xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/PassManager.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header defines various interfaces for pass management in LLVM. There
11 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
12 /// which supports a method to 'run' it over a unit of IR can be used as
13 /// a pass. A pass manager is generally a tool to collect a sequence of passes
14 /// which run over a particular IR construct, and run each of them in sequence
15 /// over each such construct in the containing IR construct. As there is no
16 /// containing IR construct for a Module, a manager for passes over modules
17 /// forms the base case which runs its managed passes in sequence over the
18 /// single module provided.
19 ///
20 /// The core IR library provides managers for running passes over
21 /// modules and functions.
22 ///
23 /// * FunctionPassManager can run over a Module, runs each pass over
24 ///   a Function.
25 /// * ModulePassManager must be directly run, runs each pass over the Module.
26 ///
27 /// Note that the implementations of the pass managers use concept-based
28 /// polymorphism as outlined in the "Value Semantics and Concept-based
29 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
30 /// Class of Evil") by Sean Parent:
31 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
32 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
33 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_IR_PASSMANAGER_H
38 #define LLVM_IR_PASSMANAGER_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/StringRef.h"
43 #include "llvm/ADT/TinyPtrVector.h"
44 #include "llvm/IR/Analysis.h"
45 #include "llvm/IR/PassManagerInternal.h"
46 #include "llvm/Support/TypeName.h"
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <list>
51 #include <memory>
52 #include <tuple>
53 #include <type_traits>
54 #include <utility>
55 #include <vector>
56 
57 namespace llvm {
58 
59 class Function;
60 class Module;
61 
62 // Forward declare the analysis manager template.
63 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
64 
65 /// A CRTP mix-in to automatically provide informational APIs needed for
66 /// passes.
67 ///
68 /// This provides some boilerplate for types that are passes.
69 template <typename DerivedT> struct PassInfoMixin {
70   /// Gets the name of the pass we are mixed into.
namePassInfoMixin71   static StringRef name() {
72     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
73                   "Must pass the derived type as the template argument!");
74     StringRef Name = getTypeName<DerivedT>();
75     Name.consume_front("llvm::");
76     return Name;
77   }
78 
printPipelinePassInfoMixin79   void printPipeline(raw_ostream &OS,
80                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
81     StringRef ClassName = DerivedT::name();
82     auto PassName = MapClassName2PassName(ClassName);
83     OS << PassName;
84   }
85 };
86 
87 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
88 ///
89 /// This provides some boilerplate for types that are analysis passes. It
90 /// automatically mixes in \c PassInfoMixin.
91 template <typename DerivedT>
92 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
93   /// Returns an opaque, unique ID for this analysis type.
94   ///
95   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
96   /// suitable for use in sets, maps, and other data structures that use the low
97   /// bits of pointers.
98   ///
99   /// Note that this requires the derived type provide a static \c AnalysisKey
100   /// member called \c Key.
101   ///
102   /// FIXME: The only reason the mixin type itself can't declare the Key value
103   /// is that some compilers cannot correctly unique a templated static variable
104   /// so it has the same addresses in each instantiation. The only currently
105   /// known platform with this limitation is Windows DLL builds, specifically
106   /// building each part of LLVM as a DLL. If we ever remove that build
107   /// configuration, this mixin can provide the static key as well.
IDAnalysisInfoMixin108   static AnalysisKey *ID() {
109     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
110                   "Must pass the derived type as the template argument!");
111     return &DerivedT::Key;
112   }
113 };
114 
115 namespace detail {
116 
117 /// Actual unpacker of extra arguments in getAnalysisResult,
118 /// passes only those tuple arguments that are mentioned in index_sequence.
119 template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
120           typename... ArgTs, size_t... Ns>
121 typename PassT::Result
getAnalysisResultUnpackTuple(AnalysisManagerT & AM,IRUnitT & IR,std::tuple<ArgTs...> Args,std::index_sequence<Ns...>)122 getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
123                              std::tuple<ArgTs...> Args,
124                              std::index_sequence<Ns...>) {
125   (void)Args;
126   return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
127 }
128 
129 /// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
130 ///
131 /// Arguments passed in tuple come from PassManager, so they might have extra
132 /// arguments after those AnalysisManager's ExtraArgTs ones that we need to
133 /// pass to getResult.
