted otherwise, they are
1044 * optional and can be filled with a null pointer.
1045 *
1046 * int (*ndo_init)(struct net_device *dev);
1047 * This function is called once when a network device is registered.
1048 * The network device can use this for any late stage initialization
1049 * or semantic validation. It can fail with an error code which will
1050 * be propagated back to register_netdev.
1051 *
1052 * void (*ndo_uninit)(struct net_device *dev);
1053 * This function is called when device is unregistered or when registration
1054 * fails. It is not called if init fails.
1055 *
1056 * int (*ndo_open)(struct net_device *dev);
1057 * This function is called when a network device transitions to the up
1058 * state.
1059 *
1060 * int (*ndo_stop)(struct net_device *dev);
1061 * This function is called when a network device transitions to the down
1062 * state.
1063 *
1064 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1065 * struct net_device *dev);
1066 * Called when a packet needs to be transmitted.
1067 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
1068 * the queue before that can happen; it's for obsolete devices and weird
1069 * corner cases, but the stack really does a non-trivial amount
1070 * of useless work if you return NETDEV_TX_BUSY.
1071 * Required; cannot be NULL.
1072 *
1073 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1074 * struct net_device *dev
1075 * netdev_features_t features);
1076 * Called by core transmit path to determine if device is capable of
1077 * performing offload operations on a given packet. This is to give
1078 * the device an opportunity to implement any restrictions that cannot
1079 * be otherwise expressed by feature flags. The check is called with
1080 * the set of features that the stack has calculated and it returns
1081 * those the driver believes to be appropriate.
1082 *
1083 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1084 * struct net_device *sb_dev);
1085 * Called to decide which queue to use when device supports multiple
1086 * transmit queues.
1087 *
1088 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1089 * This function is called to allow device receiver to make
1090 * changes to configuration when multicast or promiscuous is enabled.
1091 *
1092 * void (*ndo_set_rx_mode)(struct net_device *dev);
1093 * This function is called device changes address list filtering.
1094 * If driver handles unicast address filtering, it should set
1095 * IFF_UNICAST_FLT in its priv_flags.
1096 *
1097 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1098 * This function is called when the Media Access Control address
1099 * needs to be changed. If this interface is not defined, the
1100 * MAC address can not be changed.
1101 *
1102 * int (*ndo_validate_addr)(struct net_device *dev);
1103 * Test if Media Access Control address is valid for the device.
1104 *
1105 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1106 * Old-style ioctl entry point. This is used internally by the
1107 * ieee802154 subsystem but is no longer called by the device
1108 * ioctl handler.
1109 *
1110 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1111 * Used by the bonding driver for its device specific ioctls:
1112 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1113 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1114 *
1115 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1116 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1117 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1118 *
1119 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1120 * Used to set network devices bus interface parameters. This interface
1121 * is retained for legacy reasons; new devices should use the bus
1122 * interface (PCI) for low level management.
1123 *
1124 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1125 * Called when a user wants to change the Maximum Transfer Unit
1126 * of a device.
1127 *
1128 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1129 * Callback used when the transmitter has not made any progress
1130 * for dev->watchdog ticks.
1131 *
1132 * void (*ndo_get_stats64)(struct net_device *dev,
1133 * struct rtnl_link_stats64 *storage);
1134 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1135 * Called when a user wants to get the network device usage
1136 * statistics. Drivers must do one of the following:
1137 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1138 * rtnl_link_stats64 structure passed by the caller.
1139 * 2. Define @ndo_get_stats to update a net_device_stats structure
1140 * (which should normally be dev->stats) and return a pointer to
1141 * it. The structure may be changed asynchronously only if each
1142 * field is written atomically.
1143 * 3. Update dev->stats asynchronously and atomically, and define
1144 * neither operation.
1145 *
1146 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1147 * Return true if this device supports offload stats of this attr_id.
1148 *
1149 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1150 * void *attr_data)
1151 * Get statistics for offload operations by attr_id. Write it into the
1152 * attr_data pointer.
1153 *
1154 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1155 * If device supports VLAN filtering this function is called when a
1156 * VLAN id is registered.
1157 *
1158 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1159 * If device supports VLAN filtering this function is called when a
1160 * VLAN id is unregistered.
1161 *
1162 * void (*ndo_poll_controller)(struct net_device *dev);
1163 *
1164 * SR-IOV management functions.
1165 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1166 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1167 * u8 qos, __be16 proto);
1168 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1169 * int max_tx_rate);
1170 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1171 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1172 * int (*ndo_get_vf_config)(struct net_device *dev,
1173 * int vf, struct ifla_vf_info *ivf);
1174 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1175 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1176 * struct nlattr *port[]);
1177 *
1178 * Enable or disable the VF ability to query its RSS Redirection Table and
1179 * Hash Key. This is needed since on some devices VF share this information
1180 * with PF and querying it may introduce a theoretical security risk.
1181 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1182 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1183 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1184 * void *type_data);
1185 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1186 * This is always called from the stack with the rtnl lock held and netif
1187 * tx queues stopped. This allows the netdevice to perform queue
1188 * management safely.
1189 *
1190 * Fiber Channel over Ethernet (FCoE) offload functions.
1191 * int (*ndo_fcoe_enable)(struct net_device *dev);
1192 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1193 * so the underlying device can perform whatever needed configuration or
1194 * initialization to support acceleration of FCoE traffic.
1195 *
1196 * int (*ndo_fcoe_disable)(struct net_device *dev);
1197 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1198 * so the underlying device can perform whatever needed clean-ups to
1199 * stop supporting acceleration of FCoE traffic.
1200 *
1201 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1202 * struct scatterlist *sgl, unsigned int sgc);
1203 * Called when the FCoE Initiator wants to initialize an I/O that
1204 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1205 * perform necessary setup and returns 1 to indicate the device is set up
1206 * successfully to perform DDP on this I/O, otherwise this returns 0.
1207 *
1208 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1209 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1210 * indicated by the FC exchange id 'xid', so the underlying device can
1211 * clean up and reuse resources for later DDP requests.
1212 *
1213 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1214 * struct scatterlist *sgl, unsigned int sgc);
1215 * Called when the FCoE Target wants to initialize an I/O that
1216 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1217 * perform necessary setup and returns 1 to indicate the device is set up
1218 * successfully to perform DDP on this I/O, otherwise this returns 0.
1219 *
1220 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1221 * struct netdev_fcoe_hbainfo *hbainfo);
1222 * Called when the FCoE Protocol stack wants information on the underlying
1223 * device. This information is utilized by the FCoE protocol stack to
1224 * register attributes with Fiber Channel management service as per the
1225 * FC-GS Fabric Device Management Information(FDMI) specification.
1226 *
1227 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1228 * Called when the underlying device wants to override default World Wide
1229 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1230 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1231 * protocol stack to use.
1232 *
1233 * RFS acceleration.
1234 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1235 * u16 rxq_index, u32 flow_id);
1236 * Set hardware filter for RFS. rxq_index is the target queue index;
1237 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1238 * Return the filter ID on success, or a negative error code.
1239 *
1240 * Slave management functions (for bridge, bonding, etc).
1241 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1242 * Called to make another netdev an underling.
1243 *
1244 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1245 * Called to release previously enslaved netdev.
1246 *
1247 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1248 * struct sk_buff *skb,
1249 * bool all_slaves);
1250 * Get the xmit slave of master device. If all_slaves is true, function
1251 * assume all the slaves can transmit.
1252 *
1253 * Feature/offload setting functions.
1254 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1255 * netdev_features_t features);
1256 * Adjusts the requested feature flags according to device-specific
1257 * constraints, and returns the resulting flags. Must not modify
1258 * the device state.
1259 *
1260 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1261 * Called to update device configuration to new features. Passed
1262 * feature set might be less than what was returned by ndo_fix_features()).
1263 * Must return >0 or -errno if it changed dev->features itself.
1264 *
1265 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1266 * struct net_device *dev,
1267 * const unsigned char *addr, u16 vid, u16 flags,
1268 * bool *notified, struct netlink_ext_ack *extack);
1269 * Adds an FDB entry to dev for addr.
1270 * Callee shall set *notified to true if it sent any appropriate
1271 * notification(s). Otherwise core will send a generic one.
1272 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1273 * struct net_device *dev,
1274 * const unsigned char *addr, u16 vid
1275 * bool *notified, struct netlink_ext_ack *extack);
1276 * Deletes the FDB entry from dev corresponding to addr.
1277 * Callee shall set *notified to true if it sent any appropriate
1278 * notification(s). Otherwise core will send a generic one.
1279 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1280 * struct netlink_ext_ack *extack);
1281 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1282 * struct net_device *dev, struct net_device *filter_dev,
1283 * int *idx)
1284 * Used to add FDB entries to dump requests. Implementers should add
1285 * entries to skb and update idx with the number of entries.
1286 *
1287 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1288 * u16 nlmsg_flags, struct netlink_ext_ack *extack);
1289 * Adds an MDB entry to dev.
1290 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1291 * struct netlink_ext_ack *extack);
1292 * Deletes the MDB entry from dev.
1293 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1294 * struct netlink_ext_ack *extack);
1295 * Bulk deletes MDB entries from dev.
1296 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1297 * struct netlink_callback *cb);
1298 * Dumps MDB entries from dev. The first argument (marker) in the netlink
1299 * callback is used by core rtnetlink code.
1300 *
1301 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1302 * u16 flags, struct netlink_ext_ack *extack)
1303 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1304 * struct net_device *dev, u32 filter_mask,
1305 * int nlflags)
1306 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1307 * u16 flags);
1308 *
1309 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1310 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1311 * which do not represent real hardware may define this to allow their
1312 * userspace components to manage their virtual carrier state. Devices
1313 * that determine carrier state from physical hardware properties (eg
1314 * network cables) or protocol-dependent mechanisms (eg
1315 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1316 *
1317 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1318 * struct netdev_phys_item_id *ppid);
1319 * Called to get ID of physical port of this device. If driver does
1320 * not implement this, it is assumed that the hw is not able to have
1321 * multiple net devices on single physical port.
1322 *
1323 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1324 * struct netdev_phys_item_id *ppid)
1325 * Called to get the parent ID of the physical port of this device.
1326 *
1327 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1328 * struct net_device *dev)
1329 * Called by upper layer devices to accelerate switching or other
1330 * station functionality into hardware. 'pdev is the lowerdev
1331 * to use for the offload and 'dev' is the net device that will
1332 * back the offload. Returns a pointer to the private structure
1333 * the upper layer will maintain.
1334 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1335 * Called by upper layer device to delete the station created
1336 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1337 * the station and priv is the structure returned by the add
1338 * operation.
1339 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1340 * int queue_index, u32 maxrate);
1341 * Called when a user wants to set a max-rate limitation of specific
1342 * TX queue.
1343 * int (*ndo_get_iflink)(const struct net_device *dev);
1344 * Called to get the iflink value of this device.
1345 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1346 * This function is used to get egress tunnel information for given skb.
1347 * This is useful for retrieving outer tunnel header parameters while
1348 * sampling packet.
1349 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1350 * This function is used to specify the headroom that the skb must
1351 * consider when allocation skb during packet reception. Setting
1352 * appropriate rx headroom value allows avoiding skb head copy on
1353 * forward. Setting a negative value resets the rx headroom to the
1354 * default value.
1355 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1356 * This function is used to set or query state related to XDP on the
1357 * netdevice and manage BPF offload. See definition of
1358 * enum bpf_netdev_command for details.
1359 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1360 * u32 flags);
1361 * This function is used to submit @n XDP packets for transmit on a
1362 * netdevice. Returns number of frames successfully transmitted, frames
1363 * that got dropped are freed/returned via xdp_return_frame().
1364 * Returns negative number, means general error invoking ndo, meaning
1365 * no frames were xmit'ed and core-caller will free all frames.
1366 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1367 * struct xdp_buff *xdp);
1368 * Get the xmit slave of master device based on the xdp_buff.
1369 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1370 * This function is used to wake up the softirq, ksoftirqd or kthread
1371 * responsible for sending and/or receiving packets on a specific
1372 * queue id bound to an AF_XDP socket. The flags field specifies if
1373 * only RX, only Tx, or both should be woken up using the flags
1374 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1375 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1376 * int cmd);
1377 * Add, change, delete or get information on an IPv4 tunnel.
1378 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1379 * If a device is paired with a peer device, return the peer instance.
1380 * The caller must be under RCU read context.
1381 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1382 * Get the forwarding path to reach the real device from the HW destination address
1383 * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1384 * const struct skb_shared_hwtstamps *hwtstamps,
1385 * bool cycles);
1386 * Get hardware timestamp based on normal/adjustable time or free running
1387 * cycle counter. This function is required if physical clock supports a
1388 * free running cycle counter.
1389 *
1390 * int (*ndo_hwtstamp_get)(struct net_device *dev,
1391 * struct kernel_hwtstamp_config *kernel_config);
1392 * Get the currently configured hardware timestamping parameters for the
1393 * NIC device.
1394 *
1395 * int (*ndo_hwtstamp_set)(struct net_device *dev,
1396 * struct kernel_hwtstamp_config *kernel_config,
1397 * struct netlink_ext_ack *extack);
1398 * Change the hardware timestamping parameters for NIC device.
1399 */
1400 struct net_device_ops {
1401 int (*ndo_init)(struct net_device *dev);
1402 void (*ndo_uninit)(struct net_device *dev);
1403 int (*ndo_open)(struct net_device *dev);
1404 int (*ndo_stop)(struct net_device *dev);
1405 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1406 struct net_device *dev);
1407 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1408 struct net_device *dev,
1409 netdev_features_t features);
1410 u16 (*ndo_select_queue)(struct net_device *dev,
1411 struct sk_buff *skb,
1412 struct net_device *sb_dev);
1413 void (*ndo_change_rx_flags)(struct net_device *dev,
1414 int flags);
1415 void (*ndo_set_rx_mode)(struct net_device *dev);
1416 int (*ndo_set_mac_address)(struct net_device *dev,
1417 void *addr);
1418 int (*ndo_validate_addr)(struct net_device *dev);
1419 int (*ndo_do_ioctl)(struct net_device *dev,
1420 struct ifreq *ifr, int cmd);
1421 int (*ndo_eth_ioctl)(struct net_device *dev,
1422 struct ifreq *ifr, int cmd);
1423 int (*ndo_siocbond)(struct net_device *dev,
1424 struct ifreq *ifr, int cmd);
1425 int (*ndo_siocwandev)(struct net_device *dev,
1426 struct if_settings *ifs);
1427 int (*ndo_siocdevprivate)(struct net_device *dev,
1428 struct ifreq *ifr,
1429 void __user *data, int cmd);
1430 int (*ndo_set_config)(struct net_device *dev,
1431 struct ifmap *map);
1432 int (*ndo_change_mtu)(struct net_device *dev,
1433 int new_mtu);
1434 int (*ndo_neigh_setup)(struct net_device *dev,
1435 struct neigh_parms *);
1436 void (*ndo_tx_timeout) (struct net_device *dev,
1437 unsigned int txqueue);
1438
1439 void (*ndo_get_stats64)(struct net_device *dev,
1440 struct rtnl_link_stats64 *storage);
1441 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1442 int (*ndo_get_offload_stats)(int attr_id,
1443 const struct net_device *dev,
1444 void *attr_data);
1445 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1446
1447 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1448 __be16 proto, u16 vid);
1449 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1450 __be16 proto, u16 vid);
1451 #ifdef CONFIG_NET_POLL_CONTROLLER
1452 void (*ndo_poll_controller)(struct net_device *dev);
1453 int (*ndo_netpoll_setup)(struct net_device *dev);
1454 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1455 #endif
1456 int (*ndo_set_vf_mac)(struct net_device *dev,
1457 int queue, u8 *mac);
1458 int (*ndo_set_vf_vlan)(struct net_device *dev,
1459 int queue, u16 vlan,
1460 u8 qos, __be16 proto);
1461 int (*ndo_set_vf_rate)(struct net_device *dev,
1462 int vf, int min_tx_rate,
1463 int max_tx_rate);
1464 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1465 int vf, bool setting);
1466 int (*ndo_set_vf_trust)(struct net_device *dev,
1467 int vf, bool setting);
1468 int (*ndo_get_vf_config)(struct net_device *dev,
1469 int vf,
1470 struct ifla_vf_info *ivf);
1471 int (*ndo_set_vf_link_state)(struct net_device *dev,
1472 int vf, int link_state);
1473 int (*ndo_get_vf_stats)(struct net_device *dev,
1474 int vf,
1475 struct ifla_vf_stats
1476 *vf_stats);
1477 int (*ndo_set_vf_port)(struct net_device *dev,
1478 int vf,
1479 struct nlattr *port[]);
1480 int (*ndo_get_vf_port)(struct net_device *dev,
1481 int vf, struct sk_buff *skb);
1482 int (*ndo_get_vf_guid)(struct net_device *dev,
1483 int vf,
1484 struct ifla_vf_guid *node_guid,
1485 struct ifla_vf_guid *port_guid);
1486 int (*ndo_set_vf_guid)(struct net_device *dev,
1487 int vf, u64 guid,
1488 int guid_type);
1489 int (*ndo_set_vf_rss_query_en)(
1490 struct net_device *dev,
1491 int vf, bool setting);
1492 int (*ndo_setup_tc)(struct net_device *dev,
1493 enum tc_setup_type type,
1494 void *type_data);
1495 #if IS_ENABLED(CONFIG_FCOE)
1496 int (*ndo_fcoe_enable)(struct net_device *dev);
1497 int (*ndo_fcoe_disable)(struct net_device *dev);
1498 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1499 u16 xid,
1500 struct scatterlist *sgl,
1501 unsigned int sgc);
1502 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1503 u16 xid);
1504 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1505 u16 xid,
1506 struct scatterlist *sgl,
1507 unsigned int sgc);
1508 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1509 struct netdev_fcoe_hbainfo *hbainfo);
1510 #endif
1511
1512 #if IS_ENABLED(CONFIG_LIBFCOE)
1513 #define NETDEV_FCOE_WWNN 0
1514 #define NETDEV_FCOE_WWPN 1
1515 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1516 u64 *wwn, int type);
1517 #endif
1518
1519 #ifdef CONFIG_RFS_ACCEL
1520 int (*ndo_rx_flow_steer)(struct net_device *dev,
1521 const struct sk_buff *skb,
1522 u16 rxq_index,
1523 u32 flow_id);
1524 #endif
1525 int (*ndo_add_slave)(struct net_device *dev,
1526 struct net_device *slave_dev,
1527 struct netlink_ext_ack *extack);
1528 int (*ndo_del_slave)(struct net_device *dev,
1529 struct net_device *slave_dev);
1530 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1531 struct sk_buff *skb,
1532 bool all_slaves);
1533 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev,
1534 struct sock *sk);
1535 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1536 netdev_features_t features);
1537 int (*ndo_set_features)(struct net_device *dev,
1538 netdev_features_t features);
1539 int (*ndo_neigh_construct)(struct net_device *dev,
1540 struct neighbour *n);
1541 void (*ndo_neigh_destroy)(struct net_device *dev,
1542 struct neighbour *n);
1543
1544 int (*ndo_fdb_add)(struct ndmsg *ndm,
1545 struct nlattr *tb[],
1546 struct net_device *dev,
1547 const unsigned char *addr,
1548 u16 vid,
1549 u16 flags,
1550 bool *notified,
1551 struct netlink_ext_ack *extack);
1552 int (*ndo_fdb_del)(struct ndmsg *ndm,
1553 struct nlattr *tb[],
1554 struct net_device *dev,
1555 const unsigned char *addr,
1556 u16 vid,
1557 bool *notified,
1558 struct netlink_ext_ack *extack);
1559 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1560 struct net_device *dev,
1561 struct netlink_ext_ack *extack);
1562 int (*ndo_fdb_dump)(struct sk_buff *skb,
1563 struct netlink_callback *cb,
1564 struct net_device *dev,
1565 struct net_device *filter_dev,
1566 int *idx);
1567 int (*ndo_fdb_get)(struct sk_buff *skb,
1568 struct nlattr *tb[],
1569 struct net_device *dev,
1570 const unsigned char *addr,
1571 u16 vid, u32 portid, u32 seq,
1572 struct netlink_ext_ack *extack);
1573 int (*ndo_mdb_add)(struct net_device *dev,
1574 struct nlattr *tb[],
1575 u16 nlmsg_flags,
1576 struct netlink_ext_ack *extack);
1577 int (*ndo_mdb_del)(struct net_device *dev,
1578 struct nlattr *tb[],
1579 struct netlink_ext_ack *extack);
1580 int (*ndo_mdb_del_bulk)(struct net_device *dev,
1581 struct nlattr *tb[],
1582 struct netlink_ext_ack *extack);
1583 int (*ndo_mdb_dump)(struct net_device *dev,
1584 struct sk_buff *skb,
1585 struct netlink_callback *cb);
1586 int (*ndo_mdb_get)(struct net_device *dev,
1587 struct nlattr *tb[], u32 portid,
1588 u32 seq,
1589 struct netlink_ext_ack *extack);
1590 int (*ndo_bridge_setlink)(struct net_device *dev,
1591 struct nlmsghdr *nlh,
1592 u16 flags,
1593 struct netlink_ext_ack *extack);
1594 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1595 u32 pid, u32 seq,
1596 struct net_device *dev,
1597 u32 filter_mask,
1598 int nlflags);
1599 int (*ndo_bridge_dellink)(struct net_device *dev,
1600 struct nlmsghdr *nlh,
1601 u16 flags);
1602 int (*ndo_change_carrier)(struct net_device *dev,
1603 bool new_carrier);
1604 int (*ndo_get_phys_port_id)(struct net_device *dev,
1605 struct netdev_phys_item_id *ppid);
1606 int (*ndo_get_port_parent_id)(struct net_device *dev,
1607 struct netdev_phys_item_id *ppid);
1608 int (*ndo_get_phys_port_name)(struct net_device *dev,
1609 char *name, size_t len);
1610 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1611 struct net_device *dev);
1612 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1613 void *priv);
1614
1615 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1616 int queue_index,
1617 u32 maxrate);
1618 int (*ndo_get_iflink)(const struct net_device *dev);
1619 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1620 struct sk_buff *skb);
1621 void (*ndo_set_rx_headroom)(struct net_device *dev,
1622 int needed_headroom);
1623 int (*ndo_bpf)(struct net_device *dev,
1624 struct netdev_bpf *bpf);
1625 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1626 struct xdp_frame **xdp,
1627 u32 flags);
1628 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1629 struct xdp_buff *xdp);
1630 int (*ndo_xsk_wakeup)(struct net_device *dev,
1631 u32 queue_id, u32 flags);
1632 int (*ndo_tunnel_ctl)(struct net_device *dev,
1633 struct ip_tunnel_parm_kern *p,
1634 int cmd);
1635 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1636 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1637 struct net_device_path *path);
1638 ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1639 const struct skb_shared_hwtstamps *hwtstamps,
1640 bool cycles);
1641 int (*ndo_hwtstamp_get)(struct net_device *dev,
1642 struct kernel_hwtstamp_config *kernel_config);
1643 int (*ndo_hwtstamp_set)(struct net_device *dev,
1644 struct kernel_hwtstamp_config *kernel_config,
1645 struct netlink_ext_ack *extack);
1646
1647 #if IS_ENABLED(CONFIG_NET_SHAPER)
1648 /**
1649 * @net_shaper_ops: Device shaping offload operations
1650 * see include/net/net_shapers.h
1651 */
1652 const struct net_shaper_ops *net_shaper_ops;
1653 #endif
1654 };
1655
1656 /**
1657 * enum netdev_priv_flags - &struct net_device priv_flags
1658 *
1659 * These are the &struct net_device, they are only set internally
1660 * by drivers and used in the kernel. These flags are invisible to
1661 * userspace; this means that the order of these flags can change
1662 * during any kernel release.
