xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/Metadata.h (revision 62987288060ff68c817b7056815aa9fb8ba8ecd7)
1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for metadata subclasses.
11 /// They represent the different flavors of metadata that live in LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_METADATA_H
16 #define LLVM_IR_METADATA_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/PointerUnion.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/ilist_node.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/CBindingWrapping.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <iterator>
36 #include <memory>
37 #include <string>
38 #include <type_traits>
39 #include <utility>
40 
41 namespace llvm {
42 
43 class Module;
44 class ModuleSlotTracker;
45 class raw_ostream;
46 class DbgVariableRecord;
47 template <typename T> class StringMapEntry;
48 template <typename ValueTy> class StringMapEntryStorage;
49 class Type;
50 
51 enum LLVMConstants : uint32_t {
52   DEBUG_METADATA_VERSION = 3 // Current debug info version number.
53 };
54 
55 /// Magic number in the value profile metadata showing a target has been
56 /// promoted for the instruction and shouldn't be promoted again.
57 const uint64_t NOMORE_ICP_MAGICNUM = -1;
58 
59 /// Root of the metadata hierarchy.
60 ///
61 /// This is a root class for typeless data in the IR.
62 class Metadata {
63   friend class ReplaceableMetadataImpl;
64 
65   /// RTTI.
66   const unsigned char SubclassID;
67 
68 protected:
69   /// Active type of storage.
70   enum StorageType { Uniqued, Distinct, Temporary };
71 
72   /// Storage flag for non-uniqued, otherwise unowned, metadata.
73   unsigned char Storage : 7;
74 
75   unsigned char SubclassData1 : 1;
76   unsigned short SubclassData16 = 0;
77   unsigned SubclassData32 = 0;
78 
79 public:
80   enum MetadataKind {
81 #define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
82 #include "llvm/IR/Metadata.def"
83   };
84 
85 protected:
Metadata(unsigned ID,StorageType Storage)86   Metadata(unsigned ID, StorageType Storage)
87       : SubclassID(ID), Storage(Storage), SubclassData1(false) {
88     static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
89   }
90 
91   ~Metadata() = default;
92 
93   /// Default handling of a changed operand, which asserts.
94   ///
95   /// If subclasses pass themselves in as owners to a tracking node reference,
96   /// they must provide an implementation of this method.
handleChangedOperand(void *,Metadata *)97   void handleChangedOperand(void *, Metadata *) {
98     llvm_unreachable("Unimplemented in Metadata subclass");
99   }
100 
101 public:
getMetadataID()102   unsigned getMetadataID() const { return SubclassID; }
103 
104   /// User-friendly dump.
105   ///
106   /// If \c M is provided, metadata nodes will be numbered canonically;
107   /// otherwise, pointer addresses are substituted.
108   ///
109   /// Note: this uses an explicit overload instead of default arguments so that
110   /// the nullptr version is easy to call from a debugger.
111   ///
112   /// @{
113   void dump() const;
114   void dump(const Module *M) const;
115   /// @}
116 
117   /// Print.
118   ///
119   /// Prints definition of \c this.
120   ///
121   /// If \c M is provided, metadata nodes will be numbered canonically;
122   /// otherwise, pointer addresses are substituted.
123   /// @{
124   void print(raw_ostream &OS, const Module *M = nullptr,
125              bool IsForDebug = false) const;
126   void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
127              bool IsForDebug = false) const;
128   /// @}
129 
130   /// Print as operand.
131   ///
132   /// Prints reference of \c this.
133   ///
134   /// If \c M is provided, metadata nodes will be numbered canonically;
135   /// otherwise, pointer addresses are substituted.
136   /// @{
137   void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
138   void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
139                       const Module *M = nullptr) const;
140   /// @}
141 };
142 
143 // Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata,LLVMMetadataRef)144 DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
145 
146 // Specialized opaque metadata conversions.
147 inline Metadata **unwrap(LLVMMetadataRef *MDs) {
148   return reinterpret_cast<Metadata**>(MDs);
149 }
150 
151 #define HANDLE_METADATA(CLASS) class CLASS;
152 #include "llvm/IR/Metadata.def"
153 
154 // Provide specializations of isa so that we don't need definitions of
155 // subclasses to see if the metadata is a subclass.
156 #define HANDLE_METADATA_LEAF(CLASS)                                            \
157   template <> struct isa_impl<CLASS, Metadata> {                               \
158     static inline bool doit(const Metadata &MD) {                              \
159       return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
160     }                                                                          \
161   };
162 #include "llvm/IR/Metadata.def"
163 
164 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
165   MD.print(OS);
166   return OS;
167 }
168 
169 /// Metadata wrapper in the Value hierarchy.
170 ///
171 /// A member of the \a Value hierarchy to represent a reference to metadata.
172 /// This allows, e.g., intrinsics to have metadata as operands.
173 ///
174 /// Notably, this is the only thing in either hierarchy that is allowed to
175 /// reference \a LocalAsMetadata.
176 class MetadataAsValue : public Value {
177   friend class ReplaceableMetadataImpl;
178   friend class LLVMContextImpl;
179 
180   Metadata *MD;
181 
182   MetadataAsValue(Type *Ty, Metadata *MD);
183 
184   /// Drop use of metadata (during teardown).
dropUse()185   void dropUse() { MD = nullptr; }
186 
187 public:
188   ~MetadataAsValue();
189 
190   static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
191   static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
192 
getMetadata()193   Metadata *getMetadata() const { return MD; }
194 
classof(const Value * V)195   static bool classof(const Value *V) {
196     return V->getValueID() == MetadataAsValueVal;
197   }
198 
199 private:
200   void handleChangedMetadata(Metadata *MD);
201   void track();
202   void untrack();
203 };
204 
205 /// Base class for tracking ValueAsMetadata/DIArgLists with user lookups and
206 /// Owner callbacks outside of ValueAsMetadata.
207 ///
208 /// Currently only inherited by DbgVariableRecord; if other classes need to use
209 /// it, then a SubclassID will need to be added (either as a new field or by
210 /// making DebugValue into a PointerIntUnion) to discriminate between the
211 /// subclasses in lookup and callback handling.
212 class DebugValueUser {
213 protected:
214   // Capacity to store 3 debug values.
215   // TODO: Not all DebugValueUser instances need all 3 elements, if we
216   // restructure the DbgVariableRecord class then we can template parameterize
217   // this array size.
218   std::array<Metadata *, 3> DebugValues;
219 
getDebugValues()220   ArrayRef<Metadata *> getDebugValues() const { return DebugValues; }
221 
222 public:
223   DbgVariableRecord *getUser();
224   const DbgVariableRecord *getUser() const;
225   /// To be called by ReplaceableMetadataImpl::replaceAllUsesWith, where `Old`
226   /// is a pointer to one of the pointers in `DebugValues` (so should be type
227   /// Metadata**), and `NewDebugValue` is the new Metadata* that is replacing
228   /// *Old.
229   /// For manually replacing elements of DebugValues,
230   /// `resetDebugValue(Idx, NewDebugValue)` should be used instead.