134 template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
135           typename... MainArgTs>
136 typename PassT::Result
getAnalysisResult(AnalysisManager<IRUnitT,AnalysisArgTs...> & AM,IRUnitT & IR,std::tuple<MainArgTs...> Args)137 getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
138                   std::tuple<MainArgTs...> Args) {
139   return (getAnalysisResultUnpackTuple<
140           PassT, IRUnitT>)(AM, IR, Args,
141                            std::index_sequence_for<AnalysisArgTs...>{});
142 }
143 
144 } // namespace detail
145 
146 /// Manages a sequence of passes over a particular unit of IR.
147 ///
148 /// A pass manager contains a sequence of passes to run over a particular unit
149 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
150 /// IR, and when run over some given IR will run each of its contained passes in
151 /// sequence. Pass managers are the primary and most basic building block of a
152 /// pass pipeline.
153 ///
154 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
155 /// argument. The pass manager will propagate that analysis manager to each
156 /// pass it runs, and will call the analysis manager's invalidation routine with
157 /// the PreservedAnalyses of each pass it runs.
158 template <typename IRUnitT,
159           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
160           typename... ExtraArgTs>
161 class PassManager : public PassInfoMixin<
162                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
163 public:
164   /// Construct a pass manager.
165   explicit PassManager() = default;
166 
167   // FIXME: These are equivalent to the default move constructor/move
168   // assignment. However, using = default triggers linker errors due to the
169   // explicit instantiations below. Find away to use the default and remove the
170   // duplicated code here.
PassManager(PassManager && Arg)171   PassManager(PassManager &&Arg) : Passes(std::move(Arg.Passes)) {}
172 
173   PassManager &operator=(PassManager &&RHS) {
174     Passes = std::move(RHS.Passes);
175     return *this;
176   }
177 
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)178   void printPipeline(raw_ostream &OS,
179                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
180     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
181       auto *P = Passes[Idx].get();
182       P->printPipeline(OS, MapClassName2PassName);
183       if (Idx + 1 < Size)
184         OS << ',';
185     }
186   }
187 
188   /// Run all of the passes in this manager over the given unit of IR.
189   /// ExtraArgs are passed to each pass.
190   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
191                         ExtraArgTs... ExtraArgs);
192 
193   template <typename PassT>
194   LLVM_ATTRIBUTE_MINSIZE std::enable_if_t<!std::is_same_v<PassT, PassManager>>
addPass(PassT && Pass)195   addPass(PassT &&Pass) {
196     using PassModelT =
197         detail::PassModel<IRUnitT, PassT, AnalysisManagerT, ExtraArgTs...>;
198     // Do not use make_unique or emplace_back, they cause too many template
199     // instantiations, causing terrible compile times.
200     Passes.push_back(std::unique_ptr<PassConceptT>(
201         new PassModelT(std::forward<PassT>(Pass))));
202   }
203 
204   /// When adding a pass manager pass that has the same type as this pass
205   /// manager, simply move the passes over. This is because we don't have
206   /// use cases rely on executing nested pass managers. Doing this could
207   /// reduce implementation complexity and avoid potential invalidation
208   /// issues that may happen with nested pass managers of the same type.
209   template <typename PassT>
210   LLVM_ATTRIBUTE_MINSIZE std::enable_if_t<std::is_same_v<PassT, PassManager>>
addPass(PassT && Pass)211   addPass(PassT &&Pass) {
212     for (auto &P : Pass.Passes)
213       Passes.push_back(std::move(P));
214   }
215 
216   /// Returns if the pass manager contains any passes.
isEmpty()217   bool isEmpty() const { return Passes.empty(); }
218 
isRequired()219   static bool isRequired() { return true; }
220 
221 protected:
222   using PassConceptT =
223       detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
224 
225   std::vector<std::unique_ptr<PassConceptT>> Passes;
226 };
227 
228 template <typename IRUnitT>
229 void printIRUnitNameForStackTrace(raw_ostream &OS, const IRUnitT &IR);
230 
231 template <>
232 void printIRUnitNameForStackTrace<Module>(raw_ostream &OS, const Module &IR);
233 
234 extern template class PassManager<Module>;
235 
236 /// Convenience typedef for a pass manager over modules.
237 using ModulePassManager = PassManager<Module>;
238 
239 template <>
240 void printIRUnitNameForStackTrace<Function>(raw_ostream &OS,
241                                             const Function &IR);
242 
243 extern template class PassManager<Function>;
244 
245 /// Convenience typedef for a pass manager over functions.