1663 *
1664 * You should add bitfield booleans after either net_device::priv_flags
1665 * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1666 *
1667 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1668 * @IFF_EBRIDGE: Ethernet bridging device
1669 * @IFF_BONDING: bonding master or slave
1670 * @IFF_ISATAP: ISATAP interface (RFC4214)
1671 * @IFF_WAN_HDLC: WAN HDLC device
1672 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1673 * release skb->dst
1674 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1675 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1676 * @IFF_MACVLAN_PORT: device used as macvlan port
1677 * @IFF_BRIDGE_PORT: device used as bridge port
1678 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1679 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1680 * @IFF_UNICAST_FLT: Supports unicast filtering
1681 * @IFF_TEAM_PORT: device used as team port
1682 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1683 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1684 * change when it's running
1685 * @IFF_MACVLAN: Macvlan device
1686 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1687 * underlying stacked devices
1688 * @IFF_L3MDEV_MASTER: device is an L3 master device
1689 * @IFF_NO_QUEUE: device can run without qdisc attached
1690 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1691 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1692 * @IFF_TEAM: device is a team device
1693 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1694 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1695 * entity (i.e. the master device for bridged veth)
1696 * @IFF_MACSEC: device is a MACsec device
1697 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1698 * @IFF_FAILOVER: device is a failover master device
1699 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1700 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1701 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1702 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1703 * skb_headlen(skb) == 0 (data starts from frag0)
1704 */
1705 enum netdev_priv_flags {
1706 IFF_802_1Q_VLAN = 1<<0,
1707 IFF_EBRIDGE = 1<<1,
1708 IFF_BONDING = 1<<2,
1709 IFF_ISATAP = 1<<3,
1710 IFF_WAN_HDLC = 1<<4,
1711 IFF_XMIT_DST_RELEASE = 1<<5,
1712 IFF_DONT_BRIDGE = 1<<6,
1713 IFF_DISABLE_NETPOLL = 1<<7,
1714 IFF_MACVLAN_PORT = 1<<8,
1715 IFF_BRIDGE_PORT = 1<<9,
1716 IFF_OVS_DATAPATH = 1<<10,
1717 IFF_TX_SKB_SHARING = 1<<11,
1718 IFF_UNICAST_FLT = 1<<12,
1719 IFF_TEAM_PORT = 1<<13,
1720 IFF_SUPP_NOFCS = 1<<14,
1721 IFF_LIVE_ADDR_CHANGE = 1<<15,
1722 IFF_MACVLAN = 1<<16,
1723 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1724 IFF_L3MDEV_MASTER = 1<<18,
1725 IFF_NO_QUEUE = 1<<19,
1726 IFF_OPENVSWITCH = 1<<20,
1727 IFF_L3MDEV_SLAVE = 1<<21,
1728 IFF_TEAM = 1<<22,
1729 IFF_RXFH_CONFIGURED = 1<<23,
1730 IFF_PHONY_HEADROOM = 1<<24,
1731 IFF_MACSEC = 1<<25,
1732 IFF_NO_RX_HANDLER = 1<<26,
1733 IFF_FAILOVER = 1<<27,
1734 IFF_FAILOVER_SLAVE = 1<<28,
1735 IFF_L3MDEV_RX_HANDLER = 1<<29,
1736 IFF_NO_ADDRCONF = BIT_ULL(30),
1737 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31),
1738 };
1739
1740 /* Specifies the type of the struct net_device::ml_priv pointer */
1741 enum netdev_ml_priv_type {
1742 ML_PRIV_NONE,
1743 ML_PRIV_CAN,
1744 };
1745
1746 enum netdev_stat_type {
1747 NETDEV_PCPU_STAT_NONE,
1748 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1749 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1750 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1751 };
1752
1753 enum netdev_reg_state {
1754 NETREG_UNINITIALIZED = 0,
1755 NETREG_REGISTERED, /* completed register_netdevice */
1756 NETREG_UNREGISTERING, /* called unregister_netdevice */
1757 NETREG_UNREGISTERED, /* completed unregister todo */
1758 NETREG_RELEASED, /* called free_netdev */
1759 NETREG_DUMMY, /* dummy device for NAPI poll */
1760 };
1761
1762 /**
1763 * struct net_device - The DEVICE structure.
1764 *
1765 * Actually, this whole structure is a big mistake. It mixes I/O
1766 * data with strictly "high-level" data, and it has to know about
1767 * almost every data structure used in the INET module.
1768 *
1769 * @priv_flags: flags invisible to userspace defined as bits, see
1770 * enum netdev_priv_flags for the definitions
1771 * @lltx: device supports lockless Tx. Deprecated for real HW
1772 * drivers. Mainly used by logical interfaces, such as
1773 * bonding and tunnels
1774 *
1775 * @name: This is the first field of the "visible" part of this structure
1776 * (i.e. as seen by users in the "Space.c" file). It is the name
1777 * of the interface.
1778 *
1779 * @name_node: Name hashlist node
1780 * @ifalias: SNMP alias
1781 * @mem_end: Shared memory end
1782 * @mem_start: Shared memory start
1783 * @base_addr: Device I/O address
1784 * @irq: Device IRQ number
1785 *
1786 * @state: Generic network queuing layer state, see netdev_state_t
1787 * @dev_list: The global list of network devices
1788 * @napi_list: List entry used for polling NAPI devices
1789 * @unreg_list: List entry when we are unregistering the
1790 * device; see the function unregister_netdev
1791 * @close_list: List entry used when we are closing the device
1792 * @ptype_all: Device-specific packet handlers for all protocols
1793 * @ptype_specific: Device-specific, protocol-specific packet handlers
1794 *
1795 * @adj_list: Directly linked devices, like slaves for bonding
1796 * @features: Currently active device features
1797 * @hw_features: User-changeable features
1798 *
1799 * @wanted_features: User-requested features
1800 * @vlan_features: Mask of features inheritable by VLAN devices
1801 *
1802 * @hw_enc_features: Mask of features inherited by encapsulating devices
1803 * This field indicates what encapsulation
1804 * offloads the hardware is capable of doing,
1805 * and drivers will need to set them appropriately.
1806 *
1807 * @mpls_features: Mask of features inheritable by MPLS
1808 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1809 *
1810 * @ifindex: interface index
1811 * @group: The group the device belongs to
1812 *
1813 * @stats: Statistics struct, which was left as a legacy, use
1814 * rtnl_link_stats64 instead
1815 *
1816 * @core_stats: core networking counters,
1817 * do not use this in drivers
1818 * @carrier_up_count: Number of times the carrier has been up
1819 * @carrier_down_count: Number of times the carrier has been down
1820 *
1821 * @wireless_handlers: List of functions to handle Wireless Extensions,
1822 * instead of ioctl,
1823 * see <net/iw_handler.h> for details.
1824 *
1825 * @netdev_ops: Includes several pointers to callbacks,
1826 * if one wants to override the ndo_*() functions
1827 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks.
1828 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks.
1829 * @ethtool_ops: Management operations
1830 * @l3mdev_ops: Layer 3 master device operations
1831 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1832 * discovery handling. Necessary for e.g. 6LoWPAN.
1833 * @xfrmdev_ops: Transformation offload operations
1834 * @tlsdev_ops: Transport Layer Security offload operations
1835 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1836 * of Layer 2 headers.
1837 *
1838 * @flags: Interface flags (a la BSD)
1839 * @xdp_features: XDP capability supported by the device
1840 * @gflags: Global flags ( kept as legacy )
1841 * @priv_len: Size of the ->priv flexible array
1842 * @priv: Flexible array containing private data
1843 * @operstate: RFC2863 operstate
1844 * @link_mode: Mapping policy to operstate
1845 * @if_port: Selectable AUI, TP, ...
1846 * @dma: DMA channel
1847 * @mtu: Interface MTU value
1848 * @min_mtu: Interface Minimum MTU value
1849 * @max_mtu: Interface Maximum MTU value
1850 * @type: Interface hardware type
1851 * @hard_header_len: Maximum hardware header length.
1852 * @min_header_len: Minimum hardware header length
1853 *
1854 * @needed_headroom: Extra headroom the hardware may need, but not in all
1855 * cases can this be guaranteed
1856 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1857 * cases can this be guaranteed. Some cases also use
1858 * LL_MAX_HEADER instead to allocate the skb
1859 *
1860 * interface address info:
1861 *
1862 * @perm_addr: Permanent hw address
1863 * @addr_assign_type: Hw address assignment type
1864 * @addr_len: Hardware address length
1865 * @upper_level: Maximum depth level of upper devices.
1866 * @lower_level: Maximum depth level of lower devices.
1867 * @neigh_priv_len: Used in neigh_alloc()
1868 * @dev_id: Used to differentiate devices that share
1869 * the same link layer address
1870 * @dev_port: Used to differentiate devices that share
1871 * the same function
1872 * @addr_list_lock: XXX: need comments on this one
1873 * @name_assign_type: network interface name assignment type
1874 * @uc_promisc: Counter that indicates promiscuous mode
1875 * has been enabled due to the need to listen to
1876 * additional unicast addresses in a device that
1877 * does not implement ndo_set_rx_mode()
1878 * @uc: unicast mac addresses
1879 * @mc: multicast mac addresses
1880 * @dev_addrs: list of device hw addresses
1881 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1882 * @promiscuity: Number of times the NIC is told to work in
1883 * promiscuous mode; if it becomes 0 the NIC will
1884 * exit promiscuous mode
1885 * @allmulti: Counter, enables or disables allmulticast mode
1886 *
1887 * @vlan_info: VLAN info
1888 * @dsa_ptr: dsa specific data
1889 * @tipc_ptr: TIPC specific data
1890 * @atalk_ptr: AppleTalk link
1891 * @ip_ptr: IPv4 specific data
1892 * @ip6_ptr: IPv6 specific data
1893 * @ax25_ptr: AX.25 specific data
1894 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1895 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1896 * device struct
1897 * @mpls_ptr: mpls_dev struct pointer
1898 * @mctp_ptr: MCTP specific data
1899 *
1900 * @dev_addr: Hw address (before bcast,
1901 * because most packets are unicast)
1902 *
1903 * @_rx: Array of RX queues
1904 * @num_rx_queues: Number of RX queues
1905 * allocated at register_netdev() time
1906 * @real_num_rx_queues: Number of RX queues currently active in device
1907 * @xdp_prog: XDP sockets filter program pointer
1908 *
1909 * @rx_handler: handler for received packets
1910 * @rx_handler_data: XXX: need comments on this one
1911 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing
1912 * @ingress_queue: XXX: need comments on this one
1913 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1914 * @broadcast: hw bcast address
1915 *
1916 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1917 * indexed by RX queue number. Assigned by driver.
1918 * This must only be set if the ndo_rx_flow_steer
1919 * operation is defined
1920 * @index_hlist: Device index hash chain
1921 *
1922 * @_tx: Array of TX queues
1923 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1924 * @real_num_tx_queues: Number of TX queues currently active in device
1925 * @qdisc: Root qdisc from userspace point of view
1926 * @tx_queue_len: Max frames per queue allowed
1927 * @tx_global_lock: XXX: need comments on this one
1928 * @xdp_bulkq: XDP device bulk queue
1929 * @xps_maps: all CPUs/RXQs maps for XPS device
1930 *
1931 * @xps_maps: XXX: need comments on this one
1932 * @tcx_egress: BPF & clsact qdisc specific data for egress processing
1933 * @nf_hooks_egress: netfilter hooks executed for egress packets
1934 * @qdisc_hash: qdisc hash table
1935 * @watchdog_timeo: Represents the timeout that is used by
1936 * the watchdog (see dev_watchdog())
1937 * @watchdog_timer: List of timers
1938 *
1939 * @proto_down_reason: reason a netdev interface is held down
1940 * @pcpu_refcnt: Number of references to this device
1941 * @dev_refcnt: Number of references to this device
1942 * @refcnt_tracker: Tracker directory for tracked references to this device
1943 * @todo_list: Delayed register/unregister
1944 * @link_watch_list: XXX: need comments on this one
1945 *
1946 * @reg_state: Register/unregister state machine
1947 * @dismantle: Device is going to be freed
1948 * @rtnl_link_state: This enum represents the phases of creating
1949 * a new link
1950 *
1951 * @needs_free_netdev: Should unregister perform free_netdev?
1952 * @priv_destructor: Called from unregister
1953 * @npinfo: XXX: need comments on this one
1954 * @nd_net: Network namespace this network device is inside
1955 *
1956 * @ml_priv: Mid-layer private
1957 * @ml_priv_type: Mid-layer private type
1958 *
1959 * @pcpu_stat_type: Type of device statistics which the core should
1960 * allocate/free: none, lstats, tstats, dstats. none
1961 * means the driver is handling statistics allocation/
1962 * freeing internally.
1963 * @lstats: Loopback statistics: packets, bytes
1964 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes
1965 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes
1966 *
1967 * @garp_port: GARP
1968 * @mrp_port: MRP
1969 *
1970 * @dm_private: Drop monitor private
1971 *
1972 * @dev: Class/net/name entry
1973 * @sysfs_groups: Space for optional device, statistics and wireless
1974 * sysfs groups
1975 *
1976 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1977 * @rtnl_link_ops: Rtnl_link_ops
1978 * @stat_ops: Optional ops for queue-aware statistics
1979 * @queue_mgmt_ops: Optional ops for queue management
1980 *
1981 * @gso_max_size: Maximum size of generic segmentation offload
1982 * @tso_max_size: Device (as in HW) limit on the max TSO request size
1983 * @gso_max_segs: Maximum number of segments that can be passed to the
1984 * NIC for GSO
1985 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count
1986 * @gso_ipv4_max_size: Maximum size of generic segmentation offload,
1987 * for IPv4.
1988 *
1989 * @dcbnl_ops: Data Center Bridging netlink ops
1990 * @num_tc: Number of traffic classes in the net device
1991 * @tc_to_txq: XXX: need comments on this one
1992 * @prio_tc_map: XXX: need comments on this one
1993 *
1994 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1995 *
1996 * @priomap: XXX: need comments on this one
1997 * @link_topo: Physical link topology tracking attached PHYs
1998 * @phydev: Physical device may attach itself
1999 * for hardware timestamping
2000 * @sfp_bus: attached &struct sfp_bus structure.
2001 *
2002 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2003 *
2004 * @proto_down: protocol port state information can be sent to the
2005 * switch driver and used to set the phys state of the
2006 * switch port.