231   void handleChangedValue(void *Old, Metadata *NewDebugValue);
232   DebugValueUser() = default;
DebugValueUser(std::array<Metadata *,3> DebugValues)233   explicit DebugValueUser(std::array<Metadata *, 3> DebugValues)
234       : DebugValues(DebugValues) {
235     trackDebugValues();
236   }
DebugValueUser(DebugValueUser && X)237   DebugValueUser(DebugValueUser &&X) {
238     DebugValues = X.DebugValues;
239     retrackDebugValues(X);
240   }
DebugValueUser(const DebugValueUser & X)241   DebugValueUser(const DebugValueUser &X) {
242     DebugValues = X.DebugValues;
243     trackDebugValues();
244   }
245 
246   DebugValueUser &operator=(DebugValueUser &&X) {
247     if (&X == this)
248       return *this;
249 
250     untrackDebugValues();
251     DebugValues = X.DebugValues;
252     retrackDebugValues(X);
253     return *this;
254   }
255 
256   DebugValueUser &operator=(const DebugValueUser &X) {
257     if (&X == this)
258       return *this;
259 
260     untrackDebugValues();
261     DebugValues = X.DebugValues;
262     trackDebugValues();
263     return *this;
264   }
265 
~DebugValueUser()266   ~DebugValueUser() { untrackDebugValues(); }
267 
resetDebugValues()268   void resetDebugValues() {
269     untrackDebugValues();
270     DebugValues.fill(nullptr);
271   }
272 
resetDebugValue(size_t Idx,Metadata * DebugValue)273   void resetDebugValue(size_t Idx, Metadata *DebugValue) {
274     assert(Idx < 3 && "Invalid debug value index.");
275     untrackDebugValue(Idx);
276     DebugValues[Idx] = DebugValue;
277     trackDebugValue(Idx);
278   }
279 
280   bool operator==(const DebugValueUser &X) const {
281     return DebugValues == X.DebugValues;
282   }
283   bool operator!=(const DebugValueUser &X) const {
284     return DebugValues != X.DebugValues;
285   }
286 
287 private:
288   void trackDebugValue(size_t Idx);
289   void trackDebugValues();
290 
291   void untrackDebugValue(size_t Idx);
292   void untrackDebugValues();
293 
294   void retrackDebugValues(DebugValueUser &X);
295 };
296 
297 /// API for tracking metadata references through RAUW and deletion.
298 ///
299 /// Shared API for updating \a Metadata pointers in subclasses that support
300 /// RAUW.
301 ///
302 /// This API is not meant to be used directly.  See \a TrackingMDRef for a
303 /// user-friendly tracking reference.
304 class MetadataTracking {
305 public:
306   /// Track the reference to metadata.
307   ///
308   /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
309   /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
310   /// deleted, \c MD will be set to \c nullptr.
311   ///
312   /// If tracking isn't supported, \c *MD will not change.
313   ///
314   /// \return true iff tracking is supported by \c MD.
track(Metadata * & MD)315   static bool track(Metadata *&MD) {
316     return track(&MD, *MD, static_cast<Metadata *>(nullptr));
317   }
318 
319   /// Track the reference to metadata for \a Metadata.
320   ///
321   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
322   /// tell it that its operand changed.  This could trigger \c Owner being
323   /// re-uniqued.
track(void * Ref,Metadata & MD,Metadata & Owner)324   static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
325     return track(Ref, MD, &Owner);
326   }
327 
328   /// Track the reference to metadata for \a MetadataAsValue.
329   ///
330   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
331   /// tell it that its operand changed.  This could trigger \c Owner being
332   /// re-uniqued.
track(void * Ref,Metadata & MD,MetadataAsValue & Owner)333   static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
334     return track(Ref, MD, &Owner);
335   }
336 
337   /// Track the reference to metadata for \a DebugValueUser.
338   ///
339   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
340   /// tell it that its operand changed.  This could trigger \c Owner being
341   /// re-uniqued.
track(void * Ref,Metadata & MD,DebugValueUser & Owner)342   static bool track(void *Ref, Metadata &MD, DebugValueUser &Owner) {
343     return track(Ref, MD, &Owner);
344   }
345 
346   /// Stop tracking a reference to metadata.
347   ///
348   /// Stops \c *MD from tracking \c MD.
untrack(Metadata * & MD)349   static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
350   static void untrack(void *Ref, Metadata &MD);
351 
352   /// Move tracking from one reference to another.
353   ///
354   /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
355   /// except that ownership callbacks are maintained.
356   ///
357   /// Note: it is an error if \c *MD does not equal \c New.
358   ///
359   /// \return true iff tracking is supported by \c MD.
retrack(Metadata * & MD,Metadata * & New)360   static bool retrack(Metadata *&MD, Metadata *&New) {
361     return retrack(&MD, *MD, &New);
362   }
363   static bool retrack(void *Ref, Metadata &MD, void *New);
364 
365   /// Check whether metadata is replaceable.
366   static bool isReplaceable(const Metadata &MD);
367 
368   using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *, DebugValueUser *>;
369 
370 private:
371   /// Track a reference to metadata for an owner.
372   ///
373   /// Generalized version of tracking.
374   static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
375 };
376 
377 /// Shared implementation of use-lists for replaceable metadata.
378 ///
379 /// Most metadata cannot be RAUW'ed.  This is a shared implementation of
380 /// use-lists and associated API for the three that support it (
381 /// \a ValueAsMetadata, \a TempMDNode, and \a DIArgList).
382 class ReplaceableMetadataImpl {
383   friend class MetadataTracking;
384 
385 public:
386   using OwnerTy = MetadataTracking::OwnerTy;
387 
388 private:
389   LLVMContext &Context;
390   uint64_t NextIndex = 0;
391   SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
392 
393 public:
ReplaceableMetadataImpl(LLVMContext & Context)394   ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
395 
~ReplaceableMetadataImpl()396   ~ReplaceableMetadataImpl() {
397     assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
398   }
399 
getContext()400   LLVMContext &getContext() const { return Context; }
401 
402   /// Replace all uses of this with MD.
403   ///
404   /// Replace all uses of this with \c MD, which is allowed to be null.
405   void replaceAllUsesWith(Metadata *MD);
406    /// Replace all uses of the constant with Undef in debug info metadata
407   static void SalvageDebugInfo(const Constant &C);
408   /// Returns the list of all DIArgList users of this.
409   SmallVector<Metadata *> getAllArgListUsers();
410   /// Returns the list of all DbgVariableRecord users of this.
411   SmallVector<DbgVariableRecord *> getAllDbgVariableRecordUsers();
412 
413   /// Resolve all uses of this.
414   ///
415   /// Resolve all uses of this, turning off RAUW permanently.  If \c
416   /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
417   /// is resolved.
418   void resolveAllUses(bool ResolveUsers = true);
419 
getNumUses()420   unsigned getNumUses() const { return UseMap.size(); }
421 
422 private:
423   void addRef(void *Ref, OwnerTy Owner);
424   void dropRef(void *Ref);
425   void moveRef(void *Ref, void *New, const Metadata &MD);
426 
427   /// Lazily construct RAUW support on MD.
428   ///
429   /// If this is an unresolved MDNode, RAUW support will be created on-demand.
430   /// ValueAsMetadata always has RAUW support.
431   static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
432 
433   /// Get RAUW support on MD, if it exists.
434   static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
435 
436   /// Check whether this node will support RAUW.
437   ///
438   /// Returns \c true unless getOrCreate() would return null.
439   static bool isReplaceable(const Metadata &MD);
440 };
441 
442 /// Value wrapper in the Metadata hierarchy.
443 ///
444 /// This is a custom value handle that allows other metadata to refer to
445 /// classes in the Value hierarchy.
446 ///
447 /// Because of full uniquing support, each value is only wrapped by a single \a
448 /// ValueAsMetadata object, so the lookup maps are far more efficient than
449 /// those using ValueHandleBase.