246 using FunctionPassManager = PassManager<Function>;
247 
248 /// A container for analyses that lazily runs them and caches their
249 /// results.
250 ///
251 /// This class can manage analyses for any IR unit where the address of the IR
252 /// unit sufficies as its identity.
253 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
254 public:
255   class Invalidator;
256 
257 private:
258   // Now that we've defined our invalidator, we can define the concept types.
259   using ResultConceptT = detail::AnalysisResultConcept<IRUnitT, Invalidator>;
260   using PassConceptT =
261       detail::AnalysisPassConcept<IRUnitT, Invalidator, ExtraArgTs...>;
262 
263   /// List of analysis pass IDs and associated concept pointers.
264   ///
265   /// Requires iterators to be valid across appending new entries and arbitrary
266   /// erases. Provides the analysis ID to enable finding iterators to a given
267   /// entry in maps below, and provides the storage for the actual result
268   /// concept.
269   using AnalysisResultListT =
270       std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
271 
272   /// Map type from IRUnitT pointer to our custom list type.
273   using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
274 
275   /// Map type from a pair of analysis ID and IRUnitT pointer to an
276   /// iterator into a particular result list (which is where the actual analysis
277   /// result is stored).
278   using AnalysisResultMapT =
279       DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
280                typename AnalysisResultListT::iterator>;
281 
282 public:
283   /// API to communicate dependencies between analyses during invalidation.
284   ///
285   /// When an analysis result embeds handles to other analysis results, it
286   /// needs to be invalidated both when its own information isn't preserved and
287   /// when any of its embedded analysis results end up invalidated. We pass an
288   /// \c Invalidator object as an argument to \c invalidate() in order to let
289   /// the analysis results themselves define the dependency graph on the fly.
290   /// This lets us avoid building an explicit representation of the
291   /// dependencies between analysis results.
292   class Invalidator {
293   public:
294     /// Trigger the invalidation of some other analysis pass if not already
295     /// handled and return whether it was in fact invalidated.
296     ///
297     /// This is expected to be called from within a given analysis result's \c
298     /// invalidate method to trigger a depth-first walk of all inter-analysis
299     /// dependencies. The same \p IR unit and \p PA passed to that result's \c
300     /// invalidate method should in turn be provided to this routine.
301     ///
302     /// The first time this is called for a given analysis pass, it will call
303     /// the corresponding result's \c invalidate method.  Subsequent calls will
304     /// use a cache of the results of that initial call.  It is an error to form
305     /// cyclic dependencies between analysis results.
306     ///
307     /// This returns true if the given analysis's result is invalid. Any
308     /// dependecies on it will become invalid as a result.
309     template <typename PassT>
invalidate(IRUnitT & IR,const PreservedAnalyses & PA)310     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
311       using ResultModelT =
312           detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
313                                       Invalidator>;
314 
315       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
316     }
317 
318     /// A type-erased variant of the above invalidate method with the same core
319     /// API other than passing an analysis ID rather than an analysis type
320     /// parameter.
321     ///
322     /// This is sadly less efficient than the above routine, which leverages
323     /// the type parameter to avoid the type erasure overhead.
invalidate(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)324     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
325       return invalidateImpl<>(ID, IR, PA);
326     }
327 
328   private:
329     friend class AnalysisManager;
330 
331     template <typename ResultT = ResultConceptT>
invalidateImpl(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)332     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
333                         const PreservedAnalyses &PA) {
334       // If we've already visited this pass, return true if it was invalidated
335       // and false otherwise.
336       auto IMapI = IsResultInvalidated.find(ID);
337       if (IMapI != IsResultInvalidated.end())
338         return IMapI->second;
339 
340       // Otherwise look up the result object.
341       auto RI = Results.find({ID, &IR});
342       assert(RI != Results.end() &&
343              "Trying to invalidate a dependent result that isn't in the "
344              "manager's cache is always an error, likely due to a stale result "
345              "handle!");
346 
347       auto &Result = static_cast<ResultT &>(*RI->second->second);
348 
349       // Insert into the map whether the result should be invalidated and return
350       // that. Note that we cannot reuse IMapI and must do a fresh insert here,
351       // as calling invalidate could (recursively) insert things into the map,
352       // making any iterator or reference invalid.
