1
2 #pragma ident "%Z%%M% %I% %E% SMI"
3
4 /*
5 ** SQLite uses this code for testing only. It is not a part of
6 ** the SQLite library. This file implements two new TCL commands
7 ** "md5" and "md5file" that compute md5 checksums on arbitrary text
8 ** and on complete files. These commands are used by the "testfixture"
9 ** program to help verify the correct operation of the SQLite library.
10 **
11 ** The original use of these TCL commands was to test the ROLLBACK
12 ** feature of SQLite. First compute the MD5-checksum of the database.
13 ** Then make some changes but rollback the changes rather than commit
14 ** them. Compute a second MD5-checksum of the file and verify that the
15 ** two checksums are the same. Such is the original use of this code.
16 ** New uses may have been added since this comment was written.
17 */
18 /*
19 * This code implements the MD5 message-digest algorithm.
20 * The algorithm is due to Ron Rivest. This code was
21 * written by Colin Plumb in 1993, no copyright is claimed.
22 * This code is in the public domain; do with it what you wish.
23 *
24 * Equivalent code is available from RSA Data Security, Inc.
25 * This code has been tested against that, and is equivalent,
26 * except that you don't need to include two pages of legalese
27 * with every copy.
28 *
29 * To compute the message digest of a chunk of bytes, declare an
30 * MD5Context structure, pass it to MD5Init, call MD5Update as
31 * needed on buffers full of bytes, and then call MD5Final, which
32 * will fill a supplied 16-byte array with the digest.
33 */
34 #include <tcl.h>
35 #include <string.h>
36 #include "sqlite.h"
37
38 /*
39 * If compiled on a machine that doesn't have a 32-bit integer,
40 * you just set "uint32" to the appropriate datatype for an
41 * unsigned 32-bit integer. For example:
42 *
43 * cc -Duint32='unsigned long' md5.c
44 *
45 */
46 #ifndef uint32
47 # define uint32 unsigned int
48 #endif
49
50 struct Context {
51 uint32 buf[4];
52 uint32 bits[2];
53 unsigned char in[64];
54 };
55 typedef char MD5Context[88];
56
57 /*
58 * Note: this code is harmless on little-endian machines.
59 */
byteReverse(unsigned char * buf,unsigned longs)60 static void byteReverse (unsigned char *buf, unsigned longs){
61 uint32 t;
62 do {
63 t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 |
64 ((unsigned)buf[1]<<8 | buf[0]);
65 *(uint32 *)buf = t;
66 buf += 4;
67 } while (--longs);
68 }
69 /* The four core functions - F1 is optimized somewhat */
70
71 /* #define F1(x, y, z) (x & y | ~x & z) */
72 #define F1(x, y, z) (z ^ (x & (y ^ z)))
73 #define F2(x, y, z) F1(z, x, y)
74 #define F3(x, y, z) (x ^ y ^ z)
75 #define F4(x, y, z) (y ^ (x | ~z))
76
77 /* This is the central step in the MD5 algorithm. */
78 #define MD5STEP(f, w, x, y, z, data, s) \
79 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
80
81 /*
82 * The core of the MD5 algorithm, this alters an existing MD5 hash to
83 * reflect the addition of 16 longwords of new data. MD5Update blocks
84 * the data and converts bytes into longwords for this routine.
85 */
MD5Transform(uint32 buf[4],const uint32 in[16])86 static void MD5Transform(uint32 buf[4], const uint32 in[16]){
87 register uint32 a, b, c, d;
88
89 a = buf[0];
90 b = buf[1];
91 c = buf[2];
92 d = buf[3];
93
94 MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
95 MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
96 MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
97 MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
98 MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
99 MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
100 MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
101 MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
102 MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
103 MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
104 MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
105 MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
106 MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
107 MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
108 MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
109 MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
110
111 MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
112 MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
113 MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
114 MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
115 MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
116 MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
117 MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
118 MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
119 MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
120 MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
121 MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
122 MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
123 MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
124 MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
125 MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
126 MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
127
128 MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
129 MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
130 MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
131 MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
132 MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
133 MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
134 MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
135 MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
136 MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
137 MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
138 MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
139 MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
140 MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
141 MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
142 MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
143 MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
144
145 MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
146 MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
147 MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
148 MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
149 MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
150 MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
151 MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
152 MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
153 MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
154 MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
155 MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
156 MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
157 MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
158 MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
159 MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
160 MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
161
162 buf[0] += a;
163 buf[1] += b;
164 buf[2] += c;
165 buf[3] += d;
166 }
167
168 /*
169 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
170 * initialization constants.
