1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header defines various interfaces for pass management in LLVM. There
11 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
12 /// which supports a method to 'run' it over a unit of IR can be used as
13 /// a pass. A pass manager is generally a tool to collect a sequence of passes
14 /// which run over a particular IR construct, and run each of them in sequence
15 /// over each such construct in the containing IR construct. As there is no
16 /// containing IR construct for a Module, a manager for passes over modules
17 /// forms the base case which runs its managed passes in sequence over the
18 /// single module provided.
19 ///
20 /// The core IR library provides managers for running passes over
21 /// modules and functions.
22 ///
23 /// * FunctionPassManager can run over a Module, runs each pass over
24 /// a Function.
25 /// * ModulePassManager must be directly run, runs each pass over the Module.
26 ///
27 /// Note that the implementations of the pass managers use concept-based
28 /// polymorphism as outlined in the "Value Semantics and Concept-based
29 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
30 /// Class of Evil") by Sean Parent:
31 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
32 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
33 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
34 ///
35 //===----------------------------------------------------------------------===//
36
37 #ifndef LLVM_IR_PASSMANAGER_H
38 #define LLVM_IR_PASSMANAGER_H
39
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/StringRef.h"
43 #include "llvm/ADT/TinyPtrVector.h"
44 #include "llvm/IR/Analysis.h"
45 #include "llvm/IR/PassManagerInternal.h"
46 #include "llvm/Support/TypeName.h"
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <list>
51 #include <memory>
52 #include <tuple>
53 #include <type_traits>
54 #include <utility>
55 #include <vector>
56
57 namespace llvm {
58
59 class Function;
60 class Module;
61
62 // Forward declare the analysis manager template.
63 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
64
65 /// A CRTP mix-in to automatically provide informational APIs needed for
66 /// passes.
67 ///
68 /// This provides some boilerplate for types that are passes.
69 template <typename DerivedT> struct PassInfoMixin {
70 /// Gets the name of the pass we are mixed into.
namePassInfoMixin71 static StringRef name() {
72 static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
73 "Must pass the derived type as the template argument!");
74 StringRef Name = getTypeName<DerivedT>();
75 Name.consume_front("llvm::");
76 return Name;
77 }
78
printPipelinePassInfoMixin79 void printPipeline(raw_ostream &OS,
80 function_ref<StringRef(StringRef)> MapClassName2PassName) {
81 StringRef ClassName = DerivedT::name();
82 auto PassName = MapClassName2PassName(ClassName);
83 OS << PassName;
84 }
85 };
86
87 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
88 ///
89 /// This provides some boilerplate for types that are analysis passes. It
90 /// automatically mixes in \c PassInfoMixin.
91 template <typename DerivedT>
92 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
93 /// Returns an opaque, unique ID for this analysis type.
94 ///
95 /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
96 /// suitable for use in sets, maps, and other data structures that use the low
97 /// bits of pointers.
98 ///
99 /// Note that this requires the derived type provide a static \c AnalysisKey
100 /// member called \c Key.
101 ///
102 /// FIXME: The only reason the mixin type itself can't declare the Key value
103 /// is that some compilers cannot correctly unique a templated static variable
104 /// so it has the same addresses in each instantiation. The only currently
105 /// known platform with this limitation is Windows DLL builds, specifically
106 /// building each part of LLVM as a DLL. If we ever remove that build
107 /// configuration, this mixin can provide the static key as well.
IDAnalysisInfoMixin108 static AnalysisKey *ID() {
109 static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
110 "Must pass the derived type as the template argument!");
111 return &DerivedT::Key;
112 }
113 };
114
115 namespace detail {
116
117 /// Actual unpacker of extra arguments in getAnalysisResult,
118 /// passes only those tuple arguments that are mentioned in index_sequence.
119 template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
120 typename... ArgTs, size_t... Ns>
121 typename PassT::Result
getAnalysisResultUnpackTuple(AnalysisManagerT & AM,IRUnitT & IR,std::tuple<ArgTs...> Args,std::index_sequence<Ns...>)122 getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
123 std::tuple<ArgTs...> Args,
124 std::index_sequence<Ns...>) {
125 (void)Args;
126 return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
127 }
128
129 /// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
130 ///
131 /// Arguments passed in tuple come from PassManager, so they might have extra
132 /// arguments after those AnalysisManager's ExtraArgTs ones that we need to
133 /// pass to getResult.