353       bool Inserted;
354       std::tie(IMapI, Inserted) =
355           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
356       (void)Inserted;
357       assert(Inserted && "Should not have already inserted this ID, likely "
358                          "indicates a dependency cycle!");
359       return IMapI->second;
360     }
361 
Invalidator(SmallDenseMap<AnalysisKey *,bool,8> & IsResultInvalidated,const AnalysisResultMapT & Results)362     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
363                 const AnalysisResultMapT &Results)
364         : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
365 
366     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
367     const AnalysisResultMapT &Results;
368   };
369 
370   /// Construct an empty analysis manager.
371   AnalysisManager();
372   AnalysisManager(AnalysisManager &&);
373   AnalysisManager &operator=(AnalysisManager &&);
374 
375   /// Returns true if the analysis manager has an empty results cache.
empty()376   bool empty() const {
377     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
378            "The storage and index of analysis results disagree on how many "
379            "there are!");
380     return AnalysisResults.empty();
381   }
382 
383   /// Clear any cached analysis results for a single unit of IR.
384   ///
385   /// This doesn't invalidate, but instead simply deletes, the relevant results.
386   /// It is useful when the IR is being removed and we want to clear out all the
387   /// memory pinned for it.
388   void clear(IRUnitT &IR, llvm::StringRef Name);
389 
390   /// Clear all analysis results cached by this AnalysisManager.
391   ///
392   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
393   /// deletes them.  This lets you clean up the AnalysisManager when the set of
394   /// IR units itself has potentially changed, and thus we can't even look up a
395   /// a result and invalidate/clear it directly.
clear()396   void clear() {
397     AnalysisResults.clear();
398     AnalysisResultLists.clear();
399   }
400 
401   /// Get the result of an analysis pass for a given IR unit.
402   ///
403   /// Runs the analysis if a cached result is not available.
404   template <typename PassT>
getResult(IRUnitT & IR,ExtraArgTs...ExtraArgs)405   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
406     assert(AnalysisPasses.count(PassT::ID()) &&
407            "This analysis pass was not registered prior to being queried");
408     ResultConceptT &ResultConcept =
409         getResultImpl(PassT::ID(), IR, ExtraArgs...);
410 
411     using ResultModelT =
412         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
413                                     Invalidator>;
414 
415     return static_cast<ResultModelT &>(ResultConcept).Result;
416   }
417 
418   /// Get the cached result of an analysis pass for a given IR unit.
419   ///
420   /// This method never runs the analysis.
421   ///
422   /// \returns null if there is no cached result.
423   template <typename PassT>
getCachedResult(IRUnitT & IR)424   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
425     assert(AnalysisPasses.count(PassT::ID()) &&
426            "This analysis pass was not registered prior to being queried");
427 
428     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
429     if (!ResultConcept)
430       return nullptr;
431 
432     using ResultModelT =
433         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
434                                     Invalidator>;
435 
436     return &static_cast<ResultModelT *>(ResultConcept)->Result;
437   }
438 
439   /// Verify that the given Result cannot be invalidated, assert otherwise.
440   template <typename PassT>
verifyNotInvalidated(IRUnitT & IR,typename PassT::Result * Result)441   void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const {
442     PreservedAnalyses PA = PreservedAnalyses::none();
443     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
444     Invalidator Inv(IsResultInvalidated, AnalysisResults);
445     assert(!Result->invalidate(IR, PA, Inv) &&
446            "Cached result cannot be invalidated");
447   }
448 
449   /// Register an analysis pass with the manager.
450   ///
451   /// The parameter is a callable whose result is an analysis pass. This allows
452   /// passing in a lambda to construct the analysis.
453   ///
454   /// The analysis type to register is the type returned by calling the \c
455   /// PassBuilder argument. If that type has already been registered, then the
456   /// argument will not be called and this function will return false.
457   /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
458   /// and this function returns true.
459   ///
460   /// (Note: Although the return value of this function indicates whether or not
461   /// an analysis was previously registered, there intentionally isn't a way to
462   /// query this directly.  Instead, you should just register all the analyses
463   /// you might want and let this class run them lazily.  This idiom lets us
464   /// minimize the number of times we have to look up analyses in our
465   /// hashtable.)
466   template <typename PassBuilderT>
registerPass(PassBuilderT && PassBuilder)467   bool registerPass(PassBuilderT &&PassBuilder) {
468     using PassT = decltype(PassBuilder());
469     using PassModelT =
470         detail::AnalysisPassModel<IRUnitT, PassT, Invalidator, ExtraArgTs...>;
471 
472     auto &PassPtr = AnalysisPasses[PassT::ID()];
473     if (PassPtr)
474       // Already registered this pass type!