450 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
451   friend class ReplaceableMetadataImpl;
452   friend class LLVMContextImpl;
453 
454   Value *V;
455 
456   /// Drop users without RAUW (during teardown).
dropUsers()457   void dropUsers() {
458     ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
459   }
460 
461 protected:
ValueAsMetadata(unsigned ID,Value * V)462   ValueAsMetadata(unsigned ID, Value *V)
463       : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
464     assert(V && "Expected valid value");
465   }
466 
467   ~ValueAsMetadata() = default;
468 
469 public:
470   static ValueAsMetadata *get(Value *V);
471 
getConstant(Value * C)472   static ConstantAsMetadata *getConstant(Value *C) {
473     return cast<ConstantAsMetadata>(get(C));
474   }
475 
getLocal(Value * Local)476   static LocalAsMetadata *getLocal(Value *Local) {
477     return cast<LocalAsMetadata>(get(Local));
478   }
479 
480   static ValueAsMetadata *getIfExists(Value *V);
481 
getConstantIfExists(Value * C)482   static ConstantAsMetadata *getConstantIfExists(Value *C) {
483     return cast_or_null<ConstantAsMetadata>(getIfExists(C));
484   }
485 
getLocalIfExists(Value * Local)486   static LocalAsMetadata *getLocalIfExists(Value *Local) {
487     return cast_or_null<LocalAsMetadata>(getIfExists(Local));
488   }
489 
getValue()490   Value *getValue() const { return V; }
getType()491   Type *getType() const { return V->getType(); }
getContext()492   LLVMContext &getContext() const { return V->getContext(); }
493 
getAllArgListUsers()494   SmallVector<Metadata *> getAllArgListUsers() {
495     return ReplaceableMetadataImpl::getAllArgListUsers();
496   }
getAllDbgVariableRecordUsers()497   SmallVector<DbgVariableRecord *> getAllDbgVariableRecordUsers() {
498     return ReplaceableMetadataImpl::getAllDbgVariableRecordUsers();
499   }
500 
501   static void handleDeletion(Value *V);
502   static void handleRAUW(Value *From, Value *To);
503 
504 protected:
505   /// Handle collisions after \a Value::replaceAllUsesWith().
506   ///
507   /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
508   /// \a Value gets RAUW'ed and the target already exists, this is used to
509   /// merge the two metadata nodes.
replaceAllUsesWith(Metadata * MD)510   void replaceAllUsesWith(Metadata *MD) {
511     ReplaceableMetadataImpl::replaceAllUsesWith(MD);
512   }
513 
514 public:
classof(const Metadata * MD)515   static bool classof(const Metadata *MD) {
516     return MD->getMetadataID() == LocalAsMetadataKind ||
517            MD->getMetadataID() == ConstantAsMetadataKind;
518   }
519 };
520 
521 class ConstantAsMetadata : public ValueAsMetadata {
522   friend class ValueAsMetadata;
523 
ConstantAsMetadata(Constant * C)524   ConstantAsMetadata(Constant *C)
525       : ValueAsMetadata(ConstantAsMetadataKind, C) {}
526 
527 public:
get(Constant * C)528   static ConstantAsMetadata *get(Constant *C) {
529     return ValueAsMetadata::getConstant(C);
530   }
531 
getIfExists(Constant * C)532   static ConstantAsMetadata *getIfExists(Constant *C) {
533     return ValueAsMetadata::getConstantIfExists(C);
534   }
535 
getValue()536   Constant *getValue() const {
537     return cast<Constant>(ValueAsMetadata::getValue());
538   }
539 
classof(const Metadata * MD)540   static bool classof(const Metadata *MD) {
541     return MD->getMetadataID() == ConstantAsMetadataKind;
542   }
543 };
544 
545 class LocalAsMetadata : public ValueAsMetadata {
546   friend class ValueAsMetadata;
547 
LocalAsMetadata(Value * Local)548   LocalAsMetadata(Value *Local)
549       : ValueAsMetadata(LocalAsMetadataKind, Local) {
550     assert(!isa<Constant>(Local) && "Expected local value");
551   }
552 
553 public:
get(Value * Local)554   static LocalAsMetadata *get(Value *Local) {
555     return ValueAsMetadata::getLocal(Local);
556   }
557 
getIfExists(Value * Local)558   static LocalAsMetadata *getIfExists(Value *Local) {
559     return ValueAsMetadata::getLocalIfExists(Local);
560   }
561 
classof(const Metadata * MD)562   static bool classof(const Metadata *MD) {
563     return MD->getMetadataID() == LocalAsMetadataKind;
564   }
565 };
566 
567 /// Transitional API for extracting constants from Metadata.
568 ///
569 /// This namespace contains transitional functions for metadata that points to
570 /// \a Constants.
571 ///
572 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
573 /// operands could refer to any \a Value.  There's was a lot of code like this:
574 ///
575 /// \code
576 ///     MDNode *N = ...;
577 ///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
578 /// \endcode
579 ///
580 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
581 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
582 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
583 /// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
584 /// requires subtle control flow changes.
585 ///
586 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
587 /// so that metadata can refer to numbers without traversing a bridge to the \a
588 /// Value hierarchy.  In this final state, the code above would look like this:
589 ///
590 /// \code
591 ///     MDNode *N = ...;
592 ///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
593 /// \endcode
594 ///
595 /// The API in this namespace supports the transition.  \a MDInt doesn't exist
596 /// yet, and even once it does, changing each metadata schema to use it is its
597 /// own mini-project.  In the meantime this API prevents us from introducing
598 /// complex and bug-prone control flow that will disappear in the end.  In
599 /// particular, the above code looks like this:
600 ///
601 /// \code
602 ///     MDNode *N = ...;
603 ///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
604 /// \endcode
605 ///
606 /// The full set of provided functions includes:
607 ///
608 ///   mdconst::hasa                <=> isa
609 ///   mdconst::extract             <=> cast
610 ///   mdconst::extract_or_null     <=> cast_or_null
611 ///   mdconst::dyn_extract         <=> dyn_cast
612 ///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
613 ///
614 /// The target of the cast must be a subclass of \a Constant.
615 namespace mdconst {
616 
617 namespace detail {
618 
619 template <class T> T &make();
620 template <class T, class Result> struct HasDereference {
621   using Yes = char[1];
622   using No = char[2];
623   template <size_t N> struct SFINAE {};
624 
625   template <class U, class V>
626   static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
627   template <class U, class V> static No &hasDereference(...);
628 
629   static const bool value =
630       sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
631 };
632 template <class V, class M> struct IsValidPointer {
633   static const bool value = std::is_base_of<Constant, V>::value &&
634                             HasDereference<M, const Metadata &>::value;
635 };
636 template <class V, class M> struct IsValidReference {
637   static const bool value = std::is_base_of<Constant, V>::value &&
638                             std::is_convertible<M, const Metadata &>::value;
639 };
640 
641 } // end namespace detail
642 
643 /// Check whether Metadata has a Value.
644 ///
645 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
646 /// type \c X.
647 template <class X, class Y>
648 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
hasa(Y && MD)649 hasa(Y &&MD) {
650   assert(MD && "Null pointer sent into hasa");
651   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
652     return isa<X>(V->getValue());
653   return false;
654 }
655 template <class X, class Y>
656 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
hasa(Y & MD)657 hasa(Y &MD) {
658   return hasa(&MD);
659 }
660 
661 /// Extract a Value from Metadata.
662 ///
663 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
664 template <class X, class Y>
665 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
extract(Y && MD)666 extract(Y &&MD) {
667   return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
668 }
669 template <class X, class Y>
670 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
extract(Y & MD)671 extract(Y &MD) {
672   return extract(&MD);
673 }
674 
675 /// Extract a Value from Metadata, allowing null.
676 ///
677 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
678 /// from \c MD, allowing \c MD to be null.
679 template <class X, class Y>
680 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
extract_or_null(Y && MD)681 extract_or_null(Y &&MD) {
682   if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
683     return cast<X>(V->getValue());
684   return nullptr;
685 }
686 
687 /// Extract a Value from Metadata, if any.
688 ///
689 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
690 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
691 /// Value it does contain is of the wrong subclass.
692 template <class X, class Y>
693 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
dyn_extract(Y && MD)694 dyn_extract(Y &&MD) {
695   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
696     return dyn_cast<X>(V->getValue());
697   return nullptr;
698 }
699 
700 /// Extract a Value from Metadata, if any, allowing null.
701 ///
702 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
703 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
704 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
705 template <class X, class Y>
706 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
dyn_extract_or_null(Y && MD)707 dyn_extract_or_null(Y &&MD) {
708   if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
709     return dyn_cast<X>(V->getValue());
710   return nullptr;
711 }
712 
713 } // end namespace mdconst
714 
715 //===----------------------------------------------------------------------===//
716 /// A single uniqued string.