2007 *
2008 * @threaded: napi threaded mode is enabled
2009 *
2010 * @irq_affinity_auto: driver wants the core to store and re-assign the IRQ
2011 * affinity. Set by netif_enable_irq_affinity(), then
2012 * the driver must create a persistent napi by
2013 * netif_napi_add_config() and finally bind the napi to
2014 * IRQ (via netif_napi_set_irq()).
2015 *
2016 * @rx_cpu_rmap_auto: driver wants the core to manage the ARFS rmap.
2017 * Set by calling netif_enable_cpu_rmap().
2018 *
2019 * @see_all_hwtstamp_requests: device wants to see calls to
2020 * ndo_hwtstamp_set() for all timestamp requests
2021 * regardless of source, even if those aren't
2022 * HWTSTAMP_SOURCE_NETDEV
2023 * @change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
2024 * @netns_immutable: interface can't change network namespaces
2025 * @fcoe_mtu: device supports maximum FCoE MTU, 2158 bytes
2026 *
2027 * @net_notifier_list: List of per-net netdev notifier block
2028 * that follow this device when it is moved
2029 * to another network namespace.
2030 *
2031 * @macsec_ops: MACsec offloading ops
2032 *
2033 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
2034 * offload capabilities of the device
2035 * @udp_tunnel_nic: UDP tunnel offload state
2036 * @ethtool: ethtool related state
2037 * @xdp_state: stores info on attached XDP BPF programs
2038 *
2039 * @nested_level: Used as a parameter of spin_lock_nested() of
2040 * dev->addr_list_lock.
2041 * @unlink_list: As netif_addr_lock() can be called recursively,
2042 * keep a list of interfaces to be deleted.
2043 * @gro_max_size: Maximum size of aggregated packet in generic
2044 * receive offload (GRO)
2045 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic
2046 * receive offload (GRO), for IPv4.
2047 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP
2048 * zero copy driver
2049 *
2050 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes.
2051 * @linkwatch_dev_tracker: refcount tracker used by linkwatch.
2052 * @watchdog_dev_tracker: refcount tracker used by watchdog.
2053 * @dev_registered_tracker: tracker for reference held while
2054 * registered
2055 * @offload_xstats_l3: L3 HW stats for this netdevice.
2056 *
2057 * @devlink_port: Pointer to related devlink port structure.
2058 * Assigned by a driver before netdev registration using
2059 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2060 * during the time netdevice is registered.
2061 *
2062 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2063 * where the clock is recovered.
2064 *
2065 * @max_pacing_offload_horizon: max EDT offload horizon in nsec.
2066 * @napi_config: An array of napi_config structures containing per-NAPI
2067 * settings.
2068 * @gro_flush_timeout: timeout for GRO layer in NAPI
2069 * @napi_defer_hard_irqs: If not zero, provides a counter that would
2070 * allow to avoid NIC hard IRQ, on busy queues.
2071 *
2072 * @neighbours: List heads pointing to this device's neighbours'
2073 * dev_list, one per address-family.
2074 * @hwprov: Tracks which PTP performs hardware packet time stamping.
2075 *
2076 * FIXME: cleanup struct net_device such that network protocol info
2077 * moves out.
2078 */
2079
2080 struct net_device {
2081 /* Cacheline organization can be found documented in
2082 * Documentation/networking/net_cachelines/net_device.rst.
2083 * Please update the document when adding new fields.
2084 */
2085
2086 /* TX read-mostly hotpath */
2087 __cacheline_group_begin(net_device_read_tx);
2088 struct_group(priv_flags_fast,
2089 unsigned long priv_flags:32;
2090 unsigned long lltx:1;
2091 );
2092 const struct net_device_ops *netdev_ops;
2093 const struct header_ops *header_ops;
2094 struct netdev_queue *_tx;
2095 netdev_features_t gso_partial_features;
2096 unsigned int real_num_tx_queues;
2097 unsigned int gso_max_size;
2098 unsigned int gso_ipv4_max_size;
2099 u16 gso_max_segs;
2100 s16 num_tc;
2101 /* Note : dev->mtu is often read without holding a lock.
2102 * Writers usually hold RTNL.
2103 * It is recommended to use READ_ONCE() to annotate the reads,
2104 * and to use WRITE_ONCE() to annotate the writes.
2105 */
2106 unsigned int mtu;
2107 unsigned short needed_headroom;
2108 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2109 #ifdef CONFIG_XPS
2110 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2111 #endif
2112 #ifdef CONFIG_NETFILTER_EGRESS
2113 struct nf_hook_entries __rcu *nf_hooks_egress;
2114 #endif
2115 #ifdef CONFIG_NET_XGRESS
2116 struct bpf_mprog_entry __rcu *tcx_egress;
2117 #endif
2118 __cacheline_group_end(net_device_read_tx);
2119
2120 /* TXRX read-mostly hotpath */
2121 __cacheline_group_begin(net_device_read_txrx);
2122 union {
2123 struct pcpu_lstats __percpu *lstats;
2124 struct pcpu_sw_netstats __percpu *tstats;
2125 struct pcpu_dstats __percpu *dstats;
2126 };
2127 unsigned long state;
2128 unsigned int flags;
2129 unsigned short hard_header_len;
2130 netdev_features_t features;
2131 struct inet6_dev __rcu *ip6_ptr;
2132 __cacheline_group_end(net_device_read_txrx);
2133
2134 /* RX read-mostly hotpath */
2135 __cacheline_group_begin(net_device_read_rx);
2136 struct bpf_prog __rcu *xdp_prog;
2137 struct list_head ptype_specific;
2138 int ifindex;
2139 unsigned int real_num_rx_queues;
2140 struct netdev_rx_queue *_rx;
2141 unsigned int gro_max_size;
2142 unsigned int gro_ipv4_max_size;
2143 rx_handler_func_t __rcu *rx_handler;
2144 void __rcu *rx_handler_data;
2145 possible_net_t nd_net;
2146 #ifdef CONFIG_NETPOLL
2147 struct netpoll_info __rcu *npinfo;
2148 #endif
2149 #ifdef CONFIG_NET_XGRESS
2150 struct bpf_mprog_entry __rcu *tcx_ingress;
2151 #endif
2152 __cacheline_group_end(net_device_read_rx);
2153
2154 char name[IFNAMSIZ];
2155 struct netdev_name_node *name_node;
2156 struct dev_ifalias __rcu *ifalias;
2157 /*
2158 * I/O specific fields
2159 * FIXME: Merge these and struct ifmap into one
2160 */
2161 unsigned long mem_end;
2162 unsigned long mem_start;
2163 unsigned long base_addr;
2164
2165 /*
2166 * Some hardware also needs these fields (state,dev_list,
2167 * napi_list,unreg_list,close_list) but they are not
2168 * part of the usual set specified in Space.c.
2169 */
2170
2171
2172 struct list_head dev_list;
2173 struct list_head napi_list;
2174 struct list_head unreg_list;
2175 struct list_head close_list;
2176 struct list_head ptype_all;
2177
2178 struct {
2179 struct list_head upper;
2180 struct list_head lower;
2181 } adj_list;
2182
2183 /* Read-mostly cache-line for fast-path access */
2184 xdp_features_t xdp_features;
2185 const struct xdp_metadata_ops *xdp_metadata_ops;
2186 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2187 unsigned short gflags;
2188
2189 unsigned short needed_tailroom;
2190
2191 netdev_features_t hw_features;
2192 netdev_features_t wanted_features;
2193 netdev_features_t vlan_features;
2194 netdev_features_t hw_enc_features;
2195 netdev_features_t mpls_features;
2196
2197 unsigned int min_mtu;
2198 unsigned int max_mtu;
2199 unsigned short type;
2200 unsigned char min_header_len;
2201 unsigned char name_assign_type;
2202
2203 int group;
2204
2205 struct net_device_stats stats; /* not used by modern drivers */
2206
2207 struct net_device_core_stats __percpu *core_stats;
2208
2209 /* Stats to monitor link on/off, flapping */
2210 atomic_t carrier_up_count;
2211 atomic_t carrier_down_count;
2212
2213 #ifdef CONFIG_WIRELESS_EXT
2214 const struct iw_handler_def *wireless_handlers;
2215 #endif
2216 const struct ethtool_ops *ethtool_ops;
2217 #ifdef CONFIG_NET_L3_MASTER_DEV
2218 const struct l3mdev_ops *l3mdev_ops;
2219 #endif
2220 #if IS_ENABLED(CONFIG_IPV6)
2221 const struct ndisc_ops *ndisc_ops;
2222 #endif
2223
2224 #ifdef CONFIG_XFRM_OFFLOAD
2225 const struct xfrmdev_ops *xfrmdev_ops;
2226 #endif
2227
2228 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2229 const struct tlsdev_ops *tlsdev_ops;
2230 #endif
2231
2232 unsigned int operstate;
2233 unsigned char link_mode;
2234
2235 unsigned char if_port;
2236 unsigned char dma;
2237
2238 /* Interface address info. */
2239 unsigned char perm_addr[MAX_ADDR_LEN];
2240 unsigned char addr_assign_type;
2241 unsigned char addr_len;
2242 unsigned char upper_level;
2243 unsigned char lower_level;
2244
2245 unsigned short neigh_priv_len;
2246 unsigned short dev_id;
2247 unsigned short dev_port;
2248 int irq;
2249 u32 priv_len;
2250
2251 spinlock_t addr_list_lock;
2252
2253 struct netdev_hw_addr_list uc;
2254 struct netdev_hw_addr_list mc;
2255 struct netdev_hw_addr_list dev_addrs;
2256
2257 #ifdef CONFIG_SYSFS
2258 struct kset *queues_kset;
2259 #endif
2260 #ifdef CONFIG_LOCKDEP
2261 struct list_head unlink_list;
2262 #endif
2263 unsigned int promiscuity;
2264 unsigned int allmulti;
2265 bool uc_promisc;
2266 #ifdef CONFIG_LOCKDEP
2267 unsigned char nested_level;
2268 #endif
2269
2270
2271 /* Protocol-specific pointers */
2272 struct in_device __rcu *ip_ptr;
2273 /** @fib_nh_head: nexthops associated with this netdev */
2274 struct hlist_head fib_nh_head;
2275
2276 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2277 struct vlan_info __rcu *vlan_info;
2278 #endif
2279 #if IS_ENABLED(CONFIG_NET_DSA)
2280 struct dsa_port *dsa_ptr;
2281 #endif
2282 #if IS_ENABLED(CONFIG_TIPC)
2283 struct tipc_bearer __rcu *tipc_ptr;
2284 #endif
2285 #if IS_ENABLED(CONFIG_ATALK)
2286 void *atalk_ptr;
2287 #endif
2288 #if IS_ENABLED(CONFIG_AX25)
2289 struct ax25_dev __rcu *ax25_ptr;
2290 #endif
2291 #if IS_ENABLED(CONFIG_CFG80211)
2292 struct wireless_dev *ieee80211_ptr;
2293 #endif
2294 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2295 struct wpan_dev *ieee802154_ptr;
2296 #endif
2297 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2298 struct mpls_dev __rcu *mpls_ptr;
2299 #endif
2300 #if IS_ENABLED(CONFIG_MCTP)
2301 struct mctp_dev __rcu *mctp_ptr;
2302 #endif
2303
2304 /*
2305 * Cache lines mostly used on receive path (including eth_type_trans())
2306 */
2307 /* Interface address info used in eth_type_trans() */
2308 const unsigned char *dev_addr;
2309
2310 unsigned int num_rx_queues;
2311 #define GRO_LEGACY_MAX_SIZE 65536u
2312 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2313 * and shinfo->gso_segs is a 16bit field.
2314 */
2315 #define GRO_MAX_SIZE (8 * 65535u)
2316 unsigned int xdp_zc_max_segs;
2317 struct netdev_queue __rcu *ingress_queue;
2318 #ifdef CONFIG_NETFILTER_INGRESS
2319 struct nf_hook_entries __rcu *nf_hooks_ingress;
2320 #endif
2321
2322 unsigned char broadcast[MAX_ADDR_LEN];
2323 #ifdef CONFIG_RFS_ACCEL
2324 struct cpu_rmap *rx_cpu_rmap;
2325 #endif
2326 struct hlist_node index_hlist;
2327
2328 /*
2329 * Cache lines mostly used on transmit path
2330 */
2331 unsigned int num_tx_queues;
2332 struct Qdisc __rcu *qdisc;
2333 unsigned int tx_queue_len;
2334 spinlock_t tx_global_lock;
2335
2336 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2337
2338 #ifdef CONFIG_NET_SCHED
2339 DECLARE_HASHTABLE (qdisc_hash, 4);
2340 #endif
2341 /* These may be needed for future network-power-down code. */
2342 struct timer_list watchdog_timer;
2343 int watchdog_timeo;
2344
2345 u32 proto_down_reason;
2346
2347 struct list_head todo_list;
2348
2349 #ifdef CONFIG_PCPU_DEV_REFCNT
2350 int __percpu *pcpu_refcnt;
2351 #else
2352 refcount_t dev_refcnt;
2353 #endif
2354 struct ref_tracker_dir refcnt_tracker;
2355
2356 struct list_head link_watch_list;
2357
2358 u8 reg_state;
2359
2360 bool dismantle;
2361
2362 enum {
2363 RTNL_LINK_INITIALIZED,
2364 RTNL_LINK_INITIALIZING,
2365 } rtnl_link_state:16;
2366
2367 bool needs_free_netdev;
2368 void (*priv_destructor)(struct net_device *dev);
2369
2370 /* mid-layer private */
2371 void *ml_priv;
2372 enum netdev_ml_priv_type ml_priv_type;
2373
2374 enum netdev_stat_type pcpu_stat_type:8;
2375
2376 #if IS_ENABLED(CONFIG_GARP)
2377 struct garp_port __rcu *garp_port;
2378 #endif
2379 #if IS_ENABLED(CONFIG_MRP)
2380 struct mrp_port __rcu *mrp_port;
2381 #endif
2382 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2383 struct dm_hw_stat_delta __rcu *dm_private;
2384 #endif
2385 struct device dev;
2386 const struct attribute_group *sysfs_groups[4];
2387 const struct attribute_group *sysfs_rx_queue_group;
2388
2389 const struct rtnl_link_ops *rtnl_link_ops;
2390
2391 const struct netdev_stat_ops *stat_ops;
2392
2393 const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2394
2395 /* for setting kernel sock attribute on TCP connection setup */
2396 #define GSO_MAX_SEGS 65535u
2397 #define GSO_LEGACY_MAX_SIZE 65536u
2398 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2399 * and shinfo->gso_segs is a 16bit field.
2400 */
2401 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS)
2402
2403 #define TSO_LEGACY_MAX_SIZE 65536
2404 #define TSO_MAX_SIZE UINT_MAX
2405 unsigned int tso_max_size;
2406 #define TSO_MAX_SEGS U16_MAX
2407 u16 tso_max_segs;
2408
2409 #ifdef CONFIG_DCB
2410 const struct dcbnl_rtnl_ops *dcbnl_ops;
2411 #endif
2412 u8 prio_tc_map[TC_BITMASK + 1];
2413
2414 #if IS_ENABLED(CONFIG_FCOE)
2415 unsigned int fcoe_ddp_xid;
2416 #endif
2417 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2418 struct netprio_map __rcu *priomap;
2419 #endif
2420 struct phy_link_topology *link_topo;
2421 struct phy_device *phydev;
2422 struct sfp_bus *sfp_bus;
2423 struct lock_class_key *qdisc_tx_busylock;
2424 bool proto_down;
2425 bool threaded;
2426 bool irq_affinity_auto;
2427 bool rx_cpu_rmap_auto;
2428
2429 /* priv_flags_slow, ungrouped to save space */
2430 unsigned long see_all_hwtstamp_requests:1;
2431 unsigned long change_proto_down:1;
2432 unsigned long netns_immutable:1;
2433 unsigned long fcoe_mtu:1;
2434
2435 struct list_head net_notifier_list;
2436
2437 #if IS_ENABLED(CONFIG_MACSEC)
2438 /* MACsec management functions */
2439 const struct macsec_ops *macsec_ops;
2440 #endif
2441 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2442 struct udp_tunnel_nic *udp_tunnel_nic;
2443
2444 /** @cfg: net_device queue-related configuration */
2445 struct netdev_config *cfg;
2446 /**
2447 * @cfg_pending: same as @cfg but when device is being actively
2448 * reconfigured includes any changes to the configuration
2449 * requested by the user, but which may or may not be rejected.
2450 */
2451 struct netdev_config *cfg_pending;
2452 struct ethtool_netdev_state *ethtool;
2453
2454 /* protected by rtnl_lock */
2455 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2456
2457 u8 dev_addr_shadow[MAX_ADDR_LEN];
2458 netdevice_tracker linkwatch_dev_tracker;
2459 netdevice_tracker watchdog_dev_tracker;
2460 netdevice_tracker dev_registered_tracker;
2461 struct rtnl_hw_stats64 *offload_xstats_l3;
2462
2463 struct devlink_port *devlink_port;
2464
2465 #if IS_ENABLED(CONFIG_DPLL)
2466 struct dpll_pin __rcu *dpll_pin;
2467 #endif
2468 #if IS_ENABLED(CONFIG_PAGE_POOL)
2469 /** @page_pools: page pools created for this netdevice */
2470 struct hlist_head page_pools;
2471 #endif
2472
2473 /** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2474 struct dim_irq_moder *irq_moder;
2475
2476 u64 max_pacing_offload_horizon;
2477 struct napi_config *napi_config;
2478 unsigned long gro_flush_timeout;
2479 u32 napi_defer_hard_irqs;
2480
2481 /**
2482 * @up: copy of @state's IFF_UP, but safe to read with just @lock.
2483 * May report false negatives while the device is being opened
2484 * or closed (@lock does not protect .ndo_open, or .ndo_close).
2485 */
2486 bool up;
2487
2488 /**
2489 * @request_ops_lock: request the core to run all @netdev_ops and
2490 * @ethtool_ops under the @lock.
2491 */
2492 bool request_ops_lock;
2493
2494 /**
2495 * @lock: netdev-scope lock, protects a small selection of fields.
2496 * Should always be taken using netdev_lock() / netdev_unlock() helpers.
2497 * Drivers are free to use it for other protection.
2498 *
2499 * For the drivers that implement shaper or queue API, the scope
2500 * of this lock is expanded to cover most ndo/queue/ethtool/sysfs
2501 * operations. Drivers may opt-in to this behavior by setting
2502 * @request_ops_lock.
2503 *
2504 * @lock protection mixes with rtnl_lock in multiple ways, fields are
2505 * either:
2506 *
2507 * - simply protected by the instance @lock;
2508 *
2509 * - double protected - writers hold both locks, readers hold either;
2510 *
2511 * - ops protected - protected by the lock held around the NDOs
2512 * and other callbacks, that is the instance lock on devices for
2513 * which netdev_need_ops_lock() returns true, otherwise by rtnl_lock;
2514 *
2515 * - double ops protected - always protected by rtnl_lock but for
2516 * devices for which netdev_need_ops_lock() returns true - also
2517 * the instance lock.
2518 *
2519 * Simply protects:
2520 * @gro_flush_timeout, @napi_defer_hard_irqs, @napi_list,
2521 * @net_shaper_hierarchy, @reg_state, @threaded
2522 *
2523 * Double protects:
2524 * @up
2525 *
2526 * Double ops protects:
2527 * @real_num_rx_queues, @real_num_tx_queues
2528 *
2529 * Also protects some fields in:
2530 * struct napi_struct, struct netdev_queue, struct netdev_rx_queue
2531 *
2532 * Ordering: take after rtnl_lock.