134 template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
135 typename... MainArgTs>
136 typename PassT::Result
getAnalysisResult(AnalysisManager<IRUnitT,AnalysisArgTs...> & AM,IRUnitT & IR,std::tuple<MainArgTs...> Args)137 getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
138 std::tuple<MainArgTs...> Args) {
139 return (getAnalysisResultUnpackTuple<
140 PassT, IRUnitT>)(AM, IR, Args,
141 std::index_sequence_for<AnalysisArgTs...>{});
142 }
143
144 } // namespace detail
145
146 /// Manages a sequence of passes over a particular unit of IR.
147 ///
148 /// A pass manager contains a sequence of passes to run over a particular unit
149 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
150 /// IR, and when run over some given IR will run each of its contained passes in
151 /// sequence. Pass managers are the primary and most basic building block of a
152 /// pass pipeline.
153 ///
154 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
155 /// argument. The pass manager will propagate that analysis manager to each
156 /// pass it runs, and will call the analysis manager's invalidation routine with
157 /// the PreservedAnalyses of each pass it runs.
158 template <typename IRUnitT,
159 typename AnalysisManagerT = AnalysisManager<IRUnitT>,
160 typename... ExtraArgTs>
161 class PassManager : public PassInfoMixin<
162 PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
163 public:
164 /// Construct a pass manager.
165 explicit PassManager() = default;
166
167 // FIXME: These are equivalent to the default move constructor/move
168 // assignment. However, using = default triggers linker errors due to the
169 // explicit instantiations below. Find away to use the default and remove the
170 // duplicated code here.
PassManager(PassManager && Arg)171 PassManager(PassManager &&Arg) : Passes(std::move(Arg.Passes)) {}
172
173 PassManager &operator=(PassManager &&RHS) {
174 Passes = std::move(RHS.Passes);
175 return *this;
176 }
177
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)178 void printPipeline(raw_ostream &OS,
179 function_ref<StringRef(StringRef)> MapClassName2PassName) {
180 for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
181 auto *P = Passes[Idx].get();
182 P->printPipeline(OS, MapClassName2PassName);
183 if (Idx + 1 < Size)
184 OS << ',';
185 }
186 }
187
188 /// Run all of the passes in this manager over the given unit of IR.
189 /// ExtraArgs are passed to each pass.
190 PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
191 ExtraArgTs... ExtraArgs);
192
193 template <typename PassT>
194 LLVM_ATTRIBUTE_MINSIZE std::enable_if_t<!std::is_same_v<PassT, PassManager>>
addPass(PassT && Pass)195 addPass(PassT &&Pass) {
196 using PassModelT =
197 detail::PassModel<IRUnitT, PassT, AnalysisManagerT, ExtraArgTs...>;
198 // Do not use make_unique or emplace_back, they cause too many template
199 // instantiations, causing terrible compile times.
200 Passes.push_back(std::unique_ptr<PassConceptT>(
201 new PassModelT(std::forward<PassT>(Pass))));
202 }
203
204 /// When adding a pass manager pass that has the same type as this pass
205 /// manager, simply move the passes over. This is because we don't have
206 /// use cases rely on executing nested pass managers. Doing this could
207 /// reduce implementation complexity and avoid potential invalidation
208 /// issues that may happen with nested pass managers of the same type.
209 template <typename PassT>
210 LLVM_ATTRIBUTE_MINSIZE std::enable_if_t<std::is_same_v<PassT, PassManager>>
addPass(PassT && Pass)211 addPass(PassT &&Pass) {
212 for (auto &P : Pass.Passes)
213 Passes.push_back(std::move(P));
214 }
215
216 /// Returns if the pass manager contains any passes.
isEmpty()217 bool isEmpty() const { return Passes.empty(); }
218
isRequired()219 static bool isRequired() { return true; }
220
221 protected:
222 using PassConceptT =
223 detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
224
225 std::vector<std::unique_ptr<PassConceptT>> Passes;
226 };
227
228 template <typename IRUnitT>
229 void printIRUnitNameForStackTrace(raw_ostream &OS, const IRUnitT &IR);
230
231 template <>
232 void printIRUnitNameForStackTrace<Module>(raw_ostream &OS, const Module &IR);
233
234 extern template class PassManager<Module>;
235
236 /// Convenience typedef for a pass manager over modules.
237 using ModulePassManager = PassManager<Module>;
238
239 template <>
240 void printIRUnitNameForStackTrace<Function>(raw_ostream &OS,
241 const Function &IR);
242
243 extern template class PassManager<Function>;
244
245 /// Convenience typedef for a pass manager over functions.