717 ///
718 /// These are used to efficiently contain a byte sequence for metadata.
719 /// MDString is always unnamed.
720 class MDString : public Metadata {
721   friend class StringMapEntryStorage<MDString>;
722 
723   StringMapEntry<MDString> *Entry = nullptr;
724 
MDString()725   MDString() : Metadata(MDStringKind, Uniqued) {}
726 
727 public:
728   MDString(const MDString &) = delete;
729   MDString &operator=(MDString &&) = delete;
730   MDString &operator=(const MDString &) = delete;
731 
732   static MDString *get(LLVMContext &Context, StringRef Str);
get(LLVMContext & Context,const char * Str)733   static MDString *get(LLVMContext &Context, const char *Str) {
734     return get(Context, Str ? StringRef(Str) : StringRef());
735   }
736 
737   StringRef getString() const;
738 
getLength()739   unsigned getLength() const { return (unsigned)getString().size(); }
740 
741   using iterator = StringRef::iterator;
742 
743   /// Pointer to the first byte of the string.
begin()744   iterator begin() const { return getString().begin(); }
745 
746   /// Pointer to one byte past the end of the string.
end()747   iterator end() const { return getString().end(); }
748 
bytes_begin()749   const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
bytes_end()750   const unsigned char *bytes_end() const { return getString().bytes_end(); }
751 
752   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Metadata * MD)753   static bool classof(const Metadata *MD) {
754     return MD->getMetadataID() == MDStringKind;
755   }
756 };
757 
758 /// A collection of metadata nodes that might be associated with a
759 /// memory access used by the alias-analysis infrastructure.
760 struct AAMDNodes {
761   explicit AAMDNodes() = default;
AAMDNodesAAMDNodes762   explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
763       : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
764 
765   bool operator==(const AAMDNodes &A) const {
766     return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
767            NoAlias == A.NoAlias;
768   }
769 
770   bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
771 
772   explicit operator bool() const {
773     return TBAA || TBAAStruct || Scope || NoAlias;
774   }
775 
776   /// The tag for type-based alias analysis.
777   MDNode *TBAA = nullptr;
778 
779   /// The tag for type-based alias analysis (tbaa struct).
780   MDNode *TBAAStruct = nullptr;
781 
782   /// The tag for alias scope specification (used with noalias).
783   MDNode *Scope = nullptr;
784 
785   /// The tag specifying the noalias scope.
786   MDNode *NoAlias = nullptr;
787 
788   // Shift tbaa Metadata node to start off bytes later
789   static MDNode *shiftTBAA(MDNode *M, size_t off);
790 
791   // Shift tbaa.struct Metadata node to start off bytes later
792   static MDNode *shiftTBAAStruct(MDNode *M, size_t off);
793 
794   // Extend tbaa Metadata node to apply to a series of bytes of length len.
795   // A size of -1 denotes an unknown size.
796   static MDNode *extendToTBAA(MDNode *TBAA, ssize_t len);
797 
798   /// Given two sets of AAMDNodes that apply to the same pointer,
799   /// give the best AAMDNodes that are compatible with both (i.e. a set of
800   /// nodes whose allowable aliasing conclusions are a subset of those
801   /// allowable by both of the inputs). However, for efficiency
802   /// reasons, do not create any new MDNodes.
intersectAAMDNodes803   AAMDNodes intersect(const AAMDNodes &Other) const {
804     AAMDNodes Result;
805     Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
806     Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
807     Result.Scope = Other.Scope == Scope ? Scope : nullptr;
808     Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
809     return Result;
810   }
811 
812   /// Create a new AAMDNode that describes this AAMDNode after applying a
813   /// constant offset to the start of the pointer.
shiftAAMDNodes814   AAMDNodes shift(size_t Offset) const {
815     AAMDNodes Result;
816     Result.TBAA = TBAA ? shiftTBAA(TBAA, Offset) : nullptr;
817     Result.TBAAStruct =
818         TBAAStruct ? shiftTBAAStruct(TBAAStruct, Offset) : nullptr;
819     Result.Scope = Scope;
820     Result.NoAlias = NoAlias;
821     return Result;
822   }
823 
824   /// Create a new AAMDNode that describes this AAMDNode after extending it to
825   /// apply to a series of bytes of length Len. A size of -1 denotes an unknown
826   /// size.
extendToAAMDNodes827   AAMDNodes extendTo(ssize_t Len) const {
828     AAMDNodes Result;
829     Result.TBAA = TBAA ? extendToTBAA(TBAA, Len) : nullptr;
830     // tbaa.struct contains (offset, size, type) triples. Extending the length
831     // of the tbaa.struct doesn't require changing this (though more information
832     // could be provided by adding more triples at subsequent lengths).
833     Result.TBAAStruct = TBAAStruct;
834     Result.Scope = Scope;
835     Result.NoAlias = NoAlias;
836     return Result;
837   }
838 
839   /// Given two sets of AAMDNodes applying to potentially different locations,
840   /// determine the best AAMDNodes that apply to both.
841   AAMDNodes merge(const AAMDNodes &Other) const;
842 
843   /// Determine the best AAMDNodes after concatenating two different locations
844   /// together. Different from `merge`, where different locations should
845   /// overlap each other, `concat` puts non-overlapping locations together.
846   AAMDNodes concat(const AAMDNodes &Other) const;
847 
848   /// Create a new AAMDNode for accessing \p AccessSize bytes of this AAMDNode.
849   /// If this AAMDNode has !tbaa.struct and \p AccessSize matches the size of
850   /// the field at offset 0, get the TBAA tag describing the accessed field.
851   /// If such an AAMDNode already embeds !tbaa, the existing one is retrieved.
852   /// Finally, !tbaa.struct is zeroed out.
853   AAMDNodes adjustForAccess(unsigned AccessSize);
854   AAMDNodes adjustForAccess(size_t Offset, Type *AccessTy,
855                             const DataLayout &DL);
856   AAMDNodes adjustForAccess(size_t Offset, unsigned AccessSize);
857 };
858 
859 // Specialize DenseMapInfo for AAMDNodes.
860 template<>
861 struct DenseMapInfo<AAMDNodes> {
862   static inline AAMDNodes getEmptyKey() {
863     return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
864                      nullptr, nullptr, nullptr);
865   }
866 
867   static inline AAMDNodes getTombstoneKey() {
868     return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
869                      nullptr, nullptr, nullptr);
870   }
871 
872   static unsigned getHashValue(const AAMDNodes &Val) {
873     return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
874            DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
875            DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
876            DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
877   }
878 
879   static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
880     return LHS == RHS;
881   }
882 };
883 
884 /// Tracking metadata reference owned by Metadata.
885 ///
886 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
887 /// of \a Metadata, which has the option of registering itself for callbacks to
888 /// re-unique itself.
889 ///
890 /// In particular, this is used by \a MDNode.
891 class MDOperand {
892   Metadata *MD = nullptr;
893 
894 public:
895   MDOperand() = default;
896   MDOperand(const MDOperand &) = delete;
897   MDOperand(MDOperand &&Op) {
898     MD = Op.MD;
899     if (MD)
900       (void)MetadataTracking::retrack(Op.MD, MD);
901     Op.MD = nullptr;
902   }
903   MDOperand &operator=(const MDOperand &) = delete;
904   MDOperand &operator=(MDOperand &&Op) {
905     MD = Op.MD;
906     if (MD)
907       (void)MetadataTracking::retrack(Op.MD, MD);
908     Op.MD = nullptr;
909     return *this;
910   }
911 
912   // Check if MDOperand is of type MDString and equals `Str`.
