1 //===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The analysis collects instructions that should be output at the module level
10 // and performs the global register numbering.
11 //
12 // The results of this analysis are used in AsmPrinter to rename registers
13 // globally and to output required instructions at the module level.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "SPIRVModuleAnalysis.h"
18 #include "MCTargetDesc/SPIRVBaseInfo.h"
19 #include "MCTargetDesc/SPIRVMCTargetDesc.h"
20 #include "SPIRV.h"
21 #include "SPIRVSubtarget.h"
22 #include "SPIRVTargetMachine.h"
23 #include "SPIRVUtils.h"
24 #include "TargetInfo/SPIRVTargetInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/TargetPassConfig.h"
28
29 using namespace llvm;
30
31 #define DEBUG_TYPE "spirv-module-analysis"
32
33 static cl::opt<bool>
34 SPVDumpDeps("spv-dump-deps",
35 cl::desc("Dump MIR with SPIR-V dependencies info"),
36 cl::Optional, cl::init(false));
37
38 static cl::list<SPIRV::Capability::Capability>
39 AvoidCapabilities("avoid-spirv-capabilities",
40 cl::desc("SPIR-V capabilities to avoid if there are "
41 "other options enabling a feature"),
42 cl::ZeroOrMore, cl::Hidden,
43 cl::values(clEnumValN(SPIRV::Capability::Shader, "Shader",
44 "SPIR-V Shader capability")));
45 // Use sets instead of cl::list to check "if contains" condition
46 struct AvoidCapabilitiesSet {
47 SmallSet<SPIRV::Capability::Capability, 4> S;
AvoidCapabilitiesSetAvoidCapabilitiesSet48 AvoidCapabilitiesSet() {
49 for (auto Cap : AvoidCapabilities)
50 S.insert(Cap);
51 }
52 };
53
54 char llvm::SPIRVModuleAnalysis::ID = 0;
55
56 namespace llvm {
57 void initializeSPIRVModuleAnalysisPass(PassRegistry &);
58 } // namespace llvm
59
60 INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true,
61 true)
62
63 // Retrieve an unsigned from an MDNode with a list of them as operands.
getMetadataUInt(MDNode * MdNode,unsigned OpIndex,unsigned DefaultVal=0)64 static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex,
65 unsigned DefaultVal = 0) {
66 if (MdNode && OpIndex < MdNode->getNumOperands()) {
67 const auto &Op = MdNode->getOperand(OpIndex);
68 return mdconst::extract<ConstantInt>(Op)->getZExtValue();
69 }
70 return DefaultVal;
71 }
72
73 static SPIRV::Requirements
getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category,unsigned i,const SPIRVSubtarget & ST,SPIRV::RequirementHandler & Reqs)74 getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category,
75 unsigned i, const SPIRVSubtarget &ST,
76 SPIRV::RequirementHandler &Reqs) {
77 static AvoidCapabilitiesSet
78 AvoidCaps; // contains capabilities to avoid if there is another option
79
80 VersionTuple ReqMinVer = getSymbolicOperandMinVersion(Category, i);
81 VersionTuple ReqMaxVer = getSymbolicOperandMaxVersion(Category, i);
82 VersionTuple SPIRVVersion = ST.getSPIRVVersion();
83 bool MinVerOK = SPIRVVersion.empty() || SPIRVVersion >= ReqMinVer;
84 bool MaxVerOK =
85 ReqMaxVer.empty() || SPIRVVersion.empty() || SPIRVVersion <= ReqMaxVer;
86 CapabilityList ReqCaps = getSymbolicOperandCapabilities(Category, i);
87 ExtensionList ReqExts = getSymbolicOperandExtensions(Category, i);
88 if (ReqCaps.empty()) {
89 if (ReqExts.empty()) {
90 if (MinVerOK && MaxVerOK)
91 return {true, {}, {}, ReqMinVer, ReqMaxVer};
92 return {false, {}, {}, VersionTuple(), VersionTuple()};
93 }
94 } else if (MinVerOK && MaxVerOK) {
95 if (ReqCaps.size() == 1) {
96 auto Cap = ReqCaps[0];
97 if (Reqs.isCapabilityAvailable(Cap))
98 return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer};
99 } else {
100 // By SPIR-V specification: "If an instruction, enumerant, or other
101 // feature specifies multiple enabling capabilities, only one such
102 // capability needs to be declared to use the feature." However, one
103 // capability may be preferred over another. We use command line
104 // argument(s) and AvoidCapabilities to avoid selection of certain
105 // capabilities if there are other options.
106 CapabilityList UseCaps;
107 for (auto Cap : ReqCaps)
108 if (Reqs.isCapabilityAvailable(Cap))
109 UseCaps.push_back(Cap);
110 for (size_t i = 0, Sz = UseCaps.size(); i < Sz; ++i) {
111 auto Cap = UseCaps[i];
112 if (i == Sz - 1 || !AvoidCaps.S.contains(Cap))
113 return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer};
114 }
115 }
116 }
117 // If there are no capabilities, or we can't satisfy the version or
118 // capability requirements, use the list of extensions (if the subtarget
119 // can handle them all).
120 if (llvm::all_of(ReqExts, [&ST](const SPIRV::Extension::Extension &Ext) {
121 return ST.canUseExtension(Ext);
122 })) {
123 return {true,
124 {},
125 ReqExts,
126 VersionTuple(),
127 VersionTuple()}; // TODO: add versions to extensions.
128 }
129 return {false, {}, {}, VersionTuple(), VersionTuple()};
130 }
131
setBaseInfo(const Module & M)132 void SPIRVModuleAnalysis::setBaseInfo(const Module &M) {
133 MAI.MaxID = 0;
134 for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++)
135 MAI.MS[i].clear();
136 MAI.RegisterAliasTable.clear();
137 MAI.InstrsToDelete.clear();
138 MAI.FuncMap.clear();
139 MAI.GlobalVarList.clear();
140 MAI.ExtInstSetMap.clear();
141 MAI.Reqs.clear();
142 MAI.Reqs.initAvailableCapabilities(*ST);
143
144 // TODO: determine memory model and source language from the configuratoin.
145 if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) {
146 auto MemMD = MemModel->getOperand(0);
147 MAI.Addr = static_cast<SPIRV::AddressingModel::AddressingModel>(
148 getMetadataUInt(MemMD, 0));
149 MAI.Mem =
150 static_cast<SPIRV::MemoryModel::MemoryModel>(getMetadataUInt(MemMD, 1));
151 } else {
152 // TODO: Add support for VulkanMemoryModel.
153 MAI.Mem = ST->isOpenCLEnv() ? SPIRV::MemoryModel::OpenCL
154 : SPIRV::MemoryModel::GLSL450;
155 if (MAI.Mem == SPIRV::MemoryModel::OpenCL) {
156 unsigned PtrSize = ST->getPointerSize();
157 MAI.Addr = PtrSize == 32 ? SPIRV::AddressingModel::Physical32
158 : PtrSize == 64 ? SPIRV::AddressingModel::Physical64
159 : SPIRV::AddressingModel::Logical;
160 } else {
161 // TODO: Add support for PhysicalStorageBufferAddress.
162 MAI.Addr = SPIRV::AddressingModel::Logical;
163 }
164 }
165 // Get the OpenCL version number from metadata.
166 // TODO: support other source languages.
167 if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) {
168 MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C;
169 // Construct version literal in accordance with SPIRV-LLVM-Translator.
170 // TODO: support multiple OCL version metadata.
171 assert(VerNode->getNumOperands() > 0 && "Invalid SPIR");
172 auto VersionMD = VerNode->getOperand(0);
173 unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2);
174 unsigned MinorNum = getMetadataUInt(VersionMD, 1);
175 unsigned RevNum = getMetadataUInt(VersionMD, 2);
176 // Prevent Major part of OpenCL version to be 0
177 MAI.SrcLangVersion =
178 (std::max(1U, MajorNum) * 100 + MinorNum) * 1000 + RevNum;
179 } else {
180 // If there is no information about OpenCL version we are forced to generate
181 // OpenCL 1.0 by default for the OpenCL environment to avoid puzzling
182 // run-times with Unknown/0.0 version output. For a reference, LLVM-SPIRV
183 // Translator avoids potential issues with run-times in a similar manner.