2533 */
2534 struct mutex lock;
2535
2536 #if IS_ENABLED(CONFIG_NET_SHAPER)
2537 /**
2538 * @net_shaper_hierarchy: data tracking the current shaper status
2539 * see include/net/net_shapers.h
2540 */
2541 struct net_shaper_hierarchy *net_shaper_hierarchy;
2542 #endif
2543
2544 struct hlist_head neighbours[NEIGH_NR_TABLES];
2545
2546 struct hwtstamp_provider __rcu *hwprov;
2547
2548 u8 priv[] ____cacheline_aligned
2549 __counted_by(priv_len);
2550 } ____cacheline_aligned;
2551 #define to_net_dev(d) container_of(d, struct net_device, dev)
2552
2553 /*
2554 * Driver should use this to assign devlink port instance to a netdevice
2555 * before it registers the netdevice. Therefore devlink_port is static
2556 * during the netdev lifetime after it is registered.
2557 */
2558 #define SET_NETDEV_DEVLINK_PORT(dev, port) \
2559 ({ \
2560 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \
2561 ((dev)->devlink_port = (port)); \
2562 })
2563
netif_elide_gro(const struct net_device * dev)2564 static inline bool netif_elide_gro(const struct net_device *dev)
2565 {
2566 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2567 return true;
2568 return false;
2569 }
2570
2571 #define NETDEV_ALIGN 32
2572
2573 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2574 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2575 {
2576 return dev->prio_tc_map[prio & TC_BITMASK];
2577 }
2578
2579 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2580 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2581 {
2582 if (tc >= dev->num_tc)
2583 return -EINVAL;
2584
2585 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2586 return 0;
2587 }
2588
2589 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2590 void netdev_reset_tc(struct net_device *dev);
2591 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2592 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2593
2594 static inline
netdev_get_num_tc(struct net_device * dev)2595 int netdev_get_num_tc(struct net_device *dev)
2596 {
2597 return dev->num_tc;
2598 }
2599
net_prefetch(void * p)2600 static inline void net_prefetch(void *p)
2601 {
2602 prefetch(p);
2603 #if L1_CACHE_BYTES < 128
2604 prefetch((u8 *)p + L1_CACHE_BYTES);
2605 #endif
2606 }
2607
net_prefetchw(void * p)2608 static inline void net_prefetchw(void *p)
2609 {
2610 prefetchw(p);
2611 #if L1_CACHE_BYTES < 128
2612 prefetchw((u8 *)p + L1_CACHE_BYTES);
2613 #endif
2614 }
2615
2616 void netdev_unbind_sb_channel(struct net_device *dev,
2617 struct net_device *sb_dev);
2618 int netdev_bind_sb_channel_queue(struct net_device *dev,
2619 struct net_device *sb_dev,
2620 u8 tc, u16 count, u16 offset);
2621 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2622 static inline int netdev_get_sb_channel(struct net_device *dev)
2623 {
2624 return max_t(int, -dev->num_tc, 0);
2625 }
2626
2627 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2628 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2629 unsigned int index)
2630 {
2631 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2632 return &dev->_tx[index];
2633 }
2634
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2635 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2636 const struct sk_buff *skb)
2637 {
2638 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2639 }
2640
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2641 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2642 void (*f)(struct net_device *,
2643 struct netdev_queue *,
2644 void *),
2645 void *arg)
2646 {
2647 unsigned int i;
2648
2649 for (i = 0; i < dev->num_tx_queues; i++)
2650 f(dev, &dev->_tx[i], arg);
2651 }
2652
2653 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2654 struct net_device *sb_dev);
2655 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2656 struct sk_buff *skb,
2657 struct net_device *sb_dev);
2658
2659 /* returns the headroom that the master device needs to take in account
2660 * when forwarding to this dev
2661 */
netdev_get_fwd_headroom(struct net_device * dev)2662 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2663 {
2664 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2665 }
2666
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2667 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2668 {
2669 if (dev->netdev_ops->ndo_set_rx_headroom)
2670 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2671 }
2672
2673 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2674 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2675 {
2676 netdev_set_rx_headroom(dev, -1);
2677 }
2678
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2679 static inline void *netdev_get_ml_priv(struct net_device *dev,
2680 enum netdev_ml_priv_type type)
2681 {
2682 if (dev->ml_priv_type != type)
2683 return NULL;
2684
2685 return dev->ml_priv;
2686 }
2687
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2688 static inline void netdev_set_ml_priv(struct net_device *dev,
2689 void *ml_priv,
2690 enum netdev_ml_priv_type type)
2691 {
2692 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2693 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2694 dev->ml_priv_type, type);
2695 WARN(!dev->ml_priv_type && dev->ml_priv,
2696 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2697
2698 dev->ml_priv = ml_priv;
2699 dev->ml_priv_type = type;
2700 }
2701
2702 /*
2703 * Net namespace inlines
2704 */
2705 static inline
dev_net(const struct net_device * dev)2706 struct net *dev_net(const struct net_device *dev)
2707 {
2708 return read_pnet(&dev->nd_net);
2709 }
2710
2711 static inline
dev_net_rcu(const struct net_device * dev)2712 struct net *dev_net_rcu(const struct net_device *dev)
2713 {
2714 return read_pnet_rcu(&dev->nd_net);
2715 }
2716
2717 static inline
dev_net_set(struct net_device * dev,struct net * net)2718 void dev_net_set(struct net_device *dev, struct net *net)
2719 {
2720 write_pnet(&dev->nd_net, net);
2721 }
2722
2723 /**
2724 * netdev_priv - access network device private data
2725 * @dev: network device
2726 *
2727 * Get network device private data
2728 */
netdev_priv(const struct net_device * dev)2729 static inline void *netdev_priv(const struct net_device *dev)
2730 {
2731 return (void *)dev->priv;
2732 }
2733
2734 /* Set the sysfs physical device reference for the network logical device
2735 * if set prior to registration will cause a symlink during initialization.
2736 */
2737 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2738
2739 /* Set the sysfs device type for the network logical device to allow
2740 * fine-grained identification of different network device types. For
2741 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2742 */
2743 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2744
2745 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2746 enum netdev_queue_type type,
2747 struct napi_struct *napi);
2748
netdev_lock(struct net_device * dev)2749 static inline void netdev_lock(struct net_device *dev)
2750 {
2751 mutex_lock(&dev->lock);
2752 }
2753
netdev_unlock(struct net_device * dev)2754 static inline void netdev_unlock(struct net_device *dev)
2755 {
2756 mutex_unlock(&dev->lock);
2757 }
2758 /* Additional netdev_lock()-related helpers are in net/netdev_lock.h */
2759
2760 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq);
2761
netif_napi_set_irq(struct napi_struct * napi,int irq)2762 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2763 {
2764 netdev_lock(napi->dev);
2765 netif_napi_set_irq_locked(napi, irq);
2766 netdev_unlock(napi->dev);
2767 }
2768
2769 /* Default NAPI poll() weight
2770 * Device drivers are strongly advised to not use bigger value
2771 */
2772 #define NAPI_POLL_WEIGHT 64
2773
2774 void netif_napi_add_weight_locked(struct net_device *dev,
2775 struct napi_struct *napi,
2776 int (*poll)(struct napi_struct *, int),
2777 int weight);
2778
2779 static inline void
netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2780 netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2781 int (*poll)(struct napi_struct *, int), int weight)
2782 {
2783 netdev_lock(dev);
2784 netif_napi_add_weight_locked(dev, napi, poll, weight);
2785 netdev_unlock(dev);
2786 }
2787
2788 /**
2789 * netif_napi_add() - initialize a NAPI context
2790 * @dev: network device
2791 * @napi: NAPI context
2792 * @poll: polling function
2793 *
2794 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2795 * *any* of the other NAPI-related functions.
2796 */
2797 static inline void
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2798 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2799 int (*poll)(struct napi_struct *, int))
2800 {
2801 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2802 }
2803
2804 static inline void
netif_napi_add_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2805 netif_napi_add_locked(struct net_device *dev, struct napi_struct *napi,
2806 int (*poll)(struct napi_struct *, int))
2807 {
2808 netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2809 }
2810
2811 static inline void
netif_napi_add_tx_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2812 netif_napi_add_tx_weight(struct net_device *dev,
2813 struct napi_struct *napi,
2814 int (*poll)(struct napi_struct *, int),
2815 int weight)
2816 {
2817 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2818 netif_napi_add_weight(dev, napi, poll, weight);
2819 }
2820
2821 static inline void
netif_napi_add_config_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int index)2822 netif_napi_add_config_locked(struct net_device *dev, struct napi_struct *napi,
2823 int (*poll)(struct napi_struct *, int), int index)
2824 {
2825 napi->index = index;
2826 napi->config = &dev->napi_config[index];
2827 netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2828 }
2829
2830 /**
2831 * netif_napi_add_config - initialize a NAPI context with persistent config
2832 * @dev: network device
2833 * @napi: NAPI context
2834 * @poll: polling function
2835 * @index: the NAPI index
2836 */
2837 static inline void
netif_napi_add_config(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int index)2838 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2839 int (*poll)(struct napi_struct *, int), int index)
2840 {
2841 netdev_lock(dev);
2842 netif_napi_add_config_locked(dev, napi, poll, index);
2843 netdev_unlock(dev);
2844 }
2845
2846 /**
2847 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2848 * @dev: network device
2849 * @napi: NAPI context
2850 * @poll: polling function
2851 *
2852 * This variant of netif_napi_add() should be used from drivers using NAPI
2853 * to exclusively poll a TX queue.
2854 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2855 */
netif_napi_add_tx(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2856 static inline void netif_napi_add_tx(struct net_device *dev,
2857 struct napi_struct *napi,
2858 int (*poll)(struct napi_struct *, int))
2859 {
2860 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2861 }
2862
2863 void __netif_napi_del_locked(struct napi_struct *napi);
2864
2865 /**
2866 * __netif_napi_del - remove a NAPI context
2867 * @napi: NAPI context
2868 *
2869 * Warning: caller must observe RCU grace period before freeing memory
2870 * containing @napi. Drivers might want to call this helper to combine
2871 * all the needed RCU grace periods into a single one.
2872 */
__netif_napi_del(struct napi_struct * napi)2873 static inline void __netif_napi_del(struct napi_struct *napi)
2874 {
2875 netdev_lock(napi->dev);
2876 __netif_napi_del_locked(napi);
2877 netdev_unlock(napi->dev);
2878 }
2879
netif_napi_del_locked(struct napi_struct * napi)2880 static inline void netif_napi_del_locked(struct napi_struct *napi)
2881 {
2882 __netif_napi_del_locked(napi);
2883 synchronize_net();
2884 }
2885
2886 /**
2887 * netif_napi_del - remove a NAPI context
2888 * @napi: NAPI context
2889 *
2890 * netif_napi_del() removes a NAPI context from the network device NAPI list
2891 */
netif_napi_del(struct napi_struct * napi)2892 static inline void netif_napi_del(struct napi_struct *napi)
2893 {
2894 __netif_napi_del(napi);
2895 synchronize_net();
2896 }
2897
2898 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs);
2899 void netif_set_affinity_auto(struct net_device *dev);
2900
2901 struct packet_type {
2902 __be16 type; /* This is really htons(ether_type). */
2903 bool ignore_outgoing;
2904 struct net_device *dev; /* NULL is wildcarded here */
2905 netdevice_tracker dev_tracker;
2906 int (*func) (struct sk_buff *,
2907 struct net_device *,
2908 struct packet_type *,
2909 struct net_device *);
2910 void (*list_func) (struct list_head *,
2911 struct packet_type *,
2912 struct net_device *);
2913 bool (*id_match)(struct packet_type *ptype,
2914 struct sock *sk);
2915 struct net *af_packet_net;
2916 void *af_packet_priv;
2917 struct list_head list;
2918 };
2919
2920 struct offload_callbacks {
2921 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2922 netdev_features_t features);
2923 struct sk_buff *(*gro_receive)(struct list_head *head,
2924 struct sk_buff *skb);
2925 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2926 };
2927
2928 struct packet_offload {
2929 __be16 type; /* This is really htons(ether_type). */
2930 u16 priority;
2931 struct offload_callbacks callbacks;
2932 struct list_head list;
2933 };
2934
2935 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2936 struct pcpu_sw_netstats {
2937 u64_stats_t rx_packets;
2938 u64_stats_t rx_bytes;
2939 u64_stats_t tx_packets;
2940 u64_stats_t tx_bytes;
2941 struct u64_stats_sync syncp;
2942 } __aligned(4 * sizeof(u64));
2943
2944 struct pcpu_dstats {
2945 u64_stats_t rx_packets;
2946 u64_stats_t rx_bytes;
2947 u64_stats_t tx_packets;
2948 u64_stats_t tx_bytes;
2949 u64_stats_t rx_drops;
2950 u64_stats_t tx_drops;
2951 struct u64_stats_sync syncp;
2952 } __aligned(8 * sizeof(u64));
2953
2954 struct pcpu_lstats {
2955 u64_stats_t packets;
2956 u64_stats_t bytes;
2957 struct u64_stats_sync syncp;
2958 } __aligned(2 * sizeof(u64));
2959
2960 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2961
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2962 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2963 {
2964 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2965
2966 u64_stats_update_begin(&tstats->syncp);
2967 u64_stats_add(&tstats->rx_bytes, len);
2968 u64_stats_inc(&tstats->rx_packets);
2969 u64_stats_update_end(&tstats->syncp);
2970 }
2971
dev_sw_netstats_tx_add(struct net_device * dev,unsigned int packets,unsigned int len)2972 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2973 unsigned int packets,
2974 unsigned int len)
2975 {
2976 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2977
2978 u64_stats_update_begin(&tstats->syncp);
2979 u64_stats_add(&tstats->tx_bytes, len);
2980 u64_stats_add(&tstats->tx_packets, packets);
2981 u64_stats_update_end(&tstats->syncp);
2982 }
2983
dev_lstats_add(struct net_device * dev,unsigned int len)2984 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2985 {
2986 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2987
2988 u64_stats_update_begin(&lstats->syncp);
2989 u64_stats_add(&lstats->bytes, len);
2990 u64_stats_inc(&lstats->packets);
2991 u64_stats_update_end(&lstats->syncp);
2992 }
2993
dev_dstats_rx_add(struct net_device * dev,unsigned int len)2994 static inline void dev_dstats_rx_add(struct net_device *dev,
2995 unsigned int len)
2996 {
2997 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
2998
2999 u64_stats_update_begin(&dstats->syncp);
3000 u64_stats_inc(&dstats->rx_packets);
3001 u64_stats_add(&dstats->rx_bytes, len);
3002 u64_stats_update_end(&dstats->syncp);
3003 }
3004
dev_dstats_rx_dropped(struct net_device * dev)3005 static inline void dev_dstats_rx_dropped(struct net_device *dev)
3006 {
3007 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3008
3009 u64_stats_update_begin(&dstats->syncp);
3010 u64_stats_inc(&dstats->rx_drops);
3011 u64_stats_update_end(&dstats->syncp);
3012 }
3013
dev_dstats_tx_add(struct net_device * dev,unsigned int len)3014 static inline void dev_dstats_tx_add(struct net_device *dev,
3015 unsigned int len)
3016 {
3017 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3018
3019 u64_stats_update_begin(&dstats->syncp);
3020 u64_stats_inc(&dstats->tx_packets);
3021 u64_stats_add(&dstats->tx_bytes, len);
3022 u64_stats_update_end(&dstats->syncp);
3023 }
3024
dev_dstats_tx_dropped(struct net_device * dev)3025 static inline void dev_dstats_tx_dropped(struct net_device *dev)
3026 {
3027 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3028
3029 u64_stats_update_begin(&dstats->syncp);
3030 u64_stats_inc(&dstats->tx_drops);
3031 u64_stats_update_end(&dstats->syncp);
3032 }
3033
3034 #define __netdev_alloc_pcpu_stats(type, gfp) \
3035 ({ \
3036 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
3037 if (pcpu_stats) { \
3038 int __cpu; \
3039 for_each_possible_cpu(__cpu) { \
3040 typeof(type) *stat; \
3041 stat = per_cpu_ptr(pcpu_stats, __cpu); \
3042 u64_stats_init(&stat->syncp); \
3043 } \
3044 } \
3045 pcpu_stats; \
3046 })
3047
3048 #define netdev_alloc_pcpu_stats(type) \
3049 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
3050
3051 #define devm_netdev_alloc_pcpu_stats(dev, type) \
3052 ({ \
3053 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
3054 if (pcpu_stats) { \
3055 int __cpu; \
3056 for_each_possible_cpu(__cpu) { \
3057 typeof(type) *stat; \
3058 stat = per_cpu_ptr(pcpu_stats, __cpu); \
3059 u64_stats_init(&stat->syncp); \
3060 } \
3061 } \
3062 pcpu_stats; \
3063 })
3064
3065 enum netdev_lag_tx_type {
3066 NETDEV_LAG_TX_TYPE_UNKNOWN,
3067 NETDEV_LAG_TX_TYPE_RANDOM,
3068 NETDEV_LAG_TX_TYPE_BROADCAST,
3069 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
3070 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
3071 NETDEV_LAG_TX_TYPE_HASH,
3072 };
3073
3074 enum netdev_lag_hash {
3075 NETDEV_LAG_HASH_NONE,
3076 NETDEV_LAG_HASH_L2,
3077 NETDEV_LAG_HASH_L34,
3078 NETDEV_LAG_HASH_L23,
3079 NETDEV_LAG_HASH_E23,
3080 NETDEV_LAG_HASH_E34,
3081 NETDEV_LAG_HASH_VLAN_SRCMAC,
3082 NETDEV_LAG_HASH_UNKNOWN,
3083 };
3084
3085 struct netdev_lag_upper_info {
3086 enum netdev_lag_tx_type tx_type;
3087 enum netdev_lag_hash hash_type;
3088 };
3089
3090 struct netdev_lag_lower_state_info {
3091 u8 link_up : 1,
3092 tx_enabled : 1;
3093 };
3094
3095 #include <linux/notifier.h>
3096
3097 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
3098 * and the rtnetlink notification exclusion list in rtnetlink_event() when
3099 * adding new types.