246 using FunctionPassManager = PassManager<Function>;
247
248 /// A container for analyses that lazily runs them and caches their
249 /// results.
250 ///
251 /// This class can manage analyses for any IR unit where the address of the IR
252 /// unit sufficies as its identity.
253 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
254 public:
255 class Invalidator;
256
257 private:
258 // Now that we've defined our invalidator, we can define the concept types.
259 using ResultConceptT = detail::AnalysisResultConcept<IRUnitT, Invalidator>;
260 using PassConceptT =
261 detail::AnalysisPassConcept<IRUnitT, Invalidator, ExtraArgTs...>;
262
263 /// List of analysis pass IDs and associated concept pointers.
264 ///
265 /// Requires iterators to be valid across appending new entries and arbitrary
266 /// erases. Provides the analysis ID to enable finding iterators to a given
267 /// entry in maps below, and provides the storage for the actual result
268 /// concept.
269 using AnalysisResultListT =
270 std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
271
272 /// Map type from IRUnitT pointer to our custom list type.
273 using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
274
275 /// Map type from a pair of analysis ID and IRUnitT pointer to an
276 /// iterator into a particular result list (which is where the actual analysis
277 /// result is stored).
278 using AnalysisResultMapT =
279 DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
280 typename AnalysisResultListT::iterator>;
281
282 public:
283 /// API to communicate dependencies between analyses during invalidation.
284 ///
285 /// When an analysis result embeds handles to other analysis results, it
286 /// needs to be invalidated both when its own information isn't preserved and
287 /// when any of its embedded analysis results end up invalidated. We pass an
288 /// \c Invalidator object as an argument to \c invalidate() in order to let
289 /// the analysis results themselves define the dependency graph on the fly.
290 /// This lets us avoid building an explicit representation of the
291 /// dependencies between analysis results.
292 class Invalidator {
293 public:
294 /// Trigger the invalidation of some other analysis pass if not already
295 /// handled and return whether it was in fact invalidated.
296 ///
297 /// This is expected to be called from within a given analysis result's \c
298 /// invalidate method to trigger a depth-first walk of all inter-analysis
299 /// dependencies. The same \p IR unit and \p PA passed to that result's \c
300 /// invalidate method should in turn be provided to this routine.
301 ///
302 /// The first time this is called for a given analysis pass, it will call
303 /// the corresponding result's \c invalidate method. Subsequent calls will
304 /// use a cache of the results of that initial call. It is an error to form
305 /// cyclic dependencies between analysis results.
306 ///
307 /// This returns true if the given analysis's result is invalid. Any
308 /// dependecies on it will become invalid as a result.
309 template <typename PassT>
invalidate(IRUnitT & IR,const PreservedAnalyses & PA)310 bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
311 using ResultModelT =
312 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
313 Invalidator>;
314
315 return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
316 }
317
318 /// A type-erased variant of the above invalidate method with the same core
319 /// API other than passing an analysis ID rather than an analysis type
320 /// parameter.
321 ///
322 /// This is sadly less efficient than the above routine, which leverages
323 /// the type parameter to avoid the type erasure overhead.
invalidate(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)324 bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
325 return invalidateImpl<>(ID, IR, PA);
326 }
327
328 private:
329 friend class AnalysisManager;
330
331 template <typename ResultT = ResultConceptT>
invalidateImpl(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)332 bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
333 const PreservedAnalyses &PA) {
334 // If we've already visited this pass, return true if it was invalidated
335 // and false otherwise.
336 auto IMapI = IsResultInvalidated.find(ID);
337 if (IMapI != IsResultInvalidated.end())
338 return IMapI->second;
339
340 // Otherwise look up the result object.
341 auto RI = Results.find({ID, &IR});
342 assert(RI != Results.end() &&
343 "Trying to invalidate a dependent result that isn't in the "
344 "manager's cache is always an error, likely due to a stale result "
345 "handle!");
346
347 auto &Result = static_cast<ResultT &>(*RI->second->second);
348
349 // Insert into the map whether the result should be invalidated and return
350 // that. Note that we cannot reuse IMapI and must do a fresh insert here,
351 // as calling invalidate could (recursively) insert things into the map,
352 // making any iterator or reference invalid.