184 if (ST->isOpenCLEnv()) {
185 MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_CPP;
186 MAI.SrcLangVersion = 100000;
187 } else {
188 MAI.SrcLang = SPIRV::SourceLanguage::Unknown;
189 MAI.SrcLangVersion = 0;
190 }
191 }
192
193 if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) {
194 for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) {
195 MDNode *MD = ExtNode->getOperand(I);
196 if (!MD || MD->getNumOperands() == 0)
197 continue;
198 for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J)
199 MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString());
200 }
201 }
202
203 // Update required capabilities for this memory model, addressing model and
204 // source language.
205 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand,
206 MAI.Mem, *ST);
207 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::SourceLanguageOperand,
208 MAI.SrcLang, *ST);
209 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
210 MAI.Addr, *ST);
211
212 if (ST->isOpenCLEnv()) {
213 // TODO: check if it's required by default.
214 MAI.ExtInstSetMap[static_cast<unsigned>(
215 SPIRV::InstructionSet::OpenCL_std)] =
216 Register::index2VirtReg(MAI.getNextID());
217 }
218 }
219
220 // Collect MI which defines the register in the given machine function.
collectDefInstr(Register Reg,const MachineFunction * MF,SPIRV::ModuleAnalysisInfo * MAI,SPIRV::ModuleSectionType MSType,bool DoInsert=true)221 static void collectDefInstr(Register Reg, const MachineFunction *MF,
222 SPIRV::ModuleAnalysisInfo *MAI,
223 SPIRV::ModuleSectionType MSType,
224 bool DoInsert = true) {
225 assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias");
226 MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg);
227 assert(MI && "There should be an instruction that defines the register");
228 MAI->setSkipEmission(MI);
229 if (DoInsert)
230 MAI->MS[MSType].push_back(MI);
231 }
232
collectGlobalEntities(const std::vector<SPIRV::DTSortableEntry * > & DepsGraph,SPIRV::ModuleSectionType MSType,std::function<bool (const SPIRV::DTSortableEntry *)> Pred,bool UsePreOrder=false)233 void SPIRVModuleAnalysis::collectGlobalEntities(
234 const std::vector<SPIRV::DTSortableEntry *> &DepsGraph,
235 SPIRV::ModuleSectionType MSType,
236 std::function<bool(const SPIRV::DTSortableEntry *)> Pred,
237 bool UsePreOrder = false) {
238 DenseSet<const SPIRV::DTSortableEntry *> Visited;
239 for (const auto *E : DepsGraph) {
240 std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil;
241 // NOTE: here we prefer recursive approach over iterative because
242 // we don't expect depchains long enough to cause SO.
243 RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred,
244 &RecHoistUtil](const SPIRV::DTSortableEntry *E) {
245 if (Visited.count(E) || !Pred(E))
246 return;
247 Visited.insert(E);
248
249 // Traversing deps graph in post-order allows us to get rid of
250 // register aliases preprocessing.
251 // But pre-order is required for correct processing of function
252 // declaration and arguments processing.
253 if (!UsePreOrder)
254 for (auto *S : E->getDeps())
255 RecHoistUtil(S);
256
257 Register GlobalReg = Register::index2VirtReg(MAI.getNextID());
258 bool IsFirst = true;
259 for (auto &U : *E) {
260 const MachineFunction *MF = U.first;
261 Register Reg = U.second;
262 MAI.setRegisterAlias(MF, Reg, GlobalReg);
263 if (!MF->getRegInfo().getUniqueVRegDef(Reg))
264 continue;
265 collectDefInstr(Reg, MF, &MAI, MSType, IsFirst);
266 IsFirst = false;
267 if (E->getIsGV())
268 MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg));
269 }
270
271 if (UsePreOrder)
272 for (auto *S : E->getDeps())
273 RecHoistUtil(S);
274 };
275 RecHoistUtil(E);
276 }
277 }
278
279 // The function initializes global register alias table for types, consts,
280 // global vars and func decls and collects these instruction for output
281 // at module level. Also it collects explicit OpExtension/OpCapability
282 // instructions.
processDefInstrs(const Module & M)283 void SPIRVModuleAnalysis::processDefInstrs(const Module &M) {
284 std::vector<SPIRV::DTSortableEntry *> DepsGraph;
285
286 GR->buildDepsGraph(DepsGraph, SPVDumpDeps ? MMI : nullptr);
287
288 collectGlobalEntities(
289 DepsGraph, SPIRV::MB_TypeConstVars,
290 [](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); });
291
292 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
293 MachineFunction *MF = MMI->getMachineFunction(*F);
294 if (!MF)
295 continue;
296 // Iterate through and collect OpExtension/OpCapability instructions.
297 for (MachineBasicBlock &MBB : *MF) {
298 for (MachineInstr &MI : MBB) {
299 if (MI.getOpcode() == SPIRV::OpExtension) {
300 // Here, OpExtension just has a single enum operand, not a string.
301 auto Ext = SPIRV::Extension::Extension(MI.getOperand(0).getImm());
302 MAI.Reqs.addExtension(Ext);
303 MAI.setSkipEmission(&MI);
304 } else if (MI.getOpcode() == SPIRV::OpCapability) {
305 auto Cap = SPIRV::Capability::Capability(MI.getOperand(0).getImm());
306 MAI.Reqs.addCapability(Cap);
307 MAI.setSkipEmission(&MI);
308 }
309 }
310 }
311 }
312
313 collectGlobalEntities(
314 DepsGraph, SPIRV::MB_ExtFuncDecls,
315 [](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true);
316 }
317
318 // Look for IDs declared with Import linkage, and map the corresponding function
319 // to the register defining that variable (which will usually be the result of
320 // an OpFunction). This lets us call externally imported functions using
321 // the correct ID registers.
collectFuncNames(MachineInstr & MI,const Function * F)322 void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI,
323 const Function *F) {
324 if (MI.getOpcode() == SPIRV::OpDecorate) {
325 // If it's got Import linkage.
326 auto Dec = MI.getOperand(1).getImm();
327 if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) {
328 auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm();
329 if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) {
330 // Map imported function name to function ID register.
331 const Function *ImportedFunc =
332 F->getParent()->getFunction(getStringImm(MI, 2));
333 Register Target = MI.getOperand(0).getReg();
334 MAI.FuncMap[ImportedFunc] = MAI.getRegisterAlias(MI.getMF(), Target);
335 }
336 }
337 } else if (MI.getOpcode() == SPIRV::OpFunction) {
338 // Record all internal OpFunction declarations.
339 Register Reg = MI.defs().begin()->getReg();
340 Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg);
341 assert(GlobalReg.isValid());
342 MAI.FuncMap[F] = GlobalReg;
343 }
344 }
345
346 // References to a function via function pointers generate virtual
347 // registers without a definition. We are able to resolve this
348 // reference using Globar Register info into an OpFunction instruction
349 // and replace dummy operands by the corresponding global register references.
collectFuncPtrs()350 void SPIRVModuleAnalysis::collectFuncPtrs() {
351 for (auto &MI : MAI.MS[SPIRV::MB_TypeConstVars])
352 if (MI->getOpcode() == SPIRV::OpConstantFunctionPointerINTEL)
353 collectFuncPtrs(MI);
354 }
355
collectFuncPtrs(MachineInstr * MI)356 void SPIRVModuleAnalysis::collectFuncPtrs(MachineInstr *MI) {
357 const MachineOperand *FunUse = &MI->getOperand(2);
358 if (const MachineOperand *FunDef = GR->getFunctionDefinitionByUse(FunUse)) {
359 const MachineInstr *FunDefMI = FunDef->getParent();
360 assert(FunDefMI->getOpcode() == SPIRV::OpFunction &&
361 "Constant function pointer must refer to function definition");
362 Register FunDefReg = FunDef->getReg();
363 Register GlobalFunDefReg =
364 MAI.getRegisterAlias(FunDefMI->getMF(), FunDefReg);
365 assert(GlobalFunDefReg.isValid() &&
366 "Function definition must refer to a global register");
367 Register FunPtrReg = FunUse->getReg();
368 MAI.setRegisterAlias(MI->getMF(), FunPtrReg, GlobalFunDefReg);
369 }
370 }
371
372 using InstrSignature = SmallVector<size_t>;
373 using InstrTraces = std::set<InstrSignature>;
374
375 // Returns a representation of an instruction as a vector of MachineOperand
376 // hash values, see llvm::hash_value(const MachineOperand &MO) for details.