3100 */
3101 enum netdev_cmd {
3102 NETDEV_UP = 1, /* For now you can't veto a device up/down */
3103 NETDEV_DOWN,
3104 NETDEV_REBOOT, /* Tell a protocol stack a network interface
3105 detected a hardware crash and restarted
3106 - we can use this eg to kick tcp sessions
3107 once done */
3108 NETDEV_CHANGE, /* Notify device state change */
3109 NETDEV_REGISTER,
3110 NETDEV_UNREGISTER,
3111 NETDEV_CHANGEMTU, /* notify after mtu change happened */
3112 NETDEV_CHANGEADDR, /* notify after the address change */
3113 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
3114 NETDEV_GOING_DOWN,
3115 NETDEV_CHANGENAME,
3116 NETDEV_FEAT_CHANGE,
3117 NETDEV_BONDING_FAILOVER,
3118 NETDEV_PRE_UP,
3119 NETDEV_PRE_TYPE_CHANGE,
3120 NETDEV_POST_TYPE_CHANGE,
3121 NETDEV_POST_INIT,
3122 NETDEV_PRE_UNINIT,
3123 NETDEV_RELEASE,
3124 NETDEV_NOTIFY_PEERS,
3125 NETDEV_JOIN,
3126 NETDEV_CHANGEUPPER,
3127 NETDEV_RESEND_IGMP,
3128 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
3129 NETDEV_CHANGEINFODATA,
3130 NETDEV_BONDING_INFO,
3131 NETDEV_PRECHANGEUPPER,
3132 NETDEV_CHANGELOWERSTATE,
3133 NETDEV_UDP_TUNNEL_PUSH_INFO,
3134 NETDEV_UDP_TUNNEL_DROP_INFO,
3135 NETDEV_CHANGE_TX_QUEUE_LEN,
3136 NETDEV_CVLAN_FILTER_PUSH_INFO,
3137 NETDEV_CVLAN_FILTER_DROP_INFO,
3138 NETDEV_SVLAN_FILTER_PUSH_INFO,
3139 NETDEV_SVLAN_FILTER_DROP_INFO,
3140 NETDEV_OFFLOAD_XSTATS_ENABLE,
3141 NETDEV_OFFLOAD_XSTATS_DISABLE,
3142 NETDEV_OFFLOAD_XSTATS_REPORT_USED,
3143 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
3144 NETDEV_XDP_FEAT_CHANGE,
3145 };
3146 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
3147
3148 int register_netdevice_notifier(struct notifier_block *nb);
3149 int unregister_netdevice_notifier(struct notifier_block *nb);
3150 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
3151 int unregister_netdevice_notifier_net(struct net *net,
3152 struct notifier_block *nb);
3153 int register_netdevice_notifier_dev_net(struct net_device *dev,
3154 struct notifier_block *nb,
3155 struct netdev_net_notifier *nn);
3156 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
3157 struct notifier_block *nb,
3158 struct netdev_net_notifier *nn);
3159
3160 struct netdev_notifier_info {
3161 struct net_device *dev;
3162 struct netlink_ext_ack *extack;
3163 };
3164
3165 struct netdev_notifier_info_ext {
3166 struct netdev_notifier_info info; /* must be first */
3167 union {
3168 u32 mtu;
3169 } ext;
3170 };
3171
3172 struct netdev_notifier_change_info {
3173 struct netdev_notifier_info info; /* must be first */
3174 unsigned int flags_changed;
3175 };
3176
3177 struct netdev_notifier_changeupper_info {
3178 struct netdev_notifier_info info; /* must be first */
3179 struct net_device *upper_dev; /* new upper dev */
3180 bool master; /* is upper dev master */
3181 bool linking; /* is the notification for link or unlink */
3182 void *upper_info; /* upper dev info */
3183 };
3184
3185 struct netdev_notifier_changelowerstate_info {
3186 struct netdev_notifier_info info; /* must be first */
3187 void *lower_state_info; /* is lower dev state */
3188 };
3189
3190 struct netdev_notifier_pre_changeaddr_info {
3191 struct netdev_notifier_info info; /* must be first */
3192 const unsigned char *dev_addr;
3193 };
3194
3195 enum netdev_offload_xstats_type {
3196 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3197 };
3198
3199 struct netdev_notifier_offload_xstats_info {
3200 struct netdev_notifier_info info; /* must be first */
3201 enum netdev_offload_xstats_type type;
3202
3203 union {
3204 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3205 struct netdev_notifier_offload_xstats_rd *report_delta;
3206 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3207 struct netdev_notifier_offload_xstats_ru *report_used;
3208 };
3209 };
3210
3211 int netdev_offload_xstats_enable(struct net_device *dev,
3212 enum netdev_offload_xstats_type type,
3213 struct netlink_ext_ack *extack);
3214 int netdev_offload_xstats_disable(struct net_device *dev,
3215 enum netdev_offload_xstats_type type);
3216 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3217 enum netdev_offload_xstats_type type);
3218 int netdev_offload_xstats_get(struct net_device *dev,
3219 enum netdev_offload_xstats_type type,
3220 struct rtnl_hw_stats64 *stats, bool *used,
3221 struct netlink_ext_ack *extack);
3222 void
3223 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3224 const struct rtnl_hw_stats64 *stats);
3225 void
3226 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3227 void netdev_offload_xstats_push_delta(struct net_device *dev,
3228 enum netdev_offload_xstats_type type,
3229 const struct rtnl_hw_stats64 *stats);
3230
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)3231 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3232 struct net_device *dev)
3233 {
3234 info->dev = dev;
3235 info->extack = NULL;
3236 }
3237
3238 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)3239 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3240 {
3241 return info->dev;
3242 }
3243
3244 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)3245 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3246 {
3247 return info->extack;
3248 }
3249
3250 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3251 int call_netdevice_notifiers_info(unsigned long val,
3252 struct netdev_notifier_info *info);
3253
3254 #define for_each_netdev(net, d) \
3255 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3256 #define for_each_netdev_reverse(net, d) \
3257 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3258 #define for_each_netdev_rcu(net, d) \
3259 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3260 #define for_each_netdev_safe(net, d, n) \
3261 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3262 #define for_each_netdev_continue(net, d) \
3263 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3264 #define for_each_netdev_continue_reverse(net, d) \
3265 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3266 dev_list)
3267 #define for_each_netdev_continue_rcu(net, d) \
3268 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3269 #define for_each_netdev_in_bond_rcu(bond, slave) \
3270 for_each_netdev_rcu(&init_net, slave) \
3271 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3272 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
3273
3274 #define for_each_netdev_dump(net, d, ifindex) \
3275 for (; (d = xa_find(&(net)->dev_by_index, &ifindex, \
3276 ULONG_MAX, XA_PRESENT)); ifindex++)
3277
next_net_device(struct net_device * dev)3278 static inline struct net_device *next_net_device(struct net_device *dev)
3279 {
3280 struct list_head *lh;
3281 struct net *net;
3282
3283 net = dev_net(dev);
3284 lh = dev->dev_list.next;
3285 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3286 }
3287
next_net_device_rcu(struct net_device * dev)3288 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3289 {
3290 struct list_head *lh;
3291 struct net *net;
3292
3293 net = dev_net(dev);
3294 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3295 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3296 }
3297
first_net_device(struct net * net)3298 static inline struct net_device *first_net_device(struct net *net)
3299 {
3300 return list_empty(&net->dev_base_head) ? NULL :
3301 net_device_entry(net->dev_base_head.next);
3302 }
3303
first_net_device_rcu(struct net * net)3304 static inline struct net_device *first_net_device_rcu(struct net *net)
3305 {
3306 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3307
3308 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3309 }
3310
3311 int netdev_boot_setup_check(struct net_device *dev);
3312 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
3313 const char *hwaddr);
3314 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3315 const char *hwaddr);
3316 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3317 void dev_add_pack(struct packet_type *pt);
3318 void dev_remove_pack(struct packet_type *pt);
3319 void __dev_remove_pack(struct packet_type *pt);
3320 void dev_add_offload(struct packet_offload *po);
3321 void dev_remove_offload(struct packet_offload *po);
3322
3323 int dev_get_iflink(const struct net_device *dev);
3324 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3325 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3326 struct net_device_path_stack *stack);
3327 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3328 unsigned short mask);
3329 struct net_device *dev_get_by_name(struct net *net, const char *name);
3330 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3331 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3332 bool netdev_name_in_use(struct net *net, const char *name);
3333 int dev_alloc_name(struct net_device *dev, const char *name);
3334 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack);
3335 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3336 void netif_close(struct net_device *dev);
3337 void dev_close(struct net_device *dev);
3338 void dev_close_many(struct list_head *head, bool unlink);
3339 void netif_disable_lro(struct net_device *dev);
3340 void dev_disable_lro(struct net_device *dev);
3341 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3342 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3343 struct net_device *sb_dev);
3344
3345 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3346 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3347
dev_queue_xmit(struct sk_buff * skb)3348 static inline int dev_queue_xmit(struct sk_buff *skb)
3349 {
3350 return __dev_queue_xmit(skb, NULL);
3351 }
3352
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3353 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3354 struct net_device *sb_dev)
3355 {
3356 return __dev_queue_xmit(skb, sb_dev);
3357 }
3358
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3359 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3360 {
3361 int ret;
3362
3363 ret = __dev_direct_xmit(skb, queue_id);
3364 if (!dev_xmit_complete(ret))
3365 kfree_skb(skb);
3366 return ret;
3367 }
3368
3369 int register_netdevice(struct net_device *dev);
3370 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3371 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)3372 static inline void unregister_netdevice(struct net_device *dev)
3373 {
3374 unregister_netdevice_queue(dev, NULL);
3375 }
3376
3377 int netdev_refcnt_read(const struct net_device *dev);
3378 void free_netdev(struct net_device *dev);
3379
3380 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3381 struct sk_buff *skb,
3382 bool all_slaves);
3383 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3384 struct sock *sk);
3385 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3386 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3387 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3388 netdevice_tracker *tracker, gfp_t gfp);
3389 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3390 netdevice_tracker *tracker, gfp_t gfp);
3391 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3392 void netdev_copy_name(struct net_device *dev, char *name);
3393
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3394 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3395 unsigned short type,
3396 const void *daddr, const void *saddr,
3397 unsigned int len)
3398 {
3399 if (!dev->header_ops || !dev->header_ops->create)
3400 return 0;
3401
3402 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3403 }
3404
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3405 static inline int dev_parse_header(const struct sk_buff *skb,
3406 unsigned char *haddr)
3407 {
3408 const struct net_device *dev = skb->dev;
3409
3410 if (!dev->header_ops || !dev->header_ops->parse)
3411 return 0;
3412 return dev->header_ops->parse(skb, haddr);
3413 }
3414
dev_parse_header_protocol(const struct sk_buff * skb)3415 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3416 {
3417 const struct net_device *dev = skb->dev;
3418
3419 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3420 return 0;
3421 return dev->header_ops->parse_protocol(skb);
3422 }
3423
3424 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3425 static inline bool dev_validate_header(const struct net_device *dev,
3426 char *ll_header, int len)
3427 {
3428 if (likely(len >= dev->hard_header_len))
3429 return true;
3430 if (len < dev->min_header_len)
3431 return false;
3432
3433 if (capable(CAP_SYS_RAWIO)) {
3434 memset(ll_header + len, 0, dev->hard_header_len - len);
3435 return true;
3436 }
3437
3438 if (dev->header_ops && dev->header_ops->validate)
3439 return dev->header_ops->validate(ll_header, len);
3440
3441 return false;
3442 }
3443
dev_has_header(const struct net_device * dev)3444 static inline bool dev_has_header(const struct net_device *dev)
3445 {
3446 return dev->header_ops && dev->header_ops->create;
3447 }
3448
3449 /*
3450 * Incoming packets are placed on per-CPU queues
3451 */
3452 struct softnet_data {
3453 struct list_head poll_list;
3454 struct sk_buff_head process_queue;
3455 local_lock_t process_queue_bh_lock;
3456
3457 /* stats */
3458 unsigned int processed;
3459 unsigned int time_squeeze;
3460 #ifdef CONFIG_RPS
3461 struct softnet_data *rps_ipi_list;
3462 #endif
3463
3464 unsigned int received_rps;
3465 bool in_net_rx_action;
3466 bool in_napi_threaded_poll;
3467
3468 #ifdef CONFIG_NET_FLOW_LIMIT
3469 struct sd_flow_limit __rcu *flow_limit;
3470 #endif
3471 struct Qdisc *output_queue;
3472 struct Qdisc **output_queue_tailp;
3473 struct sk_buff *completion_queue;
3474 #ifdef CONFIG_XFRM_OFFLOAD
3475 struct sk_buff_head xfrm_backlog;
3476 #endif
3477 /* written and read only by owning cpu: */
3478 struct netdev_xmit xmit;
3479 #ifdef CONFIG_RPS
3480 /* input_queue_head should be written by cpu owning this struct,
3481 * and only read by other cpus. Worth using a cache line.
3482 */
3483 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3484
3485 /* Elements below can be accessed between CPUs for RPS/RFS */
3486 call_single_data_t csd ____cacheline_aligned_in_smp;
3487 struct softnet_data *rps_ipi_next;
3488 unsigned int cpu;
3489 unsigned int input_queue_tail;
3490 #endif
3491 struct sk_buff_head input_pkt_queue;
3492 struct napi_struct backlog;
3493
3494 atomic_t dropped ____cacheline_aligned_in_smp;
3495
3496 /* Another possibly contended cache line */
3497 spinlock_t defer_lock ____cacheline_aligned_in_smp;
3498 int defer_count;
3499 int defer_ipi_scheduled;
3500 struct sk_buff *defer_list;
3501 call_single_data_t defer_csd;
3502 };
3503
3504 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3505 DECLARE_PER_CPU(struct page_pool *, system_page_pool);
3506
3507 #ifndef CONFIG_PREEMPT_RT
dev_recursion_level(void)3508 static inline int dev_recursion_level(void)
3509 {
3510 return this_cpu_read(softnet_data.xmit.recursion);
3511 }
3512 #else
dev_recursion_level(void)3513 static inline int dev_recursion_level(void)
3514 {
3515 return current->net_xmit.recursion;
3516 }
3517
3518 #endif
3519
3520 void __netif_schedule(struct Qdisc *q);
3521 void netif_schedule_queue(struct netdev_queue *txq);
3522
netif_tx_schedule_all(struct net_device * dev)3523 static inline void netif_tx_schedule_all(struct net_device *dev)
3524 {
3525 unsigned int i;
3526
3527 for (i = 0; i < dev->num_tx_queues; i++)
3528 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3529 }
3530
netif_tx_start_queue(struct netdev_queue * dev_queue)3531 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3532 {
3533 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3534 }
3535
3536 /**
3537 * netif_start_queue - allow transmit
3538 * @dev: network device
3539 *
3540 * Allow upper layers to call the device hard_start_xmit routine.
3541 */
netif_start_queue(struct net_device * dev)3542 static inline void netif_start_queue(struct net_device *dev)
3543 {
3544 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3545 }
3546
netif_tx_start_all_queues(struct net_device * dev)3547 static inline void netif_tx_start_all_queues(struct net_device *dev)
3548 {
3549 unsigned int i;
3550
3551 for (i = 0; i < dev->num_tx_queues; i++) {
3552 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3553 netif_tx_start_queue(txq);
3554 }
3555 }
3556
3557 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3558
3559 /**
3560 * netif_wake_queue - restart transmit
3561 * @dev: network device
3562 *
3563 * Allow upper layers to call the device hard_start_xmit routine.
3564 * Used for flow control when transmit resources are available.
3565 */
netif_wake_queue(struct net_device * dev)3566 static inline void netif_wake_queue(struct net_device *dev)
3567 {
3568 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3569 }
3570
netif_tx_wake_all_queues(struct net_device * dev)3571 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3572 {
3573 unsigned int i;
3574
3575 for (i = 0; i < dev->num_tx_queues; i++) {
3576 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3577 netif_tx_wake_queue(txq);
3578 }
3579 }
3580
netif_tx_stop_queue(struct netdev_queue * dev_queue)3581 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3582 {
3583 /* Paired with READ_ONCE() from dev_watchdog() */
3584 WRITE_ONCE(dev_queue->trans_start, jiffies);
3585
3586 /* This barrier is paired with smp_mb() from dev_watchdog() */
3587 smp_mb__before_atomic();
3588
3589 /* Must be an atomic op see netif_txq_try_stop() */
3590 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3591 }
3592
3593 /**
3594 * netif_stop_queue - stop transmitted packets
3595 * @dev: network device
3596 *
3597 * Stop upper layers calling the device hard_start_xmit routine.
3598 * Used for flow control when transmit resources are unavailable.
3599 */
netif_stop_queue(struct net_device * dev)3600 static inline void netif_stop_queue(struct net_device *dev)
3601 {
3602 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3603 }
3604
3605 void netif_tx_stop_all_queues(struct net_device *dev);
3606
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3607 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3608 {
3609 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3610 }
3611
3612 /**
3613 * netif_queue_stopped - test if transmit queue is flowblocked
3614 * @dev: network device
3615 *
3616 * Test if transmit queue on device is currently unable to send.
3617 */
netif_queue_stopped(const struct net_device * dev)3618 static inline bool netif_queue_stopped(const struct net_device *dev)
3619 {
3620 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3621 }
3622
netif_xmit_stopped(const struct netdev_queue * dev_queue)3623 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3624 {
3625 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3626 }
3627
3628 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3629 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3630 {
3631 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3632 }
3633
3634 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3635 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3636 {
3637 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3638 }
3639
3640 /**
3641 * netdev_queue_set_dql_min_limit - set dql minimum limit
3642 * @dev_queue: pointer to transmit queue
3643 * @min_limit: dql minimum limit
3644 *
3645 * Forces xmit_more() to return true until the minimum threshold
3646 * defined by @min_limit is reached (or until the tx queue is
3647 * empty). Warning: to be use with care, misuse will impact the
3648 * latency.
3649 */
netdev_queue_set_dql_min_limit(struct netdev_queue * dev_queue,unsigned int min_limit)3650 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3651 unsigned int min_limit)
3652 {
3653 #ifdef CONFIG_BQL
3654 dev_queue->dql.min_limit = min_limit;
3655 #endif
3656 }
3657
netdev_queue_dql_avail(const struct netdev_queue * txq)3658 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3659 {
3660 #ifdef CONFIG_BQL
3661 /* Non-BQL migrated drivers will return 0, too. */
3662 return dql_avail(&txq->dql);
3663 #else
3664 return 0;
3665 #endif
3666 }
3667
3668 /**
3669 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3670 * @dev_queue: pointer to transmit queue
3671 *
3672 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3673 * to give appropriate hint to the CPU.
3674 */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3675 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3676 {
3677 #ifdef CONFIG_BQL
3678 prefetchw(&dev_queue->dql.num_queued);
3679 #endif
3680 }
3681
3682 /**
3683 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3684 * @dev_queue: pointer to transmit queue
3685 *
3686 * BQL enabled drivers might use this helper in their TX completion path,
3687 * to give appropriate hint to the CPU.
3688 */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3689 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3690 {
3691 #ifdef CONFIG_BQL
3692 prefetchw(&dev_queue->dql.limit);
3693 #endif
3694 }
3695
3696 /**
3697 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3698 * @dev_queue: network device queue
3699 * @bytes: number of bytes queued to the device queue
3700 *
3701 * Report the number of bytes queued for sending/completion to the network
3702 * device hardware queue. @bytes should be a good approximation and should
3703 * exactly match netdev_completed_queue() @bytes.
3704 * This is typically called once per packet, from ndo_start_xmit().
3705 */
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3706 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3707 unsigned int bytes)
3708 {
3709 #ifdef CONFIG_BQL
3710 dql_queued(&dev_queue->dql, bytes);
3711
3712 if (likely(dql_avail(&dev_queue->dql) >= 0))
3713 return;
3714
3715 /* Paired with READ_ONCE() from dev_watchdog() */
3716 WRITE_ONCE(dev_queue->trans_start, jiffies);
3717
3718 /* This barrier is paired with smp_mb() from dev_watchdog() */
3719 smp_mb__before_atomic();
3720
3721 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3722
3723 /*
3724 * The XOFF flag must be set before checking the dql_avail below,
3725 * because in netdev_tx_completed_queue we update the dql_completed
3726 * before checking the XOFF flag.