353 bool Inserted;
354 std::tie(IMapI, Inserted) =
355 IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
356 (void)Inserted;
357 assert(Inserted && "Should not have already inserted this ID, likely "
358 "indicates a dependency cycle!");
359 return IMapI->second;
360 }
361
Invalidator(SmallDenseMap<AnalysisKey *,bool,8> & IsResultInvalidated,const AnalysisResultMapT & Results)362 Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
363 const AnalysisResultMapT &Results)
364 : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
365
366 SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
367 const AnalysisResultMapT &Results;
368 };
369
370 /// Construct an empty analysis manager.
371 AnalysisManager();
372 AnalysisManager(AnalysisManager &&);
373 AnalysisManager &operator=(AnalysisManager &&);
374
375 /// Returns true if the analysis manager has an empty results cache.
empty()376 bool empty() const {
377 assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
378 "The storage and index of analysis results disagree on how many "
379 "there are!");
380 return AnalysisResults.empty();
381 }
382
383 /// Clear any cached analysis results for a single unit of IR.
384 ///
385 /// This doesn't invalidate, but instead simply deletes, the relevant results.
386 /// It is useful when the IR is being removed and we want to clear out all the
387 /// memory pinned for it.
388 void clear(IRUnitT &IR, llvm::StringRef Name);
389
390 /// Clear all analysis results cached by this AnalysisManager.
391 ///
392 /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
393 /// deletes them. This lets you clean up the AnalysisManager when the set of
394 /// IR units itself has potentially changed, and thus we can't even look up a
395 /// a result and invalidate/clear it directly.
clear()396 void clear() {
397 AnalysisResults.clear();
398 AnalysisResultLists.clear();
399 }
400
401 /// Get the result of an analysis pass for a given IR unit.
402 ///
403 /// Runs the analysis if a cached result is not available.
404 template <typename PassT>
getResult(IRUnitT & IR,ExtraArgTs...ExtraArgs)405 typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
406 assert(AnalysisPasses.count(PassT::ID()) &&
407 "This analysis pass was not registered prior to being queried");
408 ResultConceptT &ResultConcept =
409 getResultImpl(PassT::ID(), IR, ExtraArgs...);
410
411 using ResultModelT =
412 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
413 Invalidator>;
414
415 return static_cast<ResultModelT &>(ResultConcept).Result;
416 }
417
418 /// Get the cached result of an analysis pass for a given IR unit.
419 ///
420 /// This method never runs the analysis.
421 ///
422 /// \returns null if there is no cached result.
423 template <typename PassT>
getCachedResult(IRUnitT & IR)424 typename PassT::Result *getCachedResult(IRUnitT &IR) const {
425 assert(AnalysisPasses.count(PassT::ID()) &&
426 "This analysis pass was not registered prior to being queried");
427
428 ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
429 if (!ResultConcept)
430 return nullptr;
431
432 using ResultModelT =
433 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
434 Invalidator>;
435
436 return &static_cast<ResultModelT *>(ResultConcept)->Result;
437 }
438
439 /// Verify that the given Result cannot be invalidated, assert otherwise.
440 template <typename PassT>
verifyNotInvalidated(IRUnitT & IR,typename PassT::Result * Result)441 void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const {
442 PreservedAnalyses PA = PreservedAnalyses::none();
443 SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
444 Invalidator Inv(IsResultInvalidated, AnalysisResults);
445 assert(!Result->invalidate(IR, PA, Inv) &&
446 "Cached result cannot be invalidated");
447 }
448
449 /// Register an analysis pass with the manager.
450 ///
451 /// The parameter is a callable whose result is an analysis pass. This allows
452 /// passing in a lambda to construct the analysis.
453 ///
454 /// The analysis type to register is the type returned by calling the \c
455 /// PassBuilder argument. If that type has already been registered, then the
456 /// argument will not be called and this function will return false.
457 /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
458 /// and this function returns true.
459 ///
460 /// (Note: Although the return value of this function indicates whether or not
461 /// an analysis was previously registered, there intentionally isn't a way to
462 /// query this directly. Instead, you should just register all the analyses
463 /// you might want and let this class run them lazily. This idiom lets us
464 /// minimize the number of times we have to look up analyses in our
465 /// hashtable.)
466 template <typename PassBuilderT>
registerPass(PassBuilderT && PassBuilder)467 bool registerPass(PassBuilderT &&PassBuilder) {
468 using PassT = decltype(PassBuilder());
469 using PassModelT =
470 detail::AnalysisPassModel<IRUnitT, PassT, Invalidator, ExtraArgTs...>;
471
472 auto &PassPtr = AnalysisPasses[PassT::ID()];
473 if (PassPtr)
474 // Already registered this pass type!