475       return false;
476 
477     // Construct a new model around the instance returned by the builder.
478     PassPtr.reset(new PassModelT(PassBuilder()));
479     return true;
480   }
481 
482   /// Invalidate cached analyses for an IR unit.
483   ///
484   /// Walk through all of the analyses pertaining to this unit of IR and
485   /// invalidate them, unless they are preserved by the PreservedAnalyses set.
486   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA);
487 
488 private:
489   /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)490   PassConceptT &lookUpPass(AnalysisKey *ID) {
491     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
492     assert(PI != AnalysisPasses.end() &&
493            "Analysis passes must be registered prior to being queried!");
494     return *PI->second;
495   }
496 
497   /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)498   const PassConceptT &lookUpPass(AnalysisKey *ID) const {
499     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
500     assert(PI != AnalysisPasses.end() &&
501            "Analysis passes must be registered prior to being queried!");
502     return *PI->second;
503   }
504 
505   /// Get an analysis result, running the pass if necessary.
506   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
507                                 ExtraArgTs... ExtraArgs);
508 
509   /// Get a cached analysis result or return null.
getCachedResultImpl(AnalysisKey * ID,IRUnitT & IR)510   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
511     typename AnalysisResultMapT::const_iterator RI =
512         AnalysisResults.find({ID, &IR});
513     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
514   }
515 
516   /// Map type from analysis pass ID to pass concept pointer.
517   using AnalysisPassMapT =
518       DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
519 
520   /// Collection of analysis passes, indexed by ID.
521   AnalysisPassMapT AnalysisPasses;
522 
523   /// Map from IR unit to a list of analysis results.
524   ///
525   /// Provides linear time removal of all analysis results for a IR unit and
526   /// the ultimate storage for a particular cached analysis result.
527   AnalysisResultListMapT AnalysisResultLists;
528 
529   /// Map from an analysis ID and IR unit to a particular cached
530   /// analysis result.
531   AnalysisResultMapT AnalysisResults;
532 };
533 
534 extern template class AnalysisManager<Module>;
535 
536 /// Convenience typedef for the Module analysis manager.
537 using ModuleAnalysisManager = AnalysisManager<Module>;
538 
539 extern template class AnalysisManager<Function>;
540 
541 /// Convenience typedef for the Function analysis manager.
542 using FunctionAnalysisManager = AnalysisManager<Function>;
543 
544 /// An analysis over an "outer" IR unit that provides access to an
545 /// analysis manager over an "inner" IR unit.  The inner unit must be contained
546 /// in the outer unit.
547 ///
548 /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
549 /// an analysis over Modules (the "outer" unit) that provides access to a
550 /// Function analysis manager.  The FunctionAnalysisManager is the "inner"
551 /// manager being proxied, and Functions are the "inner" unit.  The inner/outer
552 /// relationship is valid because each Function is contained in one Module.
553 ///
554 /// If you're (transitively) within a pass manager for an IR unit U that
555 /// contains IR unit V, you should never use an analysis manager over V, except
556 /// via one of these proxies.
557 ///
558 /// Note that the proxy's result is a move-only RAII object.  The validity of
559 /// the analyses in the inner analysis manager is tied to its lifetime.
560 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
561 class InnerAnalysisManagerProxy
562     : public AnalysisInfoMixin<
563           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
564 public:
565   class Result {
566   public:
Result(AnalysisManagerT & InnerAM)567     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
568 
Result(Result && Arg)569     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
570       // We have to null out the analysis manager in the moved-from state
571       // because we are taking ownership of the responsibilty to clear the
572       // analysis state.
573       Arg.InnerAM = nullptr;
574     }
575 
~Result()576     ~Result() {
577       // InnerAM is cleared in a moved from state where there is nothing to do.
578       if (!InnerAM)
579         return;
580 
581       // Clear out the analysis manager if we're being destroyed -- it means we
582       // didn't even see an invalidate call when we got invalidated.
583       InnerAM->clear();
584     }
585 
586     Result &operator=(Result &&RHS) {
587       InnerAM = RHS.InnerAM;
588       // We have to null out the analysis manager in the moved-from state
589       // because we are taking ownership of the responsibilty to clear the
590       // analysis state.
591       RHS.InnerAM = nullptr;
592       return *this;
593     }
594 
595     /// Accessor for the analysis manager.
getManager()596     AnalysisManagerT &getManager() { return *InnerAM; }
597 
598     /// Handler for invalidation of the outer IR unit, \c IRUnitT.