3727 */
3728 smp_mb__after_atomic();
3729
3730 /* check again in case another CPU has just made room avail */
3731 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3732 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3733 #endif
3734 }
3735
3736 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3737 * that they should not test BQL status themselves.
3738 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3739 * skb of a batch.
3740 * Returns true if the doorbell must be used to kick the NIC.
3741 */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3742 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3743 unsigned int bytes,
3744 bool xmit_more)
3745 {
3746 if (xmit_more) {
3747 #ifdef CONFIG_BQL
3748 dql_queued(&dev_queue->dql, bytes);
3749 #endif
3750 return netif_tx_queue_stopped(dev_queue);
3751 }
3752 netdev_tx_sent_queue(dev_queue, bytes);
3753 return true;
3754 }
3755
3756 /**
3757 * netdev_sent_queue - report the number of bytes queued to hardware
3758 * @dev: network device
3759 * @bytes: number of bytes queued to the hardware device queue
3760 *
3761 * Report the number of bytes queued for sending/completion to the network
3762 * device hardware queue#0. @bytes should be a good approximation and should
3763 * exactly match netdev_completed_queue() @bytes.
3764 * This is typically called once per packet, from ndo_start_xmit().
3765 */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3766 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3767 {
3768 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3769 }
3770
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3771 static inline bool __netdev_sent_queue(struct net_device *dev,
3772 unsigned int bytes,
3773 bool xmit_more)
3774 {
3775 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3776 xmit_more);
3777 }
3778
3779 /**
3780 * netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3781 * @dev_queue: network device queue
3782 * @pkts: number of packets (currently ignored)
3783 * @bytes: number of bytes dequeued from the device queue
3784 *
3785 * Must be called at most once per TX completion round (and not per
3786 * individual packet), so that BQL can adjust its limits appropriately.
3787 */
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3788 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3789 unsigned int pkts, unsigned int bytes)
3790 {
3791 #ifdef CONFIG_BQL
3792 if (unlikely(!bytes))
3793 return;
3794
3795 dql_completed(&dev_queue->dql, bytes);
3796
3797 /*
3798 * Without the memory barrier there is a small possibility that
3799 * netdev_tx_sent_queue will miss the update and cause the queue to
3800 * be stopped forever
3801 */
3802 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3803
3804 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3805 return;
3806
3807 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3808 netif_schedule_queue(dev_queue);
3809 #endif
3810 }
3811
3812 /**
3813 * netdev_completed_queue - report bytes and packets completed by device
3814 * @dev: network device
3815 * @pkts: actual number of packets sent over the medium
3816 * @bytes: actual number of bytes sent over the medium
3817 *
3818 * Report the number of bytes and packets transmitted by the network device
3819 * hardware queue over the physical medium, @bytes must exactly match the
3820 * @bytes amount passed to netdev_sent_queue()
3821 */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3822 static inline void netdev_completed_queue(struct net_device *dev,
3823 unsigned int pkts, unsigned int bytes)
3824 {
3825 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3826 }
3827
netdev_tx_reset_queue(struct netdev_queue * q)3828 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3829 {
3830 #ifdef CONFIG_BQL
3831 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3832 dql_reset(&q->dql);
3833 #endif
3834 }
3835
3836 /**
3837 * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3838 * @dev: network device
3839 * @qid: stack index of the queue to reset
3840 */
netdev_tx_reset_subqueue(const struct net_device * dev,u32 qid)3841 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3842 u32 qid)
3843 {
3844 netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3845 }
3846
3847 /**
3848 * netdev_reset_queue - reset the packets and bytes count of a network device
3849 * @dev_queue: network device
3850 *
3851 * Reset the bytes and packet count of a network device and clear the
3852 * software flow control OFF bit for this network device
3853 */
netdev_reset_queue(struct net_device * dev_queue)3854 static inline void netdev_reset_queue(struct net_device *dev_queue)
3855 {
3856 netdev_tx_reset_subqueue(dev_queue, 0);
3857 }
3858
3859 /**
3860 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3861 * @dev: network device
3862 * @queue_index: given tx queue index
3863 *
3864 * Returns 0 if given tx queue index >= number of device tx queues,
3865 * otherwise returns the originally passed tx queue index.
3866 */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3867 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3868 {
3869 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3870 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3871 dev->name, queue_index,
3872 dev->real_num_tx_queues);
3873 return 0;
3874 }
3875
3876 return queue_index;
3877 }
3878
3879 /**
3880 * netif_running - test if up
3881 * @dev: network device
3882 *
3883 * Test if the device has been brought up.
3884 */
netif_running(const struct net_device * dev)3885 static inline bool netif_running(const struct net_device *dev)
3886 {
3887 return test_bit(__LINK_STATE_START, &dev->state);
3888 }
3889
3890 /*
3891 * Routines to manage the subqueues on a device. We only need start,
3892 * stop, and a check if it's stopped. All other device management is
3893 * done at the overall netdevice level.
3894 * Also test the device if we're multiqueue.
3895 */
3896
3897 /**
3898 * netif_start_subqueue - allow sending packets on subqueue
3899 * @dev: network device
3900 * @queue_index: sub queue index
3901 *
3902 * Start individual transmit queue of a device with multiple transmit queues.
3903 */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3904 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3905 {
3906 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3907
3908 netif_tx_start_queue(txq);
3909 }
3910
3911 /**
3912 * netif_stop_subqueue - stop sending packets on subqueue
3913 * @dev: network device
3914 * @queue_index: sub queue index
3915 *
3916 * Stop individual transmit queue of a device with multiple transmit queues.
3917 */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3918 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3919 {
3920 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3921 netif_tx_stop_queue(txq);
3922 }
3923
3924 /**
3925 * __netif_subqueue_stopped - test status of subqueue
3926 * @dev: network device
3927 * @queue_index: sub queue index
3928 *
3929 * Check individual transmit queue of a device with multiple transmit queues.
3930 */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3931 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3932 u16 queue_index)
3933 {
3934 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3935
3936 return netif_tx_queue_stopped(txq);
3937 }
3938
3939 /**
3940 * netif_subqueue_stopped - test status of subqueue
3941 * @dev: network device
3942 * @skb: sub queue buffer pointer
3943 *
3944 * Check individual transmit queue of a device with multiple transmit queues.
3945 */
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3946 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3947 struct sk_buff *skb)
3948 {
3949 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3950 }
3951
3952 /**
3953 * netif_wake_subqueue - allow sending packets on subqueue
3954 * @dev: network device
3955 * @queue_index: sub queue index
3956 *
3957 * Resume individual transmit queue of a device with multiple transmit queues.
3958 */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3959 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3960 {
3961 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3962
3963 netif_tx_wake_queue(txq);
3964 }
3965
3966 #ifdef CONFIG_XPS
3967 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3968 u16 index);
3969 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3970 u16 index, enum xps_map_type type);
3971
3972 /**
3973 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3974 * @j: CPU/Rx queue index
3975 * @mask: bitmask of all cpus/rx queues
3976 * @nr_bits: number of bits in the bitmask
3977 *
3978 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3979 */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3980 static inline bool netif_attr_test_mask(unsigned long j,
3981 const unsigned long *mask,
3982 unsigned int nr_bits)
3983 {
3984 cpu_max_bits_warn(j, nr_bits);
3985 return test_bit(j, mask);
3986 }
3987
3988 /**
3989 * netif_attr_test_online - Test for online CPU/Rx queue
3990 * @j: CPU/Rx queue index
3991 * @online_mask: bitmask for CPUs/Rx queues that are online
3992 * @nr_bits: number of bits in the bitmask
3993 *
3994 * Returns: true if a CPU/Rx queue is online.
3995 */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3996 static inline bool netif_attr_test_online(unsigned long j,
3997 const unsigned long *online_mask,
3998 unsigned int nr_bits)
3999 {
4000 cpu_max_bits_warn(j, nr_bits);
4001
4002 if (online_mask)
4003 return test_bit(j, online_mask);
4004
4005 return (j < nr_bits);
4006 }
4007
4008 /**
4009 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
4010 * @n: CPU/Rx queue index
4011 * @srcp: the cpumask/Rx queue mask pointer
4012 * @nr_bits: number of bits in the bitmask
4013 *
4014 * Returns: next (after n) CPU/Rx queue index in the mask;
4015 * >= nr_bits if no further CPUs/Rx queues set.
4016 */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)4017 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
4018 unsigned int nr_bits)
4019 {
4020 /* -1 is a legal arg here. */
4021 if (n != -1)
4022 cpu_max_bits_warn(n, nr_bits);
4023
4024 if (srcp)
4025 return find_next_bit(srcp, nr_bits, n + 1);
4026
4027 return n + 1;
4028 }
4029
4030 /**
4031 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
4032 * @n: CPU/Rx queue index
4033 * @src1p: the first CPUs/Rx queues mask pointer
4034 * @src2p: the second CPUs/Rx queues mask pointer
4035 * @nr_bits: number of bits in the bitmask
4036 *
4037 * Returns: next (after n) CPU/Rx queue index set in both masks;
4038 * >= nr_bits if no further CPUs/Rx queues set in both.
4039 */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)4040 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
4041 const unsigned long *src2p,
4042 unsigned int nr_bits)
4043 {
4044 /* -1 is a legal arg here. */
4045 if (n != -1)
4046 cpu_max_bits_warn(n, nr_bits);
4047
4048 if (src1p && src2p)
4049 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
4050 else if (src1p)
4051 return find_next_bit(src1p, nr_bits, n + 1);
4052 else if (src2p)
4053 return find_next_bit(src2p, nr_bits, n + 1);
4054
4055 return n + 1;
4056 }
4057 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)4058 static inline int netif_set_xps_queue(struct net_device *dev,
4059 const struct cpumask *mask,
4060 u16 index)
4061 {
4062 return 0;
4063 }
4064
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)4065 static inline int __netif_set_xps_queue(struct net_device *dev,
4066 const unsigned long *mask,
4067 u16 index, enum xps_map_type type)
4068 {
4069 return 0;
4070 }
4071 #endif
4072
4073 /**
4074 * netif_is_multiqueue - test if device has multiple transmit queues
4075 * @dev: network device
4076 *
4077 * Check if device has multiple transmit queues
4078 */
netif_is_multiqueue(const struct net_device * dev)4079 static inline bool netif_is_multiqueue(const struct net_device *dev)
4080 {
4081 return dev->num_tx_queues > 1;
4082 }
4083
4084 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
4085 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
4086 int netif_set_real_num_queues(struct net_device *dev,
4087 unsigned int txq, unsigned int rxq);
4088
4089 int netif_get_num_default_rss_queues(void);
4090
4091 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4092 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4093
4094 /*
4095 * It is not allowed to call kfree_skb() or consume_skb() from hardware
4096 * interrupt context or with hardware interrupts being disabled.
4097 * (in_hardirq() || irqs_disabled())
4098 *
4099 * We provide four helpers that can be used in following contexts :
4100 *
4101 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
4102 * replacing kfree_skb(skb)
4103 *
4104 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
4105 * Typically used in place of consume_skb(skb) in TX completion path
4106 *
4107 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
4108 * replacing kfree_skb(skb)
4109 *
4110 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
4111 * and consumed a packet. Used in place of consume_skb(skb)
4112 */
dev_kfree_skb_irq(struct sk_buff * skb)4113 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
4114 {
4115 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4116 }
4117
dev_consume_skb_irq(struct sk_buff * skb)4118 static inline void dev_consume_skb_irq(struct sk_buff *skb)
4119 {
4120 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
4121 }
4122
dev_kfree_skb_any(struct sk_buff * skb)4123 static inline void dev_kfree_skb_any(struct sk_buff *skb)
4124 {
4125 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4126 }
4127
dev_consume_skb_any(struct sk_buff * skb)4128 static inline void dev_consume_skb_any(struct sk_buff *skb)
4129 {
4130 dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
4131 }
4132
4133 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4134 const struct bpf_prog *xdp_prog);
4135 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog);
4136 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb);
4137 int netif_rx(struct sk_buff *skb);
4138 int __netif_rx(struct sk_buff *skb);
4139
4140 int netif_receive_skb(struct sk_buff *skb);
4141 int netif_receive_skb_core(struct sk_buff *skb);
4142 void netif_receive_skb_list_internal(struct list_head *head);
4143 void netif_receive_skb_list(struct list_head *head);
4144 gro_result_t gro_receive_skb(struct gro_node *gro, struct sk_buff *skb);
4145
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4146 static inline gro_result_t napi_gro_receive(struct napi_struct *napi,
4147 struct sk_buff *skb)
4148 {
4149 return gro_receive_skb(&napi->gro, skb);
4150 }
4151
4152 struct sk_buff *napi_get_frags(struct napi_struct *napi);
4153 gro_result_t napi_gro_frags(struct napi_struct *napi);
4154
napi_free_frags(struct napi_struct * napi)4155 static inline void napi_free_frags(struct napi_struct *napi)
4156 {
4157 kfree_skb(napi->skb);
4158 napi->skb = NULL;
4159 }
4160
4161 bool netdev_is_rx_handler_busy(struct net_device *dev);
4162 int netdev_rx_handler_register(struct net_device *dev,
4163 rx_handler_func_t *rx_handler,
4164 void *rx_handler_data);
4165 void netdev_rx_handler_unregister(struct net_device *dev);
4166
4167 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)4168 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
4169 {
4170 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4171 }
4172 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4173 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4174 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4175 void __user *data, bool *need_copyout);
4176 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4177 int dev_eth_ioctl(struct net_device *dev,
4178 struct ifreq *ifr, unsigned int cmd);
4179 int generic_hwtstamp_get_lower(struct net_device *dev,
4180 struct kernel_hwtstamp_config *kernel_cfg);
4181 int generic_hwtstamp_set_lower(struct net_device *dev,
4182 struct kernel_hwtstamp_config *kernel_cfg,
4183 struct netlink_ext_ack *extack);
4184 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4185 unsigned int dev_get_flags(const struct net_device *);
4186 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4187 struct netlink_ext_ack *extack);
4188 int netif_change_flags(struct net_device *dev, unsigned int flags,
4189 struct netlink_ext_ack *extack);
4190 int dev_change_flags(struct net_device *dev, unsigned int flags,
4191 struct netlink_ext_ack *extack);
4192 int netif_set_alias(struct net_device *dev, const char *alias, size_t len);
4193 int dev_set_alias(struct net_device *, const char *, size_t);
4194 int dev_get_alias(const struct net_device *, char *, size_t);
4195 int netif_change_net_namespace(struct net_device *dev, struct net *net,
4196 const char *pat, int new_ifindex,
4197 struct netlink_ext_ack *extack);
4198 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4199 const char *pat);
4200 int __dev_set_mtu(struct net_device *, int);
4201 int netif_set_mtu(struct net_device *dev, int new_mtu);
4202 int dev_set_mtu(struct net_device *, int);
4203 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4204 struct netlink_ext_ack *extack);
4205 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4206 struct netlink_ext_ack *extack);
4207 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4208 struct netlink_ext_ack *extack);
4209 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4210 struct netlink_ext_ack *extack);
4211 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4212 int dev_get_port_parent_id(struct net_device *dev,
4213 struct netdev_phys_item_id *ppid, bool recurse);
4214 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4215
4216 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4217 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4218 struct netdev_queue *txq, int *ret);
4219
4220 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4221 u8 dev_xdp_prog_count(struct net_device *dev);
4222 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4223 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4224 u8 dev_xdp_sb_prog_count(struct net_device *dev);
4225 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4226
4227 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4228
4229 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4230 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4231 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4232 bool is_skb_forwardable(const struct net_device *dev,
4233 const struct sk_buff *skb);
4234
__is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb,const bool check_mtu)4235 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4236 const struct sk_buff *skb,
4237 const bool check_mtu)
4238 {
4239 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4240 unsigned int len;
4241
4242 if (!(dev->flags & IFF_UP))
4243 return false;
4244
4245 if (!check_mtu)
4246 return true;
4247
4248 len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4249 if (skb->len <= len)
4250 return true;
4251
4252 /* if TSO is enabled, we don't care about the length as the packet
4253 * could be forwarded without being segmented before
4254 */
4255 if (skb_is_gso(skb))
4256 return true;
4257
4258 return false;
4259 }
4260
4261 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4262
4263 #define DEV_CORE_STATS_INC(FIELD) \
4264 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \
4265 { \
4266 netdev_core_stats_inc(dev, \
4267 offsetof(struct net_device_core_stats, FIELD)); \
4268 }
4269 DEV_CORE_STATS_INC(rx_dropped)
DEV_CORE_STATS_INC(tx_dropped)4270 DEV_CORE_STATS_INC(tx_dropped)
4271 DEV_CORE_STATS_INC(rx_nohandler)
4272 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4273 #undef DEV_CORE_STATS_INC
4274
4275 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4276 struct sk_buff *skb,
4277 const bool check_mtu)
4278 {
4279 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4280 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4281 dev_core_stats_rx_dropped_inc(dev);
4282 kfree_skb(skb);
4283 return NET_RX_DROP;
4284 }
4285
4286 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4287 skb->priority = 0;
4288 return 0;
4289 }
4290
4291 bool dev_nit_active_rcu(const struct net_device *dev);
dev_nit_active(const struct net_device * dev)4292 static inline bool dev_nit_active(const struct net_device *dev)
4293 {
4294 bool ret;
4295
4296 rcu_read_lock();
4297 ret = dev_nit_active_rcu(dev);
4298 rcu_read_unlock();
4299 return ret;
4300 }
4301
4302 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4303
__dev_put(struct net_device * dev)4304 static inline void __dev_put(struct net_device *dev)
4305 {
4306 if (dev) {
4307 #ifdef CONFIG_PCPU_DEV_REFCNT
4308 this_cpu_dec(*dev->pcpu_refcnt);
4309 #else
4310 refcount_dec(&dev->dev_refcnt);
4311 #endif
4312 }
4313 }
4314
__dev_hold(struct net_device * dev)4315 static inline void __dev_hold(struct net_device *dev)
4316 {
4317 if (dev) {
4318 #ifdef CONFIG_PCPU_DEV_REFCNT
4319 this_cpu_inc(*dev->pcpu_refcnt);
4320 #else
4321 refcount_inc(&dev->dev_refcnt);
4322 #endif
4323 }
4324 }
4325
__netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4326 static inline void __netdev_tracker_alloc(struct net_device *dev,
4327 netdevice_tracker *tracker,
4328 gfp_t gfp)
4329 {
4330 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4331 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4332 #endif
4333 }
4334
4335 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4336 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4337 */
netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4338 static inline void netdev_tracker_alloc(struct net_device *dev,
4339 netdevice_tracker *tracker, gfp_t gfp)
4340 {
4341 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4342 refcount_dec(&dev->refcnt_tracker.no_tracker);
4343 __netdev_tracker_alloc(dev, tracker, gfp);
4344 #endif
4345 }
4346
netdev_tracker_free(struct net_device * dev,netdevice_tracker * tracker)4347 static inline void netdev_tracker_free(struct net_device *dev,
4348 netdevice_tracker *tracker)
4349 {
4350 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4351 ref_tracker_free(&dev->refcnt_tracker, tracker);
4352 #endif
4353 }
4354
netdev_hold(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4355 static inline void netdev_hold(struct net_device *dev,
4356 netdevice_tracker *tracker, gfp_t gfp)
4357 {
4358 if (dev) {
4359 __dev_hold(dev);
4360 __netdev_tracker_alloc(dev, tracker, gfp);
4361 }
4362 }
4363
netdev_put(struct net_device * dev,netdevice_tracker * tracker)4364 static inline void netdev_put(struct net_device *dev,
4365 netdevice_tracker *tracker)
4366 {
4367 if (dev) {
4368 netdev_tracker_free(dev, tracker);
4369 __dev_put(dev);
4370 }
4371 }
4372
4373 /**
4374 * dev_hold - get reference to device
4375 * @dev: network device
4376 *
4377 * Hold reference to device to keep it from being freed.