475 return false;
476
477 // Construct a new model around the instance returned by the builder.
478 PassPtr.reset(new PassModelT(PassBuilder()));
479 return true;
480 }
481
482 /// Invalidate cached analyses for an IR unit.
483 ///
484 /// Walk through all of the analyses pertaining to this unit of IR and
485 /// invalidate them, unless they are preserved by the PreservedAnalyses set.
486 void invalidate(IRUnitT &IR, const PreservedAnalyses &PA);
487
488 private:
489 /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)490 PassConceptT &lookUpPass(AnalysisKey *ID) {
491 typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
492 assert(PI != AnalysisPasses.end() &&
493 "Analysis passes must be registered prior to being queried!");
494 return *PI->second;
495 }
496
497 /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)498 const PassConceptT &lookUpPass(AnalysisKey *ID) const {
499 typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
500 assert(PI != AnalysisPasses.end() &&
501 "Analysis passes must be registered prior to being queried!");
502 return *PI->second;
503 }
504
505 /// Get an analysis result, running the pass if necessary.
506 ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
507 ExtraArgTs... ExtraArgs);
508
509 /// Get a cached analysis result or return null.
getCachedResultImpl(AnalysisKey * ID,IRUnitT & IR)510 ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
511 typename AnalysisResultMapT::const_iterator RI =
512 AnalysisResults.find({ID, &IR});
513 return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
514 }
515
516 /// Map type from analysis pass ID to pass concept pointer.
517 using AnalysisPassMapT =
518 DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
519
520 /// Collection of analysis passes, indexed by ID.
521 AnalysisPassMapT AnalysisPasses;
522
523 /// Map from IR unit to a list of analysis results.
524 ///
525 /// Provides linear time removal of all analysis results for a IR unit and
526 /// the ultimate storage for a particular cached analysis result.
527 AnalysisResultListMapT AnalysisResultLists;
528
529 /// Map from an analysis ID and IR unit to a particular cached
530 /// analysis result.
531 AnalysisResultMapT AnalysisResults;
532 };
533
534 extern template class AnalysisManager<Module>;
535
536 /// Convenience typedef for the Module analysis manager.
537 using ModuleAnalysisManager = AnalysisManager<Module>;
538
539 extern template class AnalysisManager<Function>;
540
541 /// Convenience typedef for the Function analysis manager.
542 using FunctionAnalysisManager = AnalysisManager<Function>;
543
544 /// An analysis over an "outer" IR unit that provides access to an
545 /// analysis manager over an "inner" IR unit. The inner unit must be contained
546 /// in the outer unit.
547 ///
548 /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
549 /// an analysis over Modules (the "outer" unit) that provides access to a
550 /// Function analysis manager. The FunctionAnalysisManager is the "inner"
551 /// manager being proxied, and Functions are the "inner" unit. The inner/outer
552 /// relationship is valid because each Function is contained in one Module.
553 ///
554 /// If you're (transitively) within a pass manager for an IR unit U that
555 /// contains IR unit V, you should never use an analysis manager over V, except
556 /// via one of these proxies.
557 ///
558 /// Note that the proxy's result is a move-only RAII object. The validity of
559 /// the analyses in the inner analysis manager is tied to its lifetime.
560 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
561 class InnerAnalysisManagerProxy
562 : public AnalysisInfoMixin<
563 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
564 public:
565 class Result {
566 public:
Result(AnalysisManagerT & InnerAM)567 explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
568
Result(Result && Arg)569 Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
570 // We have to null out the analysis manager in the moved-from state
571 // because we are taking ownership of the responsibilty to clear the
572 // analysis state.
573 Arg.InnerAM = nullptr;
574 }
575
~Result()576 ~Result() {
577 // InnerAM is cleared in a moved from state where there is nothing to do.
578 if (!InnerAM)
579 return;
580
581 // Clear out the analysis manager if we're being destroyed -- it means we
582 // didn't even see an invalidate call when we got invalidated.
583 InnerAM->clear();
584 }
585
586 Result &operator=(Result &&RHS) {
587 InnerAM = RHS.InnerAM;
588 // We have to null out the analysis manager in the moved-from state
589 // because we are taking ownership of the responsibilty to clear the
590 // analysis state.
591 RHS.InnerAM = nullptr;
592 return *this;
593 }
594
595 /// Accessor for the analysis manager.
getManager()596 AnalysisManagerT &getManager() { return *InnerAM; }
597
598 /// Handler for invalidation of the outer IR unit, \c IRUnitT.