913   bool equalsStr(StringRef Str) const {
914     return isa<MDString>(this->get()) &&
915            cast<MDString>(this->get())->getString() == Str;
916   }
917 
918   ~MDOperand() { untrack(); }
919 
920   Metadata *get() const { return MD; }
921   operator Metadata *() const { return get(); }
922   Metadata *operator->() const { return get(); }
923   Metadata &operator*() const { return *get(); }
924 
925   void reset() {
926     untrack();
927     MD = nullptr;
928   }
929   void reset(Metadata *MD, Metadata *Owner) {
930     untrack();
931     this->MD = MD;
932     track(Owner);
933   }
934 
935 private:
936   void track(Metadata *Owner) {
937     if (MD) {
938       if (Owner)
939         MetadataTracking::track(this, *MD, *Owner);
940       else
941         MetadataTracking::track(MD);
942     }
943   }
944 
945   void untrack() {
946     assert(static_cast<void *>(this) == &MD && "Expected same address");
947     if (MD)
948       MetadataTracking::untrack(MD);
949   }
950 };
951 
952 template <> struct simplify_type<MDOperand> {
953   using SimpleType = Metadata *;
954 
955   static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
956 };
957 
958 template <> struct simplify_type<const MDOperand> {
959   using SimpleType = Metadata *;
960 
961   static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
962 };
963 
964 /// Pointer to the context, with optional RAUW support.
965 ///
966 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
967 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
968 class ContextAndReplaceableUses {
969   PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
970 
971 public:
972   ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
973   ContextAndReplaceableUses(
974       std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
975       : Ptr(ReplaceableUses.release()) {
976     assert(getReplaceableUses() && "Expected non-null replaceable uses");
977   }
978   ContextAndReplaceableUses() = delete;
979   ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
980   ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
981   ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
982   ContextAndReplaceableUses &
983   operator=(const ContextAndReplaceableUses &) = delete;
984   ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
985 
986   operator LLVMContext &() { return getContext(); }
987 
988   /// Whether this contains RAUW support.
989   bool hasReplaceableUses() const {
990     return isa<ReplaceableMetadataImpl *>(Ptr);
991   }
992 
993   LLVMContext &getContext() const {
994     if (hasReplaceableUses())
995       return getReplaceableUses()->getContext();
996     return *cast<LLVMContext *>(Ptr);
997   }
998 
999   ReplaceableMetadataImpl *getReplaceableUses() const {
1000     if (hasReplaceableUses())
1001       return cast<ReplaceableMetadataImpl *>(Ptr);
1002     return nullptr;
1003   }
1004 
1005   /// Ensure that this has RAUW support, and then return it.
1006   ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
1007     if (!hasReplaceableUses())
1008       makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
1009     return getReplaceableUses();
1010   }
1011 
1012   /// Assign RAUW support to this.
1013   ///
1014   /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
1015   /// not be null).
1016   void
1017   makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
1018     assert(ReplaceableUses && "Expected non-null replaceable uses");
1019     assert(&ReplaceableUses->getContext() == &getContext() &&
1020            "Expected same context");
1021     delete getReplaceableUses();
1022     Ptr = ReplaceableUses.release();
1023   }
1024 
1025   /// Drop RAUW support.
1026   ///
1027   /// Cede ownership of RAUW support, returning it.
1028   std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
1029     assert(hasReplaceableUses() && "Expected to own replaceable uses");
1030     std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
1031         getReplaceableUses());
1032     Ptr = &ReplaceableUses->getContext();
1033     return ReplaceableUses;
1034   }
1035 };
1036 
1037 struct TempMDNodeDeleter {
1038   inline void operator()(MDNode *Node) const;
1039 };
1040 
1041 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1042   using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
1043 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
1044 #include "llvm/IR/Metadata.def"
1045 
1046 /// Metadata node.
1047 ///
1048 /// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
1049 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
1050 /// until forward references are known.  The basic metadata node is an \a
1051 /// MDTuple.
1052 ///
1053 /// There is limited support for RAUW at construction time.  At construction
1054 /// time, if any operand is a temporary node (or an unresolved uniqued node,
1055 /// which indicates a transitive temporary operand), the node itself will be
1056 /// unresolved.  As soon as all operands become resolved, it will drop RAUW
1057 /// support permanently.
1058 ///
1059 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
1060 /// to be called on some member of the cycle once all temporary nodes have been
1061 /// replaced.
1062 ///
1063 /// MDNodes can be large or small, as well as resizable or non-resizable.
1064 /// Large MDNodes' operands are allocated in a separate storage vector,
1065 /// whereas small MDNodes' operands are co-allocated. Distinct and temporary
1066 /// MDnodes are resizable, but only MDTuples support this capability.
1067 ///
1068 /// Clients can add operands to resizable MDNodes using push_back().
1069 class MDNode : public Metadata {
1070   friend class ReplaceableMetadataImpl;
1071   friend class LLVMContextImpl;
1072   friend class DIAssignID;
1073 
1074   /// The header that is coallocated with an MDNode along with its "small"
1075   /// operands. It is located immediately before the main body of the node.
1076   /// The operands are in turn located immediately before the header.
1077   /// For resizable MDNodes, the space for the storage vector is also allocated
1078   /// immediately before the header, overlapping with the operands.
1079   /// Explicity set alignment because bitfields by default have an
1080   /// alignment of 1 on z/OS.
1081   struct alignas(alignof(size_t)) Header {
1082     bool IsResizable : 1;
1083     bool IsLarge : 1;
1084     size_t SmallSize : 4;
1085     size_t SmallNumOps : 4;
1086     size_t : sizeof(size_t) * CHAR_BIT - 10;
1087 
1088     unsigned NumUnresolved = 0;
1089     using LargeStorageVector = SmallVector<MDOperand, 0>;
1090 
1091     static constexpr size_t NumOpsFitInVector =
1092         sizeof(LargeStorageVector) / sizeof(MDOperand);
1093     static_assert(
1094         NumOpsFitInVector * sizeof(MDOperand) == sizeof(LargeStorageVector),
1095         "sizeof(LargeStorageVector) must be a multiple of sizeof(MDOperand)");
1096 
1097     static constexpr size_t MaxSmallSize = 15;
1098 
1099     static constexpr size_t getOpSize(unsigned NumOps) {
1100       return sizeof(MDOperand) * NumOps;
1101     }
1102     /// Returns the number of operands the node has space for based on its
1103     /// allocation characteristics.
1104     static size_t getSmallSize(size_t NumOps, bool IsResizable, bool IsLarge) {
1105       return IsLarge ? NumOpsFitInVector
1106                      : std::max(NumOps, NumOpsFitInVector * IsResizable);
1107     }
1108     /// Returns the number of bytes allocated for operands and header.
1109     static size_t getAllocSize(StorageType Storage, size_t NumOps) {
1110       return getOpSize(
1111                  getSmallSize(NumOps, isResizable(Storage), isLarge(NumOps))) +
1112              sizeof(Header);
1113     }
1114 
1115     /// Only temporary and distinct nodes are resizable.