377 // This creates a signature of the instruction with the same content
378 // that MachineOperand::isIdenticalTo uses for comparison.
instrToSignature(MachineInstr & MI,SPIRV::ModuleAnalysisInfo & MAI)379 static InstrSignature instrToSignature(MachineInstr &MI,
380 SPIRV::ModuleAnalysisInfo &MAI) {
381 InstrSignature Signature;
382 for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
383 const MachineOperand &MO = MI.getOperand(i);
384 size_t h;
385 if (MO.isReg()) {
386 Register RegAlias = MAI.getRegisterAlias(MI.getMF(), MO.getReg());
387 // mimic llvm::hash_value(const MachineOperand &MO)
388 h = hash_combine(MO.getType(), (unsigned)RegAlias, MO.getSubReg(),
389 MO.isDef());
390 } else {
391 h = hash_value(MO);
392 }
393 Signature.push_back(h);
394 }
395 return Signature;
396 }
397
398 // Collect the given instruction in the specified MS. We assume global register
399 // numbering has already occurred by this point. We can directly compare reg
400 // arguments when detecting duplicates.
collectOtherInstr(MachineInstr & MI,SPIRV::ModuleAnalysisInfo & MAI,SPIRV::ModuleSectionType MSType,InstrTraces & IS,bool Append=true)401 static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI,
402 SPIRV::ModuleSectionType MSType, InstrTraces &IS,
403 bool Append = true) {
404 MAI.setSkipEmission(&MI);
405 InstrSignature MISign = instrToSignature(MI, MAI);
406 auto FoundMI = IS.insert(MISign);
407 if (!FoundMI.second)
408 return; // insert failed, so we found a duplicate; don't add it to MAI.MS
409 // No duplicates, so add it.
410 if (Append)
411 MAI.MS[MSType].push_back(&MI);
412 else
413 MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI);
414 }
415
416 // Some global instructions make reference to function-local ID regs, so cannot
417 // be correctly collected until these registers are globally numbered.
processOtherInstrs(const Module & M)418 void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) {
419 InstrTraces IS;
420 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
421 if ((*F).isDeclaration())
422 continue;
423 MachineFunction *MF = MMI->getMachineFunction(*F);
424 assert(MF);
425 for (MachineBasicBlock &MBB : *MF)
426 for (MachineInstr &MI : MBB) {
427 if (MAI.getSkipEmission(&MI))
428 continue;
429 const unsigned OpCode = MI.getOpcode();
430 if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) {
431 collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames, IS);
432 } else if (OpCode == SPIRV::OpEntryPoint) {
433 collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints, IS);
434 } else if (TII->isDecorationInstr(MI)) {
435 collectOtherInstr(MI, MAI, SPIRV::MB_Annotations, IS);
436 collectFuncNames(MI, &*F);
437 } else if (TII->isConstantInstr(MI)) {
438 // Now OpSpecConstant*s are not in DT,
439 // but they need to be collected anyway.
440 collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS);
441 } else if (OpCode == SPIRV::OpFunction) {
442 collectFuncNames(MI, &*F);
443 } else if (OpCode == SPIRV::OpTypeForwardPointer) {
444 collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS, false);
445 }
446 }
447 }
448 }
449
450 // Number registers in all functions globally from 0 onwards and store
451 // the result in global register alias table. Some registers are already
452 // numbered in collectGlobalEntities.
numberRegistersGlobally(const Module & M)453 void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) {
454 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
455 if ((*F).isDeclaration())
456 continue;
457 MachineFunction *MF = MMI->getMachineFunction(*F);
458 assert(MF);
459 for (MachineBasicBlock &MBB : *MF) {
460 for (MachineInstr &MI : MBB) {
461 for (MachineOperand &Op : MI.operands()) {
462 if (!Op.isReg())
463 continue;
464 Register Reg = Op.getReg();
465 if (MAI.hasRegisterAlias(MF, Reg))
466 continue;
467 Register NewReg = Register::index2VirtReg(MAI.getNextID());
468 MAI.setRegisterAlias(MF, Reg, NewReg);
469 }
470 if (MI.getOpcode() != SPIRV::OpExtInst)
471 continue;
472 auto Set = MI.getOperand(2).getImm();
473 if (!MAI.ExtInstSetMap.contains(Set))
474 MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID());
475 }
476 }
477 }
478 }
479
480 // RequirementHandler implementations.
getAndAddRequirements(SPIRV::OperandCategory::OperandCategory Category,uint32_t i,const SPIRVSubtarget & ST)481 void SPIRV::RequirementHandler::getAndAddRequirements(
482 SPIRV::OperandCategory::OperandCategory Category, uint32_t i,
483 const SPIRVSubtarget &ST) {
484 addRequirements(getSymbolicOperandRequirements(Category, i, ST, *this));
485 }
486
recursiveAddCapabilities(const CapabilityList & ToPrune)487 void SPIRV::RequirementHandler::recursiveAddCapabilities(
488 const CapabilityList &ToPrune) {
489 for (const auto &Cap : ToPrune) {
490 AllCaps.insert(Cap);
491 CapabilityList ImplicitDecls =
492 getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
493 recursiveAddCapabilities(ImplicitDecls);
494 }
495 }
496
addCapabilities(const CapabilityList & ToAdd)497 void SPIRV::RequirementHandler::addCapabilities(const CapabilityList &ToAdd) {
498 for (const auto &Cap : ToAdd) {
499 bool IsNewlyInserted = AllCaps.insert(Cap).second;
500 if (!IsNewlyInserted) // Don't re-add if it's already been declared.
501 continue;
502 CapabilityList ImplicitDecls =
503 getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
504 recursiveAddCapabilities(ImplicitDecls);
505 MinimalCaps.push_back(Cap);
506 }
507 }
508
addRequirements(const SPIRV::Requirements & Req)509 void SPIRV::RequirementHandler::addRequirements(
510 const SPIRV::Requirements &Req) {
511 if (!Req.IsSatisfiable)
512 report_fatal_error("Adding SPIR-V requirements this target can't satisfy.");
513
514 if (Req.Cap.has_value())
515 addCapabilities({Req.Cap.value()});
516
517 addExtensions(Req.Exts);
518
519 if (!Req.MinVer.empty()) {
520 if (!MaxVersion.empty() && Req.MinVer > MaxVersion) {
521 LLVM_DEBUG(dbgs() << "Conflicting version requirements: >= " << Req.MinVer
522 << " and <= " << MaxVersion << "\n");
523 report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
524 }
525
526 if (MinVersion.empty() || Req.MinVer > MinVersion)
527 MinVersion = Req.MinVer;
528 }
529
530 if (!Req.MaxVer.empty()) {
531 if (!MinVersion.empty() && Req.MaxVer < MinVersion) {
532 LLVM_DEBUG(dbgs() << "Conflicting version requirements: <= " << Req.MaxVer
533 << " and >= " << MinVersion << "\n");
534 report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
535 }
536
537 if (MaxVersion.empty() || Req.MaxVer < MaxVersion)
538 MaxVersion = Req.MaxVer;
539 }
540 }
541
checkSatisfiable(const SPIRVSubtarget & ST) const542 void SPIRV::RequirementHandler::checkSatisfiable(
543 const SPIRVSubtarget &ST) const {
544 // Report as many errors as possible before aborting the compilation.