599 ///
600 /// If the proxy analysis itself is not preserved, we assume that the set of
601 /// inner IR objects contained in IRUnit may have changed. In this case,
602 /// we have to call \c clear() on the inner analysis manager, as it may now
603 /// have stale pointers to its inner IR objects.
604 ///
605 /// Regardless of whether the proxy analysis is marked as preserved, all of
606 /// the analyses in the inner analysis manager are potentially invalidated
607 /// based on the set of preserved analyses.
608 bool invalidate(
609 IRUnitT &IR, const PreservedAnalyses &PA,
610 typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
611
612 private:
613 AnalysisManagerT *InnerAM;
614 };
615
InnerAnalysisManagerProxy(AnalysisManagerT & InnerAM)616 explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
617 : InnerAM(&InnerAM) {}
618
619 /// Run the analysis pass and create our proxy result object.
620 ///
621 /// This doesn't do any interesting work; it is primarily used to insert our
622 /// proxy result object into the outer analysis cache so that we can proxy
623 /// invalidation to the inner analysis manager.
run(IRUnitT & IR,AnalysisManager<IRUnitT,ExtraArgTs...> & AM,ExtraArgTs...)624 Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
625 ExtraArgTs...) {
626 return Result(*InnerAM);
627 }
628
629 private:
630 friend AnalysisInfoMixin<
631 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
632
633 static AnalysisKey Key;
634
635 AnalysisManagerT *InnerAM;
636 };
637
638 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
639 AnalysisKey
640 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
641
642 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
643 using FunctionAnalysisManagerModuleProxy =
644 InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
645
646 /// Specialization of the invalidate method for the \c
647 /// FunctionAnalysisManagerModuleProxy's result.
648 template <>
649 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
650 Module &M, const PreservedAnalyses &PA,
651 ModuleAnalysisManager::Invalidator &Inv);
652
653 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
654 // template.
655 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
656 Module>;
657
658 /// An analysis over an "inner" IR unit that provides access to an
659 /// analysis manager over a "outer" IR unit. The inner unit must be contained
660 /// in the outer unit.
661 ///
662 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
663 /// analysis over Functions (the "inner" unit) which provides access to a Module
664 /// analysis manager. The ModuleAnalysisManager is the "outer" manager being
665 /// proxied, and Modules are the "outer" IR unit. The inner/outer relationship
666 /// is valid because each Function is contained in one Module.
667 ///
668 /// This proxy only exposes the const interface of the outer analysis manager,
669 /// to indicate that you cannot cause an outer analysis to run from within an
670 /// inner pass. Instead, you must rely on the \c getCachedResult API. This is
671 /// due to keeping potential future concurrency in mind. To give an example,
672 /// running a module analysis before any function passes may give a different
673 /// result than running it in a function pass. Both may be valid, but it would
674 /// produce non-deterministic results. GlobalsAA is a good analysis example,
675 /// because the cached information has the mod/ref info for all memory for each
676 /// function at the time the analysis was computed. The information is still
677 /// valid after a function transformation, but it may be *different* if
678 /// recomputed after that transform. GlobalsAA is never invalidated.
679
680 ///
681 /// This proxy doesn't manage invalidation in any way -- that is handled by the
682 /// recursive return path of each layer of the pass manager. A consequence of
683 /// this is the outer analyses may be stale. We invalidate the outer analyses
684 /// only when we're done running passes over the inner IR units.
685 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
686 class OuterAnalysisManagerProxy
687 : public AnalysisInfoMixin<
688 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
689 public:
690 /// Result proxy object for \c OuterAnalysisManagerProxy.
691 class Result {
692 public:
Result(const AnalysisManagerT & OuterAM)693 explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {}
694
695 /// Get a cached analysis. If the analysis can be invalidated, this will
696 /// assert.
697 template <typename PassT, typename IRUnitTParam>
getCachedResult(IRUnitTParam & IR)698 typename PassT::Result *getCachedResult(IRUnitTParam &IR) const {
699 typename PassT::Result *Res =
700 OuterAM->template getCachedResult<PassT>(IR);
701 if (Res)
702 OuterAM->template verifyNotInvalidated<PassT>(IR, Res);
703 return Res;
704 }
705
706 /// Method provided for unit testing, not intended for general use.