4378 * Try using netdev_hold() instead.
4379 */
dev_hold(struct net_device * dev)4380 static inline void dev_hold(struct net_device *dev)
4381 {
4382 netdev_hold(dev, NULL, GFP_ATOMIC);
4383 }
4384
4385 /**
4386 * dev_put - release reference to device
4387 * @dev: network device
4388 *
4389 * Release reference to device to allow it to be freed.
4390 * Try using netdev_put() instead.
4391 */
dev_put(struct net_device * dev)4392 static inline void dev_put(struct net_device *dev)
4393 {
4394 netdev_put(dev, NULL);
4395 }
4396
DEFINE_FREE(dev_put,struct net_device *,if (_T)dev_put (_T))4397 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4398
4399 static inline void netdev_ref_replace(struct net_device *odev,
4400 struct net_device *ndev,
4401 netdevice_tracker *tracker,
4402 gfp_t gfp)
4403 {
4404 if (odev)
4405 netdev_tracker_free(odev, tracker);
4406
4407 __dev_hold(ndev);
4408 __dev_put(odev);
4409
4410 if (ndev)
4411 __netdev_tracker_alloc(ndev, tracker, gfp);
4412 }
4413
4414 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4415 * and _off may be called from IRQ context, but it is caller
4416 * who is responsible for serialization of these calls.
4417 *
4418 * The name carrier is inappropriate, these functions should really be
4419 * called netif_lowerlayer_*() because they represent the state of any
4420 * kind of lower layer not just hardware media.
4421 */
4422 void linkwatch_fire_event(struct net_device *dev);
4423
4424 /**
4425 * linkwatch_sync_dev - sync linkwatch for the given device
4426 * @dev: network device to sync linkwatch for
4427 *
4428 * Sync linkwatch for the given device, removing it from the
4429 * pending work list (if queued).
4430 */
4431 void linkwatch_sync_dev(struct net_device *dev);
4432
4433 /**
4434 * netif_carrier_ok - test if carrier present
4435 * @dev: network device
4436 *
4437 * Check if carrier is present on device
4438 */
netif_carrier_ok(const struct net_device * dev)4439 static inline bool netif_carrier_ok(const struct net_device *dev)
4440 {
4441 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4442 }
4443
4444 unsigned long dev_trans_start(struct net_device *dev);
4445
4446 void netdev_watchdog_up(struct net_device *dev);
4447
4448 void netif_carrier_on(struct net_device *dev);
4449 void netif_carrier_off(struct net_device *dev);
4450 void netif_carrier_event(struct net_device *dev);
4451
4452 /**
4453 * netif_dormant_on - mark device as dormant.
4454 * @dev: network device
4455 *
4456 * Mark device as dormant (as per RFC2863).
4457 *
4458 * The dormant state indicates that the relevant interface is not
4459 * actually in a condition to pass packets (i.e., it is not 'up') but is
4460 * in a "pending" state, waiting for some external event. For "on-
4461 * demand" interfaces, this new state identifies the situation where the
4462 * interface is waiting for events to place it in the up state.
4463 */
netif_dormant_on(struct net_device * dev)4464 static inline void netif_dormant_on(struct net_device *dev)
4465 {
4466 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4467 linkwatch_fire_event(dev);
4468 }
4469
4470 /**
4471 * netif_dormant_off - set device as not dormant.
4472 * @dev: network device
4473 *
4474 * Device is not in dormant state.
4475 */
netif_dormant_off(struct net_device * dev)4476 static inline void netif_dormant_off(struct net_device *dev)
4477 {
4478 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4479 linkwatch_fire_event(dev);
4480 }
4481
4482 /**
4483 * netif_dormant - test if device is dormant
4484 * @dev: network device
4485 *
4486 * Check if device is dormant.
4487 */
netif_dormant(const struct net_device * dev)4488 static inline bool netif_dormant(const struct net_device *dev)
4489 {
4490 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4491 }
4492
4493
4494 /**
4495 * netif_testing_on - mark device as under test.
4496 * @dev: network device
4497 *
4498 * Mark device as under test (as per RFC2863).
4499 *
4500 * The testing state indicates that some test(s) must be performed on
4501 * the interface. After completion, of the test, the interface state
4502 * will change to up, dormant, or down, as appropriate.
4503 */
netif_testing_on(struct net_device * dev)4504 static inline void netif_testing_on(struct net_device *dev)
4505 {
4506 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4507 linkwatch_fire_event(dev);
4508 }
4509
4510 /**
4511 * netif_testing_off - set device as not under test.
4512 * @dev: network device
4513 *
4514 * Device is not in testing state.
4515 */
netif_testing_off(struct net_device * dev)4516 static inline void netif_testing_off(struct net_device *dev)
4517 {
4518 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4519 linkwatch_fire_event(dev);
4520 }
4521
4522 /**
4523 * netif_testing - test if device is under test
4524 * @dev: network device
4525 *
4526 * Check if device is under test
4527 */
netif_testing(const struct net_device * dev)4528 static inline bool netif_testing(const struct net_device *dev)
4529 {
4530 return test_bit(__LINK_STATE_TESTING, &dev->state);
4531 }
4532
4533
4534 /**
4535 * netif_oper_up - test if device is operational
4536 * @dev: network device
4537 *
4538 * Check if carrier is operational
4539 */
netif_oper_up(const struct net_device * dev)4540 static inline bool netif_oper_up(const struct net_device *dev)
4541 {
4542 unsigned int operstate = READ_ONCE(dev->operstate);
4543
4544 return operstate == IF_OPER_UP ||
4545 operstate == IF_OPER_UNKNOWN /* backward compat */;
4546 }
4547
4548 /**
4549 * netif_device_present - is device available or removed
4550 * @dev: network device
4551 *
4552 * Check if device has not been removed from system.
4553 */
netif_device_present(const struct net_device * dev)4554 static inline bool netif_device_present(const struct net_device *dev)
4555 {
4556 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4557 }
4558
4559 void netif_device_detach(struct net_device *dev);
4560
4561 void netif_device_attach(struct net_device *dev);
4562
4563 /*
4564 * Network interface message level settings
4565 */
4566
4567 enum {
4568 NETIF_MSG_DRV_BIT,
4569 NETIF_MSG_PROBE_BIT,
4570 NETIF_MSG_LINK_BIT,
4571 NETIF_MSG_TIMER_BIT,
4572 NETIF_MSG_IFDOWN_BIT,
4573 NETIF_MSG_IFUP_BIT,
4574 NETIF_MSG_RX_ERR_BIT,
4575 NETIF_MSG_TX_ERR_BIT,
4576 NETIF_MSG_TX_QUEUED_BIT,
4577 NETIF_MSG_INTR_BIT,
4578 NETIF_MSG_TX_DONE_BIT,
4579 NETIF_MSG_RX_STATUS_BIT,
4580 NETIF_MSG_PKTDATA_BIT,
4581 NETIF_MSG_HW_BIT,
4582 NETIF_MSG_WOL_BIT,
4583
4584 /* When you add a new bit above, update netif_msg_class_names array
4585 * in net/ethtool/common.c
4586 */
4587 NETIF_MSG_CLASS_COUNT,
4588 };
4589 /* Both ethtool_ops interface and internal driver implementation use u32 */
4590 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4591
4592 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4593 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4594
4595 #define NETIF_MSG_DRV __NETIF_MSG(DRV)
4596 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4597 #define NETIF_MSG_LINK __NETIF_MSG(LINK)
4598 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4599 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4600 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4601 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4602 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4603 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4604 #define NETIF_MSG_INTR __NETIF_MSG(INTR)
4605 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4606 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4607 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4608 #define NETIF_MSG_HW __NETIF_MSG(HW)
4609 #define NETIF_MSG_WOL __NETIF_MSG(WOL)
4610
4611 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4612 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4613 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4614 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4615 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4616 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4617 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4618 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4619 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4620 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4621 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4622 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4623 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4624 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4625 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4626
netif_msg_init(int debug_value,int default_msg_enable_bits)4627 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4628 {
4629 /* use default */
4630 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4631 return default_msg_enable_bits;
4632 if (debug_value == 0) /* no output */
4633 return 0;
4634 /* set low N bits */
4635 return (1U << debug_value) - 1;
4636 }
4637
__netif_tx_lock(struct netdev_queue * txq,int cpu)4638 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4639 {
4640 spin_lock(&txq->_xmit_lock);
4641 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4642 WRITE_ONCE(txq->xmit_lock_owner, cpu);
4643 }
4644
__netif_tx_acquire(struct netdev_queue * txq)4645 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4646 {
4647 __acquire(&txq->_xmit_lock);
4648 return true;
4649 }
4650
__netif_tx_release(struct netdev_queue * txq)4651 static inline void __netif_tx_release(struct netdev_queue *txq)
4652 {
4653 __release(&txq->_xmit_lock);
4654 }
4655
__netif_tx_lock_bh(struct netdev_queue * txq)4656 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4657 {
4658 spin_lock_bh(&txq->_xmit_lock);
4659 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4660 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4661 }
4662
__netif_tx_trylock(struct netdev_queue * txq)4663 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4664 {
4665 bool ok = spin_trylock(&txq->_xmit_lock);
4666
4667 if (likely(ok)) {
4668 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4669 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4670 }
4671 return ok;
4672 }
4673
__netif_tx_unlock(struct netdev_queue * txq)4674 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4675 {
4676 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4677 WRITE_ONCE(txq->xmit_lock_owner, -1);
4678 spin_unlock(&txq->_xmit_lock);
4679 }
4680
__netif_tx_unlock_bh(struct netdev_queue * txq)4681 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4682 {
4683 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4684 WRITE_ONCE(txq->xmit_lock_owner, -1);
4685 spin_unlock_bh(&txq->_xmit_lock);
4686 }
4687
4688 /*
4689 * txq->trans_start can be read locklessly from dev_watchdog()
4690 */
txq_trans_update(struct netdev_queue * txq)4691 static inline void txq_trans_update(struct netdev_queue *txq)
4692 {
4693 if (txq->xmit_lock_owner != -1)
4694 WRITE_ONCE(txq->trans_start, jiffies);
4695 }
4696
txq_trans_cond_update(struct netdev_queue * txq)4697 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4698 {
4699 unsigned long now = jiffies;
4700
4701 if (READ_ONCE(txq->trans_start) != now)
4702 WRITE_ONCE(txq->trans_start, now);
4703 }
4704
4705 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4706 static inline void netif_trans_update(struct net_device *dev)
4707 {
4708 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4709
4710 txq_trans_cond_update(txq);
4711 }
4712
4713 /**
4714 * netif_tx_lock - grab network device transmit lock
4715 * @dev: network device
4716 *
4717 * Get network device transmit lock
4718 */
4719 void netif_tx_lock(struct net_device *dev);
4720
netif_tx_lock_bh(struct net_device * dev)4721 static inline void netif_tx_lock_bh(struct net_device *dev)
4722 {
4723 local_bh_disable();
4724 netif_tx_lock(dev);
4725 }
4726
4727 void netif_tx_unlock(struct net_device *dev);
4728
netif_tx_unlock_bh(struct net_device * dev)4729 static inline void netif_tx_unlock_bh(struct net_device *dev)
4730 {
4731 netif_tx_unlock(dev);
4732 local_bh_enable();
4733 }
4734
4735 #define HARD_TX_LOCK(dev, txq, cpu) { \
4736 if (!(dev)->lltx) { \
4737 __netif_tx_lock(txq, cpu); \
4738 } else { \
4739 __netif_tx_acquire(txq); \
4740 } \
4741 }
4742
4743 #define HARD_TX_TRYLOCK(dev, txq) \
4744 (!(dev)->lltx ? \
4745 __netif_tx_trylock(txq) : \
4746 __netif_tx_acquire(txq))
4747
4748 #define HARD_TX_UNLOCK(dev, txq) { \
4749 if (!(dev)->lltx) { \
4750 __netif_tx_unlock(txq); \
4751 } else { \
4752 __netif_tx_release(txq); \
4753 } \
4754 }
4755
netif_tx_disable(struct net_device * dev)4756 static inline void netif_tx_disable(struct net_device *dev)
4757 {
4758 unsigned int i;
4759 int cpu;
4760
4761 local_bh_disable();
4762 cpu = smp_processor_id();
4763 spin_lock(&dev->tx_global_lock);
4764 for (i = 0; i < dev->num_tx_queues; i++) {
4765 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4766
4767 __netif_tx_lock(txq, cpu);
4768 netif_tx_stop_queue(txq);
4769 __netif_tx_unlock(txq);
4770 }
4771 spin_unlock(&dev->tx_global_lock);
4772 local_bh_enable();
4773 }
4774
netif_addr_lock(struct net_device * dev)4775 static inline void netif_addr_lock(struct net_device *dev)
4776 {
4777 unsigned char nest_level = 0;
4778
4779 #ifdef CONFIG_LOCKDEP
4780 nest_level = dev->nested_level;
4781 #endif
4782 spin_lock_nested(&dev->addr_list_lock, nest_level);
4783 }
4784
netif_addr_lock_bh(struct net_device * dev)4785 static inline void netif_addr_lock_bh(struct net_device *dev)
4786 {
4787 unsigned char nest_level = 0;
4788
4789 #ifdef CONFIG_LOCKDEP
4790 nest_level = dev->nested_level;
4791 #endif
4792 local_bh_disable();
4793 spin_lock_nested(&dev->addr_list_lock, nest_level);
4794 }
4795
netif_addr_unlock(struct net_device * dev)4796 static inline void netif_addr_unlock(struct net_device *dev)
4797 {
4798 spin_unlock(&dev->addr_list_lock);
4799 }
4800
netif_addr_unlock_bh(struct net_device * dev)4801 static inline void netif_addr_unlock_bh(struct net_device *dev)
4802 {
4803 spin_unlock_bh(&dev->addr_list_lock);
4804 }
4805
4806 /*
4807 * dev_addrs walker. Should be used only for read access. Call with
4808 * rcu_read_lock held.
4809 */
4810 #define for_each_dev_addr(dev, ha) \
4811 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4812
4813 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4814
4815 void ether_setup(struct net_device *dev);
4816
4817 /* Allocate dummy net_device */
4818 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4819
4820 /* Support for loadable net-drivers */
4821 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4822 unsigned char name_assign_type,
4823 void (*setup)(struct net_device *),
4824 unsigned int txqs, unsigned int rxqs);
4825 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4826 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4827
4828 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4829 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4830 count)
4831
4832 int register_netdev(struct net_device *dev);
4833 void unregister_netdev(struct net_device *dev);
4834
4835 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4836
4837 /* General hardware address lists handling functions */
4838 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4839 struct netdev_hw_addr_list *from_list, int addr_len);
4840 int __hw_addr_sync_multiple(struct netdev_hw_addr_list *to_list,
4841 struct netdev_hw_addr_list *from_list,
4842 int addr_len);
4843 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4844 struct netdev_hw_addr_list *from_list, int addr_len);
4845 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4846 struct net_device *dev,
4847 int (*sync)(struct net_device *, const unsigned char *),
4848 int (*unsync)(struct net_device *,
4849 const unsigned char *));
4850 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4851 struct net_device *dev,
4852 int (*sync)(struct net_device *,
4853 const unsigned char *, int),
4854 int (*unsync)(struct net_device *,
4855 const unsigned char *, int));
4856 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4857 struct net_device *dev,
4858 int (*unsync)(struct net_device *,
4859 const unsigned char *, int));
4860 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4861 struct net_device *dev,
4862 int (*unsync)(struct net_device *,
4863 const unsigned char *));
4864 void __hw_addr_init(struct netdev_hw_addr_list *list);
4865
4866 /* Functions used for device addresses handling */
4867 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4868 const void *addr, size_t len);
4869
4870 static inline void
__dev_addr_set(struct net_device * dev,const void * addr,size_t len)4871 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4872 {
4873 dev_addr_mod(dev, 0, addr, len);
4874 }
4875
dev_addr_set(struct net_device * dev,const u8 * addr)4876 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4877 {
4878 __dev_addr_set(dev, addr, dev->addr_len);
4879 }
4880
4881 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4882 unsigned char addr_type);
4883 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4884 unsigned char addr_type);
4885
4886 /* Functions used for unicast addresses handling */
4887 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4888 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4889 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4890 int dev_uc_sync(struct net_device *to, struct net_device *from);
4891 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4892 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4893 void dev_uc_flush(struct net_device *dev);
4894 void dev_uc_init(struct net_device *dev);
4895
4896 /**
4897 * __dev_uc_sync - Synchronize device's unicast list
4898 * @dev: device to sync
4899 * @sync: function to call if address should be added
4900 * @unsync: function to call if address should be removed
4901 *
4902 * Add newly added addresses to the interface, and release
4903 * addresses that have been deleted.
4904 */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4905 static inline int __dev_uc_sync(struct net_device *dev,
4906 int (*sync)(struct net_device *,
4907 const unsigned char *),
4908 int (*unsync)(struct net_device *,
4909 const unsigned char *))
4910 {
4911 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4912 }
4913
4914 /**
4915 * __dev_uc_unsync - Remove synchronized addresses from device
4916 * @dev: device to sync
4917 * @unsync: function to call if address should be removed
4918 *
4919 * Remove all addresses that were added to the device by dev_uc_sync().
4920 */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4921 static inline void __dev_uc_unsync(struct net_device *dev,
4922 int (*unsync)(struct net_device *,
4923 const unsigned char *))
4924 {
4925 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4926 }
4927
4928 /* Functions used for multicast addresses handling */
4929 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4930 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4931 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4932 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4933 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4934 int dev_mc_sync(struct net_device *to, struct net_device *from);
4935 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4936 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4937 void dev_mc_flush(struct net_device *dev);
4938 void dev_mc_init(struct net_device *dev);
4939
4940 /**
4941 * __dev_mc_sync - Synchronize device's multicast list
4942 * @dev: device to sync
4943 * @sync: function to call if address should be added
4944 * @unsync: function to call if address should be removed
4945 *
4946 * Add newly added addresses to the interface, and release
4947 * addresses that have been deleted.