1116     static bool isResizable(StorageType Storage) { return Storage != Uniqued; }
1117     static bool isLarge(size_t NumOps) { return NumOps > MaxSmallSize; }
1118 
1119     size_t getAllocSize() const {
1120       return getOpSize(SmallSize) + sizeof(Header);
1121     }
1122     void *getAllocation() {
1123       return reinterpret_cast<char *>(this + 1) -
1124              alignTo(getAllocSize(), alignof(uint64_t));
1125     }
1126 
1127     void *getLargePtr() const {
1128       static_assert(alignof(LargeStorageVector) <= alignof(Header),
1129                     "LargeStorageVector too strongly aligned");
1130       return reinterpret_cast<char *>(const_cast<Header *>(this)) -
1131              sizeof(LargeStorageVector);
1132     }
1133 
1134     void *getSmallPtr();
1135 
1136     LargeStorageVector &getLarge() {
1137       assert(IsLarge);
1138       return *reinterpret_cast<LargeStorageVector *>(getLargePtr());
1139     }
1140 
1141     const LargeStorageVector &getLarge() const {
1142       assert(IsLarge);
1143       return *reinterpret_cast<const LargeStorageVector *>(getLargePtr());
1144     }
1145 
1146     void resizeSmall(size_t NumOps);
1147     void resizeSmallToLarge(size_t NumOps);
1148     void resize(size_t NumOps);
1149 
1150     explicit Header(size_t NumOps, StorageType Storage);
1151     ~Header();
1152 
1153     MutableArrayRef<MDOperand> operands() {
1154       if (IsLarge)
1155         return getLarge();
1156       return MutableArrayRef(
1157           reinterpret_cast<MDOperand *>(this) - SmallSize, SmallNumOps);
1158     }
1159 
1160     ArrayRef<MDOperand> operands() const {
1161       if (IsLarge)
1162         return getLarge();
1163       return ArrayRef(reinterpret_cast<const MDOperand *>(this) - SmallSize,
1164                       SmallNumOps);
1165     }
1166 
1167     unsigned getNumOperands() const {
1168       if (!IsLarge)
1169         return SmallNumOps;
1170       return getLarge().size();
1171     }
1172   };
1173 
1174   Header &getHeader() { return *(reinterpret_cast<Header *>(this) - 1); }
1175 
1176   const Header &getHeader() const {
1177     return *(reinterpret_cast<const Header *>(this) - 1);
1178   }
1179 
1180   ContextAndReplaceableUses Context;
1181 
1182 protected:
1183   MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
1184          ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = std::nullopt);
1185   ~MDNode() = default;
1186 
1187   void *operator new(size_t Size, size_t NumOps, StorageType Storage);
1188   void operator delete(void *Mem);
1189 
1190   /// Required by std, but never called.
1191   void operator delete(void *, unsigned) {
1192     llvm_unreachable("Constructor throws?");
1193   }
1194 
1195   /// Required by std, but never called.
1196   void operator delete(void *, unsigned, bool) {
1197     llvm_unreachable("Constructor throws?");
1198   }
1199 
1200   void dropAllReferences();
1201 
1202   MDOperand *mutable_begin() { return getHeader().operands().begin(); }
1203   MDOperand *mutable_end() { return getHeader().operands().end(); }
1204 
1205   using mutable_op_range = iterator_range<MDOperand *>;
1206 
1207   mutable_op_range mutable_operands() {
1208     return mutable_op_range(mutable_begin(), mutable_end());
1209   }
1210 
1211 public:
1212   MDNode(const MDNode &) = delete;
1213   void operator=(const MDNode &) = delete;
1214   void *operator new(size_t) = delete;
1215 
1216   static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
1217   static inline MDTuple *getIfExists(LLVMContext &Context,
1218                                      ArrayRef<Metadata *> MDs);
1219   static inline MDTuple *getDistinct(LLVMContext &Context,
1220                                      ArrayRef<Metadata *> MDs);
1221   static inline TempMDTuple getTemporary(LLVMContext &Context,
1222                                          ArrayRef<Metadata *> MDs);
1223 
1224   /// Create a (temporary) clone of this.
1225   TempMDNode clone() const;
1226 
1227   /// Deallocate a node created by getTemporary.
1228   ///
1229   /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
1230   /// references will be reset.
1231   static void deleteTemporary(MDNode *N);
1232 
1233   LLVMContext &getContext() const { return Context.getContext(); }
1234 
1235   /// Replace a specific operand.
1236   void replaceOperandWith(unsigned I, Metadata *New);
1237 
1238   /// Check if node is fully resolved.
1239   ///
1240   /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
1241   /// this always returns \c true.
1242   ///
1243   /// If \a isUniqued(), returns \c true if this has already dropped RAUW
1244   /// support (because all operands are resolved).
1245   ///
1246   /// As forward declarations are resolved, their containers should get
1247   /// resolved automatically.  However, if this (or one of its operands) is
1248   /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
1249   bool isResolved() const { return !isTemporary() && !getNumUnresolved(); }
1250 
1251   bool isUniqued() const { return Storage == Uniqued; }
1252   bool isDistinct() const { return Storage == Distinct; }
1253   bool isTemporary() const { return Storage == Temporary; }
1254 
1255   bool isReplaceable() const { return isTemporary() || isAlwaysReplaceable(); }
1256   bool isAlwaysReplaceable() const { return getMetadataID() == DIAssignIDKind; }
1257 
1258   unsigned getNumTemporaryUses() const {
1259     assert(isTemporary() && "Only for temporaries");
1260     return Context.getReplaceableUses()->getNumUses();
1261   }
1262 
1263   /// RAUW a temporary.
1264   ///
1265   /// \pre \a isTemporary() must be \c true.
1266   void replaceAllUsesWith(Metadata *MD) {
1267     assert(isReplaceable() && "Expected temporary/replaceable node");
1268     if (Context.hasReplaceableUses())
1269       Context.getReplaceableUses()->replaceAllUsesWith(MD);
1270   }
1271 
1272   /// Resolve cycles.
1273   ///
1274   /// Once all forward declarations have been resolved, force cycles to be
1275   /// resolved.
1276   ///
1277   /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
1278   void resolveCycles();
1279 
1280   /// Resolve a unique, unresolved node.
1281   void resolve();
1282 
1283   /// Replace a temporary node with a permanent one.
1284   ///
1285   /// Try to create a uniqued version of \c N -- in place, if possible -- and
1286   /// return it.  If \c N cannot be uniqued, return a distinct node instead.
1287   template <class T>
1288   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1289   replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
1290     return cast<T>(N.release()->replaceWithPermanentImpl());
1291   }
1292 
1293   /// Replace a temporary node with a uniqued one.
1294   ///
1295   /// Create a uniqued version of \c N -- in place, if possible -- and return
1296   /// it.  Takes ownership of the temporary node.
1297   ///
1298   /// \pre N does not self-reference.
1299   template <class T>
1300   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1301   replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
1302     return cast<T>(N.release()->replaceWithUniquedImpl());
1303   }
1304 
1305   /// Replace a temporary node with a distinct one.
1306   ///
1307   /// Create a distinct version of \c N -- in place, if possible -- and return
1308   /// it.  Takes ownership of the temporary node.
1309   template <class T>
1310   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1311   replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
1312     return cast<T>(N.release()->replaceWithDistinctImpl());
1313   }
1314 
1315   /// Print in tree shape.
1316   ///
1317   /// Prints definition of \c this in tree shape.
1318   ///
1319   /// If \c M is provided, metadata nodes will be numbered canonically;
1320   /// otherwise, pointer addresses are substituted.
1321   /// @{
1322   void printTree(raw_ostream &OS, const Module *M = nullptr) const;
1323   void printTree(raw_ostream &OS, ModuleSlotTracker &MST,
1324                  const Module *M = nullptr) const;
1325   /// @}
1326 
1327   /// User-friendly dump in tree shape.
1328   ///
1329   /// If \c M is provided, metadata nodes will be numbered canonically;
1330   /// otherwise, pointer addresses are substituted.
1331   ///
1332   /// Note: this uses an explicit overload instead of default arguments so that
1333   /// the nullptr version is easy to call from a debugger.
1334   ///
1335   /// @{
1336   void dumpTree() const;
1337   void dumpTree(const Module *M) const;
1338   /// @}
1339 
1340 private:
1341   MDNode *replaceWithPermanentImpl();
1342   MDNode *replaceWithUniquedImpl();
1343   MDNode *replaceWithDistinctImpl();
1344 
1345 protected:
1346   /// Set an operand.
1347   ///
1348   /// Sets the operand directly, without worrying about uniquing.
1349   void setOperand(unsigned I, Metadata *New);
1350 
1351   unsigned getNumUnresolved() const { return getHeader().NumUnresolved; }
1352 
1353   void setNumUnresolved(unsigned N) { getHeader().NumUnresolved = N; }
1354   void storeDistinctInContext();
1355   template <class T, class StoreT>
1356   static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1357   template <class T> static T *storeImpl(T *N, StorageType Storage);
1358 
1359   /// Resize the node to hold \a NumOps operands.