707 template <typename PassT, typename IRUnitTParam>
cachedResultExists(IRUnitTParam & IR)708 bool cachedResultExists(IRUnitTParam &IR) const {
709 typename PassT::Result *Res =
710 OuterAM->template getCachedResult<PassT>(IR);
711 return Res != nullptr;
712 }
713
714 /// When invalidation occurs, remove any registered invalidation events.
invalidate(IRUnitT & IRUnit,const PreservedAnalyses & PA,typename AnalysisManager<IRUnitT,ExtraArgTs...>::Invalidator & Inv)715 bool invalidate(
716 IRUnitT &IRUnit, const PreservedAnalyses &PA,
717 typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
718 // Loop over the set of registered outer invalidation mappings and if any
719 // of them map to an analysis that is now invalid, clear it out.
720 SmallVector<AnalysisKey *, 4> DeadKeys;
721 for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
722 AnalysisKey *OuterID = KeyValuePair.first;
723 auto &InnerIDs = KeyValuePair.second;
724 llvm::erase_if(InnerIDs, [&](AnalysisKey *InnerID) {
725 return Inv.invalidate(InnerID, IRUnit, PA);
726 });
727 if (InnerIDs.empty())
728 DeadKeys.push_back(OuterID);
729 }
730
731 for (auto *OuterID : DeadKeys)
732 OuterAnalysisInvalidationMap.erase(OuterID);
733
734 // The proxy itself remains valid regardless of anything else.
735 return false;
736 }
737
738 /// Register a deferred invalidation event for when the outer analysis
739 /// manager processes its invalidations.
740 template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
registerOuterAnalysisInvalidation()741 void registerOuterAnalysisInvalidation() {
742 AnalysisKey *OuterID = OuterAnalysisT::ID();
743 AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
744
745 auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
746 // Note, this is a linear scan. If we end up with large numbers of
747 // analyses that all trigger invalidation on the same outer analysis,
748 // this entire system should be changed to some other deterministic
749 // data structure such as a `SetVector` of a pair of pointers.
750 if (!llvm::is_contained(InvalidatedIDList, InvalidatedID))
751 InvalidatedIDList.push_back(InvalidatedID);
752 }
753
754 /// Access the map from outer analyses to deferred invalidation requiring
755 /// analyses.
756 const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
getOuterInvalidations()757 getOuterInvalidations() const {
758 return OuterAnalysisInvalidationMap;
759 }
760
761 private:
762 const AnalysisManagerT *OuterAM;
763
764 /// A map from an outer analysis ID to the set of this IR-unit's analyses
765 /// which need to be invalidated.
766 SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
767 OuterAnalysisInvalidationMap;
768 };
769
OuterAnalysisManagerProxy(const AnalysisManagerT & OuterAM)770 OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM)
771 : OuterAM(&OuterAM) {}
772
773 /// Run the analysis pass and create our proxy result object.
774 /// Nothing to see here, it just forwards the \c OuterAM reference into the
775 /// result.
run(IRUnitT &,AnalysisManager<IRUnitT,ExtraArgTs...> &,ExtraArgTs...)776 Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
777 ExtraArgTs...) {
778 return Result(*OuterAM);
779 }
780
781 private:
782 friend AnalysisInfoMixin<
783 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
784
785 static AnalysisKey Key;
786
787 const AnalysisManagerT *OuterAM;
788 };
789
790 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
791 AnalysisKey
792 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
793
794 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
795 Function>;
796 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
797 using ModuleAnalysisManagerFunctionProxy =
798 OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
799
800 /// Trivial adaptor that maps from a module to its functions.
801 ///
802 /// Designed to allow composition of a FunctionPass(Manager) and
803 /// a ModulePassManager, by running the FunctionPass(Manager) over every
804 /// function in the module.
805 ///
806 /// Function passes run within this adaptor can rely on having exclusive access
807 /// to the function they are run over. They should not read or modify any other
808 /// functions! Other threads or systems may be manipulating other functions in
809 /// the module, and so their state should never be relied on.
810 /// FIXME: Make the above true for all of LLVM's actual passes, some still
811 /// violate this principle.
812 ///
813 /// Function passes can also read the module containing the function, but they
814 /// should not modify that module outside of the use lists of various globals.
815 /// For example, a function pass is not permitted to add functions to the
816 /// module.
817 /// FIXME: Make the above true for all of LLVM's actual passes, some still
818 /// violate this principle.
819 ///
820 /// Note that although function passes can access module analyses, module
821 /// analyses are not invalidated while the function passes are running, so they
822 /// may be stale. Function analyses will not be stale.