545 bool IsSatisfiable = true;
546 auto TargetVer = ST.getSPIRVVersion();
547
548 if (!MaxVersion.empty() && !TargetVer.empty() && MaxVersion < TargetVer) {
549 LLVM_DEBUG(
550 dbgs() << "Target SPIR-V version too high for required features\n"
551 << "Required max version: " << MaxVersion << " target version "
552 << TargetVer << "\n");
553 IsSatisfiable = false;
554 }
555
556 if (!MinVersion.empty() && !TargetVer.empty() && MinVersion > TargetVer) {
557 LLVM_DEBUG(dbgs() << "Target SPIR-V version too low for required features\n"
558 << "Required min version: " << MinVersion
559 << " target version " << TargetVer << "\n");
560 IsSatisfiable = false;
561 }
562
563 if (!MinVersion.empty() && !MaxVersion.empty() && MinVersion > MaxVersion) {
564 LLVM_DEBUG(
565 dbgs()
566 << "Version is too low for some features and too high for others.\n"
567 << "Required SPIR-V min version: " << MinVersion
568 << " required SPIR-V max version " << MaxVersion << "\n");
569 IsSatisfiable = false;
570 }
571
572 for (auto Cap : MinimalCaps) {
573 if (AvailableCaps.contains(Cap))
574 continue;
575 LLVM_DEBUG(dbgs() << "Capability not supported: "
576 << getSymbolicOperandMnemonic(
577 OperandCategory::CapabilityOperand, Cap)
578 << "\n");
579 IsSatisfiable = false;
580 }
581
582 for (auto Ext : AllExtensions) {
583 if (ST.canUseExtension(Ext))
584 continue;
585 LLVM_DEBUG(dbgs() << "Extension not supported: "
586 << getSymbolicOperandMnemonic(
587 OperandCategory::ExtensionOperand, Ext)
588 << "\n");
589 IsSatisfiable = false;
590 }
591
592 if (!IsSatisfiable)
593 report_fatal_error("Unable to meet SPIR-V requirements for this target.");
594 }
595
596 // Add the given capabilities and all their implicitly defined capabilities too.
addAvailableCaps(const CapabilityList & ToAdd)597 void SPIRV::RequirementHandler::addAvailableCaps(const CapabilityList &ToAdd) {
598 for (const auto Cap : ToAdd)
599 if (AvailableCaps.insert(Cap).second)
600 addAvailableCaps(getSymbolicOperandCapabilities(
601 SPIRV::OperandCategory::CapabilityOperand, Cap));
602 }
603
removeCapabilityIf(const Capability::Capability ToRemove,const Capability::Capability IfPresent)604 void SPIRV::RequirementHandler::removeCapabilityIf(
605 const Capability::Capability ToRemove,
606 const Capability::Capability IfPresent) {
607 if (AllCaps.contains(IfPresent))
608 AllCaps.erase(ToRemove);
609 }
610
611 namespace llvm {
612 namespace SPIRV {
initAvailableCapabilities(const SPIRVSubtarget & ST)613 void RequirementHandler::initAvailableCapabilities(const SPIRVSubtarget &ST) {
614 if (ST.isOpenCLEnv()) {
615 initAvailableCapabilitiesForOpenCL(ST);
616 return;
617 }
618
619 if (ST.isVulkanEnv()) {
620 initAvailableCapabilitiesForVulkan(ST);
621 return;
622 }
623
624 report_fatal_error("Unimplemented environment for SPIR-V generation.");
625 }
626
initAvailableCapabilitiesForOpenCL(const SPIRVSubtarget & ST)627 void RequirementHandler::initAvailableCapabilitiesForOpenCL(
628 const SPIRVSubtarget &ST) {
629 // Add the min requirements for different OpenCL and SPIR-V versions.
630 addAvailableCaps({Capability::Addresses, Capability::Float16Buffer,
631 Capability::Int16, Capability::Int8, Capability::Kernel,
632 Capability::Linkage, Capability::Vector16,
633 Capability::Groups, Capability::GenericPointer,
634 Capability::Shader});
635 if (ST.hasOpenCLFullProfile())
636 addAvailableCaps({Capability::Int64, Capability::Int64Atomics});
637 if (ST.hasOpenCLImageSupport()) {
638 addAvailableCaps({Capability::ImageBasic, Capability::LiteralSampler,
639 Capability::Image1D, Capability::SampledBuffer,
640 Capability::ImageBuffer});
641 if (ST.isAtLeastOpenCLVer(VersionTuple(2, 0)))
642 addAvailableCaps({Capability::ImageReadWrite});
643 }
644 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 1)) &&
645 ST.isAtLeastOpenCLVer(VersionTuple(2, 2)))
646 addAvailableCaps({Capability::SubgroupDispatch, Capability::PipeStorage});
647 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 3)))
648 addAvailableCaps({Capability::GroupNonUniform,
649 Capability::GroupNonUniformVote,
650 Capability::GroupNonUniformArithmetic,
651 Capability::GroupNonUniformBallot,
652 Capability::GroupNonUniformClustered,
653 Capability::GroupNonUniformShuffle,
654 Capability::GroupNonUniformShuffleRelative});
655 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 4)))
656 addAvailableCaps({Capability::DenormPreserve, Capability::DenormFlushToZero,
657 Capability::SignedZeroInfNanPreserve,
658 Capability::RoundingModeRTE,
659 Capability::RoundingModeRTZ});
660 // TODO: verify if this needs some checks.
661 addAvailableCaps({Capability::Float16, Capability::Float64});
662
663 // Add capabilities enabled by extensions.
664 for (auto Extension : ST.getAllAvailableExtensions()) {
665 CapabilityList EnabledCapabilities =
666 getCapabilitiesEnabledByExtension(Extension);
667 addAvailableCaps(EnabledCapabilities);
668 }
669
670 // TODO: add OpenCL extensions.
671 }
672
initAvailableCapabilitiesForVulkan(const SPIRVSubtarget & ST)673 void RequirementHandler::initAvailableCapabilitiesForVulkan(
674 const SPIRVSubtarget &ST) {
675 addAvailableCaps({Capability::Shader, Capability::Linkage});
676
677 // Provided by all supported Vulkan versions.
678 addAvailableCaps({Capability::Int16, Capability::Int64, Capability::Float16,
679 Capability::Float64, Capability::GroupNonUniform});
680 }
681
682 } // namespace SPIRV
683 } // namespace llvm
684
685 // Add the required capabilities from a decoration instruction (including
686 // BuiltIns).
addOpDecorateReqs(const MachineInstr & MI,unsigned DecIndex,SPIRV::RequirementHandler & Reqs,const SPIRVSubtarget & ST)687 static void addOpDecorateReqs(const MachineInstr &MI, unsigned DecIndex,
688 SPIRV::RequirementHandler &Reqs,
689 const SPIRVSubtarget &ST) {
690 int64_t DecOp = MI.getOperand(DecIndex).getImm();
691 auto Dec = static_cast<SPIRV::Decoration::Decoration>(DecOp);
692 Reqs.addRequirements(getSymbolicOperandRequirements(
693 SPIRV::OperandCategory::DecorationOperand, Dec, ST, Reqs));
694
695 if (Dec == SPIRV::Decoration::BuiltIn) {
696 int64_t BuiltInOp = MI.getOperand(DecIndex + 1).getImm();
697 auto BuiltIn = static_cast<SPIRV::BuiltIn::BuiltIn>(BuiltInOp);
698 Reqs.addRequirements(getSymbolicOperandRequirements(
699 SPIRV::OperandCategory::BuiltInOperand, BuiltIn, ST, Reqs));
700 } else if (Dec == SPIRV::Decoration::LinkageAttributes) {
701 int64_t LinkageOp = MI.getOperand(MI.getNumOperands() - 1).getImm();
702 SPIRV::LinkageType::LinkageType LnkType =
703 static_cast<SPIRV::LinkageType::LinkageType>(LinkageOp);
704 if (LnkType == SPIRV::LinkageType::LinkOnceODR)
705 Reqs.addExtension(SPIRV::Extension::SPV_KHR_linkonce_odr);
706 } else if (Dec == SPIRV::Decoration::CacheControlLoadINTEL ||
707 Dec == SPIRV::Decoration::CacheControlStoreINTEL) {
708 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_cache_controls);
709 } else if (Dec == SPIRV::Decoration::HostAccessINTEL) {
710 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_global_variable_host_access);
711 } else if (Dec == SPIRV::Decoration::InitModeINTEL ||
712 Dec == SPIRV::Decoration::ImplementInRegisterMapINTEL) {
713 Reqs.addExtension(
714 SPIRV::Extension::SPV_INTEL_global_variable_fpga_decorations);
715 }
716 }
717
718 // Add requirements for image handling.
addOpTypeImageReqs(const MachineInstr & MI,SPIRV::RequirementHandler & Reqs,const SPIRVSubtarget & ST)719 static void addOpTypeImageReqs(const MachineInstr &MI,
720 SPIRV::RequirementHandler &Reqs,
721 const SPIRVSubtarget &ST) {
722 assert(MI.getNumOperands() >= 8 && "Insufficient operands for OpTypeImage");
723 // The operand indices used here are based on the OpTypeImage layout, which
724 // the MachineInstr follows as well.