1360   ///
1361   /// \pre \a isTemporary() or \a isDistinct()
1362   /// \pre MetadataID == MDTupleKind
1363   void resize(size_t NumOps) {
1364     assert(!isUniqued() && "Resizing is not supported for uniqued nodes");
1365     assert(getMetadataID() == MDTupleKind &&
1366            "Resizing is not supported for this node kind");
1367     getHeader().resize(NumOps);
1368   }
1369 
1370 private:
1371   void handleChangedOperand(void *Ref, Metadata *New);
1372 
1373   /// Drop RAUW support, if any.
1374   void dropReplaceableUses();
1375 
1376   void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1377   void decrementUnresolvedOperandCount();
1378   void countUnresolvedOperands();
1379 
1380   /// Mutate this to be "uniqued".
1381   ///
1382   /// Mutate this so that \a isUniqued().
1383   /// \pre \a isTemporary().
1384   /// \pre already added to uniquing set.
1385   void makeUniqued();
1386 
1387   /// Mutate this to be "distinct".
1388   ///
1389   /// Mutate this so that \a isDistinct().
1390   /// \pre \a isTemporary().
1391   void makeDistinct();
1392 
1393   void deleteAsSubclass();
1394   MDNode *uniquify();
1395   void eraseFromStore();
1396 
1397   template <class NodeTy> struct HasCachedHash;
1398   template <class NodeTy>
1399   static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1400     N->recalculateHash();
1401   }
1402   template <class NodeTy>
1403   static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1404   template <class NodeTy>
1405   static void dispatchResetHash(NodeTy *N, std::true_type) {
1406     N->setHash(0);
1407   }
1408   template <class NodeTy>
1409   static void dispatchResetHash(NodeTy *, std::false_type) {}
1410 
1411   /// Merge branch weights from two direct callsites.
1412   static MDNode *mergeDirectCallProfMetadata(MDNode *A, MDNode *B,
1413                                              const Instruction *AInstr,
1414                                              const Instruction *BInstr);
1415 
1416 public:
1417   using op_iterator = const MDOperand *;
1418   using op_range = iterator_range<op_iterator>;
1419 
1420   op_iterator op_begin() const {
1421     return const_cast<MDNode *>(this)->mutable_begin();
1422   }
1423 
1424   op_iterator op_end() const {
1425     return const_cast<MDNode *>(this)->mutable_end();
1426   }
1427 
1428   ArrayRef<MDOperand> operands() const { return getHeader().operands(); }
1429 
1430   const MDOperand &getOperand(unsigned I) const {
1431     assert(I < getNumOperands() && "Out of range");
1432     return getHeader().operands()[I];
1433   }
1434 
1435   /// Return number of MDNode operands.
1436   unsigned getNumOperands() const { return getHeader().getNumOperands(); }
1437 
1438   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1439   static bool classof(const Metadata *MD) {
1440     switch (MD->getMetadataID()) {
1441     default:
1442       return false;
1443 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1444   case CLASS##Kind:                                                            \
1445     return true;
1446 #include "llvm/IR/Metadata.def"
1447     }
1448   }
1449 
1450   /// Check whether MDNode is a vtable access.
1451   bool isTBAAVtableAccess() const;
1452 
1453   /// Methods for metadata merging.
1454   static MDNode *concatenate(MDNode *A, MDNode *B);
1455   static MDNode *intersect(MDNode *A, MDNode *B);
1456   static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1457   static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1458   static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1459   static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1460   static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1461   /// Merge !prof metadata from two instructions.
1462   /// Currently only implemented with direct callsites with branch weights.
1463   static MDNode *getMergedProfMetadata(MDNode *A, MDNode *B,
1464                                        const Instruction *AInstr,
1465                                        const Instruction *BInstr);
1466 };
1467 
1468 /// Tuple of metadata.
1469 ///
1470 /// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
1471 /// default based on their operands.
1472 class MDTuple : public MDNode {
1473   friend class LLVMContextImpl;
1474   friend class MDNode;
1475 
1476   MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1477           ArrayRef<Metadata *> Vals)
1478       : MDNode(C, MDTupleKind, Storage, Vals) {
1479     setHash(Hash);
1480   }
1481 
1482   ~MDTuple() { dropAllReferences(); }
1483 
1484   void setHash(unsigned Hash) { SubclassData32 = Hash; }
1485   void recalculateHash();
1486 
1487   static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1488                           StorageType Storage, bool ShouldCreate = true);
1489 
1490   TempMDTuple cloneImpl() const {
1491     ArrayRef<MDOperand> Operands = operands();
1492     return getTemporary(getContext(), SmallVector<Metadata *, 4>(
1493                                           Operands.begin(), Operands.end()));
1494   }
1495 
1496 public:
1497   /// Get the hash, if any.
1498   unsigned getHash() const { return SubclassData32; }
1499 
1500   static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1501     return getImpl(Context, MDs, Uniqued);
1502   }
1503 
1504   static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1505     return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1506   }
1507 
1508   /// Return a distinct node.
1509   ///
1510   /// Return a distinct node -- i.e., a node that is not uniqued.
1511   static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1512     return getImpl(Context, MDs, Distinct);
1513   }
1514 
1515   /// Return a temporary node.
1516   ///
1517   /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1518   /// not uniqued, may be RAUW'd, and must be manually deleted with
1519   /// deleteTemporary.
1520   static TempMDTuple getTemporary(LLVMContext &Context,
1521                                   ArrayRef<Metadata *> MDs) {
1522     return TempMDTuple(getImpl(Context, MDs, Temporary));
1523   }
1524 
1525   /// Return a (temporary) clone of this.
1526   TempMDTuple clone() const { return cloneImpl(); }
1527 
1528   /// Append an element to the tuple. This will resize the node.
1529   void push_back(Metadata *MD) {
1530     size_t NumOps = getNumOperands();
1531     resize(NumOps + 1);
1532     setOperand(NumOps, MD);
1533   }
1534 
1535   /// Shrink the operands by 1.
1536   void pop_back() { resize(getNumOperands() - 1); }
1537 
1538   static bool classof(const Metadata *MD) {
1539     return MD->getMetadataID() == MDTupleKind;
1540   }
1541 };
1542 
1543 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1544   return MDTuple::get(Context, MDs);
1545 }
1546 
1547 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1548   return MDTuple::getIfExists(Context, MDs);
1549 }
1550 
1551 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1552   return MDTuple::getDistinct(Context, MDs);
1553 }
1554 
1555 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1556                                  ArrayRef<Metadata *> MDs) {
1557   return MDTuple::getTemporary(Context, MDs);
1558 }
1559 
1560 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1561   MDNode::deleteTemporary(Node);
1562 }
1563 
1564 /// This is a simple wrapper around an MDNode which provides a higher-level
1565 /// interface by hiding the details of how alias analysis information is encoded
1566 /// in its operands.
1567 class AliasScopeNode {
1568   const MDNode *Node = nullptr;
1569 
1570 public:
1571   AliasScopeNode() = default;
1572   explicit AliasScopeNode(const MDNode *N) : Node(N) {}
1573 
1574   /// Get the MDNode for this AliasScopeNode.
1575   const MDNode *getNode() const { return Node; }
1576 
1577   /// Get the MDNode for this AliasScopeNode's domain.
1578   const MDNode *getDomain() const {
1579     if (Node->getNumOperands() < 2)
1580       return nullptr;
1581     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
1582   }
1583   StringRef getName() const {
1584     if (Node->getNumOperands() > 2)
1585       if (MDString *N = dyn_cast_or_null<MDString>(Node->getOperand(2)))
1586         return N->getString();
1587     return StringRef();
1588   }
1589 };
1590 
1591 /// Typed iterator through MDNode operands.