823 class ModuleToFunctionPassAdaptor
824 : public PassInfoMixin<ModuleToFunctionPassAdaptor> {
825 public:
826 using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
827
ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,bool EagerlyInvalidate)828 explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,
829 bool EagerlyInvalidate)
830 : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate) {}
831
832 /// Runs the function pass across every function in the module.
833 PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
834 void printPipeline(raw_ostream &OS,
835 function_ref<StringRef(StringRef)> MapClassName2PassName);
836
isRequired()837 static bool isRequired() { return true; }
838
839 private:
840 std::unique_ptr<PassConceptT> Pass;
841 bool EagerlyInvalidate;
842 };
843
844 /// A function to deduce a function pass type and wrap it in the
845 /// templated adaptor.
846 template <typename FunctionPassT>
847 ModuleToFunctionPassAdaptor
848 createModuleToFunctionPassAdaptor(FunctionPassT &&Pass,
849 bool EagerlyInvalidate = false) {
850 using PassModelT =
851 detail::PassModel<Function, FunctionPassT, FunctionAnalysisManager>;
852 // Do not use make_unique, it causes too many template instantiations,
853 // causing terrible compile times.
854 return ModuleToFunctionPassAdaptor(
855 std::unique_ptr<ModuleToFunctionPassAdaptor::PassConceptT>(
856 new PassModelT(std::forward<FunctionPassT>(Pass))),
857 EagerlyInvalidate);
858 }
859
860 /// A utility pass template to force an analysis result to be available.
861 ///
862 /// If there are extra arguments at the pass's run level there may also be
863 /// extra arguments to the analysis manager's \c getResult routine. We can't
864 /// guess how to effectively map the arguments from one to the other, and so
865 /// this specialization just ignores them.
866 ///
867 /// Specific patterns of run-method extra arguments and analysis manager extra
868 /// arguments will have to be defined as appropriate specializations.
869 template <typename AnalysisT, typename IRUnitT,
870 typename AnalysisManagerT = AnalysisManager<IRUnitT>,
871 typename... ExtraArgTs>
872 struct RequireAnalysisPass
873 : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
874 ExtraArgTs...>> {
875 /// Run this pass over some unit of IR.
876 ///
877 /// This pass can be run over any unit of IR and use any analysis manager
878 /// provided they satisfy the basic API requirements. When this pass is
879 /// created, these methods can be instantiated to satisfy whatever the
880 /// context requires.
runRequireAnalysisPass881 PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
882 ExtraArgTs &&... Args) {
883 (void)AM.template getResult<AnalysisT>(Arg,
884 std::forward<ExtraArgTs>(Args)...);
885
886 return PreservedAnalyses::all();
887 }
printPipelineRequireAnalysisPass888 void printPipeline(raw_ostream &OS,
889 function_ref<StringRef(StringRef)> MapClassName2PassName) {
890 auto ClassName = AnalysisT::name();
891 auto PassName = MapClassName2PassName(ClassName);
892 OS << "require<" << PassName << '>';
893 }
isRequiredRequireAnalysisPass894 static bool isRequired() { return true; }
895 };
896
897 /// A no-op pass template which simply forces a specific analysis result
898 /// to be invalidated.
899 template <typename AnalysisT>
900 struct InvalidateAnalysisPass
901 : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
902 /// Run this pass over some unit of IR.
903 ///
904 /// This pass can be run over any unit of IR and use any analysis manager,
905 /// provided they satisfy the basic API requirements. When this pass is
906 /// created, these methods can be instantiated to satisfy whatever the
907 /// context requires.
908 template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAnalysisPass909 PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
910 auto PA = PreservedAnalyses::all();
911 PA.abandon<AnalysisT>();
912 return PA;
913 }
printPipelineInvalidateAnalysisPass914 void printPipeline(raw_ostream &OS,
915 function_ref<StringRef(StringRef)> MapClassName2PassName) {
916 auto ClassName = AnalysisT::name();
917 auto PassName = MapClassName2PassName(ClassName);
918 OS << "invalidate<" << PassName << '>';
919 }
920 };
921
922 /// A utility pass that does nothing, but preserves no analyses.
923 ///
924 /// Because this preserves no analyses, any analysis passes queried after this
925 /// pass runs will recompute fresh results.
926 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
927 /// Run this pass over some unit of IR.
928 template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAllAnalysesPass929 PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
930 return PreservedAnalyses::none();
931 }
932 };
933
934 } // end namespace llvm
935
936 #endif // LLVM_IR_PASSMANAGER_H
937