725 int64_t ImgFormatOp = MI.getOperand(7).getImm();
726 auto ImgFormat = static_cast<SPIRV::ImageFormat::ImageFormat>(ImgFormatOp);
727 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ImageFormatOperand,
728 ImgFormat, ST);
729
730 bool IsArrayed = MI.getOperand(4).getImm() == 1;
731 bool IsMultisampled = MI.getOperand(5).getImm() == 1;
732 bool NoSampler = MI.getOperand(6).getImm() == 2;
733 // Add dimension requirements.
734 assert(MI.getOperand(2).isImm());
735 switch (MI.getOperand(2).getImm()) {
736 case SPIRV::Dim::DIM_1D:
737 Reqs.addRequirements(NoSampler ? SPIRV::Capability::Image1D
738 : SPIRV::Capability::Sampled1D);
739 break;
740 case SPIRV::Dim::DIM_2D:
741 if (IsMultisampled && NoSampler)
742 Reqs.addRequirements(SPIRV::Capability::ImageMSArray);
743 break;
744 case SPIRV::Dim::DIM_Cube:
745 Reqs.addRequirements(SPIRV::Capability::Shader);
746 if (IsArrayed)
747 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageCubeArray
748 : SPIRV::Capability::SampledCubeArray);
749 break;
750 case SPIRV::Dim::DIM_Rect:
751 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageRect
752 : SPIRV::Capability::SampledRect);
753 break;
754 case SPIRV::Dim::DIM_Buffer:
755 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageBuffer
756 : SPIRV::Capability::SampledBuffer);
757 break;
758 case SPIRV::Dim::DIM_SubpassData:
759 Reqs.addRequirements(SPIRV::Capability::InputAttachment);
760 break;
761 }
762
763 // Has optional access qualifier.
764 // TODO: check if it's OpenCL's kernel.
765 if (MI.getNumOperands() > 8 &&
766 MI.getOperand(8).getImm() == SPIRV::AccessQualifier::ReadWrite)
767 Reqs.addRequirements(SPIRV::Capability::ImageReadWrite);
768 else
769 Reqs.addRequirements(SPIRV::Capability::ImageBasic);
770 }
771
772 // Add requirements for handling atomic float instructions
773 #define ATOM_FLT_REQ_EXT_MSG(ExtName) \
774 "The atomic float instruction requires the following SPIR-V " \
775 "extension: SPV_EXT_shader_atomic_float" ExtName
AddAtomicFloatRequirements(const MachineInstr & MI,SPIRV::RequirementHandler & Reqs,const SPIRVSubtarget & ST)776 static void AddAtomicFloatRequirements(const MachineInstr &MI,
777 SPIRV::RequirementHandler &Reqs,
778 const SPIRVSubtarget &ST) {
779 assert(MI.getOperand(1).isReg() &&
780 "Expect register operand in atomic float instruction");
781 Register TypeReg = MI.getOperand(1).getReg();
782 SPIRVType *TypeDef = MI.getMF()->getRegInfo().getVRegDef(TypeReg);
783 if (TypeDef->getOpcode() != SPIRV::OpTypeFloat)
784 report_fatal_error("Result type of an atomic float instruction must be a "
785 "floating-point type scalar");
786
787 unsigned BitWidth = TypeDef->getOperand(1).getImm();
788 unsigned Op = MI.getOpcode();
789 if (Op == SPIRV::OpAtomicFAddEXT) {
790 if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add))
791 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_add"), false);
792 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add);
793 switch (BitWidth) {
794 case 16:
795 if (!ST.canUseExtension(
796 SPIRV::Extension::SPV_EXT_shader_atomic_float16_add))
797 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("16_add"), false);
798 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float16_add);
799 Reqs.addCapability(SPIRV::Capability::AtomicFloat16AddEXT);
800 break;
801 case 32:
802 Reqs.addCapability(SPIRV::Capability::AtomicFloat32AddEXT);
803 break;
804 case 64:
805 Reqs.addCapability(SPIRV::Capability::AtomicFloat64AddEXT);
806 break;
807 default:
808 report_fatal_error(
809 "Unexpected floating-point type width in atomic float instruction");
810 }
811 } else {
812 if (!ST.canUseExtension(
813 SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max))
814 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_min_max"), false);
815 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max);
816 switch (BitWidth) {
817 case 16:
818 Reqs.addCapability(SPIRV::Capability::AtomicFloat16MinMaxEXT);
819 break;
820 case 32:
821 Reqs.addCapability(SPIRV::Capability::AtomicFloat32MinMaxEXT);
822 break;
823 case 64:
824 Reqs.addCapability(SPIRV::Capability::AtomicFloat64MinMaxEXT);
825 break;
826 default:
827 report_fatal_error(
828 "Unexpected floating-point type width in atomic float instruction");
829 }
830 }
831 }
832
addInstrRequirements(const MachineInstr & MI,SPIRV::RequirementHandler & Reqs,const SPIRVSubtarget & ST)833 void addInstrRequirements(const MachineInstr &MI,
834 SPIRV::RequirementHandler &Reqs,
835 const SPIRVSubtarget &ST) {
836 switch (MI.getOpcode()) {
837 case SPIRV::OpMemoryModel: {
838 int64_t Addr = MI.getOperand(0).getImm();
839 Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
840 Addr, ST);
841 int64_t Mem = MI.getOperand(1).getImm();
842 Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, Mem,
843 ST);
844 break;
845 }
846 case SPIRV::OpEntryPoint: {
847 int64_t Exe = MI.getOperand(0).getImm();
848 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModelOperand,
849 Exe, ST);
850 break;
851 }
852 case SPIRV::OpExecutionMode:
853 case SPIRV::OpExecutionModeId: {
854 int64_t Exe = MI.getOperand(1).getImm();
855 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModeOperand,
856 Exe, ST);
857 break;
858 }
859 case SPIRV::OpTypeMatrix:
860 Reqs.addCapability(SPIRV::Capability::Matrix);
861 break;
862 case SPIRV::OpTypeInt: {
863 unsigned BitWidth = MI.getOperand(1).getImm();
864 if (BitWidth == 64)
865 Reqs.addCapability(SPIRV::Capability::Int64);
866 else if (BitWidth == 16)
867 Reqs.addCapability(SPIRV::Capability::Int16);
868 else if (BitWidth == 8)
869 Reqs.addCapability(SPIRV::Capability::Int8);
870 break;
871 }
872 case SPIRV::OpTypeFloat: {
873 unsigned BitWidth = MI.getOperand(1).getImm();
874 if (BitWidth == 64)
875 Reqs.addCapability(SPIRV::Capability::Float64);
876 else if (BitWidth == 16)
877 Reqs.addCapability(SPIRV::Capability::Float16);
878 break;
879 }
880 case SPIRV::OpTypeVector: {
881 unsigned NumComponents = MI.getOperand(2).getImm();
882 if (NumComponents == 8 || NumComponents == 16)
883 Reqs.addCapability(SPIRV::Capability::Vector16);
884 break;
885 }
886 case SPIRV::OpTypePointer: {
887 auto SC = MI.getOperand(1).getImm();
888 Reqs.getAndAddRequirements(SPIRV::OperandCategory::StorageClassOperand, SC,
889 ST);
890 // If it's a type of pointer to float16 targeting OpenCL, add Float16Buffer
891 // capability.