171 */
MD5Init(MD5Context * pCtx)172 static void MD5Init(MD5Context *pCtx){
173 struct Context *ctx = (struct Context *)pCtx;
174 ctx->buf[0] = 0x67452301;
175 ctx->buf[1] = 0xefcdab89;
176 ctx->buf[2] = 0x98badcfe;
177 ctx->buf[3] = 0x10325476;
178 ctx->bits[0] = 0;
179 ctx->bits[1] = 0;
180 }
181
182 /*
183 * Update context to reflect the concatenation of another buffer full
184 * of bytes.
185 */
186 static
MD5Update(MD5Context * pCtx,const unsigned char * buf,unsigned int len)187 void MD5Update(MD5Context *pCtx, const unsigned char *buf, unsigned int len){
188 struct Context *ctx = (struct Context *)pCtx;
189 uint32 t;
190
191 /* Update bitcount */
192
193 t = ctx->bits[0];
194 if ((ctx->bits[0] = t + ((uint32)len << 3)) < t)
195 ctx->bits[1]++; /* Carry from low to high */
196 ctx->bits[1] += len >> 29;
197
198 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
199
200 /* Handle any leading odd-sized chunks */
201
202 if ( t ) {
203 unsigned char *p = (unsigned char *)ctx->in + t;
204
205 t = 64-t;
206 if (len < t) {
207 memcpy(p, buf, len);
208 return;
209 }
210 memcpy(p, buf, t);
211 byteReverse(ctx->in, 16);
212 MD5Transform(ctx->buf, (uint32 *)ctx->in);
213 buf += t;
214 len -= t;
215 }
216
217 /* Process data in 64-byte chunks */
218
219 while (len >= 64) {
220 memcpy(ctx->in, buf, 64);
221 byteReverse(ctx->in, 16);
222 MD5Transform(ctx->buf, (uint32 *)ctx->in);
223 buf += 64;
224 len -= 64;
225 }
226
227 /* Handle any remaining bytes of data. */
228
229 memcpy(ctx->in, buf, len);
230 }
231
232 /*
233 * Final wrapup - pad to 64-byte boundary with the bit pattern
234 * 1 0* (64-bit count of bits processed, MSB-first)
235 */
MD5Final(unsigned char digest[16],MD5Context * pCtx)236 static void MD5Final(unsigned char digest[16], MD5Context *pCtx){
237 struct Context *ctx = (struct Context *)pCtx;
238 unsigned count;
239 unsigned char *p;
240
241 /* Compute number of bytes mod 64 */
242 count = (ctx->bits[0] >> 3) & 0x3F;
243
244 /* Set the first char of padding to 0x80. This is safe since there is
245 always at least one byte free */
246 p = ctx->in + count;
247 *p++ = 0x80;
248
249 /* Bytes of padding needed to make 64 bytes */
250 count = 64 - 1 - count;
251
252 /* Pad out to 56 mod 64 */
253 if (count < 8) {
254 /* Two lots of padding: Pad the first block to 64 bytes */
255 memset(p, 0, count);
256 byteReverse(ctx->in, 16);
257 MD5Transform(ctx->buf, (uint32 *)ctx->in);
258
259 /* Now fill the next block with 56 bytes */
260 memset(ctx->in, 0, 56);
261 } else {
262 /* Pad block to 56 bytes */
263 memset(p, 0, count-8);
264 }
265 byteReverse(ctx->in, 14);
266
267 /* Append length in bits and transform */
268 ((uint32 *)ctx->in)[ 14 ] = ctx->bits[0];
269 ((uint32 *)ctx->in)[ 15 ] = ctx->bits[1];
270
271 MD5Transform(ctx->buf, (uint32 *)ctx->in);
272 byteReverse((unsigned char *)ctx->buf, 4);
273 memcpy(digest, ctx->buf, 16);
274 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
275 }
276
277 /*
278 ** Convert a digest into base-16. digest should be declared as
279 ** "unsigned char digest[16]" in the calling function. The MD5
280 ** digest is stored in the first 16 bytes. zBuf should
281 ** be "char zBuf[33]".