599     ///
600     /// If the proxy analysis itself is not preserved, we assume that the set of
601     /// inner IR objects contained in IRUnit may have changed.  In this case,
602     /// we have to call \c clear() on the inner analysis manager, as it may now
603     /// have stale pointers to its inner IR objects.
604     ///
605     /// Regardless of whether the proxy analysis is marked as preserved, all of
606     /// the analyses in the inner analysis manager are potentially invalidated
607     /// based on the set of preserved analyses.
608     bool invalidate(
609         IRUnitT &IR, const PreservedAnalyses &PA,
610         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
611 
612   private:
613     AnalysisManagerT *InnerAM;
614   };
615 
InnerAnalysisManagerProxy(AnalysisManagerT & InnerAM)616   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
617       : InnerAM(&InnerAM) {}
618 
619   /// Run the analysis pass and create our proxy result object.
620   ///
621   /// This doesn't do any interesting work; it is primarily used to insert our
622   /// proxy result object into the outer analysis cache so that we can proxy
623   /// invalidation to the inner analysis manager.
run(IRUnitT & IR,AnalysisManager<IRUnitT,ExtraArgTs...> & AM,ExtraArgTs...)624   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
625              ExtraArgTs...) {
626     return Result(*InnerAM);
627   }
628 
629 private:
630   friend AnalysisInfoMixin<
631       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
632 
633   static AnalysisKey Key;
634 
635   AnalysisManagerT *InnerAM;
636 };
637 
638 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
639 AnalysisKey
640     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
641 
642 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
643 using FunctionAnalysisManagerModuleProxy =
644     InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
645 
646 /// Specialization of the invalidate method for the \c
647 /// FunctionAnalysisManagerModuleProxy's result.
648 template <>
649 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
650     Module &M, const PreservedAnalyses &PA,
651     ModuleAnalysisManager::Invalidator &Inv);
652 
653 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
654 // template.
655 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
656                                                 Module>;
657 
658 /// An analysis over an "inner" IR unit that provides access to an
659 /// analysis manager over a "outer" IR unit.  The inner unit must be contained
660 /// in the outer unit.
661 ///
662 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
663 /// analysis over Functions (the "inner" unit) which provides access to a Module
664 /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
665 /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
666 /// is valid because each Function is contained in one Module.
667 ///
668 /// This proxy only exposes the const interface of the outer analysis manager,
669 /// to indicate that you cannot cause an outer analysis to run from within an
670 /// inner pass.  Instead, you must rely on the \c getCachedResult API.  This is
671 /// due to keeping potential future concurrency in mind. To give an example,
672 /// running a module analysis before any function passes may give a different
673 /// result than running it in a function pass. Both may be valid, but it would
674 /// produce non-deterministic results. GlobalsAA is a good analysis example,
675 /// because the cached information has the mod/ref info for all memory for each
676 /// function at the time the analysis was computed. The information is still
677 /// valid after a function transformation, but it may be *different* if
678 /// recomputed after that transform. GlobalsAA is never invalidated.
679 
680 ///
681 /// This proxy doesn't manage invalidation in any way -- that is handled by the
682 /// recursive return path of each layer of the pass manager.  A consequence of
683 /// this is the outer analyses may be stale.  We invalidate the outer analyses
684 /// only when we're done running passes over the inner IR units.
685 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
686 class OuterAnalysisManagerProxy
687     : public AnalysisInfoMixin<
688           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
689 public:
690   /// Result proxy object for \c OuterAnalysisManagerProxy.
691   class Result {
692   public:
Result(const AnalysisManagerT & OuterAM)693     explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {}
694 
695     /// Get a cached analysis. If the analysis can be invalidated, this will
696     /// assert.
697     template <typename PassT, typename IRUnitTParam>
getCachedResult(IRUnitTParam & IR)698     typename PassT::Result *getCachedResult(IRUnitTParam &IR) const {
699       typename PassT::Result *Res =
700           OuterAM->template getCachedResult<PassT>(IR);
701       if (Res)
702         OuterAM->template verifyNotInvalidated<PassT>(IR, Res);
703       return Res;
704     }
705 
706     /// Method provided for unit testing, not intended for general use.