892 if (!ST.isOpenCLEnv())
893 break;
894 assert(MI.getOperand(2).isReg());
895 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
896 SPIRVType *TypeDef = MRI.getVRegDef(MI.getOperand(2).getReg());
897 if (TypeDef->getOpcode() == SPIRV::OpTypeFloat &&
898 TypeDef->getOperand(1).getImm() == 16)
899 Reqs.addCapability(SPIRV::Capability::Float16Buffer);
900 break;
901 }
902 case SPIRV::OpBitReverse:
903 case SPIRV::OpBitFieldInsert:
904 case SPIRV::OpBitFieldSExtract:
905 case SPIRV::OpBitFieldUExtract:
906 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions)) {
907 Reqs.addCapability(SPIRV::Capability::Shader);
908 break;
909 }
910 Reqs.addExtension(SPIRV::Extension::SPV_KHR_bit_instructions);
911 Reqs.addCapability(SPIRV::Capability::BitInstructions);
912 break;
913 case SPIRV::OpTypeRuntimeArray:
914 Reqs.addCapability(SPIRV::Capability::Shader);
915 break;
916 case SPIRV::OpTypeOpaque:
917 case SPIRV::OpTypeEvent:
918 Reqs.addCapability(SPIRV::Capability::Kernel);
919 break;
920 case SPIRV::OpTypePipe:
921 case SPIRV::OpTypeReserveId:
922 Reqs.addCapability(SPIRV::Capability::Pipes);
923 break;
924 case SPIRV::OpTypeDeviceEvent:
925 case SPIRV::OpTypeQueue:
926 case SPIRV::OpBuildNDRange:
927 Reqs.addCapability(SPIRV::Capability::DeviceEnqueue);
928 break;
929 case SPIRV::OpDecorate:
930 case SPIRV::OpDecorateId:
931 case SPIRV::OpDecorateString:
932 addOpDecorateReqs(MI, 1, Reqs, ST);
933 break;
934 case SPIRV::OpMemberDecorate:
935 case SPIRV::OpMemberDecorateString:
936 addOpDecorateReqs(MI, 2, Reqs, ST);
937 break;
938 case SPIRV::OpInBoundsPtrAccessChain:
939 Reqs.addCapability(SPIRV::Capability::Addresses);
940 break;
941 case SPIRV::OpConstantSampler:
942 Reqs.addCapability(SPIRV::Capability::LiteralSampler);
943 break;
944 case SPIRV::OpTypeImage:
945 addOpTypeImageReqs(MI, Reqs, ST);
946 break;
947 case SPIRV::OpTypeSampler:
948 Reqs.addCapability(SPIRV::Capability::ImageBasic);
949 break;
950 case SPIRV::OpTypeForwardPointer:
951 // TODO: check if it's OpenCL's kernel.
952 Reqs.addCapability(SPIRV::Capability::Addresses);
953 break;
954 case SPIRV::OpAtomicFlagTestAndSet:
955 case SPIRV::OpAtomicLoad:
956 case SPIRV::OpAtomicStore:
957 case SPIRV::OpAtomicExchange:
958 case SPIRV::OpAtomicCompareExchange:
959 case SPIRV::OpAtomicIIncrement:
960 case SPIRV::OpAtomicIDecrement:
961 case SPIRV::OpAtomicIAdd:
962 case SPIRV::OpAtomicISub:
963 case SPIRV::OpAtomicUMin:
964 case SPIRV::OpAtomicUMax:
965 case SPIRV::OpAtomicSMin:
966 case SPIRV::OpAtomicSMax:
967 case SPIRV::OpAtomicAnd:
968 case SPIRV::OpAtomicOr:
969 case SPIRV::OpAtomicXor: {
970 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
971 const MachineInstr *InstrPtr = &MI;
972 if (MI.getOpcode() == SPIRV::OpAtomicStore) {
973 assert(MI.getOperand(3).isReg());
974 InstrPtr = MRI.getVRegDef(MI.getOperand(3).getReg());
975 assert(InstrPtr && "Unexpected type instruction for OpAtomicStore");
976 }
977 assert(InstrPtr->getOperand(1).isReg() && "Unexpected operand in atomic");
978 Register TypeReg = InstrPtr->getOperand(1).getReg();
979 SPIRVType *TypeDef = MRI.getVRegDef(TypeReg);
980 if (TypeDef->getOpcode() == SPIRV::OpTypeInt) {
981 unsigned BitWidth = TypeDef->getOperand(1).getImm();
982 if (BitWidth == 64)
983 Reqs.addCapability(SPIRV::Capability::Int64Atomics);
984 }
985 break;
986 }
987 case SPIRV::OpGroupNonUniformIAdd:
988 case SPIRV::OpGroupNonUniformFAdd:
989 case SPIRV::OpGroupNonUniformIMul:
990 case SPIRV::OpGroupNonUniformFMul:
991 case SPIRV::OpGroupNonUniformSMin:
992 case SPIRV::OpGroupNonUniformUMin:
993 case SPIRV::OpGroupNonUniformFMin:
994 case SPIRV::OpGroupNonUniformSMax:
995 case SPIRV::OpGroupNonUniformUMax:
996 case SPIRV::OpGroupNonUniformFMax:
997 case SPIRV::OpGroupNonUniformBitwiseAnd:
998 case SPIRV::OpGroupNonUniformBitwiseOr:
999 case SPIRV::OpGroupNonUniformBitwiseXor:
1000 case SPIRV::OpGroupNonUniformLogicalAnd:
1001 case SPIRV::OpGroupNonUniformLogicalOr:
1002 case SPIRV::OpGroupNonUniformLogicalXor: {
1003 assert(MI.getOperand(3).isImm());
1004 int64_t GroupOp = MI.getOperand(3).getImm();
1005 switch (GroupOp) {
1006 case SPIRV::GroupOperation::Reduce:
1007 case SPIRV::GroupOperation::InclusiveScan:
1008 case SPIRV::GroupOperation::ExclusiveScan:
1009 Reqs.addCapability(SPIRV::Capability::Kernel);
1010 Reqs.addCapability(SPIRV::Capability::GroupNonUniformArithmetic);
1011 Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
1012 break;
1013 case SPIRV::GroupOperation::ClusteredReduce:
1014 Reqs.addCapability(SPIRV::Capability::GroupNonUniformClustered);
1015 break;
1016 case SPIRV::GroupOperation::PartitionedReduceNV:
1017 case SPIRV::GroupOperation::PartitionedInclusiveScanNV:
1018 case SPIRV::GroupOperation::PartitionedExclusiveScanNV:
1019 Reqs.addCapability(SPIRV::Capability::GroupNonUniformPartitionedNV);
1020 break;
1021 }
1022 break;
1023 }
1024 case SPIRV::OpGroupNonUniformShuffle:
1025 case SPIRV::OpGroupNonUniformShuffleXor:
1026 Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffle);
1027 break;
1028 case SPIRV::OpGroupNonUniformShuffleUp:
1029 case SPIRV::OpGroupNonUniformShuffleDown:
1030 Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffleRelative);
1031 break;
1032 case SPIRV::OpGroupAll:
1033 case SPIRV::OpGroupAny:
1034 case SPIRV::OpGroupBroadcast:
1035 case SPIRV::OpGroupIAdd:
1036 case SPIRV::OpGroupFAdd:
1037 case SPIRV::OpGroupFMin:
1038 case SPIRV::OpGroupUMin:
1039 case SPIRV::OpGroupSMin:
1040 case SPIRV::OpGroupFMax:
1041 case SPIRV::OpGroupUMax:
1042 case SPIRV::OpGroupSMax:
1043 Reqs.addCapability(SPIRV::Capability::Groups);
1044 break;
1045 case SPIRV::OpGroupNonUniformElect:
1046 Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
1047 break;
1048 case SPIRV::OpGroupNonUniformAll:
1049 case SPIRV::OpGroupNonUniformAny:
1050 case SPIRV::OpGroupNonUniformAllEqual:
1051 Reqs.addCapability(SPIRV::Capability::GroupNonUniformVote);
1052 break;
1053 case SPIRV::OpGroupNonUniformBroadcast:
1054 case SPIRV::OpGroupNonUniformBroadcastFirst:
1055 case SPIRV::OpGroupNonUniformBallot:
1056 case SPIRV::OpGroupNonUniformInverseBallot:
1057 case SPIRV::OpGroupNonUniformBallotBitExtract:
1058 case SPIRV::OpGroupNonUniformBallotBitCount:
1059 case SPIRV::OpGroupNonUniformBallotFindLSB:
1060 case SPIRV::OpGroupNonUniformBallotFindMSB:
1061 Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
1062 break;
1063 case SPIRV::OpSubgroupShuffleINTEL:
1064 case SPIRV::OpSubgroupShuffleDownINTEL:
1065 case SPIRV::OpSubgroupShuffleUpINTEL:
1066 case SPIRV::OpSubgroupShuffleXorINTEL:
1067 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1068 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
1069 Reqs.addCapability(SPIRV::Capability::SubgroupShuffleINTEL);
1070 }
1071 break;
1072 case SPIRV::OpSubgroupBlockReadINTEL:
1073 case SPIRV::OpSubgroupBlockWriteINTEL:
1074 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1075 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
1076 Reqs.addCapability(SPIRV::Capability::SubgroupBufferBlockIOINTEL);
1077 }
1078 break;
1079 case SPIRV::OpSubgroupImageBlockReadINTEL:
1080 case SPIRV::OpSubgroupImageBlockWriteINTEL:
1081 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1082 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
1083 Reqs.addCapability(SPIRV::Capability::SubgroupImageBlockIOINTEL);
1084 }
1085 break;
1086 case SPIRV::OpAssumeTrueKHR:
1087 case SPIRV::OpExpectKHR:
1088 if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) {
1089 Reqs.addExtension(SPIRV::Extension::SPV_KHR_expect_assume);
1090 Reqs.addCapability(SPIRV::Capability::ExpectAssumeKHR);
1091 }
1092 break;
1093 case SPIRV::OpPtrCastToCrossWorkgroupINTEL:
1094 case SPIRV::OpCrossWorkgroupCastToPtrINTEL:
1095 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)) {
1096 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes);
1097 Reqs.addCapability(SPIRV::Capability::USMStorageClassesINTEL);
1098 }
1099 break;
1100 case SPIRV::OpConstantFunctionPointerINTEL:
1101 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) {
1102 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
1103 Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL);
1104 }
1105 break;
1106 case SPIRV::OpGroupNonUniformRotateKHR:
1107 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate))
1108 report_fatal_error("OpGroupNonUniformRotateKHR instruction requires the "
1109 "following SPIR-V extension: SPV_KHR_subgroup_rotate",
1110 false);
1111 Reqs.addExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate);
1112 Reqs.addCapability(SPIRV::Capability::GroupNonUniformRotateKHR);
1113 Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
1114 break;
1115 case SPIRV::OpGroupIMulKHR:
1116 case SPIRV::OpGroupFMulKHR:
1117 case SPIRV::OpGroupBitwiseAndKHR:
1118 case SPIRV::OpGroupBitwiseOrKHR:
1119 case SPIRV::OpGroupBitwiseXorKHR:
1120 case SPIRV::OpGroupLogicalAndKHR:
1121 case SPIRV::OpGroupLogicalOrKHR:
1122 case SPIRV::OpGroupLogicalXorKHR:
1123 if (ST.canUseExtension(
1124 SPIRV::Extension::SPV_KHR_uniform_group_instructions)) {
1125 Reqs.addExtension(SPIRV::Extension::SPV_KHR_uniform_group_instructions);
1126 Reqs.addCapability(SPIRV::Capability::GroupUniformArithmeticKHR);
1127 }
1128 break;
1129 case SPIRV::OpReadClockKHR:
1130 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_shader_clock))
1131 report_fatal_error("OpReadClockKHR instruction requires the "
1132 "following SPIR-V extension: SPV_KHR_shader_clock",
1133 false);
1134 Reqs.addExtension(SPIRV::Extension::SPV_KHR_shader_clock);
1135 Reqs.addCapability(SPIRV::Capability::ShaderClockKHR);
1136 break;
1137 case SPIRV::OpFunctionPointerCallINTEL:
1138 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) {
1139 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
1140 Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL);
1141 }
1142 break;
1143 case SPIRV::OpAtomicFAddEXT:
1144 case SPIRV::OpAtomicFMinEXT:
1145 case SPIRV::OpAtomicFMaxEXT:
1146 AddAtomicFloatRequirements(MI, Reqs, ST);
1147 break;
1148 case SPIRV::OpConvertBF16ToFINTEL:
1149 case SPIRV::OpConvertFToBF16INTEL:
1150 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion)) {
1151 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion);
1152 Reqs.addCapability(SPIRV::Capability::BFloat16ConversionINTEL);
1153 }
1154 break;
1155 case SPIRV::OpVariableLengthArrayINTEL:
1156 case SPIRV::OpSaveMemoryINTEL:
1157 case SPIRV::OpRestoreMemoryINTEL:
1158 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array)) {
1159 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_variable_length_array);
1160 Reqs.addCapability(SPIRV::Capability::VariableLengthArrayINTEL);
1161 }
1162 break;
1163 case SPIRV::OpAsmTargetINTEL:
1164 case SPIRV::OpAsmINTEL:
1165 case SPIRV::OpAsmCallINTEL:
1166 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_inline_assembly)) {
1167 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_inline_assembly);
1168 Reqs.addCapability(SPIRV::Capability::AsmINTEL);
1169 }
1170 break;
1171 case SPIRV::OpTypeCooperativeMatrixKHR:
1172 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix))
1173 report_fatal_error(
1174 "OpTypeCooperativeMatrixKHR type requires the "
1175 "following SPIR-V extension: SPV_KHR_cooperative_matrix",
1176 false);
1177 Reqs.addExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix);
1178 Reqs.addCapability(SPIRV::Capability::CooperativeMatrixKHR);
1179 break;
1180 default:
1181 break;
1182 }
1183
1184 // If we require capability Shader, then we can remove the requirement for
1185 // the BitInstructions capability, since Shader is a superset capability
1186 // of BitInstructions.
1187 Reqs.removeCapabilityIf(SPIRV::Capability::BitInstructions,
1188 SPIRV::Capability::Shader);
1189 }
1190
collectReqs(const Module & M,SPIRV::ModuleAnalysisInfo & MAI,MachineModuleInfo * MMI,const SPIRVSubtarget & ST)1191 static void collectReqs(const Module &M, SPIRV::ModuleAnalysisInfo &MAI,
1192 MachineModuleInfo *MMI, const SPIRVSubtarget &ST) {
1193 // Collect requirements for existing instructions.
1194 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
1195 MachineFunction *MF = MMI->getMachineFunction(*F);
1196 if (!MF)
1197 continue;
1198 for (const MachineBasicBlock &MBB : *MF)
1199 for (const MachineInstr &MI : MBB)
1200 addInstrRequirements(MI, MAI.Reqs, ST);
1201 }
1202 // Collect requirements for OpExecutionMode instructions.