1592 ///
1593 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1594 /// particular Metadata subclass.
1595 template <class T> class TypedMDOperandIterator {
1596   MDNode::op_iterator I = nullptr;
1597 
1598 public:
1599   using iterator_category = std::input_iterator_tag;
1600   using value_type = T *;
1601   using difference_type = std::ptrdiff_t;
1602   using pointer = void;
1603   using reference = T *;
1604 
1605   TypedMDOperandIterator() = default;
1606   explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1607 
1608   T *operator*() const { return cast_or_null<T>(*I); }
1609 
1610   TypedMDOperandIterator &operator++() {
1611     ++I;
1612     return *this;
1613   }
1614 
1615   TypedMDOperandIterator operator++(int) {
1616     TypedMDOperandIterator Temp(*this);
1617     ++I;
1618     return Temp;
1619   }
1620 
1621   bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1622   bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1623 };
1624 
1625 /// Typed, array-like tuple of metadata.
1626 ///
1627 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1628 /// particular type of metadata.
1629 template <class T> class MDTupleTypedArrayWrapper {
1630   const MDTuple *N = nullptr;
1631 
1632 public:
1633   MDTupleTypedArrayWrapper() = default;
1634   MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1635 
1636   template <class U>
1637   MDTupleTypedArrayWrapper(
1638       const MDTupleTypedArrayWrapper<U> &Other,
1639       std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
1640       : N(Other.get()) {}
1641 
1642   template <class U>
1643   explicit MDTupleTypedArrayWrapper(
1644       const MDTupleTypedArrayWrapper<U> &Other,
1645       std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
1646       : N(Other.get()) {}
1647 
1648   explicit operator bool() const { return get(); }
1649   explicit operator MDTuple *() const { return get(); }
1650 
1651   MDTuple *get() const { return const_cast<MDTuple *>(N); }
1652   MDTuple *operator->() const { return get(); }
1653   MDTuple &operator*() const { return *get(); }
1654 
1655   // FIXME: Fix callers and remove condition on N.
1656   unsigned size() const { return N ? N->getNumOperands() : 0u; }
1657   bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1658   T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1659 
1660   // FIXME: Fix callers and remove condition on N.
1661   using iterator = TypedMDOperandIterator<T>;
1662 
1663   iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1664   iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1665 };
1666 
1667 #define HANDLE_METADATA(CLASS)                                                 \
1668   using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1669 #include "llvm/IR/Metadata.def"
1670 
1671 /// Placeholder metadata for operands of distinct MDNodes.
1672 ///
1673 /// This is a lightweight placeholder for an operand of a distinct node.  It's
1674 /// purpose is to help track forward references when creating a distinct node.
1675 /// This allows distinct nodes involved in a cycle to be constructed before
1676 /// their operands without requiring a heavyweight temporary node with
1677 /// full-blown RAUW support.
1678 ///
1679 /// Each placeholder supports only a single MDNode user.  Clients should pass
1680 /// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1681 /// should be replaced with.
1682 ///
1683 /// While it would be possible to implement move operators, they would be
1684 /// fairly expensive.  Leave them unimplemented to discourage their use
1685 /// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1686 class DistinctMDOperandPlaceholder : public Metadata {
1687   friend class MetadataTracking;
1688 
1689   Metadata **Use = nullptr;
1690 
1691 public:
1692   explicit DistinctMDOperandPlaceholder(unsigned ID)
1693       : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1694     SubclassData32 = ID;
1695   }
1696 
1697   DistinctMDOperandPlaceholder() = delete;
1698   DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1699   DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1700 
1701   ~DistinctMDOperandPlaceholder() {
1702     if (Use)
1703       *Use = nullptr;
1704   }
1705 
1706   unsigned getID() const { return SubclassData32; }
1707 
1708   /// Replace the use of this with MD.
1709   void replaceUseWith(Metadata *MD) {
1710     if (!Use)
1711       return;
1712     *Use = MD;
1713 
1714     if (*Use)
1715       MetadataTracking::track(*Use);
1716 
1717     Metadata *T = cast<Metadata>(this);
1718     MetadataTracking::untrack(T);
1719     assert(!Use && "Use is still being tracked despite being untracked!");
1720   }
1721 };
1722 
1723 //===----------------------------------------------------------------------===//
1724 /// A tuple of MDNodes.
1725 ///
1726 /// Despite its name, a NamedMDNode isn't itself an MDNode.
1727 ///
1728 /// NamedMDNodes are named module-level entities that contain lists of MDNodes.
1729 ///
1730 /// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
1731 class NamedMDNode : public ilist_node<NamedMDNode> {
1732   friend class LLVMContextImpl;
1733   friend class Module;
1734 
1735   std::string Name;
1736   Module *Parent = nullptr;
1737   void *Operands; // SmallVector<TrackingMDRef, 4>
1738 
1739   void setParent(Module *M) { Parent = M; }
1740 
1741   explicit NamedMDNode(const Twine &N);
1742 
1743   template <class T1> class op_iterator_impl {
1744     friend class NamedMDNode;
1745 
1746     const NamedMDNode *Node = nullptr;
1747     unsigned Idx = 0;
1748 
1749     op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1750 
1751   public:
1752     using iterator_category = std::bidirectional_iterator_tag;
1753     using value_type = T1;
1754     using difference_type = std::ptrdiff_t;
1755     using pointer = value_type *;
1756     using reference = value_type;
1757 
1758     op_iterator_impl() = default;
1759 
1760     bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1761     bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1762 
1763     op_iterator_impl &operator++() {
1764       ++Idx;
1765       return *this;
1766     }
1767 
1768     op_iterator_impl operator++(int) {
1769       op_iterator_impl tmp(*this);
1770       operator++();
1771       return tmp;
1772     }
1773 
1774     op_iterator_impl &operator--() {
1775       --Idx;
1776       return *this;
1777     }
1778 
1779     op_iterator_impl operator--(int) {
1780       op_iterator_impl tmp(*this);
1781       operator--();
1782       return tmp;
1783     }
1784 
1785     T1 operator*() const { return Node->getOperand(Idx); }
1786   };
1787 
1788 public:
1789   NamedMDNode(const NamedMDNode &) = delete;
1790   ~NamedMDNode();
1791 
1792   /// Drop all references and remove the node from parent module.
1793   void eraseFromParent();
1794 
1795   /// Remove all uses and clear node vector.
1796   void dropAllReferences() { clearOperands(); }
1797   /// Drop all references to this node's operands.
1798   void clearOperands();
1799 
1800   /// Get the module that holds this named metadata collection.
1801   inline Module *getParent() { return Parent; }
1802   inline const Module *getParent() const { return Parent; }
1803 
1804   MDNode *getOperand(unsigned i) const;
1805   unsigned getNumOperands() const;
1806   void addOperand(MDNode *M);
1807   void setOperand(unsigned I, MDNode *New);
1808   StringRef getName() const;
1809   void print(raw_ostream &ROS, bool IsForDebug = false) const;
1810   void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1811              bool IsForDebug = false) const;
1812   void dump() const;
1813 
1814   // ---------------------------------------------------------------------------
1815   // Operand Iterator interface...
1816   //
1817   using op_iterator = op_iterator_impl<MDNode *>;
1818 
1819   op_iterator op_begin() { return op_iterator(this, 0); }
1820   op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1821 
1822   using const_op_iterator = op_iterator_impl<const MDNode *>;
1823 
1824   const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1825   const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1826 
1827   inline iterator_range<op_iterator>  operands() {
1828     return make_range(op_begin(), op_end());
1829   }
1830   inline iterator_range<const_op_iterator> operands() const {
1831     return make_range(op_begin(), op_end());
1832   }
1833 };
1834 
1835 // Create wrappers for C Binding types (see CBindingWrapping.h).
1836 DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
1837 
1838 } // end namespace llvm
1839 
1840 #endif // LLVM_IR_METADATA_H
1841