707     template <typename PassT, typename IRUnitTParam>
cachedResultExists(IRUnitTParam & IR)708     bool cachedResultExists(IRUnitTParam &IR) const {
709       typename PassT::Result *Res =
710           OuterAM->template getCachedResult<PassT>(IR);
711       return Res != nullptr;
712     }
713 
714     /// When invalidation occurs, remove any registered invalidation events.
invalidate(IRUnitT & IRUnit,const PreservedAnalyses & PA,typename AnalysisManager<IRUnitT,ExtraArgTs...>::Invalidator & Inv)715     bool invalidate(
716         IRUnitT &IRUnit, const PreservedAnalyses &PA,
717         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
718       // Loop over the set of registered outer invalidation mappings and if any
719       // of them map to an analysis that is now invalid, clear it out.
720       SmallVector<AnalysisKey *, 4> DeadKeys;
721       for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
722         AnalysisKey *OuterID = KeyValuePair.first;
723         auto &InnerIDs = KeyValuePair.second;
724         llvm::erase_if(InnerIDs, [&](AnalysisKey *InnerID) {
725           return Inv.invalidate(InnerID, IRUnit, PA);
726         });
727         if (InnerIDs.empty())
728           DeadKeys.push_back(OuterID);
729       }
730 
731       for (auto *OuterID : DeadKeys)
732         OuterAnalysisInvalidationMap.erase(OuterID);
733 
734       // The proxy itself remains valid regardless of anything else.
735       return false;
736     }
737 
738     /// Register a deferred invalidation event for when the outer analysis
739     /// manager processes its invalidations.
740     template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
registerOuterAnalysisInvalidation()741     void registerOuterAnalysisInvalidation() {
742       AnalysisKey *OuterID = OuterAnalysisT::ID();
743       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
744 
745       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
746       // Note, this is a linear scan. If we end up with large numbers of
747       // analyses that all trigger invalidation on the same outer analysis,
748       // this entire system should be changed to some other deterministic
749       // data structure such as a `SetVector` of a pair of pointers.
750       if (!llvm::is_contained(InvalidatedIDList, InvalidatedID))
751         InvalidatedIDList.push_back(InvalidatedID);
752     }
753 
754     /// Access the map from outer analyses to deferred invalidation requiring
755     /// analyses.
756     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
getOuterInvalidations()757     getOuterInvalidations() const {
758       return OuterAnalysisInvalidationMap;
759     }
760 
761   private:
762     const AnalysisManagerT *OuterAM;
763 
764     /// A map from an outer analysis ID to the set of this IR-unit's analyses
765     /// which need to be invalidated.
766     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
767         OuterAnalysisInvalidationMap;
768   };
769 
OuterAnalysisManagerProxy(const AnalysisManagerT & OuterAM)770   OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM)
771       : OuterAM(&OuterAM) {}
772 
773   /// Run the analysis pass and create our proxy result object.
774   /// Nothing to see here, it just forwards the \c OuterAM reference into the
775   /// result.
run(IRUnitT &,AnalysisManager<IRUnitT,ExtraArgTs...> &,ExtraArgTs...)776   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
777              ExtraArgTs...) {
778     return Result(*OuterAM);
779   }
780 
781 private:
782   friend AnalysisInfoMixin<
783       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
784 
785   static AnalysisKey Key;
786 
787   const AnalysisManagerT *OuterAM;
788 };
789 
790 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
791 AnalysisKey
792     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
793 
794 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
795                                                 Function>;
796 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
797 using ModuleAnalysisManagerFunctionProxy =
798     OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
799 
800 /// Trivial adaptor that maps from a module to its functions.
801 ///
802 /// Designed to allow composition of a FunctionPass(Manager) and
803 /// a ModulePassManager, by running the FunctionPass(Manager) over every
804 /// function in the module.
805 ///
806 /// Function passes run within this adaptor can rely on having exclusive access
807 /// to the function they are run over. They should not read or modify any other
808 /// functions! Other threads or systems may be manipulating other functions in
809 /// the module, and so their state should never be relied on.
810 /// FIXME: Make the above true for all of LLVM's actual passes, some still
811 /// violate this principle.
812 ///
813 /// Function passes can also read the module containing the function, but they
814 /// should not modify that module outside of the use lists of various globals.
815 /// For example, a function pass is not permitted to add functions to the
816 /// module.
817 /// FIXME: Make the above true for all of LLVM's actual passes, some still
818 /// violate this principle.
819 ///
820 /// Note that although function passes can access module analyses, module
821 /// analyses are not invalidated while the function passes are running, so they
822 /// may be stale.  Function analyses will not be stale.