282 */
DigestToBase16(unsigned char * digest,char * zBuf)283 static void DigestToBase16(unsigned char *digest, char *zBuf){
284 static char const zEncode[] = "0123456789abcdef";
285 int i, j;
286
287 for(j=i=0; i<16; i++){
288 int a = digest[i];
289 zBuf[j++] = zEncode[(a>>4)&0xf];
290 zBuf[j++] = zEncode[a & 0xf];
291 }
292 zBuf[j] = 0;
293 }
294
295 /*
296 ** A TCL command for md5. The argument is the text to be hashed. The
297 ** Result is the hash in base64.
298 */
md5_cmd(void * cd,Tcl_Interp * interp,int argc,const char ** argv)299 static int md5_cmd(void*cd, Tcl_Interp *interp, int argc, const char **argv){
300 MD5Context ctx;
301 unsigned char digest[16];
302
303 if( argc!=2 ){
304 Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
305 " TEXT\"", 0);
306 return TCL_ERROR;
307 }
308 MD5Init(&ctx);
309 MD5Update(&ctx, (unsigned char*)argv[1], (unsigned)strlen(argv[1]));
310 MD5Final(digest, &ctx);
311 DigestToBase16(digest, interp->result);
312 return TCL_OK;
313 }
314
315 /*
316 ** A TCL command to take the md5 hash of a file. The argument is the
317 ** name of the file.
318 */
md5file_cmd(void * cd,Tcl_Interp * interp,int argc,const char ** argv)319 static int md5file_cmd(void*cd, Tcl_Interp*interp, int argc, const char **argv){
320 FILE *in;
321 MD5Context ctx;
322 unsigned char digest[16];
323 char zBuf[10240];
324
325 if( argc!=2 ){
326 Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
327 " FILENAME\"", 0);
328 return TCL_ERROR;
329 }
330 in = fopen(argv[1],"rb");
331 if( in==0 ){
332 Tcl_AppendResult(interp,"unable to open file \"", argv[1],
333 "\" for reading", 0);
334 return TCL_ERROR;
335 }
336 MD5Init(&ctx);
337 for(;;){
338 int n;
339 n = fread(zBuf, 1, sizeof(zBuf), in);
340 if( n<=0 ) break;
341 MD5Update(&ctx, (unsigned char*)zBuf, (unsigned)n);
342 }
343 fclose(in);
344 MD5Final(digest, &ctx);
345 DigestToBase16(digest, interp->result);
346 return TCL_OK;
347 }
348
349 /*
350 ** Register the two TCL commands above with the TCL interpreter.
351 */
Md5_Init(Tcl_Interp * interp)352 int Md5_Init(Tcl_Interp *interp){
353 Tcl_CreateCommand(interp, "md5", (Tcl_CmdProc*)md5_cmd, 0, 0);
354 Tcl_CreateCommand(interp, "md5file", (Tcl_CmdProc*)md5file_cmd, 0, 0);
355 return TCL_OK;
356 }
357
358 /*
359 ** During testing, the special md5sum() aggregate function is available.
360 ** inside SQLite. The following routines implement that function.
361 */
md5step(sqlite_func * context,int argc,const char ** argv)362 static void md5step(sqlite_func *context, int argc, const char **argv){
363 MD5Context *p;
364 int i;
365 if( argc<1 ) return;
366 p = sqlite_aggregate_context(context, sizeof(*p));
367 if( p==0 ) return;
368 if( sqlite_aggregate_count(context)==1 ){
369 MD5Init(p);
370 }
371 for(i=0; i<argc; i++){
372 if( argv[i] ){
373 MD5Update(p, (unsigned char*)argv[i], strlen(argv[i]));
374 }
375 }
376 }
md5finalize(sqlite_func * context)377 static void md5finalize(sqlite_func *context){
378 MD5Context *p;
379 unsigned char digest[16];
380 char zBuf[33];
381 p = sqlite_aggregate_context(context, sizeof(*p));
382 MD5Final(digest,p);
383 DigestToBase16(digest, zBuf);
384 sqlite_set_result_string(context, zBuf, strlen(zBuf));
385 }
Md5_Register(sqlite * db)386 void Md5_Register(sqlite *db){
387 sqlite_create_aggregate(db, "md5sum", -1, md5step, md5finalize, 0);
388 }
389