1203 auto Node = M.getNamedMetadata("spirv.ExecutionMode");
1204 if (Node) {
1205 // SPV_KHR_float_controls is not available until v1.4
1206 bool RequireFloatControls = false,
1207 VerLower14 = !ST.isAtLeastSPIRVVer(VersionTuple(1, 4));
1208 for (unsigned i = 0; i < Node->getNumOperands(); i++) {
1209 MDNode *MDN = cast<MDNode>(Node->getOperand(i));
1210 const MDOperand &MDOp = MDN->getOperand(1);
1211 if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) {
1212 Constant *C = CMeta->getValue();
1213 if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) {
1214 auto EM = Const->getZExtValue();
1215 MAI.Reqs.getAndAddRequirements(
1216 SPIRV::OperandCategory::ExecutionModeOperand, EM, ST);
1217 // add SPV_KHR_float_controls if the version is too low
1218 switch (EM) {
1219 case SPIRV::ExecutionMode::DenormPreserve:
1220 case SPIRV::ExecutionMode::DenormFlushToZero:
1221 case SPIRV::ExecutionMode::SignedZeroInfNanPreserve:
1222 case SPIRV::ExecutionMode::RoundingModeRTE:
1223 case SPIRV::ExecutionMode::RoundingModeRTZ:
1224 RequireFloatControls = VerLower14;
1225 break;
1226 }
1227 }
1228 }
1229 }
1230 if (RequireFloatControls &&
1231 ST.canUseExtension(SPIRV::Extension::SPV_KHR_float_controls))
1232 MAI.Reqs.addExtension(SPIRV::Extension::SPV_KHR_float_controls);
1233 }
1234 for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) {
1235 const Function &F = *FI;
1236 if (F.isDeclaration())
1237 continue;
1238 if (F.getMetadata("reqd_work_group_size"))
1239 MAI.Reqs.getAndAddRequirements(
1240 SPIRV::OperandCategory::ExecutionModeOperand,
1241 SPIRV::ExecutionMode::LocalSize, ST);
1242 if (F.getFnAttribute("hlsl.numthreads").isValid()) {
1243 MAI.Reqs.getAndAddRequirements(
1244 SPIRV::OperandCategory::ExecutionModeOperand,
1245 SPIRV::ExecutionMode::LocalSize, ST);
1246 }
1247 if (F.getMetadata("work_group_size_hint"))
1248 MAI.Reqs.getAndAddRequirements(
1249 SPIRV::OperandCategory::ExecutionModeOperand,
1250 SPIRV::ExecutionMode::LocalSizeHint, ST);
1251 if (F.getMetadata("intel_reqd_sub_group_size"))
1252 MAI.Reqs.getAndAddRequirements(
1253 SPIRV::OperandCategory::ExecutionModeOperand,
1254 SPIRV::ExecutionMode::SubgroupSize, ST);
1255 if (F.getMetadata("vec_type_hint"))
1256 MAI.Reqs.getAndAddRequirements(
1257 SPIRV::OperandCategory::ExecutionModeOperand,
1258 SPIRV::ExecutionMode::VecTypeHint, ST);
1259
1260 if (F.hasOptNone() &&
1261 ST.canUseExtension(SPIRV::Extension::SPV_INTEL_optnone)) {
1262 // Output OpCapability OptNoneINTEL.
1263 MAI.Reqs.addExtension(SPIRV::Extension::SPV_INTEL_optnone);
1264 MAI.Reqs.addCapability(SPIRV::Capability::OptNoneINTEL);
1265 }
1266 }
1267 }
1268
getFastMathFlags(const MachineInstr & I)1269 static unsigned getFastMathFlags(const MachineInstr &I) {
1270 unsigned Flags = SPIRV::FPFastMathMode::None;
1271 if (I.getFlag(MachineInstr::MIFlag::FmNoNans))
1272 Flags |= SPIRV::FPFastMathMode::NotNaN;
1273 if (I.getFlag(MachineInstr::MIFlag::FmNoInfs))
1274 Flags |= SPIRV::FPFastMathMode::NotInf;
1275 if (I.getFlag(MachineInstr::MIFlag::FmNsz))
1276 Flags |= SPIRV::FPFastMathMode::NSZ;
1277 if (I.getFlag(MachineInstr::MIFlag::FmArcp))
1278 Flags |= SPIRV::FPFastMathMode::AllowRecip;
1279 if (I.getFlag(MachineInstr::MIFlag::FmReassoc))
1280 Flags |= SPIRV::FPFastMathMode::Fast;
1281 return Flags;
1282 }
1283
handleMIFlagDecoration(MachineInstr & I,const SPIRVSubtarget & ST,const SPIRVInstrInfo & TII,SPIRV::RequirementHandler & Reqs)1284 static void handleMIFlagDecoration(MachineInstr &I, const SPIRVSubtarget &ST,
1285 const SPIRVInstrInfo &TII,
1286 SPIRV::RequirementHandler &Reqs) {
1287 if (I.getFlag(MachineInstr::MIFlag::NoSWrap) && TII.canUseNSW(I) &&
1288 getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
1289 SPIRV::Decoration::NoSignedWrap, ST, Reqs)
1290 .IsSatisfiable) {
1291 buildOpDecorate(I.getOperand(0).getReg(), I, TII,
1292 SPIRV::Decoration::NoSignedWrap, {});
1293 }
1294 if (I.getFlag(MachineInstr::MIFlag::NoUWrap) && TII.canUseNUW(I) &&
1295 getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
1296 SPIRV::Decoration::NoUnsignedWrap, ST,
1297 Reqs)
1298 .IsSatisfiable) {
1299 buildOpDecorate(I.getOperand(0).getReg(), I, TII,
1300 SPIRV::Decoration::NoUnsignedWrap, {});
1301 }
1302 if (!TII.canUseFastMathFlags(I))
1303 return;
1304 unsigned FMFlags = getFastMathFlags(I);
1305 if (FMFlags == SPIRV::FPFastMathMode::None)
1306 return;
1307 Register DstReg = I.getOperand(0).getReg();
1308 buildOpDecorate(DstReg, I, TII, SPIRV::Decoration::FPFastMathMode, {FMFlags});
1309 }
1310
1311 // Walk all functions and add decorations related to MI flags.
addDecorations(const Module & M,const SPIRVInstrInfo & TII,MachineModuleInfo * MMI,const SPIRVSubtarget & ST,SPIRV::ModuleAnalysisInfo & MAI)1312 static void addDecorations(const Module &M, const SPIRVInstrInfo &TII,
1313 MachineModuleInfo *MMI, const SPIRVSubtarget &ST,
1314 SPIRV::ModuleAnalysisInfo &MAI) {
1315 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
1316 MachineFunction *MF = MMI->getMachineFunction(*F);
1317 if (!MF)
1318 continue;
1319 for (auto &MBB : *MF)
1320 for (auto &MI : MBB)
1321 handleMIFlagDecoration(MI, ST, TII, MAI.Reqs);
1322 }
1323 }
1324
1325 struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI;
1326
getAnalysisUsage(AnalysisUsage & AU) const1327 void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1328 AU.addRequired<TargetPassConfig>();
1329 AU.addRequired<MachineModuleInfoWrapperPass>();
1330 }
1331
runOnModule(Module & M)1332 bool SPIRVModuleAnalysis::runOnModule(Module &M) {
1333 SPIRVTargetMachine &TM =
1334 getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>();
1335 ST = TM.getSubtargetImpl();
1336 GR = ST->getSPIRVGlobalRegistry();
1337 TII = ST->getInstrInfo();
1338
1339 MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1340
1341 setBaseInfo(M);
1342
1343 addDecorations(M, *TII, MMI, *ST, MAI);
1344
1345 collectReqs(M, MAI, MMI, *ST);
1346
1347 // Process type/const/global var/func decl instructions, number their
1348 // destination registers from 0 to N, collect Extensions and Capabilities.
1349 processDefInstrs(M);
1350
1351 // Number rest of registers from N+1 onwards.
1352 numberRegistersGlobally(M);
1353
1354 // Update references to OpFunction instructions to use Global Registers
1355 if (GR->hasConstFunPtr())
1356 collectFuncPtrs();
1357
1358 // Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions.
1359 processOtherInstrs(M);
1360
1361 // If there are no entry points, we need the Linkage capability.
1362 if (MAI.MS[SPIRV::MB_EntryPoints].empty())
1363 MAI.Reqs.addCapability(SPIRV::Capability::Linkage);
1364
1365 // Set maximum ID used.
1366 GR->setBound(MAI.MaxID);
1367
1368 return false;
1369 }
1370