4948 */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4949 static inline int __dev_mc_sync(struct net_device *dev,
4950 int (*sync)(struct net_device *,
4951 const unsigned char *),
4952 int (*unsync)(struct net_device *,
4953 const unsigned char *))
4954 {
4955 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4956 }
4957
4958 /**
4959 * __dev_mc_unsync - Remove synchronized addresses from device
4960 * @dev: device to sync
4961 * @unsync: function to call if address should be removed
4962 *
4963 * Remove all addresses that were added to the device by dev_mc_sync().
4964 */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4965 static inline void __dev_mc_unsync(struct net_device *dev,
4966 int (*unsync)(struct net_device *,
4967 const unsigned char *))
4968 {
4969 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4970 }
4971
4972 /* Functions used for secondary unicast and multicast support */
4973 void dev_set_rx_mode(struct net_device *dev);
4974 int dev_set_promiscuity(struct net_device *dev, int inc);
4975 int netif_set_allmulti(struct net_device *dev, int inc, bool notify);
4976 int dev_set_allmulti(struct net_device *dev, int inc);
4977 void netdev_state_change(struct net_device *dev);
4978 void __netdev_notify_peers(struct net_device *dev);
4979 void netdev_notify_peers(struct net_device *dev);
4980 void netdev_features_change(struct net_device *dev);
4981 /* Load a device via the kmod */
4982 void dev_load(struct net *net, const char *name);
4983 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4984 struct rtnl_link_stats64 *storage);
4985 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4986 const struct net_device_stats *netdev_stats);
4987 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4988 const struct pcpu_sw_netstats __percpu *netstats);
4989 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4990
4991 enum {
4992 NESTED_SYNC_IMM_BIT,
4993 NESTED_SYNC_TODO_BIT,
4994 };
4995
4996 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4997 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4998
4999 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
5000 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
5001
5002 struct netdev_nested_priv {
5003 unsigned char flags;
5004 void *data;
5005 };
5006
5007 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
5008 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5009 struct list_head **iter);
5010
5011 /* iterate through upper list, must be called under RCU read lock */
5012 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
5013 for (iter = &(dev)->adj_list.upper, \
5014 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
5015 updev; \
5016 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
5017
5018 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5019 int (*fn)(struct net_device *upper_dev,
5020 struct netdev_nested_priv *priv),
5021 struct netdev_nested_priv *priv);
5022
5023 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5024 struct net_device *upper_dev);
5025
5026 bool netdev_has_any_upper_dev(struct net_device *dev);
5027
5028 void *netdev_lower_get_next_private(struct net_device *dev,
5029 struct list_head **iter);
5030 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5031 struct list_head **iter);
5032
5033 #define netdev_for_each_lower_private(dev, priv, iter) \
5034 for (iter = (dev)->adj_list.lower.next, \
5035 priv = netdev_lower_get_next_private(dev, &(iter)); \
5036 priv; \
5037 priv = netdev_lower_get_next_private(dev, &(iter)))
5038
5039 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
5040 for (iter = &(dev)->adj_list.lower, \
5041 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
5042 priv; \
5043 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
5044
5045 void *netdev_lower_get_next(struct net_device *dev,
5046 struct list_head **iter);
5047
5048 #define netdev_for_each_lower_dev(dev, ldev, iter) \
5049 for (iter = (dev)->adj_list.lower.next, \
5050 ldev = netdev_lower_get_next(dev, &(iter)); \
5051 ldev; \
5052 ldev = netdev_lower_get_next(dev, &(iter)))
5053
5054 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5055 struct list_head **iter);
5056 int netdev_walk_all_lower_dev(struct net_device *dev,
5057 int (*fn)(struct net_device *lower_dev,
5058 struct netdev_nested_priv *priv),
5059 struct netdev_nested_priv *priv);
5060 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5061 int (*fn)(struct net_device *lower_dev,
5062 struct netdev_nested_priv *priv),
5063 struct netdev_nested_priv *priv);
5064
5065 void *netdev_adjacent_get_private(struct list_head *adj_list);
5066 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
5067 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
5068 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
5069 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
5070 struct netlink_ext_ack *extack);
5071 int netdev_master_upper_dev_link(struct net_device *dev,
5072 struct net_device *upper_dev,
5073 void *upper_priv, void *upper_info,
5074 struct netlink_ext_ack *extack);
5075 void netdev_upper_dev_unlink(struct net_device *dev,
5076 struct net_device *upper_dev);
5077 int netdev_adjacent_change_prepare(struct net_device *old_dev,
5078 struct net_device *new_dev,
5079 struct net_device *dev,
5080 struct netlink_ext_ack *extack);
5081 void netdev_adjacent_change_commit(struct net_device *old_dev,
5082 struct net_device *new_dev,
5083 struct net_device *dev);
5084 void netdev_adjacent_change_abort(struct net_device *old_dev,
5085 struct net_device *new_dev,
5086 struct net_device *dev);
5087 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
5088 void *netdev_lower_dev_get_private(struct net_device *dev,
5089 struct net_device *lower_dev);
5090 void netdev_lower_state_changed(struct net_device *lower_dev,
5091 void *lower_state_info);
5092
5093 /* RSS keys are 40 or 52 bytes long */
5094 #define NETDEV_RSS_KEY_LEN 52
5095 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
5096 void netdev_rss_key_fill(void *buffer, size_t len);
5097
5098 int skb_checksum_help(struct sk_buff *skb);
5099 int skb_crc32c_csum_help(struct sk_buff *skb);
5100 int skb_csum_hwoffload_help(struct sk_buff *skb,
5101 const netdev_features_t features);
5102
5103 struct netdev_bonding_info {
5104 ifslave slave;
5105 ifbond master;
5106 };
5107
5108 struct netdev_notifier_bonding_info {
5109 struct netdev_notifier_info info; /* must be first */
5110 struct netdev_bonding_info bonding_info;
5111 };
5112
5113 void netdev_bonding_info_change(struct net_device *dev,
5114 struct netdev_bonding_info *bonding_info);
5115
5116 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
5117 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
5118 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)5119 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
5120 const void *data)
5121 {
5122 }
5123 #endif
5124
5125 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
5126
can_checksum_protocol(netdev_features_t features,__be16 protocol)5127 static inline bool can_checksum_protocol(netdev_features_t features,
5128 __be16 protocol)
5129 {
5130 if (protocol == htons(ETH_P_FCOE))
5131 return !!(features & NETIF_F_FCOE_CRC);
5132
5133 /* Assume this is an IP checksum (not SCTP CRC) */
5134
5135 if (features & NETIF_F_HW_CSUM) {
5136 /* Can checksum everything */
5137 return true;
5138 }
5139
5140 switch (protocol) {
5141 case htons(ETH_P_IP):
5142 return !!(features & NETIF_F_IP_CSUM);
5143 case htons(ETH_P_IPV6):
5144 return !!(features & NETIF_F_IPV6_CSUM);
5145 default:
5146 return false;
5147 }
5148 }
5149
5150 #ifdef CONFIG_BUG
5151 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
5152 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)5153 static inline void netdev_rx_csum_fault(struct net_device *dev,
5154 struct sk_buff *skb)
5155 {
5156 }
5157 #endif
5158 /* rx skb timestamps */
5159 void net_enable_timestamp(void);
5160 void net_disable_timestamp(void);
5161
netdev_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)5162 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
5163 const struct skb_shared_hwtstamps *hwtstamps,
5164 bool cycles)
5165 {
5166 const struct net_device_ops *ops = dev->netdev_ops;
5167
5168 if (ops->ndo_get_tstamp)
5169 return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
5170
5171 return hwtstamps->hwtstamp;
5172 }
5173
5174 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_set_more(bool more)5175 static inline void netdev_xmit_set_more(bool more)
5176 {
5177 __this_cpu_write(softnet_data.xmit.more, more);
5178 }
5179
netdev_xmit_more(void)5180 static inline bool netdev_xmit_more(void)
5181 {
5182 return __this_cpu_read(softnet_data.xmit.more);
5183 }
5184 #else
netdev_xmit_set_more(bool more)5185 static inline void netdev_xmit_set_more(bool more)
5186 {
5187 current->net_xmit.more = more;
5188 }
5189
netdev_xmit_more(void)5190 static inline bool netdev_xmit_more(void)
5191 {
5192 return current->net_xmit.more;
5193 }
5194 #endif
5195
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)5196 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
5197 struct sk_buff *skb, struct net_device *dev,
5198 bool more)
5199 {
5200 netdev_xmit_set_more(more);
5201 return ops->ndo_start_xmit(skb, dev);
5202 }
5203
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)5204 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
5205 struct netdev_queue *txq, bool more)
5206 {
5207 const struct net_device_ops *ops = dev->netdev_ops;
5208 netdev_tx_t rc;
5209
5210 rc = __netdev_start_xmit(ops, skb, dev, more);
5211 if (rc == NETDEV_TX_OK)
5212 txq_trans_update(txq);
5213
5214 return rc;
5215 }
5216
5217 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5218 const void *ns);
5219 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5220 const void *ns);
5221
5222 extern const struct kobj_ns_type_operations net_ns_type_operations;
5223
5224 const char *netdev_drivername(const struct net_device *dev);
5225
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)5226 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5227 netdev_features_t f2)
5228 {
5229 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5230 if (f1 & NETIF_F_HW_CSUM)
5231 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5232 else
5233 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5234 }
5235
5236 return f1 & f2;
5237 }
5238
netdev_get_wanted_features(struct net_device * dev)5239 static inline netdev_features_t netdev_get_wanted_features(
5240 struct net_device *dev)
5241 {
5242 return (dev->features & ~dev->hw_features) | dev->wanted_features;
5243 }
5244 netdev_features_t netdev_increment_features(netdev_features_t all,
5245 netdev_features_t one, netdev_features_t mask);
5246
5247 /* Allow TSO being used on stacked device :
5248 * Performing the GSO segmentation before last device
5249 * is a performance improvement.
5250 */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)5251 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5252 netdev_features_t mask)
5253 {
5254 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5255 }
5256
5257 int __netdev_update_features(struct net_device *dev);
5258 void netdev_update_features(struct net_device *dev);
5259 void netdev_change_features(struct net_device *dev);
5260
5261 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5262 struct net_device *dev);
5263
5264 netdev_features_t passthru_features_check(struct sk_buff *skb,
5265 struct net_device *dev,
5266 netdev_features_t features);
5267 netdev_features_t netif_skb_features(struct sk_buff *skb);
5268 void skb_warn_bad_offload(const struct sk_buff *skb);
5269
net_gso_ok(netdev_features_t features,int gso_type)5270 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5271 {
5272 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5273
5274 /* check flags correspondence */
5275 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5276 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5277 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5278 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5279 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5280 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5281 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5282 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5283 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5284 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5285 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5286 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5287 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5288 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5289 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5290 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5291 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5292 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5293 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5294 BUILD_BUG_ON(SKB_GSO_TCP_ACCECN !=
5295 (NETIF_F_GSO_ACCECN >> NETIF_F_GSO_SHIFT));
5296
5297 return (features & feature) == feature;
5298 }
5299
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)5300 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5301 {
5302 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5303 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5304 }
5305
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)5306 static inline bool netif_needs_gso(struct sk_buff *skb,
5307 netdev_features_t features)
5308 {
5309 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5310 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5311 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5312 }
5313
5314 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5316 void netif_inherit_tso_max(struct net_device *to,
5317 const struct net_device *from);
5318
5319 static inline unsigned int
netif_get_gro_max_size(const struct net_device * dev,const struct sk_buff * skb)5320 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5321 {
5322 /* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5323 return skb->protocol == htons(ETH_P_IPV6) ?
5324 READ_ONCE(dev->gro_max_size) :
5325 READ_ONCE(dev->gro_ipv4_max_size);
5326 }
5327
5328 static inline unsigned int
netif_get_gso_max_size(const struct net_device * dev,const struct sk_buff * skb)5329 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5330 {
5331 /* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5332 return skb->protocol == htons(ETH_P_IPV6) ?
5333 READ_ONCE(dev->gso_max_size) :
5334 READ_ONCE(dev->gso_ipv4_max_size);
5335 }
5336
netif_is_macsec(const struct net_device * dev)5337 static inline bool netif_is_macsec(const struct net_device *dev)
5338 {
5339 return dev->priv_flags & IFF_MACSEC;
5340 }
5341
netif_is_macvlan(const struct net_device * dev)5342 static inline bool netif_is_macvlan(const struct net_device *dev)
5343 {
5344 return dev->priv_flags & IFF_MACVLAN;
5345 }
5346
netif_is_macvlan_port(const struct net_device * dev)5347 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5348 {
5349 return dev->priv_flags & IFF_MACVLAN_PORT;
5350 }
5351
netif_is_bond_master(const struct net_device * dev)5352 static inline bool netif_is_bond_master(const struct net_device *dev)
5353 {
5354 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5355 }
5356
netif_is_bond_slave(const struct net_device * dev)5357 static inline bool netif_is_bond_slave(const struct net_device *dev)
5358 {
5359 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5360 }
5361
netif_supports_nofcs(struct net_device * dev)5362 static inline bool netif_supports_nofcs(struct net_device *dev)
5363 {
5364 return dev->priv_flags & IFF_SUPP_NOFCS;
5365 }
5366
netif_has_l3_rx_handler(const struct net_device * dev)5367 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5368 {
5369 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5370 }
5371
netif_is_l3_master(const struct net_device * dev)5372 static inline bool netif_is_l3_master(const struct net_device *dev)
5373 {
5374 return dev->priv_flags & IFF_L3MDEV_MASTER;
5375 }
5376
netif_is_l3_slave(const struct net_device * dev)5377 static inline bool netif_is_l3_slave(const struct net_device *dev)
5378 {
5379 return dev->priv_flags & IFF_L3MDEV_SLAVE;
5380 }
5381
dev_sdif(const struct net_device * dev)5382 static inline int dev_sdif(const struct net_device *dev)
5383 {
5384 #ifdef CONFIG_NET_L3_MASTER_DEV
5385 if (netif_is_l3_slave(dev))
5386 return dev->ifindex;
5387 #endif
5388 return 0;
5389 }
5390
netif_is_bridge_master(const struct net_device * dev)5391 static inline bool netif_is_bridge_master(const struct net_device *dev)
5392 {
5393 return dev->priv_flags & IFF_EBRIDGE;
5394 }
5395
netif_is_bridge_port(const struct net_device * dev)5396 static inline bool netif_is_bridge_port(const struct net_device *dev)
5397 {
5398 return dev->priv_flags & IFF_BRIDGE_PORT;
5399 }
5400
netif_is_ovs_master(const struct net_device * dev)5401 static inline bool netif_is_ovs_master(const struct net_device *dev)
5402 {
5403 return dev->priv_flags & IFF_OPENVSWITCH;
5404 }
5405
netif_is_ovs_port(const struct net_device * dev)5406 static inline bool netif_is_ovs_port(const struct net_device *dev)
5407 {
5408 return dev->priv_flags & IFF_OVS_DATAPATH;
5409 }
5410
netif_is_any_bridge_master(const struct net_device * dev)5411 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5412 {
5413 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5414 }
5415
netif_is_any_bridge_port(const struct net_device * dev)5416 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5417 {
5418 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5419 }
5420
netif_is_team_master(const struct net_device * dev)5421 static inline bool netif_is_team_master(const struct net_device *dev)
5422 {
5423 return dev->priv_flags & IFF_TEAM;
5424 }
5425
netif_is_team_port(const struct net_device * dev)5426 static inline bool netif_is_team_port(const struct net_device *dev)
5427 {
5428 return dev->priv_flags & IFF_TEAM_PORT;
5429 }
5430
netif_is_lag_master(const struct net_device * dev)5431 static inline bool netif_is_lag_master(const struct net_device *dev)
5432 {
5433 return netif_is_bond_master(dev) || netif_is_team_master(dev);
5434 }
5435
netif_is_lag_port(const struct net_device * dev)5436 static inline bool netif_is_lag_port(const struct net_device *dev)
5437 {
5438 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5439 }
5440
netif_is_rxfh_configured(const struct net_device * dev)5441 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5442 {
5443 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5444 }
5445
netif_is_failover(const struct net_device * dev)5446 static inline bool netif_is_failover(const struct net_device *dev)
5447 {
5448 return dev->priv_flags & IFF_FAILOVER;
5449 }
5450
netif_is_failover_slave(const struct net_device * dev)5451 static inline bool netif_is_failover_slave(const struct net_device *dev)
5452 {
5453 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5454 }
5455
5456 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5457 static inline void netif_keep_dst(struct net_device *dev)
5458 {
5459 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5460 }
5461
5462 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5463 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5464 {
5465 /* TODO: reserve and use an additional IFF bit, if we get more users */
5466 return netif_is_macsec(dev);
5467 }
5468
5469 extern struct pernet_operations __net_initdata loopback_net_ops;
5470
5471 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5472
5473 /* netdev_printk helpers, similar to dev_printk */
5474
netdev_name(const struct net_device * dev)5475 static inline const char *netdev_name(const struct net_device *dev)
5476 {
5477 if (!dev->name[0] || strchr(dev->name, '%'))
5478 return "(unnamed net_device)";
5479 return dev->name;
5480 }
5481
netdev_reg_state(const struct net_device * dev)5482 static inline const char *netdev_reg_state(const struct net_device *dev)
5483 {
5484 u8 reg_state = READ_ONCE(dev->reg_state);
5485
5486 switch (reg_state) {
5487 case NETREG_UNINITIALIZED: return " (uninitialized)";
5488 case NETREG_REGISTERED: return "";
5489 case NETREG_UNREGISTERING: return " (unregistering)";
5490 case NETREG_UNREGISTERED: return " (unregistered)";
5491 case NETREG_RELEASED: return " (released)";
5492 case NETREG_DUMMY: return " (dummy)";
5493 }
5494
5495 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5496 return " (unknown)";
5497 }
5498
5499 #define MODULE_ALIAS_NETDEV(device) \
5500 MODULE_ALIAS("netdev-" device)
5501
5502 /*
5503 * netdev_WARN() acts like dev_printk(), but with the key difference
5504 * of using a WARN/WARN_ON to get the message out, including the
5505 * file/line information and a backtrace.
5506 */
5507 #define netdev_WARN(dev, format, args...) \
5508 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5509 netdev_reg_state(dev), ##args)
5510
5511 #define netdev_WARN_ONCE(dev, format, args...) \
5512 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5513 netdev_reg_state(dev), ##args)
5514
5515 /*
5516 * The list of packet types we will receive (as opposed to discard)
5517 * and the routines to invoke.
5518 *
5519 * Why 16. Because with 16 the only overlap we get on a hash of the
5520 * low nibble of the protocol value is RARP/SNAP/X.25.
5521 *
5522 * 0800 IP
5523 * 0001 802.3
5524 * 0002 AX.25
5525 * 0004 802.2
5526 * 8035 RARP
5527 * 0005 SNAP
5528 * 0805 X.25
5529 * 0806 ARP
5530 * 8137 IPX
5531 * 0009 Localtalk
5532 * 86DD IPv6
5533 */
5534 #define PTYPE_HASH_SIZE (16)
5535 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5536
5537 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5538
5539 extern struct net_device *blackhole_netdev;
5540
5541 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5542 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5543 #define DEV_STATS_ADD(DEV, FIELD, VAL) \
5544 atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5545 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5546
5547 #endif /* _LINUX_NETDEVICE_H */
5548