823 class ModuleToFunctionPassAdaptor
824     : public PassInfoMixin<ModuleToFunctionPassAdaptor> {
825 public:
826   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
827 
ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,bool EagerlyInvalidate)828   explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,
829                                        bool EagerlyInvalidate)
830       : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate) {}
831 
832   /// Runs the function pass across every function in the module.
833   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
834   void printPipeline(raw_ostream &OS,
835                      function_ref<StringRef(StringRef)> MapClassName2PassName);
836 
isRequired()837   static bool isRequired() { return true; }
838 
839 private:
840   std::unique_ptr<PassConceptT> Pass;
841   bool EagerlyInvalidate;
842 };
843 
844 /// A function to deduce a function pass type and wrap it in the
845 /// templated adaptor.
846 template <typename FunctionPassT>
847 ModuleToFunctionPassAdaptor
848 createModuleToFunctionPassAdaptor(FunctionPassT &&Pass,
849                                   bool EagerlyInvalidate = false) {
850   using PassModelT =
851       detail::PassModel<Function, FunctionPassT, FunctionAnalysisManager>;
852   // Do not use make_unique, it causes too many template instantiations,
853   // causing terrible compile times.
854   return ModuleToFunctionPassAdaptor(
855       std::unique_ptr<ModuleToFunctionPassAdaptor::PassConceptT>(
856           new PassModelT(std::forward<FunctionPassT>(Pass))),
857       EagerlyInvalidate);
858 }
859 
860 /// A utility pass template to force an analysis result to be available.
861 ///
862 /// If there are extra arguments at the pass's run level there may also be
863 /// extra arguments to the analysis manager's \c getResult routine. We can't
864 /// guess how to effectively map the arguments from one to the other, and so
865 /// this specialization just ignores them.
866 ///
867 /// Specific patterns of run-method extra arguments and analysis manager extra
868 /// arguments will have to be defined as appropriate specializations.
869 template <typename AnalysisT, typename IRUnitT,
870           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
871           typename... ExtraArgTs>
872 struct RequireAnalysisPass
873     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
874                                         ExtraArgTs...>> {
875   /// Run this pass over some unit of IR.
876   ///
877   /// This pass can be run over any unit of IR and use any analysis manager
878   /// provided they satisfy the basic API requirements. When this pass is
879   /// created, these methods can be instantiated to satisfy whatever the
880   /// context requires.
runRequireAnalysisPass881   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
882                         ExtraArgTs &&... Args) {
883     (void)AM.template getResult<AnalysisT>(Arg,
884                                            std::forward<ExtraArgTs>(Args)...);
885 
886     return PreservedAnalyses::all();
887   }
printPipelineRequireAnalysisPass888   void printPipeline(raw_ostream &OS,
889                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
890     auto ClassName = AnalysisT::name();
891     auto PassName = MapClassName2PassName(ClassName);
892     OS << "require<" << PassName << '>';
893   }
isRequiredRequireAnalysisPass894   static bool isRequired() { return true; }
895 };
896 
897 /// A no-op pass template which simply forces a specific analysis result
898 /// to be invalidated.
899 template <typename AnalysisT>
900 struct InvalidateAnalysisPass
901     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
902   /// Run this pass over some unit of IR.
903   ///
904   /// This pass can be run over any unit of IR and use any analysis manager,
905   /// provided they satisfy the basic API requirements. When this pass is
906   /// created, these methods can be instantiated to satisfy whatever the
907   /// context requires.
908   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAnalysisPass909   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
910     auto PA = PreservedAnalyses::all();
911     PA.abandon<AnalysisT>();
912     return PA;
913   }
printPipelineInvalidateAnalysisPass914   void printPipeline(raw_ostream &OS,
915                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
916     auto ClassName = AnalysisT::name();
917     auto PassName = MapClassName2PassName(ClassName);
918     OS << "invalidate<" << PassName << '>';
919   }
920 };
921 
922 /// A utility pass that does nothing, but preserves no analyses.
923 ///
924 /// Because this preserves no analyses, any analysis passes queried after this
925 /// pass runs will recompute fresh results.
926 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
927   /// Run this pass over some unit of IR.
928   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAllAnalysesPass929   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
930     return PreservedAnalyses::none();
931   }
932 };
933 
934 } // end namespace llvm
935 
936 #endif // LLVM_IR_PASSMANAGER_H
937